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Subspace predictive control of flexible structures actuated by
piezoelectric elements

Gijs van der Veen1 and Jan-Willem van Wingerden2

Abstract— In this paper we consider data-driven control of
vibrations in a flexible structure equipped with piezoelectric
transducers. The control algorithm uses elements from the
fairly recent data-enabled predictive control framework. In
particular, we will develop a real-time implementation of the
subspace predictive control algorithm. This algorithm first
solves a linear least-squares problem to recursively estimate
the observer Markov parameters of the system. With those
parameters a predictor is constructed which is used to solve a
predictive control problem subject to constraints. The feasibility
of the approach is highlighted by applying it to an experimental
setup using an efficient implementation. First, this demonstrates
that computations can be performed in real-time for a realistic
situation. Second, we show how the scheme rapidly adapts when
a sudden significant change in structural dynamics is introduced
by changing one of the structural parameters.

I. INTRODUCTION
Vibration control of flexible structures continues to be an
area of active research in many engineering disciplines. In
particular, there is interest in “smart” structures equipped
with deformable materials. Overviews of control design tech-
niques are given in e.g. [1] and [2]. In the control of flexible
structures with lightly damped modes, it is advantageous
to exploit collocation between actuator and sensor pairs
to exploit the fact that this results in transfer functions
with a phase that does not drop beyond -180◦ [3], thereby
significantly simplifying and robustifying control design. In
practice, however, it has been observed that due to imperfec-
tions it is not always possible to achieve perfect collocation.
In addition, effects like coupling between different transducer
pairs further complicate controller design. Moreover, in many
cases of practical interest the characteristics of flexible
structures change, e.g., due to variable loading or changing
boundary conditions. Hence, adaptive control methodologies
for resonant structures have been proposed in [4].

The feasibility of model predictive control (MPC) for
vibration control has been demonstrated, e.g. in [5]. In the
present work, we aim to combine the benefits of MPC
with on-line identification to obtain an adaptive control
methodology with a degree of fault-tolerance. Very recently,
the field of data-enabled control, in particular the DeePC
algorithm [6], [7], received a lot of attention. These ideas
are directly connected to the original concepts of subspace
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1Netherlands Organisation for Applied Scientific Research (TNO), Op-
tomechatronics dept., Stieltjesweg 1, 2628 CK Delft, The Netherlands.
{Gijs.vanderveen}@tno.nl. 2Delft University of Technology,
Delft Center for Systems and Control, Mekelweg 2, 2628 CD Delft, The
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predictive control (SPC) [8] presented by Favoreel et al. [9]
and Woodley [10]. An improved variant of SPC was pre-
sented in [11], [12], based on the predictor-based subspace
identification framework [13], [14] and more recently [15]
which also introduce a closed-loop DeePC algorithm and
showed the equivalence. Compared to the original algorithm,
the predictor-based version is inherently asymptotically unbi-
ased in closed-loop operation [16], [15]. The subspace-based
algorithm is based on least-squares principles and there-
fore lends itself to straightforward recursive implementation
with attractive numerical properties. In the field of closed-
loop SPC, extensions also exist to Hammerstein [17] and
LPV [18] model structures, and for repetitive control [19],
fault detection [20], estimation [21] and feedforward con-
trol [22]. More recently some of these extensions are also
made for the DeePC framework [23], [24], [25].

Our contributions are threefold:

• we demonstrate the potential of SPC as an adaptive con-
trol methodology in dealing with time-varying system
dynamics;

• we present the application of the algorithm to a re-
alistic vibration control example, as opposed to most
implementations of SPC thus far, with some challenging
computational requirements.

• we carefully highlight the tuning of the inevitable tuning
variables.

The remainder of this paper is organized as follows.
In Section II the identification framework is introduced.
In Section III, the original subspace predictor is presented
and the model predictive control problem is formulated. In
Section IV, the main contribution of this paper is presented,
the experimental evaluation of the proposed data-driven
techniques. Finally, conclusions are drawn in Section V.

