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ABSTRACT

Traditional methods that aim to identify biomarkers
that distinguish between two groups, like
Significance Analysis of Microarrays or the t-test,
perform optimally when such biomarkers show
homogeneous behavior within each group and dif-
ferential behavior between the groups. However, in
many applications, this is not the case. Instead, a
subgroup of samples in one group shows differen-
tial behavior with respect to all other samples. To
successfully detect markers showing such
imbalanced patterns of differential signal, a different
approach is required. We propose a novel method,
specifically designed for the Detection of
Imbalanced Differential Signal (DIDS). We use an
artificial dataset and a human breast cancer
dataset to measure its performance and compare
it with three traditional methods and four
approaches that take imbalanced signal into
account. Supported by extensive experimental
results, we show that DIDS outperforms all other
approaches in terms of power and positive predict-
ive value. In a mouse breast cancer dataset, DIDS is
the only approach that detects a functionally
validated marker of chemotherapy resistance.
DIDS can be applied to any continuous value data,
including gene expression data, and in any context
where imbalanced differential signal is manifested.

INTRODUCTION

For the identification of biomarkers, genome-wide micro-
array gene expression analyses have, so far, mostly
been focused on group-versus-group comparisons. For
example, to detect markers of therapy resistance, one
would compare mRNA expression profiles of tumors that

are sensitive to chemotherapy with the profiles of tumors
that are resistant to therapy. Unfortunately, this approach
has been unsuccessful in identifying markers of chemother-
apy resistance (1,2). Traditional methods for group-versus-
group comparisons, like the t-test, Mann–Whitney test or
the Significance Analysis of Microarrays (SAM) approach
(3), rely on comparing the expression of a candidate gene in
the responder group with the expression of this gene in the
non-responder group. This approach is mostly suited for
tumors that show highly similar expression levels within a
group, while the average expression levels between the
groups are dissimilar. This implies homogeneous expression
within a group. Figure 1A depicts the gene expression of a
hypothetical marker gene showing homogenous expression
levels within each group. Approaches like the Mann–
Whitney test would be the method of choice for detecting
such markers. For this gene, the P-value associated
with the Mann–Whitney test is highly significant
(P ¼ 1:8 x 10�14). However, when expression is heteroge-
neous within one of the two groups, these methods are
underpowered to detect this type of differential signal.
Heterogeneous expression within a group could arise in

many situations. For example, in breast cancer, response
to chemotherapy is highly heterogeneous, even within a
molecular subtype (4). This is most likely due to the
large array of mechanisms that can cause resistance to
therapy (5). It has recently become clear that even when
a resistance mechanism is identified, only a minority of the
resistant tumors might harbor that particular mechanism
(6). It follows that a marker of such a mechanism will only
show aberrant expression in a relatively small subgroup
of the non-responder group, while the majority of the non-
responders will show expression similar to the responders.
Figure 1B depicts a gene that only shows aberrant

expression in a subset of the non-responder group.
Consequently, the median expression of the responders
is not significantly different from the median expression
in the non-responder group (Mann–Whitney test,
P ¼ 0:5). However, as indicated in Figure 1B, a subset
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of the non-responder samples displays gene expression
levels significantly higher than the highest levels in the
responder group (shaded region). This indicates that this
subset behaves differently compared with the other cases,
and this gene could be a marker of resistance to therapy
present in only this subset.
More generally, when comparing cases (such as non-

responders) with controls (such as responders) and when
we aim to discover mechanisms that are present in a small
subset of the case group, we need to apply an approach
tailored to this situation. A number of methods have
already been proposed that take such heterogeneity
within the cases into account. These include approaches
such as Cancer Outlier Profile Analysis (COPA) (7,8),
Outlier Sums (OS) (9), Outlier Robust T-statistic (ORT)
(10) and Maximum-Ordered Subset T-statistics (MOST)
(11). Also, the two-sample Kolmogorov–Smirnov (KS)
test could be considered, as it aims to identify differences
between two distributions, not just a shift in mean.
Existing approaches have several drawbacks that make

them less suited to the problem of supervised subgroup
marker detection. First, COPA and OS base their thresh-
old for outlier detection on all samples, i.e. these
approaches do not exploit knowledge of the levels of ex-
pression in one group (controls) to optimize detection of
aberrant signal in the other group (cases). Although ORT
and MOST do base their outlier definition on samples in
the control group, these methods do not constrain the
aberrant signal to exceed expression levels of ‘all’
samples in the control group. Although setting the thresh-
old to the maximum of the control group leads to more

