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Abstract An approach to improve orbital state vectors by
orbit error estimates derived from residual phase patterns in
synthetic aperture radar interferograms is presented. For indi-
vidual interferograms, an error representation by two param-
eters is motivated: the baseline error in cross-range and the
rate of change of the baseline error in range. For their estima-
tion, two alternatives are proposed: a least squares approach
that requires prior unwrapping and a less reliable gridsearch
method handling the wrapped phase. In both cases, reliabil-
ity is enhanced by mutual control of error estimates in an
overdetermined network of linearly dependent interferomet-
ric combinations of images. Thus, systematic biases, e.g.,
due to unwrapping errors, can be detected and iteratively
eliminated. Regularising the solution by a minimum-norm
condition results in quasi-absolute orbit errors that refer to
particular images. For the 31 images of a sample ENVISAT
dataset, orbit corrections with a mutual consistency on the
millimetre level have been inferred from 163 interferograms.
The method itself qualifies by reliability and rigorous geo-
metric modelling of the orbital error signal but does not con-
sider interfering large scale deformation effects. However, a
separation may be feasible in a combined processing with
persistent scatterer approaches or by temporal filtering of the
estimates.
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1 Introduction

Spaceborne repeat-pass synthetic aperture radar interferom-
etry (InSAR) is a key technique for large-area deformation
monitoring. Relative displacements of the ground occur-
ring between two radar acquisitions are measured at pixel
locations of two-dimensional SAR interferograms. These
measurements can be biased by errors originating from a
multitude of different sources. Each error source having its
own characteristics, signals with different spatial or tempo-
ral properties are superposed to the signal of interest. When
ground deformation is the signal of interest, it is the aim of
InSAR processing to estimate and consecutively eliminate or
mitigate all other signal contributions.

Inaccuracies in the satellite orbits affect interferograms
in the form of an almost linear signal and scale the height
ambiguity. Whereas this latter effect is usually negligible and
orbit errors may be disregarded for localised phenomena,
their effect can be considerable if the deformation regime
covers a larger area. A common approach to separate the
signal components from each other is to identify the orbital
contribution by its long spatial wavelength. Whereas this dis-
crimination is efficient for a large number of applications, it
does not apply in the presence of a large-scale deformation
signal like tectonic movement or tides that has similar spatial
characteristics. In this case, part of the deformation may be
misinterpreted as orbit error.

The most popular method to account for orbit errors is the
subtraction of an estimated linear trend (or phase ramp) from
the interferogram. This is easy to implement but involves a
minor bias, since the orbital error signal is not rigorously
linear. This flaw is overcome by more sophisticated methods
that do not correct the interferometric phase for the effect
of orbit errors but rather modify the satellite trajectories so
that the error signal dissolves. Massonnet and Feigl (1998)
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as well as Kohlhase et al. (2003) deduce the required modifi-
cations from the fringe count along the edges of an interfer-
ogram. Following their approaches, orbit corrections can be
estimated from phase differences or gradients that have been
measured between defined pixel locations.

When deriving orbit errors from residual fringe patterns in
the interferometric phase, only relative orbit corrections can
be inferred, adjusting the trajectories of the two acquisitions
with reference to each other. Hence, orbit error estimation
from one interferogram alone is equivalent to the estima-
tion of baseline errors, where the interferometric baseline
is defined as the difference vector of the sensor positions
of master and slave acquisition. A lot of research has been
pursued in this domain with different parameterisations of
the three-dimensional, time-dependent baseline vector in its
across-track and radial component (Small et al. 1993; Werner
et al. 1993; Zhang et al. 2009). Even though these approaches
perform well in mitigating the effect of orbital errors, little
attention has been paid on an optimal parameterisation of the
baseline to avoid physically unlikely estimates.

The present contribution starts with a brief review on qual-
ity of orbit products and a sensitivity analysis of the baseline
with respect to the interferometric phase. Based thereupon, a
representation of baseline errors by two parameters is moti-
vated, namely the baseline component in cross-range and
the rate of change of the component in range direction. In
Sect. 3, a least squares approach (Bähr and Hanssen 2010) is
proposed to estimate the baseline error from the unwrapped
interferometric phase. To overcome the requirement of
unwrappable interferograms, also an alternative method is
presented that can handle the wrapped phase but is consid-
ered less reliable. It is similar to the periodogram approach,
where the dominant fringe frequency is determined by Fou-
rier analysis to deduce baseline components (Singh et al.
1997; Monti Guarnieri et al. 2000; Bing et al. 2006). By con-
trast, it does not imply linearity of the orbital error signal and
accounts for variations in the topographic height, involving
rigorous geometric modelling.

A crucial issue in baseline error estimation is to ensure
reliability, since interferograms with suboptimal coherence
may be contaminated by unwrapping errors. A promising
approach to cross-check the error estimate of the baseline
between two acquisitions is to exploit linear combinations
of interferograms with different perpendicular and temporal
baselines. This concept can be regarded as setting up a net-
work of interferograms that connect the available images on
redundant paths in this spatio-temporal baseline-space. Thus,
quasi-absolute orbit errors can be inferred that either refer
to a global master or are, more conveniently, defined by a
minimum-norm condition (Kohlhase et al. 2003; Biggs et al.
2007; Bähr and Hanssen 2010). Furthermore, inconsistencies
that are due to interferogram-specific filtering are adjusted,
enhancing the precision of the baseline error estimates.

Offering a mechanism to detect outliers due to unwrapping,
the network approach provides a notable gain in reliability,
whereas an increased processing load is required. In Sect. 4,
the method from Bähr and Hanssen (2010) is evaluated for
its capability to detect unwrapping errors. Further consider-
ations address the optimality of stochastic modelling.

Even with the correction approaches listed above, the esti-
mation of large-scale deformation signals is cumbersome,
as both orbit errors and gradient atmospheric propagation
delays can induce signals with similar spatial characteris-
tics. However, it is not the aim of this contribution to tackle
the separability of the orbital error signal from other sig-
nal components. It is rather intended to provide a reliable
method to eliminate the orbital contribution with as little user-
interaction as possible. Nevertheless, some thoughts are also
offered in Sect. 5 on the mutual bias of orbit correction,
deformation and the atmospheric signal contribution and its
mitigation.

2 Orbit errors

In order to motivate an effective correction methodology,
this section is dedicated to a both quantitative and qualitative
analysis of satellite orbit errors and their effects on interfero-
grams. After reviewing available quality information on orbit
products of past and current SAR missions, the mutual sensi-
tivity of the interferometric phase and orbit errors is analysed.
Finally, an appropriate parameterisation is proposed.

2.1 Accuracy of orbit products

Precise orbits of SAR satellites are determined by space geo-
detic techniques. Earlier missions like the European Remote
Sensing Satellites (ERS-1/2) made use of Satellite Laser
Ranging (SLR), supported by radar altimetry measurements.
At Delft University of Technology, a root mean square (RMS)
error of 4 cm for the radial component of ERS orbit solutions
could be attained (Doornbos and Scharroo 2005). The accu-
racy of the along- and across-track components is definitely
worse, which is suggested by differences of the order of 15 cm
for solutions based on different gravity models (Scharroo and
Visser 1998). For the likewise SLR-tracked Environmental
Satellite (ENVISAT), the DORIS system (Doppler Orbitog-
raphy and Radiopositioning Integrated by Satellite) provides
complementary measurements. The accuracy of the best orbit
products is estimated to be 3 cm in the radial component and
10 cm in 3D (Otten and Dow 2005). More recent missions
rely primarily on the Global Positioning System (GPS) for
orbit determination, supported by SLR. For TerraSAR-X,
the RMS orbit accuracy has been assessed to be at the
2 cm level (Yoon et al. 2009). Comparing the GPS orbits
of the Advanced Land Observing Satellite (ALOS) to SLR
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Reliable estimation of orbit errors in spaceborne SAR interferometry 1149

solutions yielded RMS deviations of overlapping arcs
between 2 and 15 cm (Nakamura et al. 2007), assumedly
in 3D.

It must be stressed that these quality indicators have to be
interpreted with care, since a rigorously independent valida-
tion is not possible. Subsequent arcs or solutions from differ-
ent analysis centres rely at least partially on the same data. In
addition, systematic errors in atmospheric and force models
may affect all measurements in the same way, even when dif-
ferent techniques are involved. Furthermore, global quality
measures are not necessarily stationary in time and space.
There may be local quality variations due to an inhomoge-
neous distribution of SLR tracking stations. An increased
solar activity or bad atmospheric conditions can entail less
accurate solutions. In some cases, accuracy assessments only
consider selected epochs, which are not necessarily represen-
tative for the whole mission.

