TU Delft

Surrogate Reloaded: Fast Testing for Deep Reinforcement Learning.
Convolutional Neural Networks as surrogate model for DRL testing

Leon Braszczynski
Supervisor(s): Dr. A. Panichella, A. Bartlett

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Leon Braszczynski
Final project course: CSE3000 Research Project
Thesis committee: Annibale Panichella, Antony Bartlett, Cynthia Liem

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Surrogate Reloaded: Fast Testing for Deep
Reinforcement Learning

Convolutional Neural Networks as surrogate model for
DRL testing

Abstract

In recent years, Deep Reinforcement Learning
(DRL) has moved away from playing games to
more practical tasks like autonomous parking. This
transition has created a need for efficient testing of
DRL agents. To evaluate an agent, we need to run a
simulation of the task and let the agent decide what
actions to perform. Running these simulations is
expensive and time-consuming. The problem of
testing is that we need hundreds of different test
scenarios, and each simulation takes from seconds
to minutes depending on the use case, which is why
choosing the right initial state of the simulation is
critical. Current solutions leverage the idea of sur-
rogate models that can approximate how difficult
it will be for an agent to complete a given envi-
ronment without running the tests. Existing work
has explored the use of surrogate models for DRL
tasks, creating a Multi-Layer Perceptron to act as a
surrogate model for a DRL agent attempting to park
a car in a parking lot. Parking scenarios are inher-
ently spatial problems, and MLPs are not able to
take advantage of that spatial structure. To address
this limitation, we used Convolutional Neural Net-
works (CNNs), which are designed to handle spa-
tial information more effectively, and should there-
fore improve prediction performance over MLPs.
Our approach transforms tabular data into a low-
resolution grid-like image representing a parking
lot. This approach guides a genetic algorithm to
discover a mean of 25.76 failures per run, a 72%
improvement over the 14.98 failures found by the
MLP baseline. Our model also achieves signifi-
cantly higher scores on diversity metrics of gener-
ated environments.

1 Introduction

Deep Reinforcement Learning (DRL) is currently used across
many fields. It is used by Netflix for movie recommendations
and by autonomous vehicle companies like Waymo [13] [11].
DRL agents learn how to take the right decisions not from ex-
amples (data) like most ML models, but by learning a policy,
which is a mapping from states to actions [27]. They achieve
this by receiving rewards for interacting with a simulated en-
vironment. Through trial and error, agents learn without need
for supervision. In essence, they learn optimal decisions by
engaging with an environment where correct decisions are re-
warded and wrong decisions are penalized. For example, in a
parking scenario, an agent is rewarded for parking a car cor-
rectly and punished for hitting other cars. By interacting with
the environment long enough, DRL agents can learn what the
right decision is depending on the state they are in.

DRL agents can significantly impact human health and
safety, especially if they are used in safety-critical systems
like autonomous driving [1]. Therefore, the demand for test-
ing DRL agents is growing [1]. To ensure their safe and reli-
able deployment in real-world applications, rigorous and ad-
vanced testing methodologies are essential.

To evaluate a trained agent, it is redeployed in the simula-
tion environment used during training. However, rather than
relying on reward signals, the agent’s performance is assessed
based on its ability to complete the intended task [21]. We can
check if the agent was able to park the car correctly, or if it
failed and crashed into any obstacles. We can measure and
evaluate the agent on multiple metrics, but this is insufficient.
We must also consider the difficulty of the environment, fea-
tures such as the size of the parking lot, the distance from
the target parking spot, and the number of obstacles present
as well as their placement, influence the agent’s performance
during testing. In testing, we focus on edge cases and sce-
narios that are more challenging than normal conditions. We
aim to generate scenarios that are as diverse and difficult as
possible. The brute-force method of generating thousands of
random scenarios is computationally expensive, as running
each simulation can take about 40 seconds, even reaching up
to 5 minutes in some cases. Therefore, developing an efficient
method to generate challenging scenarios is essential.

To address the issue of running computationally expen-
sive DRL models, Biagiola and Tonella proposed the usage
of surrogate models as a proxy for DRL agents to estimate
the outcome of simulations without executing them [3]. Test-
ing DRL agents requires hundreds of different test scenarios
for in-depth evaluation, and each scenario is expensive to run.
Hence the motivation for using surrogate models. A surrogate
model is significantly more efficient than a DRL agent, al-
lowing us to evaluate the difficulty of multiple environments
without needing to run expensive simulations. This, com-
bined with a genetic algorithm, provides a method to generate
environments that are more diverse and have a higher proba-
bility of failure than traditional approaches.

Their work was limited, as they only used a single multi-
layer perceptron (MLP) surrogate that didn’t undergo exten-
sive hyper-parameter tuning. This represents a missed oppor-
tunity, as autonomous driving problems are inherently spa-
tial problems. MLPs flatten all spatial information before
processing, thus potentially losing insight. We conjecture
that this limitation impacts the effectiveness of the surrogate
model.

Therefore, in this work, we implement an additional surro-
gate using Convolutional Neural Networks (CNNs). Prior re-
search has shown that CNNs work well with spatial data [12];
they can understand spatial patterns more effectively. As an
analogy, it is easier for humans to look at a visualization of
a parking lot and decide if it represents a simple or difficult
scenario than to interpret the tabular data of the environment.
CNNss are also known for their translational invariance [12],
ensuring that challenging features can be detected regardless
of their position in the input. Based on this reasoning, we de-
velop CNN-based surrogate models. We also perform exten-
sive hyper-parameter and architecture fine-tuning of a CNN
model using grid search [15].

