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Over the past many years, technology scaling has resulted in a contin-
uous reduction of lateral and vertical dimensions of transistors. The
technology scaling, on the one hand, has led to a commensurate per-
formance gain for very-large-scale integration (VLSI) circuits, but on
the other hand, has also made such circuits more vulnerable to ion-
izing radiations which can cause single event effects(SEEs). These
SEEs may cause the underlying user circuitry to deviate from its
normal behavior. Devices that are destined for space missions need
special protection for such kind of anomalies as space environment
is filled with massive amount of high energy particles and ionizing
radiations. In this thesis, the design, implementation, and verifi-
cation of a fault-tolerant ρ-VEX, a softcore processor, is presented,
so that it could be used as an attractive alternative to expensive
radiation-hardened processors for space-based applications. ρ-VEX
is a VLIW based, dynamically reconfigurable processor. Keeping in
line with its inherent attribute, a dynamically reconfigurable fault-
tolerant mode is presented in this work, which provides the running
application an option to activate and deactivate the fault-tolerant
mode multiple times. In this mode, for the protection of processor
pipeline, a non-traditional TMR approach that requires 3 lanegroups

running in 2-way mode is implemented. For the reliability of user memories, Hamming codes are imple-
mented as an ECC coding scheme. The functionally of our fault-tolerant design is verified by using both
a simulation-based platform (ModelSim) and an on-board FPGA platform (ML605 development kit). To
measure the fault-tolerant capabilities of the ρ-VEX core, saboteurs are used to artificially inject faults at
various predefined locations in the core. The obtained results have shown that our design can mitigate all
injected single faults in the pipeline and double faults in the caches, without triggering any failure. The
dynamically configurable fault-tolerant feature is obtained at the cost of about 30% additional resource
utilization and 20% reduction in the maximum operating frequency.
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Abstract

Over the past many years, technology scaling has resulted in a continuous reduction of
lateral and vertical dimensions of transistors. The technology scaling, on the one hand, has
led to a commensurate performance gain for very-large-scale integration (VLSI) circuits, but on
the other hand, has also made such circuits more vulnerable to ionizing radiations which can
cause single event effects(SEEs). These SEEs may cause the underlying user circuitry to deviate
from its normal behavior. Devices that are destined for space missions need special protection
for such kind of anomalies as space environment is filled with massive amount of high energy
particles and ionizing radiations. In this thesis, the design, implementation, and verification of a
fault-tolerant ρ-VEX, a softcore processor, is presented, so that it could be used as an attractive
alternative to expensive radiation-hardened processors for space-based applications. ρ-VEX is a
VLIW based, dynamically reconfigurable processor. Keeping in line with its inherent attribute,
a dynamically reconfigurable fault-tolerant mode is presented in this work, which provides the
running application an option to activate and deactivate the fault-tolerant mode multiple times.
In this mode, for the protection of processor pipeline, a non-traditional TMR approach that
requires 3 lanegroups running in 2-way mode is implemented. For the reliability of user memories,
Hamming codes are implemented as an ECC coding scheme. The functionally of our fault-tolerant
design is verified by using both a simulation-based platform (ModelSim) and an on-board FPGA
platform (ML605 development kit). To measure the fault-tolerant capabilities of the ρ-VEX core,
saboteurs are used to artificially inject faults at various predefined locations in the core. The
obtained results have shown that our design can mitigate all injected single faults in the pipeline
and double faults in the caches, without triggering any failure. The dynamically configurable
fault-tolerant feature is obtained at the cost of about 30% additional resource utilization and
20% reduction in the maximum operating frequency.
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Introduction 1
Since the beginning of mankind, humans have felt a primordial urge to explore - to
blaze new trails, map new lands, and answer profound questions about ourselves and
our Universe. The quest to unravel the mysteries led to the launch of a first artificial
satellite named Sputnik 1 in 1957 [2]. This successful launch, a remarkable achievement,
thus began the space age, and since then, spacecrafts are being launched into and
beyond the Earth’s orbit. These robotic emissaries follow in the footsteps of their
predecessors and are testaments to our long-lived desire to understand our place in the
Cosmos. However, these space missions come with their own intrinsic challenges. The
harsh space environment in which spacecraft operates poses many challenges to the
spacecraft designers. The spacecrafts are subject to faults caused by equipment failure
or environmental impacts, such as radiations, vibrations or temperature extremes. The
anomalies introduced in the spacecraft electronics have been known since the very first
day of space exploration [3] [4] [5] [6]. Therefore, to sustain the harsh environment of
space, systems must be robust enough to operate reliably for the desired duration with
little or no maintenance.

Space missions are subject to a heavy dose of radiations in the form of cosmic rays
and the solar wind, exposing them to alpha particles, protons, heavy ions, X-rays and
ultraviolet radiations. Interaction of these radiations with matter results in atomic
displacement (rearrangement of atoms in a crystal lattice) or ionization, with the
potential of causing soft errors which may lead to permanent or transient damage to
the system. Soft errors are caused by transistors changing their state unintended due to
significant amounts of energy disposed of by striking particles. Initially, only deep-space
missions such as interplanetary missions were the main concern for such soft-errors
as compared to missions close to Earth/Moon because they operate in relatively very
high radiations enriched environment. Missions targeted at lower orbits were not very
vulnerable because their operating environment has relatively low radiations. Larger
footprints of transistor provided benefits to such low-Earth orbit missions in the sense
that they could sustain a strike by a low energy particle. But with the advancement
in technology, the transistor size is becoming smaller and smaller (Moore’s law), which
means the amount of energy required for a state change of transistor is also becoming
smaller. Although, providing huger performance improvements, this decrease in the
footprint of a transistor is making devices more vulnerable to radiation-induced faults.
These effects were first reported in 1975 for ICs used in satellites in space [5]. Over
the past years, the transistor size has further decreased so much, that nowadays soft
errors are also being experienced at LEO satellites [7] and normal flight altitudes for
civilian aviation [8] . Using older technology (larger transistor footprint) is not a very
feasible option these days, as the demands for more advanced missions require more

1



2 CHAPTER 1. INTRODUCTION

computational ability and lower power consumption. Therefore, other solutions need to
be explored to get rid of anomalies introduced by the radiations.

The radiation-hardened electronics components are available commercially in the
market and can mitigate the effects of radiations to an extent. The problem with
such solutions is that besides providing very limited options for customization, they
are also highly expensive. For the last several years, we have observed an increasing
trend in student satellites. Student satellite projects like AAUSAT4 from Aalborg
University(Denmark), e-st@r -II from Politecnico di Torino (Italy), OUFTI-1 from
University of Lige (Belgium), Delfi-C3 and Delfi-n3Xt from Delft University of Tech-
nology (Netherlands) are few examples in this regard [9] [10]. All such satellite projects
usually share a common problem of funding and limited resources. Use of expensive
radiation-hardened components is not a very feasible option. Therefore, low-cost
COTS are preferred for these projects. The issue with such low-cost solutions is that
they come with limited reliability assurance. Therefore, there is a high need for non-
expensive solutions that can be trusted for their reliability in a harsh space environment.

Traditionally, many space-based applications use microprocessors for on board
processing as the development of software is relatively less expensive. In 1977, the RCA
1802 was the first microprocessor selected for spaceflight when it was used for the Galileo
probe mission to Jupiter [11] [12]. Since then microprocessors are considered an integral
part of most space missions. For most applications, the performance of a modern CPU
is sufficient, but for real-time computationally intensive applications, microprocessors
alone are not enough. Customized application specific hardware is a way to go for
such applications. FPGA, a reconfigurable chip used for designing dedicated hardware
for computationally intensive tasks, provides a more appropriate platform for such
applications. They can provide solutions in an order of magnitude faster than the
software algorithms developed for commercial general purpose microprocessor. In
addition to providing high-performance gain, FPGA also offers benefits of allowing
in-orbit customization (design changes), which helps in correcting errors or updating
system design in order to cope with new missions requirements after launch. All these
attributes make FPGA an attractive option for the remote space missions.

Specialized designs on FPGA often include a softcore, a customized CPU that
based on its design can possess reduced or extended functionality of a commercial
microprocessor. Today, there are multiple softcore processors available in the market,
developed by open source communities and (large) companies. Open source softcores
provide the user more possibilities for modification or customization of the core as
source files of the design are available. However, the softcores developed by companies
are often proprietary and expensive licenses are required to use them. Regardless of the
source of these softcore processors, if these are intended to be used in space missions,
these must possess the ability to sustain the harsh environment and handle soft errors,
as any lapse might lead to a mission failure.

The ρ-VEX, a dynamically reconfigurable softcore processor, is developed by Com-
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puter Engineering department of the Delft University of Technology(Netherlands). It
is an open-source VLIW based processor. The distinguishing feature of ρ-VEX is its
ability to adapt itself to available ILP and TLP to utilize the available computational
resources more efficiently. The goal of this thesis is to modify the softcore such that
it can handle soft errors for future opportunities in the high safety and security-critical
domain, and provide student satellites a reliable option as an alternative to expensive
solutions. This document will describe the way in which the fault-tolerant attribute of
ρ-VEX is designed, implemented and verified.

1.1 Research question & thesis objectives

In this work, the existing design of ρ-VEX softcore is taken as the starting point and
efforts are put to make it fault-tolerant. To be developed variant of this softcore is
targeted at high safety and critical space-based applications, such that correct execution
flow could not be influenced by single event effects without such anomalies being
detected. The research question/problem statement can be formulated as:

How can the ρ-VEX softcore be extended so that it becomes a reliable option for
space-based critical missions?

Based on the problem statement, thesis objectives are defined as:

• The design must be able to detect and correct errors in the execution stages of
ρ-VEX.

• The design must make on-chip memories robust against soft-errors.

• The design must be dynamically (runtime) reconfigurable.

• The design must be implemented on an FPGA while taking platform independence
into account.

• The design must be verified for its correctness.

1.2 Methodology

A research methodology is defined to find a solution for the proposed research question
and to achieve the thesis objectives. This methodology is specified as follows:

• Investigate the possible causes and impacts of single event effects in soft-cores.

• Investigate existing solutions for the mitigation of single event effects.

• Explore the ρ-VEX platform to analyze possible and feasible solutions.

• Implement the most suitable solution in a modular and efficient way
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• Verify the implemented functionality comprehensively using conformance tests in
simulation and benchmarks in hardware for its correctness

• Analyze the results of the implementation.

• Propose recommendations for future development of the implemented solution.

1.3 Thesis outline

The thesis is organized in the following way:

Chapter 2 provides the background knowledge required for this thesis. It provides
details about the ρ-VEX platform and describes its distinguishing features. Details
about space environment and its impact on electronics are also provided. Based on
these impacts and their causes, different solutions to mitigate their effects in processors
are discussed. Lastly, methods for verification of fault-tolerant systems are investigated.

Chapter 3 analyses the architecture of the baseline processor for its susceptibility to
radiation-induced faults. It then performs a comparative analysis of various available
options to explore their reliability and suitability for our design. Fault mitigation tech-
niques for pipeline stages and memory elements are evaluated and best-suited options for
our platform are identified. After finalizing the entire design, fault injection mechanism is
selected from different possible options to validate the desired functionality of our design.

Chapter 4 provides the implementation level details of the fault-tolerant design.
After providing a high-level description of the design, it explains the design of each
basic building block added to make the core robust. Finally, this chapter discusses
the implementation of fault injection mechanism and the addition of status-monitoring
registers to thoroughly validate the core functionality and fault-tolerant behavior.

Chapter 5 deals with the verification of our design and presents the results associated
with the fault-tolerant core. It provides details about the platforms and benchmark used
to check the correctness of the design. Statistics of fault injection tests are also discussed
in the chapter. Besides testing the functionally of the core, the results of synthesis are
also presented as they provide an indication of the cost of the design and its performance.

Finally, the chapter 6 summarizes the whole thesis, presents the main contributions
and lists recommendations for the future work.



Background 2
This chapter details the background knowledge required for this thesis. In Section 2.1, a
brief overview of FPGA will be provided, and in Section 2.2, the details of the processor
platform that is used in this thesis, i.e., ρ-VEX will be provided. Its implementation,
features, configuration modes and working will be discussed. Afterwards, in Section
2.3, details about the space environment and how it induces anomalies in electronics
especially in processors will follow. Subsequent sections will then deal with mitigation
techniques found in the literature to make processors robust for space missions, and
finally, various methods to validate the resilience of fault-tolerant systems will be dis-
cussed.

2.1 FPGA

Knowledge of the underlying architecture is helpful in understanding both how the
user design is implemented and how the space environment can it. As an FPGA
platform is used for this thesis project, it is helpful to present its overview first.
Field-programmable gate arrays (FPGAs) are configurable integrated circuit based on
a high logic density regular structure, which can be customized by the end user to
realize different designs [13]. It can support designs varying from simpler logic gates
(AND, OR etc) to much complicated designs such as processors. The circuitry of an
FPGA contains two-dimensional arrays of logic blocks and interconnects. Logic blocks
are programmed to implement some functionality, while interconnects are programmed
using switch boxes to establish connections among these logic blocks. The name “Field
Programmable” comes from the unique attribute of FPGA that end-user can configure
it after its manufacturing. Based on the technology by which design data is stored on
FPGA, they can be divided into various categories that include SRAM-based, flash
based and antifuse-based FPGA.

FPGA fills the performance gap between application-specific integrated circuits
(ASICs) and general purpose processors. ASICs are the fastest processing elements
for computationally intensive workload and can utilize a lot of parallelism. They are
tailored especially for some target workload. However, the problem with ASICs is that
they are only economical if produced in bulk quantity, otherwise they provide a very
expensive solution. On the other hand, general-purpose processors provide an easy and
relatively inexpensive solution, as building software is comparatively easy and econom-
ical. But the performance of such processors is constrained by the inherent sequential
nature of software that runs on them. FPGA provides the parallel nature of ASIC along
with the ease of implementation of software. They can provide relatively high perfor-
mance as compared to microprocessors for compute-intensive applications. Moreover,

5
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few classes of FPGA (e.g., SRAM, flash based) also possess the distinguishing feature
that circuit design on them can be reconfigured multiple times. This re-programmable
nature of FPGA makes it very suitable for space-based missions, as besides providing
application specific hardware, it can also be reconfigured during the mission to remove
any anomalies or design faults, and new design can also be added to cope with changing
mission requirements.
Design to be implemented on FPGA can be created in various ways. This could be
schematic based, hardware descriptive language (HDL) based or combination of both.
Most commonly used HDLs are VHSIC hardware description language (VHDL), Verilog
and SystemC. Selection of a design method and HDL is a designer’s prerogative. The
ρ-VEX, a soft-core processor platform that will be used in this thesis work is written
entirely in VHDL. Therefore, to maintain the consistency, new design to turn existing
one into a fault-tolerant design is also implemented in VHDL.

2.2 The ρ-VEX architecture

The processor platform that is used in this work is ρ-VEX. It stands for reconfigurable
VLIW example (VEX). Its architecture is based on VEX, i.e., the example architecture
from the book ”Embedded computing: a VLIW approach to architecture, compilers and
tools” by Joseph A. Fisher, Paolo Faraboschi, and Cliff Young [14]. ρ-VEX is a VLIW
based soft-core processor that has been developed to exploit parallelism in an application
to achieve better performance. Before explaining it further in detail, there are a few
concepts that need to be understood. Considering that, subsequent sections will provide
a brief overview of various types of computational parallelism, VLIW architectures and
softcore processors, followed by the design, features, and working of the ρ-VEX processor.

2.2.1 Exploiting parallelism

In the domain of processors, parallelism refers to the opportunities in an application
to find independent operations and execute them simultaneously rather than running
sequentially. Exploiting parallelism in an application can increase its performance
manifold times and this increase in performance is proportional to the degree of
parallelism found in the application. In this section three widely known parallelism
mentioned in [15] are discussed:

Instruction-level parallelism
Instruction-level parallelism (ILP) refers to the existence of independent instructions in
an application program. These independent instructions can be run simultaneously with
other instructions in the same clock cycle. The amount of ILP that can be extracted
from an application depends on the data dependencies and branches present in the
instruction stream. Super-scalar and VLIW architectures are the platforms that exploit
ILP in an application. In case of VLIW processors, finding independent instructions
is the job of a compiler, while in case of super-scalar processors dedicated run-time
control hardware is responsible for it. ILP can also be combined with any other type of
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parallelism to further complement the performance gain.