stringent candidate selection, we are looking for markers
that offer clear differences between cases and controls. In
case some controls also show aberrant expression, the in-
terpretation of the role this marker plays in the phenotype
under investigation will become more complex, which, in
turn, will lead to more complex follow-up experimenta-
tion. We chose to optimize for clear-cut expression
patterns and high positive predictive value (PPV) in the
candidate marker list to increase the success rate of follow-
up experiments. Second, none of these methods offer an
exact, permutation-free (and therefore much faster)
P-value calculation. Finally, none of these approaches
allow for the detection of specific, defined patterns of
aberrant signal. A specific pattern could, for example, be
the highly aberrant expression of a small subset of samples
as opposed to the moderately aberrant expression of a
larger subset. In the first scenario, a scoring function
could be used that assigns high scores to genes highly
aberrantly expressed in a small subset of samples (e.g. a
quadratic scoring function), whereas the second scenario
would require a scoring function that attenuates high
expression values (e.g. the tanh function). Here we
propose a novel method that addresses all these shortcom-
ings. Extensive comparisons on artificial and real datasets
confirm its superior performance.

MATERIALS AND METHODS

Datasets

To compare the approaches, we used an artificial synthetic
dataset (artificial dataset), a semi-artificial dataset
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Figure 1. Gene expression patterns of genes suitable for group-wise analyses and DIDS. (A) Expression levels across controls and cases for a
hypothetical gene suitable for group-wise analysis. A conventional approach using, e.g. a Mann–Whitney test, would easily identify this gene. The
black symbols represent samples in the control group and the red symbols the samples in the case group. The gene expression values have been sorted
from low to high for the control group and from high to low for the case group. The dashed black (red) line represents the average gene expression in
the control (case) group. (B) The expression levels of an actual gene we identified using DIDS. The maximum expression level in the control group is
indicated by the solid black line. The bulk of the cases show expression levels similar to the control samples; however, a subgroup exists that shows
expression levels that are above the maximum in the control group and clearly deviating from the expression levels in that group (shaded region).
DIDS is designed to specifically detect these patterns.
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generated from gene expression data from selected breast
cancer samples (HER2 dataset) and a mouse dataset for
which a functionally validated gene implicated in chemo-
therapy resistance is known (mouse dataset). Here we
provide detailed descriptions of these datasets.

Artificial dataset
The first, artificial, gene expression dataset was designed to
mimic a situation where a group of controls is compared
with a group of cases where only a (small) subgroup of the
cases show aberrant expression. Such a set is ideal to
compare the performance of various methods and different
scoring functions under a variety of circumstances, as the
identity of the true marker genes is known. For these
datasets, we generated two types of genes: (i) reporter
genes that do show differential expression between the
control and case groups and (ii) non-reporter genes that
do not show differential expression between controls and
cases. We constructed datasets containing 25 000 genes, of
which 250 (1%) are reporter genes. For reporter genes, the
expression values for samples in the control group were
sampled from a unit variance, zero mean, normal distribu-
tion denoted by Dnormal � Nð�normal,�normalÞ ¼ Nð0,1Þ. For
the case group, the expression values of a percentage
(paberrant) of the samples were sampled from
Daberrant � Nð�aberrant,�aberrantÞ, with �aberrant ¼ �normal ¼ 1
and �aberrant > �normal. The expression values for the re-
maining (i.e. 100%� paberrant) case samples were sampled
from Dnormal. For non-reporter genes, the expression levels
of all samples (both controls and cases) were sampled from
Dnormal. By varying the percentage of aberrant samples, i.e.
paberrant, and the difference between the two means
(� ¼ �aberrant � �normal), we simulated a number of differ-
ent conditions.

For the power calculations, we only simulated reporter
genes (positives) and calculated P-values by constructing
an empirical null distribution for each method. We did so
by generating 4 � 106 non-reporter genes (negatives),
computing the score for each method for all these non-
reporter genes and determining the relevant quantiles of
the observed scores.