More conservative quality estimates are less optimistic.
Yoon et al. (2009) assess the precise scientific TerraSAR-X
orbits to be “definitely better than 10 cm”. For some arc over-
laps of ALOS orbits, deviations exceed 30 cm (Nakamura
et al. 2007). Official requirement specifications for ALOS
range up to 1 m (European Space Agency 2007). Radarsat-2
orbits have a nominal 3σ accuracy of even 15 m.1

This illustrates that even though accuracies of orbit prod-
ucts from recent missions are estimated to be on the centi-
metre level, possible deviations from the true trajectory of
several decimetres may occur. For Radarsat, the expectable
accuracy is even worse.

2.2 Parameterisation

Orbit products describe the satellite’s trajectory by state vec-
tors, which subsume positions and velocities at distinct epo-
chs. The interferometric baseline is represented by the differ-
ence vector of the sensor positions #»x from two acquisitions,
referred to as master (M) and slave (S):

#»
B(t) = #»x S(t) − #»x M(t). (1)

It is decomposable into its horizontal (across-track), along-
track and vertical (radial) component Bh(t), Ba(t) and
Bv(t), respectively. Considering only the two-dimensional
(Bh, Bv)-plane, there are alternative ways of baseline decom-
position (see Fig. 1). The baseline can equivalently be
described by its length B = | #»

B | and its orientation angle
α. A third representation consists of its parallel component
B‖ in range and perpendicular component B⊥ in cross-range
direction, respectively (Hanssen 2001):

1 MDA Corporation, http://www.radarsat2.info/about/mission.asp,
accessed on 10 Feb 2011.

Fig. 1 Decomposition of the interferometric baseline in a plane per-
pendicular to the flight direction. The representations by its horizontal
and vertical component (Bh and Bv) or its length and orientation angle
(B and α) are unambiguous, whereas the description by parallel (range)
and perpendicular (cross-range) component (B‖ and B⊥) depends on
range. So do the look angle θ and the local incidence angle θinc

B‖(t, θ) = Bh(t) sin θ − Bv(t) cos θ

= B(t) sin(θ − α(t))

B⊥(t, θ) = Bh(t) cos θ + Bv(t) sin θ

= B(t) cos(θ − α(t)).

(2)

The baseline can be related to the interferometric phase
by the following approximation:

φ(t, R) = −4π

λ

(
RM (t) − RS(t)

) ≈ −4π

λ
B‖(t, R), (3)

where λ is the radar wavelength. RM =: R and RS are the
respective range measurements of master and slave. In order
to assess the sensitivity of an interferogram to baseline errors,
the residual phase dφ ≈ − 4π

λ
d B‖ is now considered as a

function of an error baseline d
#»
B that is superposed to the

interferometric baseline. Taylor series expansion in azimuth
time t and look angle θ(R) yields with Eq. (2):

dφ(t, θ) = −4π

λ

(
d B‖(t0, θ0) + d Ḃ‖(t0, θ0) dt

+d B⊥(t0, θ0) dθ + 1

2
d B̈‖(t0, θ0) dt2

+d Ḃ⊥(t0, θ0) dt dθ − 1

2
d B‖(t0, θ0) dθ2 + · · ·

)
. (4)

The zero-order term can be ignored; a constant phase change
to the whole interferogram does not affect its interpretation,
since InSAR is a relative technique. The first-order terms
are characterised by the baseline error components d Ḃ‖ and
d B⊥, which result in linear fringes in azimuth and range,
respectively (see Fig. 2a–d). By rule of thumb, a rough esti-
mate of the baseline error can be obtained by multiplying
the number of fringes in azimuth or range by the respective
conversion factors:
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(a) (c) (e)

(b) (d) (f)

Fig. 2 Error signals induced into the interferometric phase by errors
in different baseline components, assuming λ = 5.7 cm and a mean
look angle of 20◦ (ERS). The decomposition into B‖ and B⊥ is defined
by the line of sight to the centre of the scene of 100 × 100 km2 size.
(a, b) The effect of an error in B‖ is negligible compared to an error of
the same amount in B⊥. (c, d) An analogous conclusion can be drawn
for Ḃ⊥ and Ḃ‖. (e, f) Errors in B‖ and Ḃ⊥ must be disproportionately
large to yield a distinct interferometric signal (Bähr and Hanssen 2010)

d Ḃ‖,2π = − λ

2�t
, d B⊥,2π = − λ

2�θ
, (5)

where �t is the total acquisition time and �θ is the range
of look angles, respectively, for the whole scene. Individual
computations of these numbers for some missions are listed
in Table 1.

With the objective of mitigating the effect of baseline
errors as far as possible, a suitable parameterisation is
required. In the following, a number of options will be eval-
uated, considering the error signals dφ(t) in azimuth and
dφ(R) in range separately.

Starting with the signal in range, Fig. 3a shows how the
maximum bias of the interferometric measurement due to an
error baseline d

#»
B of constant length d B depends on its orien-

tation. The extrema at a mean look angle θ0 plus multiples of
90◦ suggest a further consideration of the representation by

d B‖(θ0) and d B⊥(θ0). Estimating both parameters from the
residual phase of an interferogram may yield geometrically
unrealistic estimates. As errors in B‖ induce only a small
signal in the phase (see Fig. 2a), small large-scale variations
in the atmospheric propagation delay can conversely cause
estimates for d B‖ on the metre level. In a reverse conclusion,
it would be a tolerable loss to constrain d B‖ to zero, given
the little effect this parameter has on the phase.

Figure 3b displays the approximation error that is made by
ignoring errors in B‖. It further compares the performance of
a d B⊥-only parameterisation to alternative parametric mod-
els, the most common of which is a polynomial in range:

pn(R) =
n∑

k=1

ak Rk . (6)

It can be seen from the figure that the d B⊥-parameterisation
performs three times better than the common approach of a
“linear phase ramp” p1(R). A third approximation model to
be pointed out in this context is a polynomial in look angle:

pn(θ) =
n∑

k=1

akθ
k . (7)

As ∂θ/∂ R is not constant, the performance of the approxi-
mation by pn(θ) is different from that by pn(R). Application
requires an individual computation of θ(R) for every range
pixel, but this is still easier to implement than the parameteri-
sation by baseline components. The linear model p1(θ) per-
forms even slightly better than d B⊥, whereas the difference
between the two is considered negligible. Two-parametric
models like p2(R), p2(θ) or (d B‖, d B⊥) would reduce the
approximation error even more but have the disadvantage
that they may distort a possible large-scale deformation sig-
nal more seriously. It has to be carefully investigated from
case to case if the increased accuracy of two-parametric mod-
els outweighs this deficiency.

Table 1 Baseline errors d Ḃ‖,2π and d B⊥,2π inducing exactly one fringe in azimuth or range, respectively, evaluated for different sensors. Hsat is
the mean height of the platform

Sensor Mode λ (cm) Hsat (km) θ (◦) θinc (◦) Scene (km) × (km) d Ḃ‖,2π (mm/s) d B⊥,2π (cm)

ALOS PALSAR FBS 7 23.6 692 32–36 36–41 70 × 70 11.4 185

ENVISAT ASAR IS2 5.6 800 17–23 19–26 100 × 100 1.9 26

ERS-1/2 5.7 790 17–23 20–27 100 × 100 1.9 26

Radarsat-1/2 S3 5.6 798 26–32 30–36 100 × 100 1.8 31

Sentinel-1 IWS 5.6 693 22–37 25–42 170 × 250 1.1 11

TerraSAR-X strip_003 3.1 514 18–21 20–23 50 × 32 2.2 29

TerraSAR-X strip_010 3.1 514 33–35 36–39 50 × 32 2.2 39

TerraSAR-X strip_014 3.1 514 39–41 43–46 50 × 32 2.2 48

Sensor parameters follow the nominal specifications where available. Note that these numbers do not apply precisely on any individual data product.
d Ḃ‖,2π and d B⊥,2π may vary slightly as the case arises
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(a) (b)

Fig. 3 Characteristics of a simulated orbital error signal and perfor-
mance of an approximation thereof. The simulations are based on an
error baseline of d B = 1 dm length with varying orientation with
respect to the horizontal. Sensor height and field of view for a full ERS
scene have been assumed. The plotted range errors are defined as max-
imum minus minimum bias of the interferometric measurement and

scale almost linearly with d B. Qualitatively, the results are conferrable
to other sensors. For a quantitative evaluation, please refer to Table 2.
a Range error of the orbital error signal itself with respect to zero phase.
b Approximation error of the orbital error signal for different parametric
models as explained in the text

Table 2 Maximum residual range error due to approximation of an orbital error signal in range direction, induced by an error baseline of 1 dm
length for different sensors and parametric models

Sensor Mode Maximum residual range error (mm)

p0 p1(R) p1(θ) (d B⊥) p2(R) p2(θ) (d B‖, d B⊥)

ALOS PALSAR FBS 7 6.4 0.17 0.05 0.06 0.01 0.00 0

ENVISAT ASAR IS2 10.7 0.58 0.15 0.17 0.07 0.00 0

ERS-1/2 10.8 0.58 0.15 0.18 0.07 0.00 0

Radarsat-1/2 S3 9.0 0.35 0.11 0.12 0.03 0.00 0

Sentinel-1 IWS 25.3 2.91 0.89 1.15 0.58 0.03 0

TerraSAR-X strip_003 5.4 0.14 0.04 0.04 0.01 0.00 0

TerraSAR-X strip_010 4.0 0.07 0.02 0.02 0.00 0.00 0

TerraSAR-X strip_014 3.3 0.05 0.01 0.01 0.00 0.00 0

See also Fig. 3b. p0 stands for the uncorrected error signal itself, see Fig. 3a

To support the choice of an adequate model, Table 2 lists
the maximum approximation error for different sensors and
modes, assuming an error baseline of constant length d B =
1 dm. All numbers can be adapted to bigger or smaller base-
line errors, since the phase error scales linearly with d B. This
can be seen from Eq. (4) under consideration of Eq. (2).