II. IDENTIFICATION FRAMEWORK

In this section we present the framework for identification
and prediction that will be used in the data-driven control
scheme. It is assumed throughout that the system operates
in a steady operating point for some time, during which its
dynamics can be described by a linear, time-invariant model.
Variations in the parameters of this model occur slowly.
To make this more precise, it is assumed that there is a
clear separation between the time constants of the system
dynamics and the much slower time constants of parameter
variations. With these assumptions, the system, affected by
measurement and process noise, admits an innovation state
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space representation [26] given by:

xk+1 = Axk +Buk +Kek, (1a)
yk = Cxk +Duk + ek, (1b)

with A ∈ Rn×n, B ∈ Rn×nu , K ∈ Rn×ny , C ∈ Rny×n

and D ∈ Rny×nu . The vectors xk ∈ Rn, uk ∈ Rnu ,
yk ∈ Rny and ek ∈ Rny are the state vector, input signal,
output signal and innovation signal, respectively. The matrix
K is the Kalman gain. The innovation sequence ek is an
ergodic zero-mean white noise sequence with covariance
matrix E{eje⊤k } = Wδjk, with W ≻ 0.
The pair (A,C) is observable and the pair (A, [B KW

1
2 ])

is controllable. This model class is very general in that it
encapsulates all LTI MIMO systems with arbitrarily coloured
process and measurement noise sequences when those noise
sequences have nonsingular rational spectra.

In the representation (1), ek may be eliminated from the
first equation to yield a one-step-ahead predictor:

xk+1 = Ãxk + B̃uk +Kyk, (2a)
yk = Cxk +Duk + ek, (2b)

where Ã ≡ A − KC and B̃ ≡ B − KD have been
introduced. This predictor forms the basis for the predictor-
based subspace identification (PBSID) framework [13].

A. Deriving the data equations

Before deriving the data equations for subspace identifi-
cation, we will introduce some notation. A stacked sample
of input and output data is introduced:

zk =

[
uk

yk

]
.

The stacked vector z(p)k is defined as:

z
(p)
k =

[
z⊤k , z⊤k+1, · · · , z⊤k+p−1

]⊤
,

where p denotes the past window size. We also define the
(reversed) extended controllability matrix K:

K =
[
Ãp−1[B̃ K], Ãp−2[B̃ K], · · · , [B̃ K]

]
.

Note that these matrices contain parameters pertaining to the
predictor form (2).

Starting from an initial state xk, the state equation can be
propagated forward in time, resulting in:

xk+p = Ãpxk +Kz(p)k . (3)

Based on (3) and the output equation, the output at time k+p
can then be written as:

yk+p = CÃpxk + CKz(p)k +Duk+p + ek+p. (4)

Since Ã has all its eigenvalues inside the unit disc, the
term Ãp can be made arbitrarily small, i.e. ∥Ãp∥2 ≈ 0, by
choosing p sufficiently large. For that reason, the first term
on the right hand side of (4) will be neglected.

With N samples available, equation (4) can be repeated
to obtain expressions for yk+p to yk+p+N−1, resulting in:

Yf = CKZp +DUf + Ef , (5)

with Yf = [yk+p, yk+p+1, · · · , yk+p+N−1], and Zp, Uf

and Ef similarly obtained by horizontal stacking.
1) Relation to the ARX model structure: Taking a closer

look at the data equation (4), neglecting the first term, it is
seen to have a vector-ARX (VARX) structure. Usually, an
ARX model structure prescribes a severely restrictive noise
model because it forces the system and noise model to have
a common set of poles as seen from the following equation:

yk =
B(z)

A(z)
uk +

1

A(z)
ek, (6)

with z−1 the unit backshift operator and:

A(z) = 1− a1z
−1 − · · · − apz

−p,

B(z) = b0 + b1z
−1 + · · ·+ bpz

−p.

In this context, with sufficiently large p and working with
the predictor form, the estimated poles of the VARX model
indeed correspond to the poles of the predictor model.
Regarding the ARX model structure (6), the parameters ai
and bi can explicitly be given as:

ai = CÃi−1K, for i = 1 . . . p, (7a)

bi = CÃi−1B̃, for i = 1 . . . p, (7b)
b0 = D. (7c)

2) Relation between innovation and predictor represen-
tations: In a transfer matrix setting we can represent the
system in the following form:

yk = G(z)uk +H(z)ek, (8)

with:

G(z) = C(zI −A)−1B (9)

H(z) = C(zI −A)−1K + I. (10)