We simulated three different scenarios, each characterized
by a specific combination of the number of samples in the
control (n1) and case (n2) groups. The scenarios represent a
balanced dataset and two datasets where the group sizes are
unbalanced. These scenarios are (n1 ¼ 100; n2 ¼ 100),
(n1 ¼ 25; n2 ¼ 95) and (n1 ¼ 50; n2 ¼ 100). We chose
these scenarios, as they reflect class sizes and ratios that
we frequently encounter in patient series. Finally, we
included a scenario where only a limited number of
samples are available (n1 ¼ 10; n2 ¼ 10). Because this
will result in a very low absolute number of aberrant
cases, we were interested in seeing how well Detection of
Imbalanced Differential Signal (DIDS) would perform
under these circumstances.

HER2 dataset
We used the second dataset to assess the performance of the
approaches under simulated real-life conditions where a
positive control is present. For this purpose, we selected,
based on immunohistochemistry, 178 HER2-negative

samples from a breast cancer dataset, of which 98
samples represented the complete control group and
80 samples the non-aberrant samples in the case group
(GEO accession ID GSE34138). Next we randomly
selected 10 HER2-positive tumors to constitute the
samples in the case group showing aberrant gene expression
(GEO accession ID GSE41656). We repeated this proced-
ure 1000 times, during each repeat randomly selecting
HER2-positive and HER2-negative samples as described
above. By doing so, we generated 1000 datasets, each con-
sisting of 188 samples and 27506 probes. The HER2-
positive tumors typically show aberrant expression for the
genes on the HER2 amplicon. In fact, the positive control
genes were defined as all genes residing on 17q12 or 17q21.1
(also see Supplementary Figure S1 for the genomic location
of these genes). Therefore, each of the 1000 datasets has the
characteristic that for the positive control genes (genes
residing on the HER2 amplicon) a fraction (10 of 90) of
the case group can show aberrant gene expression
(upregulation). Note that because the grouping was based
purely on the HER2 immunohistochemistry, it is possible
that a sample shows positive HER2 staining, but no, or
very low, over-expression of the HER2 mRNA. In fact,
false-positive rates of up to 20% have been reported for
HER2 staining (12). While we believe the false-positive
rate for our dataset to be significantly lower owing to
careful revision of an experienced breast pathologist, this
dataset represents an excellent example of the noisy nature
of real biological datasets. Because only a small fraction (10
of 90) of the case group consists of these HER2-positive
tumors, the positive control genes will most likely not be
picked up by a group-versus-group analysis (like a Mann–
Whitney test or the SAM procedure).

Mouse dataset
Finally, we used the data derived from a set of mouse
tumors that arose spontaneously in the K14cre;
Brca1F=F; p53F=F mouse model, a genetically engineered
mouse model for breast cancer. The tumors that we used
were treated with docetaxel, and in 21 cases, the tumors
responded well to the treatment, whereas 22 tumors were
resistant to the treatment. In five of the non-responding
cases, poor response could be directly associated with a
substantial upregulation of the mouse P-glycoprotein
genes (ABCB1A and ABCB1B) (6). Each of the primary
tumors from both the responder and non-responder group
was subjected to genome-wide gene expression profiling.
We ran the different analytical methods on this mouse
dataset [i.e. 22 poor responder samples (cases) versus 21
docetaxel-sensitive tumor samples (controls)] and
recorded at which positions the functionally validated
positive control (ABCB1B) was found.

Tools
The R statistical programming language was used for all
of the analyses described in this article.

The DIDS algorithm

To detect genes (or other features) with aberrant signal in a
small subgroup of cases, i.e. to detect genes that show
‘imbalanced differential signal’, we perform the following
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steps. For each gene, we calculate the maximum expression
in the control group (solid black line in Figure 1B). Then
we identify the outlier samples, i.e. the samples in the case
group that exceed this threshold (samples indicated by the
gray region in Figure 1B). For these outlier samples, we
compute the ‘excess expression’, i.e. the amount by which
the expression in the outlier samples exceeds the maximal
expression in the control group. The contribution of each
outlier sample to the DIDS score is computed by passing its
excess expression through a scoring function. The final
value of the DIDS score is obtained by summing all the
contributions of the outlier samples. We implemented three
scoring (also see Supplementary Figure S2). The type of
scoring function determines the kind of aberrant expression
patterns that can be detected. These include candidate
genes where a relatively large number of case samples
show a relatively small degree of excess expression or a
relatively small number of case samples that show a rela-
tively large degree of excess expression. Both approaches
have their merit, as it has been shown that even small dif-
ferences in gene expression can be linked to resistance to
chemotherapy. On the other hand, larger excess expression
values provide more confidence that the difference is not an
artifact of technical origin. In what follows, we provide a
formal description of the algorithm.
Let the gene expression values of the n1 control samples

