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Abstract
A graph 𝐺 = (𝑉, 𝐸)is a mathematical model for a network with vertex set 𝑉 and edge set 𝐸. A Random
Graph model is a probabilistic graph. A Random Geometric Graph is a Random Graph were each
vertex has a location in a space 𝜒. We compare the Erdős-Rényi random graph, 𝐺(𝑛, 𝑝), to the Random
Geometric Graph model, RGG(𝑛, 𝑟) where, in general we use 𝑟 = 𝑐 ⋅𝑛−

1
𝑑 , with dimension 𝑑. It is known

that for 𝑝 = 𝜆𝑘
𝑛 the 𝑘-core has a first-order phase transition in 𝐺(𝑛, 𝑝) where 𝜆𝑘 is the critical value for

the 𝑘-core. The 𝑘-core is a global property of a graph. The 𝑘-core is the largest induced subgraph
where each vertex has at least degree 𝑘. We suggest by simulations and a supportive proof that for
the RGG-model a first-order phase transition not plausible. A inhomogeneous extension of the RGG-
model with a vertex weight distribution 𝑇 is a Geometric Inhomogeneous RandomGraphmodel (GIRG).
We also prove why some heavy-tailed (i.e. power-law) distributions almost surely have a 𝑘-core, when
the amount of vertices 𝑣 which has a weight 𝑤𝑣 > √𝑛 is greater than 𝑘. Furthermore, we rephrase from
known literature how using a fixed equation for a branching process is a useful tool for analysing the
existence of a 𝑘-core. In particular, the critical value for the 3-core is recovered using the probability of
a binary tree embedding in branching processes, with the root having at least 3 children.
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Lay abstract
Networks are vital to modern life. In this thesis we study networks and in particular the stability of
networks using mathematical models called graphs. We investigate the behaviour of a well-known
property, 𝑘-cores, as a telltale for stability of networks. Most importantly we compare this property
between spatial networks, for example wireless transmission networks or electricity grids, and non-
spacial, like a social network. The latter has a critical point where the stability drastically increase in
terms of strong the network is interconnected. In spatial networks the stability grows proportional to the
interconnectedness as one would suspect. In this thesis we try to understand this difference directly
and via a model to describe network growth.
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1
Introduction

1.1. Modern Networks
Networks are vital to modern life, which becomes especially visible when a network fails as mentioned
by Strogatz, a mathematician from Cornell University [74]. He mentions a major power blackout in the
US and Canada in 1996 due to a cascading series of failure, which provides insight in the underlying
power grid structure [30].

Networks are thoroughly studied for a myriad purposes [32]. A few examples are presented. The
‘small-world effect’, which states how people are connected through a limited number of intermediates.
This effect serves as a possible predictor of success, when collaborating with people [60]. Another
example, linguists study of semantic networks, which provide topological insight and syntactic depen-
dency trees [5, 39, 57]. Studying social networks is a third example. Graph theory is used how to predict
unrest and group behavior when social groups break apart into smaller components after friendships
end, based on the weight of ties [42]. Another social network example is a controversial paper, which
describes how an obesity pandemic can be imitated by a time-evolving network, simulating population
dynamics [28].

Traditionally networks are used to solve logistical problems and consequently algorithms have been
developed. A few practical applications are: the shortest path algorithm for transportation optimization
[64], cost effective cable networks using minimum spanning trees [76] and competitive currency stock-
market trading using network cycles [67]. Moreover, humankind is reliant on computer networks to
function properly. Hence greedy queuing algorithms for wireless network and switches are of interest
[11]. In the 21st century the electricity grid, and our dependency of it, is of great importance. Therefore
research on power grid robustness against cascading failures is another important example of network
theory with practical applications [65, 78].

Networks can be gigantic, which makes them very difficult, if not impossible, to handle in a compu-
tational sense [53]. These gigantic networks are called ‘large-scale networks’. Just trying all options
(brute-force) to find an optimal strategy is folly in most cases. To illustrate this imagine all shipping con-
tainers (∼15 million) to process in a major port like Rotterdam. To schedule these containers efficiently
is an example of a task where efficient algorithms are vital. Other examples are, analysing the size of
World Wide Web [2, 66, 71], the way the human brain regulates neuron interactions [21], molecular
behaviour of hydration water around proteins [58] and large social networks [75]. These examples are
a selection of a wide variety of papers in which large-scale network research is potent.

In 2001 Strogatz stated: ”Researchers are only now beginning to unravel the structure and dynamics
of complex networks” [74]. Many complex networks have been identified to are closely related to either
the ‘scale-free’ or ‘small-world’ model. There is currently no precise technical definition of a complex
network, but key markers have been identified and are widely accepted in the field [12, 59]:

1. The system consist of many interacting parts, i.e. large-scale.
2. The collective behavior supersedes the sum of the collective individual behaviour.
3. Dynamically evolve
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2 1. Introduction

Many examples listed are in fact complex systems; the brain, condensed matter systems, road traffic,
the Internet (scale-free), Social networks (small-world). To study these phenomena simplified mathe-
matical models are used.

1.1.1. Models of networks
In mathematics a representation of a network is called a ‘graph’. Both network and graph are used
interchangeably in literature. Graphs are a mathematical model for representing networks, a form of
abstraction which allows a wide collections of problems to be solved using knowledge and techniques
acquired over the last decades. What makes a graph model powerful is the generalization and unifica-
tion of problems when modelled as a graph. As illustrated with the examples, very different phenomena
can be described by a graph. Therefore, efficient algorithms are universally applicable. A famous ex-
ample is the use of Dijkstra’s algorithm [29]. The software which uses graph theory to find efficient
routes to complete all deliveries, is a product of developments in fast algorithms for graphs [22]. Hence
most logistical operations, like trucking companies, supermarket chains, waste-collection services and
food delivery companies use software based on these mathematical developments in graph theory.

Generally graphs will be represented an a list of points (vertices or nodes) and a list of connections
between those points (edges or links). A drawing of a graph is a visual representation of these vertices
and edges. An example is a metro network where the metro stations are the dots (vertices) and the
lines between the stations are the connections (edges).

Figure 1.1: Visual representation of the metro network of Amsterdam

When formulating an adequate model for a network (graph), multiple difficulties for capturing reality
into it arise. According to Strogatz six difficulties can be distinguished [74]:

1. Structural complexity and size of the network
2. Network evolution; Another difficulty is networks which evolve over time. Brain cells die and

simultaneously new brain cells are created. New roads are build over time or old ones broadened.
New relationships are formed and ended on daily basis within a social network. A routing network
might turn on/off certain parts of a circuit. Importantly, to understand how the network evolves is
a first step in order to predict its behaviour.

3. Connection diversity; The size of arteries of different sizes (edge weight) and flow direction (edge
direction). Electricity circuits have charges (edge sign and edge weight)
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4. Dynamical complexity
5. Node diversity; A computer chip has different type of components on its circuit. Brain cells are of

various types. Crossroads or stations have different sizes and requirements.
6. Meta-complication; Mutual influences between the points above; Positive reinforcement of a neu-

ral connection is a good example. The connections get stronger, edge weights increase, if they
are used more often. Another example are topology constraints. New power grid extensions are
more common in highly dense urban areas.

It is important to stress that some real-world structures still lie beyond our current mathematical models.
As with many areas in physics and mathematics simplifying certain processes or constraints are a key
to still unlocking the basis underlying networks. When mathematicians try to model a phenomena, they
try to find the simplest model possible which still reproduces the phenomena, whilst trying to filter which
properties are crucial and which are irrelevant for the phenomena to occur.

Two sorts of graphs can be distinguished; deterministic and probabilistic. Deterministic graphs are
those of which all information is fixed and known. Even though it may evolve over time, the way it
evolves is governed by deterministic principles. A probabilistic graph however, is a probability distri-
bution of a graph. The focus of this paper shall be on the latter. These probabilistic graphs are also
referred to as Random Graphs.

1.1.2. Classical Random Graphs Models
Random graph theory was founded around 1960 by Paul Erdős and Alfréd Rényi as a consequence
of probabilistic methods to solve graph problems. In 1959, Erdős proved the existence of graphs
which has a chromatic number1 of at least 𝑘 and a girth2 of at least 𝑔, under the condition that 𝑘 ≥
3, 𝑔 ≥ 3. The idea of a non-constructive proof was a major breakthrough in this area of mathematics.
This changed the way of looking at graphs and opened a new field; Random Graph Theory. They
introduced the ’classical random graph’ model [35], denoted 𝐺(𝑛,𝑀), where 𝑛 represents the number
of vertices and 𝑀 the number of edges. Moreover, G (𝑛,𝑀) stands for the collection of all possible
graphs which consists of 𝑛 vertices and 𝑀 edges. The probability of picking a certain graph 𝐺(𝑛,𝑀)
out of the collection G (𝑛,𝑀) of ((

𝑛
2)
𝑀 ) possible graph is uniform. Note that edges are distinct and can be

viewed as labelled.
A variant by Gilbert, 𝐺(𝑛, 𝑝), also fixes the number of vertices 𝑛, but each edge now has a probability

𝑝 to be included in the graph or not [41]. The random graphs consisting of a vertex set 𝑉, with 𝑛
vertices, consists of a induced subgraph of a complete graph on 𝑛 vertices, where each edge is part of
the subgraph with probability 𝑝.

Since the 1960’s more than 10.000 papers have been published studying various properties of this
classical Erdős-Rényi random graph model.

In 1980, B. Bollobás founded another model inspired by work of Bender and Canfield [9, 13]. Net-
works often do have multiple edges per vertex[15]. Some networks even have a fixed number of edges
per vertex. A graph where every vertex has 𝑑 edges connected to it vertex, is called ‘𝑑-regular’. This
‘configuration model’ is based on the notion of 𝑑-regular graphs. In this model every node starts out
with 𝑑 ‘half-edges’. An example is shown in figure 1.2. At random half-edges are connected to form a
matching, thus creating a random graph. The process of matching half-edges stops when there are no
half-edges left to connect. Self-loops are allowed as well as multiple edges between two vertices. When
these appear the graph becomes a ‘multi-graph’. Other contributions to this model include asymptotic
analysis on graph cycles, enumeration of matrices and labeled graphs [8, 81]. The configuration model
has an extended literature, we refer the reader to the book of Hofstad on extensive treatment of the
configuration model and its variation [45]. Expending on the configuration model, a degree sequence
for vertices can also be used, where 𝑑𝑣 is the degree for vertex 𝑣. Since early 2000, the configuration
model is popular for real networks with inhomogeneous degree sequences [55]. Hence whenmodelling
certain real-life network, the configuration model begin a multigraph can be advantageous, for example
when modelling social media platform posts where the network is a multigraph with multiple edges be-
tween users and loops as users can post on their own page. Or it can be disadvantageous, if a simple
graph is required. For the latter, simple graph variations of the configuration model exists, notably the
1The chromatic number is the minimum number for a graph to be coloured such that no adjacent vertices share the same colour
2The girth of a graph is the shortest length of a cycle.
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Figure 1.2: Visual representation of the configuration model. Vertices with half-edges. [63]

‘erased configuration model’ and ‘repeated configuration model’ [45]. Secondly, the number of users
with 0 posts (i.e. vertex degree) does not align with the degree distribution of a classical random graph
[45].

The field, ever branching and extending into discrete maths, computer science and even analysis
has gained additional traction at the turn of the century. Different kind of random graphmodels are listed
in a surveys by Dorogovtsev, Newton and Boccaletti [12, 32, 60]. With time and the advancement of
computer one could verify how the classical model and configuration model compare to real-world
data of large networks. Barabási and Albert showed that the World Wide Web did not adhere to this
model [2] and the Faloutsos’s showed similar results on Internet router networks in their famous paper
[37]. In their paper the Faloutsos brothers showed how many real-world networks fit a log-log plot for
their degree sequences. This verified the power-law of ‘scale-free’ networks as apposed to Gaussian
bell-curves for the degree distribution.

1.1.3. Models for complex network
Another famous network model, published in the late 1990’s, is the Watts-Strogatz (WS) model. Re-
alizing that many real networks fall within a spectrum Watts and Strogatz came up with their network
model in order to mimic this diversity in networks. Where on one end of the spectrum one has the
𝑑-regular graphs, which have no randomness, classical random graphs are on the other, being totally
random. The Watts-Strogatz model introduces a parameter 𝑝 to ‘tune’ between regularity (𝑝 = 0) and
disorder (𝑝 = 1). Networks which can be produced by a rewiring process in the middle ground of
the spectrum are coined ‘small-world’ graphs [79]. Small-world graph are characterized by short path
lengths between vertices combined with high (local) clustering.

Figure 1.3: Rewiring procedure going clockwise, reconnect with probability 𝑝 to another vertex uniformly. Duplicate edges are
forbidden. with 𝑛 = 20 and 𝑑 = 4. [3]

There have been several variations since, most notably the Newman-Watts ‘small-world’ variation.
In the Newman-Watts variation shortcuts are added between randomly chosen pairs of sites, but no con-
nections are removed from the regular lattice [61]. Another adaptation, the Song-Wang adaptation with
distance-dependent formulation, simplifies the generation of directed and undirected Watts-Strogatz
model networks making it possible to derive exact expressions for the degree distribution and global
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clustering coefficient [73]. Edges are drawn between pairs of vertices with a distance-based probability
in stead of rewiring uniformly random. This adaptation also approaches a true classical random graph
in the random limit case [52]. Moreover, the model allows a geometric embedding. Consider a discrete
small-world model with a torus containing 𝑛 vertices, then adding shortcuts uniformly between vertices.
Distances in these discrete grids are linear.

Discoveries, for example by the Faloutsos brothers, led to formulation of another model, the pref-
erential attachment model (PAM), by A.L. Barabási and R. Albert, also abbreviated as (BA-model) [6].
The standard preferential attachment model treats undirected graphs, while the directed preferential
attachment graph model is also known as the Price’s model after D. Price [70]. In this model the number
of edges and vertices grow linearly in time. Competition or natural selection can stimulate growth and
explained the behaviour of the existence of graphs generated with the preferential attachment model
[10]. The preferential attachment model is prone to produce ‘scale-free’ networks [24]. Another ex-
ample of this model is the economic reinforcement ‘the-rich-get-richer’, where having more resources
enables more options to acquire even more resources at an increased rate [45].

Figure 1.4: Different structural graphs. Left the ’classical random graph’, middle a ‘small-world’ and at the right a ’scale-free’
graph example. [3]

There has also been progress how these graphs interrelate and their benefits and disadvantages
[1] A well-known fact is the vulnerability of scale-free networks to targeted attacks, which helps to
analyse power grid failures [7, 25, 77, 82, 83]. Though scale-free networks have proven their worth,
the universality of this graph model remains controversial [20].

1.2. Random Geometric Graphs
Random graphs also led to ideas closely related to statistical physics [31]. The dealing of atoms and
molecules comes natural when looking at small-scale behaviour and network. The distance between
atoms is related to the strength of the bonds between them. Thus is make sense to provide vertices with
a geometrical property. Furthermore, in a dynamic graph, the location of a vertex can also change over
time. A specific type of random graphs are random geometric graphs (RGGs), also known as random
spatial graphs. In theseRRGs a node is a point in a 𝑑-dimensional space. Besides physical dimensions,
they represent various states of the underlying physics (e.g. temperature, pressure, activity). Others
reasons for which spatial graphs are of interest are when the degrees are constraint by the physical
space [12], like a limited number of streets that can cross an intersection [69], or radio towers where at
a certain distance the signal becomes too weak. Wireless networks is an active field of application.