Data-level parallelism
Data-level parallelism (DLP) refers to distributing the data across different computing
nodes and executing them in parallel. These different computing nodes receive a small
chunk of data and perform the identical operation on it in parallel, and the results are
then combined to get a single finalized result. Single instruction multiple data (SIMD)
is a form of DLP as it exploits parallelism in a data stream. Graphics processing unit
(GPU) is another example that exploits DLP.

Thread-level parallelism
Thread-level parallelism (TLP) refers to executing multiple tasks of an application in
different threads of a multi-threaded system or in different cores of a multi-core system.
Multi-core systems can have multiple homogeneous or heterogeneous processing elements
on which subprograms of a bigger program can be run simultaneously to exploit par-
allelism and get better performance. These subprograms can either communicate with
and wait for each other, or they can also run completely independent of each other.

2.2.2 VLIW architecture

Processors based on a very-long instruction word (VLIW) architecture exploits ILP to
get better performance. VLIW architecture contains multiple independent functional
units that are capable of executing multiple instructions in parallel. By packing multiple
instructions in a single long instruction word, these instructions can be executed in
parallel in the same clock cycle to take advantage of ILP and reduce the overall execution
time of an application. The maximum number of instructions that can be packed in a
single instruction word and are supported by a given VLIW based processor is known
as an Issue-Width.
Finding data dependencies and packing of independent instructions in an instruction
word is done at the compile time and thus in VLIW architecture, the code is statistically
scheduled. The burden of scheduling the instructions lies on the compiler and is done
only once. This behavior is better off in both energy and logic area of a processor as
compared to other platforms that do dynamic scheduling, e.g., superscalar processors.
The downside of a VLIW processor is that the code is compiled for a specific issue
width and it cannot run on a different issue width. It needs to be recompiled for a
different issue width. Furthermore, in practice, the full issue-width cannot always be
used as it is limited by the level of dependencies present among the instructions. It is
the responsibility of the compiler to schedule instructions as efficiently as possible with
the help of various scheduling algorithms.

2.2.3 Soft-core processors

Embedded systems based on soft-core processors are becoming very popular these days.
A soft-core processor is a microprocessor that can be fully implemented in logical prim-
itives of an FPGA and it provides the user a substantial amount of flexibility in design
through the configurable nature of an FPGA.
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When designing some complex embedded system using an FPGA, quite often we need
some kind of processor to handle various system tasks. One way is to use commercial-
off-the-shelf (COTS) microprocessor and mount it on the same board with FPGA and
use some standard interface to communicate with FPGA. This is a viable option and
most commonly used, but it comes with few limitations. For example, an application
that needs some additional peripheral functionality that a COTS microprocessor do not
provide, can not benefit from this discrete solution.
The other option is to embed the hardcore processor on the chip, which means it gets
dedicated silicon on the chip. This allows the processor to run at the same frequency as
it would run in a discrete way and theoretically provides the same level of performance.
Many such solutions exist in the market nowadays. One example is Zynq-7000 SoC fam-
ily. Zynq-7000 devices come with dual-core ARM Cortex-A9 processors integrated with
Artix-7 or Kintex-7 based programmable logic for better performance and maximum
design flexibility[16]. However, the issue with hard processors is that they can not be
customized to better meet the needs of a particular system.
Soft-core processors, on the other hand, provides user much flexibility of design. They
can entirely be implemented on an FPGA. The user, as per the requirements of its
system, can make the design which has reduced or extended functionality than a hard
processor. However, these soft-core processors also have few constraints. Because of
the implementation in reconfigurable logic, they do not beat hard processors in oper-
ating frequency and run at a relatively lower frequency. In fact, they can not beat the
performance, area, and power of hard-core processors, but still, for many embedded ap-
plications, soft-core processors are a preferred option, e.g., the applications which prefer
expanded functionality over increased frequency. Soft-core provides a low-cost solution
and can also be re-targeted to a new technology without much effort. Few examples
of soft-core processors are LEON3, MicroBlaze, and OpenRISC. Many major FPGA
vendors also provide soft-core processors in their product offerings.

2.2.4 The ρ-VEX processor

The ρ-VEX is a softcore processor based on VLIW architecture. It is a 32-bit big
endian architecture. The distinct feature of ρ-VEX is that its architecture is designed
such that the key metrics that include the issue width and the number of available
multiplication units are configurable. This feature allows the processor parameters to
be tailored to suit the ILP and arithmetic instruction mix of a certain application once
the software is available. The need for ρ-VEX arose because the existing VLIW based
softcore processors, e.g., [17] [18] [19] suffered from one of the following drawbacks [20]:

• Either compiler or processor design is not open source

• Toolchain lacks in good support

• Limited options for parametrized customization or extension

To overcome all these shortcomings, ρ-VEX was introduced in [21]. It is developed
entirely by the students and Ph.D. candidates of the TU Delft. Over the period of time,
there have been many revisions of it. However, for this thesis work, the latest version of
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ρ-VEX has been used.
Let us here introduce some terminology that will be used very often in this thesis in
reference to ρ-VEX. As it is a VLIW processor, this means that each instruction can
specify multiple independent operations. Such operations are called syllables, a full
instruction is called a bundle. The part of a VLIW processor that executes a syllable is
called a lane (also referred as pipelane in this thesis). It contains computational resources
to execute a syllable. The use of word instruction in this thesis may be used for either a
bundle or a syllable, depending on the context. A VLIW processor capable of executing
n-syllables per cycle is referred as n-way VLIW processor and the number of lanes
running together as a part of a single processor are known as issue width of the processor.

Reconfigurability
The ρ-VEX is a parametrized processor that can be configured at design time and
reconfigured at run-time. It must be noted here that this is not an FPGA reconfigura-
tion, which means that we don’t need to reconfigure and load the bitstream every-time
we request reconfiguration. Here reconfiguration means a process within the system
described by a single FPGA bitstream. There is no full or partial reloading of bitstream
required. All resources required to do the switching are inferred from the hardware
description, and the overhead of reconfiguration is mere pipeline flush.
The distinguishing feature of ρ-VEX is its ability to adapt itself to available ILP and
TLP to utilize the available computational resources more efficiently. It can do so by
dynamically changing the mapping between threads and issue slots. Though the total
number of pipelanes are fixed, pipelanes can be distributed among different programs
running in parallel, and this redistribution can be done at run-time. The core can
behave as a large VLIW processor when high ILP is available, or in case of high TLP,
it can behave as multiple smaller VLIW processors.

The default configuration of ρ-VEX consists of eight execution lanes called pipelanes.
Not all of these pipelanes can be separated and operated independently. At least two
consecutive pipelanes, often referred as lanepairs, must run together. Thus the
minimum configuration that ρ-VEX can achieve is a 2-way ( often referred as 2-issue)
configuration. Figure 2.1 depicts various configuration modes of ρ-VEX. The core can
be split up to four smaller cores (2-way) as depicted in Figure 2.1a or it can run as a
single larger core (8-way) as depicted in Figure 2.1d. If an application has high ILP
then to get better performance and utilize the available resources more efficiently, the
core is run in full 8-way configuration, executing up to eight independent instructions in
parallel. On the other hand, if an application has high TLP and lesser ILP, then running
core in full mode will not provide a performance increase. Additionally, it will also be
a wastage of available resources. Therefore for such scenario, the core has the ability
to split up to four smaller 2-way VLIW cores, that can run four threads independently
in parallel to each other resulting in increased performance. Each independent thread
has its own state, called a context, consisting of the register files, PC, and other control
registers. The core can also be reconfigured into two 4-ways cores (2.1c or one 4-way
and two 2-way cores (2.1b, if required.
The parameters that can be configured at design time are listed in Table 2.1 [20].
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(a) 4x2-way (b) 1x4-way and 2x2-way

(c) 2x4-way (d) 1x8-way

Figure 2.1: ρ-VEX configuration modes

Table 2.1: Design-time configuration parameters of ρ-VEX processor

Resources Parameters

General Issue width, Number of hardware context

Functional units Number, Type and location, Support operations

Register file Register file size

Interconnect Presence of forwarding logic, memory bandwidth

Caches Presence of caches, cache size and cache line size

Configuration word encoding
The encoding for the value that is written to the reconfiguration register is called con-
figuration word. The size of configuration word is at most 32-bits, but in the current
version of ρ-VEX, only least significant 16 bits are required to describe the configuration.
The encoding is done in hexadecimal form. Each lane group (pipelane pair) of ρ-VEX
is mapped to a nibble (four bits). The three least significant bits of each nibble specify
the context it needs to be connected if the fourth most significant bit is zero, or a special
mode if it is one. At this point, the only special mode defined is disabling the lane group,
and it corresponds to nibble 8. Values 9 through F are reserved for future work.
An example would explain the configuration word encoding better. Consider an eight-
way ρ-VEX with four lane groups and four contexts. 0x0000 then specifies a 1x8 lane
configuration, with eight lanes working on context 0. 0x3210 specifies a 4x2 lane config-
uration, with first lane pair working on context 0, second on context 1, third on context
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2 and fourth on context 3. 0x0013 specifies a 1x4 and 2x2 way lane configuration, with
four lanes working on context 0, two lanes working on context 1 and two lanes working
on context 3. 0x8800 would map to a 1x4 way configuration with four lanes running
context 0 while remaining four lanes are deactivated or in power-down mode.
One must be careful when requesting a reconfiguration as not all the possible nibble
combinations are valid. Following guidelines must be followed:

• Any context should be mapped to the power of two contagious lane groups. For
example, 0x2030 and 0x8111 are invalid configuration words because these do not
follow this rule.

• The nibble in configuration word can take value from zero to the number of hard-
ware contexts minus one in order to map to a context. Nibble 8 is an exception
which is explained earlier. Configuration words 0x 7711 is invalid for a configura-
tion with four hardware contexts. Besides 8, the maximum nibble value that can
be taken in this scenario is 3.

• The nibble in the configuration word corresponding to the non-existent lanegroups
should be set to zero. For example, for a configuration with four hardware contexts,
0x00008210 is a valid configuration but 0x88888210 is not.

• A set of lane groups assigned to a single context should be aligned properly. For
example, 0x0110 is invalid while 0x0011 is a valid configuration word.

Requesting a reconfiguration
There are three ways in which a reconfiguration of ρ-VEX processor can be requested.

• Writing new configuration word to the context control register (CRR) from a pro-
gram running on the core.

• Writing new configuration word to the bus reconfiguration request (BCRR) global
control register from the debug bus. This mechanism is similar to the first, except
it is triggered externally, from outside the core.

• Using the sleep and wake-up system of the ρ-VEX. This involves writing new
configuration word to wake-up configuration (WCFG) register and setting the flag
in sleep and wake-up control (SAWC) register.

Usually, the new configuration is committed within something in the order of ten
of cycles after its request, depending on how long it takes the configuration controller
to pause and store the state of affected contexts. Reconfiguration can also be rejected
sometimes. The reasons for the rejections can be following:

• Another context or the debug is requesting a new configuration simultaneously.
The intended context might lose arbitration in this case.

• Configuration word does not comply with the encoding guidelines and is rejected.
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2.3 Space environment

Anomalies in the spacecraft electronics have been known since the very beginning of
space era. Space environment is a critical scenario for electronics in the sense that it
contains a massive amount of radiations, and remote maintenance of space electronics is
also not a feasible option in most of the cases. There are mainly two reasons that induce
faults in electronic circuits namely radiations and device aging[22].

2.3.1 Radiation effects

The one prominent feature that distinguishes the space environment is the presence of
huge amount of radiations. Radiation can be defined as energy in transit in the form of
high-speed particles and electromagnetic waves[23]. Radiations can be divided into two
categories: ionizing and non-ionizing

• Ionizing radiations are radiations that possess enough energy to remove electrons
from the orbits of atoms, resulting in charged particles. Examples include gamma
rays, neutrons, and protons. Effects of ionizing radiation are different than normal
ions formation that happens in an ordinary chemical reaction, such as the formation
of table salt from Sodium and Chlorine. In such reactions, electron(s) is(are)
released from outer most orbit to form a positively charged ion. While in case of
ionizing radiations (if energy is sufficient), electrons from the inner orbits can be
released, resulting in a very unstable atom which is highly chemically reactive.

• Non-ionizing radiations are radiations that do not possess sufficient energy
that is required to remove electrons from their orbits. Examples are visible light,
radio waves, and microwaves. Such radiations are not a concern for electronics
equipment.

Space radiations are mainly ionizing radiations which contain highly energetic charged
particles. Three naturally occurring sources of space radiations are trapped radiations,
galactic cosmic radiations, and solar particle events [23].

• Trapped radiations
The Sun releases a stream of charged particles, known as solar wind, out into
the space. The intensity of it depends on the amount of activity on the surface
of Sun. This solar wind contains ions of many elements, however, the major
chunk is of protons and electrons. When these particles tend to penetrate in
Earth’s atmosphere, Earth’s magnetic field provides a hindrance to it. Earth’s
magnetic field is produced because of the rotation of Earth’s iron core and it
extends thousands of kilometers from Earth’s interior out into the space. Most
of the charged particles get deflected by the Earth’s magnetic field, however,
some become trapped in it. They are contained in one of the two magnetic rings
surrounding the Earth commonly known as Van Allen radiation belts. The inner
belt, extending from an altitude of about 1,000 to 8,000 miles, contains high
concentration of electrons (hundreds of keV) and energetic protons (hundreds of
MeV), while outer belt, extending from 12,000 to 25,000 miles, contains mainly
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high energy electrons (0.1-10 MeV) [4][24].
Apart from the Apollo missions, NASA’s manned spaceflight missions have stayed
well below the altitude of the Van Allen belts[23]. However, there is an area where
a part of inner Van Allen belt comes really close to Earth’s surface, dipping down
to an altitude of about 200 km. It is known as south atlantic anomaly(SAA)
and is caused by the non-concentricity of the Earth and its magnetic dipole.
This is the region where Earth’s magnetic field is weakest relative to an idealized
Earth-centered dipole field, which leads to an increased concentration of energetic
particles in it. The largest part of radiation exposure to spaceflight missions
occurs in SAA. Lower earth orbit flights traverse a portion of SAA six or seven
times a day[23].

• Galactic cosmic radiations
Galactic cosmic rays (GCR) are highly energetic background source of energetic
particles that constantly bombard the Earth. They originate outside the solar
system, very likely from the explosive events like supernova. These high energy
particles consist of ionized atoms ranging from Hydrogen (accounting for 89% of
GCR spectrum) to Uranium [25]. These particles travel at the large fractions of
the speed of light and have tremendous energy. Earth’s magnetic field provide
shielding for spacecraft for most of GCR, however, they have access over the polar
regions where the magnetic fields are open to interplanetary missions[23].

• Solar particle events
Solar particle events (SPE) are injections of high energetic particles emitted by the
Sun into interplanetary space. These particles include mainly protons, electrons
and alpha particles. SPE occurs when the particles emitted by the Sun become
accelerated either close to the Sun during a solar flare (highly concentrated, explo-
sive release of energy) or in interplanetary space by coronal mass ejection (huge
bubbles of plasma threaded with magnetic field emitted by the Sun) shocks. These
particles impose significant operational constraints on space missions. Storm shel-
ters with a significant amount of shielding are required to lower the radiation dose
to tolerable levels for astronauts, and the critical equipment sensitive to such high
dose need to be turned off to avoid soft errors or other radiation-induced damages
[26].

The effects caused by the space radiations on the spacecraft depend on its orbit and
the source of radiations. Energy level of main components that constitute the space
environment mentioned in [3] are presented in Table 2.2.