for a gene be given by

fx1igi2f1,2,...,n1g

and the gene expression values of the n2 case samples for a
gene be given by

fx2igi2f1,2,...,n2g

To detect genes that show higher expression in case
samples compared with control samples, we first define
the maximal gene expression value of a gene among the
control samples as

x̂1 ¼ max
i
fX1ig

The DIDS score is then given by

jup ¼
Xn2
i¼1

fðjx2i � x̂1j
+Þ ð1Þ

where

jxj+¼
x if x � 0,
0 if x < 0

�

and f is a strictly increasing function. We use the following
three variants of f:

ftanhðxÞ ¼ 1+tanhðð3x� 3Þ

fquadðxÞ ¼ x2

fsqrtðxÞ ¼
ffiffiffi
x
p

The scoring functions were chosen so that distinct types
of aberrant gene expression patterns can be detected. See

Supplementary Figure S2 for more details on the charac-
teristics of the three scoring functions.

The procedure as outlined above is used to detect genes
that show ‘increased’ expression in a subgroup of case
samples. For detecting genes with ‘decreased’ expression,
the procedure is analogous, except that a threshold is set
at the ‘minimal’ expression level in the control group, and
that cases with expression levels ‘lower’ than this threshold
contribute to the DIDS score (also see Supplementary
Materials and Methods).

To quantify the statistical confidence associated with a
given value of the DIDS score, we compute a P-value for
each gene. To this end, we developed an analytical pro-
cedure to compute permutation-based exact P-values. (See
the Supplementary Methods for a detailed description of
the procedure). This analytical procedure is very fast and
results in more accurate P-values than the computational
equivalent of performing the actual permutations, because
it takes into account all possible permutations of the data.
However, it should be stressed that permutation-based
P-values, like our analytical procedure, only provide a
P-value that reflects the likelihood of having the
observed number of cases with an expression value
above (below) the maximal (minimal) expression of the
control samples. In other words, the P-value does not
take the magnitude of the excess expression in the cases
into account. As a consequence, the P-value we estimate is
a conservative P-value.

Genes with a nominal P-value exceeding the user-
defined a-level (set to 5% by default) are removed from
the candidate list. The genes remaining after this filtering
step are then ranked based on the DIDS score (for more
details, the reader is referred to the Supplementary
Methods and Supplementary Figure S3). The R imple-
mentation of the DIDS algorithm is freely available at
http://bioinformatics.nki.nl/software.php.

Power comparisons and PPV comparisons

Following earlier publications (9,10), we simulated a large
number of samples under the null hypothesis (see
‘Datasets’ for details). Using these simulations we can
estimate, for every statistic (or score), its distribution
under the null. With this null distribution, we can then
determine which value of the statistic (or score) corres-
ponds to a specific false-positive rate (i.e. what fraction
of the genes drawn from the null distribution is falsely
called positive, also known as the a-level). This enables
a fair comparison between the different methods, as we
can compare their power at the same a-level (and not at
a-levels that are influenced by the a-level estimation
accuracy of each individual method). Subsequently, we
varied the false-positive rate (a) and computed the corres-
ponding power represented by the fraction of reporter
genes (true positives) detected at the given false-positive
rate. Given the power for each method in each scenario
and for all parameter settings, we then computed, for each
pair of methods, the difference in power as a function of a,
paberrant and �.

To evaluate the ability of the methods to identify a
short, but pure, candidate list of reporters, we used the
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PPV, defined as the percentage of true positives in the top
N candidate genes. Analogous to the power calculations
on the artificial dataset, we again generated artificial
datasets for the same three scenarios, varied paberrant and
� as before and computed the PPV in each case.