For the orbital error signal in range can be concluded that
in case of usual orbit errors below 1 dm a p1(R)-correction is
sufficient. For higher errors, one of the other one-parametric
models should be considered. This applies especially to Ra-
darsat-2 and even more to Radarsat-1, where the orbit data are

generally more inaccurate. Moreover, for the planned mis-
sion Sentinel-1, where the swath width in the Interferometric
Wide Swath Mode is designed to be 250 km, it is advisable
to rely on either p1(θ) or the d B⊥-parameterisation. In the
present article, the d B⊥-approach is preferred for its more
generic nature. For the reasons just given, models involving
more than one parameter to describe the dependence of phase
on range are not considered practical.

The error signal in azimuth is a direct translation of vari-
ations in d B‖ into the interferometric phase. A constant
rate of change d Ḃ‖ induces a perfectly linear error signal
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(see Fig. 2c). Generally, any phase pattern dφ(t) could result
from arbitrarily varying baseline errors d B‖(t). However, as
orbital trajectories have the nature to be very smooth curves,
it is unlikely that errors in these curves undergo completely
random variations. Therefore, a linearly varying error in the
parallel baseline component is considered an appropriate
parameterisation of the baseline error for the short acquisi-
tion time of a single radar scene. The benefit of higher order
polynomials is questionable, because nonlinear components
would rather be dominated by atmospheric effects, yield-
ing unrealistically high estimates. Nevertheless, if long data
takes are processed as a single frame, a quadratic polynomial
in d B‖(t) may be considerable.

It can be concluded that for a wide majority of applica-
tions, baseline errors are appropriately parameterised by d Ḃ‖
and d B⊥. This representation will be adopted for the follow-
ing considerations.

3 Methodology

To estimate orbit errors for m acquisitions, a network of
n ≥ m interferograms is set up in the domains of B⊥
and time (for an example see Fig. 6). Starting point is the
residual interferometric phase, where “residual” refers to the
assumption that the orbital effect is the only remaining sig-
nal after removal of reference and topographic phase from
the interferograms. In a first step, two baseline error param-
eters bT

θ = (d Ḃ‖, d B⊥) per interferogram are inferred from
the residual phases of selected pixels φT = (. . . , dφi , . . . ),
where unwrapping is only required for the first of two
approaches that are described in the following. Secondly,
network misclosures in the 2n baseline error parameters
yT = (. . . , d Ḃ‖,k, d B⊥,k, . . . ) of all interferograms are
adjusted. The resulting 2m acquisition-related orbit errors
xT = (. . . , dẋ‖,i , dx⊥,i , . . . ) are defined by a minimum-
norm condition and can be used to correct the orbit trajecto-
ries at hand for re-processing.

3.1 Baseline error estimation from the unwrapped phase

The estimation of orbit errors from the unwrapped residual
interferometric phase dφ by the method of least squares is
based on the observation equation:

E{dφ} = −4π

λ
(RM − RS) + φ0. (8)

φ0 is a constant phase shift that has to be introduced to
account for the inferior precision of range measurement com-
pared with phase measurement. Linearising this relation with
respect to the horizontal, along-track and vertical compo-
nents of the orbit positions of master and slave yields:

Fig. 4 Virtual acquisition geometry for non-parallel orbits that can be
assumed in case of zero-Doppler focussed data

E{dφ} = −4π

λ

(
#»r M · #»e h dxh,M + #»r M · #»e a dxa,M

+ #»r M · #»e v dxv,M − #»r S · #»e h dxh,S

− #»r S · #»e a dxa,S − #»r S · #»e v dxv,S
) + φ0, (9)

where #»r M (t, θ) and #»r S(t, θ) are unit vectors describing the
line of sight. #»e h(t), #»e a(t) and #»e v(t) are unit vectors in hor-
izontal, along-track and vertical direction, forming a Frenet
frame (see Fig. 4). As long as only one interferogram on its
own is considered, this frame can be conventionally defined
by the master orbit. Note that all coefficients in Eq. (9) are
also calculable in case of variable but known topography.
For small squint angles, as they occur in spaceborne SAR, it
follows from #»r M · #»e a ≈ 0 and #»r S · #»e a ≈ 0 that the interfer-
ometric phase is not sensitive to orbit errors in along-track
direction. Consequently, these components are not consid-
ered any further.

Moreover, the coefficients in Eq. (9) that correspond to
dxh and dxv are almost identical for master and slave due to
the very small divergence between #»r M and #»r S . This makes
the joint estimation of individual orbit errors for both master
and slave an ill-posed problem. Considering one interfero-
gram on its own, only a baseline error d

#»
B = d #»x S − d #»x M

can be robustly estimated. In this case, it must be decided if
the estimated error is attributed to inaccuracies in the master
orbit, the slave orbit or to errors in both of them. In the fol-
lowing, the error is attributed in equal proportions to master
and slave in order to avoid an arbitrary discrimination of one
of the two acquisitions. Additionally allowing for a linear
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temporal variation of the baseline components, the altered
model reads:

E{dφ} = 4π

λ

[ #»r M + #»r S

2
· #»e h (d Bh + t d Ḃh)

+
#»r M + #»r S

2
· #»e v (d Bv + t d Ḃv)

]
+ φ0. (10)

Considering the residual interferometric phases φT =
(. . . , dφi , . . . ) of nφ pixels that are regularly arranged on a
grid spanning the whole interferogram, baseline parameters
bT = (d Bh, d Ḃh, d Bv, d Ḃv) can be estimated in a functional
model of the following kind:

E {φ} = Abb + 1 φ0, (11)

where Ab is the design matrix and 1T = (1, 1, . . . , 1). The
stochastic model is generically defined by some covariance
matrix:

D {φ} = σ 2
0 Qφ, (12)

the choice of which will be discussed in detail in Sect. 4.1.
Similar approaches have been proposed by other authors.

Small et al. (1993) used relation (10) to estimate d Bh, d Ḃh

and φ0, attributing baseline errors to the master orbit only.
In Werner et al. (1993), the parameter set was extended by
d Bv as a fourth unknown. Kohlhase et al. (2003) avoided
the arbitrary choice to decide in what proportions baseline
errors are attributed to master and slave by evaluating rela-
tion (9) in the network context (see Sect. 4.4). Using phase
differences as basic observations instead of unwrapped phase
values, they estimated dxh,i (t j ) and dxv,i (t j ) per image i for
two distinct azimuth times t j and derived rates of change
by differencing. Whereas the shift parameter φ0 cancels out
in their approach, it is not straightforward to consider phase
differences deduced from common phase observations in the
stochastic model. Therefore, the present contribution rather
relies on the original unwrapped phases as observations.

As φ0 is of no further interest, it can be eliminated from
Eq. (11), yielding (Teunissen 2000):

E {φ} = Ābb (13)

with:

Āb =
(

I − 1(1T Q−1
φ 1)−11T Q−1

φ

)
Ab. (14)

The relative estimation quality of the parameters b̂ is given
by their covariance matrix:

D{b̂} = σ 2
0 (ĀT

b Q−1
φ Āb)

−1 (15)

and can be visualised qualitatively by the error ellipses in
Fig. 5. These are strongly elongated, showing that the base-
line is determined best perpendicular to the look direction,
whereas its rate of change has maximum precision in look

Fig. 5 Relative estimation quality of constant and linear components
of the baseline error, visualised by error ellipses. The grey area repre-
sents the sensor’s field of view. The orientation angles of the ellipses θ̄0
and θ̄1, respectively, can be computed from the eigenspaces of the corre-
sponding covariance matrix. It follows that the estimability of d B⊥(θ̄0)

and d Ḃ‖(θ̄1) is good, whereas d B‖(θ̄0) and d Ḃ⊥(θ̄1) are only weakly
determined

direction. This basically confirms the previously drawn con-
clusions identifying d Ḃ‖ and d B⊥ as the components with
the most significant effect on the interferometric phase.