The model relies on transformed data. We transformed
tabular data used by the original MLP into a low-resolution
image representation. It is a 3-channel grid of size 4x10.
A detailed description of the transformation can be found in
Methodology Section.

We evaluate our approach using the perpendicular park-
ing task from the HighwayEnv simulator [14], where a DRL
agent must park a vehicle in a designated spot while avoid-
ing collisions with other cars. To answer our research ques-
tions, we develop an optimized CNN model and perform
extensive grid search to tune hyperparameters and architec-
ture. We evaluated classification performance of our CNN
using six evaluation criteria: precision, recall, F1-score, ac-
curacy, AUC-ROC and validation loss [5]. We use the best-
performing CNN configuration to guide a Genetic Algorithm
(GA) to find environment configurations which the DRL
agent is likely to fail on and compare their performance using
three evaluation criteria: mean probability of generating the
failing environment, coverage, and entropy.

Our experiments demonstrate that the CNN-based surro-
gate model significantly outperforms the MLP baseline. The
CNN-guided search discovered a mean of 25.76 failures per
run, a 72% improvement over the MLP’s 14.98 failures. The
advantage extended to all diversity metrics: for example, in
the input diversity category, the CNN achieved 70.0% cov-
erage and 19.6% entropy, substantially outperforming the
MLP’s 59.0% coverage and 6.8% entropy. These results in-
dicate a more comprehensive and varied test case generation.

This paper aims to answer the following research ques-
tions:

* RQ1: What architectural and design choices lead to effec-
tive CNN-based surrogate models for DRL testing?

* RQ2: How does the performance of the CNN-based surro-
gate model compare to an MLP-based surrogate baseline?

To answer these questions, our main contributions are as
follows:

* We evaluate the performance of CNNs in classifying failing
environment configurations for the parking task.

* We demonstrate the effectiveness of using CNNs to guide
a GA in finding these failing configurations.

* We provide a comprehensive comparison of the overall per-
formance of CNN and MLP surrogate models for testing
DRL agents.

* We introduce a data transformation approach that converts
tabular environment data into a spatial representation suit-
able for CNN processing.

* We identify and validate a more reliable design choice for
surrogate model selection, showing that a model’s gener-
alization performance is a better predictor of success than
standard classification metrics.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the necessary background, while Section 3
describes our methodology for transforming the data, devel-
oping, and training the CNN. Section 4 details the implemen-
tation, and Section 5 outlines our study design. We present

head_ego

s 0.0

-1 pos._ ego x

(@)

{

"env_configuration": {
"num_lanes": 10,
"goal_lane_idx": 20,
"head_ego": 0.0,
"pvehicles": {

3, 5, 6, 8, 13
1,
"pos_ego": (0.0, 0.0)

}

}

(b)

Figure 1: An configuration of the Parking environment in the High-
wayEnv simulator [14]. The bottom part (B) shows the configuration
of the environment in JSON. On the top (A) is a rendered of that en-
vironment [3].

our results in Section 6 and discuss threats to validity in Sec-
tion 7. Finally, Section 8 offers a conclusion and recommen-
dations for future work, and Section 9 discusses ethical con-
siderations and reproducibility.

2 Background

2.1 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is an advanced subfield
of Reinforcement Learning, a process that doesn’t rely on la-
beled data for learning. Instead, the model is put in a simu-
lation of the environment that it can interact with [27]. De-
pending on the actions the agent takes, it can be rewarded
or punished, thus learning what the task is and how to per-
form it. In this paper, we focus on a specific scenario, namely
perpendicular parking. Take a look at Figure 1a; this is the
”game” that the agent will be playing. The goal is to park
a car on a blue target while avoiding hitting the other cars.
Figure 1B shows the JSON representation of the environ-
ment configuration, which includes parameters such as the
number of lanes (num-lanes), the target parking spot index
(goal_lane_idx), the ego vehicle’s heading (head_ego), po-
sitions of other vehicles (pvehicles), and the starting posi-
tion (pos_ego). Running these simulations is computation-
ally expensive, each run takes around a minute depending on
the hardware, so choosing the right environment is crucial.

As each simulation can result in a different amount of reward,
scenarios in which the agent fails to achieve the task are the
most valuable to us, since the agent can ’learn” the most from
them.

2.2 Surrogate Models

The aim of a surrogate model is to predict ahead of time what
the outcome of running a DRL agent in the environment will
be [3]. This allows us to classify the environments into “likely
to fail” or “likely to pass” without running expensive simula-
tions. A surrogate model is a simple, small model that is very
cheap to run, allowing us to explore more environment con-
figurations and select the ones that will result in the highest
reward for the DRL agent. The surrogate model is trained
on the DRL agent’s outputs from initial training. In simple
terms, we save each environment configuration that the DRL
was trained on and assign it a label: fail or pass. This dataset
is what the surrogate model is trained on.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep
neural networks particularly effective for processing spatial
data [12]. Unlike traditional Multi-Layer Perceptrons (MLPs)
that treat input as flat vectors, CNNs preserve spatial relation-
ships through convolutional operations.

CNNss offer several advantages for spatial problems:

* Spatial feature extraction: Convolutional layers can de-
tect local patterns regardless of their position in the input
[12].

* Translation invariance: Features can be recognized even
when shifted to different locations [12].

» Parameter efficiency: Weight sharing in convolutional
layers reduces the number of parameters compared to fully
connected networks [12].