A one-step-ahead predictor is then obtained as follows:

yk = G(z)uk + (H(z)− I)ek + ek (11)

= G(z)uk + (H(z)− I)H(z)−1(yk −G(z)uk) + ek
(12)

= H(z)−1G(z)uk + (I −H(z)−1)yk + ek (13)

= G̃(z)uk + H̃(z)yk + ek. (14)

This relation immediately shows the requirements for a stable
predictor to exist: the noise model H(z) should possess a
stable inverse. Typically, a noise model with non-minimum
phase zeros can be represented by a stable spectral factor that
results in the same spectral density of the noise process (i.e.
with the same second order statistics). Problems arise when
the noise model has stable zeros that approach the unit circle.
In such cases the predictor approaches marginal stability and
the condition that ∥Ãp∥2 ≈ 0 for reasonable p becomes
hard to satisfy. The following relations prove the equivalence
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between the state-space and input-output representations of
the predictor.

G̃(z) = H(z)−1G(z)

= [C(zI −A)−1K + I]−1[C(zI −A)−1B]

= [I − C(zI − Ã)−1K]C(zI −A)−1B

= C(zI − Ã)−1((zI − Ã)(zI −A)−1 −KC(zI −A)−1)B

= C(zI − Ã)−1B

H̃(z) = I −H(z)−1

= I − [C(zI −A)−1K + I]−1

= C(zI − Ã)−1K

3) Closed-loop identification issues: Many data-driven
control methods ignore or neglect the fact that in a closed-
loop control setting the input signal to the system is corre-
lated with the (measurement) noise. An implicit assumption
in such methods is that the input signal uk is uncorrelated
with the past noise process ek. In a closed-loop situation this
condition is clearly violated:

E{uke
⊤
j } ≠ 0 for j < k.

In the PBSID framework, resulting in data equations of
the form in Eq. (5), the estimation is not affected by such
correlation issues by segregating the data into collections
of “past” and “future” samples. Thus, asymptotically in the
number of samples and windows sizes, the only bias in the
parameters is due to the finite past window p.

B. Estimating the predictor Markov parameters

Since ek is a zero-mean white noise innovation sequence,
the predictor Markov parameters in (5) can be consistently
estimated in a least-squares sense:

̂[CK, D] = arg min
[CK, D]

∥∥∥∥Yf − [CK, D]

[
Zp

Uf

]∥∥∥∥
2

F

, (15)

which, for a full-rank data matrix
[
Z⊤
p , U⊤

f

]⊤
, results in the

unique estimate:

̂[CK, D] = Yf

[
Zp

Uf

]+
, (16)

where (·)+ denotes the Moore-Penrose pseudoinverse. Note
that the feedthrough term D, which has been included so far,
should only be included when the feedback loop, contains
at least a one-sample delay to retain well-posedness of the
identification problem.

C. Recursive solution of the parameter estimation problem

In this section the procedure of recursively estimating
the parameters in an online setting is briefly discussed. To
maintain a compact notation, the least-squares problem (15)
is concisely written as:

Θ̂k = argmin
Θ
∥Yk −ΘΦk∥2F , (17)

where the subscript k signifies that data up to time instant k
is available and used. The full-rank least-squares solution in
(16) is:

Θ̂k = YkΦ
⊤
k (ΦkΦ

⊤
k )

−1. (18)

When a new sample of input and output data becomes
available, the updated solution is given by:

Θ̂k+1 = [Yk, yk+1]

[
Φ⊤

k

φ⊤
k+1

] (
ΦkΦ

⊤
k + φk+1φ

⊤
k+1

)−1
,

(19)

where yk+1 is a new output measurement and φk+1 is a new
vector z

(p)
k+1 which is constructed by shifting z

(p)
k upwards

and appending the new sample zk+1. Then, application of
the matrix inversion lemma leads to:

Θ̂k+1 = [Yk, yk+1]

[
Φ⊤

k

φ⊤
k+1

] (
ΦkΦ

⊤
k

)−1 ∗
(
I − φk+1φ

⊤
k+1

(
ΦkΦ

⊤
k

)−1

1 + φ⊤
k+1

(
ΦkΦ⊤

k

)−1
φk+1

)
.