Even though the complementary components d B‖ and
d Ḃ⊥ are theoretically estimable, the estimates would be too
weakly determined to be considered reliable. This can be seen
from Fig. 2e, f, where a relatively huge error in B‖ induces
only a very faint error signal in the phase. Conversely, a faint
atmospheric signal that matches by chance this phase pat-
tern, would result in unrealistically high estimates of d B‖ in
the order of metres. Analogous considerations apply to d Ḃ⊥.
Therefore, it is preferable to constrain these two components
to zero. This is achieved by confining the parameter space
from four parameters b to two parameters bT

θ = (d Ḃ‖, d B⊥):

E{φ} = ĀbTT bθ (16)

with:

T =
(

0 sin(θ0) 0 − cos(θ0)

cos(θ0) 0 sin(θ0) 0

)
. (17)

The mean look angle θ0 = (θ̄0 + θ̄1)/2, which is required
for the decomposition into parallel and perpendicular compo-
nent here, is heuristically defined by the averaged orientations
of the error ellipses in Fig. 5. These can be computed from
the eigenvalues of D{b̂}. Least squares adjustment yields:

b̂θ =
(

TĀT
b Q−1

φ ĀbTT
)−1

TĀT
b Q−1

φ φ (18)

D{b̂θ } = σ̂ 2
0 Qθ = σ̂ 2

0

(
TĀT

b Q−1
φ ĀbTT

)−1
(19)

with:

σ̂ 2
0 = vT

φ Q−1
φ vφ

nφ − u
, (20)
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Fig. 6 Network of 163 interferometric combinations of 31 ENVISAT
images that has been used to test the estimation of orbit errors. Vertices
represent images (acquisitions with indicated orbit numbers), and edges
stand for interferograms. The adjusted orbit errors after data snooping
are represented by red arrows for the least squares approach and blue
arrows for the gridsearch method, respectively. These visualise magni-
tude and orientation of the fringe gradient, where the number of orbital
fringes in the interferogram can be deduced from the legend in the lower

right corner. The conversion is based on the relation that one fringe in
azimuth is equivalent to a baseline error of d Ḃ‖ = 1.7 mm/s and one
fringe in range corresponds to d B⊥ = 26 cm. These factors apply spe-
cifically on the test data and account for the actual extent of the scene,
which is why they deviate from the numbers in Table 1. The 31 dashed
lines represent interferograms that are identified and rejected as outliers
when the gridsearch method is used

where u = 3 is the number of unknowns (d Ḃ‖, d B⊥ and φ0).
vφ are the residuals:

vφ = ĀbTT b̂θ − φ. (21)

The selection of an appropriate set of phase observations
φ needs to be addressed. Theoretically, all available pixels
could be considered in Eq. (16). However, in many interfer-
ograms not every pixel can supply a reliable phase informa-
tion. In regions of poor coherence, the interferometric phase
is practically meaningless and cannot be exploited. On the
other hand, it is not advisable to simply exclude poorly coher-
ent pixels below a fixed coherence threshold, since this can
lead to inhomogeneous spatial distributions of observations.
Thus, local error signals of smaller scale superimposed on
the orbital signal can act as leverage observations, dominat-
ing the estimates. To avoid such an effect, a homogeneous
distribution is enforced by defining a grid on the interfero-
gram and selecting from every grid cell only the pixel with
the highest coherence.

For similar reasons, no mutual weighting is applied to the
phase observations, constraining diag(Qφ) ∝ 1. An inho-
mogeneous distribution of weights has the same effect as
inhomogeneously distributed observations.

3.2 Baseline error estimation from the wrapped phase

So far, the presented method estimates baseline errors from
unwrapped interferograms only. If reliable unwrapping is
cumbersome or even impossible, an alternative gridsearch
approach can be pursued. It consists in minimising an objec-
tive function of the wrapped phase, incrementally searching
the parameter space spanned by d Ḃ‖ and d B⊥.

From Eq. (16) follows E{φ − ĀbTT bθ } = 0. By analogy
to the ensemble coherence from Ferretti et al. (2001), a coher-
ence measure is defined as a function of bT

θ = (d Ḃ‖, d B⊥):

γ (bθ ) = 1

nφ

nφ∑

j=1

ei(φW
j −āb, j TT bθ )

, (22)
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where φW is the wrapped interferometric phase and āb, j is
the j th row of Āb. Considering 0 ≤ |γ | ≤ 1 and E{|γ |} = 1,
the estimates b̂θ are defined as the set of parameters that
maximises |γ |. Alternatively, γ can also be interpreted as
a discrete Fourier transform of the two-dimensional signal
eiφ to the (d Ḃ‖, d B⊥)-domain, where b̂θ is constituted of
the dominant frequencies. The required computational load
is higher than for the least squares method, but still negli-
gible in view of other InSAR processing steps. Whereas the
gridsearch approach does not provide any intrinsic quality
measures for the estimates, heuristic, peak-to-noise ratio-like
indicators can be defined.

A noteworthy drawback of the approach is that the esti-
mates turn out to be unreliable in some cases, in particular
when |γ |(bθ ) has more than one distinct local maximum.

3.3 Network adjustment

Given a set of m SAR images, the relative orbit error between
two acquisitions i and j can be estimated either directly
from interferogram i j or indirectly from some appropriate
linear combination of other interferograms. Though mathe-
matically equivalent, both approaches generally do not yield
identical results. This is due to individual filter settings for
the particular interferograms or data-adaptive filtering. Addi-
tionally, different interferometric combinations involve more
or less propitious premises for phase unwrapping. Thus,
adjusting orbit errors that have been redundantly estimated
from linearly dependent interferometric combinations can
enhance the precision of the estimates by mitigating “pro-
cessing noise”, even though there is no redundancy in its
strict sense.

Furthermore and even more important, this approach pro-
vides a mechanism to detect blunders, potentially resulting
from unwrapping errors. But even if explicit unwrapping is
circumvented by estimating baseline errors directly from the
wrapped phase, inconsistencies may occur due to noisy inter-
ferograms or unmodelled nuisance signals. As the gridsearch
estimator is nonlinear, it is not guaranteed that estimates
obtained from equivalent linear combinations of interfero-
grams are identical.

Designing a network with m images, not all m(m−1) pos-
sible interferometric combinations are appropriate for orbit
error estimation, as the exploitable information degrades with
increasing temporal and perpendicular baseline. But even
after disregarding too incoherent interferograms, the network
design is a trade-off between computational load and reliabil-
ity. To ensure a good mutual control, every image should be
connected to at least three other images. This is a minimum
requirement for outlier detection, because an outlier in one
out of only two adjacent interferograms cannot be localised.
For the following considerations it is further assumed that all
images are related to each other by linear combinations of

interferograms, i.e., the network design (Fig. 6) can be vis-
ualised by a connected graph. If the network falls apart into
two or more disjoint parts, each of these parts can be treated
separately.

Before adjusting individual baseline errors in a network,
it has to be ensured that these parameters refer to a homoge-
neous reference in several respects. The Frenet frame ( #»e h(t),
#»e a(t), #»e v(t)) must be uniformly defined by the orbit of
a dedicated, arbitrarily chosen common reference acquisi-
tion. This acquisition also defines a uniform time scale t to
be applied in Eq. (10). A consistent decomposition of the
baseline into parallel and perpendicular component has to be
assured by a common mean look angle θ0. Note that it is not
required to coregister all images to a single master, since the
link between the interferograms is established via the orbits.

The adjustment of misclosures between baseline errors
bT

θ,k = (d Ḃ‖,k, d B⊥,k), k = 1 . . . n, yields a consistent set of

orbit errors xT
i = (dẋ‖,i , dx⊥,i ), i = 1 . . . m. If interferogram

k is constituted of master acquisition i and slave acquisition
j (i, j ∈ {1 . . . m}), the functional model reads E{y} = Ax,
or more specifically:

E

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

...

b̂θ,k
...

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
=

⎛

⎝
· · · · · · · · · · · · · · ·
0 −I2 0 I2 0
· · · · · · · · · · · · · · ·

⎞

⎠

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

...

xi
...

x j
...

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

(23)

with 2n “observed” baseline error parameters y, a 2n × 2m
design matrix A and 2m orbit error parameters x. I2 is a 2×2
identity matrix. The associated weighting scheme is defined
by the stochastic model:

D{y} = ς2
0 Qy = ς2

0 diag{. . . , σ̂ 2
0,kQθ,k, . . . }, (24)

subsuming individual covariance matrices from Eq. (19).
Note that existing correlations between linearly dependent
interferograms are negated here, as their modelling is not
straightforward. Contributions of individual interferograms
are considered as independent observations.