2.4 Genetic Algorithms for Test Generation

Genetic Algorithms (GAs) are population-based optimization
techniques inspired by biological evolution [6]. In the context
of DRL testing, GAs evolve a population of environment con-
figurations to find those most likely to cause agent failures.

2.5 Attribution-Guided Mutation

The Indago framework employs saliency-based input attri-
bution to guide mutations intelligently [3]. The saliency
method computes gradients of the surrogate model’s output
with respect to each input parameter. These gradients indicate
magnitude and direction. Magnitude represents influence of
the parameter over the failure prediction. Direction shows
whether increasing or decreasing a parameter value will in-
crease failure likelihood

2.6 Related Work

The Indago framework, developed by Matteo Biagiola and
Paolo Tonella, is a search-based approach designed for testing
Deep Reinforcement Learning agents [3]. Its primary goal is
to efficiently discover environment configurations that lead to
failures of the DRL agent under test.

The process begins with collecting data, which consists
of interaction data collected from a trained DRL agent in-
teracting with its environment. This data consists of various
environment configurations and the corresponding outcomes
(e.g., success or failure of the task).

The collected interaction data is used to train a classifier,
which acts as the surrogate model. This model learns to pre-
dict whether a given environment configuration is likely to
cause the DRL agent to fail.

Next the surrogate model is used as a guide to a genetic
algorithm that creates new, more challenging environments.
Those environments are tested against the DRL agent to eval-
uate how difficult they are.

By using this surrogate-assisted approach, Indago aims to
save significant computation time by deferring the execution
of the full DRL agent simulation to only those configurations
that are most promising for exposing failures. Experimental
results reported by Biagiola and Tonella indicate that their
search-based approach can find substantially more failures
(e.g., 50% more) and more diverse failures compared to state-
of-the-art techniques.

3 Methodology

This section describes our approach for developing and test-
ing a CNN-based surrogate model for testing DRL agents.
We build on Indago framework, introduced by Biagiola et al.
[3]. Figure 2 shows a high-level overview of our approach.
In the first stage we use DRL agent training history, where
each data point is environment configuration, labeled as suc-
cess (1) or failure (0). Next we transform originally tabular
environment configuration, into spatial grid representations
suitable for CNN processing. Afterwards, we design hybrid
CNN that can be fed both image data and continuous fea-
tures. We perform a grid search to find the best architecture,
parameters and hyperparameter. Lastly we adapt the genetic
algorithm to our CNN model and we perform an evaluation
of our surrogate model.

3.1 Data Transformation

Figure 1a shows a visualization of the environment in which
the DRL agent is trained, while Figure 1b shows the corre-
sponding environment configuration used to generate this im-
age. Each environment is defined by the following parame-
ters:

* num_lanes: The size of the parking lot, indicating how
many parking spots are available on each side. The maxi-
mum is 10 lanes.

* goal_ lane_idx: The index of the target parking spot.

* head_ego: The initial angle of the ego vehicle, with a range
of [0.0, 1.0).

 pvehicles: A list containing the indices of parking spots
occupied by other vehicles.

* pos_ego: The initial X, y position of the ego vehicle, with a
range of ((-10, 10), (-5,9)).

The training dataset consists of 10,000 environment config-
urations from the DRL agent’s training history, each labeled
"0’ if the agent failed or ’1’ if it succeeded.

TRAINING PHASE

Data Collection
¢ Environment configs
* Success/Failure labels

—>

Data Transformation
e Tabular — 4x10x3
spatial grid
¢ Preserve continuous
features

CNN Development
e Architecture design

* Grid search
optimization

* Validation & selection

TESTING PHASE

Genetic Algorithm
¢ CNN-guided fitness
evaluation

 Attribution-guided
mutation

Evaluation
¢ DRL agent execution

* Failure analysis

Figure 2: A high-level overview of our methodology, from data collection in the training phase to evaluation in the testing phase.

3.2 Data transformation

To use a Convolutional Neural Network (CNN), we first
transformed the tabular data into an image format. We de-
cided to use the most compact representation possible: a 4x10
grid with 3 channels. These channels represent the parked ve-
hicles, the target spot, and an approximation of the vehicle’s
starting position. Image is an array of size 4x10x3, initial-
ized with zeros. The first channel represents parked vehicles;
for each occupied spot, we set the value at the corresponding
grid index to 1. The second channel encodes the target park-
ing spot in the same way. The third channel approximates the
vehicle’s starting position, with grid indices calculated based
on the num_lanes parameter. We also appended the continu-
ous features, head_ego and pos_ego to the grid. Those fea-
tures will be concatenated to the convolutional layers output,
ensuring no valuable information was lost.

3.3 CNN Design

We developed a custom CNN architecture to process our hy-
brid input, which consists of both the image representation
and the continuous features. The grid part of the input is first
passed through a series of convolutional layers. The output
feature map is then concatenated with the continuous features
from the input before being fed into a final dense layer. By
design, our CNN is highly modular, CNN is created based on
configuration dictionary that consist of:

* conv_depth: The number of layers in the convolutional
block.

e conv_width: The number of filters in each convolutional
layer.

* dense_depth: The number of layers in the final dense
block.

 activation_function: The activation function to use ('relu’,
"leaky relu’ or "elu’)[22] [18] [4].

* leaky_slopes: The negative slope for the Leaky ReL.U acti-
vation.

* drop_out_rate: The dropout rate, applied uniformly across
all layers [24].