Suppose we immerse a large porous stone in a bucket of water. What is the probability
the centre of the stone is wetted? - Grimmett (1999) [43]

The percolation model, founded by Broadbent and Hammersley in 1957, considers a ℤ2 plane
square lattice [19]. Furthermore 𝑝 is the probability an edge between two neighbouring points on the
lattice is open or closed. Related to the porous stone the edges are cavities in the stone through which
water can pass. The stone itself can be modelled as a large, finite subset of this lattice. Many articles
have been published on percolation in the sixty years, hence a cornerstone in Random Geometric
Graphs. For further reading we refer to the book by Grimmit on ‘Percolation’ [43] and a surveys from
Araujo et al. (2014) and Copin (2017) [4, 33].
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Another geometric graph model uses the spatial Poisson point process to generate the vertex set.
This process generates 𝑁 points in the infinite plane ℝ2 with a given density per finite area. The con-
nectivity rule is defined as follows: Two points (vertices) are connected by an edge if their (Euclidean)
distance is less then some threshold 𝑟. Other norms, e.g. 𝑙1 or 𝑙∞ can also be used. Important to note
is that the number of vertices 𝑁, i.e. vertex set size, may vary for each realisation of this process.

Notably, Edgar Gilbert published about random planar networks as early as 1961. In this paper he
defines a Poisson process to pick points from the infinite plane with density 𝐷 points per unit area. The
imposed edge condition is the Euclidean distance with radius 𝑅. He shows in [40] that there exists a
critical value 𝑟crit to estimate whether there exists an infinite component or not. Gilbert’s research paper
provides useful information on the size of the graph components.

Figure 1.5: Visual of generated random spatial graph (𝑛 = 250, 𝑟 = 0.05) on [0, 1] × [0, 1]. Points were drawn uniformly on the
grid. Edge condition used is the 2-norm with radius 𝑟. No wrapping on the borders

1.3. 𝑘-core property
Properties of graphs give insight into the structure and provide useful leads for finding better under-
standing and solving graphs. There are many properties of a graph or its elements (vertices, edges).
As mentioned before, an important property is the ‘degree’ of a vertex, usually defined as the number
of directly connected vertices to the given vertex. Consequently the distribution of degrees and the
maximum degree are of interest. In a graph, the degree distribution informs one about the intercon-
nectedness of the graph. Let 𝑃(𝑘) be the fraction of the number of vertices with degree 𝑘 to the total
number of vertices. Then for the classical random graph model the degree distribution has been shown
to be Poisson in the limit,

𝑃(𝑘) = 𝑒−𝜆𝜆𝑘
𝑘! (1.1)

as the size tends to infinity [14].
For scale-free networks, the degree distribution can often be formulated as

𝑃(𝑘) ∝ 𝑘−𝛾 (1.2)

for sufficiently large values of 𝑘 [24].
While having a large degree is a local property, it only depends on the number of neighbours a

vertex has, connectivity of a graph is often measured by global characteristics. A commonly known
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Figure 1.6: 𝐾-core decomposition of a graph ([54])

property based on the number of vertices is the existence of a ‘giant’ (i.e. linear sized) component,
which is a global property of the graph. The notion of the 𝑘-core is also a global property and is used
to measure the stability of this giant component in terms of the degrees of the vertices, where 𝑘 ≥ 2.

The ‘𝑘-core’, see Definition 8 for the mathematical formulation, is a subgraph 3 where each vertex
has at least 𝑘 neighbours which have a degree of at least 𝑘, after trimming. Trimming is a process
of removing vertices with a degree below 𝑘 and update the degree of the remaining vertices. Hence
the ‘𝑘-core’ of a graph describes the interconnected subgraph of degree 𝑘. 𝑘-cores are like highways,
their presence is important for process behaviour on the graphs; e.g. it facilitates quick information
transmission. So there presence or lack of is of interest for determining the stability of the network.

Both the size of the largest component, denoted 𝒞max(𝑛), and the size of the 𝑘-core, |Core𝑘(𝑛)|
provide information of the interconnectedness of a graph 𝐺. The following result is known in literature for
the classical Erdős-Rényi random graph model: the largest component, 𝐶max(𝑛), undergoes a phase-
transition in the 𝐺(𝑛, 𝑝𝑛 ) model. A small change in 𝑝𝑐 results in the emergence of a giant component at
the critical value 𝑝𝑐. This phase-transition for 𝐶max(𝑛) is second-order. A second-order phase transition
is characterised by a continuous transition from one state to the other [16, 36].

For the percolation model, Gilbert showed that the infinite component itself can be very ‘loosely’
connected, thus not necessarily resulting in 𝑘-cores for higher values of 𝑘 > 2.

In contrast to the largest component 𝐶max, the 𝑘-core size shows a first-order phase-transition in the
Erdős-Rényi random graph model. This results in a discontinuity at the critical value, or a jump in a plot
of the size compared to the values. The 𝑘-core property is desirable for communication networks for
example, hence a threshold for when this property occurs is an important result. These communication
networks, for example wireless networks like 5G, require stability which a 𝑘-core provides. If one (or
more) of the transmitters fails, the network remains operational. Thus, the ‘𝑘-core’ can be used to
quantify the resilience of a network.

Using the Configuration model approach for the classical Random Graphs, 𝐺(𝑛,𝑀) and 𝐺(𝑛, 𝑝),
Luczak published in 2007 a paper called ‘A Simple Solution To 𝑘-core Problem’ [47], a simplified and
elegant solution for a result by Pittel, Spencer andWormald for the sudden emergence of a giant 𝑘-core
component in random graph [68].

The goal of this thesis is to understand the behaviour of 𝑘-cores in various random graph mod-
els, and to contrast the theory with simulations. Moreover we give intuition to the 𝑘-core through the
analogue of neighbourhoods in random graphs by Branching Processes. The outline of this thesis is
as follows. Chapter 2 starts with basic definitions from graph theory. Then, Section 2.1.1, focuses
on the classical random graph model and its extensions, both inhomogeneous and spatial. Next, we
define the 𝑘-core property and study theorems regarding the phase transition of the 𝑘-core. In Section
2.4 and 2.5 we investigate if some well-known theorems on 𝑘-cores transfer to the geometric random
graph model and its inhomogeneous variant respectively, by use of simulations. In Chapter 3, we de-
scribe branching processes as to study the existence and size of 𝑘-cores as well as giant components.
Branching processes are close linked to existence of connected components in random graphs. In
chapter 4 we discuss the results of our findings and research questions which remain open. Lastly,
Chapter 5 summarises the main results of this thesis.

3A graph with a subset of vertices and edges. For a mathematical definition see 7





2
𝐾-cores in Random Graphs

2.1. Random Graphs
There are multiple ways to define a graph. The following definition is suitable for undirected1, simple2
graphs.

Definition 1. Let 𝐺 = (𝑉, 𝐸) be a graph. Where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is the set of vertices and 𝐸 ⊆ (𝑉2)
the set of edges. To specify, let 𝑢, 𝑣 ∈ 𝑉 be vertices, than {𝑢, 𝑣} is an edge (i.e. an unordered pair of
two vertices).

If not explicitly stated otherwise, #𝑉 = 𝑛 is assumed to be finite. The basic vertex property is
required for defining the 𝑘-core graph property later on.

Definition 2. The degree of a vertex 𝑣, denoted 𝑑𝑒𝑔(𝑣), is the number of edges which include 𝑣.

𝑑(𝐺)𝑣 = deg(𝐺)(𝑣) = #{𝑒 ∈ 𝐸 ∶ 𝑣 ∈ 𝑒} (2.1)

The shorthand notation, 𝑑𝑣, will be used instead. Any graph 𝐺 has a degree sequence.

Definition 3. A degree sequence of 𝐺, is a sequence of vertex degrees, denoted

d(𝐺) = (𝑑1, 𝑑2, … , 𝑑𝑛) (2.2)

The superscript to specify the graph 𝐺 can be omitted if it is clear which graph is considered. More-
over, when studying the structure of the graph the degree distribution is an important tool.

Definition 4. Let 𝐺 = (𝑉, 𝐸) be a graph, where 𝑛 = |𝑉|. The number of vertices with degree 𝑘 is
denoted by

𝑛𝑘 = #{𝑣 ∈ 𝑉 ∶ 𝑑𝑣 = 𝑘} (2.3)

Now the degree distribution of a graph 𝐺 = (𝑉, 𝐸) is a sequence p𝑛 which list the proportion of vertices
in the graph of degree 𝑘;

p(𝐺)𝑛 = (𝑝𝑛(1), 𝑝𝑛(2), … , 𝑝𝑛(𝑛 − 1)) (2.4)

where 𝑝𝑛(𝑘) =
𝑛𝑘
𝑛 .

Since the 𝑝𝑛(𝑘)’s are proportions the following consequence is obtained ∑𝑛−1𝑘=1 𝑝𝑛(𝑘) = 1. The
degree distribution is extensively studied for random graphs.

1Edges have no direction
2At most one edge exists between two vertices and no vertices has an edge to itself (loop)

9
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2.1.1. Erdős-Rényi random graph model
The Erdős-Rényi random graph is defined by 𝐺(𝑛, 𝑝) in general. For limiting processes and scaling
purposes, 𝐺 (𝑛, 𝜆𝑛) is studied with a fixed 𝜆 > 0, i.e. 𝜆 is not a function of 𝑛. Now in 𝐺 (𝑛, 𝜆𝑛) the degree
of a vertex 𝑣, denoted 𝑑𝑣, becomes a random variable. Because the edge probabilities are independent
and identically distributed, all are Bernoulli ( 𝜆𝑛), the degree becomes a Binomial distribution. Thus in
the Erdős-Rényi random graph model, it follows that

ℙ(𝑑𝑣 = 𝑘) = Bin(𝑛 − 1, 𝜆𝑛) (2.5)

and the expectation of the degree is

𝔼[𝑑𝑣] =
𝑛 − 1
𝑛 ⋅ 𝜆 (2.6)

Since 𝜆 is fixed, if 𝑛 → ∞ the expectation of the degree tends to 𝜆. Furthermore by the Poisson Limit
Theorem, under the conditions that, 𝑝 = 𝜆

𝑛 → 0 as 𝑛 → ∞ and that 𝑛𝑝 = 𝑛 ⋅ 𝜆𝑛 → 𝑐 for some finite
real-valued constant 𝑐 ∈ (0,∞) as 𝑛 tends to infinity, one has convergence in distribution

𝑑𝑣
𝑑→ Poi(𝜆) (2.7)

Since 𝜆 was a fixed constant clearly 𝜆
𝑛 → 0 as 𝑛 → ∞. The second condition is also satisfied as

𝑛 ⋅ 𝜆(𝑛)𝑛 → 𝜆, which is indeed a constant in (0,∞). We provide a proof for the geometric equivalent in
Theorem 2.12. The Poisson distribution has a very thin tail, finding vertices with large degrees very
unlikely. Thus this model is not ‘scale-free’ and does not correspond to many real-world networks which
adhere to the power-law. Therefore, we present extension of this model where inhomogeneity is added
to the degree of the vertices.

2.1.2. Inhomogeneous variations
Inhomogeneous extensions of the Erdős-Rényi random graph are a way to model these real-world
phenomena however. The widely studied Chung-Lu model, proposed in [23], extends the classical
Erdős-Rényi random graph model to satisfy the power-law under certain conditions. We now define
the Chung-Lu model. Consider a given expected degree sequencew = (𝑤1, … , 𝑤𝑛), where each vertex
𝑣𝑖 is assigned vertex weight 𝑤𝑖. Then redefine the edge probability 𝑝𝑖𝑗, now inhomogeneous, to be

𝑝𝑖𝑗 ∶=
𝑤𝑖𝑤𝑗
∑𝑛𝑘=1𝑤𝑘

(2.8)

for each pair of vertices {𝑣𝑖 , 𝑣𝑗}. The edge probabilities are still independent, given the weights. The
Chung-Lu model allows 𝑖 and 𝑗 to be equal, creating the probability for loops at 𝑣𝑖 with probability 𝑝𝑖𝑖.
To ensure 𝑝𝑖𝑗 ∈ [0, 1], Chung and Lu add the following assumption to the model

max
𝑖∈{1,…,𝑛}

𝑤2𝑖 <
𝑛

∑
𝑘=1

𝑤𝑘 (2.9)

We shall quickly prove why this assumption ensures 𝑝𝑖𝑗 ∈ [0, 1]. Letw be a finite sequence of non-zero
real numbers and let 𝑤𝑖 , 𝑤𝑗 ∈ w. Since 𝑛 is assumed finite, there exists a maximum 𝑤′ in w. Then by
definition of a maximum one has

𝑤𝑖 ≤ 𝑤′ and 𝑤𝑗 ≤ 𝑤′

Combined with Equation 2.9 it follows that

𝑤𝑖𝑤𝑗
∑𝑛𝑘=1𝑤𝑘

≤ 𝑤′𝑤′
∑𝑛𝑘=1𝑤𝑘

<
∑𝑛𝑘=1𝑤𝑘
∑𝑛𝑘=1𝑤𝑘

= 1
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Moreover, since 𝑤𝑖 ≥ 0, ∀𝑤𝑖 ∈ w, also ∑
𝑛
𝑘=1𝑤𝑘 ≥ 0. The ratio of two positive real numbers must be a

positive real number. Excluding the case of isolated vertices only, i.e. w = (0, 0, … , 0), where 𝑝𝑖𝑗 = 0
by definition, indeed 𝑝𝑖𝑗 ≥ 0. Hence ∀𝑤𝑖 , 𝑤𝑗 ∈ w ∶ 𝑝𝑖𝑗 ∈ [0, 1].

Similarly to the Chung-Lu model, Norros and Reittu defined an inhomogeneous model where the
vertices are weighted. Norros en Reittu refer to these ‘weights’ as capacities, denoted Λ𝑖. Then 𝐸(𝑖, 𝑗)
are the number of edges between vertices 𝑣𝑖 and 𝑣𝑗, with

𝐸(𝑖, 𝑗) ∶= Poi(
Λ𝑖Λ𝑗

∑𝑛𝑘=1 Λ𝑘
) (2.10)

This results in a multi-graph, not only with loops as in the Chung-Lu model, but also with multiple edges
between vertices. This proved useful for finding thresholds for a giant component in the multi-graphs
generated by this component, mentioned in [62], similar to those found in the configuration model.
Another, more general, inhomogeneous random graph model is proposed by Söderberg in [72], where
between each pair of vertex types there is a given edge probability.

Definition 5. Let r = (𝑟1, … , 𝑟𝑚) be a 𝑚-dimensional probability vector, i.e. ∑𝑚𝑗=𝑖 𝑟𝑗 = 1, where 𝑚 ∈ ℕ.
Moreover, consider a symmetric𝑀×𝑀 matrix A, with the elements 𝐴𝑢𝑣 ∈ [0, 1]∀𝑢, 𝑣. Then each vertex
is independently assigned a type 𝑖 ∈ {1, … ,𝑚} with probability 𝑟𝑖 and for each unordered pair of vertices
{𝑢, 𝑣} the corresponding edge probability is 𝐴𝑟𝑢 ,𝑟𝑣 .

Note that 𝑚 > 𝑛 = |𝑉| is allowed. It is possible though that some vertices are of the same type,
which is clearly unavoidable if 𝑚 < 𝑛. Hence the way to assign types is of importance. Bollobás,
Janson and Riordan popularised this model, also called the ‘Stochastic block-model’, in their paper on
thresholds in inhomogeneous random graphs [17].