The estimation of interferogram-specific variance fac-
tors σ 2

0,k enables a weighting scheme that allocates higher
weights to interferograms whose residual phase pattern
closely resembles orbit error signals. Thus, interferograms
with strong atmospheric signals that do not match possi-
ble orbital error patterns are downweighted, mitigating their
influence on the estimates. Such a weighting scheme is not
possible if the baseline estimates have been obtained from
the wrapped phase as described in Sect. 3.2. In this case, the
most evident choice is to assume equal weights for all inter-
ferograms and define the mutual weighting of d Ḃ‖ and d B⊥
by the fringe equivalents from Eq. (5):
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D{y} = ς2
0 In ⊗

(
(d Ḃ‖,2π )2 0

0 (d B⊥,2π )2

)
, (25)

where ⊗ is the Kronecker product. As the estimation of abso-
lute orbit errors xk requires a datum definition, two zero-
mean conditions are introduced:

m∑

k=1

x̂k =
m∑

k=1

(
d ˆ̇x‖,k
d x̂⊥,k

)
= 0. (26)

Whereas there is no physical justification for these con-
ditions, they involve less arbitrary choices than any alterna-
tive datum definition. They are expected to yield minimally
biased estimates if the number of images m is large and orbit
errors are random. As the number of interferograms n is gen-
erally larger than m, the estimation has 2(n−m+1)degrees of
freedom and is thus overdetermined. The regularised normal
equation system yielding a minimum-norm solution reads:
(

AT Q−1
y A GT

G 0

) (
x̂
k

)
=

(
AT Q−1

y y
0

)
(27)

with a 2 × 2m matrix:

G = (
I2 I2 · · · I2

)
(28)

and Lagrangian multipliers k. Orbit error estimates x̂ are
obtained from solving Eq. (27). The corresponding covari-
ance matrix ς̂2

0 Qx̂x̂ is a submatrix of:

D

{(
x̂
k

)}
= ς̂2

0

(
Qx̂x̂ Qx̂k
Qkx̂ Qkk

)
= ς̂2

0

(
AT Q−1

y A GT

G 0

)−1

(29)

with a variance factor:

ς̂2
0 = vT Q−1

y v

2(n − m + 1)
(30)

estimated from the residuals v = Ax̂ − y. The rescaling
by ς̂2

0 accounts only for the processing noise due to which
the baseline estimates of equivalent linear combinations of
interferograms are not precisely identical.

An equivalent result could alternatively be obtained by
means of the pseudo inverse or a singular value decompo-
sition of AT Q−1

y A. The here proposed approach originates
from free adjustment of geodetic networks (Koch 1999) and
has its strengths in the enhanced flexibility of datum defi-
nition. In some cases it is desirable to consider in Eq. (26)
only a subset of acquisitions. For instance, if the network is
extended after an initial adjustment by new, recently acquired
images, these should be disregarded in Eq. (26) to avoid a
systematic shift of all estimates. This can be implemented by
zeroing the corresponding coefficients in G (Koch 1999).

The potential of the regularisation approach is illustrated
by the following example: For m = 3 images, the zero-mean-
conditions read

∑3
k=1 x̂k = 0, and G = ( I2 I2 I2 ). If a fourth

image with a large orbit error is later added to the network

and the adjustment is re-performed with zero-mean condi-
tions comprising all four images (i.e.,

∑4
k=1 x̂k = 0, G =

( I2 I2 I2 I2 )), the orbit error estimates would experience a sig-
nificant shift also for the initial three images, even if all mis-
closures are zero. This effect can be avoided by excluding the
fourth image from the zero-mean condition:

∑3
k=1 x̂k = 0.

Then, G = ( I2 I2 I2 0 ).

3.4 Quality control

In order to detect outliers, Baarda’s (1968) data-snooping is
applied. The underlying idea of this procedure is to statis-
tically test observations individually on agreement with the
mathematical model and to reject outliers iteratively until
all tests pass. Baarda’s approach requires that the stochas-
tic model of the observations is entirely known. This is not
the case in Eqs. (12) and (24), where a fine-tuning by global
scaling factors σ 2

0 and ς2
0 , respectively, is allowed for. In this

context appropriate data-adaptive tests are the τ -test (Pope
1976) or the equivalent t-test (Heck 1981; Jäger et al. 2006),
following the τ - or the more common t-distribution, respec-
tively. Here, the t-test is applied within the framework of
iterative data snooping.

There are two levels of data screening. Firstly, it can be
tested how well individual unwrapped phase observations
match the orbital phase trend. Thus, isolated outliers that are
limited to single pixels can be identified and rejected. In the
subsequent network adjustment, it can be evaluated if con-
tributions of particular interferograms are biased or not. This
second level of data screening is primarily designed to detect
unwrapping errors, which often apply to several spatially
neighbouring pixels at a time. Then, erroneously unwrapped
pixels mask each other, and errors cannot be detected by
single outlier statistics on the observation level. Consider-
ing further that phase observations are always relative, it is
not straightforward for two equally sized regions in an inter-
ferogram to determine, which one of the two is unwrapped
correctly and which one is not. Quality control on the net-
work level is an effective way to detect these errors and thus
one of the basic motivations for the network approach.

Starting on the observation level, the test statistic Tφ,i

for the i th phase observation equals its Studentised residual.
Assuming normally distributed observations and φi being the
only outlying phase value, it follows a t-distribution (Jäger
et al. 2006):

Tφ,i = vφ,i

σ̄0

√
eT

i Qvφ ei

∼ tnφ−u−1, (31)

where ei is a unit vector of zeros with a one at the i th position.
Qvφ is the cofactor matrix of the residuals vφ = (vφ,i ):

Qvφ = Qφ − ĀbTT Qx̂x̂TĀT
b . (32)
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Assuming that there is indeed a blunder in the i th observa-
tion, the variance factor estimate σ̂ 2

0 would be biased. Thus,
the factor in Eq. (31) is estimated from all residuals except
the i th one:

σ̄ 2
0 =

vT
φ Q−1

φ vφ − vT
φ Q−1

φ ei eT
i Q−1

φ vφ

eT
i Q−1

φ Qvφ
Q−1

φ ei

nφ − u − 1
. (33)

If Tφ,i exceeds a dedicated threshold deduced from
the t-distribution, the i th observation is rejected, and the
parameters are re-estimated from the remaining ones. This
procedure is repeated until all test statistics fall below the
threshold. It has to be taken care that this iterative rejection
does not yield an unbalanced spatial distribution of observa-
tions, which could entail leverage effects as addressed in Sect.
3.1. Consequently, only a limited number of observations
should be rejected. Possibly, robust estimation approaches
(Koch 1999) would be more effective in this case to find a
more appropriate balance between quality and spatial distri-
bution of the observations. However, a successful applica-
tion of these concepts would require further and thorough
research to ensure a reliable result.

Outlier detection on the network level follows the same
scheme, testing the contribution of every interferogram k
individually. The alternative hypothesis reads:

E{bθ,k} = Akx + ∇k, (34)

where Ak is the line-block of A corresponding to interfero-
gram k and ∇T

k = (∇ Ḃ‖,k,∇B⊥,k) are two nuisance param-
eters, modelling the assumed bias in terms of baseline errors.
Provided that interferogram k is the only interferogram that
contributes erroneous baseline error estimates to the network,
the best estimate for ∇k is (Jäger et al. 2006):

∇̂k = −
(

Q−1
y,k − Q−1

y,kAkQx̂x̂AT
k Q−1

y,k

)−1
Q−1

y,kvk, (35)

where vk = Ak x̂ − b̂θ,k comprises the two elements of v
that concern interferogram k. The significance of ∇̂k can be
evaluated by a generalised t-test for two parameters (Jäger
et al. 2006):

TB,k = −vT
k Q−1

y,k∇̂k

2ς̄2
0

∼ F2,2(n−m) (36)

with:

ς̄2
0 = vT Q−1

y v + vT
k Q−1

y,k∇̂k

2(n − m)
. (37)

If the highest TB exceeds a dedicated threshold, this time
deduced from the Fisher distribution, it can be checked in the
first place if there is an unwrapping error in interferogram k

that can be corrected manually. Otherwise, its contribution is
rejected, and the procedure is repeated until all test statistics
fall below the threshold. Rejection must not be pursued too
extensively, guaranteeing that the contribution of every inter-
ferogram is controlled by at least one linear combination of
other interferograms in the network.