The particles hitting the space electronics can either result in temporarily change
in the behavior of some circuit (a soft error) or they permanently damage the circuit
(a hard error). Two most widely known radiation effects on spacecraft electronics
mentioned in [27] are TID and SEEs.
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Table 2.2: Main sources of the space radiations

Radiation belts Electrons eV - 10 MeV
Protons keV - 500 MeV

Solar flares Protons keV - 500 MeV
Ions 1 to a few 10 MeV/n

Galactic cosmic rays Protons and ions Max flux at about 300 MeV/n

2.3.1.1 TID

For long space missions or missions for extremely high radiations environment, such
as interplanetary missions, accumulation of ionizing particles over the period of time
could cause failure of components/FPGAs. This accumulation of ionizing radiation in
electronics is referred as the total-ionizing dose (TID).
The amount of radiations which a particular component gets depend on a number of
factors: orbit, duration of the mission, placement inside the spacecraft and the amount
of outer shielding around the spacecraft. A short mission in the low-Earth orbit might
only expose the FPGAs to 1-5 krad per year, while a mission to Jupiter might accumulate
10-100 krad per week [27]. This accumulation of ionizing radiation causes degradation
in transistors. As mentioned in [28], the oxide trapped charges lead to a decrease in the
threshold voltage of the n-channel transistor and cause an increase in the case of the
p-channel transistor. This threshold voltage (the minimum voltage that is required to
turn on the device) is a crucial factor in determining characteristics of a transistor and
corrupting its value can entirely change the behavior of circuitry.
Different types of FPGAs can withstand a different dose of TID before the components
failures. Table 2.3 lists TID tolerance limit for Xilinx FPGAs provided in [27]. Mitigation
against TID will not be discussed in this thesis further and it is proposed that FPGA
selection must be done carefully as per the mission needs, to avoid any TID based
anomalies.

Table 2.3: Listing of TID limits for Xilinx FPGAs

FPGA TID limit
krad

Virtex 100
Virtex-II 200
Virtex-4 250
Virtex-5 340
Virtex-5QV 1000
Virtex-6 380



2.3. SPACE ENVIRONMENT 15

2.3.1.2 Single event effects

SEEs are unintended effects caused by the interaction of a single ionizing, energetic par-
ticles with electronic components. These ionizing particles can be primary, like heavy
ions and alpha particles or secondary, created by a nuclear reaction of a particle with
silicon or any other atom of the die. SEEs occur when the accumulation of charge liber-
ated by the ionizing particles become more than the electric charge stored on a sensitive
node[29] (a node in a circuit whose electric potential can be changed by accumulation
or internal injection of electrical charges).
SEEs induced by the deposition of energy from ionizing particles can either by non-
destructive or destructive, based on their effects. Non-destructive SEEs are transient
effects and a device can be recovered by resetting or reconfiguring, while, destructive
SEEs are permanent in nature and have a persistent effect even after resetting or recon-
figuring the device [22]. Four widely known single event effects are SEL, SEU, and SET.
[27].

• SEL
Single event latch-up (SEL) is a radiation-induced version of latch-up 1. It affects
the behavior of parasitic thyristors in CMOS technology. A single energetic particle
can switch PNPN structures from high impedance state to a low impedance state,
which causes an abnormal amount of current flow through the sensitive regions
of the device structure causing it to lose its functionality. This current increase
happens in a very small period of time (milliseconds) making to difficult to detect
the current increase before the component gets damaged. In some cases, compo-
nents retain some partial functionality after the event, but most components do
not function at all after the event [27]. All CMOS components have a potential for
SEL sensitivity.
FPGAs provided by all the main manufacturers these days are latch-up immune.
Xilinx and Microsemi have published reports verifying latch-up immunity in high
radiation environment[30, 31]. In back days, Altera devices had very low SEL im-
munity and, therefore, was not recommended for space-based applications[32] but
now modern SRAM based Altera devices such as Stratix-IV possesses very high
SEL immunity[33]. By careful selection of FPGA, single event latch-ups can be
avoided, so they will not be discussed further in this thesis.

• SEU
Single event upsets (SEUs) are anomalies caused in the memory cells because of
radiations. The susceptibility to SEU depends on the type of memory elements
(SRAM, DRAM etc). For SRAM-based FPGAs, SEU corrupts the values stored
in[27]:

– LUTs

– Routing

– On-chip SRAM

1Generation of a low-impedance path in CMOS chips between VDD and GND due to the interaction
of parasitic PNP and NPN bipolar junction transistors
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– User flip-flops

If it is the dynamic data that gets corrupted in on-chip SRAM or user flip-flops,
then this corrupted value will be overwritten. In case, routing logic or LUT gets
affected, then it will not recover on its own. SEU will remain persistent until or
unless that part is reprogrammed via on-line or off-line reconfiguration.

• SET
Single event transient (SET) is a voltage pulse in a combinatorial logic, that gets
introduced by a single ionizing particle strike. This voltage pulse results in an
erroneous data propagating through the circuit. Unlike SEUs, measuring SETs
in SRAM based FPGAs is a challenging task. SET cross-section is 10-1000 times
smaller than the SEU cross-section of the reconfigurable fabric[27]. The cross-
section is a measurement of the sensitivity to SEU or SET from heavy ions and
protons. Dealing with SETs is more challenging as it is observed that even in
modern SEU immune FPGAs, such as Mircrosemi ProASIC3 and Xilinx Virtex-
5QV, the reconfigurable fabric and input/output blocks are SET sensitive[27]. For
SRAM based FPGAs, PLLs and multipliers are SET sensitive.

2.3.2 Aging effects

Aging effects can incur in all electronics regardless of the environment in which they
operate. The reason these aging effects get more serious attention for long-lasting space
missions is that system maintenance or substitution of some faulty component is very
difficult and in many cases, not possible at all. Errors induced because of the aging
are permanent in nature and their four main causes mentioned in [34] are TDDB, EM,
NBTI, and HCE.

• TDDB
Time-dependent dielectric breakdown (TDDB) is reduction in the gate oxide thick-
ness caused by the trapping of charges in the oxide that creates an electric field.

• EM
Electromigration (EM) is development of void in metal lines caused by heavy cur-
rent densities over a period of time.

• NBTI
Negative bias thermal instability (NBTI) is an increase in threshold and consequent
decrease in drain current and trans-conductance in MOSFETs, caused by interface
traps and some preexisting traps located in the bulk of dielectric.

• HCE
Hot-carrier effects (HCE) is a creation of traps at the oxide surface, affecting the
I-V characteristics of a transistor caused by electrons trapped in the oxide.

These aging effects for a spacecraft mission can be avoided or greatly reduced by
carefully selecting the components/FPGAs, which can tolerate such effects throughout
the lifetime of the mission. Mitigation and tolerance against such age-related anomalies
will not be covered in this thesis and is declared out of scope for this thesis work.
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2.4 Fault-tolerance in processors

Microprocessors are very important components for space missions as they control life-
support equipment, navigation, on-board processing and data handling. Their failure
can have catastrophic consequences. Therefore, before sending them into space, it must
be made sure that they can sustain the space environment and operate reliably in it.

2.4.1 Fault mitigation techniques

For a harsh radiation environment like space, mitigation techniques must be employed
to protect softcore processors from SEEs. These mitigation approaches can be broadly
categorized in two ways: software based and hardware based fault-tolerance.

Software based:
Software-based fault-tolerance techniques provide less expensive and more flexible solu-
tions. They are becoming more popular following the race in satellite miniaturization
and trending use of COTS in space applications. In such cases, redundancy in hardware
in either not possible or not a feasible option, thus software solutions are the savior in
such cases. The main idea behind software-based fault-tolerance approaches is executing
the same critical program multiple times and having the results evaluated by some
checkpoint mechanism. These executions can either be in parallel to each other or in
a sequential manner. Checkpoint to determine correct results of multiple executions is
always sequential as it can only operate after results from all the executing elements are
received.
A software-based fault-tolerance approach for shared memory multicore platform is
presented in [35]. This approach is based on using redundant multithreaded processes
to detect soft errors. There are also many other approaches that include securing
conditional branches by encoding-based comparison result with the redundancy of
control-flow-integrity (CFI) protection mechanism, software fault-tolerance via vec-
torization, error detection by selective procedure call duplication and multi-stage
software solution incorporating various techniques together. [36] [37] [38] [39]. How-
ever, the focus of this thesis is on hardware based solutions and software solutions
(if needed) can always be included later to further enhance the fault-tolerant capabilities.

Hardware based:
Hardware-based fault-tolerance techniques are based on incorporating additional hard-
ware to detect or correct the errors in the system. Although it incurs additional area
overhead, they are becoming more popular and considered more reliable. Hardware re-
dundancy can be static or dynamic: static redundancy means all additional hardware
works simultaneously and any error detected is masked immediately, while dynamic re-
dundancy means additional hardware in only activated when current hardware detects
an anomaly and starts malfunctioning. Subsequent sections will discuss various hardware
fault-tolerance approaches in particular to the softcore processors.
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2.4.1.1 Fault-tolerance in pipeline

Pipeline in a processor is the part where most of the data get manipulated. Therefore,
protection of this part is a must in order to make a processor fault-tolerant. Two most
widely used approaches to introduce redundancy in the pipeline are triple modular
redundancy (TMR) and duplication with compare (DWC).

TMR
Triple modular redundancy (TMR), as the name suggests is a technique in which the
hardware module is replicated three times. All three modules then execute the same
process and their results are fed to a checkpointing module, which then decides the
correct value. Checkpointing module usually works on the majority principle, which
means that if one out of three modules produces erroneous value, then the checkpointing
module will mask the erroneous value and produce a correct result because two modules
(out of three) produced correct values. This behavior is also depicted in Table 2.4

Table 2.4: Truth table for checkpoint mechanism

A B C Output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

All the three modules running under TMR must be in strict lockstep. Lockstep
means that all the processes run the same program, exactly same instruction sequences,
memory loads/stores and interrupts. A strict lockstep needs the processor to run
identically on a cycle-by-cycle basis. TMR in processor pipeline can be implemented
in twofold ways: either the whole pipeline is triplicated or the flip-flops in the pipeline
are triplicated. [40] propose an approach in which the complete pipeline is triplicated
and all the signals of the pipelines that could be from/to general purpose registers, data
memory, and instruction memory pass through some kind of checkpointing mechanism.
On the other hand, [41], as depicted in figure 2.2, propose an approach in which all the
flip-flops that are used for pipeline latches/registers are triplicated and after each TMR,
outputs pass through checkpointing unit before entering the next pipeline stage.

DWC
Duplication with compare (DWC) is a technique which uses duplication of the module
and a checkpointing mechanism to detect upsets. This technique provides relatively less
area overhead as compared to TMR, but in addition to just duplication, it also needs
a rollback mechanism to take the process back to a previous synchronized stage every
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Figure 2.2: TMR for flip-flop

time an upset is detected.
Processes must also be in strict lockstep for this approach. Results from both modules
are fed to the checkpointing mechanism which just passes the data across in case both
inputs are same, but in case of conflicting outputs, it (temporarily) suspends the further
execution of the process. One way to tackle the upset after detection is to reset the pro-
cessor and restart the program from the beginning. The other way is to reset the state
of the processor to a previously stored stable state. This approach provides a better and
more efficient solution and is mentioned in [42]. In this, state of the processor is periodi-
cally saved when a program executes. State of processor involves state registers, contents
of general purpose register files and other memory hierarchies such as caches and main
memory. When an anomaly is detected, the rollback mechanism takes the process back
to the most recently stored state to recover. If the anomaly is detected more frequently
then after suspending the processor execution, FPGA bitstream scrubbing [43] [44] [45]
is performed to repair any upsets that may exist in FPGA configuration memory. This
periodically saving of state in DWC approach can be expensive in terms of both area
and performance.
Another slightly modified DWC approach is mentioned in [46] and depicted in figure 2.3.
In this, the checkpoint mechanism is used to compare output signals inside the pipelines
that are executing duplicated instructions. These signals include results of arithmetic
operations, jump address of a branch or values of memory operations. Whenever an
anomaly is detected, a rollback mechanism flushes the pipeline and fetches the uncom-
mitted instruction again. As the anomaly is detected before the memory and register
files are modified, flushing the pipeline and executing the last uncommitted instruction
works. The only state that needs to be saved in this case is the program counter (PC)
value for the last instruction.

2.4.1.2 Fault-tolerance in memory cells

Besides the pipeline, the processor also includes several memory elements that consti-
tute register file, instruction memory, and data memory. These memory elements are
often implemented in dynamic random access memory (DRAM), static random access
memory (SRAM) or flip-flops (FF). These memories are known as user memories.
Besides user memories, FPGAs also have configuration memory that stores the design
information. Both of these memories need to be protected against single event ef-
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Figure 2.3: DWC with comparison

fects(SEEs). Protection schemes for both kinds of memories will be discussed separately.

User memory
User memory stores the application data that is being processed. Modular redundancy
approaches explained earlier for pipeline protection can be used to protect this memory
against SEEs. Individual register and flip-flop can be duplicated or triplicated, along
with some comparison mechanism to detect and correct errors. However, it is not very
economical in terms of area overhead to replicate memory cells twice or thrice along with
adding correction logic. [47] shows that TMR is economical for control and datapath
circuits or for single registers as in pipeline, but when it comes to a group of registers,
caches, and embedded memories, error correcting codes are better options, even though
encoders and decoders introduce a performance penalty due to extra delay on the critical
path.
Error correcting codes (ECCs) are the most commonly used protection scheme for mem-
ories. They are based on the principle of adding extra bits to the data word to form
a code word. These extra bits are computed based on the bits in the data word, thus
providing redundancy such that errors in the data word can be detected or corrected.
Error correcting codes can be categorized into two categories:

• Block code
Information is considered as blocks and these codes are applied on a block-by-block
basis. Blocks might be independent of each other.

• Convolution code
Information is considered as a stream and these codes along with current data
might also depend on preceding data.

For memory elements of the processor, block codes are usually applied. Convolution
codes are difficult/almost impossible to apply as values in register files and data mem-
ory are usually independent of each other. Instructions can also be considered mainly
independent to each other although there might be some form of dependency between
consecutive instructions. Subsequent sections will provide an overview of most commonly
used error correcting codes.
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• Hamming code
One of the most well-known error correcting code is Hamming code, that was
introduced by R. W. Hamming in 1950 [48]. In his paper, three types of codes
namely single error detecting (SED), single error correcting (SEC)and single error
correcting, double error detecting (SECDED) were introduced.

– Single error detecting (SED) code
A single parity bit is added at the end of the data word. This parity bit is
decided based on the concept to keep the number of 1’s in the data word even.
For example, if the number of 1’s in the data word are odd, then the parity
bit will be 1, otherwise, it will be 0. At the decoding side, the number of 1’s
are counted again, if they are even, it means data word is correctly received.
Reception of an odd number of 1’s implies an error.

– Single error correcting (SEC) code
These codes can correct one bit error in a dataword. For k bit data word, an
additional m parity bits are added to make n bit code word where n and k
must follow the inequality:

2k <=
2n

1 + n

If a code word is numbered from the least significant bit to the most significant
bit as 1 to n, then parity bits are placed at the positions with the index equal
to the power of 2, i.e., at positions 0,2,4,8 and so on. Rest of the bits are
filled with data word bits in the same order in which they appear. Parity bit
number t is computed by parity checks of all positions in the code which have
a 1 at the position t of the binary index. At the decoding side, parity checks
are computed for the complete code word. It must be noted that at decoding
side, parity checks also apply on parity bits that were added at encoding side.
If there is no error, then all parity checks should give a value 0. If there is an
error then at least one parity check value will be 1. Based on the non-zero
parity check value(s), the position of the erroneous bit is located, which is
then flipped to correct the error. Mathematically, for any positive integer, m,
the SEC code parameters are presented in Table 2.5.

Table 2.5: SEC code parameters

Parameter Equation

Code length, n n = 2m − 1

Number of parity-check digits n− k = m

Hamming distance dmin ≥ 4

– Single error correcting, double error detecting (SECDED) code
These codes are an extension to SEC codes mentioned in the earlier section.
It involves the addition of another even parity check on all the previous bits.
These are known as modified or extended Hamming codes, while SECs are
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known as conventional Hamming codes. At the decoding side, there can be
either one of three cases:

∗ All parity checks are satisfied, indicating no error has occurred.

∗ Parity checks based on both SEC and additional parity check fail, indi-
cating there is one error.

∗ Parity checks based on SEC fails, but additional parity check over all
previous bits succeeds (or vice versa), indicating there is a double error
in the code word.

Note that, in the presence of more than two errors in a single codeword, these
codes will not be helpful. In fact, they can misguide by staying silent or by
giving false indications of single error (hence it will be miscorrected) or double
error. For every positive integer m , the SECDED code parameter are listed
in Table 2.6[49] .