RESULTS

Method validation

To measure the performance of our method and to
compare it with similar approaches, we used (i) an artifi-
cial synthetic dataset (artificial dataset); (ii) a dataset con-
sisting of selected samples from a breast cancer patient
series where the imbalanced signal is introduced by the
presence or absence of HER2-positive tumors (HER2
dataset); and (iii) a mouse dataset for which a functionally
validated gene implicated in chemotherapy resistance is
known (mouse dataset; see ‘Materials and Methods’
section for a detailed description of the datasets). Each
of these datasets was analyzed using DIDS, the SAM
procedure, the Mann–Whitney test, the two-sample KS
test, the t-test with equal variance (e.v.) and unequal
variance (u.v.) and a selection of other algorithms
that take heterogeneity within groups into account when
detecting differential expression: MOST, OS, COPA
and ORT.

Our validation experiments include both power com-
parisons and evaluations of the PPV. Power comparisons
characterize methods in terms of the true-positive rate
(sensitivity) that can be achieved at a fixed false-positive
rate (1-specificity). Although power comparisons are a
useful benchmark, we consider the PPV [the fraction of
the called genes that are true positives (real markers)] to be
a more relevant measure. This stems from the fact that we
are using our approach to identify ‘candidate’ markers,
which requires the called list to be as pure as possible to
minimize the amount of resources spent on follow-up val-
idations. In such a context, a short candidate list with a
high percentage of true positives is preferred to a longer
list with a lower percentage (but higher absolute number)
of positives. Therefore, we strive for a maximal PPV
rather than maximal power, although the two are clearly
related.

Results on the artificial dataset

For both the power and PPV comparisons, we generated
instances of the artificial dataset representing three scen-
arios, each characterized by a specific combination of the
number of samples in the control (n1) and case (n2) groups.
The scenarios represent a balanced dataset and two
datasets where the group sizes are unbalanced. These scen-
arios are (n1 ¼ 100; n2 ¼ 100), (n1 ¼ 25; n2 ¼ 95) and
(n1 ¼ 50; n2 ¼ 100). Finally, we included a scenario
with a very small number of samples available:
(n1 ¼ 10; n2 ¼ 10). Within each scenario, we varied two
parameters associated with the artificial dataset: (i) the per-
centage of samples in the case class showing aberrant
expression, which was varied between 1 and 39%, i.e.
1 � paberrant � 39 and (ii) the differences between the
means of the distributions from which the aberrant

and normal expression values were sampled (� ¼ �aberrant

��normal), which were varied between 1 and 4, i.e.
1 � � � 4, with �normal ¼ �aberrant ¼ 1 (See ‘Materials and
Methods’ section for definitions of all parameters). Because
the variance is the same in all scenarios, a change in delta
corresponds to a change in the signal-to-noise ratio.
Consequently, lower delta values correspond to noisier
data, whereas higher delta values correspond to clearer
signal.

Power comparisons
The results for all methods developed for imbalanced
signals, the two-sample KS test (as a representative of
tests that detect differences between distributions other
than just the mean) and the unequal variance t-test (as rep-
resentative of conventional group-wise analyses) are repre-
sented in Figure 2 for the scenario (n1 ¼ 50; n2 ¼ 100).
These results are representative for all other scenarios
and all methods not depicted here. Full results for all
methods and scenarios are depicted in Supplementary
Figures S4–S8.
From Figure 2, it can clearly be seen that DIDS out-

performs all other methods, except for the t-test in the
scenario with relatively high percentages of aberrant
samples (paberrant � 25%), small differences (� � 1:5)
and large values of alpha (� � 0:01). Given the large
number of hypotheses that are typically evaluated (tens
of thousands of genes) and the fact that usually only a
limited number of candidates can be followed up, it
follows that one would generally be especially interested
in P-values that are well below this level. Consider the
worst case scenario, where there are no genes with true
signal. Then setting � ¼ 0:01 would correspond to a list of
ð2� 104Þ � 0:01 ¼ 200 genes, on average, passing the
a cutoff (i.e. all false positives). If we now consider a
scenario where a percentage of the genes do show true
signal, then � ¼ 0:01 will result in >200 genes, as we
expect genes with true signal to have lower P-values
than genes with no signal. Given that only a 100 (or
fewer) genes can typically be selected for follow-up experi-
ments, it follows that we are interested in power compari-
sons at a levels well below 0.01. For all scenarios with
P< 0.01, DIDS performs equal or better than any of the
other algorithms.