2.1.3. Configuration model
As mentioned in the introduction, there are other random graph models. A generalized version of the
classical graph model, the Configuration model by Bollobás in [13], must be mentioned, since many
results have been proved using this generalized view. Also theorems have been proved inmore concise
way using the configuration model, like the 𝑘-core theorem in [47]. Another example is the Molloy and
Reed paper on the size of the giant component of a random graph with a given degree sequence [56].
As opposed to the degree of a vertex to follow from the probability of edges, one can start with given
degree sequence d = (𝑑𝑣)𝑛, similar to the inhomogeneous variations of the classical model, where 𝑛
is the fixed number of vertices of the graph. Without loss of generality we assume 𝑑𝑣 ≥ 1. Consider
half-edges labelled from 1 to 𝑙𝑛 = ∑𝑛𝑣=1 𝑑𝑣. Note that 𝑙𝑛 to be even is a necessary condition to end
up with a simple graph. Half-edges are paired to form a single edge of the multigraph. The pairing
of the half-edges called a configuration. Every half-edge is only paired once. The resulting graph
is called the configuration model with degree sequence d, denoted CM𝑛(d)). For further insight into
the configuration model we refer the reader to Chapter 7 of Hofstad’s Random Graph and Complex
Networks book [45]. In this thesis we do not use the configuration model. Instead we shall focus on
geometric random graphs.

2.2. Random Geometric Graphs
An extension to the classical regular graph is to include a spatial setting. The vertices now represent
locations in a given metric space. There are multiple spatial graph models, like the hyperbolic geo-
metric graph (HGG) by Krioukov et al in [50], the scale-free percolation model (SFP) and the random
Geometric Graphs (RGG). For the SFP-model, we refer the reader to the publication and books of
Hofstad et. al. [26, 44, 46]. In this report we shall focus on the RGG-model, and define it accordingly
as many variations have been proposed.

Definition 6. Let 𝐺 = (𝑉, 𝐸) a graph and let (𝜒, 𝑑) be ametric space. Assume that (𝑋𝑖)𝑖∈{1,…,𝑛} represent
the vertices chosen i.i.d. from a measure 𝜇 on 𝜒. Then the vertex set is 𝑉 = (𝑋1, 𝑋2, … , 𝑋𝑛). Moreover,
the edge set 𝐸 is defined by

𝐸 ∶= {{𝑖, 𝑗} ∶ 𝑑(𝑋𝑖 , 𝑋𝑗) ≤ 𝑟} (2.11)
with 𝑟 ∈ [0,∞). Then 𝐺 is called a random geometric graph, denoted RGG(𝑛, 𝑟).
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In this report we shall focus on the 𝑑-dimensional hypertorus𝕋𝑑. More specifically we use a grid, 𝜒 =
[0, 1]𝑑 ⊆ ℝ𝑑/ℤ𝑑, with periodic boundary conditions. The 𝑋𝑖 are drawn uniformly from 𝜒. In simulations,
for convenience, a [0, 1] × [0, 1] grid is used which acts like a torus based on the edge conditions. If
not mentioned otherwise, 𝑙2 norm is used, denoted ‖⋅‖2. For large calculations, sometimes the infinity
norm ‖⋅‖∞ is used to speed up calculations and will be mentioned accordingly when applied. The edge
condition ‖𝑥𝑢−𝑥𝑣‖ ≤ 𝑟 is used by default. Instead of increasing the [0, 1]𝑑 space to [0, 𝑛]𝑑 with a fixed
radius 𝑟, we scale back to [0, 1]𝑑 and set 𝑟 = 𝑐 ⋅ 𝑛−

1
𝑑 . This ensures the proper scaling, with 𝑐 a fixed

constant similar to the 𝜆 in the classical Erdős-Rényi random graph model.
Similarly to the Erdős-Rényi random graph model, this model is homogeneous and can be regarded

as a binomial geometrical random graph. In Figure 2.1 the result of generated samples of the empirical
degree distribution of random geometrical graphs are compared to the Poisson distribution with the
same constant. Even for 𝑛 = 250 the fit is already plausible and remains so for higher values of 𝑛.

Figure 2.1: The theoretical degree distribution compared to empirical average of 20 samples of the RGG-model with the same
parameter 𝑐 = 1.3 for different sizes, 𝑛 = 250, 500, 1000. The fit, proven to hold for 𝑛 → ∞, is already visible for relative low 𝑛.

To confirm this mathematically we shall prove the following theorem. The proof is my own, inspired
by a similar proof for the Erdős-Rényi random graph model.

Theorem 1. Let 𝐺 = (𝑉, 𝐸) be a random geometric graph with 𝜒 = [0, 1]2 acting like 𝕋2 and with norm
‖⋅‖2. Let 𝑋𝑖 be drawn uniformly from [0, 1]2. Furthermore, assume 𝑟 = 𝑐 ⋅ 𝑛−

1
2 for some fixed 𝑐 > 0.

Let 𝑋𝑢 be an arbitrary vertex in 𝑉, then it holds that

deg(𝐺)(𝑋𝑢)
𝑑→ Poi(𝜆) (2.12)

Proof. Since the points are drawn uniformly and independently we can consider a fixed point 𝑥 ∈ 𝜒,
the realisation of the location of vertex 𝑋𝑢. Moreover, we consider the circle 𝐴 ∶= 𝐵(𝑥, 𝑟) around 𝑥 with
radius 𝑟. Let 𝑦𝑖 be the realisation of 𝑋𝑖. Then for each point 𝑦𝑖 ∈ 𝜒, 𝑖 ≠ 𝑢, around 𝑥 we obtain the
following

ℙ(‖𝑦 − 𝑥‖ ≤ 𝑟) = Area(𝐴)
Area(𝜒) =

𝜋 ⋅ 𝑟2
1 (2.13)

because the 𝑦𝑖 are i.i.d. The probability if 𝑦𝑖 ∈ 𝐴we view as a random variable 𝑌𝑖 ∼ Bernoulli(ℙ(𝑦𝑖 ∈ 𝐴)).
Now for multiple events with a Bernoulli distribution to occur we shall use a Binomial random variable.
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Figure 2.2: Example of points drawn uniformly around centered point 𝑋, with a radius 𝑟. Points inside the circle count as a
neighbour of 𝑋.

Let 𝑌 be the number of vertices 𝑦𝑖 within circle 𝐴. An example of this process is shown in Figure 2.2.
Thus deg(𝐺)(𝑥) ∼ Bin(𝑛 − 1, 𝜋 ⋅ 𝑟2). Using 𝑟 = 𝑐 ⋅ 𝑛−

1
2 we have

ℙ(deg(𝐺)(𝑥) = 𝑖) = (𝑛 − 1𝑖 )(𝜋 ⋅ 𝑟2)𝑖 ⋅ (1 − 𝜋𝑟2)𝑛−1−𝑖

= (𝑛 − 1𝑖 ) (𝜋 (𝑐 ⋅ 𝑛−
1
2 )
2
)
𝑖
⋅ (1 − 𝜋 (𝑐 ⋅ 𝑛−

1
2 )
2
)
𝑛−1−𝑖

= (𝑛 − 1𝑖 ) (𝜋 ⋅ 𝑐
2

𝑛 )
𝑖

(1 − (𝑐
2 ⋅ 𝜋
𝑛 ))

𝑛−1−𝑖

Now remark that 𝑛 ⋅ 𝜋⋅𝑐
2

𝑛 = 𝜋 ⋅ 𝑐2 → 𝜋𝑐2 as 𝑛 → ∞. Then applying the limit it follows that

lim
𝑛→∞

ℙ(deg(𝐺)(𝑥) = 𝑖) = lim
𝑛→∞

(𝑛 − 1𝑖 ) (𝜋 ⋅ 𝑐
2

𝑛 )
𝑖

(1 − (𝑐
2 ⋅ 𝜋
𝑛 ))

𝑛−1−𝑖

= lim
𝑛→∞

(𝑛 − 1)!
𝑖!(𝑛 − 1 − 𝑖)!

(𝜋 ⋅ 𝑐2)𝑖
𝑛𝑖 (1 − (𝑐

2 ⋅ 𝜋
𝑛 ))

𝑛−1−𝑖

= (𝜋 ⋅ 𝑐2)𝑖
𝑖! lim

𝑛→∞
(𝑛 − 1)!

(𝑛 − 1 − 𝑖)! ⋅ 𝑛𝑖 (1 − (
𝑐2 ⋅ 𝜋
𝑛 ))

𝑛

(1 − (𝑐
2 ⋅ 𝜋
𝑛 ))

−(𝑖+1)

= (𝜋 ⋅ 𝑐2)𝑖
𝑖! lim

𝑛→∞
(𝑛 − 1) ⋅ (𝑛 − 2) ⋅ … ⋅ (𝑛 − 𝑖)

𝑛𝑖 (1 − (𝑐
2 ⋅ 𝜋
𝑛 ))

𝑛

(1 − (𝑐
2 ⋅ 𝜋
𝑛 ))

−(𝑖+1)

To compute this limit, first we conclude that each piece is bounded. This allows us to compute the limit
of each factor. For large 𝑛 it holds that (𝑛−1)(𝑛−2)…(𝑛−𝑖)𝑛𝑖 → 1 since

(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑖)
𝑛𝑖 = 𝑛𝑖

+
∑𝑖𝑘=1(−𝑘) ⋅ 𝑛𝑖−1

𝑛𝑖 +…+
∏𝑖𝑘=1(−𝑘)

𝑛𝑖

= 1 +
∑𝑖𝑘=1(−𝑘)

𝑛 + … +
∏𝑖𝑘=1(−𝑘)

𝑛𝑖

by expending the factors. So all terms except the first tend to zero for 𝑛 → ∞.
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In the second factor we recall the limit for the exponential.

lim
𝑛→∞

(1 − (𝑐
2 ⋅ 𝜋
𝑛 ))

𝑛

= lim
𝑛→∞

(1 + (−𝑐
2 ⋅ 𝜋
𝑛 ))

𝑛

= 𝑒−𝑐2⋅𝜋

For the last factor notice that 𝑖 is fixed. So lim𝑛→∞
𝑐2⋅𝜋
𝑛 = 0 and therefore

lim
𝑛→∞

(1 − (𝑐
2 ⋅ 𝜋
𝑛 ))

−(𝑖+1)

= (1 − lim
𝑛→∞

(𝑐
2 ⋅ 𝜋
𝑛 ))

−(𝑖+1)

= (1 − 0)−(𝑖+1) = 1

In all, the limit simplifies to

lim
𝑛→∞

ℙ(deg(𝐺)(𝑥) = 𝑖) = (𝜋 ⋅ 𝑐2)𝑖
𝑖! ⋅ 1 ⋅ 𝑒−(𝑐2⋅𝜋) ⋅ 1 def= ℙ(Poi(𝜋𝑐2) = 𝑖)

Thus, renaming 𝜆 = 𝜋𝑐2 for convenience, we conclude that the degree of any fixed vertex converges
to a Poisson distribution.

This means we just proved the convergence in distribution for the degree of a vertex locally. A much
stronger result would be if this would also hold globally. Therefore we now prove the following theorem

Theorem 2. Let 𝐺 = (𝑉, 𝐸) be a random geometric graph with 𝜒 = [0, 1]2 acting like 𝕋2 and with norm
‖⋅‖2. Let 𝑋𝑖 be drawn uniformly from [0, 1]2. Furthermore, assume 𝑟 = 𝑐⋅𝑛−

1
2 for some fixed 0 < 𝑐 < ∞.

Given 𝑝(𝐺)𝑛 (𝑖) =
∑𝑛𝑗=1 𝟙deg(𝑣𝑗)=𝑖

𝑛 , then

𝑝(𝐺)𝑛 (𝑖) → ℙ(Poi(𝜆) = 𝑖) ∀𝑖 ∈ ℕ (2.14)

a.s. and hence p(𝐺)𝑛
𝑑→ Poi(𝜆).

Proof. First, let 𝑑 = 2 without loss of generality and let 𝑖 ∈ ℕ be an arbitrary fixed constant. The
idea of the proof is to find 𝑝𝑛(𝑖) to be arbitrarily close to 𝔼[𝑝𝑛(𝑖)] and 𝔼[𝑝𝑛(𝑖)] to be arbitrarily close to
𝜆𝑖 = ℙ(Poi(𝜆) = 𝑖). The latter we find using the first moment. It follows that

𝔼[𝑝(𝐺)𝑛 (𝑖)] = 𝔼 [
∑𝑛𝑗=1 𝟙deg(𝑣𝑗)=𝑖

𝑛 ]

= 1
𝑛

𝑛

∑
𝑗=1
𝔼[𝟙deg(𝑣𝑗)=𝑖]

Now the expectation of the indicator function is the probability of it occurring, hence

𝔼[𝑝(𝐺)𝑛 (𝑖)] = 1
𝑛

𝑛

∑
𝑗=1
ℙ(deg(𝑣𝑗) = 𝑖)

Due to the symmetry, we argue that these probabilities equal a priori. Therefore we have

1
𝑛

𝑛

∑
𝑗=1
ℙ(deg(𝑣𝑗) = 𝑖) =

1
𝑛

𝑛

∑
𝑗=1
ℙ(deg(𝑣1) = 𝑖)

= 1
𝑛 ⋅ 𝑛ℙ(deg(𝑣1) = 𝑖)

Then from Theorem 1 it follows that

𝔼[𝑝(𝐺)𝑛 (𝑖)] = ℙ(deg(𝑣1) = 𝑖)
𝑛→∞→ ℙ(Poi(𝜆) = 𝑖) (2.15)
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Let 𝜖 > 0 be arbitrary. Furthermore, we write 𝑋 = 𝑝𝑛(𝑖) for convenience. Now we consider the
following probability

ℙ (|𝑋 − 𝔼[𝑋]| ≥ 𝜖) (2.16)

. Clearly we want this probability to be zero, for 𝑝𝑛(𝑖) to be arbitrarily close to 𝔼[𝑝𝑛(𝑖)]. Making use of
Chebyshev’s inequality we derive

ℙ (|𝑋 − 𝔼[𝑋]| ≥ 𝜖) ≤ Var(𝑋)
𝜖2

So we want to prove that Var(𝑋) → 0 as 𝑛 → ∞. Since Var(𝑋) = Cov(𝑋, 𝑋) we have

Var(
∑𝑛𝑗=1 𝟙deg(𝑣𝑗)=𝑖

𝑛 ) = 1
𝑛2Cov(

𝑛

∑
𝑗=1
𝟙deg(𝑣𝑗)=𝑖 ,

𝑛

∑
𝑗=1
𝟙deg(𝑣𝑗)=𝑖)

= 1
𝑛2

𝑛

∑
𝑗=1

𝑛

∑
𝑘=1

Cov (𝟙deg(𝑣𝑗)=𝑖 , 𝟙deg(𝑣𝑘)=𝑖)

using the distributive property of the covariance. We split up the double sum in a diagonal sum and
use the property that Cov(𝑋, 𝑌) = Cov(𝑌, 𝑋) to sum triangular twice. Hence

= 1
𝑛2 (

𝑛

∑
𝑗=1
[Cov(𝟙deg(𝑣𝑗)=𝑖 , 𝟙deg(𝑣𝑗)=𝑖)] + 2 ⋅

𝑛

∑
𝑗=1

𝑛

∑
𝑘=𝑗+1

Cov (𝟙deg(𝑣𝑗)=𝑖 , 𝟙deg(𝑣𝑘)=𝑖))

= 1
𝑛2

𝑛

∑
𝑗=1
[Cov(𝟙deg(𝑣𝑗)=𝑖 , 𝟙deg(𝑣𝑗)=𝑖)] +

2
𝑛2 ⋅

𝑛

∑
𝑗=1

𝑛

∑
𝑘=𝑗+1

Cov (𝟙deg(𝑣𝑗)=𝑖 , 𝟙deg(𝑣𝑘)=𝑖)

We recall that Cov(𝑋, 𝑋) = Var(𝑋) and then we simplify the first term to find

1
𝑛2

𝑛

∑
𝑗=1
[Cov(𝟙deg(𝑣𝑗)=𝑖 , 𝟙deg(𝑣𝑗)=𝑖)] =

1
𝑛2

𝑛

∑
𝑗=1

Var (𝟙deg(𝑣𝑗)=𝑖) (2.17)