Table 2.6: SECDED / Hsiao code parameters

Parameter Equation

Code length, n n = 2m

Number of parity-check digits n− k = m

Hamming distance dmin ≥ 3

• Hsiao code
This class of code also belongs to single error correction, double error detection
(SECDED) category and was introduced by M.Y. Hsiao in 1970 [50]. Along with
Hamming codes, these codes are also very popular for use in embedded memories.
For Hamming codes, the encoding and decoding procedures are not very optimal.
Hsiao codes are based on the same principle as Hamming codes and provide a
better approach for implementation of encoder and decoder. The generator and
parity check matrices are constructed differently in this class of code and follow
the below mentioned constraints [50]:

– There are no all 0 columns.

– Every column is distinct.

– Each column contains an odd number of 1’s.

These constraints ensure a minimum number of 1’s in the rows of parity check
matrix, leading to a faster generation of check bits. This rapid generation of check
bits leads to better performance of the encoding and decoding mechanism. The
parameters of Hsiao code are the same as of Hamming SECDED codes, mentioned
in Table 2.6.

• BCH code
BCH codes were initially discovered by Hocquenghem in 1959 and subsequently
by Bose and Chaudhuri in 1960 [51] [52]. This class of code possesses a higher
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level of error detection and correction capabilities than the SEDDED based codes
discussed earlier. SEDDED codes realize a maximum Hamming distance 2 of four,
while BCH codes theoretically cover all Hamming distances.
BCH codes are a more generalized form of Hamming codes with the ability to
correct multiple bit errors. The generator polynomial g(X)of BCH code is defined
as:

g(X) = LCM [φ1(X), φ3(X), φ5(X), ..., φ2t−1(X)]

where LCM is least common multiple and φi(X) is the minimal polynomial of some
element αj , which are primitive elements of the Galois field GF (2m) [53]. A Galois
field has the property that arithmetic operations on field elements always have
a result in the field. For any positive integers m (m >= 3) and t (t < 2m−1),
the binary BCH code parameters are listed in Table 2.7[49]. The further details
of constructing an arbitrary BCH code and the mathematical theory behind it
will not be discussed here. Although efficient decoding methods exist due to the
special algebraic structure’s involvement in the codes [54], the implementation of
these codes is considered too complicated and time-consuming in the context of
this thesis project.

Table 2.7: BCH code parameters

Parameter Equation

Code length, n n = 2m − 1

Number of parity-check digits n− k ≤ mt

Hamming distance dmin ≥ 2t+ 1

• RS code
Reed Solomon (RS) codes were proposed by Irving S. Reed and Gustave Solomon
in the year 1960 [55] and are a special example of a more generalized class of BCH
codes. These codes are block-based error correcting codes and have a wide range of
applications (CD’s, DVD’s, etc). The RS codes operate on a block of data treated
as a set of finite field elements called symbols. These codes are able to detect and
correct multiple symbol errors and are usually preferred for multiple-burst bit-error
correcting.
RS codes are also based on Galois fields (GF). The RS code defined with symbols
from GF(q), and a positive integer m, has the parameters mentioned in Table
2.8[49]:

Configuration memory
This memory stores the bitstream that defines the functionality of the underlying FPGA
device. Errors within the configuration memory are especially troublesome as they may

2number of places at which two codewords of similar length differs
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Table 2.8: RS code parameters

Parameter Equation

Code length, n n = q − 1

Number of parity-check digits n− k = 2m

Hamming distance dmin = 2t+ 1

change the functionality of the device. Upsets may alter the functions of the config-
urable logic blocks, routing network, and input/output blocks. Moreover, errors in the
configuration are not transient, they are permanent in nature. In the literature, many
techniques have been proposed and tested for the mitigation of SEEs in the configuration
memory. Few techniques are based on modular redundancy to reduce the probability
of failure [56]. Replication of hardware and comparison of results, as explained earlier
in Section 2.4.1.1, is used. However, in practice, not all SEEs in configuration memory
can be mitigated by TMR [57]. Errors in configuration memory may accumulate and
eventually lead to multiple faults breaking the redundancy protection.
An alternate approach that is widely used to halt error accumulation in configuration
memory is scrubbing. It involves a periodic refresh of memory data while FPGA is
operational. Extra golden copy of configuration data is stored on a radiation-hardened
platform that might be ASIC or anti-fuse based FPGA. This golden copy can either be
exact complete data or a golden configuration check code (ECC). To perform memory
scrubbing, the configuration data is usually read sequentially from start to end. A dis-
crete block of memory data is read and checked against respective golden data or golden
check code. If any discrepancy is found, the discrete block in configuration memory is
replaced by the data from the golden copy. In case, no discrepancy is found, scrubber
moves to the next discrete block in memory. When the scrubber reaches the end of con-
figuration memory data, the same process is repeated from the beginning. To preserve
the configuration data, reading of data and correction of upsets (if any) is performed
indefinitely.
There are many variations of this scrubbing techniques. Most commonly known are
blind scrubbing and partial scrubbing. Blind scrubbing is the fastest implementation of
scrubbing. In this, configuration data is overwritten with the golden data continuously,
without reading and crosschecking the configuration memory data for possible upsets.
It is favorable for the devices operating in an environment with higher upset rates, as
it is the quickest method [58]. Partial scrubbing, on the other hand, is a technique in
which faulty module in the design is identified via unit-level TMR and repaired with the
scrubbing of only affected configuration data using dynamic partial reconfiguration [59].

2.4.2 Fault injection

After fault mitigation techniques are implemented in a soft-core processor, it must be
rigorously tested and verified to validate that core behaves as intended and can mitigate
errors. One way to validate such a system is by injecting the faults into it and observing
the behavior of the system. Fault injection helps the designer to debug and fine-tune
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the design before it is actually operated in the real environment. [60] classifies the fault
injection in three categories:

Hardware-based fault injection
There are many hardware-based fault injection techniques. One way is to disturb the
signals on IC pins. The signals can be controlled by a general purpose fault inserter [61]
and the value of signals can be changed randomly or on some pre-defined pattern. This
approach provides a good control on fault insertions and can imitate different kinds of
errors, however, it does not provide any control over the internal signals of the chip.
The other way to introduce errors in the system is by disturbing the power supply.
This approach is usually used to model power surges and disturbances common in
industrial applications. However, this can also be used in addition to other fault
injection techniques to analyze the fault-tolerant system. [62] and [63] used this method
in addition with high-ion radiation on a MC6809 processor. MOS power transistor was
used to cause short voltage drops at the power supply pin of the CPU. A test CPU and
reference CPU were run in lockstep and external buses were compared to analyze the
fault-tolerance of test CPU.
A more realistic approach is to simulate a space environment, by placing the device
under a heavy-ion radiation beam. Any angle of incidence can be used but usually,
beams are targeted perpendicular (at 90 degrees) to achieve maximum penetration.
This approach is closest to the real environment as compared to other approaches,
however, the issue with this approach is that developing such a facility is very expensive
and usually designers and researches do not have access to such facilities.

Software-based fault injection
As the name suggests, fault injections are done entirely in software. The idea is to
reproduce such faults at software level that would have occurred in case of upsets in
hardware. [64] describes the methodologies and guidelines for developing a flexible
software base fault injector. A software tool FERRARI is also been introduced that
emulates transient and permanent errors. However, these faults provide only a limited
coverage and do not cover all possible faults that could occur in hardware.

Simulation-based fault injection
Simulation of the system under test is performed on some other computer system, and
logical values of signals are altered to emulate faults. These logical values can be al-
tered directly via simulator platform or source code can be modified using hardware
description language (HDL) to introduce errors. [60] categorizes VHDL based fault in-
jection techniques into simulator commands and VHDL code modifications. Simulator
commands will only be used in this thesis work to verify intermediate results, while for
formal and more rigorous fault injections, VHDL code modifications will be used. To
accomplish this, there are two popular options presented in [60], mutants and saboteurs.

• Mutant is a component that is added to replace some other component. When
inactive, it works similar to the component which is replaced, but when activated,
it works as a faulty component. The characteristics of the faults are tuned using
VHDL such that it imitates radiation-induced faults. Mutants can be generated
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by modifying behavioral descriptions or synchronization and timing clauses.

• Saboteur is a dedicated fault-injection component with the aim to alter the value
or timing characteristics of one or more signals when activated, and when deacti-
vated, it just passes the same values across without manipulating them. Based on
the way saboteurs are implemented, they could be classified as serial saboteurs or
parallel saboteurs. Serial saboteur is placed between the driver and corresponding
receptor of the signal, while parallel saboteurs are added as an additional driver
for a particular signal.

2.5 Conclusion

In this chapter, the required background information for making the ρ-VEX processor
fault-tolerant for the space environment is presented. First, the ρ-VEX platform includ-
ing its design, distinguishing features and working has been explored, followed by the
study of space environment and its effects on electronics. Afterwards, fault mitigation
techniques for processor found in the literature are explored. These include redundancy
based TMR and DWC techniques for processor pipeline stage and error correcting codes
and scrubbing for memory elements. Finally, the verification techniques for the fault-
tolerant systems are explored with the focus on fault injection. Different types including
hardware-based, software-based and simulation-based fault injections are explored.



Design 3
In Chapter 2, space environment and its impacts on electronics systems were discussed.
Various implementation schemes to make softcore processors fault-resilient were also
presented. This chapter provides details and rationale for the design strategy used to
achieve the goals of this thesis. Based on the background information, the baseline
processor platform is thoroughly evaluated to identify the vulnerabilities in it and a
fault model for the ρ-VEX is constructed in Section 3.3. Following that, in Section 3.4
efficient and best-suited fault mitigation techniques from the pool of available techniques
are shortlisted for our platform. But, before discussing all the design decisions, the
architecture of the baseline processor platform will be discussed in Section 3.1.

3.1 Baseline processor platform

The latest release of ρ-VEX processor is the starting point for this thesis. This release
does not come with any inherent fault mitigation techniques and is, therefore, very
defenseless for the space environment. Before adapting this processor to a fault-tolerant
processor, it is important to first look at its architectural level details.

3.1.1 Processor architecture

The simplified block diagram of ρ-VEX with caches is given in Figure 3.1. The default
version of processor contains eight five-stage pipelines. However, for simplicity and more
clarification, only one pipeline is shown in the figure.
The brief description of all the pipeline stages and other main blocks present in the
architecture is as follows:

• Instruction fetch is in charge of requesting instructions from the instruction
cache and routing the fetched syllable to the appropriate pipelanes.

• Instruction decode is responsible for decoding instruction syllables into control
signals for functional units and data paths.

• Execute stage holds functional units such as ALUs and multipliers.

• Memory stage allows read and write operations to be performed on memory and
control registers.

• Writeback stage is responsible for writing values to general purpose register files.

• Instruction cache is an on-chip reconfigurable buffer memory structure that lies
between the external instruction memory and core pipeline to shorten the instruc-
tion fetch time.

27
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Figure 3.1: Block level overview of ρ-VEX along with caches

• Data cache is an on-chip reconfigurable buffer memory structure that lies between
the external data memory and core pipeline to shorten the data access time.

• GP registers are quickly accessible registers that store transient data required by
the running program.

• Context-pipelane interface connects the pipelane-based resources with the con-
text resources based on the current configuration.

• Trap Handler handles pipeline stage invalidation if a trap occurs and ensures that
the right trap information is forwarded to the branch unit and control registers in
case of multiple simultaneous traps.

• Control registers holds information such as program counter, configuration vec-
tor and other context-specific details.

• Configuration controller arbitrates between the incoming reconfiguration re-
quests, and synchronize the running contexts that get affected by the reconfigura-
tion.

3.1.2 Design cost

It is important to have a design cost estimate for the baseline ρ-VEX core before applying
fault mitigation techniques to it. Fault-tolerance is an expensive feature and it will
introduce more hardware resources in the design. In order to get a fair estimate of the
cost at the end of our design, we must first know the design cost of our baseline core. To
find that, synthesis of the baseline processor is done by Xilinx ISE Design Suite software
and retrieved results are listed in Table 3.1.
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Table 3.1: Synthesis results for the baseline ρ-VEX softcore

Resource Value

Slices 23989

Registers 27179

LUTs 65841

DSPs 32

BRAMs 345

f max 37.5 MHz

3.2 Previous work

An effort was made previously to make ρ-VEX fault-resilient for the space environment
[40]. That work is thoroughly analyzed and few shortcomings are identified.

1. Missing Features

• No fault-tolerance for memory elements.

• Only context 0 could run in the fault-tolerant mode. There was no provision
to run either of other contexts in the fault-tolerant mode.

• No provision to run a second context in parallel to the fault-tolerant context.

• Was implemented on a ρ-VEX version which didn’t include caches in it.

2. Design Flaws & Drawbacks

• Not enough coverage was provided. Many critical components were not made
robust, e.g., configuration controller and context-pipeline interfaces

• Use of less reliable voter

• From the fault-tolerant mode, it was not possible to switch back to normal
mode

• Undesirable delays were introduced in the design.

• Triple modular redundancy (TMR) was implemented at the cost of four lane-
groups. All four lanegroups needed to be in active mode.

After analyzing the existing design, it is decided to not take it as a starting point.
Although some features and ideas from it will be adopted in our design, the entire code
will be rewritten taking the latest release of ρ-VEX as the starting point.

3.3 Fault model

Section 2.3.1 discussed the impacts of radiations on the electronics. Based on these im-
pacts, ρ-VEX is carefully evaluated to develop a fault model, depicted in Figure 3.2. The
fault model shows that which parts of the core are susceptible to which kind of single
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event effects. Orange color blocks represent susceptibility to single event upsets (SEUs),
while brown color blocks represent susceptibility to single event transients (SETs). These
fault types and their locations will be targeted by the fault-tolerant design being imple-
mented in this thesis project.

Figure 3.2: Block level diagram indicating susceptibility to radiations (yellow color shows
susceptibility to SEUs, while brown color shows susceptibility to SETs)

3.4 Design options

Various techniques for fault mitigation in softcore processors were discussed in Sec-
tion 2.4.1. This thesis will consider only hardware-based fault-tolerant techniques, and
software-based solutions are declared out of scope for this thesis. However, if needed,
software solutions can always be included in the future to further enhance the fault-
tolerant capabilities. Following sections will discuss hardware-based design options for
both processor pipeline and memory elements.

3.4.1 Design of fault-tolerance in pipeline

To implement fault-tolerance at the pipeline level, various options are carefully evaluated
before finalizing the design. This sections will provide details about the decisions made
and, the justifications and rationale behind them.

Redundancy level
Redundancy in a pipeline can be envisioned in two ways. One way is to do it at lower
level, i.e., inside the pipeline at multiple locations as mentioned in [46] [65]. Individual
components are replicated and a voting mechanism is implemented at each pipeline
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stage. The other way of redundancy is to do it at a higher level, i.e., replicate the entire
pipeline and implement voting mechanism on all the signals entering into or going out
of the pipeline. The first approach detects faults faster as compared to the second
approach. For example, if an upset occurs in the instruction-decode stage, the first
approach will detect this anomaly in the same clock cycle, while the second approach
will detect it when the effect of this approach propagates out of the pipeline; that can
be in various forms such as wrong instruction fetch command or wrong data memory
access. For TMR, it does not matter in terms of performance whether lower-level
redundancy approach is used or higher level. TMR is a passive approach and it masks
the error immediately in the same cycle as soon as it propagates through the voting
mechanism. However, in the case of DWC, when an upset is detected, the rollback
mechanism flushes the pipeline and redo the instruction fetch from the previously stored
stable state. Therefore, the sooner the upset gets detected, the sooner the correction
process starts. If it gets detected at the end of a pipeline stage as in the case of higher
level redundancy approach, the correction process will start few cycles after the upset
occurrence (if an upset occurred at the earlier stage of the pipeline) and thus incur
relatively more performance degradation. Moreover, low-level redundancy approach
also consumes more hardware as it needs a voting mechanism to be implemented at
multiple locations inside the pipeline.
The ρ-VEX core provides eight pipelanes in its default configuration. This implies that
implementation of redundancy at the pipelane level is more appropriate, economical
and better suited for our platform. If we consider implementing low-level redun-
dancy then it requires an addition of much more hardware to ultimately achieve the
same thing which we can do by exploiting the already existing pipelanes. Therefore, it
is decided to exploit higher-level redundancy, i.e., redundancy at the entire pipeline level.