PPV comparisons
As for the results on power comparisons, results for all
methods developed for imbalanced signals, the unequal
variance t-test and the two-sample KS test are represented
in Figure 3 for the scenario (n1 ¼ 50; n2 ¼ 100). As
before, these results are representative for the full results
for all methods and scenarios as depicted in
Supplementary Figures S9–S13.
Again, DIDS outperforms all other methods in virtually

all scenarios. Only for relatively high percentages of
aberrant samples (paberrant � 25%) and a small difference
(� ¼ 1), DIDS is outperformed by the t-test. Especially
for 7 � paberrant � 21% and � > 1, the advantage of
DIDS over other methods is substantial, suggesting
improved candidate list generation in real world
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Shades of green represent settings where DIDS achieves a higher PPV than the other methods, and shades of red represent settings where DIDS
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analyses, characterized by a relatively small subset of
samples displaying aberrant gene expression.

DIDS scoring functions
Rows 1 and 2 of Supplementary Figures S4–S13 show the
direct comparison of ftanh to fquad and fsqrt, respectively.
From these rows in these figures we observe that, as
expected, the fquad scoring function performs best for a
small percentage of aberrant samples (paberrant < 20%)
and for large values of �, i.e. when �aberrant � �normal.

Results on the HER2 dataset

The second artificial dataset consists of HER2 non-
amplified samples admixed with HER2-amplified
samples. In this dataset, genes located on the HER2
amplicon show differential expression owing to the
HER2 amplicon. As outlined in the Methods section, we
designated 15 genes as positives, based on their expression
values (i.e. over-expressed and co-expressed with HER2)
and whether they reside on the HER2 amplicon on
Chromosome 17q. Here we also used the PPV as the per-
formance measure, i.e. scoring, for each method, the
number of positives in the top N candidate list. The
results for a range of top N values are depicted in
Figure 4. From this figure, it is clear that DIDS outper-
forms all other methods over a wide range of values of N.
While DIDS reported a median of nine positives in the top
20 (of an estimated 15, also see Supplementary Figure S1),
the OS, ORT, COPA and the Mann–Whitney test
reported a median of 0 of the genes from the amplicon.
SAM, MOST and the t-test performed slightly better and
reported median scores of 1 or 2. Of the different DIDS
scoring functions, the ftanh scoring function performed the
best, with a mean performance of 9.15 of 15 ð¼ 61%Þ.

Results on the mouse dataset

The third control set is derived from tumors that arose
spontaneously in a mouse model that was genetically
engineered to develop breast tumors. For a cohort of
these mice, gene expression profiling was performed on
primary tumors that were resistant as well as primary
tumors that were sensitive to treatment with docetaxel.
For this mouse model, it has been established that
ABCB1B causes resistance to docetaxel treatment (6).
We applied all approaches to the gene expression data
derived from the primary tumors to retrieve putative
resistance markers. Although DIDS ranks ABCB1B at
position 30, the t-test, SAM and the other approaches
ranked it much lower. The best performer of the other
algorithms was the COPA algorithm, placing the
ABCB1B gene at rank 255, whereas the others placed it
at an even lower rank (mean position 2438, median
position 2301). Furthermore, in a heatmap showing a clus-
tering of the top 50 ranked genes (using Pearson correl-
ation as the distance measure), it immediately becomes
clear that most genes in the top 50 co-cluster with
ABCB1B, indicating that these genes are part of a co-
regulated gene cluster (Figure 5). Although no pathway
including these genes was significantly enriched in the
DAVID pathway analysis we performed (13), further
research will focus on investigating common targets and
drivers within this candidate list.

Speed benchmark

To assess real world performance, we measured the time
required by each approach to process the same dataset
(25 000 genes, 100 versus 100 samples, 10 analyses).
Table 1 shows that DIDS is faster than any other
method, ranging from a factor 3.3 (compared with the
t-test) to a factor 19.5 (compared with the MOST proced-
ure). Also note that the MOST, OS, ORT and COPA
procedures do not return a P-value and only give a
single-sided result. In contrast, DIDS, SAM, the Mann–
Whitney, KS test and the t-test output a two-sided result,
i.e. reporting over- as well as under-expressed genes, and
return an analytical exact P-value.