Now we use the fact that the 𝟙… ∼ Bernoulli(𝑝) for some 𝑝 and Var(Bernoulli(𝑝)) = 𝑝(1 − 𝑝) ≤ 1.
Therefore

1
𝑛2

𝑛

∑
𝑗=1

Var (𝟙deg(𝑣𝑗)=𝑖) ≤
1
𝑛2

𝑛

∑
𝑗=1
1

= 𝑛
𝑛2 =

1
𝑛 → 0 (𝑛 → ∞)

So we have proven the first term indeed tends to zero. The second term requires us to write out the
Cov terms using the definition Cov(𝑋, 𝑌) def= 𝔼[𝑋 ⋅ 𝑌] − 𝔼[𝑋]𝔼[𝑌]. Thus the second term becomes

2
𝑛2 ⋅

𝑛

∑
𝑗=1

𝑛

∑
𝑘=𝑗+1

(ℙ(deg(𝑣𝑗) = 𝑖, deg(𝑣𝑘) = 𝑖) − ℙ(deg(𝑣𝑗) = 𝑖)ℙ(deg(𝑣𝑘) = 𝑖))

Next we split the the probability using the law of total probability for the cases that 𝑣𝑗 and 𝑣𝑘 have
overlap or not. We note

ℙ(deg(𝑣𝑗) = 𝑖, deg(𝑣𝑘) = 𝑖) = ℙ(deg(𝑣𝑗) = 𝑖, deg(𝑣𝑘) = 𝑖 ∣ 𝑣𝑗 ↔ 𝑣𝑘)ℙ(𝑣𝑗 ↔ 𝑣𝑘)
+ℙ(deg(𝑣𝑗) = 𝑖, deg(𝑣𝑘) = 𝑖 ∣ 𝑣𝑗 ↮ 𝑣𝑘)ℙ(𝑣𝑗 ↮ 𝑣𝑘)
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In the case that they do not have overlap we can actually view them as independent events and find

ℙ(deg(𝑣𝑗) = 𝑖, deg(𝑣𝑘) = 𝑖) = ℙ(deg(𝑣𝑗) = 𝑖, deg(𝑣𝑘) = 𝑖 ∣ 𝑣𝑗 ↔ 𝑣𝑘)𝑂 (
1
𝑛)

+ ℙ(deg(𝑣𝑗) = 𝑖, deg(𝑣𝑘) = 𝑖 ∣ 𝑣𝑗 ↮ 𝑣𝑘)𝑂 (1 −
1
𝑛)

as 𝑛 → ∞. Moreover, the double sum we view as a lower triangle, which we can also write as (𝑛−1)(𝑛−1)
2 .

Using the symmetry on the 𝑣𝑖 we find

2(𝑛 − 1)2
2𝑛2 (ℙ(deg(𝑣𝑗) = 𝑖, deg(𝑣𝑘) = 𝑖 ∣ 𝑣𝑗 ↮ 𝑣𝑘) − ℙ(deg(𝑣𝑗) = 𝑖)ℙ(deg(𝑣𝑘) = 𝑖)) = 0

The first term can be described with a Multinomial distribution with 𝑛 − 2 trials, (𝑖, 𝑖, 𝑛 − 2 − 2𝑖)
successes, and probability vector p = (𝜋𝑐

2

𝑛 ,
𝜋𝑐2
𝑛 , 1 −

2𝜋𝑐2
𝑛 ), the second term is a Binomial (𝑛 − 1, 𝜋𝑐

2

𝑛 )
distribution squared. Moreover, the double sum we view as a lower triangle, which we can also write
as (𝑛−1)(𝑛−1)

2 . Using the symmetry on the 𝑣𝑗 , 𝑣𝑘 we find

ℙ(Multinomial(𝑛 − 2, 2𝜋𝑐
2

𝑛 , 2𝜋𝑐
2

𝑛 , 1 − 2𝜋𝑐
2

𝑛 ) = (𝑖, 𝑖, 𝑛 − 2 − 2𝑖)) → ℙ(Poi(𝜆) = 𝑘)2 (2.18)

but also

ℙ(Bin(𝑛 − 1, 2𝜋𝑐
2

𝑛 ) = 𝑖)
2

→ ℙ(Poi(𝜆) = 𝑘)2 (2.19)

for 𝑛 → ∞. Thus for large enough values of 𝑛 the terms approximately cancel out and the variance
tends to zero. Therefore, now that we have shown the variance to tends to zero as 𝑛 tends to infinity
we conclude that

ℙ (|𝑋 − 𝔼[𝑋]| ≥ 𝜖) 𝑛→∞→ 0 (2.20)

and therefore |𝑋 − 𝔼[𝑋]| < 𝜖 as 𝑛 → ∞. Then finally we can write

|𝑝(𝐺)𝑛 (𝑖) − ℙ(Poi(𝜆) = 𝑖)| = |𝑝(𝐺)𝑛 (𝑖) − 𝔼[𝑝(𝐺)𝑛 (𝑖)] + 𝔼[𝑝(𝐺)𝑛 (𝑖)] − ℙ(Poi(𝜆) = 𝑖)|
≤ |𝑝(𝐺)𝑛 (𝑖) − 𝔼[𝑝(𝐺)𝑛 (𝑖)]| + |𝔼[𝑝(𝐺)𝑛 (𝑖)] − ℙ(Poi(𝜆) = 𝑖)|
= 𝜖 + 𝜖 = 2𝜖

Since 𝜖 > 0 was chosen arbitrary it can be arbitrarily small, thus proving that indeed 𝑝(𝐺)𝑛 (𝑖) 𝑛→∞→
ℙ(Poi(𝜆) = 𝑖) for all finite 𝑖 ∈ ℕ. This implies that p(𝐺)𝑛 (𝑖) 𝑑→ Poi(𝜆), concluding the proof.

The proof is work of my own, heavily inspired by a sketch of my supervisor Júlia Komjáthy.
We note that the important link between the 𝑅𝐺𝐺(𝑛, 𝑟) model and the 𝐺(𝑛, 𝑝) to be in the form of

𝜆 = 𝜋𝑐2 (2.21)

for dimension 𝑑 = 2. As mentioned in Section 2.1.2 another extension to the classical random graph is
inhomogeneity. We shall now procede to define a inhomogeneous extension to the random geometric
graph.

2.2.1. Geometric Inhomogeneous Random Graphs
A random graph model with both the location extension as well as the inhomogeneous edge condition
variation can be defined, called GIRG (Geometric Inhomogeneous Random Graph). A natural way to
extend the RGG-model is to vary the radius for each pair of vertices

‖𝑥 − 𝑦‖ ≤ 𝑓(𝑟𝑥 , 𝑟𝑦) (2.22)
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where 𝑓 ∶ [0,∞)2 → [0,∞) is a function ‘join’ the radii, for example 𝑓(𝑟𝑥 , 𝑟𝑦) = max(𝑟𝑥 , 𝑟𝑦). Different
functions of 𝑓 can result in drastic different behaviour. However, in order to best compare a RGG-model
and its GIRG extension we prefer to use a weight based approach. Henceforth, a joint measure 𝜇⊗𝑊ℙ

is used, where𝑊 is the distribution of vertex weights. One can think of the weight of a vertex as the the
‘fitness’ of the vertex, i.e. its ability to form many edges. Moreover, the joint measure is independent.
We define �̃� = (𝑉,𝑊𝑉) as the realisation of the stochastic variable. One can also view 𝑊 as adding
another dimension and this results in double randomness; first a realisation in the vertex location and
then a realisation in their weights. For example let 𝑢 be a random vertex in the GIRG-model, then 𝑥𝑢
is the realisation of 𝑋𝑢 and 𝑤𝑢 of𝑊𝑢, where

(𝑥𝑢 , 𝑤𝑢) ∈ �̃� (2.23)

Specifically, 𝜒 ⊆ ℝ𝑑 is assumed with 𝑑 ≥ 1. Let (𝑋𝑖 ,𝑊𝑖)𝑖∈{1,…,𝑛} be the vertices as a pair of its location
and weight, where 𝑋𝑖 is a point in 𝜒. The 𝑋𝑖 ’s are chosen i.i.d. from some measure 𝜇 on 𝜒. Moreover
each vertex 𝑖 has a weight𝑊𝑖 ∈ [0,∞) chosen i.i.d. as well, but with possibly another distribution. The
realisations of 𝑋𝑖 and𝑊𝑖 are denoted 𝑥𝑖 and 𝑤𝑖 respectively. The edges are conditionally independent
with given the 𝑥𝑖 and 𝑤𝑖. One example of an connection probability used in a GIRG-model is

ℙ({𝑢, 𝑣} ∈ 𝐸|(𝑥𝑢 , 𝑤𝑢), (𝑤𝑣 , 𝑤𝑣) ∈ �̃�) = {
min (1, 𝑤𝑢⋅𝑤𝑣⋅𝑟‖𝑥𝑢−𝑥𝑣‖2

) if𝑋𝑢 ≠ 𝑋𝑣
0 otherwise

(2.24)

where the edge probability both depends on the location as well as the vertex weight. If the edge
condition contains the corrector term ∑𝑛𝑖=0𝑤𝑖 in the denominator it is a Chung-Lu GIRG adaptation.
Using this sum is qualitatively similar since ∑𝑊𝑖 = 𝑛 ⋅ 𝔼[𝑊] ± √𝑛 by the Law of Large numbers.

In this chapter many different random graph models have been mentioned and defined. Now we
shall focus on the properties in these random graph models, where most of our efforts are towards the
𝑘-core property.

2.3. 𝐾-core property
Before we continue with 𝑘-core graph property, we first shall define a subgraph. Like most structures
in mathematics, substructures can be defined. Most fundamentally a set and its subset. For a graph a
subgraph can be defined.

Definition 7. Let 𝐺 = (𝑉, 𝐸) be a graph. Then 𝐻 = (𝑉′, 𝐸′) is a subgraph of 𝐺 if 𝑉 ⊆ 𝑉′ and 𝐸′ ⊆ 𝐸,
such that every 𝑒 ∈ 𝐸′ must consist of vertices from 𝑉′.3

With the induced subgraph in mind, the definition of the 𝑘-core can be written in a compact form.

Definition 8. Let 𝐺 = (𝑉, 𝐸) be a graph. The k-core of 𝐺, denoted Core𝑘, is the maximal induced
subgraph 𝐻 of 𝐺 where ∀𝑣 ∈ Core(𝐺)𝑘 ∶ deg(𝐻)(𝑣) ≥ 𝑘. Moreover, the 𝑘-shell of a graph are those
vertices which are in the 𝑘-core vertex set but not in the (𝑘 + 1)-core vertex set.

Maximal means that there is no other subgraph which also meets the degree condition, whilst having
a bigger vertex set. Important to note is that the 𝑘-core of a graph does not need to be one component,
but can consists of multiple components (clusters), as can be seen in the example in Figure 2.3. In
the figure, three clusters of red points, all part of the 4-core, can be seen. Alternative definitions exist
which require the 𝑘-core to be a connected subgraph. This means that in case of Figure 2.3 the largest
𝑘-core component is refered to as ‘the 𝑘-core’ according to this alternative definition. We shall only
refer to the 𝑘-core as given by Definition 8 in this thesis.

The size as well as the existence of a 𝑘-core are studied extensively for some random graph models
[49]. Upper and lower bounds in terms of elements of 𝐺 are important to consider both from a deter-
ministic point of view as well as in the random graph setting. We provide a sketch of a simple proof
for lower bound of edges for the existence of a 𝑘-core. Furthermore, we shall write out a full proof for
an upper bound for the existence of the 𝑘-core, also in terms of the number of edges in 𝐺. For both
bounds we use the definition of a clique in a graph, so we shall state this first.
3To clarify 𝐸′ ⊆ (𝑉′2 ), since in this paper we avoid edges in the subgraph edge set where the endpoints are not in the subgraph
vertex set. For more information these alternative concepts search for ‘half edges’ and ‘loose edges’



18 2. 𝐾-cores in Random Graphs

Figure 2.3: The 𝑘-core in red consisting of two (connected) components. Visual of generated random geometric graph (RGG),
with 𝑛 = 100. Points were drawn uniformly on the grid. Edge condition used is the infinity norm with radius 𝑟 = 𝑐 ⋅ 𝑛−

1
2 , since

the dimension 𝑑 = 2.

Definition 9. A clique of size 𝑚 of a graph 𝐺 = (𝑉, 𝐸) is a set of vertices 𝐶𝑚 ⊆ 𝑉 such that

𝐶𝑚 ∶= {𝑢1, 𝑢2, … , 𝑢𝑚 ∈ 𝑉 ∶ {𝑢𝑖 , 𝑢𝑗} ∈ 𝐸∀𝑖, 𝑗 ∈ {1, … ,𝑚}} (2.25)

meaning that every vertex in the clique is connected to any other vertex in the clique.

Now we continue with the lower and upper bounds for the 𝑘-core in terms of edges in a graph 𝐺.
The first bound is the following: ”What is the minimum number of edges in a graph with 𝑛 vertices to
have a 𝑘-core?”. To deduce this answer, we first note the graph must contain a clique of size 𝑘 and
𝑛 − 𝑘 isolated vertices. Therefore the minimum number of edges is precisely those edges needed for
the clique; 𝑘(𝑘−1)2 .

The second edge case result for 𝑘-cores in graphs is the following.

Theorem 3. Let 𝐺 = (𝑉, 𝐸) be a simple graph with 𝑛 vertices. Then the maximum number of edges
𝑒(𝑛, 𝑘) in 𝐺 with a empty 𝑘-core is given by

𝑒(𝑛, 𝑘) = 𝑛(𝑘 − 1) − 𝑘(𝑘 − 1)2 (2.26)

where 𝑛 ≥ 𝑘 ≥ 2.
Now we proof Theorem 3.

Proof. First we remark that a clique of size 𝑘 + 1 results in a 𝑘-core. We shall use this argument
repeatedly throughout this proof. Hence, the biggest clique in 𝐺 can be at most of size 𝑘, which is 𝐶𝑘.
Any 𝑢 in the clique is connected to 𝑘−1 other vertices in the clique, by definition. Now every vertex not
in 𝐶𝑘 can be connected to at most 𝑘−1 vertices from the clique 𝐶𝑘 without creating a clique of size 𝑘+1
which would create a 𝑘-core. Now, assume every vertex 𝑣 ∈ 𝑉 ⧵ 𝐶𝑘 is connected to 𝑘 − 1 vertices from
𝐶𝑘 only. Now we claim that we already have found the maximum number of edges without a 𝑘-core.
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Claim 1. A graph 𝐺 = (𝑉, 𝐸) with a clique 𝐶𝑘 and where every vertex not in the clique is only connected
to 𝑘 − 1 vertices from the clique is a maximal graph, in terms of edges, with no 𝑘-core. Maximal in the
sense that adding any edge will result in a 𝑘-core.

If the claim is correct any additional edge would create a 𝑘-core. To prove this claim we use case
analysis. Suppose we now add an additional edge {𝑢, 𝑣} between two arbitrary vertices in 𝐺, then there
are two cases to be distinguished.

1. An edge between two vertices both not in 𝐶𝑘
2. An edge between a vertex in 𝐶𝑘 and a vertex not in 𝐶𝑘.

In the first case the edge is between two arbitrary vertices 𝑢, 𝑣 ∈ 𝑉⧵𝐶𝑘. By assumption both 𝑢 and 𝑣 are
connected to 𝑘−1 arbitrary vertices from 𝐶𝑘. This implies they have either 𝑘−2 or 𝑘−1 shared adjacent
vertices in 𝐶𝑘. First assume 𝑢 and 𝑣 share precisely 𝑘 − 2 edges in 𝐶𝑘, say 𝑤1, 𝑤2, … , 𝑤𝑘−2 ∈ 𝐶𝑘. Then
it holds that all vertices in the set Γ1 = {𝑢, 𝑣} ∪ 𝐶𝑘 have at least 𝑘 edges. Thus the vertices in Γ1 form a
𝑘-core. Alternatively we consider 𝑢 and 𝑣 share 𝑘 − 1 adjacent vertices in 𝐶𝑘, say 𝑠1, 𝑠2, … , 𝑠𝑘−1. Now
we note that the set Γ2 = {𝑢, 𝑣, 𝑠1, 𝑠2, … , 𝑠𝑘−1} has at least 𝑘 edges for each element (vertex). So Γ2
forms a 𝑘-core since all vertices in Γ2 is a connected component and each vertex in Γ2 has at least 𝑘
edges.