In practice a forgetting factor λ < 1 is introduced to
exponentially discount older samples [27]. This ensures that
the parameters remain adaptive and is required to maintain
a finite covariance matrix:

Θ̂k+1 = [Yk, yk+1]

[
Φ⊤

k

φ⊤
k+1

]
1

λ

(
ΦkΦ

⊤
k

)−1 ∗
(
I − φk+1φ

⊤
k+1

(
ΦkΦ

⊤
k

)−1

λ+ φ⊤
k+1

(
ΦkΦ⊤

k

)−1
φk+1

)
.

The update equations are written in the following form.

Pk+1 =
1

λ
Pk −

Pkφk+1φ
⊤
k+1Pk

λ+ φ⊤
k+1Pkφk+1

, (20)

Θ̂k+1 = Θ̂k +
(
yk+1 − Θ̂kφk+1

)
φ⊤
k+1Pk+1. (21)

It is finally noted that in propagating the covariance matrix
Pk = (ΦkΦ

⊤
k )

−1 in finite precision arithmetic the RLS
algorithm is not guaranteed to retain a positive definite
covariance matrix. For this reason the simple RLS scheme
above is rarely used and instead a square-root algorithm is
used [28], [27]. Such algorithms propagate triangular factors
of the covariance or information matrix by executing a
sequence of orthogonal transformations in each time step.
These algorithms are numerically superior to their coun-
terpart described above. The computational complexity of
standard RLS as well as the square root counterparts is
O(p2(nu + ny)

2) per iteration, i.e. quadratic in the number
of parameters.

Each new data vector appended to the least-squares prob-
lem in (17) is in fact just a shifted version of its predecessor
with a new sample appended. This knowledge is used in
the derivation of so-called fast-array RLS algorithms [27],
[29] whose complexity is O(p(nu + ny)), thus linear in the
number of parameters.
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III. DERIVING THE SUBSPACE PREDICTOR

Having estimated the predictor Markov parameters from
LS problem (15), the next step is to construct an output
predictor for a sequence of future outputs. As a starting point
(4) is used:

yk+p = ĈKz(p)k + D̂uk+p,

where the term ek+p has been omitted since for the purpose
of prediction we have E{ek+p} = 0.
At time instant k, we consider the outputs at time instant k+1
up to k + Np, where the arbitrary length of the prediction
interval is denoted by Np ∈ [1,∞). Define by ỹk a stacked
sequence of outputs according to:

ỹk =



yk+1

...
yk+Np


 .

A stacked sequence ũk is defined analogously. Then it is
straightforward to show that:

ỹk = Γ̃z
(p)
k + H̃ũk + G̃ỹk, (22)

after defining:

Γ̃ =



CÃp−1[B̃ K] CÃp−2[B̃ K] · · · C[B̃ K]

. . . . . .
CÃp−1[B̃ K] · · · CÃNp−1[B̃ K]


 ,

H̃ =




0
CB 0

CÃB CB 0
. . .

CÃNp−2B · · · CB 0



,

G̃ =




0
CK 0

CÃK CK 0
. . .

CÃNp−2K · · · CK 0



.

These matrices can be constructed directly from the es-
timated predictor Markov parameters. Note that since the
predictor parameters are used, the output prediction ỹk
appears on both sides of the equation. To obtain the open-
loop subspace predictor, the data equation is pre-multiplied
with (I − G̃)−1 to obtain the open-loop predictor:

ỹk = Γz
(p)
k +Hũk. (23)

There are at least two efficient ways to obtain the open-
loop output predictor. First, one can simply perform the
pre-multiplication with (I − G̃)−1, exploiting that the ma-
trix (I − G̃) is lower unit-triangular and allowing efficient
forward-substitution to be used. An alternative method, de-
rived in [30], uses a recursive formulation of the forward-
substitution procedure to immediately build the predictor
matrices, without explicitly forming (I − G̃). This requires
less storage, but more looped operations, so the preferred

method is implementation-dependent. In both cases it can be
shown, by carrying out the pre-multiplication, that the open-
loop predictor contains the actual innovation system Markov
parameters (A,B,C,D).