DISCUSSION

Traditional methods, like the t-test or SAM, are not well
suited to detect features that show aberrant signal in only
a subgroup of one of the two groups in the comparison
(i.e. imbalanced differential signal). One context in which
this scenario is relevant is the detection of markers
of chemotherapy resistance. The identification of such
markers has been a major goal in cancer research, but,
unfortunately, little success has been achieved so far.
Part of the reason could be that if only a fraction of all
resistant samples share a particular common resistance
mechanism, then conventional data analysis will not
detect such a mechanism, regardless of the amount of
data that are included. Another classical statistical test,
the KS test, does detect differences other than differences
in the mean, but the disadvantage of this method is that it
detects any difference in distribution (e.g. also a difference
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in variance), whereas we are specifically looking for
changes in a specific direction. Clearly, a different way
of analyzing the data is required. The algorithm we
propose stems from the intuitive notion that if a gene is
involved in causing resistance to the treatment, then,
almost by definition, the expression needs to be higher
(or lower) in some non-responder samples compared
with any of the responder group samples, i.e. if a
responder would also show high (or low) expression of
a resistance-causing gene, it would not have become a
complete responder. The highest (or lowest) gene expres-
sion over all samples in the responder group then becomes

the threshold from which the score is calculated in the
non-responder group. Although the inspiration of the
algorithm was drawn from the chemotherapy resistance
context, it can be applied in any other situation in which
only a subgroup of samples in the case group shows
aberrant signal compared with the samples in the
control group.

A number of methods were developed by others to
tackle similar kinds of problems. An important difference
between DIDS and these methods is the fact that DIDS is
the only method to require all outlier samples to have
expression higher (lower) than the maximum (minimum)
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LOC100046883
FGF10
ITM2A
FEZ1
ABCB1B
NRN1
PDGFRA
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COL5A1
LOXL1
SERPINF1
DKK3
DCN
LOC100046044
ITGA5
HOXC6
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OSR2
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MXRA8
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MFAP2
CTSK
1500041B16RIK
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Color key

Unannotated probe

Figure 5. PPV comparison on the mouse dataset. Heatmap depicting the pairwise dissimilarity (1-Pearson correlation) between the top 50 docetaxel
resistance markers detected by DIDS using the ftanh scoring function on the mouse dataset. DIDS ranked the gene ABCB1B (indicated by the black
box) at position 30. ABCB1B has been confirmed to confer resistance to docetaxel in a subgroup of the resistant mouse tumors in a separate study.
It is also clear from this dissimilarity matrix that within these top 50 candidates, 29 genes (36 probes) show very high similarity as represented by the
prominent red block.

Table 1. Runtimes of benchmarked analytical approaches

Test MOST Mann–Whitney OS SAM ORT KS COPA t-test DIDS

Time (s) 879 481 313 310 248 169 163 148 45
Factor difference 19.5 10.7 7.0 6.9 5.5 3.8 3.6 3.3 1

A total of 25 000 genes were analyzed 10 times with a total sample size of 200 (100 controls, 100 cases). The reported running times are in seconds
and for all 10 runs combined. The analyses were performed using a 2.4-Ghz AMD Opteron processor.
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in the control group. By setting this stringent threshold,
we are assured that the resulting marker candidates offer a
clear separation between cases and controls. In the context
of chemotherapy resistance for example, aberrant expres-
sion of a marker gene cannot be equal to the expression of
samples in the responder group. If that were the case, and
the gene truly is a marker for resistance, that sample could
not have been a responder. While some methods do base
the threshold on samples in the control group only (ORT
and MOST), other methods do not exploit this informa-
tion at all (OS and COPA). In addition, DIDS can inte-
grate different scoring functions leading to the detection of
specific aberrant expression patterns. Finally, DIDS is the
only subgroup-based method to provide an exact P-value.
Conceptually and algorithmically, DIDS is also the most
simple and intuitive method.