In the second case, given 𝐶𝑘 = {𝑤1, 𝑤2, …𝑤𝑘}, we have an arbitrary vertex 𝑢 ∉ 𝐶𝑘 such that {𝑢, 𝑤𝑖}
is the additional edge added to 𝐺, for some 𝑖. Since 𝑢 was already connected to 𝑘 −1 vertices from 𝐶𝑘
this newly added edge must be formed with the only vertex not yet connected to 𝑢, since 𝐺 is assumed
a simple graph. Now 𝑢 is connected to any vertex in 𝐶𝑘, meaning 𝐶𝑘+1 = {𝑢} ∪ 𝐶𝑘. Since 𝐶𝑘+1 is a
𝑘-core the second case of the claim is now proven.

Both cases lead to the existence of a 𝑘-core in 𝐺, hence the claim is true. Now from the construction
it follows that the number of edges for the 𝑘 vertices in the clique is

𝑒(𝐶𝐾) =
𝑘(𝑘 − 1)

2 (2.27)

Moreover, the number of edges for the (𝑛 − 𝑘) vertices not in 𝐶𝑘 is (𝑛 − 𝑘)(𝑘 − 1). Therefore we find
the maximum number of edges to be

𝑒(𝑛, 𝑘) = (𝑛 − 𝑘)(𝑘 − 1) + 𝑘(𝑘 − 1)2
= 𝑛(𝑘 − 1) − 𝑘(𝑘 − 1) + 𝑘(𝑘 − 1)2
= 𝑛(𝑘 − 1) − 𝑘(𝑘 − 1)2

which is the required equation from the theorem, thus finishing the proof.

The proof is a personal work. Another, more common, way of proving this theorem requires induc-
tion. Theorem 3 provides an upper bound on the emergence of a 𝑘-core in terms of the number of
edges. However, this bound is not very useful for random graphs as probability for the appearance
of the 𝑘-core can be shown to be almost surely 1 for large values of 𝑛. Therefore we would like to
formulate the upper bound in terms of parameter(s) of a random graph model, for example, in terms of
𝜆 for 𝐺 (𝑛, 𝜆𝑛). We refer to the first appearance of the 𝑘-core in a random graph as the threshold. In the
next section we explore this 𝑘-core threshold.

2.3.1. 𝐾-core thresholds
A brief remark on the notation regarding asymptotic behaviour. An event which occurs with a probability
tending to 1 as 𝑛 → ∞ is said occur ‘almost surely’ (a.s.) or in other words to hold ‘with high probability’
(whp).

The 𝑘-core property in the classical random graph 𝐺(𝑛, 𝑝) has been well studied. Back in 1987,
Luczak’s paper on the size of the 𝑘-core in 𝐺(𝑛, 𝑝) establishes the discontinuous phase transition of
the 𝑘-core size. He defines 𝑣(𝑘; 𝑛, 𝑝), we refer to as 𝑣(Core(𝐺)𝑘 ) or |Core(𝐺)𝑘 |, to be the random variable
representing the number of vertices in the 𝑘-core of the 𝐺(𝑛, 𝑝) graph [51]. Important to remark is that
𝑝 is dependent on 𝑛, such that 𝑝 = 𝑝(𝑛) = 𝑐

𝑛 , where 𝑐 is the average degree.
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Theorem 4. Let 𝐺 be a realisation of the classical random graph model 𝐺(𝑛, 𝑝(𝑛)). If 𝑘 ≥ 3, then a.s.
either 𝑣(Core(𝐺)𝑘 ) = 0 or 𝑣(Core(𝐺)𝑘 ) ≥ 0.0002𝑛.

This phenomena was confirmed by Pittel et al: ”When a 𝑘-core appears for the first time it is very
likely to be giant, ...”. The model 𝐺 (𝑛, 𝜆𝑛) was used by Pittel, Spencer and Wormald to derive a similar
result in [68]. Different than in [51], a critical value is provided for every 𝑘 ≥ 3 using a clever construction.
Given 𝜇 > 0 and 𝑗 ∈ ℕ and let 𝜓𝑗 ∶= ℙ(Poi(𝜇) ≥ 𝑗). Further define

𝜆𝑘 =min
𝜇>0

𝜇
𝜓𝑘−1(𝜇)

(2.28)

as the threshold value for the appearance of the 𝑘-core. In Figure 2.4, the function 𝜇
𝜓𝑘−1(𝜇)

is plotted
for various 𝜇. The threshold value 𝜆𝑘 is visible as the minimum 𝜆 for 𝑘 = 3, 𝑘 = 4 and 𝑘 = 5. For
𝑘 = 3 at 𝜇 ≈ 1.81 we find 𝜆𝑘 ≈ 3.35. For 𝜆 > 𝜆𝑘 define 𝜇𝑘(𝜆) to be the largest solution to the equation

Figure 2.4: The critical points for the 𝑘-cores in 𝐺 (𝑛, 𝜆𝑛 ), with 𝑘 = 3, 4, 5, are marked by the the threshold value 𝜆𝑘. Values of
𝜇 on the left of this threshold value fall into the subcritical regime and those the right into the supercritical regime. For 𝜆3 the
critical value is around 𝜇 ≈ 3.55

𝜇
𝜓𝑘−1(𝜇)

= 𝜆. We shall now state the theorem by Pittel et al. as mentioned in [47]

Theorem 5. Consider the random graph 𝐺 (𝑛, 𝜆𝑛), where 𝜆 > 0 is fixed. Let 𝑘 ≥ 2 be fixed and let

Core𝑘 = Core𝑘(𝑛, 𝜆) be the 𝑘-core of 𝐺 (𝑛, 𝜆𝑛). Then

(i) If 𝜆 < 𝜆𝑘 and 𝑘 ≥ 3, then Core𝑘 is empty whp.

(ii) If 𝜆 > 𝜆𝑘, thenwhpCore𝑘 is non-empty, and 𝑣(Core𝑘)
𝑛

p→ 𝜓𝑘(𝜇𝑘(𝜆)), 𝑒(Core𝑘)
p→ 𝜇𝑘(𝜆)𝜓𝑘−1(𝜇𝑘(𝜆))/2 =

𝜇𝑘(𝜆)2/(2𝜆).

The same results hold for the random graph 𝐺(𝑛,𝑚), for any sequence 𝑚 = 𝑚(𝑛) with 2𝑚
𝑛 → 𝜆.

We note that 𝜆𝑘 is the critical threshold value for the emergence of the 𝑘-core in 𝐺 (𝑛, 𝜆𝑛). The
relative size of the 𝑘-core is now explicitly expressed.

In [47] Janson and Luczak study the 𝑘-core of a random (multi)graph, using the configuration model,
for a degree sequence d. A breakthrough in this field of research is the fact that Janson and Luczak
recover the result from Pittel et al by an alternative proof, stating ”unlike, ..., we do not use differ-
ential equations, but rely solely on the convergence of empirical distributions of independent random
variables.”
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2.4. 𝐾-cores in Random Geometric Graphs
Given the 𝜆𝑘 threshold for the homogeneous 𝐺(𝑛, 𝑝), for example 𝜆3 ≈ 3.35, we can derive the radius
amplification factor for our RGG, which is also homogeneous. By Equation 2.21 it follows that

𝜆 = 𝜋𝑐2 (2.29)

𝑐 = √𝜆𝜋 (2.30)

Denote 𝑟3 the radius amplification factor 𝑟𝑓 for the critical value 𝜆3. Then 𝑟3 ≈ 1.03. It would be desirable
to transfer the theorem of Pittel et al to the realm of the RGG.

For multiple values of 𝑟𝑓 the proportion of the vertices in the 𝑘-core are calculated by simulation.
For each 𝑟𝑓 a sample of 25 simulations ran. These samples were based on 𝑛 ∈ {250, 750, 2500}. The
largest simulation ran for 𝑛 = 50000 produces similar result but took to long to run multiple times, also
taking up close to 32Gb of RAM memory.

Overall the dispersion of the samples decreased with the increase of 𝑛. This is contrary to what is
expected. The variance should increase with 𝑛 if there is a first-order phase transition around at critical
value for 𝑟𝑓 More closely around 𝑟3, simulations also including 𝑛 = 7500 are performed. Hence the

Figure 2.5: Left: Proportion of vertices in the 3-core plotted against the radius factor. The dispersion of the sample of 25
simulations annotated with the vertical bar and the dot represents the sample mean. Right: The sample variance for each
sample of 25 simulations.

Figure 2.6: Left: Proportion of vertices in the 3-core plotted against the radius factor. The dispersion of the sample of 25
simulations annotated with the vertical bar and the dot represents the sample mean. Right: The sample variance for each
sample of 25 simulations.

simulations suggest there is no first-order phase transition, as is the case in 𝐺 (𝑛, 𝜆𝑛). Simulations of
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(a) Realisation of RGG(2500,0.8), where
|Core3|/𝑛 ≈0.1648

(b) Realisation of RGG(2500,1.03), where
|Core3|/𝑛 ≈0.4428

(c) Realisation of RGG(2500,1.2), where
|Core3|/𝑛 ≈0.69

(d) Realisation of RGG(2500,0.8), where
|Core5|/𝑛 ≈0.0024

(e) Realisation of RGG(2500,1.03), where
|Core5|/𝑛 ≈0.0376

(f) Realisation of RGG(2500,1.2), where
|Core5|/𝑛 ≈0.1392

Figure 2.7: Examples of the growth behaviour of the 𝑘-core for realisations of the RGG-model. The 𝑘-core vertices are marked
in red and the other vertices in blue. Shown for 𝑘 = 3 in the top row and 𝑘 = 5 in the bottom row.

the RGG-model show the 𝑘-core grows in ‘patches’, i.e. clusters, for both 𝑘 = 3 as 𝑘 = 5; see Figure
2.7. Meaning, the 𝑘-core appears to exist even in proportions below the 0.27𝑛 threshold.

Due to the geometric embedding, the 𝑘-cores appear to behave similar in fashion to the 𝐶𝑚𝑎𝑥, but
a first order phase-transition we could not manage to find in simulations, except for the trivial 𝑟𝑓 = 0.
We conclude this from several types of simulations. Figure 2.10, shows simulation samples with error
margins, along with the variance of the samples. These simulations show less variation for larger
values of 𝑛, and support the idea of only a trivial jump at 𝑟𝑓 = 0 for large values of 𝑛. This suggests
that the randomness within the geometric embedding ensures clustering due to the symmetry of the
homogeneous conditions, hence small cliques appear. Those small cliques add to the total proportion
of the 𝑘-core. To illustrate this behaviour, we think of a ℝ2, an infinite grid, with vertices on all of ℤ2.
Consider points 𝑥 and 𝑦 to be connected if ‖𝑥−𝑦‖∞ < 1. Nowwe let the points deviate from their integer
valued coordinates by some 𝜖 > 0 at random. For example 𝑥 = (2, 3) becomes 𝑥′ = (2.1, 2.89). We
started without any connections, but clearly now many connections will occur due to the randomness
of the deviation. Surely triangles or cliques of size 4 will be formed. With this illustration in mind, we
now give a possible explanation for the lack of the first-order phase-transition. Consider the following
scenario. Let 𝑢, 𝑣, 𝑤 vertices, then for 𝐺(𝑛, 𝑝) we have

ℙ ({𝑢, 𝑤} ∈ 𝐺(𝑛, 𝑝)‖{𝑢, 𝑣} ∈ 𝐺(𝑛, 𝑝) ∧ {𝑣, 𝑤} ∈ 𝐺(𝑛, 𝑝)) = ℙ({𝑢, 𝑤} ∈ 𝐺(𝑛, 𝑝)) = 𝜆
𝑛 (2.31)

since edge probabilities are independent. In the RGG model however, this is not the case.

Lemma 6. Let 𝐺 = (𝑉, 𝐸) be an instance of the RGG-model such that 𝑟 = 𝜆𝑛−
1
𝑑 . Then, in general,

ℙ({𝑢, 𝑤} ∈ 𝐸|{𝑢, 𝑣} ∈ 𝐸 ∧ {𝑣, 𝑤} ∈ 𝐸) ≠ 𝜆
𝑛 .

Proof. Let RGG(𝑛, 𝑟) = (𝑉, 𝐸) be a random geometric graph on𝕋2 with the edge probabilityℙ({𝑣1, 𝑣2} ∈
𝐸) = ‖𝑣1 − 𝑣2‖2 ≤ 𝑟, ∀𝑣1, 𝑣2 ∈ 𝑉. Now suppose {𝑢, 𝑣}, {𝑣, 𝑤} ∈ 𝐸. Let 𝑢 have location (𝑢𝑥 , 𝑢𝑦) and
without loss of generality assert 𝑢𝑥 = 𝑢𝑦 = 0. Now since {𝑢, 𝑣} ∈ 𝐸 clearly ‖𝑢 − 𝑣‖2 ≤ 𝑟.
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In the extreme case ‖𝑢 − 𝑣‖2 = 𝑟. This means that 𝑣 lies on the edge of the circle of connection of
𝑢 and vice versa. Denote the area of connection of 𝑢 with 𝐴 and the area of connection for 𝑣 with 𝐵.
Now the circle of connection of 𝑣 can be split into two parts

1. The part outside; 𝐷 ∶= 𝐵 ⧵ 𝐴

2. The overlap; 𝐶 ∶= 𝐵 ∩ 𝐴

as shown in Figure 2.8.

Figure 2.8: Intersection area of circles of connection between two vertices which are connected at the end.