A single 2D average pooling layer is placed between the
final convolutional block and the first dense layer. We made
a deliberate design choice to limit pooling to a single layer;
given the compact 4x10 spatial dimensions of our input, fur-
ther downsampling would risk the loss of critical spatial in-
formation necessary for accurate classification [12]. While
our multi-stage grid search was extensive, it was necessar-
ily bounded by computational constraints and did not cover

the entire space of all possible CNN architectures. Therefore,
the resulting model represents a well-performing architecture
identified through a systematic search, rather than a globally
optimal one.

3.4 CNN Training

Following the approach recommended by Biagiola and
Tonella [3], we used data only from the second half of the
DRL agent’s training. With a test split of 0.2, this resulted
in 4,000 training samples [7]. We used the training pipeline
provided by the Indago framework, with one modification:
we saved the model with the best validation loss instead of
the best precision. Given our limited dataset size, we chose
not to create a static validation set. Instead, promising models
were tested directly in deployment against the DRL agent.

To identify the optimal architecture and hyperparameters,
we performed a grid search [15]. We implemented a custom
method, integrated with the Indago framework, to automate
the generation of configuration files and a script to execute
the grid search over both architectural parameters and train-
ing hyperparameters. The Indago framework identifies each
unique model architecture with a single integer, referred to
as a ‘layer’. Manually defining configurations for the hun-
dreds of architectures produced by our hyperparameter grid
was infeasible. To automate this, we developed a determinis-
tic mapping mechanism that treats the ‘layer‘ integer as a lin-
ear index into the multi-dimensional hyperparameter space.
The specific configuration for any given index is resolved pro-
grammatically using a series of integer division and modulo
operations, effectively “unpacking” the index into a full ar-
chitectural definition. Our script also performs a grid search
over the learning rate, batch size, oversampling value, and
weight decay.

3.5 Parameters of a grid search

We performed three sequential grid searches, each focusing
on a different aspect of the CNN. The searches were run se-
quentially to narrow down the optimal configuration.

The first grid search was focused on the core architecture
of the CNN:

* Convolutional Depth and Width: We tested a range of 1
to 4 convolutional layers with filter counts of 16, 24, 32, 48,
and 64, This was informed by work from He et al. [12].

* Dense Layer Depth and Width: The dense layer was
tested with 1 and 2 layers, with widths of 8, 16, and 32.

The second grid search focused on the activation function
and regularization:

* Activation Functions: We tested three of the most popular
activation functions: ReLU, Leaky ReLU, and ELU. For
Leaky ReLU, we tested negative slope values of 0.05, 0.1,
and 0.2 [22] [18] [4].

* Regularization: We tested three dropout rates (0.1, 0.3,
and 0.5), as well as the inclusion or exclusion of batch nor-
malization [9] [24].

The last grid search optimized training hyperparameters:

* Learning Rate: Tested values included le-4, 3e-4, Se-4,
and le-3 [10].

* Batch Size: We experimented with batch sizes of 128, 256,
and 512 [20].

* Weight Decay: We tested the effect of L2 regularization
by testing values of 0, 1e-5, 5e-5, and 1e-4 [17].

Parameters that were not the focus of a given grid search
were set to a median value from the ranges of the subsequent
searches. To pick the best architecture, we monitored stan-
dard metrics like precision, recall, F1 score, and Area under
the ROC curve (AUROC), but gave significant weight to the
analysis of the training and validation loss curves [5]. The
most promising architectures were then evaluated in deploy-
ment, guiding the genetic algorithm and tested against the
DRL agent.

3.6 Genetic Algorithm

The Genetic Algorithm (GA) implementation was provided
by the Indago framework and uses a surrogate model to guide
the selection and mutation of environments [3]. We adjusted
its implementation to accommodate our new hybrid data rep-
resentation. Originally its functions were built for a flat, tab-
ular feature vector of 24 elements. Our transition to a hy-
brid grid-based representation expanded this vector to 124
elements, making the original mapping between attribution
indices and environment parameters unusable.

The core of our adjustment was creating a new mapping
mechanism. This logic translates an index from the CNN’s
124-element flattened attribution vector back to its corre-
sponding, structured environment parameter. For example:

* Indices 0-39 map parked_vehicles_lane_indices.
* Indices 40-79 map to the goal_lane_idx.
* Indices 80-119 map to the position_ego.

* Indices 120-123 map directly to the continuous features:
heading_ego, position_ego, and num_lanes.

4 Implementation Details

Our methodology was implemented in Python 3.9, leverag-
ing several open-source libraries. The core of our experimen-
tal pipeline was built upon the Indago framework, which
provided the genetic algorithm and baseline MLP surrogate
model implementation [3]. We developed our custom CNN
surrogate model using PyTorch (version 1.8.0). Data ma-
nipulation and the spatial transformation logic were handled
primarily with NumPy (version 1.21.0).

All experiments, including model training, grid searches,
and the final evaluation runs, were conducted on a MacBook
Pro with M1 chip and 16GB of RAM.

The complete codebase, including instructions for setting
up the environment via a requirements.txt file, can be
accessed at our public GitHub repository.

5 Study Design

To evaluate our CNN-based approach, we designed a two-
phase study. The first phase focuses on answering RQ1 by
identifying an effective CNN architecture and, determining
the most reliable criteria for its selection. The second phase
addresses RQ2 by conducting a direct comparative evalua-
tion of our final CNN-guided search against the MLP-based
baseline. This section includes the research questions, exper-
imental procedure, and evaluation metrics for both phases of
our research.