We showed that DIDS has higher power than all other
methods, with the exception of cases with a high percent-
age of aberrant samples and for small difference between
the mean aberrant and normal expression values. In these
cases, the t-test and similar tests such as the Mann–
Whitney test and SAM performed slightly better. In the
scenario with 25 controls and 95 cases, DIDS tanh was
outperformed in a single case: for � ¼ 4 and
0:1 � paberrant � 0:2 by COPA and OS in the power com-
parisons (Supplementary Figure S5). As a different
scoring function can be plugged into DIDS to search for
specific patterns (like a large expression difference in a
small subgroup), we showed that the DIDS version
using the quadratic scoring function did outperform
COPA and OS (Supplementary Figure S6), even in this
very specific scenario. However, the tanh-based scoring
function was the most robust across all scenarios and
types of tests, and we would recommend the tanh
scoring function as the default scoring function.
Interestingly, even for a scenario with a low number of
samples (10 controls and 10 cases), DIDS managed to
outperform all other methods, although this was only
clearly the case for scenarios with relatively high signal-
to-noise and a high percentage of aberrant cases (� � 3
and paberrant � 0:13; also see Supplementary Figure S4).
The latter can be explained by the fact that in scenarios
with small sample sizes, a low percentage of aberrant
samples will translate to a low absolute number of
aberrant cases (paberrant ¼¼ 0:1 will result in only one
aberrant case). Consequently, this will lead to lower
power to detect these markers. To assess the influence of
the different parameters (test used, �, paberrant, and a) on
the power, we performed a three-way analysis of variance
(ANOVA). All parameters and their interactions were
highly significantly associated with power. The �,
paberrant, and the interaction of these two parameters
with the test showed a particularly large influence on the
power (see Supplementary Methods and Supplementary
Tables S1–S4 for more details). Although the three-way
ANOVA revealed that some factors (�, paberrant, and their
interaction) are more important than others to predict the
power, it also showed that the relation between power and
a, �, and paberrant is complex (interactions between three
factors are significant). Therefore, we believe that it is

difficult to provide simple and general guidelines for prac-
titioners based on the ANOVA model.
Next, we chose to focus on the PPV as a performance

measure. In ranked-list candidate gene approaches, this is
the most important and relevant performance measure
because a high PPV will ensure that a high percentage of
the identified candidates are true positives, which will lead
to a higher success rate when candidate genes are
validated downstream. Note that False-Discovery Rate
(FDR), a measure often used in method comparisons,
and PPV are closely related, specifically: FDR=1 -PPV.
Using two artificial datasets and an in vivo mouse dataset,
we showed that DIDS outperformed all tested methods in
terms of the PPV. Only for the scenario with 25 controls
and 95 cases and � � 3 and 0:01 � paberrant � 0:08 and the
scenario with 10 controls and 10 cases for � � 3 was
DIDS tanh outperformed by COPA and OS
(Supplementary Figures S9 and S11). When we used
DIDS with the quadratic scoring function in the 10
controls and 10 cases scenario, DIDS was superior to all
other methods (Supplementary Figure S10). Especially
noteworthy is that in the real-world mouse model
dataset the other algorithms managed to rank the previ-
ously validated resistance marker, ABCB1B, only at
position 255, at best, whereas DIDS placed this gene at
position 30. While we have focused on DIDS as a strategy
for identifying single gene biomarkers, additional pathway
analysis can be performed to assess whether the identified
candidates interact through specific biological pathways.
Unfortunately, for the mouse dataset in our study,
pathway analysis of the top 50 candidate genes did not
lead to any additional insights.
The context of analyzing gene expression data to predict

resistance to chemotherapy in cancer clearly showcases the
capabilities of DIDS. However, because it is a general
methodology, the approach can be applied in many dif-
ferent contexts. One immediate and obvious extension
would be to apply DIDS to other genomics data, such
as aCGH or protein expression, to identify resistance
mechanisms or to identify subtypes of cancer. In a
broader sense, another field of application could be anti-
biotics resistance. Resistance to antibiotics in bacterial
species is a typical situation where distinct populations
will show different mechanisms of resistance (14). If a
set of bacterial colonies would be analyzed to identify
resistance mechanisms, traditional analytical methods
might fail for the exact same reasons as it would in the
case of chemotherapy resistance. An approach such as
DIDS, that takes heterogeneity in the marker signal into
account, would be preferred.

CONCLUSION

Because traditional methods are far from optimal to detect
features that show differential signal, compared with a
control group, in only a subgroup of the case group, we
have developed an algorithm that is much better at detect-
ing such features. We showed that this is relevant by
giving a real world example of detecting markers of
chemotherapy resistance. We showed in simulation
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studies that, for the conditions outlined here, DIDS out-
performs all other methods, including methods also
designed to deal with these types of data, in terms of
both power and PPV. For case versus control comparisons
in which the case group is heterogeneous, out of all
included approaches DIDS is the best performing method.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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