4 Application

The proposed approach for estimating orbit errors has been
tested on a set of 31 ENVISAT acquisitions from a scene in
Western Australia (track 203, frame 4221) between Decem-
ber 2003 and April 2008. The region has a semi-arid climate,
the land use being dominated by dryland cropping and some
salt lakes. These conditions go along with a good interfero-
metric coherence, which was the reason to choose this test
area. A network of 163 interferograms has been set up with a
maximum perpendicular baseline of 743 m and a maximum
temporal baseline of 560 days (see Fig. 6). It was aimed to
include as many interferograms as possible, the only require-
ment being that unwrapping is reliably feasible. Three sample
interferograms are pictured in Fig. 7.

InSAR processing has been performed with the Delft
Object-Oriented Radar Interferometric Software DORIS
(Kampes et al. 2004) using precise orbits from the French
Centre National d’Etudes Spatiales (CNES). Topographic
height variations, which are below 200 m, have been
accounted for with a 3”-DEM product from the Shuttle Radar
Topography Mission (SRTM). To maximise coherence, all
interferograms have been multilooked by a factor 25 in
azimuth and 5 in range, yielding pixels of approximately
100 × 100 m2 size. Adaptive phase filtering (Goldstein
and Werner 1998) has been applied to facilitate unwrap-
ping, which has been carried out using the Statistical-Cost
Network-Flow Algorithm for Phase Unwrapping (SNAPHU;
Chen and Zebker 2001). Subdividing the interferograms into
1260 tiles of 30 × 30 pixels, only the most coherent pixel
from each tile contributes to the estimation to guarantee a
spatially homogeneous distribution of observations. A small
number of tiles has been disregarded due to lack of pixels
with a coherence estimate above 0.25.

4.1 Stochastic modelling

The choice of an appropriate covariance matrix for the
phase observations φi in Eq. (12) has several implications:
It defines the mutual weighting between the contributions
of individual pixels, it directly affects the quality measures,
i.e., standard deviations, of the estimated orbit errors and it
is an important prerequisite for outlier detection. As orbit
errors are the only effect that is considered in the functional
model of Eq. (16), all other contributions like deformation,
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Fig. 7 Sample interferograms and their associated covariance func-
tions. The interferograms covering the whole scene of 100 × 100 km2

have already been corrected for reference phase and topographic phase.
The empirical covariance functions have been fitted by the double expo-
nential model Ce(r) from Eq. (39)

atmosphere and noise are absorbed in the stochastic model
and would thus have to be accounted for.

This requirement is in conflict with a number of con-
straints. Allowing the phase variances to account for dec-
orrelation noise as a function of coherence would allocate
different weights to the individual pixels. This has to be
avoided to prevent leverage effects that could result from
an inhomogeneous spatial distribution of weights. Admit-
ting thus only models with homogeneous variances, the only
matter to be settled is the question if correlations should be
assumed or not. As the atmospheric propagation delay defi-
nitely is a spatially correlated effect, it suggests itself not to
ignore this stochastic behaviour. However, the characteristic
of the associated covariances is very different for individ-
ual interferograms (Hanssen 2001). The consequential need
to individually tailor covariance models is opposed to the

requirement of a generally applicable methodology. Hence,
the covariance of two pixels is assumed to be an isotropic
function of their spatial distance r , for which the most sim-
plistic choice would be:

C0(r; c) =
{

c , r = 0

0 , r > 0
, (38)

where c > 0. This model, implying uncorrelated observa-
tions, does not even require adaption, because the param-
eter c is arbitrary due to the a posteriori estimation of
σ̂ 2

0 in Eq. (20). But it does not reflect realistic condi-
tions either. If a more sophisticated model is supposed
to be applied, a two-dimensional covariance function can
be estimated from the power spectrum of an interfero-
gram by application of an inverse Fourier transformation
(Hanssen 2001). This requires second order stationarity of
the underlying stochastic process, of which the interfero-
gram is a realisation in this context. To fulfil this require-
ment, the assumed contribution of orbital errors can be
removed from the interferograms by subtraction of a lin-
ear trend, which is a sufficiently good approximation for this
purpose.

To avoid a bias due to decorrelation noise, the power
spectrum is low-pass filtered beforehand. Circular averaging
finally yields a one-dimensional covariance function. As the
thus obtained function is only defined for spatial wavelengths
below half the size of the interferogram, it is extrapolated by
fitting a double exponential analytical model:

Ce(r; c1, c2, a) = c1e− r
1km + c2e− r

a . (39)

This model has been chosen, because it matches well the
empirical covariance functions and more sophisticated, bet-
ter-fitting models do not qualify by a better performance.
The empirical choice of 1 km as correlation length of the
first exponential function can be motivated with the transi-
tion between different atmospheric scaling regimes at 2 km
distance (Hanssen 2001). (e−r/(1km) has decayed by 90 % at
r = 2 km.)

There is still a number of deficiencies left. As the spectral
method does not account for wavelengths that exceed the
extent of the interferogram, the resulting covariance func-
tions are significantly biased for about 20 interferograms
containing distinct nonlinear atmospheric trends (e.g., ifg.
22301–24806, see Fig. 7). Some interferograms (like 14786–
15788 in Fig. 7) expose distinct anisotropic features, which
have been disregarded in the modelling to keep the approach
simple.

The factual benefit of the double exponential covariance
model Ce(r) compared to the simpler model without covar-
iances C0(r) will be evaluated in the following.
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Table 3 Results of network adjustment for the least squares (lsq.) approach using the covariance functions C0(r) or Ce(r), respectively, and the
gridsearch method

d ˆ̇B‖ (mm/s) d B̂⊥ (cm) d B̂fr (fr.) d ˆ̇x‖ (mm/s) dx̂⊥ (cm) dx̂fr (fr.) vḂ‖ (mm/s) vB⊥ (cm) vBfr (fr.) ∇̂ Bfr (fr.)

lsq. C0(r)

med 0.64 16.3 1.11 0.55 18.6 1.12 0.03 0.3 0.02

max 3.43 94.8 4.78 2.68 65.2 4.08 0.30 2.0 0.22 0.26

σ̂min 0.01 0.2 0.01 0.01 0.1 0.01

σ̂max 0.12 1.8 0.10 0.03 0.4 0.02

lsq. Ce(r)

med 0.65 17.1 1.02 0.50 18.9 1.10 0.04 0.4 0.04

max 3.12 91.6 4.43 2.31 65.0 3.83 0.47 3.5 0.33 0.35

σ̂min 0.01 0.1 0.01 0.01 0.2 0.01

σ̂max 0.16 2.3 0.13 0.06 0.8 0.05

gridsearch

med 0.76 18.9 1.23 0.58 19.9 1.10 0.13 3.1 0.27

max 5.59 120.2 7.16 3.93 72.2 4.09 3.84 88.1 5.64 6.72

σ̂min 0.82 12.5 0.68 0.22 3.3 0.18

σ̂max 0.82 12.5 0.68 0.41 6.2 0.34

gridsearch
& data snooping

med 0.68 17.3 1.16 0.60 20.2 1.24 0.04 0.5 0.04

max 3.77 81.9 4.97 2.97 71.6 4.48 0.19 2.7 0.16 0.25

σ̂min 0.07 1.1 0.06 0.02 0.3 0.02

σ̂max 0.07 1.1 0.06 0.05 0.8 0.05

Given are the median and the maximum of the absolute values of observed baseline errors d B̂, adjusted orbit errors dx̂ , residuals vB and estimated

biases ∇̂B as well as their minimum and maximum standard deviations. d B̂fr combines the effects in d ˆ̇B‖ and d B̂⊥ by converting them to fringes
(fr.) following Eq. (40). dx̂fr, vBfr and ∇̂ Bfr have analogous meanings

4.2 Performance

As the true orbit errors are unknown, it is not feasible to eval-
uate the actual accuracy of their estimates. Nevertheless, the
parameters’ plausibility can be checked roughly, and their
mutual consistency can be inferred from misclosures in the
network. Whereas least squares and gridsearch estimates can
easily be compared with each other, it is not straightforward
to assess the innovation of both estimators with respect to the
common approach of removing linear ramps. A direct numer-
ical comparison fails due to the different parameterisations
and their effect on the phase.

Table 3 summarises the adjustment results. Assuming
uncorrelated observations (C0(r)), baseline errors up to
d Ḃ‖ = 3.4 mm/s (2.0 fringes) and d B⊥ = 95 cm (3.6
fringes) have been estimated by the least squares (lsq.)
method. These dimensions are hardly explainable by orbit
errors and suggest that large-scale variations of the atmo-
spheric delay leak into the baseline error estimates. This is
plausible, as the nonlinear signal in interferogram 22301–
24806 proves that gradients in the atmospheric propagation

delay of two fringes over half a scene (50 km) are possible
(see Fig. 7). The network adjustment yields absolute orbit
errors up to 2.7 mm/s in ẋ‖ (1.6 fringes in azimuth) and
65 cm in x⊥ (2.5 fringes in range). The maximum residuals
of 0.3 mm/s in d Ḃ‖ and 2 cm in B⊥ are much smaller than in
Bähr and Hanssen (2010), where the same dataset has been
analysed with a similar network design. This can be explained
by a range timing error in the annotations of image 10277
of 0.3 µs (12 pixels) that could be reliably identified and
corrected.