5.1 Research Questions

Our primary goal is to determine if a CNN, which is designed
to process spatial information, offers an advantage over a
standard MLP for surrogate-based DRL testing in an inher-
ently spatial task like perpendicular parking. To achieve this,
we define the following research questions:

* RQ1: What architectural and design choices lead to effec-
tive CNN-based surrogate models for DRL testing?

* RQ2: How does the performance of the CNN-based surro-
gate model compare to an MLP-based surrogate baseline?

5.2 Case Study and Experimental Setup

Our study is centered on the environment from the
highway-en simulator, a perpendicular parking task previ-
ously described in Section 3.1 [14]. The DRL agent was
trained using Hindsight Experience Replay (HER) [3]. It’s
objective is to park a vehicle in a designated spot while avoid-
ing collisions.

Models for Comparison

We compare the performance of two distinct approaches for
generating failure scenarios:

1. CNN-based Search (Our Approach): The genetic algo-
rithm described in Section 3.3, guided by our custom CNN
surrogate model. This approach uses the 4x10x3 grid-
based data representation transformed from the original
environment parameters.

2. MLP-based Search (Baseline): The same genetic algo-
rithm guided by an MLP surrogate, replicating the core
method of Biagiola and Tonella [3]. The MLP is trained
on the original, non-transformed tabular data.

5.3 Procedure

Our procedure is divided into two phases, one for each re-
search question.

https://github.com/Braszczynski/CNN-surrogate-reloaded

Phase 1: CNN Model Development and Selection (for
RQ1).

The aim of Phase 1 was to find the most effective CNN ar-
chitecture. We performed a 3-stage grid search. The first
and widest grid search was designed to find the most suitable
CNN architecture. To achieve that, we selected the 8 best-
performing architectures based on standard validation metrics
(Precision, Recall, F1-score, AUROC). We tested these ar-
chitectures in deployment and found no correlation between
their validation metrics and their actual failure discovery rate.
This finding led us to form a new hypothesis: a model’s gen-
eralization capability, indicated by a smaller gap between
training and validation loss curves, is a more reliable pre-
dictor of its effectiveness. Based on this hypothesis, we se-
lected 5 more architectures with promising learning curves
and tested their effectiveness. As this method proved supe-
rior, we selected our final CNN model for Phase 2 by priori-
tizing strong generalization over raw metric scores

Phase 2: Comparative Evaluation (for RQ2).

In this phase, we used the final CNN model selected in Phase
1 to conduct a comparison against the baseline. For each of
the models, we performed multiple independent runs to ac-
count for the stochastic nature of the search algorithms. In
each run, the designated approach was tasked with generating
50 potentially failure-inducing environments. The search for
each environment was limited by a fixed time budget. Each
environment proposed by the search was then executed with
the actual DRL agent in the simulator to verify whether it re-
sulted in a true failure (e.g., a collision or timeout).

5.4 Evaluation Metrics

To quantitatively answer our research questions, we used dif-
ferent sets of metrics for each phase of the study.

Metrics for RQ1: Model Selection

During the model development and selection phase, the fol-
lowing criteria were used to identify the final CNN architec-
ture:

* Classification Metrics: Standard metrics including Pre-
cision, Recall, F1-score, and Area Under the ROC Curve
(AUROC) were used for the initial selection of candidate
models.

* Learning Curve Analysis: The primary criterion for fi-
nal model selection was an analysis of the model’s learning
curves, specifically the gap between training loss and vali-
dation loss, which served as a proxy for generalization.

* Deployment Failure Rate: The final measure of a candi-
date model’s effectiveness was its success rate in guiding
the GA to find failing test cases during preliminary deploy-
ment tests.

Metrics for RQ2: Comparative Performance

To compare the final selected CNN against the MLP baseline,
we employed the comprehensive set of metrics established by
Biagiola and Tonella [3]:

* Mean Number of Discovered Failures: For each indepen-
dent run, we count the total number of environments (out

of the 50 generated) that result in a verified failure. The fi-
nal reported metric is the mean of these failure counts taken
across all runs. This directly measures the effectiveness of
each approach in finding failures and serves as the primary
point of comparison for RQ2.

* Input Diversity: To assess how varied the generated fail-
ure configurations are, we clustered their vector represen-
tations. We use the same methodology applied by Biagiola
and Tonella [3], we used k-means clustering [16] with sil-
houette analysis [23] to determine the optimal number of
clusters. We then reported:

— Coverage: The percentage of clusters that contain at
least one failure generated by the given approach.

— Entropy: A measure of how uniformly the failures are
distributed across the covered clusters.

* Output Diversity: To measure the diversity of the DRL
agent’s behavior in response to the failures, we performed
the same clustering analysis on the agent’s failure trajec-
tories. We again reported Coverage and Entropy for the
resulting trajectory clusters. These diversity metrics show
how diverse agent behaviors are. This is essential for an-
swering RQ2.

* Statistical Analysis: To ensure our conclusions are ro-
bust, we used the Mann-Whitney U Test [19] to determine
if the observed differences in failure counts and diversity
metrics between the approaches are statistically significant
(p < 0.05). To complement the significance test, we also
measured the effect size using the Vargha-Delaney A statis-
tic [25].

6 Results

6.1 RQ1: Architectural and Design Choices for
Effective Surrogates

CNN Architecture Search

The first grid search resulted in 160 architectures tested. We
evaluated 8 of them in deployment by generating 50 parking
environment configurations and testing them against the DRL
agent. For each of these, we saved the probability of generat-
ing a failing environment. We selected these architectures by
taking the 2 best performing models for each metric: preci-
sion, recall, F1, and AUROC.