A. Setting up the predictive control problem

In this derivation the generalised predictive control (GPC)
framework is considered. In the GPC framework, the goal is
to, at each time instant, minimise the value of the following
objective function:

Jk =

Np∑

i=1

(yk+i − rk+i)
⊤Qy(yk+i − rk+i)+

u⊤
k+iRuuk+i +∆u⊤

k+iR∆u∆uk+i,

subject to:

umin ≤uk+i ≤ umax, i = 1 . . . Np,

∆umin ≤ ∆uk+i ≤ ∆umax, i = 1 . . . Np.

This objective expresses that the output should track a ref-
erence signal rk+i, while minimising the control effort uk+i

and control rate ∆uk+i
12. Using the notation introduced

before and denoting prediction vectors with a tilde, the
objective can be reduced to:

Jk = (ỹk − r̃k)
⊤Q̃y(ỹk − r̃k) + ũ⊤

k R̃uũk +∆ũ⊤
k R̃∆u∆ũk,

(24)

after defining block-diagonal matrices Q̃y , R̃u and R̃∆u

appropriately.
To obtain the control rate ∆u, the following matrices are
defined:

S∆ =




Im
−Im Im

. . . . . .
−Im Im


 ,

S0 =




0 · · · Im 0
...
0 · · · 0 0




so that:

∆ũk = S0z
(p)
k + S∆ũk. (25)

The objective function is an inequality constrained quadratic
programming (QP) problem in the variables uk+i, i =
1 . . . Nc. Here, a basic formulation is shown, into which more
sophisticated (in)equality constraints or objective terms can
be incorporated while retaining convexity of the optimization
problem.

1∆uk can be related to physical rate limits using the approximation
(∆uk)max ≈

(
du
dt

)
max

· Ts, with Ts the sample time.
2Note that with this formulation perfect steady-state reference tracking

can never be achieved if Ru ̸= 0 and uss ̸= 0.
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Algorithm 1 Subspace predictive control

Given: k = 0, p > 0, Φ0, φ0, Q̃y , R̃u, R̃∆u, N > 0,
0 < Nc ≤ N
loop

1. Update parameters Θk using Eq. 20.
2. Construct the data matrices in Eq. 22 using Θk.
3. Solve for the open-loop predictor (Eq. 23).
4. Construct the QP based on (Eq. 24).
5. Solve the QP for ũk using a QP solver.
6. Implement the first element uk+1 of the optimal input
sequence.
7. k ← k + 1.

end loop

Fig. 1: Photograph of the laboratory setup.

IV. EXPERIMENTAL EVALUATION

The subspace predictive control formulation derived in the
previous sections is applied to a vibration control problem on
a beam equipped with piezoelectric transducers, see Fig. 1.
Two of these transducers are configured as actuators and two
as sensors. A schematic top-view of the beam is given in
Fig. 2. The beam is an aluminium strip of 95 cm length. At
locations 1 and 2, two (almost) collocated sensor-actuator
pairs are situated. The actuators are flexible Macro Fiber
Composite (MFC) devices, type M8528, from Smart Material
Corp. The sensors are connected to high-impedance buffers
and the actuators are driven by a high-voltage amplifier.
The beam may be used in two different configurations
(clamped-free and clamped-pinned), resulting in two very
different dynamic behaviours. The beam is an continuum
structure with many vibration modes, the lowest of which
have very low mechanical damping. The objective of the
control algorithm will be to augment damping of the first
two vibration modes. During operating, the configuration can
switch and the algorithm should track the associated changes
in dynamics.

f1 =
1.8752

2π

√
EI

mL4

f2 =
4.6942

2π

√
EI

mL4

f3 =
7.8552

2π

√
EI

mL4

f1 =
3.9272

2π

√
EI

mL4

f2 =
7.0692

2π

√
EI

mL4

f3 =
10.2102

2π

√
EI

mL4

(a)

(b)

u1 u2

y2y1

u1 u2

y2y1

Fig. 2: Schematic view of the two beam configurations and
the associated natural vibration modes [31]: (a) clamped, (b)
clamped-pinned.