In Table 3, baseline errors (and analogously orbit errors,
residuals and estimated biases) are also quantified in terms
of the total number of fringes that they induce into an
interferogram:

d Bfr :=
∣∣∣
∣∣

d Ḃ‖
d Ḃ‖,2π

∣∣∣
∣∣
+

∣∣
∣∣

d B⊥
d B⊥,2π

∣∣
∣∣ . (40)

The conversion to fringes follows Eq. (5), where d Ḃ‖,2π =
1.7 mm/s and d B⊥,2π = 26 cm are applicable for the data
at hand. An analogous conversion is applied to the mutual
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Table 4 Comparison of orbit error estimates obtained by the least squares (lsq.) approach, using the covariance models C0(r) or Ce(r), respectively,
and the gridsearch method

Without data snooping With data snooping

lsq. lsq. grid- lsq. lsq. grid-
C0(r) Ce(r) search C0(r) Ce(r) search

Rejected interferograms 0 0 0 2 1 31
med/max deviation (fringes)

without data snooping
lsq., C0(r) 0.05/0.39 0.19/0.91 0.00/0.02 0.05/0.39 0.09/1.25

lsq., Ce(r) 0.20/1.15 0.05/0.40 0.00/0.02 0.14/1.30

gridsearch 0.19/0.92 0.20/1.16 0.12/1.44

with data snooping
lsq., C0(r) 0.05/0.40 0.09/1.25

lsq., Ce(r) 0.13/1.31

All three estimators have been evaluated with and without application of data snooping, for which the number of rejected interferograms is indicated
in each case. For every pairing of approaches, both the maximum and the median deviation between the estimated orbit error parameters is given,
converted to fringes by analogy to Eq. (40): dx̂fr = |d ˆ̇x‖/d Ḃ‖,2π | + |dx̂⊥/d B⊥,2π |

deviations of different approaches in Table 4. The compar-
ison there reveals that the choice of the covariance func-
tion has only little effect on the estimates, the median devi-
ation being 0.05 fringes. For a few acquisitions, the esti-
mated orbit errors differ significantly, showing deviations up
to 0.40 fringes. Hence, it can be concluded that in spite of
the good precision (i.e., standard deviation) of the estimated
orbit errors better than 0.05 fringes, the factual accuracy may
be at the level of a few tenths of fringes in some cases.

The estimated standard deviations are throughout smaller
if uncorrelated observations (C0(r)) are assumed, whereas
the quality indicators from correlated observations (Ce(r))
are probably more realistic. Although the double exponential
covariance model Ce(r) is still a crude approximation of the
true stochastic behaviour of the interferometric phase with
some unresolved deficiencies, it is supposed to be a closer
approximation of reality than the simple model C0(r).

As all interferograms have been processed with care, the
presence of unwrapping errors in the dataset can basically be
excluded. However, regardless the choice of the covariance
function, there are interferograms that do not pass the outlier
test in Eq. (36) at a significance level of α = 0.001. This
is probably due to remaining deficiencies of the stochastic
model addressed in Sect. 4.1. If data snooping is applied, not
more than two interferograms are rejected before all tests pass
while the change of the estimated orbit errors is below 0.02
fringes and thus negligible (see Table 4). Hence, data snoop-
ing cannot be considered useless, since the contributions of
the majority of interferograms are accepted. Its capability to
detect unwrapping errors will be analysed in detail in the next
subsection.

Considering the least squares solution as an unbiased ref-
erence, the estimates obtained by the gridsearch method are

distinctly unreliable in some cases. Figure 8a shows that there
are high deviations of up to 5.7 fringes. These occur fre-
quently in the presence of a nonlinear large-scale atmospheric
signal and go along with the presence of more than one dis-
tinct local maximum in the search space (see Fig. 8b). Hence,
the ratio between the highest local maximum γ1 and the sec-
ond-highest local maximum γ2 can be considered an indi-
cator for the reliability of the estimation. From Fig. 8a can
be seen that the probability of a biased estimate is high if
γ1/γ2 < 1.5.

The internal consistency of the estimates obtained by the
gridsearch method is poor, which is suggested by the high
residuals in Table 3. Applying data snooping with a signifi-
cance level of α = 0.001, as many as 31 interferograms are
rejected before all tests pass. With standard deviations of orbit
errors below 0.05 fringes, the consistency of the revised net-
work is of a similar quality as the least squares solution (see
Table 3). However, the estimates for some acquisitions devi-
ate on the one-fringe level (see Fig. 6 and Table 5), which
can be explained by non-equivalent objective functions of
the two approaches. Hence, biased contributions of particu-
lar interferograms estimated by the gridsearch method cannot
be reliably identified by data snooping.

4.3 Detectability of outliers

Two statistical tests have been proposed to detect
unwrapping errors. On the observation level, Tφ indicates if
individual phase observations deviate significantly from the
estimated orbital error signal. On the network level, large-
scale unwrapping errors can be detected with TB . In the fol-
lowing it is evaluated for both tests, if the associated statistical
distributions do indeed apply to the test statistics in context of
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(a) (b)

Fig. 8 a Absolute deviations of the baseline error parameters obtained
by the girdsearch method from the least squares estimates (from uncor-
related observations). By analogy to Eq. (40), the deviations in the
respective components have been normalised to their fringe equiva-
lent and subsequently summed up per interferogram. They are plot-
ted as a function of the ratio γ1/γ 2 between the highest and the
second-highest local maximum in the search space |γ |(d Ḃ‖, d B⊥).
The highest deviation has been observed in interferogram 24806–
28313, the observations from which are visualised in the

subframe. b Coherence measure |γ | of interferogram 24806–
28313 computed for incrementally varied baseline error values
(d Ḃ‖, d B⊥). The interval between the white grid lines cor-
responds to one fringe according to Eq. (5). The gridsearch-
solution is defined by the highest value of |γ |, from which the least
squares solution has a distance of 5.7 fringes—2.2 in azimuth (d Ḃ‖)
and 3.6 in range (d B⊥). Note that the least squares solution does not
necessarily coincide with a local maximum in the search space, which
is due to the differing objective functions of the two estimators

the chosen stochastic model. Subsequently, the performance
in detecting simulated unwrapping errors is tested.

The applicability of the respective statistical distributions
in Eqs. (31) and (36) is evaluated by Pearson’s chi-square
goodness-of-fit test (Kreyszig 1979). Doing so, the test sta-
tistics are binned into N = 15 intervals. Then, the number of
tests hi in each interval is compared to the theoretical num-
ber of tests hi,0 that is supposed to be in that interval if the
associated statistical distribution applies. Finally, the good-
ness-of-fit test is based on the difference of these numbers:

Tχ2 =
N∑

i=1

(hi − hi,0)
2

hi,0
∼ χ2

N−1. (41)

To evaluate the test Tφ on the observation level, Tχ2 has
been computed for all 163 interferograms after iteratively
rejecting a small number of outliers. This is necessary to
guarantee that the samples are not contaminated by blun-
ders. Even for a small level of significance α = 0.1 %, the
t-distribution can be validated for only 73 % of the interfero-
grams if uncorrelated observations are assumed (C0(r)). For
the double exponential model Ce(r), the validation succeeds
for only 22 %. These results indicate that both models are
incapable of adequately describing the stochastic behaviour
of the observations for the general case. Nevertheless, the
performance of this test is only of secondary importance if
only a limited number of distinct blunders is rejected. Mod-

erate biases in a small number of pixels do not distort the
orbit error estimates significantly due to the high number of
observations. More crucial is the test TB on the network level,
for which the goodness-of-fit test passes for any significance
level below 9 % (C0(r)) or 11 % (Ce(r)), respectively. This
is a promising result, confirming the validity of this test.

To assess the sensitivity of TB with respect to large-scale
unwrapping errors, such errors have been simulated as dem-
onstrated in Fig. 9. 163 case studies have been carried out, in
each of which one of the 163 interferograms is contaminated
by unwrapping errors with incrementally varied magnitudes.
The respective numbers of case studies, in which an unwrap-
ping error of a specified magnitude is detected are listed in
Table 6. It turns out that the more sophisticated covariance
model Ce(r) promotes the detectability of outliers, as the
success rate is significantly higher for errors below 0.3
fringes compared to C0(r). The finding that errors above 0.5
fringes still remain undetected appears troubling but is relati-
vised by the circumstance that the interferograms in question
are associated with small weights in the network, mitigating
their influence on the estimates.