The results are summarized in Table 1. As we can observe,
the validation metrics do not translate to deployment perfor-
mance. For instance, architecture 5 has the best Fl-score
(0.29) but a low failure rate of 0.21. On the other hand, archi-
tecture 4 has a poor F1-score of 0.17 but achieved the highest
failure rate of 0.62, making it the best model we tested. This
suggests that for this problem, optimizing for traditional clas-
sification metrics is not a reliable strategy for model selection.

This led us to hypothesize that a model’s generalization ca-
pability is a more important for good performance. This hy-
pothesis is supported by an analysis of the learning curves.
Figure 3 shows the learning curve for the best-performing
model (Architecture 4), where the small gap between the
training and validation loss indicates strong generalization.

In contrast, Figure 4 shows the curve for a poorly perform-
ing model (Architecture 8), where a significant divergence
between the curves indicates overfitting.

To test this new hypothesis, we conducted a small ex-
ploratory study. We selected five additional models based
solely on their promising learning curves (i.e., a minimal gen-
eralization gap). These models achieved an average failure
discovery rate of 0.48. This represents a 65% improvement
over the 0.29 average rate of the models originally selected
with validation metrics, confirming that learning curve anal-
ysis is a more reliable selection criterion.

Table 1: Results from the initial architecture search. Models were
selected based on top validation metrics (P: Precision, R: Recall, F1:
F1-Score, AU: AUROC). The final columns show validation loss (L)
and deployment failure rate (F). Note the lack of correlation between
high validation scores and deployment performance (e.g., ID 4 vs.
ID 5).

Conv Conv Dense Dense

D pepth Width Depth Widh ¢ R FI AUC L F
1 4 32 2 32 032 023 027 071 049 0.27
2 4 48 2 32 034 0.19 025 069 053 043
3 2 64 1 32 0.10 0.61 0.183 071 046 0.17
4 1 32 2 32 0.10 0.61 0.17 070 044 0.62
5 4 64 2 48 025 036 029 071 045 0.21
6 3 48 1 48 025 034 029 070 049 0.27
7 2 24 1 16 0.10 059 0.17 071 041 0.37
8 3 1

64 48 015 045 023 071 046 043

—— Train loss
M Validation loss

Loss

0.50 W
\M/\N\’V‘AM 1y
0.45 o JWVUN\V
0 20 40 60 80 100 120 140 160
Epochs

Figure 3: Learning curve for Architecture 4 (Failure rate = 0.62).
The small gap between training and validation loss shows good gen-
eralization and led to the best performance.

Final Architecture and Design Choice

After choosing the best architecture through learning curve
analysis, we conducted two more grid searches for activation
functions and training hyperparameters. We continued to pri-
oritize models that exhibited strong generalization while also
monitoring validation metrics like AUROC to select the final
configuration.

The final configuration consists of: 1 convolutional layer
with a width of 32, 2 dense layers with a width of 32,
Leaky ReLU as the activation function with a slope of 0.05, a
dropout rate of 0.1, with batch normalization active, a batch

0.71

M

\V\

Loss
o
o

0.4

—— Train loss
0.34 Validation loss

6 1’0 2‘0 3‘0 4’0 5’0 6‘0
Epochs
Figure 4: Learning curve for Architecture 8 (Failure rate = 0.43).

The large gap shows the model is overfitting, which resulted in worse
performance.

size of 256, learning rate of 0.001 and a weight decay of
0.00001.

This final model achieved a validation loss of 0.48, a pre-
cision of 0.12, a recall of 0.51, an F1-score of 0.20, and an
AUROC of 0.71.

Therefore, the answer to RQ1 is twofold. The most effec-
tive architecture was a shallow CNN (1 convolutional layer,
2 dense layers, with the parameters listed above). However,
the most critical design choice was the selection methodol-
ogy: prioritizing models with strong generalization, guided
by their learning curves, is more effective than selecting mod-
els based on traditional classification metrics.

6.2 RQ2: Comparison with MLP Baseline

To answer RQ2, we conducted a direct comparison between
our final CNN-guided Genetic Algorithm (GA) and the MLP-
guided GA baseline, as described in our Study Design. Both
approaches were run for 50 independent trials, and their abil-
ity to find failure-inducing environments was measured in
terms of failure count and diversity. This allows us to quan-
tify the benefits of our spatial data representation and CNN
architecture over a standard tabular approach.

Number of Discovered Failures

First, we compared the total number of unique failing envi-
ronments discovered by each approach. As shown in Table
2, our CNN-guided search found a mean of 25.76 failures
per run, a statistically significant improvement over the 14.98
failures found by the MLP baseline. The large effect size
confirms that this improvement is not due to chance, but is a
direct result of the more effective guidance provided by the
CNN surrogate.

Diversity of Discovered Failures

Beyond the raw count, we evaluated the diversity of the dis-
covered failures in both the input space (environment config-
urations) and the output space (agent behaviors).

Input Diversity. The results for input diversity, shown in
Table 2, demonstrate the most significant advantage of our
approach. The CNN-guided search achieved 70.0% coverage
of the input failure clusters and an entropy of 19.6%. This

Table 2: Comparison of CNN vs. MLP surrogate performance over
50 runs. All differences are statistically significant (Mann-Whitney
U test, p <0.001) with a large effect size (Vargha-Delaney A).