Now by assumption {𝑣, 𝑤} ∈ 𝐸, so either 𝑤 ∈ (𝐵 ⧵ 𝐴) or 𝑤 ∈ 𝐵 ∩ 𝐴. Meaning that, since 𝑤 is
connected to 𝑣,

ℙ({𝑢, 𝑤} ∈ 𝐸| ({𝑢, 𝑣} ∈ 𝐸 ∧ {𝑣, 𝑤} ∈ 𝐸)) ≥ Area(𝐶)
Area(𝐵) (2.32)

where Area(𝐵) = 𝜋𝑟2. Furthermore, 𝐶 is has the shape of a symmetric lens. Since the total distance
between 𝑢 and 𝑣 is ‖𝑢 − 𝑣‖ = 𝑟, the halfway point is 𝑟

2 . Now translate and rotate everything such that

𝑢 = (0, −𝑟2 ) and 𝑣 = (0,
𝑟
2). Then the distance still remains 𝑟. Now the upper half of the lens is the part

above the horizontal axis. Using basic algebraic geometry this upper lens area can be described as

𝐶upper = ∫
√3𝑟
2

− √3𝑟2

√𝑟2 − 𝑥2 − 𝑟2𝑑𝑥 (2.33)

To solve this substitute for 𝑥 = 𝑟 sin(𝑠) on the interval [𝑠1, 𝑠2]. Use 𝑑𝑥 = 𝑟 cos(𝑠)𝑑𝑠 to write

𝐶upper = ∫
𝑠2

𝑠1
𝑟√1 − sin(𝑠)2 − 𝑟2 ⋅ 𝑟 cos(𝑠)𝑑𝑠

= ∫
𝑠2

𝑠1
𝑟 cos(𝑠)2 − 𝑟

2 cos(𝑠)
2 𝑑𝑠
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Using the double angle trigonometry identity cos(𝑠)2 = 1
2 +

1
2 cos(2𝑠) we rewrite to

𝐶upper = ∫
𝑠2

𝑠1

𝑟
2 +

𝑟
2 cos(2𝑠) −

𝑟2 cos(𝑠)
2 𝑑𝑠

= [ 𝑟2𝑠 +
𝑟
4 sin(2𝑠) −

𝑟2 sin(𝑠)
2 ]

𝑠2

𝑠1

= [𝑟2 arcsin (
𝑥
𝑟 ) +

𝑟
4 ⋅ 2

𝑥
𝑟 ⋅ cos(𝑠) −

𝑟𝑥
2 ]

𝑥= √3𝑟2

𝑥=− √3𝑟2

= [𝑟2 arcsin (
𝑥
𝑟 ) +

𝑟
4 ⋅ 2

𝑥
𝑟 ⋅ √1 − sin(𝑠)2 − 𝑟𝑥2 ]

𝑥= √3𝑟2

𝑥=− √3𝑟2

= [𝑟2 arcsin (
𝑥
𝑟 ) +

𝑥
2 ⋅
√1 − 𝑥

2

𝑟2 −
𝑟𝑥
2 ]

𝑥= √3𝑟2

𝑥=− √3𝑟2

= 1
2𝑟

2 (2𝜋3 − √32)

Here we used back substitution and trigonometry identities. Thus

Area(𝐶) = 𝑟2 (2𝜋3 − √32) (2.34)

because of the symmetry of the lens shaped region 𝐶. The same result could also have been obtained
using ordinary geometry for circle intersections [80]. Using the result (Equation 2.34) and the fact that
Area(𝐵) = 𝜋𝑟2 in Equation 2.32 we obtain

ℙ({𝑢, 𝑤} ∈ 𝐸| ({𝑢, 𝑣} ∈ 𝐸 ∧ {𝑣, 𝑤} ∈ 𝐸)) ≥
𝑟2 (2𝜋3 − √32)

𝜋𝑟2 ≈ 0.39 (2.35)

Clearly, in general, 𝜆
𝑛 ≱ 0.39. Moreover, it does not even depend on 𝑛. Intuitively this means the

presence of triangles, or clusters in general, are guaranteed for large values of 𝑛. To really bring home
this point we provide a comparison between the homogeneous Erdős-Rényi random graph model and
the RGG counterpart. Figure 2.9 shows, on the left, the first-order phase transition for the 3-core in the
Erdős-Rényi random graph model at the critical 𝜆3 ≈ 3.35. On the right the 3-core proportion, |Core𝑘|𝑛 ,
is computed by simulations for the same values of 𝜆. To overcome this locality preference in the RGG
model, we shall explore an inhomogeneous extension of this model in Section 2.5. But before we do,
we first analysis of the 𝑘-core growth for the RGG-model further.

For 𝐶max, there is a second-order phase transition in the 𝐺(𝑛, 𝑝) model, compared to the first-order
phase-transition for the Core𝑘. The question if the thresholds for the appearance of a giant component
transfers from the 𝐺(𝑛, 𝑝)-model to the RRG-model remains. Due to the geometrical cluster forming we
added the connected variant of the 𝑘-core. Let 𝐶𝑖 be the components of graph 𝐺. Define the connected
𝑘-core by

Core∗𝑘 ∶=max
𝑖
{𝐶𝑖 ∩ Core𝑘} (2.36)

For the connected 𝑘-core it seems plausible to find a first-order phase transition in its size, close to
the 𝐶max threshold. In Figure 2.11, we compare the largest component, the 𝑘-core and the connected
𝑘-core. Around 𝑟𝑓 = 1.2, presumably a critical threshold, a jump in the size of the largest component is
witnessed. This ensures the difference between the 𝑘-core and its connected version is (almost fully)
nullified.

To conclude, in this section we compared the geometric random graph model to the homogeneous
Erdős-Rényi random graph model. We shall continue to do the same for the inhomogeneous variant.
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Figure 2.9: Comparison of the 3-core growth in terms of 𝜆 for the ER-model (left) and RGG-model (right), based on sample of 35
values for 𝜆 each. The ER-model clearly shows the first-order transition, while the 3-core in the RGG-model increases roughly
linear throughout.

(a) Simulation samples of 25 for lower values of 𝑟𝑓 do not indicate
a phase-transition

(b) No apparent first emergence of the 𝑘-core. Simulation samples
of 25 on the specific 𝑟𝑓 region with small proportions.

Figure 2.10: Simulations suggest no first-order phase transition occurs for 𝑘-cores in the RGG-model.

2.5. 𝐾-cores in Geometric Inhomogeneous Random Graphs
While vertices in the RGG-model are limited by their location and the general radius 𝑟, in the GIRG-
model the weight of the vertex results in different phenomena. ‘Hub’-like behaviour is observed in these
GIRG realisations if the weight distribution is heavy-tailed, as described by Bringmann et al in [18].
This is confirmed by simulations with power-law probability distributions, like the Pareto distribution. In
Figure 2.12, realisations are shown of both the GIRG-model with 𝑊 ∼ Poi+(2) and 𝑊 ∼ Pareto(2).
Here Poi+ indicates the zero-truncated Poisson distribution with probability density function

ℙ(Poi+(𝜆) = 𝑘) = 𝑒−𝜆𝜆𝑘
𝑘! (1 − 𝑒−𝜆) (2.37)

The truncated Poisson is used to avoid weights of zero, which would make those vertex nonreceptive
with respect to any other vertex, i.e. an isolated vertex.

The question arises how the 𝑘-core behaves in the GIRG-model with a vertex weight Pareto(𝜆)
distribution. In Figure 2.13 the 𝑘-core proportion is plotted for 𝑊 ∼ Pareto(3). We find a continuous
growth for the size of the 𝑘-core for this setup of the GIRG-model. Decreasing the heaviness of the tail
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Figure 2.11: Comparison of 𝐶max, Core𝑘 and the Core∗𝑘

(a) Realisation of the GIRG-model with a Poi+(2) weight distribu-
tion and 𝑟𝑓 = 0.08

(b) Realisation of the GIRG-model with a Pareto(2) weight distri-
bution and 𝑟𝑓 = 0.08

Figure 2.12: Comparison between a realisation of a light- and heavy-tailed weight distributed GIRG-model.

Figure 2.13: Left: Proportion of vertices in the 3-core plotted against the radius factor. The dispersion of the sample of 25
simulations annotated with the vertical bar and the dot represents the sample mean. Right: The sample variance for each
sample of 25 simulations.
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of the Pareto distribution we find the ‘hub’ behaviour to lessen and the cluster. Moreover, the radius
amplification factor influences the cluster sizes. To illustrate this, Figure 2.14 shows the GIRG-model
with the Pareto distribution for the vertex weight with different values for the parameter of the distribution.
This motivates us to start looking for a threshold in the ‘hub’ behaviour and its influence on the 𝑘-

(a) Realisation of the GIRG-model with a
Pareto(4.5) weight distribution and 𝑟𝑓 = 1.3

(b) Realisation of the GIRG-model with a
Pareto(6) weight distribution and 𝑟𝑓 = 1.3

(c) Realisation of the GIRG-model with a
Pareto(18) weight distribution and 𝑟𝑓 = 1.3

Figure 2.14: Comparison between realisations of Pareto weight distributed vertices in the GIRG-model with different scale pa-
rameter values. The ‘hub’-like behavior decreases when the tail becomes less heavy. Edges which wrap around are not drawn
to enhance readability.

core. Using simulations we found the following phenomena. We found a combination of the Pareto
parameter and radius amplification factor which varies drastically in 𝑘-core proportion. Simulations with
Pareto(1.4) and 𝑟𝑓 = 0.08 both

|Core5|
𝑛 ≈ 1 and |Core5|

𝑛 ≈ 0 have been realised. In Figure 2.15 the 5-core
proportion based on samples of 25 simulations are presented for different values of 𝑏 for Pareto(𝑏),
with 𝑟𝑓 = 0.08. Moreover, the variance slightly increases with the size of the graph around 𝑏 = 1.4.

Figure 2.15

For some distribution it is possible to derive a bound for the 𝑘-core in terms of super-heavy weighted
vertices. In other words, if a certain distribution produces more than 𝑘 super-heavy weighted vertices,
almost surely a 𝑘-core exists. Next section we shall prove a statement closely related to this statement
of 𝑘-core existence in the GIRG-model.
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2.5.1. 𝐾-cores embedded in complete subgraphs
In this section we shall prove why the GIRG-model for some distributions is guaranteed to have a 𝑘-
core a.s. The intuition behind the proof is that the super-spreaders from a clique of size at least 𝑘 + 1,
which implies the existence of the 𝑘-core.

Theorem 7. Consider the GIRG-model on the torus 𝕋𝑑 = [0, 1]𝑑 with dimension 𝑑 and the Euclidean
norm, and vertex weight distribution 𝑇. Let 𝐺 = (�̃�, 𝐸) be a random graph in this GIRG-model with
connection probability

ℙ({𝑢, 𝑣} ∈ 𝐸|(𝑥𝑢 , 𝑤𝑢), (𝑤𝑣 , 𝑤𝑣) ∈ �̃�) = {
min (1, 𝑤𝑢⋅𝑤𝑣⋅𝑟

𝑑

‖𝑥𝑢−𝑥𝑣‖2
) if 𝑋𝑢 ≠ 𝑋𝑣

0 otherwise
(2.38)

where 𝑢 and 𝑣 are vertices in 𝐺. Now assume that 𝑇 is a heavy-tailed distribution such that |{𝑢 ∈ �̃� ∶
𝑤𝑢 ≥ √𝑛}| > 𝑘, ∀𝑘 ∈ ℕ for large values of 𝑛. Then graph 𝐺 with the has a 𝑘-core w.h.p. if the radius

amplification factor 𝑐 > 𝑑√1
2√𝑑

Proof. First, let 𝑘 ∈ ℕ and 𝑑 ∈ ℕ be arbitrary fixed constants. Let 𝐺 = (�̃�, 𝐸) be a random graph the
GIRG-model on the torus 𝕋𝑑 = [0, 1]𝑑 with dimension 𝑑 and the Euclidean norm, and vertex weight
distribution 𝑇. Now we define the set 𝑆 by

𝑆 ∶= {𝑢 ∈ �̃� ∶ 𝑤𝑢 ≥ √𝑛} (2.39)

Now by assumption 𝑇 is heavy-tailed such that |𝑆| ≥ 𝑘 as 𝑛 → ∞. Therefore, we consider the following
probability that vertices 𝑢, 𝑣 ∈ 𝑆, 𝑢 ≠ 𝑣, arbitrarily chosen, are connected. We find that

ℙ({𝑢, 𝑣} ∈ 𝐸) =min(1, 𝑤𝑢 ⋅ 𝑤𝑣 ⋅ 𝑟
𝑑

‖𝑥𝑢 − 𝑥𝑣‖2
)

=min⎛

⎝

1,
𝑤𝑢 ⋅ 𝑤𝑣 ⋅ (𝑐�̇�−

1
𝑑 )
𝑑

‖𝑥𝑢 − 𝑥𝑣‖2
⎞

⎠

Since the largest distance two vertices can be apart in 𝕋𝑑 is at most √𝑑 ⋅ (12)
2
= 1

2√𝑑. We find that

‖𝑥𝑢 − 𝑥𝑣‖2 ≤
1
2√𝑑. Moreover, we have that 𝑤𝑢 , 𝑤𝑣 ≥ √𝑛, because 𝑢, 𝑣 ∈ 𝑆. Then it follows that

ℙ({𝑢, 𝑣} ∈ 𝐸) ≥min(1,
𝑤𝑢 ⋅ 𝑤𝑣 ⋅

𝑐
𝑛

1
2√𝑑

)

≥min(1, √𝑛 ⋅ √𝑛 ⋅ 𝑐
𝑑

𝑛
2√𝑑

)

=min(1, 𝑛𝑐
𝑑

𝑛
2√𝑑

)

=min(1, 2𝑐
𝑑

√𝑑
)

By assumption 𝑐 > 𝑑√1
2√𝑑 and we find

ℙ({𝑢, 𝑣} ∈ 𝐸) ≥min (1, 1) = 1 (2.40)

Since 𝑢, 𝑣 ∈ 𝑆 were chosen arbitrarily this holds for all vertices in 𝑆, thus 𝑆 forms a clique of size |𝑆| > 𝑘.
The clique of size greater than 𝑘 implies the existence of a 𝑘-core.
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The condition on 𝑐 is mild as 𝑐(𝑑) → 1 for 𝑑 → ∞. We remark that an alternative version of the proof
includes the condition 𝑐 = 1 and to move the dimension formula to the condition on the weights in the
set 𝑆. Important to note that this proof does not provide a tight lower bound on the weights however.
Many interesting question remain on 𝑘-cores in the GIRG-model. For example, the size of the 𝑘-core
can vary widely. Even thought the super-heavy vertices form a clique, it does not imply any other
vertices are connected few or more of the super-heavy vertices, due to the multiplications of weights.
Although very interesting, a more in-depth analysis of the 𝑘-core size in the GIRG-model is out of the
scope of this thesis. Thus, the next section we briefly shall discuss thresholds for inhomogeneous
random graphs in general.

2.5.2. Thresholds in Inhomogeneous Random Graphs
In the paper ‘the phase transition inhomogeneous random graph’ by Bollobás, Janson and Riordan
they state in particular a necessary and sufficient condition for the existence of a giant component in
a inhomogeneous random graph under a weak assumption [17]. Their model is an extension to the
inhomogeneous random graph model by Söderberg [72]. Due to the generality of the model this is
an important result. The paper contains is lengthy and highly technical and contains many results.
The paper itself is out of the scope of this thesis. Bollobás et al state: ”... many properties of the
model can be determined, in particular the critical point of the phase transition, and the size of the giant
component above the transition. We do this by relating our random graphs to branching processes,
which are much easier to analyze”. This is our motivation to focus on the basics of branching processes
in the next chapter in order to better understand thresholds.





3
Branching processes for k-cores

In this chapter first a branching process is defined. Next an example is provided using the branching
progress. Moreover, some key results regarding ‘extinction’ of a tree branching process are discussed.
Then, in Section 3.2, the 𝑘-core existence is viewed as a branching process, recovering results earlier
stated about 𝑘-core thresholds. Lastly these theoretical results are matched with empirical simulations.

3.1. Branching process
The emergence of the giant component behaviour can be explained through a branching process [17].
Similarly the phase transition of the 𝑘-core can be described [48]. To understand the branching process
the mathematical object ‘tree’ must be introduced first.

3.1.1. Trees
Trees are an important mathematical model to study phenomena. Trees can be viewed a graph with
no cycles.

Definition 10. A tree is an undirected, connected, acyclic graph. A forest is a graph containing tree
components only.

An important observation follows from the definition: there is a unique path between any two vertices
in a tree. For the reader unfamiliar with paths in a graph, we provide some definitions. Let 𝐺 = (𝑉, 𝐸)
be a graph. A walk 𝑤 is a sequence of alternating vertices and edges, so 𝑤 = (𝑣0, 𝑒0, 𝑣1, 𝑒1, … , 𝑒𝑛 , 𝑣𝑛),
beginning and ending with a vertex. Important to note the following condition must hold ∀𝑖 ∈ {0, … , 𝑛} ∶
𝑒𝑖 ∈ 𝐸∧𝑣𝑖 ∈ 𝑒𝑖∧𝑣𝑖+1 ∈ 𝑒𝑖 to make the walk sensible. Otherwise nonsensical walks could be constructed.
A path from 𝑢 to 𝑣 is a walk where 𝑣0 = 𝑢 and 𝑣𝑛 = 𝑣 in which every vertex appears at most once.

In the subcritical regime, 𝜆 < 1, in the Erdős-Rényi random graph model w.h.p. all components are
small and are cycle-free [45].