DWC vs TMR
The decision is made that redundancy will be at the pipeline level, now we have to
decide whether duplication with compare (DWC) should be implemented or triple
modular redundancy (TMR). Section 2.4.1.1 provides detail of both approaches and
it can be inferred that the selection of a duplication approach results in a trade-off
between performance and additional hardware cost.
DWC is the approach that comes with low redundancy requirements but incurs more
performance degradation. This additional performance degradation arises because of
the rollback mechanism which requires the core to start execution from some previous
stable state, each time an upset is detected. Its implementation is also relatively
complicated (because of the rollback mechanism).[46] provides implementation details
of DWC on ρ-VEX. Every-time an upset is detected, core flushes the pipeline and
starts executions from some previously saved state. This correction process comes at
the cost of few clock cycles, and the number of this additional clock cycles depends
on the implementation approach and location of fault occurrence. On the other hand,
triple modular redundancy (TMR) does not incur performance degradation in terms
of the number of clock cycles, but it comes with relatively more additional hardware
requirements (as it requires modules to be replicated three times). Whenever an upset
gets detected by voting mechanism, it gets masked immediately without rolling back
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the execution process to some earlier stage.
As mentioned earlier, our ρ-VEX platform contains eight pipelanes and we plan
to exploit existing pipelanes to achieve redundancy, we should be indifferent about
additional hardware cost while deciding between DWC and TMR. The other criterion
for decision making besides additional hardware cost is performance. Considering
that TMR provides less performance degradation as compared to DWC, TMR will
be implemented in our design. The flow graph presented in Figure 3.3 highlights the
decisions (in green color) which we took regarding redundancy at the pipeline level.

Figure 3.3: Flow graph showing modular redundancy options at the pipeline level

Realization of redundancy
It must be noted that redundancy in ρ-VEX pipelane cannot be envisioned in a similar
manner as it is done in a normal RISC processor having just one pipeline. ρ-VEX is a
VLIW based processor and we can not run a context on a single pipelane. At least two
pipelanes are required to run a context. To get a clear picture of pipelanes behavior,
consider the Figure 3.4. Bold border lines indicate that the pipelane pair is inseparable.
It must also be noted that these inseparable pipelane pair does not include identical
pipelanes. For example, in a pair, only one pipelane has the capability to access the data
cache. Therefore, special attention must be paid while implementing TMR checkpoints
among pipelanes.

For implementing TMR, we need three lane pairs (six pipelanes) out of four lane
pairs (eight pipelanes). Lane pairs are represented in Figure 3.4 as A, B, C and D. Now
for the three lane pairs under TMR, first pipelane of each lane pair must be compared
with the first pipelanes of other lane pairs and similarly, the second pipelane must be
compared with the second pipelanes of other lane pairs. Consider a scenario that A, B,
and D are selected for TMR mode. One TMR check system will be implemented for
pipelanes numbered as i, iii and vii, and another TMR check system will be implemented
for pipelanes numbered as ii,iv and viii.
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Figure 3.4: ρ-VEX pilelanes

3.4.1.1 TMR design checkpoints

The decision is made that TMR will be implemented at pipelane level and it means
that all incoming and outgoing signals will have to pass through some kind of TMR
checks. In reference to Figure 3.1, this section will present details about the locations
and types of checkpoints.

Pipelane-instruction cache interface
Three lanegroups in TMR mode will run in strict lockstep mode. It implies that all
three will perform the same operations on a cycle-by-cycle basis. All three lanegroups
will send the same instruction fetch commands to the instruction cache and expect the
same data simultaneously. However, the cache can only respond to one request at a
time. Thus out of three lanegroups, one lanegroup who wins arbitration over others
will receive the instruction word in the same cycle, while other two lanegroups will
be stalled. After responding to a request from the first lanegroup, the remaining two
lanegroups will be handled subsequently. This behavior will cause the TMR lanegroups
to lose strict lockstep mode and start behaving haphazardly.
To address this issue, it is decided that only one lanegroup will send request to the
instruction cache. All the signals that are intended to go from all three TMR lanegroups
to instruction cache will pass through a voter. This voter compares the information
from all three sources and produces one output that is selected based on the majority
principle. This voter helps in resolving two issues at hand. First, it helps in merging
three requests to one request, resulting in no stall and no divergence from strict lockstep
mode. Secondly, it also helps in masking errors. If one pipelane gets corrupted by SEE
then its effect will not be propagated further and will be masked by a majority voter.
For the instruction word that is intended from Instruction cache to lanegroup, we need
a replication unit. As after majority voter, only one request is sent to the instruction
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cache, the cache will respond to only that. Now we need this instruction word to be
distributed to all three lanegroups running under TMR. To achieve this, we need a
replication unit that will replicate the instruction three times and then each lanegroup
will be assigned a copy.

Pipelane - data cache interface
Data cache interface will also follow the same reasoning as provided for instruction
cache interface. All the data read commands sent from the TMR lanegroups will pass
through a majority voter to avoid stalling and mask errors(if any). Data from data
cache will pass through a replication unit before entering the TMR lanegroups.
However, in contrary to the instruction cache, langroups can also write data to the data
cache. All such data and their addresses will also pass through a majority voter and
only one lane will write to the data cache.

Pipelane - GP registers interface
General-purpose registers store transient data for the running contexts, and lanegroups
access them for both writing to and reading from them. The implementation of
general-purpose registers for ρ-VEX is very complex as two read ports and one write
port is implemented for each lane. For the full ρ-VEX it means that 16 read ports and
8 write ports are implemented. Having this many ports helps us in the implementation
of fault-tolerance, as read requests to and read data from registers do not need to be
passed through a majority voter or a replication unit. All lanes running under TMR
can request and read data simultaneously without causing any stalls.
However, multiple write ports do not help us much. In the baseline implementation of
the core, if multiple lanes try to write data at the same address, then the lane with
highest index number wins arbitration over others and writes to the register file. We
do not want this behavior, as under radiation environment if the lane with the highest
index gets corrupted then as per the baseline implementation, an erroneous value will
be written to the register file. To resolve this issue, we need a majority voter that will
vote on all write requests and data, and output of this voter will then be written to the
register file.

Trap hander
When any kind of trap occurs, syllables in all pipeline stages up to and including the
one in which trap occurs get invalidated. They can not commit to the register file or
memories anymore and control is handed over to trap handler. In the fault-tolerant
mode, when three lanegroups are running in lockstep mode, an anomaly in anyone
lane could trigger a trap. This will result in halting the execution of the corrupted
lanegroup, while the other two remaining lanegroups under TMR will continue their
executions. At this moment, the core will keep executing the context correctly because
all the majority voters implemented at various instances in the core will get two correct
values and one faulty value, so they will produce correct value. The problem is that
the faulty lanegroup has lost the lockstep mode and although the context is running
correctly at the moment, the core will not be able to handle any more error in the two
correctly running lane groups. Any errors in these lanes will result in a faulty behavior
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of core.
Thus trap hander is considered as a sensitive component and it is decided that all signals
to and from trap handler will pass through a majority voter. In this case, even if faulty
lanegroup tries to trigger trap hander, it won’t be able to do so because the fault will
be masked be majority voter and the transient error in the faulty lane will fade away
on its own, as all the incoming signals are coming after being checked by a majority voter.

Context-pipelane interface
The context-pipelane interface handles the vast majority of the reconfigurable intercon-
nect between the lanes and contexts. Under the fault-tolerant mode, all the lanegroups
running under TMR will access the context resources simultaneously. To make this
interface fault tolerant, the same solution is applied as is for general-purpose registers
and data cache. All the signals going from lanegroups to context resources will pass
through a majority voter, and on the other way round, a replication unit is needed for
all the signals coming from context resources to lanegroups.

Configuration controller
This controller can be considered as the brain of all reconfiguration logic. It deals
with the incoming reconfiguration requests, decode them and handles arbitration
among multiple requests. It is also responsible for synchronizing the running contexts
that are affected by the reconfiguration before reconfiguring the core. Based on its
functionality, it is deemed as a highly critical component as any anomaly might cause
loss of synchronization, and in the worst case might even reconfigure the core. All
the efforts being put in to make the core fault-tolerant will go in vain if an upset in
the controller is able to reconfigure the core from the fault-tolerant mode to any other
non-fault-tolerant mode.
Considering the vulnerability of this component and its possible impacts, it is decided to
triplicate this unit. It is relatively a small component in terms of area consumption, thus
it will not incur a very high design cost. All the signals from these three configuration
controllers will pass through a majority voter before entering into lanes and control
registers. All the incoming signals previously intended for one controller will pass
through a replication unit, which will replicate them three times and send a copy to all
the three configuration controllers.

Program counter
This unit is not shown explicitly in the block diagram of ρ-VEX core. It lies in the first
pipeline stage. Although a decision was made that components and executions inside
the pipeline will not be focused on and TMR will be implemented at a higher level,
i.e., on all incoming and outgoing signals of the pipeline, this PC unit requires special
attention. All the lanegroups under TMR have their own units that compute the next
PC value, and in the normal case (no fault), all units produce the same PC value.
These PC values then pass through a majority voter and corresponding instruction is
fetched. The idea is that the majority voter masks the error and execution does not get
disturbed, and as the error is transient in nature, it fades away for the later execution
instances. However, if one PC unit gets corrupted due to SEE, then it will not be fixed
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on its own. As the new PC value is just an increment on the current PC value (not in
case of jump or branch), corrupted PC unit will keep on computing wrong PC value.
At this moment, the core will be executing the context correctly, as for the instruction
fetch PCs value will pass through the majority voter which will produce correct results
as two redundant PC units under TMR are working correctly. The core will keep
working correctly unless single event effect occurs in PCs unit of the other two cores. In
that case, majority voter will produce false PC value resulting in a trap initialization or
faulty execution of context.
To resolve this issue, outputs of all PC units running under TMR will pass through a
majority voter before computation of next PC value. After this solution, if upsets occur
in one PC value then it will have its impact on instruction fetch command in only that
clock cycle (which will be masked by majority voter) and the fault will not sustain as
computations for next PC will rely on the output of the majority voter.

3.4.2 Design of fault-tolerance in memory elements

As discussed earlier, for softcore processors running on SRAM based FPGA, two type
of memories require attention; user memory and configuration memory.

3.4.2.1 User memory

Memory elements present in Fig 3.2 are instruction cache, data cache, general-purpose
registers and control registers. These memory elements are susceptible to single event
upsets (SEUs) and as was discussed in Section 2.4.1.2, error correcting codes will be
used to make them resilient against upsets.
Different types of codes discussed in Chapter 2 are RS, BCH, Hsiao, and Hamming. A
comparative analysis of these error correcting codes and TMR is done and presented
in the form of a score matrix in Table 3.2. TMR provides the best error correcting
capabilities as it can correct up to n errors in a n-bit word as long as the errors are
located in a distinct position/unit and it is also comparatively easier to implement.
However, this approach comes with a major drawback and that is resource utilization.
As compared to the baseline design of a particular component, this TMR approach
requires more than 200% [1] of additional area. RS and BCH provides better error
handling capabilities as they provide the provision to correct multiple-bit upsets in a
single data word. The additional area they require varies depending on the number of
bits and can be in the range of 13-75 % [1]. The drawback of these codes is that they
are complex to decode and implement in hardware,and also incurs a negative effect on
system clock resulting in performance degradation. Hamming and Hsiao, both codes
are favorable, as for single error correction, they incur a minimum cost to the system.
The additional area they require depends on the number of bits and can be in the range
of 7-32 % [1]. The implementation complexity of these codes is lower as compared to
RS and BCH.
Hsiao belongs to the SECDED class and works on the same principle as Hamming codes,
but provides a better approach for implementing encoders and decoders. Although
Hsiao codes provide slightly better performance than SECDED Hamming codes, we will
implement Hamming codes in our design. We need both SEC and SECDED classes in
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our code (as will be explained in a later section) and Hamming codes provides provision
for both. Therefore, to keep the design consistent and reuse the same encoders and
decoders for SEC and SECDED after minor modifications, Hamming codes are finalized
for implementation.

Table 3.2: Comparison of TMR and ECC schemes (adopted from [1])

Characteristic Area Performance Error Correction Implementation

TMR - - ++ ++ ++

Hamming (SEC) ++ + + +

Hamming (SECDED) + + + +

Hsiao + ++ + +/-

RS(DEC-TED) - +/- ++ - -

BCH(DEC-TED) - - ++ - -

General-purpose registers
These are 32-bit registers files and to provide one error detection and correction ability
per word, SEC Hamming codes will be implemented per 32-bit word. All the data
intended to be written to general-purpose registers in the writeback stage of the pipeline
will be first encoded by Hamming code encoder and then forwarded to general purpose
registers. The size of general purpose registers will also be increased in accordance with
the specifications of the Hamming code used. In the execute stage of pipeline, before
using data from general-purpose registers, it will be first decoded back to the 32-bit word.

Instruction cache
Instruction syllables in ρ-VEX are encoded as 32-bit words and instead of SEC,
SECDED codes will be implemented per syllable. The reason for using SECDED over
SEC will be discussed in a later section. Instructions coming from external instruction
memory will be encoded first before writing them to the instruction cache. And
subsequently, before executing the instructions, these will be decoded in the instruction
fetch stage of the pipeline.

Data cache
In case of data cache, there is a provision to perform read or write operations per 8-bit
of data. Therefore, applying error correction codes per 32-bit word is not a favorable
option, hence, SECDED Hamming codes will be applied per 8-bit data word. All the
data being written to data cache by the memory stage of pipeline or by external data
memory will be encoded. The data must be, therefore, decoded before being used by
pipeline or written to the external data memory.

Increased cache protection
For the protection of memory elements, we are targeting single error correction.
Although SEC codes can achieve this target, we have chosen SECDED code for caches
because these codes besides correcting single error, provide the ability to detect two
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errors as well. We will use this double error detection attribute and also exploit the
underlying cache functionality to enable it to correct two errors as well. It is decided
that in case of dual error detection, cache invalidation of the corrupted data will be
done. Corresponding data will be fetched again from external memory before sending
it to the pipeline. Although this new design feature will cost us some performance
degradation in the form of cache miss penalty, we will be able to achieve increased
resilience against radiation-induced anomalies.

Control registers
These registers are special-purpose registers and can be classified into global and
context control registers. Instead of designing them in VHDL, a script is written to
auto-generate these control registers and keep them synchronized with the documenta-
tion. The implementation of these control registers does not follow a regular memory
architecture such as BRAM, instead, they are implemented in general-purpose FPGA
fabric. If these registers were implemented using BRAM, error correction codes were a
suitable protection scheme for them. Now, as these are made using logic elements and
does not follow a regular structure, error correcting codes cannot be applied to them.
Considering their nature, there are two options possible to make them fault-resilient.
One way is to triplicate all the control registers and apply TMR or DWC on them. This
approach is not very tempting as it will incur huge area overhead as control registers
occupy a significant amount of area in the core. The other approach is to re-design
all the control registers such that they are implemented in a regular memory fashion,
e.g., using BRAM and then implement error correcting codes. Considering the time
constraints for this thesis, re-designing the entire control registers module and then
implementing fault-tolerance is not possible. Therefore, it is left as a future work and
declared out of the scope of this thesis.

3.4.2.2 Configuration memory

Upsets in the configuration memory can modify the FPGA design and alter its func-
tionality. Among all type of FPGAs available in the market, SRAM based FPGAs are
most susceptible to it. As discussed in Section 2.4.1.2, scrubbing of configuration mem-
ory is usually recommended for its fault resilience, be it complete scrubbing or partial
scrubbing. To an extent, upsets in the configuration memory of our design will be cov-
ered by fault resilience of pipelines and error correction in user memories. However,
a dedicated protection scheme for configuration memory such as scrubbing will not be
implemented in this work. Implementing scrubbing along with all the other design fea-
tures which we have discussed earlier is too time demanding. Therefore, considering the
timing constraints and quantity of workload, it is decided to declare implementation of
fault-tolerance in configuration memory out of the scope of this thesis and is left for the
future work.

3.4.3 Summary of design decisions

Section 3.4.1 and 3.4.2 evaluates various design options for implementing fault tolerance
in pipeline and memory elements. The decisions taken in this regard are summarized as
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follows:
For pipeline stage, TMR is selected as a modular redundancy option and it will be im-
plemented at a higher level, i.e., over the entire pipeline and all the signals entering into
or going out of the pipeline will pass through TMR checkpoints. The TMR will be im-
plemented for the smallest possible configuration of ρ-VEX, i.e., 2-way. This means that
we will be using three lane pairs (6 pipelanes) out of four lane pairs (8 pipelanes) to im-
plement TMR at the pipelane level. The interfaces of the pipelane with the instruction
cache, data cache, GP registers and context resources will include TMR checkpoints.
Besides these interfaces, TMR will also be implemented for trap handler, configuration
controller, and program counter logic.
For memories, Hamming codes are selected as an ECC encoding scheme. SEC codes
will be used for protection of general-purpose registers and SECDED codes will be used
for caches. For general-purpose registers and instruction cache, encoding will be applied
per 32-bit word, while for data cache it will be applied per 8-bit word. For caches, an
additional protection scheme to correct two errors per word will also be implemented.
Dedicated protection of control registers and configuration memory will not be imple-
mented in this work and is left for the future work.