. . MLP CNN
Metric Sub-Metric (Baseline) (Ours)
Failure Rate Mean Failures 14.98 25.76

Discovered
. . Coverage (%) 59.0% 70.0%
Input Diversity g opy (%) 68% 19.6%
. . Coverage (%) 47.6% 68.7 %
Output Diversity g o0 (%) 582% 69.4%

is a significant improvement over the MLP baseline, which
only covered 59.0% of clusters with a lower entropy of 6.8%.
This finding strongly supports our hypothesis that a CNN can
more effectively explore the spatial dimensions of the prob-
lem, leading to a much more comprehensive and varied set of
test cases.

The comparison of output (behavioral) diversity, presented
in Table 2, also shows a clear and statistically significant ad-
vantage for the CNN model. It achieved higher coverage
(68.7% vs. 47.6%) and higher entropy (69.4% vs. 58.2%)
than the MLP baseline. This indicates that the more diverse
inputs found by the CNN also successfully trigger a wider
and more varied set of failing behaviors from the DRL agent.

In conclusion, our results for RQ2 show that the CNN-
based surrogate significantly outperforms the MLP baseline
in the most critical aspects of test case generation: finding
a greater number of failures and ensuring those failures are
drawn from a much more diverse set of input configurations.
This validates our core hypothesis that transforming the prob-
lem into a spatial domain and using a CNN is a more effective
strategy for testing this DRL agent.

7 Threats to Validity

7.1 Internal Validity

Both models had the same allocated budget, but environment
generation as well as the testing against DRL agents were
performed on different machines. This can result in subtle
differences in performance due to difference in hardware. To
mitigate this, both models were trained on the same data. For
each model, the same number of environments were gener-
ated and tested against the same DRL agent.

7.2 External Validity

Our results are based on only one DRL environment. This
environment is widely used in DRL community as a bench-
mark, but generalization to other environments is not guar-
anteed. Future work should focus on other benchmark en-
vironments like DonkeyCar simulator or environments from
Mujoco simulator [3].

7.3 Conclusion Validity

To ensure the reliability of our findings and account for the
stochastic nature of the genetic algorithm, we performed 50

independent runs for both our approach and the baseline. This
follows established guidelines for the empirical assessment of
randomized algorithms [2]. Furthermore, our conclusions are
supported by sound statistical analysis, including the Mann-
Whitney U test and the Vargha-Delaney effect size statistic,
as recommended in the literature[25] [19].

A remaining threat to conclusion validity stems from the
hyperparameter optimization process. Due to computational
constraints, the grid search for the optimal CNN architecture
and hyperparameters was not exhaustive. While the search
process itself is deterministic, the training of each candidate
model involves stochastic elements (e.g., weight initializa-
tion). The primary limitation is that the explored hyperpa-
rameter space was restricted. Consequently, the final CNN
architecture may be sub-optimal, which could lead to an un-
derestimation of the true effect size of our proposed approach
compared to a fully optimized model

8 Conclusion and Future Work

Testing Deep Reinforcement Learning (DRL) agents in
safety-critical systems like autonomous driving is essential,
but the high computational cost of simulation makes finding
challenging test cases difficult. While prior work has demon-
strated the value of using surrogate models to guide this
search, standard MLP-based approaches cannot fully lever-
age the spatial nature of environments like a parking lot.

In this thesis, we addressed this gap by introducing two
primary contributions. First, we developed a novel testing
approach that transforms tabular environment data into a 2D
grid, enabling the use of a Convolutional Neural Network
(CNN) as a more effective surrogate. Second, we identified
a more reliable design choice for model selection: our grid
search showed that a model’s generalization capability, as in-
dicated by its learning curves, is a far better predictor of de-
ployment performance than standard validation metrics like
F1-score or AUROC.

Our experiments provided clear answers to our research
questions. For RQ1, we demonstrated that a shallow CNN
architecture, selected based on its strong generalization prop-
erties, is highly effective for guiding the genetic algorithm.
For RQ2, the comparison against the baseline confirmed the
superiority of our approach. The CNN-guided search discov-
ered a mean of 25.76 failures per run, a 72% improvement
over the 14.98 failures found by the MLP. This advantage
extended to diversity across all metrics; for example, input
diversity entropy almost tripled from 6.8% to 19.6%.

These findings validate our central hypothesis: for prob-
lems with inherent spatial characteristics, representing the
data spatially and using a CNN is a more effective strategy
for testing DRL agents. While our study was limited to a sin-
gle parking environment, it lays a strong foundation for future
work. Promising directions include applying this technique to
other spatial DRL domains, such as robotics [8] or drone nav-
igation [26] , and incorporating diversity metrics directly into
the fitness function to further enhance the comprehensiveness
of the test case generation[3].

9 Responsible Research

9.1 Ethical Considerations

The primary ethical motivation of this research is to improve
the safety and reliability of DRL agents in safety-critical ap-
plications, such as autonomous driving. By developing a
more efficient method for discovering failures, this work aims
to contribute to more robust and dependable autonomous sys-
tems.

A key concern is the potential for algorithmic bias. The
performance of the surrogate models is fundamentally depen-
dent on the training data generated from the DRL agent’s in-
teractions. If this dataset lacks diversity, the surrogate model
may learn to effectively predict only a subset of possible fail-
ures, which could create a false sense of security. While our
results show the CNN approach enhances the diversity of dis-
covered failures compared to the MLP, the risk of undiscov-
ered failures persists.

The transparency of deep learning models like our CNN
is an important consideration. The black box” nature of
these models can make their predictions difficult to fully in-
terpret, which poses a challenge when they are used to vali-
date safety-critical systems.