3.1.2. Extinction of the branching process
Now it is time to properly define the Galton-Watson branching process. First a root vertex is taken.
The children of the root are generated by a discrete random distribution. These children form the first
generation. Formally

Definition 11. Let 𝑋𝑛,𝑖 be a double infinity array of i.i.d. discrete random variables. Here 𝑋𝑛,𝑖 ∼ 𝑋
represent the number of offspring of vertex 𝑖 in the 𝑛th generation. Let 𝑋𝑛,𝑖 ∼ 𝑋, ∀𝑛, 𝑖 ≥ 0, where 𝑋 is
the off-spring distribution. Hence, one assumes 𝑋𝑛,1 ≥ 0. Let 𝑍𝑛 be the number of vertices in the 𝑛-th
generation. By assumption 𝑍0 = 1.

Moreover 𝑍𝑛+1 can be formulated by recursion relation since it solely consists of children of the
previous generation.

𝑍𝑛+1 =
𝑍𝑛
∑
𝑖=1
𝑋𝑛,𝑖 (3.1)
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Figure 3.1: Realisation of three generations of a branching process.

In Figure 3.1, the realisation of the first generations of the branching process is visualised.
The extinction probability is formulated as the probability of the event that the 𝑛-th generation has

no children.
𝜂 ∶= ℙ(∃𝑛 < ∞ ∶ 𝑍𝑛 = 0) (3.2)

Not surprisingly, when 𝔼[𝑋] < 1, 𝜂 = 1. Since, on average, each generation has less children than
parents, in the end the branching process will stop. The probability that the population survives up to
generation 𝑛 is exponentially small according to Theorem (8).

Theorem 8. Let 0 ≤ 𝑛 < ∞ fixed. Let 𝜇 = 𝔼[𝑋] and assume 𝜇 < 1. Then

ℙ(𝑍𝑛 > 0) ≤ 𝜇𝑛 (3.3)

Proof. Let 0 ≤ 𝑛 < ∞ fixed and assume 𝔼[𝑋] = 𝜇 < 1. Since 𝑍𝑛 is assumed integer we find

ℙ(𝑍𝑛 > 0) = ℙ(𝑍𝑛 ≥ 1) ≤
𝔼[𝑍𝑛]
1

using Markov’s Inequality. Now to compute the expectation of 𝑍𝑛 we note that the 𝑋𝑛,𝑖 ∼ 𝑋 are all i.i.d.
for each generation. Then from Wald’s equation it follows that

𝔼[𝑍𝑛] = 𝔼[𝑋] ⋅ 𝔼[𝑍𝑛−1]

using the fact that 𝑍𝑛 = ∑
𝑍𝑛−1
𝑖=0 𝑋𝑛−1,𝑖 where 𝑍𝑛−1 is a random variable. Unfolding this recursive expres-

sion and using the default 𝑍0 = 1, one now has

𝔼[𝑍𝑛] = 𝔼[𝑋]𝑛 ⋅ 𝔼[𝑍0] = 𝜇𝑛 ⋅ 1

Combining this with the result from Markov’s inequality we conclude

ℙ(𝑍𝑛 > 0) ≤ 𝜇𝑛

Thus indeed, if 𝜇 = 𝔼[𝑋] < 1, then 𝜂 = 1 as 𝜇𝑛 → 0 as 𝑛 → ∞. If 𝜇 > 1 however, 𝜂 < 1 as 𝑛 → ∞. To
find a bound for this probability, one should look at the survival probability 𝜉 in stead of the ‘extinction
probability’ 𝜂. Being mutually exclusive it follows that 𝜉 = 1 − 𝜂 and by definition one has

𝜉 = ℙ(𝑍𝑛 > 0∀𝑛 ≥ 0)

For the branching process to ‘survive’, the corresponding tree must keep growing over time. The total
number of vertices in the tree can be described as the total number of children 𝑇 = ∑∞𝑛 𝑍𝑛+1, effectively
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summing the generations [34]. 𝑇 is also referred to as the total progeny. Then equivalently one could
say the branching process survives is 𝑇 increases indefinitely.

This brings us to another way to assess the survival of the tree branching process is a breadth-first
approach. This view enables to view each vertex independently, where the recursion can be reduced
to a sum of i.i.d. random variables.

Definition 12. Let 𝑋′1, 𝑋′2, … ∼ 𝑋1,1. Then the random-walk formulation of the branching process is
recursively described by

𝑆′0 = 1 (3.4)
𝑆′𝑖 = 𝑆′𝑖−1 − 1 = 𝑋′1 +…+ 𝑋′𝑖 − (𝑖 − 1) (3.5)

where 𝑆′𝑖 is the branching number.

The branching number depicts the number of ‘active’ vertices which still branch and have not been
visited. After a vertex has been visited the total ‘active’ vertices is decreased by 1 and the sum of the
children is added to the ‘active’ count. So, when each vertex has precisely 1 child, the tree continues
forever, as we would expect. If, however 𝔼[𝑋] < 1, the branching process will stop at some point,
matching the earlier branching process result. This stopping point can be formulated as

𝑇′ ∶= inf{𝑡 ∶ 𝑆′𝑡 = 0} (3.6)

i.e. the point where nomore ‘active’ vertices, and thus none can produce off-spring for further branching.
This brings us to the bound for the extinction probability with 𝜇 > 1.

Theorem 9. Let 𝑋 be the offspring distribution with 𝜇 = 𝔼[𝑋] > 1. Let 𝑇 denote the total progeny. Let
𝑘 ∈ ℕ finite, then

ℙ(𝑇 < ∞) ≤ 1
1 − 𝑒−𝐼 (3.7)

with exponential rate 𝐼 defined as 𝐼 ∶= sup𝑡≤0 (𝑡 − log𝔼[𝑒𝑡𝑋])

Now all the preliminary knowledge required has been to relate the branching process of trees to the
existence of the 𝑘-core.

3.2. Tree embedded k-cores
When a vertex is picked and observed locally, they neighbours can be modelled as children and the
local portion of the graph as a tree [27]. Disregarded are any edges between ‘children’ of the same
generation. Take 𝐶3, a cycle of three vertices, then when picking a starting vertex at random, the tree
either looks like a root with two children ór a tree with one child which also has one child. In this thesis
we shall use the ‘neighbours first’ mapping. For this we define the neighbourhood of a vertex 𝑣.

Definition 13. Let 𝐺 = (𝑉, 𝐸) be a graph. Let 𝑣 ∈ 𝑉 be a vertex. Then the neighbourhood of a vertex
𝑣 is given by

𝑁(𝑣) = {𝑢 ∈ 𝑉 ∶ 𝑢 ≠ 𝑣 ∧ {𝑢, 𝑣} ∈ 𝐸} (3.8)

Moreover let 𝑈 be a subset of vertices, i.e. 𝑈 ⊆ 𝑉, then the neighbourhood of a vertex set 𝑈 is given
by

𝑁(𝑈) = {𝑤 ∈ 𝑉 ∶ 𝑤 ∉ 𝑈 ∧ [∃𝑢 ∈ 𝑈 ∶ {𝑤, 𝑢} ∈ 𝐸}]} (3.9)

In other words, any vertex you can reach from 𝑣 by traversing only one edge is in the neighbourhood
of 𝑣.

Now the existence of 𝑘-core is similar to a branching process which contains 𝑘 − 1-ary tree.
Assume the 𝑘-core exists in a random graph 𝐺. Now let 𝑣root be a random vertex in the 𝑘-core, then

surely it must hold that |𝑁(𝑣root)| ≥ 𝑘, by definition, since it is part of the 𝑘-core. Now if 𝐺 is 𝐾𝑘, i.e. a
clique of size 𝑘, then the process stops as there are no vertices left to explore. Therefore, let us assume
that 𝐺 is a large graph but not extremely interconnected. Now each ‘child’ must have at least 𝑘 − 1
children itself, i.e. the neighbourhood must be at least size 𝑘 − 1. This leads to the general idea that if
the total tree has a 𝑘 −1-ary subtree it is very probable the 𝑘-core exists. Using the random branching
process in this way, established in [68], Fernholz and Ramachandran in [38] find the following.
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(a) The tree mapping of the cyclic graph 𝐶3. Left the ‘neighbour-
hood’ mapping, i.e. breadth-first, and right a depth-first mapping

(b) Example of a tree mapping of the cyclic graph 𝐶5. Each gen-
eration equals another neighbourhood of the previous generation.
The red vertices have been already visited and have been added
to a generation. Blue vertices have yet to be added.

Theorem 10. Let 𝑘 ≥ 3 be a fixed integer. Let 𝐺 be a Chung-Lu graph with a degree distribution p𝑛
such that 𝑝𝑖 ∝ 𝑖−𝛽 for some 𝛽 ≥ 0. Then the following holds

1. If 𝛽 ≥ 3, there is no giant 𝑘-core w.h.p.

2. If 2 < 𝛽 < 3, there is a giant 𝑘-core w.h.p.

To compare the branching process more directly with the existence of the 𝑘-core the 𝑘 − 1-ary
tree critical threshold is shown to be equal to the one found by Pittel et al in [68]. Consider a random
branching process with a tree of 𝑛 generations. Now we define the root of the tree to be ‘good’ if at
least 𝑑 − 1 children are ‘good’. A child is defined ‘good’ if has at least 𝑑 − 1 children which are ‘good’.

Definition 14. Given a random branching process with 𝑋𝑛,𝑖 ∼ 𝑋. Denote the probability of a child in
the tree containing a 𝑑-ary tree for 𝑛 generation, defined recursively, by

𝜁(𝑑 − 1, 𝑛 − 1) =
∞

∑
𝑖=0
ℙ(𝑋 = 𝑖)ℙ (Bin (𝑖, 𝜁(𝑑 − 1, 𝑛 − 2)) ≥ 𝑑 − 1) (3.10)

Now the probability of the root can also be formally written down

ℙ(𝑣root is good) =
∞

∑
𝑖=0
ℙ(𝑋0 = 𝑖)ℙ(at least 𝑑 − 1 children are ‘good’) (3.11)

=
∞

∑
𝑖=0
ℙ(𝑋0 = 𝑖)ℙ (Bin (𝑖, 𝜁(𝑑 − 1, 𝑛 − 1)) ≥ 𝑑) (3.12)

using the law of total probability, where ∀𝑛, 𝑖 ≥ 0 ∶ 𝑋𝑛,𝑖 ∼ 𝑋.

3.2.1. Fixed point equation for k-core tree embedding
If one assumes there exists a stable for 𝜁 in the branching process with ‘good’ vertices, then surprisingly
at first, such equation can be solved for some distributions of 𝑋. This Now for the case that 𝑛 → ∞
we assume 𝜁(𝑑 − 1, 𝑛 − 𝑘) → 𝜁, ∀𝑘 ∈ ℕ. The reasoning here is that simply every child here has a
comparable subtree, i.e. landing at some random child in the tree provides equal information. Under
the assumption 𝜁(𝑑 − 1, 𝑛 − 𝑘) → 𝜁, Equation (3.10) can be rewritten as

𝜁 =
∞

∑
𝑖=0
ℙ(𝑋 = 𝑖)

𝑖

∑
𝑗=𝑑−1

(𝑖𝑗)𝜁
𝑗(1 − 𝜁)𝑖−𝑗 (3.13)

using the probability density function of the Binomial distribution.
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In order to solve for 𝜁, probability generating functions will be used. By definition the generating
function for a random variable 𝑋 is

𝐺𝑋(𝑠) =
∞

∑
𝑖=0
ℙ(𝑋 = 𝑖)𝑠𝑖 = 𝔼(𝑧𝑋), 𝑠 ∈ [0, 1] (3.14)

Often the radius of convergence is greater than [0, 1], but for this derivation this suffices. Since we
are within the radius of convergence, we are safe to use term-wise differentiation with respect to 𝑧.
Therefore we find the following derivatives of the generating function

𝐺′𝑋(𝑠) =
∞

∑
𝑖=0
ℙ(𝑋 = 𝑖)𝑖𝑠𝑖−1 (3.15)

𝐺(𝑗)𝑋 (𝑠) =
∞

∑
𝑖=0
ℙ(𝑋 = 𝑖)𝑖(𝑖 − 1)(𝑖 − 2)… (𝑖 − 𝑗 + 1)𝑠𝑖−𝑗 , 𝑗 < 𝑖 (3.16)

First, however, we must modify Equation (3.13). Therefore we write out

𝜁 =
∞

∑
𝑖=0
ℙ(𝑋 = 𝑖)

𝑖

∑
𝑗=𝑑−1

(𝑖𝑗)𝜁
𝑗(1 − 𝜁)𝑖−𝑗

=
∞

∑
𝑖=0
ℙ(𝑋 = 𝑖)

𝑖

∑
𝑗=𝑑−1

𝑖!
(𝑖 − 𝑗)!𝑗! 𝜁

𝑗(1 − 𝜁)𝑖−𝑗

Because of our assumptions on 𝜁 we count this double sum in a different way, allowing the interchanging
of the sums. The first terms of 𝑖 are zero until 𝑖 = 𝑗 = 𝑑 − 1. So we start counting for 𝑗 = 𝑑 − 1, hence

𝜁 =
∞

∑
𝑗=𝑑−1

ℙ(𝑋 = 𝑖)
∞

∑
𝑖=𝑗

𝑖!
(𝑖 − 𝑗)!𝑗! 𝜁

𝑗(1 − 𝜁)𝑖−𝑗

=
∞

∑
𝑗=𝑑−1

∞

∑
𝑖=𝑗
ℙ(𝑋 = 𝑖) 𝑖!

(𝑖 − 𝑗)!𝑗! (1 − 𝜁)
𝑖−𝑗

=
∞

∑
𝑗=𝑑−1

𝜁𝑗
𝑗!

∞

∑
𝑖=𝑗
ℙ(𝑋 = 𝑖)𝑖(𝑖 − 1)… (𝑖 − 𝑗 + 1)(1 − 𝜁)𝑖−𝑗

rearranging the terms solely dependent on 𝑗 and cancelling factorial factors. Now recall Equation (3.16)
and substitute this derivative result of the generating function to find

𝜁 =
∞

∑
𝑗=𝑑−1

𝜁𝑗
𝑗! 𝐺

(𝑗)
𝑋 (1 − 𝜁) (3.17)

(3.18)

Since 𝜁 is a probability we have 𝜁 ∈ [0, 1]. So the following change of variable is allowed:

𝜐 = 1 − 𝜁, 𝜐 ∈ [0, 1] (3.19)

So when substituting 𝜁 for 1 − 𝜐 we find

1 − 𝜐 =
∞

∑
𝑗=𝑑−1

(1 − 𝜐)𝑗
𝑗! 𝐺(𝑗)𝑋 (𝜐) (3.20)
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Moreover, in the case of examining the existence of a 𝑘-core, it makes sense to assume 𝑋 ∼ Poi(𝜆).
Then the generating function can be written down explicitly;

𝐺Poi(𝜆)(𝜐) = 𝐺Poi(𝜆)(𝜐) =
∞

∑
𝑘=0

ℙ (Poi(𝜆) = 𝑘) 𝜐𝑘

=
∞

∑
𝑘=0

𝑒−𝜆𝜆𝑘
𝑘! 𝜐𝑘

= 𝑒−𝜆
∞

∑
𝑘=0

(𝜆𝜐)𝑘
𝑘!

= 𝑒−𝜆𝑒𝜆𝜐 = 𝑒−𝜆(1−𝜐)

where in the last step the definition of the exponential is used. Differentiate with respect to 𝜐 to find

𝐺(𝑗)Poi(𝜆)(𝜐) = 𝜆𝑗𝑒−𝜆(1−𝜐) (3.21)

Now, we use the expression above in Equation (3.20). Then one has

1 − 𝜐 =
∞

∑
𝑗=𝑑−1

(1 − 𝜐)𝑗
𝑗! 𝜆𝑗𝑒−𝜆(1−𝜐) (3.22)

Furthermore, we recall 𝜁 = 1 − 𝜐 and write

𝜁 = 𝑒−𝜆𝜁
∞

∑
𝑗=𝑑−1

(𝜆𝜁)𝑗
𝑗!