3.5 Reconfiguration

This section will describe how the fault-tolerant mode will be added to the reconfigurable
ρ-VEX processor. One way is to make this feature design-time configurable, which means
that before synthesizing and generating a bitstream, it must be decided whether we want
a normal core or a fault-tolerant core. Once configured, the design cannot be switched
to another mode unless new bitstream is generated and loaded to the FPGA. The other
way of implementation is to make this fault-tolerant mode dynamically configurable,
which means that this mode can be triggered run-time without loading the bitstream
again. This design option also incorporates the design time configurable feature in itself.
As it was declared in the research question of this thesis that dynamically reconfigurable
fault-tolerant mode will be added, therefore, the second design option is chosen.
Regarding reconfiguration, the design of the new ρ-VEX mode will include the following
features:

• If multiple contexts are running in parallel, then any context can request reconfig-
uration to the fault-tolerant mode.

• Out of four lanegroups, any three lane groups can be selected to run under TMR
mode. Which lanes to be selected for TMR is encoded in the reconfiguration word.

• Fourth lane group (not under TMR) can be disconnected or sent to power-down
mode to save power.

• Fourth lane group (not under TMR) can be used to run a second context in parallel
to a context running in the fault-tolerant mode. Note that, this second context
will run in non-fault-tolerant mode.
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Requesting a reconfiguration
In the existing design, a pre-defined control register is responsible for issuing reconfigu-
ration requests. The same behavior is adopted for the fault-tolerant mode to make the
design consistent with the baseline ρ-VEX design. Reconfiguration can be requested via
either of the following ways:

• Writing new configuration to the context control register (CRR).

• Writing new configuration word to the bus reconfiguration request control register
(BCRR).

• Using the sleep and wake-up system of the ρ-VEX core.

3.6 Design verification

The purpose of a fault-tolerant design is that in case of fault occurrence, the design
must continue its correct execution. When the design is made fault-tolerant, it is not
sent directly for the desired mission without being tested thoroughly. These tests are
performed to verify that design is capable to mitigate upsets and can continue its correct
execution in a harsh environment. In Section 2.4.2, various fault injection techniques
were discussed. Selection of a fault injection mechanism for this design will be done
based on its feasibility, level of design modifications required, area coverage and time
required for verification.

3.6.1 Fault injection method

It is obvious that the ideal way for fault injection is to simulate a space environment by
having a radiation beam targeted at the design. But as our university department does
not possess such a facility, and outsourcing it will be expensive, we will not go for this
option. The other possible options for fault injection are evaluated and summarized in
Table 3.3[65].

Table 3.3: Evaluation of various fault injection techniques

Criterion Software Based Simulation Based Hardware Based
Saboteur Mutant

Design Modifications No No Yes Yes

Modification Level N/A N/A Medium High

Simulation time Medium Low High Medium

Resource Coverage Low High High High

On-board Testing Yes No Yes Yes

Software solutions are relatively inexpensive solutions. They also do not require
design modifications, but the issue with these solutions is that they do not provide
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enough coverage. Not all the faults that are possible in hardware because of radiations,
can be emulated in software. Considering this, we will not go for this option.
Simulation techniques provide a wide area of coverage and more control over fault
injections. The injection of faults via simulation techniques is also relatively easy.
But the problem with these solutions is that simulation is very time-consuming. As
a comprehensive test is required to thoroughly validate the system, longer simulation
times are evident. In addition, a simulation may not necessarily catch all design
flaws as it is just an approximation of the actual design. Although it is not a very
attractive option, intermediate results and fault injection at module level during their
implementation will be done via simulation-based solutions.
For the formal verification of complete design, we need to choose between saboteurs
and mutants. Both are hardware-based solutions and provide extensive coverage for
fault injection. Choosing between them is just a matter of preference. We will choose
saboteurs as they are implemented on interfaces, while for mutants design of modules
need to be modified which is not desirable.

3.6.2 Fault injection locations

The locations at which faults will be injected must be chosen wisely so that all vulnerable
positions mentioned in the fault model (Figure 3.2) could be tested. Inserting saboteurs
at all possible locations where fault could occur is not a feasible option as it will require
a lot of modifications in the design (which we do not want) and also take a longer time
to run a program. Inserting fault injections randomly can solve this long time issue,
but it will not provide satisfactory coverage. As it is possible that design contains some
flaws, and random fault injection couldn’t test those locations. Further, there is another
problem associated with these random fault injections that we cannot reproduce exactly
the same injections if needed. Therefore, we must carefully decide fixed fault injection
points such that a minimum amount of saboteurs could cover the maximum area.
Fault injections will mainly be done at interfaces. For the pipeline, we will not insert
fault at each stage, we will insert faults at a higher level, e.g., at locations where pipeline
interacts with outer components. For example, faults will be inserted at interfaces that
access general-purpose registers and caches. Faults at such places can emulate the effects
of faults happening inside the pipeline. Inside pipeline stages, fault insertion will only be
done at the output of the program counter. Faults will also be introduced at interfaces
of context resources, trap handler and configuration controller. Besides these, memory
elements that are protected by ECC will also be tested for their fault resilience.

3.7 Conclusion

In this chapter, we have presented the baseline design of ρ-VEX processor and analyzed
its various components for their susceptibility to faults. After thorough analysis, a fault
model is constructed that shows which components of the processor are susceptible to
which kind of faults. Afterwards, a comparative analysis of various design options to
make the processor fault-tolerant is done. For pipeline protection, the pros and cons of
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implementing DWC and TMR are evaluated before finalizing TMR as a design option.
All the locations inside the core are identified where TMR checkpoints will be placed.
For memory elements, a comparison is done among various types of error correcting
codes, and SEC Hamming codes are selected for general-purpose registers and SECDED
codes for caches.
Keeping in line with the inherent nature of ρ-VEX code, a reconfigurable fault-tolerant
mode is finalized that can be activated or deactivated dynamically. In addition, any
three lanegroups out of four lanegroups can be selected to run in TMR mode.
Finally, for the verification of our fault-tolerant design, saboteurs are decided as a fault
injection mechanism. The locations where saboteurs will be placed are also identified.
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In the previous chapter, design to turn the existing ρ-VEX core into a fault-resilient
core was decided after evaluating multiple design options. This chapter discusses the
implementation of this design. In Section 4.1, the high-level design of the fault-tolerant
core will be presented, followed by the implementation details of the additional modules
introduced in the existing design. These additional modules include majority voters,
replication units, and ECC encoders and decoders. Finally, Section 4.2 will discuss the
implementation of saboteurs and how they are incorporated in the design to inject faults.

4.1 Fault-tolerant ρ-VEX core

This section presents the implementation details of the fault-tolerant design. The block
level diagram of the fault-tolerant ρ-VEX core is provided in the Figure 4.1. New modules
that are added to the design are distinguished by the green border line. MV blocks
represent majority voter, RU represents replication unit, ECC Enc. and ECC Dec.
blocks represent Hamming code encoder and decoder respectively. Subsequent sections
will provide details about all these newly added modules.

Figure 4.1: Top-level block diagram of the fault-tolerant ρ-VEX core

43
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4.1.1 Majority voters & replication units

Whenever signals leave or enter the TMR domain they need to pass through majority
voters or replications units. Implementation details of both these components will be
discussed here.

Majority voter
Majority voters are used at all the places where signals exit the TMR domain. The
purpose of this module is to compare the input signals coming from three sources and
produce a single output based on the majority principle. If out of three modules, one
module produces erroneous value, then it will be masked at this stage. Figure 4.2
presents the structure of most commonly used majority voter. The truth table for this
voter is the same as was presented in Section 2.4.1.1. Here it is presented again in Table
4.1 for the better understanding of the majority voter functionality. In our design, we
want to achieve the same functionality but we can not rely on this majority voter. We
have secured pipelane stages by introducing TMR, and memory elements by ECC, but
the majority voter presented in Figure 4.2 is not reliable itself. It is a single point of
failure and any fault in its structure can sabotage all our design efforts. Therefore, to
remove this vulnerability, a triplicated voter presented in Figure 4.3 is implemented in
our design. This new voter follows the same functionality depicted by Table 4.1.

Figure 4.2: 1-bit majority voter Figure 4.3: Triplicated 1-bit majority voter

As depicted in Figure 4.1, the majority voters are implemented at multiple locations.
They are implemented on all signals that exit the TMR domain, e.g., signals that go to
the instruction cache, data cache, and general-purpose registers. Majority voter is also
implemented for context-pipelane interfaces because all the three lanegorups running
under TMR sends the same signals to context related resources and therefore, these
signals need to be voted on. Following the decision made in Section 3.4.1.1, majority
voter is also implemented for program counter, trap handler and for signals that go from
configuration controller to control registers.

One thing must be noted here, that the implemented voter is a one-bit voter and it is
replicated multiple times as per the length of the desired signal. Applying the majority
voting procedure on a per bit basis provides a significantly high level of protection. For
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Table 4.1: Truth table for the majority voter

A B C Output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

a n-bit word, it can correct up to n errors as long as the errors are located in the
distinct positions. This is quite a high level of redundancy as compared to ECC codes
implemented in memories, as in memories a data-word can correct only one erroneous
bit. However, this additional redundancy provided by the majority voter is justified, as
a pipeline containing a fault is likely to produce a completely different outcome than the
other pipeline running under TMR. This is especially the case when a fault occurs in a
control signal in the pipeline and force the pipeline to manifest a different behavior than
the other pipelines.
Although the majority voter depicted in Figure 4.3 is incorporated in our final design, a
slight (temporary) modification is done to majority voter for the system validation part.
In the system validation part, we will insert a number of faults and want to know how
many of these faults get detected and corrected. Therefore, additional logic is added to
the majority voter structure to obtain the statistics of error correction, as depicted in
Figure 4.4.

Figure 4.4: Error detection logic for the majority voter

Replication unit
All the signals that go from a single module to TMR domain pass through a replication
unit. This unit simply replicates the signal data three times and feed each receiving mod-
ule with a copy. As depicted in Figure 4.1, signals that go from the instruction cache,
data cache and control registers to pipelanes(operating under TMR), pass through a
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replication unit. Also, the signals that pass from control registers to triplicated configu-
ration controllers pass through a replication unit.

4.1.2 EDAC implementation

It was decided in Chapter 3 that SEC and SECDED classes of Hamming codes will be
used for protecting memory elements. The specifications for the Hamming ECC codes for
different data widths are presented in Table 4.2. For general-purpose registers, we have
implemented SEC Hamming codes per 32-bit word. This means that per word we have
consumed an additional 6 bits to get a feature of single error correction. For instruction
cache, we have implemented SECDED Hamming codes per 32-bit word which needs 7
additional parity bits per word. The reason for using SECDED over SEC for caches was
given in Section 3.4.2.1, and Section 4.1.3 will provide details about how this additional
double error detection feature is exploited to get double error correction. For data cache,
as ρ-VEX provides the provision to read or write data per 8-bit word, SECDED codes
are implemented per 8-bit word requiring 5 extra parity bits. This means that for 32-bit
data-word we have to store 52-bits, which can provide error correction up to 8 bits, i.e.,
double error correction per 8-bit of data.

Table 4.2: Specifications for the Hamming code

data width error handling
n k r ED EC dmin

12 8 4 1 1 3
SEC 38 32 6 1 1 3

13 8 5 2 1 4
SECDED 39 32 7 2 1 4

The basic components for establishing the ECC protection domain are the encoder and
decoder.

Hamming code encoder
Hamming code encoder is responsible for encoding the data by adding parity bits to it.
To implement it, the input data word is numbered from the least significant bit to the
most significant bit as 1 to n, and then parity bits are placed at the positions with the
index equal to the power of 2, i.e., at positions 0,2,4,8 and so on. Rest of the bits are
filled with data word bits in the same order in which they appear. Parity bit number t
is computed by parity checks of all positions in the code which have a 1 at the position
t of their binary index. However, in our design, we have customized the placement of
parity bits rather than placing them in the standard way. Figure 4.5 presents the block
design of Hamming code encoder. All parity bits are placed together at the end of data
word so that they could be identified easily.

As depicted in Figure 4.1, whenever data is written by the pipelane to the data cache
and general-purpose registers, it passes through Hamming code encoder. Likewise, all
the data written to the instruction cache and data cache from external bus is encoded
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Figure 4.5: Hamming code encoder

first by the encoder.

Hamming code decoder:
In Figure 4.6, the block diagram of the Hamming code decoder is presented. The decoder
decodes the incoming data and can correct one bit or detect two bit upsets. Decoder
applies parity checks on complete input word (including data word and parity bits). If
no error is detected, the data word is forwarded after discarding parity bits. In case of
one error detection, error corrector based on the parity checks finds the erroneous bit
and then flips it to remove the error before forwarding the data. In case of double error
detection, the decoder does not change the data and raises an error detected flag.

Figure 4.6: Hamming code decoder

As depicted in Figure 4.1, whenever pipelane reads data/instruction from the data
cache, instruction cache or general-purpose registers, it passes through Hamming code
decoder first. Likewise, data written to the external bus by data cache is also decoded
first by the decoder.

4.1.3 Double error correction in caches

Considering the double-error detection capabilities of SECDED Hamming codes, it was
decided to exploit the existing cache structure such that it could achieve the capability of
double-error correction per data word. To do so, existing cache logic that decides whether
the data request leads to a cache hit or a cache miss is modified. An additional parameter
which indicates whether a double error is detected or not is incorporated in this design
logic. As both instruction and data cache blocks have a similar structure, the same
design modifications are implemented for both. Figure 4.7 represents the mechanism
for double error correction. When double-error is detected in the requested data by the
Hamming decoder, the design logic invalidates the corresponding erroneous entry from
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the cache memory and declares the request as a cache miss. The cache then requests
the fresh copy of data from the external memory via ρ-VEX bus and serve the pipelane
request with this fresh data. In this way, we have attained the double error correction
ability by using simple Hamming SECDED codes. As the increased protection schemes
always come with an additional cost, we have to bear cache miss penalty every time a
double error is corrected.

Figure 4.7: Double error correction mechanism for caches

4.1.4 Interaction between TMR and EDAC domains

Placement of EDAC components, majority voters, and replication units is done care-
fully to avoid any possible single point of failures. Figure 4.8 provides the behavioral
description of the design.

Figure 4.8: Interaction between TMR and EDAC domains

All the signals that pass from the TMR domain to EDAC domain are first passed
through the error correcting encoders and then they pass through majority voters. Ap-
plying Hamming encoder in TMR domain incurs increased hardware cost as compared
to the cost if applied after majority voter, still it is chosen because it provides more
protection and prevents provision for the single point of failures. If we apply majority
voter first, followed by Hamming encoder then the region that lies between the majority
voter and the Hamming encoder is left vulnerable. Any fault occurring in this region
will go undetected and corrupt the data word stored in the memory element. Following
this erroneous value stored in memory elements, the core might behave haphazardly.
Considering that, Hamming encoders are implemented in TMR domain before data is
forwarded to majority voters. Likewise, following the same reasoning, Hamming de-
coders are implemented in TMR domain after data comes from replication units. This
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positioning of additional components can be seen in the top-level block diagram of the
fault-tolerant core presented in Figure 4.1.

4.1.5 Reconfiguration

For configuring the core into the fault-tolerant mode, the same mechanism is adopted
which is in place to configure the baseline core in any other reconfigurable modes. A
dedicated reconfiguration-word is allocated for it such that it could indicate which context
we want to run in the fault-tolerant mode and which lanegroups we want to use for
the TMR purpose. As discussed in Section 2.2.4, values from 9 to F were left for the
future work and does not correspond to any existing configuration-word encoding scheme.
Therefore, value 9 is chosen to indicate the fault-tolerant mode. Figure 4.9 realizes the
configuration-word encoding scheme for the fault-tolerant mode. Each marked region
corresponds to one nibble. To activate the fault-tolerant mode, 9 must be written to
the least significant nibble. If 9 is written to the first nibble, then the second nibble
corresponds to the context number which we intend to run in the fault-tolerant mode.
The third nibble indicates the lanegroup number, which will not run under TMR and
the fourth nibble represents what we want to do with the fourth lanegroup (that is not
running under TMR). It can either be deactivated to save power or a second context can
be run on it in parallel to the fault-tolerant context.