To mitigate these concerns, we have committed to respon-
sible research practices. As mentioned in the "Reproducibil-
ity” section, our full codebase, data, and models are publicly
available. This transparency enables independent scrutiny
and validation by the broader research community, which is
a critical safeguard for ensuring the responsible development
of Al technologies.

9.2 Reproducibility

We have published all of our code, data, and grid search re-
sults in our public GitHub repository'. We used publicly
available packages and libraries, and we have extensive doc-
umentation in the repository about the setup and running of
the project.

9.3 Use of LLMs

LLMs were used to improve flow of text and grammatical
mistakes only. They didn’t have any contribution to the con-
tents of this research paper.

References

[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul
Christiano, John Schulman, and Dan Mané. Concrete
problems in ai safety, 2016.

[2] Andrea Arcuri and Lionel Briand. A practical guide for
using statistical tests to assess randomized algorithms
in software engineering. In Proceedings of the 33rd In-
ternational Conference on Software Engineering, ICSE
11, page 1-10, New York, NY, USA, 2011. Association
for Computing Machinery.

[3] Matteo Biagiola and Paolo Tonella. Testing of deep
reinforcement learning agents with surrogate mod-
els. ACM Transactions on Software Engineering and
Methodology, 2024.

"https://github.com/Braszczynski/CNN-surrogate-reloaded

[4] Djork-Amé Clevert, Thomas Unterthiner, and Sepp
Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus), 2016.

[5] Sarah Farhadpour, Timothy A. Warner, and Aaron E.
Maxwell. Selecting and interpreting multiclass loss
and accuracy assessment metrics for classifications with
class imbalance: Guidance and best practices. Remote
Sensing, 16(3):533, 2024.

[6] Davide Farinati and Leonardo Vanneschi. A survey on
dynamic populations in bio-inspired algorithms. Ge-
netic Programming and Evolvable Machines, 25(2):19,
2024.

[7] Tan Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016.

[8] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and
Sergey Levine. Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates,
2016.

[9] Sergey loffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift, 2015.

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization, 2017.

[11] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick
Mannion, Ahmad A. Al Sallab, Senthil Yogamani, and
Patrick Pérez. Deep reinforcement learning for au-
tonomous driving: A survey, 2021.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324,
1998.

[13] Yu Lei, Zhitao Wang, Wenjie Li, Hongbin Pei, and
Quanyu Dai. Social attentive deep q-networks for rec-
ommender systems. IEEE Transactions on Knowledge
and Data Engineering, 34(5):2443-2457, 2022.

[14] Edouard Leurent. An environment for autonomous
driving decision-making. https://github.com/eleurent/
highway-env, 2018.

[15] Petro Liashchynskyi and Pavlo Liashchynskyi. Grid
search, random search, genetic algorithm: A big com-
parison for nas, 2019.

[16] S. Lloyd. Least squares quantization in pcm. IEEE
Transactions on Information Theory, 28(2):129-137,
1982.

[17] Tlya Loshchilov and Frank Hutter. Decoupled weight
decay regularization, 2019.

[18] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.
Rectifier nonlinearities improve neural network acous-
tic models. Proceedings of ICML Workshop on Deep

Learning for Audio, Speech, and Language Processing,
2013.

[19] Henry B. Mann and Donald R. Whitney. On a test
of whether one of two random variables is stochasti-

cally larger than the other. The Annals of Mathematical
Statistics, 18(1):50-60, 1947.

https://github.com/Braszczynski/CNN-surrogate-reloaded
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Dominic Masters and Carlo Luschi. Revisiting small
batch training for deep neural networks, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hass-
abis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529-533, 2015.

Vinod Nair and Geoffrey E. Hinton. Rectified linear
units improve restricted boltzmann machines. In Pro-
ceedings of the 27th International Conference on Ma-
chine Learning, pages 807-814, 2010.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. Journal
of Computational and Applied Mathematics, 20:53-65,
1987.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929—
1958, 2014.

Andreas Vargha and Harold D. Delaney. A critique and
improvement of the CL common language effect size
statistics. Journal of Educational and Behavioral Statis-
tics, 25(1):101-132, 2000.

Jungiao Wang, Zhongliang Yu, Dong Zhou, Jiaqi Shi,
and Runran Deng. Vision-based deep reinforcement
learning of uav autonomous navigation using privileged
information, 2024.

Christopher J. C. H. Watkins and Peter Dayan. Q-
learning. Machine Learning, 8(3-4):279-292, 1992.

	Introduction
	Background
	Deep Reinforcement Learning
	Surrogate Models
	Convolutional Neural Networks
	Genetic Algorithms for Test Generation
	Attribution-Guided Mutation
	Related Work

	Methodology
	Data Transformation
	Data transformation
	CNN Design
	CNN Training
	Parameters of a grid search
	Genetic Algorithm

	Implementation Details
	Study Design
	Research Questions
	Case Study and Experimental Setup
	Models for Comparison

	Procedure
	Phase 1: CNN Model Development and Selection (for RQ1).
	Phase 2: Comparative Evaluation (for RQ2).

	Evaluation Metrics
	Metrics for RQ1: Model Selection
	Metrics for RQ2: Comparative Performance

	Results
	RQ1: Architectural and Design Choices for Effective Surrogates
	CNN Architecture Search
	Final Architecture and Design Choice

	RQ2: Comparison with MLP Baseline
	Number of Discovered Failures
	Diversity of Discovered Failures

	Threats to Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion and Future Work
	Responsible Research
	Ethical Considerations
	Reproducibility
	Use of LLMs