A. Implementation

The algorithm was implemented in C++. For matrix ma-
nipulations, use was made of the Eigen template library [32].
The QP is solved using the online active set strategy imple-
mented in the qpOASES package [33], [34]. Although we
are dealing with a time-varying QP, the use of an active
set strategy is still beneficial since the Hessian is expected
to vary slowly most of the time. All code was accessed
through Simulink®S-functions and executed using Simulink®

Realtime.
To allow the digital control algorithm to operate at a rate

of 200 Hz (the maximum achievable on the available PC
platform), data was sampled at 2 kHz, then filtered using
a second order Butterworth anti-aliasing filter with a corner
frequency at 60 Hz and then downsampled to 200 Hz. The
control signal was upsampled to 2 kHz and then low-pass
filtered at 250 Hz to eliminate the high frequency content
introduced by the zero-order hold reconstruction.

B. Parameter selection

Although the presented algorithm requires few parameters
to be tuned, those parameters deserve some careful attention.
The parameters are:

• The past window dimension p. The value of p de-
termines the number of system parameters that are
estimated. In off-line identification, this parameter is
usually taken quite large, e.g. several times the max-
imum expected model order. In the recursive formula-
tion (19), this choice directly affects the computational
complexity of the update. Furthermore, estimating a
larger number of parameters reduces the convergence
rate of the recursive least-squares scheme. In an off-
line analysis, a suitable value of p can be obtained,
for instance, by validating the hypothesis that the least-
squares residual resembles a zero-mean white noise
sequence and whether the predictor Markov parameters
indeed tend to zero at p. In the current experiment, a
value of p = 25 was chosen.

• The forgetting factor λ.The value of λ should always
be less than 1 to avoid overflow issues when updating
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the covariance matrix with new observations. This is
also necessary to retain adaptivity of the parameters
by forgetting, in an exponential sense, older data. The
effective window length is usually expressed as N ≈
1/(1 − λ) [27]. Depending on the characteristics of
new observations, if the effective window is too short,
information will be discarded too rapidly and the co-
variance matrix will become ill-conditioned. Again, in
off-line analysis a value for λ can be selected. In this
experiment, a value of λ = 0.99995 was used.

• The prediction horizon Np is could be chosen such that
the prediction interval contains at least one period of
each of the modes that are to be damped; its value can
be based on a step response of the system. Here, a value
of Np = 50 (=0.25 s) was chosen;

• The control horizon Nc determines the number of future
inputs that is free. A small Nc reduces the complexity
of the QP and further has a smoothing effect on the
control signal, which is important for stability. Here,
Nc = 10 was used;

• The GPC weights, Qy , Ru and R∆u, determine the
trade-off between control authority (disturbance rejec-
tion) and actuator use. In the finite-horizon predictive
control problem, these parameters also affect the sta-
bility of the closed-loop system. These parameters are
usually tuned so as to ensure that the control signals
stay within their saturation and rate limits during regular
operation.

C. Results

An experiment was performed in which the beam was
subjected to random excitations on both actuators. At t =
10 s the controller is switched on. Then, at t = 50 s, an
electromagnetic actuator clamps the tip of the beam. This
momentarily introduces a high energy perturbation (shock)
and results in permanently changed dynamics. During this
switching, the controller is kept switched on. From Fig. 3
(the size of the moving window, [10]s, somewhat skews
the temporal view of the results) one can see that almost
immediately after switching on the controller the second
mode is almost completely eliminated. Furthermore, after
the change in dynamics, the controller adapts to the new
system in seconds, after which the second mode is damped
once again. In Fig. 5 we compare the results of identifying
the open and closed-loop systems for the first input-output
pair. These responses clearly show that the second mode is
attenuated by approximately 20 dB in both configurations and
the first mode is attenuated by about [10]dB.

V. CONCLUSIONS
In this paper we have successfully demonstrated how sub-
space predictive control can be applied to vibration control
problems in flexible structures. Key advantages are the adap-
tation to changes in dynamics and the limited set of tuning
parameters. Although the scheme may be computationally
complex, it can easily be run on present-day processors by
exploiting structure in the algorithm. To maintain proper
conditioning of the covariance matrix in a forgetting RLS
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Fig. 3: Plot showing the spectral amplitude and frequency of
the second resonance measured at sensor 1 (y1) as a function
of time: (gray) open-loop, (black) closed-loop

scheme it is necessary that conventional persistence of ex-
citation conditions are satisfied. This can be achieved by
applying an appropriate reference perturbation that is as
small as possible (to avoid loss of performance). In future
work we intend to address these issues within the operational
requirements of real systems. Stability and robustness of
SPC under general conditions are also still largely open
problems [35].
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