Figure 4.9: Configuration word encoding for the fault-tolerant mode

To clarify the encoding scheme, few examples will be discussed. Consider 0x1309,
9 here indicates that this configuration scheme corresponds to the fault-tolerant mode
and 0 indicates that context 0 should be run in the fault-tolerant mode. The third entry
3 indicates that lanegroup 3 will not be a part of TMR, which means lanegroup 0, 1
and 2 will run under TMR. The fourth entry 1 represents that context 1 will run in the
lanegroup 3. To sum up, 0x1309 means context 0 will run in the fault-tolerant mode
and will use the first three lanegroups for TMR purpose, and context 1 will run in the
last lanegroup. Likewise, the encoding word 0x8219 specifies that context 1 will run in
the fault-tolerant mode and use lanegroup 0,1 and 3 for TMR purpose, while lanegroup
2 will be deactivated to save power. Figure 4.10 shows the ρ-VEX core running in 8-way
mode. After this core requests reconfiguration via configuration word 0x8309, it will be
reconfigured to a fault-tolerant core presented in Figure 4.11, which depicts context 0
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running in the fault-tolerant mode using first three lanegroups, while the last lanegroup
is in power off mode.

Figure 4.10: ρ-VEX in 8way non-fault-
tolerant mode

Figure 4.11: ρ-VEX in fault-tolerant
mode

4.2 Design validation

In Section 3.6, it was decided that saboteurs will be used as an artificial fault injec-
tion method to validate the robustness of our design. This section will deal with the
implementation of the saboteur and the mechanism by which we will monitor the error
correcting capabilities of our design.

4.2.1 Saboteur

The saboteur is designed as per our requirements such that it inserts faults only when the
core is in the fault-tolerant mode and remains silent in the normal modes. Figure 4.12
shows the block diagram of the saboteur which is implemented in this work and it can be
configured for any length of the input signal. The faulty signal is produced by XORing
the input signal with a mask signal. This mask signal defines which bit(s) of the input
signal we want to corrupt. A counter is used to output a faulty signal after a pre-defined
number of clock cycles surpasses. After inserting the fault, the counter resets to zero and
start counting again. The saboteur inserts faults only when the core is running in the
fault-tolerant mode and the target lanegroup is the one running under TMR, otherwise,
it just forwards the input data across without manipulating it. Besides producing faulty
signals (when active), saboteur also sets a flag every time fault is inserted so that total
numbers of insertions could be monitored.

4.2.2 Status monitoring registers

When the core runs on an FPGA, it is not possible to track the signals inside. Therefore,
to monitor the working of our fault-tolerant core, we have introduced a few additional
registers. All the internal signals which we want to monitor are led to these registers
and can be accessed from outside the core via debug port using ρ-VEX debugger (rvd).
These registers provide the following information:
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Figure 4.12: Block diagram of saboteur

• whether the fault-tolerant mode is activated or not.

• which lanegroups are running under TMR mode in the fault-tolerant mode.

• which lanegroup out of three lanegroups(running under TMR) can access caches.

• total number of faults injected by the saboteur.

• total number of faults corrected by the majority voters and ECC decoders.

The number of fault insertions by the saboteurs and their correction by the fault-
tolerant core is necessary to evaluate the robustness of our design. This evaluation is
done comprehensively and results are presented in the Section 5.3.

4.3 Conclusion

In this chapter, the implementation of the fault-tolerant design of ρ-VEX core is pre-
sented. Firstly, the high-level block design is discussed followed by the implementation
details of each additionally included component. The design of basic building blocks;
the majority voter, and the replication unit is presented. Furthermore, the specifications
of the Hamming code used are presented along with the design of Hamming encoder
and decoder. In addition to this, a new approach used to implement the double-error
correction in caches is introduced. Subsequently, the encoding scheme implemented for
the fault-tolerant reconfiguration word is explained in the chapter. Finally, the imple-
mentation of saboteur that is used as a fault injector at various locations inside the core
is presented, followed by the details of status-registers added to monitor the internal
signals of the core.



Verification and Results 5
In Chapter 3, we discussed the design of the fault-tolerant ρ-VEX core and Chapter 4
provided its implementation details. In this chapter, we will discuss how the functionality
of the designed and implemented core is verified. Section 5.1 will discuss the details of
the platforms and benchmark used to test the basic functionality of the core. In Section
5.2 and Section 5.3, details about the functional testing and verification of the fault-
tolerance capabilities will be presented. Finally, the cost incurred to the system in the
form of resource utilization and clock cycle limitations will be presented in Section 5.4.

5.1 Test environment

The test environment established to validate the functionality of our modified design is
comprised of testing platforms and a standardized benchmark suite.

5.1.1 Test platform

For verification of our design, both simulation-based and on-board test environment are
used. The simulation-based test setup is used throughout the development phases of the
design as it provides provision to monitor intermediate or partial results. To validate
the correctness of our entire design, simulation platform alone is not enough as it is
quite difficult to precisely emulate the hardware environment. Therefore, along with the
simulation platform, on-board test setup is also used to validate the finalized design.

Simulation-based test platform
The platform used for the simulation of the system is ModelSim-Intel FPGA software.
It provides support for inter gate-level libraries and includes behavioral simulations,
HDL testbenches, and Tcl scripting. A comprehensive test bench to verify the working
of ρ-VEX core was developed by my predecessor(s) which is used in this work without
any modifications. The test-bench tries to imitate the on-board environment as closely
as possible. An application written in C-language can be run and evaluated using this
simulation platform.

On-board test platform
The on-board platform used to validate the design is ML605 evaluation kit. It is produced
by Xilinx and depicted in Figure 5.1. It features Virtex-6 XC6VLX240T-1FFG1156
FPGA along with various peripherals.

Xilinx provides its own synthesis toolchains for its products. The toolchain that is
used in this thesis work is Xilinx ISE 14.7. Although Vivado has superseded ISE 14.7
toolchain, it is not used in this work because it lacks support for 6-series FPGAs [66].

52
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Figure 5.1: ML605 - The FPGA development board used in this project

5.1.2 Test applications

In order to verify the correct functioning of our design, the Powerstone Benchmark suite
is used. The reason for selection of this benchmark suite is that applications in it are
relatively simple and do not rely significantly on any advanced libraries (which have not
been ported to ρ-VEX yet). Another reason for using this benchmark suite is that it
has already been ported to ρ-VEX architecture in earlier work. Thirteen applications
from the Powerstone suite are used in this work and two applications namely auto and
whetstone could not be used. The reason for not using these two applications is that
their source code could not be found. The brief description of the thirteen applications
used are listed in Table 5.1 [67].

5.2 Functional testing

The purpose of functional testing is to validate the correct working of the core and it
does not focus on its fault-tolerance abilities. Along with checking the correct execution
of the programs, it also tests the reconfigurable nature of the core. To perform functional
testing, the applications were run on all ρ-VEX modes, i.e., 8-way, 4-way and 2 -way
and a reconfiguration request to configure the core into the fault-tolerant mode was
made inside the application source code. To request the fault-tolerant mode inside the
application, we just needed to write the appropriate configuration word to the context
control register. Figure 5.2 shows an example where fault-tolerance is requested for a
chunk of code. CR CRR = 0x8309 configures the core into the fault-tolerant mode,
while CR CRR = 0x0000 reconfigures the core back into the normal (non-fault-tolerant)
8-way mode.
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Table 5.1: Powerstone benchmark suite

Applications Description

bcnt Bit shifting & ANDing through 1K array

blit Graphics applications

compress A UNIX utility

crc Cyclic redundancy check

des Data encryption standard

engine Engine control application

fir Integer FIR filter

g3fax Group three fax decode(single level image decompression)

jpeg JPEG 24-bit image decompression standard

pocsag POCSAG paging communication protocols

qurt Square Root calculation

ucbqsort U.C.B quick sort

v42 Modem encoding/decoding

Figure 5.2: Part of an application showing how reconfiguration can be requested

System configuration
The standalone processing system is used throughout in this work for verification of our
design. This system provides minimal dependencies and deterministic timing for the
memory system, to provide a platform for the experimentation. This system comes in
two versions; one with a cache and one without. However, for our work, we used the
system that comes with a cache. The system configuration which was used is provided
in Figure 5.3 . Complete details about the instantiation can be found in the source
code.

Simulation-based testing
Figure 5.4 presents the simulation results for the core which requested reconfiguration to
a fault-tolerant mode from the 8-way mode, and after running in the fault-tolerant mode
for a while, again requested reconfiguration to the 8-way mode. In the fault-tolerant
mode, first three lane-groups started executing exactly the same instructions in lock-
step mode. This behavior imitates execution of an application which needs some critical
function to run in a fault-tolerant mode.

Similarly, Figure 5.5 shows a core which requested the fault-tolerant mode from a
2-way mode, and after running in the fault-tolerant mode for a while, requested the
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Figure 5.3: Instantiation template used for the system

Figure 5.4: Screenshot of ModelSim showing reconfigurations from 8-way mode to a
fault-tolerant mode and then back to the 8-way mode

normal 2-way mode. This sequence of ρ-VEX modes was also followed for the on-board
test environment.

On-board testing
A rigorous testing of the system was done on on-board FPGA platform. Firstly, the
core was configured into the fault-tolerant mode and applications were run on it entirely
in the fault-tolerant mode without requesting any run-time reconfigurations. All the
applications in Powerstone benchmark suite successfully completed their executions un-
der this mode. The active cycles taken by the applications were the same as they take
in normal 2-way mode of ρ-VEX. In the fault-tolerant mode, the application basically
runs on the 2-way mode, and it is just replicated three times to introduce appropriate
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Figure 5.5: Screenshot of ModelSim showing reconfigurations from 2-way mode to a
fault-tolerant mode and then back to the 2-way mode

redundancy for implementing TMR.
In order to test the dynamically reconfigurable feature on-board, the core was first con-
figured to a 2-way mode. Inside the application, the fault-tolerant mode was requested
for a chunk of code (e.g., some function) which means that before entering to that par-
ticular chunk of code, the core configured itself into the fault-tolerant mode and after
exiting from it, configured itself back into the original 2-way mode. As reconfiguration
was requested twice inside the application, this behavior incurred double reconfiguration
overhead. Table 5.2 lists the number of active cycles taken by the applications when
they requested the fault-tolerant mode for one function (dual reconfiguration) inside the
source code.

It can be seen that the overhead cost for reconfiguring the core comprises of two
factors; reconfiguration logic cost and cache-flush penalty. Reconfiguration logic cost
depends on how long it takes the reconfiguration controller to pause the affected contexts
and flush the pipelines. The cache-flush penalty depends on the state of cache and
temporal locality of the application data. The overhead of both these factors is variable.

[68] states that the reconfiguration logic cost of ρ-VEX can be in the order of tens of
cycles and the maximum cost that can be incurred is 14 cycles. The cost is variable as
it depends on various factors including stalls from the memory subsystem, the state of
the cache write buffers, the requested configuration, its difference between the requested
and current configuration, and the pipeline configuration. However, our statistics also
show that cost of reconfiguration logic for a single reconfiguration is always less than
14. It must be noted that entries in Table 5.2 showing reconfiguration logic overhead,
is providing the cost of twice reconfiguration. In the programs, reconfiguration was
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Table 5.2: Active clock cycles taken by the benchmark suite

Applications Non-FT FT over one function Overhead
2-way mode (Dual Configuration) Reconfiguration Cache Flush Total Total %age

bcnt 105245 107875 15 2615 2630 2.5

blit 377152 379967 16 2799 2815 0.7

compress 2246347 2249046 17 2682 2699 0.1

crc 81960 98316 16 16340 16356 20

des 928005 931778 16 3757 3773 0.4

engine 6387291 6390928 16 3621 3637 0.06

fir 713186 717501 15 4300 4315 0.6

g3fax 8154246 8160409 16 6147 6163 0.08

jpeg 24498088 24500908 15 2805 2820 0.01

pocsag 244871 250271 17 5383 5400 2.2

qurt 152445 157568 15 5108 5123 3.4

ucbqsort 848954 852794 17 3823 3840 0.5

v42 17662996 17665288 15 2277 2292 0.01

requested before entering the critical section and then after exiting the critical section,
therefore, incurring twice reconfiguration cost. The second factor in overall overhead
cost is the cache-flush penalty. This is the major cost and reconfiguration logic cost
is almost negligible as compared to it. Whenever the core reconfigures itself, then
depending on the requested configuration, related caches are flushed. One of the
reasons for flushing cache is that cache size is not constant and varies as per the current
configuration. As an example, if a single context is running on an 8-way mode, then
reconfiguring it in a 2-way mode results in resizing of its cache size and it is reduced to
about 4 times smaller cache. To comply with this cache-resizing feature and keep the
design generic, cache is flushed every time reconfiguration is requested. The overhead
for cache-flush is a quite dominant factor in overall reconfiguration cost.
It is assumed that during the mission, either the core will be run entirely in fault-tolerant
mode (no reconfiguration needed) or reconfiguration to the fault-tolerant mode will
be requested only for critical applications. As this reconfiguration will not be very
frequent, therefore, reconfiguration overhead can be accepted. The overhead increases
in direct relation to the number of times reconfiguration is requested. This behavior is
tested using two different type of applications. Each application was run multiple times
and each time multiple reconfiguration requests were made dynamically. The results
gathered can be seen in Figures 5.6 and 5.7. Figure 5.6 represents total overhead while
Figure 5.7 represents reconfiguration logic overhead for the applications when recon-
figuration was requested multiple times. Again it can be seen that the reconfiguration
logic is almost negligible as compared to total overhead as the cache-flush penalty is
quite dominant. The upward slope of both the graphs is in-line with our inference
that cost of reconfiguration is directly proportional to the number of times it is requested.

Running two contexts in parallel
Our design provides the provision that out of four lane-groups we can choose any three
lane-groups to run under TMR in the fault-tolerant mode. The fourth lane-group can
either be de-activated to save some power or can run another context in parallel. To
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Figure 5.6: Total overhead in terms of
clock cycles when multiple reconfigura-
tions are requested

Figure 5.7: Reconfiguration logic overhead
in terms of clock cycles when multiple re-
configurations are requested

perform a rigorous testing of running multiple contexts and monitoring their switching,
an operating system support is needed. Because of the unavailability of this support,
an alternate approach is used. A single context is run independently on both TMR
lane-groups and spare lane-group.
A configuration word 0x0309 was written to the configuration-register file. As per en-
coding scheme, this word indicates that context zero to be run in the fault-tolerant mode
using lane-groups 0,1 and 2. This word also indicates context 0 to run on lane-group
3 in normal (non-fault-tolerant) mode. Thus, this encoding word imitates two contexts
running in parallel, one being in fault-tolerant mode and the other being in normal (non-
fault-tolerant) mode. Multiple programs were run in this configuration. All the programs
successfully completed the execution and printed the success output twice (one from the
fault-tolerant and one from the normal context) via UART interface. Other configura-
tion words also used to verify this behavior were 0x0009, 0x0109 and 0x0209. These
words represent the same functionality as represented by 0x0309, but configures distinct
possible combinations of lane-groups to be run under TMR. All of these combinations
provided the desired results.