= 𝑒−𝜆𝜁 (𝑒𝜆𝜁 −
𝑑−2

∑
𝑗=0

(𝜆𝜁)𝑗
𝑗! )

= 1 − 𝑒−𝜆𝜁
𝑑−2

∑
𝑗=0

(𝜆𝜁)𝑗
𝑗! (3.23)

In particular, for 𝑘 = 3, we found

𝜁 = 1 − 𝑒−𝜆𝜁 (1 + 𝜆𝜁) ⇔ (3.24)

𝑒−𝜆𝜁 = 1 − 𝜁
1 + 𝜆𝜁 (3.25)

Recall that, from Figure 2.4 it is known that 𝜆3 ≈ 3.35 is the critical 3-core existence threshold. For
𝑘 = 3 we observe, in Figure 3.3, that ∀𝜆 < 𝜆3 Equation (3.24) has no solutions within the interval [0, 1].
There a unique solution at 𝜆 = 𝜆3 and are multiple solutions for 𝜆 > 𝜆3. This corresponds precisely to
results found earlier using in Chapter 2. Solving for 𝜁 with a given 𝜆 value enables us to calculate the
probability of when the root of the tree is ‘good’. Let 𝜁𝜆 be a solution to the equation, then

ℙ(𝑣root is good) =
∞

∑
𝑖=0
ℙ(Poi(𝜆) = 𝑖)ℙ (Bin (𝑖, 𝜁𝜆) ≥ 𝑑) (3.26)

Therefore we can conclude that for 𝜆 < 𝜆3,

ℙ(the branching process has a 3-ary tree embedding) = 0 (3.27)

while for 𝜆 = 𝜆3
ℙ(the branching process has a 3-ary tree embedding) > 0 (3.28)
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Figure 3.3: The left-handside (LHS, 𝑒−𝜆𝜁) and right-handside (RHS, 1−𝜁
1+𝜆𝜁 ) of Equation (3.24) plotted for different values of �with

𝑘 = 3. There are no intersection points on the interval [0, 1] for 𝜆 < 𝜆3.

hence there is a discontinuity of the cure 𝑃𝜆() plotted against 𝜆, which causes the first-order phase
transition we observed in Chapter 2 and know from literature. Moreover we conclude that this is dif-
ferent to actual survival of the branching process itself, which at criticality 𝔼[𝑋] = 1, under the obvious
assumption ℙ(𝑋 = 1) < 1, has a survival probability 𝜁 = 0. When 𝔼[𝑋] > 1, there is a non-trivial
solution and the 𝜁 is continuous function of 𝕏. Hence for the branching process itself a second-order
phase transition occurs. With that distinction we conclude this chapter on the branching processes for
finding thresholds in random graphs.





4
Discussion

While much is known about the 𝐺(𝑛, 𝑝) model due to great efforts of the last few decades, both the
RGG and GIRG model prove to be fundamentally different. There are many angles to view the graph
structures in these models.

Interestingly, no first-order phase-transitions could be detected for the 𝑘-core in the RGG-model.
These phase-transitions were inspired by the theorems for the 𝐺(𝑛, 𝑝) model. A possible explanation
was given for the conditional probability which, using arguments based on the geometric embedding
of the RGG-model. Further research is possible regards a second-order phase-transition for the pro-
portion of the connected 𝑘-core.

Though, it is probable to find phase-transitions for the GIRG-model as it versatile with the combi-
nation of the distribution parameter and the radius amplification factor. For heavy-tailed distributions
further research into such transitions would be of interest.

Recovering the result by Pittel et al for the 𝐺(𝑛, 𝑝)-model enables us to link the random branching
process to the 𝑘-core of the 𝐺(𝑛, 𝑝)-model. Since branching processes form an important way of rea-
soning about graph structures, further research of such processes for a geometric embedding might
be insightful. Such geometric branching process has much in common with a geometric preferential
attachment model. A root based geometric proces might also be of interest. Where for each generation
using an offspring distribution 𝑋 inside the, possible weight dependent, connectivity circle are drawn.
One could think of this as migration for expanding population with limited resources per area.

While not extensively mentioned, the configuration model, is an important model to view random
graphs with a given degree sequence. Much has been written about this model and maybe a geometric
interpretation of this model, where half-edges can only connect randomly to other half-edges inside the
area of overlap between connectivity circles. Most likely, this will result in clusters only. Extending
this geometric configuration model with a weight distribution might allow for powerful results from the
configuration model to be transferred to the geometric realm.
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5
Conclusion

The main goal of the thesis is to understand the behaviour of 𝑘-cores in various random graph models,
and to contrast the theory with simulations. Moreover to give intuition to the 𝑘-core through the analogue
of neighbourhoods in random graphs by Branching Processes.

We were able to reproduce the 𝑘-core threshold with simulations of the Erdős-Rényi random graph
model, as stated by Pittel et al in Theorem 5. The simulations match the expected first-order phase
transition in this model. Next we compared this to a Random Geometric Graph model (RRG), which
extends the Erdős-Rényi random graph model into a spatial setting. First we proved the degree distri-
bution of the RGG-model to be Poisson andmatched this with a fitting of simulation samples. Moreover,
we found a cluster-like behaviour in the RGG-model, which results in a small size 𝑘-core even before
a giant component exists. Furthermore, we gave a proof as a possible explanation why these clusters
are more likely in the spatial setting. Notably, no second-order phase transition could be observed in
the RGG-model.

Furthermore, we added an inhomogeneous extension to the RGG-model, called the Geometric
Inhomogeneous Random Graph model (GIRG), based on vertex weights using a vertex weight dis-
tribution. We confirmed with simulations that this results in ‘hub’-like behaviour where the center of
hub is a vertex with a heavy weight, i.e. far above the average weight. We state it plausible for a
GIRG-model with a heavy-tailed vertex distribution to find a first-order phase transition for the 𝑘-core in
the GIRG-model, with a threshold based on the vertex weight distribution parameters combined with a
radius amplification factor to scale properly.

Also we proved that for a heavy-tailed vertex weight distribution in the GIRG-model, under certain
conditions, ensures a 𝑘-core with high probability as the number of vertices is sufficiently large. For
light-tailed distributions the simulations are comparable to the RGG-model, where a small sized 𝑘-core
exists.

In Chapter 3, we studied the 𝑘-core existence in homogeneous graphs using the branching pro-
cesses. First we recover some known preliminaries. In particular the threshold for when a branching
process stops (extinction) or continues for ever (survival). Furthermore, we investigate the embedding
of a 𝑘-ary tree in a branching process tree. Using a fixed point equation method we find a 𝑘-ary tree
embedding first occurs at the threshold stated by Pittel et al for 𝑘-cores in the Erdős-Rényi random
graph model. Thus showing the power of reasoning with branching processes in general and for large
network property thresholds in particular.
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Python code

Only the most important functions have been listed. Manymore code was used to investigate behaviour
of Random Graph models or to plot figures, but can be easily replicated or is of minor importance.

1 # * coding: utf 8 *
2 """
3 Updated on Monday 04 July at 202220:52:21
4
5 @author: Vincent Wassenaar
6 """
7 import numpy as np
8 from numpy import linalg
9 from scipy.stats import poisson

10 from scipy.stats import pareto
11 from scipy.spatial import distance
12 import math
13 import matplotlib.pyplot as plt
14 from matplotlib.collections import LineCollection
15 import copy
16
17 #inserts in order of coordinates in order of dimension
18 #Example (1,2), (1,3),(2,1),(2,3),(3,1)
19 def sample_zero_truncated_poisson(rate):
20 u = np.random.uniform(np.exp ( rate), 1)
21 t = np.log(u)
22 return 1 + np.random.poisson(rate t)
23
24 #Function to generate a GIRG model graph
25 def createRandomWeightedGraph(n,rf, b=3):
26 #create the scaled radius
27 r_n = rf *(n * *( 1/2) )
28 #drawn n points from [0,1]^2 uniformly
29 p = np.random.rand(n,2)
30
31 ###
32 # Alternative code for creating a random weighted graph
33 # using a zero truncated poission distribution.
34 # w = []
35 # for i in range(n):
36 # w.append(sample_zero_truncated_poisson(b))
37 # w = np.add(0.1,np.random.poisson(b, n))

43



44 A. Python code

38 ###
39
40 #create a vertex weight sample from the Pareto

↪ distribution with parameter b
41 w = pareto.rvs(b, size=n)
42 #create an empty Adjacency matrix
43 adjMatrix = np.zeros((n,n))
44
45 for i in range(n 1 ) :#calculate for each vertex the

↪ distance to the other vertices
46 ps = p[i,None]
47 adj_row = np.zeros((1,int(n i 1 ) ))
48 #check the distance 9 times, due to the border

↪ wrapping , for each shifted copy of the other
↪ vertices

49 for xoff in [ 1 ,0 ,1]:
50 for yoff in [ 1 ,0 ,1]:
51 jo=ps.copy()
52 jo[:,0]+=xoff
53 jo[:,1]+=yoff
54 adj_row = np.add(adj_row,np.where(
55 np.divide(distance.cdist(jo,p [ ( n i 1 ) :]),

↪ w [ ( n i 1 ) :]*w[i])<r_n,1,0))
56 #fill the upper right triangle of the Adjacency

↪ matrices
57 adjMatrix[i , ( n i 1 ) :] = np.where(adj_row >0,1,0)
58 #the Adjacency matrix should be symmetrical
59 retMatrix = np.add(adjMatrix , adjMatrix.transpose())
60 #return the vertex location , the Adjacency matrix and the

↪ vertex weights.
61 return (p, retMatrix , w)
62
63 #Function to generate a graph for the default RGG model
64 def createRandomGraph(n,rf):
65 r_n = rf *(n * *( 1/2) )
66 p = np.random.rand(n,2)
67 adjMatrix = np.zeros((n,n))
68 for i in range(n 1 ) :
69 ps = p[i,None]
70 adj_row = np.zeros((1,int(n i 1 ) ))
71 for xoff in [ 1 ,0 ,1]:
72 for yoff in [ 1 ,0 ,1]:
73 jo=ps.copy()
74 jo[:,0]+=xoff
75 jo[:,1]+=yoff
76 adj_row = np.add(adj_row,np.where(distance.

↪ cdist(jo,p [ ( n i 1 ) :])<r_n,1,0))
77 adjMatrix[i , ( n i 1 ) :] = np.where(adj_row >0,1,0)
78 retMatrix = np.add(adjMatrix , adjMatrix.transpose())
79 return (p, retMatrix , None)
80
81 #Function to find the k core shells of a graph.
82 #Note that the k core is simply the union of all shells

↪ greater than or equal to k.
83 #Time complexity is O(n *log(n))
84 def getCoreShells(vertices , edgeMatrix):
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85 degrees = edgeMatrix.sum(axis=0)
86 coreShells = [[]]
87 zeros = np.where(degrees==0)[0].tolist()
88 if len(zeros) >0:
89 coreShells[0] = zeros
90 degrees[degrees == 0] = 1
91
92 i=1
93 while (degrees.sum() != 1 * len(degrees)):
94 if len(coreShells)<=i:
95 coreShells.append([])
96 #get all points where the degree is below i
97 depletables = np.argwhere((degrees <= i) &(degrees >=0)

↪ )
98 #depletables are those points who should still be

↪ explored but now fail to have a degree equal to
↪ the current shells.

99 if len(depletables)==0:
100 i+=1
101 continue
102 for v in depletables:
103 degrees[v[0]] = 1
104 coreShells[i].append(v[0])
105 #get column to decrease all connections to the

↪ vertex which is explored
106 vrow = np.nonzero(edgeMatrix[v[0]])[0]
107 for r in vrow:
108 edgeMatrix[v[0],r] =1
109 edgeMatrix[r,v[0]] =1
110 degrees[r ] =1
111 return coreShells
112
113 #Helper function to visualise created Random Graphs
114 def visualizeRandomGraph(vertices , edgeMatrix , rf, w=None):
115 if w is None:
116 w = np.repeat(1,len(vertices))
117 r_n = rf *len(vertices) * *( 1/2)
118 fig, ax = plt.subplots(figsize=(10,10))
119 ax.set_xlim([0,1])
120 ax.set_ylim([0,1])
121
122 lineMatrix = copy.deepcopy(edgeMatrix)
123 #compute the degrees
124 coreShells = getCoreShells(vertices ,lineMatrix)
125
126 xpos = []
127 ypos = []
128 nsize = []
129 ncol = []
130 for i in range(len(coreShells)):
131 for j in coreShells[i]:
132 xpos.append(vertices[j][0])
133 ypos.append(vertices[j][1])
134 nsize.append(5+5*w[j]) #the size of vertex is

↪ modified depending on its weight
135 ncol.append(i) #each k shells has its
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↪ only coloured vertices
136 node_collection = ax.scatter(xpos,ypos,s=nsize,c=ncol) #

↪ draw the vertices on the torus
137 #draws only the edges which do not boundary wrap, to

↪ enhance readability.
138 edge_pos = np.asarray([(vertices[e[0]], vertices[e[1]])

↪ for e in np.transpose(np.nonzero(edgeMatrix)) if
↪ linalg.norm(np.subtract(vertices[e[0]],vertices[e
↪ [1]]))<=r_n *w[e[0]]*w[e[1]]])

139 edge_collection = LineCollection(
140 edge_pos,
141 colors=’black’,
142 linewidths=1,
143 antialiaseds=(1,)
144 )
145 edge_collection.set_zorder(1) # edges are drawn behind

↪ vertices
146 ax.add_collection(edge_collection)
147
148 fig.show()
149 plt.savefig("core shells color.svg", format="svg")
150
151 #Helper function to view the k core more easily.
152 def visualizeKcore(vertices, edgeMatrix , k, rf,b):
153 r_n = rf *len(vertices) * *( 1/2)
154 fig, ax = plt.subplots(figsize=(10,10))
155 ax.set_xlim([0,1])
156 ax.set_ylim([0,1])
157
158 lineMatrix = copy.deepcopy(edgeMatrix)
159 #compute the degrees
160 coreShells = getCoreShells(vertices ,lineMatrix)
161 print(np.sum([len(coreShells[i]) for i in range(k,len(

↪ coreShells))])/len(vertices))
162 #print(’cores’,coreShells)
163 xpos = []
164 ypos = []
165 nsize = []
166 ncol = []
167 col = ’blue’
168 for i in range(len(coreShells)):
169 if i>=k:
170 col = ’red’
171 for j in coreShells[i]:
172 xpos.append(vertices[j][0])
173 ypos.append(vertices[j][1])
174 nsize.append(10)
175 ncol.append(col)
176 node_collection = ax.scatter(xpos,ypos,s=nsize,c=ncol)
177 edge_pos = np.asarray([(vertices[e[0]], vertices[e[1]])

↪ for e in np.transpose(np.nonzero(edgeMatrix)) if
↪ linalg.norm(np.subtract(vertices[e[0]],vertices[e
↪ [1]]))<=r_n])

178 edge_collection = LineCollection(
179 edge_pos,
180 colors=’black’,
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181 linestyle=’dotted’,
182 linewidths=1,
183 antialiaseds=(1,)
184 )
185 edge_collection.set_zorder(1) # edges go behind nodes
186 ax.add_collection(edge_collection)
187 ax.set_title(str(k)+’ core in GIRG(’+str(len(vertices))+’,

↪ Pareto(’+str(b)+’),’+str(rf)+’)’)
188 fig.show()
189 plt.savefig("multi comp 2 . svg", format="svg")
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