Recapitulatory can be stated that the effort of adapting
a stochastic model Ce(r) with correlated observations has
indeed some benefit in the detection of outliers, even though
it is not rigorously adequate in all respects. However, the per-
formance of the model C0(r) with uncorrelated observations
is acceptable.
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Table 5 Results of reprocessing with corrected orbits for four sample
interferograms

Master 09275 17291 19295 24806
Slave 10277 24305 20297 28814
B 212 m -361 m -736 m -96 m
Btemp 70 d 490 d 70 d 280 d

uncor-
rected

lsq.
C0 r -1.7/3.1 1.0/0.6 -0.6/-0.3 0.6/1.1

grid-
search -2.0/3.0 1.0/0.6 -1.2/-0.7 -0.2/1.1

diff. -0.3/0.0 0.0/0.0 -0.6/-0.4 -0.7/0.0

For the least squares (lsq.) and the gridsearch approach, the cor-
rected interferogram and the difference with respect to the uncorrected
interferogram are pictured. The corrections have been estimated by net-
work adjustment after data snooping, assuming uncorrelated observa-
tions (C0(r)) in case of the least squares estimator. They are given
here in fringes in azimuth and fringes in range, respectively, following
Eq. (5). The last row shows the difference between the two approaches.
Whereas the estimates for the orbital error signals seem reasonable for
both approaches, the results differ for a small number of interferograms.
Note that for the great majority of interferograms the difference is insig-
nificant, as it is the case for 17291–24305 (see Fig. 6)

Fig. 9 Simulation of unwrapping errors, exemplarily demonstrated on
interferogram 14786–15788. All phase observations in a quadratically
confined area in the lower right corner are shifted by 2π . The fringe
equivalent of the induced error signal according to Eq. (40) is 0.4 fringes
for the left and 0.8 fringes for the right example

Table 6 Number of interferograms that do not pass the outlier test TB if
they are contaminated by a simulated unwrapping error as demonstrated
in Fig. 9

Simulated error (fringes) Covariance model

C0(r) Ce(r)

0.05 2 (1 %) 42 (26 %)

0.10 3 (2 %) 85 (52 %)

0.15 27 (17 %) 109 (67 %)

0.20 67 (41 %) 119 (73 %)

0.25 107 (66 %) 129 (79 %)

0.30 135 (83 %) 141 (87 %)

0.40 146 (90 %) 149 (91 %)

0.50 156 (96 %) 156 (96 %)

0.60 162 (99 %) 160 (98 %)

0.70 163 (100 %) 162 (99 %)

0.80 163 (100 %) 163 (100 %)

4.4 Sequential versus comprehensive adjustment

The organisation of the adjustment in two steps, firstly esti-
mating individual baseline parameters to be adjusted subse-
quently in the network, makes the procedure conveniently
modularisable and reproducible. A more rigorous approach
would be a comprehensive formulation of the functional rela-
tionship, i.e.,

E{(. . . ,φT
k , . . . )T } = f (x), (42)

involving an adjustment in only one step. Thus, it could be
accounted for different look directions #»r M and #»r S of master
and slave, respectively, as it has been proposed by Kohlhase
et al. (2003). For the two-step approach, they are simply aver-
aged in Eq. (10). But as the look directions are almost col-
linear in spaceborne SAR, the bias due to averaging is small
enough to be negligible.

A second advantage of a comprehensive approach would
be that the mutual weighting of the contributions of different
interferograms by σ̂ 2

0,k and the estimation of a global vari-

ance level ς̂2
0 could be unbiasedly performed in one step by

applying variance component estimation (Koch 1999). The
benefit has been evaluated, revealing no significant change in
the estimates. Whereas the resulting covariance information
differs significantly, it does not improve the performance in
outlier detection.

5 Separability of signal components

The proposed method is based on the assumption that besides
orbit errors there are no other systematic components in the
residual interferometric phase, which is generally not true.
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Consequently, unmodelled contributions of ground defor-
mation or atmospheric propagation delay may leak into the
estimates, and the subsequent elimination of orbital errors
can bias the respective signal of interest. This mechanism is
unavoidable, but it can be mitigated by exploiting the spatio-
temporal characteristic of the orbital error signal. This sig-
nal always affects a radar scene as a whole and changes
arbitrarily from one acquisition to the next, revealing a
large spatial wavelength and an uncorrelated temporal behav-
iour.

Compared to the revisit intervals of SAR satellites, the
atmospheric state changes fast enough to consider its influ-
ence on subsequent acquisitions as completely uncorrelated.
In the spatial domain, the spectrum of effects ranges from
turbulent mixing on small scales over vertical stratification
due to topographic variations to large-scale gradients of tem-
perature, pressure or ionospheric electron content. The tur-
bulent component remains practically unaffected by an orbit
error correction due to its differing spatial characteristics,
and the effect of stratification can eventually be captured by
correlation with the topographic height. Only phase gradi-
ents reflecting large-scale weather patterns are not separable
from orbital effects without complementary measurements
or weather models. However, if not propagation delay but
deformation is the dedicated signal of interest, it is accept-
able if part of the atmospheric contribution is mistaken as
orbit error.

As to deformation phenomena, it can be stated that local-
ised signals remain basically unaffected by the orbit error
correction. This does not apply to large-scale ground move-
ments, where the separation from orbit errors is not pos-
sible without additional measurements or assumptions. If
available, ground velocities can be constrained at selected
points by independent geodetic measurements (Lundgren
et al. 2009). Otherwise, the temporal correlation of defor-
mation can be exploited, which is a distinction compared
to orbit errors and atmospheric effects (Ferretti et al. 2001;
Hooper et al. 2007). However, this self-evident assumption
has proven invalid in some cases where temporally corre-
lated spatial trends have been observed in InSAR time series
that cannot be explained by deformation (Hooper et al. 2007;
Ketelaar 2009).

If temporal correlation properties are nevertheless sup-
posed to be exploited to mitigate the bias of deformation
estimates, it suggests itself to high-pass filter the error esti-
mates before correcting the orbits and subsequently analys-
ing deformation. Thus, no prior assumptions have to be made
on the spatial characteristic of the deformation signal, since
the temporal filtering is performed in the very domain in
which the potential contamination takes place. Of course, a
most appropriate approach would be the joint estimation of
orbit errors and deformation in an all-comprehensive model,
which is beyond the scope of this work.

Another conceivable application scenario for the pro-
posed method involves Permanent or Persistent Scatterer
(PS) approaches, for which a number of different pro-
cessing chains have been developed (Ferretti et al. 2001;
Hooper et al. 2007; Ketelaar 2009). These are designed to
deduce deformation estimates for temporally stable point
scatterers and generally involve an initial estimate of orbit
errors to support an optimal identification of PS. At this
stage, the here proposed method could get involved. Addi-
tionally, the bias due to deformation could be mitigated
by subtracting the estimated deformation signal from the
original interferograms and iteratively re-estimating orbit
errors.

6 Conclusions

A reliable method to improve orbital state vectors has been
proposed and evaluated. It involves estimation of relative
orbit errors, i.e., baseline errors, from the phase of selected
pixels in individual interferograms and their subsequent
adjustment in a network, yielding quasi-absolute orbit errors
for particular acquisitions. The approach is based on the sta-
ble parameterisation of baseline errors by d Ḃ‖ and d B⊥,
involving rigorous geometric modelling. The mutual con-
sistency of estimated orbit errors obtained from a sample
ENVISAT dataset is better than 0.05 fringes or on the mil-
limetre level in terms of baseline errors, respectively. For
quality control on the network level, iterative data snooping
has proven its capability to detect and reject outliers.

For the estimation of baseline errors from the interfero-
metric phase, two alternatives are proposed. A least squares
estimator supplementarily provides statistical information,
which can be useful for an optimal weighting scheme and
quality control. However, it requires prior phase unwrapping.
This is not the case for the gridsearch approach, which has
the drawback of occasionally unreliable estimates.

The most outstanding distinction of the presented method
is the mutual controllability of baseline estimates, enhanc-
ing resistance to outliers or blunders. A further improvement
compared to many existing approaches is the numerically
stable parameterisation by d Ḃ‖ and d B⊥. Topographic vari-
ations are fully accounted for, and the bias due to deforma-
tion may be mitigated in a combined processing with PS
approaches.

Potential improvements of the method would involve a
relaxation of the requirement that the observation pixels need
to be homogeneously distributed, which might be achievable
by robust estimation techniques. Furthermore, all stochastic
models analysed so far are still far from optimal in several
respects. Nevertheless, it is questionable if the benefit from
developing an even more adequate model would outweigh
the effort involved.
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