5.3 Fault-tolerance verification

A verification procedure is followed in order to test the fault-tolerant capabilities and
to check whether the core is capable to mitigate faults and can continue its correct
execution in the presence of faults. Saboteurs, whose implementation was discussed in
Section 4.2.1, were inserted at various locations in the core. Status-monitoring registers
explained in Section 4.2.2 were used to collect statistics of fault insertions, detections,
and corrections.
Saboteurs were inserted on the interfaces between pipeline and instruction cache, data
cache and general-purpose registers. These were also inserted inside the program counter
logic, trap handler, configuration controller, majority voter and the debug circuitry. After
a pre-defined number of clock cycles, these saboteurs inserted faults at these places. Error
detection and correction logic then detected these anomalies and reported the status by
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updating the status-monitoring registers. Before injecting errors, it was checked that
core was running under the fault-tolerant mode and the target lane-group was a part
of TMR. This was done to restrict saboteurs from inserting errors when the core was
running in normal (non-fault-tolerant) mode and also to not interfere with the spare
lane-group (not running under TMR).
Figure 5.8 provides the results of fault injection tests. At least five thousand faults were
inserted in each of the entity, and none of them was able to cause a failure. Almost all
the faults were detected and corrected by the ECC decoder or a majority voter. In case
of debug circuitry, only 9% faults were detected and corrected. This behavior was certain
because only partial debug circuitry is made fault-tolerant, rather than the entire debug
circuitry. The use of debug circuitry is for on-ground testing and debugging and it is of
no use during the mission. However, the critical signals such as write enable and reset
signals that might cause the core to misbehave are made fault-tolerant. 9% faults that
were corrected in the debug circuitry lied in these critical signals. The remaining faults go
undetected, but it must be noted that these faults did not have any impact on the correct
execution of the program and the program completed its execution successfully. All faults
inserted in other regions that included input and output to both caches, general-purpose
registers, configuration controller, trap handler, majority voter itself, and the program
counter got detected and corrected by the fault-tolerant core.

Figure 5.8: The results from the fault injection tests showing the percentage of corrected
faults

Error insertions inside the cache memory and pipelines were also done and it was
verified that a program successfully completes the execution. However, statistics of such
insertions are not documented in the report because their statistics do not provide a clear
picture whether all faults are corrected or not. In caches, if a bit inside the memory is
flipped, then before this entry is accessed and passed through ECC decoder, this entry
might get invalidated or replaced when the cache fills up. In such a case, the inserted
error will go undetected, though it will not have any impact on the correct execution of
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the program. However, to cover such errors, faults were inserted into the data when it
was read from the cache and was about to pass through ECC decoder. This behavior
emulated the effects of faults occurring inside the cache and also helped us in keeping
count. In the case of pipelane, the situation is quite opposite to that of caches. One bit
error might lead to multiple bits errors as an erroneous data address might fetch entirely
different data, or operations on faulty data in Execution stage of the pipeline might
produce totally different results. As long as redundant pipelanes produce correct results,
it does not matter even if all the bits in a faulty pipelane are erroneous. After voting,
correct results will be forwarded. Thus if a fault is inserted in the pipelane, it can lead
to detection and correction of multiple errors, and in case of a design flaw, might also
go undetected. Thus we can not deduce any valuable information from fault insertions
inside the pipeline. Therefore, faults were inserted on the output data of pipeline, which
besides emulating effects of faults originating from inside the pipeline, also helped in
validating the system by comparing the number of faults insertions to the number of
faults detections.
For instruction and data caches, we have implemented a protection mechanism which
can detect and correct two errors per word, as explained in Section 4.1.3. To verify
the functionality of this added behavior, two faults on consecutive bits in a single data
word were introduced. These faults were included when data was being read and be-
fore it passed through the ECC checks. A total of one thousand double-bit errors were
introduced in both instruction and data cache, and none of these errors could trigger
a failure. All of them were detected and respective cache entries were invalidated, and
status-monitoring registers were updated accordingly.
As the platform used for system validation is standalone processing system, the access
latency of the memory could be configured at runtime. This feature of standalone pro-
cessing system provides a provision to mimic a more realistic memory access latency for
cache tests. It was observed during tests that the overhead due to access latency was
directly proportional to the number of double-bit faults insertions per word in caches.

5.4 Cost and overhead of fault-tolerance

Fault-tolerance is an expensive feature and our improved design which makes the core
fault-tolerant also comes with a price. This price can be categorized into additional
hardware cost and system performance degradation cost.

5.4.1 Additional hardware / Resource utilization

The design is synthesized with Xilinx ISE 14.7 and details of resource utilization are
acquired. The absolute values of the resources used in the baseline core and the fault-
tolerant core are presented in Table 5.3 and their relative resource utilization is presented
graphically in Figure 5.9. The maximum difference is for LUTs which are 29% more than
that of the baseline core, followed by the number of slices and BRAM which are 28% and
25% more respectively. The increase in LUTs and registers corresponds to the additional
logic introduced in the form of majority voters, replication units, configuration controller
alteration, and other similar modifications, while the increase in BRAM corresponds to
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the addition of ECC check words to the data words stored in caches and general-purpose
registers.

Table 5.3: Resource utilization comparison of the original core and the fault-tolerant
core

Resource Baseline Core Fault-Tolerant Core Difference

Slices 23989 30617 6628

Registers 27179 30043 2864

LUTs 65841 84689 18848

DSPs 32 32 0

BRAMs 345 433 88

f max 37.5 MHz 30.0 MHz 7.5 MHz

Figure 5.9: The relative resource utilization

[69] and [70] represents two different works that incorporated TMR in some dif-
ferent processor platforms. Both of these designs lists the resource utilization of the
fault-tolerant processor to be more than 400% of that of original processor. TMR imple-
mentations and design features might be different than our work, but these examples are
mentioned to give a rough estimate of additional hardware demand in a fault-tolerant
core. Now, one might wonder why our modified design only takes less than 130% re-
sources utilization to that of the baseline design. The reason is that we have exploited
the underlying design to implement TMR in pipelines, instead of adding new pipelines in
the design. ρ-VEX provides 8 pipelanes and we have used the same pipelanes for TMR
whenever the fault-tolerant mode is activated. This careful and intelligent use of already
existing pipelanes in the core is the reason, why our resource utilization is far less than
the 400%. We have achieved the goal of fault-tolerance implementation by the inclusion
of just less than 30% additional resources.
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5.4.2 Timing results

Besides the inclusion of additional hardware, our new design also affects the critical path
of the system. The critical path in the design can be defined as the path in the entire
design with a maximum delay. This critical path defines the maximum frequency at
which a core can operate. Figure 5.9 shows that the maximum frequency that the fault-
tolerant core can operate on is 20% less than that of the baseline core. The five longest
paths in our design are highlighted in red color in Figure 5.10. Though there are other
paths in the core as well which defy the original fmax of 37.5 MHz but the highlighted
paths have major impacts on the frequency and limit the fault-tolerant core to operate
at a maximum frequency of 30MHz. This increase in critical path is understandable as
the longer paths in the baseline core are further elongated by the inclusion of either ECC
decoder or ECC encoder and triplicated majority voter in them.

Figure 5.10: The long delay paths in the fault-tolerant ρ-VEX core

5.5 Conclusion

This chapter deals with the verification of our design and presents some results asso-
ciated with our fault-tolerant core. For verification, a simulation-based test platform
using ModelSim, and an on-board test platform using a Virtex-6 FPGA is described.
Powerstone benchmark suite is used to test the basic functionality of the design. The
on-board test platform is also used to perform fault injection tests and it is observed
that none of the faults could trigger any failure.
The results mentioned in the chapter provides details of reconfiguration overhead which
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incurs whenever the fault-tolerant mode is requested. This overhead is the same as in
the case of normal mode switching in the baseline core. The additional hardware utilized
to implement new design is less than 30% to that of the baseline design. The new design
also has its impact on the system clock cycle and the minimum clock period allowed is
20% more than that is allowed in the baseline core.



Conclusion 6
This chapter summarizes and concludes this thesis work. Section 6.1 will summarize
the work done in this thesis, and Section 6.2 will reiterate the research question and
thesis objectives, and will list the main contributions made. Finally, in Section 6.3,
recommendations for the future work will be provided.

6.1 Summary

Chapter 2 provides the background information required for this thesis work.
Firstly, the ρ-VEX platform including its design, architecture, distinguishing features
and working is explored. Then the study of space environment and its effects on
electronics are provided. Subsequently, fault mitigation techniques for processor found
in the literature are explored. These include redundancy based TMR and DWC
techniques for processor pipeline stage and error correcting codes and scrubbing for
memory elements. Finally, the verification techniques for the fault-tolerant systems are
explored with the focus on fault injection. Different types including hardware-based,
software-based and simulation-based fault injections are investigated.

Chapter 3 presents the design of the main components of the new fault-tolerant
processor. It starts by presenting the baseline design of ρ-VEX processor and analyzing
its various components for their susceptibility to faults. After thorough analysis, a fault
model is constructed that shows which components of the processor are susceptible to
which kind of faults. Afterwards, a comparative analysis of various design options to
make the processor fault-tolerant is done. For pipeline protection, the pros and cons of
implementing DWC and TMR are evaluated before finalizing TMR as a design option.
All the locations inside the core are identified for placement of TMR checkpoints. For
memory elements, a comparison is done among various types of error correcting codes,
and SEC Hamming codes are selected for general-purpose registers and SECDED codes
for caches.
Keeping in line with the inherent nature of ρ-VEX code, a reconfigurable fault-tolerant
mode is finalized that can be activated or deactivated dynamically. In addition, any
three lanegroups out of four lanegroups can be selected to run in TMR mode and the
leftover lanegroup can be used to run a second context. After finalizing the entire
design, insertion of saboteurs is decided as a fault injection mechanism to validate the
functionality of our design, and the locations for saboteurs placement are also identified.

Chapter 4 presents the implementation of the fault-tolerant design of the ρ-VEX
core. Firstly, the high-level block design is discussed followed by the implementation
details of each additionally included component. The design of basic building blocks, the
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majority voter, and the replication unit is presented. Furthermore, the specifications of
the Hamming code used are presented along with the design of Hamming encoder and
decoder. In addition to this, a new approach used to implement double-error correction
in caches is introduced and its implementation details are provided. Afterwards, the
encoding scheme implemented for the fault-tolerant reconfiguration word is explained in
the chapter. Finally, the implementation of saboteur that is used as a fault injector at
various locations inside the core is presented, followed by the details of status-registers
added to monitor the internal signals of the core.

Chapter 5 presents how the functionality of the designed and implemented fault-
tolerant core is verified and provides some results associated with it. For verification,
a simulation-based test platform using ModelSim, and an on-board test platform using
a Virtex-6 FPGA is described. Powerstone benchmark suite is used to test the basic
functionality of the design. The on-board test platform is also used to perform fault
injection tests and it is observed that none of the faults could trigger any failure.
The results mentioned in the chapter provides details of reconfiguration overhead which
incurs whenever the fault-tolerant mode is requested. This overhead is the same as in
the case of normal mode switching in the baseline core. The additional hardware utilized
to implement new design is less than 30% to that of the baseline design. The new design
also has its impact on the system clock cycle and the minimum clock period allowed is
20% more than that is allowed in the baseline core.

6.2 Main contributions

In Section 1.1, the research question for this thesis was formulated as:

How can the ρ-VEX softcore be extended so that it becomes a reliable option for
space-based critical missions?

We have responded to this question by presenting a fault-tolerant design, implement-
ing it, and verifying its functionality on an FPGA development board. Particularly, we
have demonstrated that core can be configured into a fault-tolerant mode which is capa-
ble of detecting and correcting faults introduced by single event effects. This mode can
either be configured at design time resulting in a fault-tolerant core that could be used
throughout the mission, or it can also be configured dynamically whenever the execution
of some critical function is sought.
In Section 1.1, we proposed the thesis objectives which were kept under consideration
throughout the design and implementation phases. These objectives are listed again
here, along with a short summary of how the thesis objectives were achieved.

• The design must be able to detect and correct errors in the execution stages of ρ-
VEX.
Triple modular redundancy (TMR) was implemented for the pipeline stage to de-
tect and correct errors in it. No additional pipelines were added in the design
for this purpose, instead the underlying ρ-VEX architecture characteristics were
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exploited such that out of four available lanegroups, any three lanegroups can be
selected to run under TMR. The outputs of these TMR lanegroups subsequently
pass through a voter which works according to the majority principle and masks a
single fault. For a particular n-bit signal, majority voter can correct up to n errors,
as long as the errors are located in a distinct position.

• The design must make on-chip memories robust against soft-errors.
Hamming codes were implemented for the protection of on-chip memories. For
general-purpose registers, SEC codes and for the instruction cache, SECDED codes
were implemented per 32-bit word. For data cache, as we have the provision to
access data per byte, therefore, SECDED codes were implemented per 8-bit word.
For caches, a new approach was implemented to provide additional protection.
This approach enables the caches to correct two bits per word, using SECDED
codes and cache invalidation logic.

• The design must be dynamically (runtime) reconfigurable.
A new fault-tolerant mode is added to the existing modes of ρ-VEX core such
that it can be reconfigured dynamically. A dedicated encoding scheme for the
configuration word was implemented in this work that can trigger the fault-tolerant
mode. An application can request activation and deactivation of this mode multiple
times during its execution. The overhead of the dynamic reconfiguration to this
fault-tolerant occurs in terms of pipeline-flush and cache-flush penalty.

• The design must be implemented on an FPGA while taking platform independence
into account.
ML605 evaluation kit produced by Xilinx that features Virtex-6 XC6VLX240T-
1FFG1156 FPGA was used for design implementation. Throughout the design, it
was ensured that implementation was made as efficient as possible without losing
platform independence out of sight. All newly added components were imple-
mented with behavioral descriptions and structural descriptions using no platform
specific building blocks.

• The design must be verified for its correctness.

A simulation-based test platform using ModelSim, and an on-board test platform
using a Virtex-6 FPGA was used to verify the correctness of our design. Powerstone
benchmark suite was run on these platforms to test the basic functionality of the
design. To verify the fault-tolerance capabilities, artificial fault insertions using
saboteurs were performed. Status of these faults insertions, and their corrections
by our design were monitored by status-monitoring registers. None of the faults
could trigger a failure of the core.

To summarize, a dynamically reconfigurable fault-tolerant mode is implemented in
the ρ-VEX processor which can be activated and deactivated multiple times during a
program execution. In this fault-tolerant mode, Hamming codes are implemented for the
protection of memory elements, and a non-traditional triple modular redundancy (TMR)
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approach that can select any three out of four available lanegroups, is implemented for the
pipeline protection. A new approach to correct two concurrent errors in a cache word is
also implemented in this work. The overhead of the dynamic reconfiguration to the fault-
tolerant mode is comprised of pipeline-flush and cache-flush cost. The implementation
of this new feature in ρ-VEX is obtained at the cost of about 30% additional resource
utilization and 20% reduction in the maximum operating frequency.

6.3 Future work

This section lists recommendations for the future work:

• Configuration memory scrubbing
The fault-tolerant design implemented in this work does not deal with the protec-
tion of the configuration memory. This memory stores the design bitstream which
defines the functionality of the underlying FPGA device. Upsets in this memory
can modify the FPGA design and alter its functionality. Among all types of FP-
GAs available in the market, SRAM based FPGAs are most susceptible to it. As
discussed in Section 2.4.1.2, scrubbing of configuration memory is usually recom-
mended for its fault resilience, be it complete scrubbing or partial scrubbing. To an
extent, upsets in the configuration memory of our design will be covered by fault
resilience of pipelines and error correction in user memories. However, a dedicated
protection scheme for configuration memory like scrubbing is recommended for the
future work.

• Protection for control registers
Special-purpose registers also referred as control registers in the report are not
made fault-tolerant in this project as explained in Section 3.4.2.1. To protect
them, re-designing of all the control registers such that they are implemented in a
regular memory fashion is required. This work is suggested for the future work.

• Optimizing critical path
The maximum operating frequency for our fault-tolerant core is 20% less than that
of the baseline core. This behavior is understandable as additional components are
placed in the longer paths of the core. However, a dedicated effort can lead to
optimization of these paths. Section 5.4.2 highlights the longest paths in the core
and it can be seen that these paths can be reduced by optimizing the implemen-
tation of Hamming code encoders and decoders. Decoders can be optimized if we
process the data in parallel with the decoding operation. If no error is detected,
which will be the case in majority of the operation, the processor can proceed. If
a correctable error is detected, the pipeline needs to be stalled for one cycle so the
data processing operation can be performed with the corrected data. This could
result in the reduction of longer paths. The only drawback of this approach is that
it will affect the CPI as the pipeline needs to be stalled for one cycle each time a
correctable error is detected. Anyhow this optimization part is left for the future
work.
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• Random fault injection
In this work, fault injection at fixed locations at predefined intervals was chosen
because of the advantages of controllability and reproducibility. However, this
fixation of faults insertion might miss bugs, so fault injection at random locations
at random times will be a good addition to the verification suite. If feasible, testing
under some radiation test facility is recommended.
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