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Fair Resource Allocation in Virtualized O-RAN Platforms
FATIH ASLAN and GEORGE IOSIFIDIS, TU Delft, The Netherlands

JOSE A. AYALA-ROMERO and ANDRES GARCIA-SAAVEDRA, NEC Laboratories Europe, Ger-

many

XAVIER COSTA-PEREZ, i2CAT, NEC Laboratories Europe and ICREA, Spain

O-RAN systems and their deployment in virtualized general-purpose computing platforms (O-Cloud) constitute

a paradigm shift expected to bring unprecedented performance gains. However, these architectures raise

new implementation challenges and threaten to worsen the already-high energy consumption of mobile

networks. This paper presents first a series of experiments which assess the O-Cloud’s energy costs and

their dependency on the servers’ hardware, capacity and data traffic properties which, typically, change over

time. Next, it proposes a compute policy for assigning the base station data loads to O-Cloud servers in an

energy-efficient fashion; and a radio policy that determines at near-real-time the minimum transmission

block size for each user so as to avoid unnecessary energy costs. The policies balance energy savings with

performance, and ensure that both of them are dispersed fairly across the servers and users, respectively. To

cater for the unknown and time-varying parameters affecting the policies, we develop a novel online learning

framework with fairness guarantees that apply to the entire operation horizon of the system (long-term

fairness). The policies are evaluated using trace-driven simulations and are fully implemented in an O-RAN

compatible system where we measure the energy costs and throughput in realistic scenarios.

CCS Concepts: • Networks → Network performance evaluation; • Theory of computation → Online
learning algorithms.

Additional Key Words and Phrases: Online Learning, Regret, Mobile Networks, O-RAN, Fairness, Resource

Management, Energy Efficiency
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1 INTRODUCTION
1.1 Background & Motivation
One of the most revolutionizing aspects of future mobile networks is the virtualization of the

Radio Access Network (vRAN), in particular of the base stations (vBS), and the execution of their

software functions at general-purpose computing platforms [28]. Driven by the Open RAN (O-RAN)

Alliance, practically the entire Telco industry is currently investing in the development of vBSs, in

anticipation of the eclipse of conventional RANs by 2028 [8]. Virtualized RANs promote the control

of vBSs in (almost) real-time, using new knobs that tailor their operation to the environment, e.g.,

channel conditions, and to user needs for throughput, latency, and other KPIs. The proposed vRAN

architectures typically include computing pools (O-Cloud) of heterogeneous processing units (PUs),
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Fig. 1. Cell load dynamics (msec granularity) over
a few seconds, collected from an operational RAN
in Frankfurt, Germany, May 2023.
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Fig. 2. Processing latency (left) and energy consumption
(right) to process one TB under different SNRs; measured
on an Intel Xeon CPU core and an NVIDIA V100 GPU.

with CPUs or ASIC/FPGA/GPU hardware accelerators (HAs), which execute dynamically-allocated

compute workloads of one or more vBSs [73]. This native cloud-based architecture constitutes a

paradigm shift for RAN and is anticipated to bring unprecedented performance gains [42].

Unfortunately, the virtualization of RAN is expected also to increase the Operating Expenditures

(OpEx) of networks due to the high energy consumption of vBSs. Namely, unlike legacy base

stations, the energy spent for executing the software vBS functions becomes very relevant and,

in fact, can even surpass that of wireless transmissions [11, 18]. Moreover, these costs are volatile

and unpredictable, as they depend on a range of factors such as the radio characteristics of the

transmitted data (e.g., the Signal-to-Noise Ratio, SNR), and the properties of the O-Cloud PUs.

Coupled with the increasing RAN densification, this effect is bound to render the vRAN energy

costs — an already prevalent concern for operators
1
— prohibitively high for future mobile networks.

Indeed, there is wide consensus that this is a key obstacle hampering the adoption of vRANs [7],

and hence is justifiably very high in the O-RAN agenda of industries [34, 84].

A promising method to tackle this issue is to leverage one of the key O-RAN architecture

innovations: the RAN Intelligent Controller. The RIC, as commonly termed, provides a centralized

abstraction of the network and is envisioned as a powerful enabler for control policies with different

objectives, decision granularity, and time-scales [33, 42]. Interestingly, the RIC policies can shape

the performance and energy cost of the vRAN in two ways: (i) by assigning carefully the vBSs

workloads to different PUs of O-Cloud; and (ii) by affecting the characteristics of these workloads in
almost real-time. For instance, the RIC could dictate the vBSs to route their most voluminous flows

to servers equipped with HAs; to refrain from using energy-costly modulation schemes [16, 51];

or to bound their transmission power [15]. Such compute control and radio control policies can,
in principle, be very effective in balancing the vRAN performance and energy costs, but require

access to system and user parameters that are unknown and vary rapidly, and presume solving

large-scale challenging optimization problems.

To exemplify, the processing time for decoding/encoding the users’ uplink/downlink streams

depends on the amount of this traffic which, most often, is subject to rapid fluctuations; see, e.g.,

[38] and our measurements in Fig. 1. Secondly, the processing time for each Transport Block (TB)
2

depends on its SNR, which might change drastically as users move around. To illustrate this, we

show in Fig. 2 experimental results obtained using the testbed platform described in Sec. 6. Fig. 2

(left) presents the processing time of a TB (of certain length) at a CPU or GPU, under different SNRs
3
.

Leveraging its high degree of data parallelization (intrinsic to its architecture) the GPU speeds up

the TB processing, in contrast to the CPU where the processing is sequential (see [35] for more

1
For instance, Verizon and Vodafone announced their target for net zero energy emissions by 2040 [10], and China Mobile

has set to reduce energy consumption and carbon emissions by 20% in the next few years [56].

2
TB is the basic MAC-layer user data unit, and its length (bits) depends typically on the radio resource blocks and MCS.

3
5G FEC is implemented via LDPC iterative algorithms, which require more computations for lower SNR, see [26].
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details). This delay variance is critical, as the vBS workloads are subject to stringent processing

deadlines (1-3 ms) which, if violated, lead to data loss and energy waste [38, 40]. Third, the energy

cost of these computations depends on the PU technology and the data stream characteristics.

For example, the experiments in Fig. 2 (right) show that a GPU decodes a TB (with SNR 14 dB)

approximately 5× faster than a CPU, but consumes 2.5× more energy; and demonstrate how the

(unknown and varying) SNR affects this comparison. Motivated by these observations, this work

introduces and evaluates an algorithmic toolbox for the design of data-adaptive RIC policies, in
different time-scales, towards taming the energy consumption of vRANs while accounting for

fairness criteria w.r.t. performance (across users) and energy costs (across servers).

1.2 Methods & Contributions
We focus on two key resource management problems that affect the vRANs’ performance and

energy, and design a computing control and a radio control policy to tackle them. The first problem

studies the assignment of vBS workloads to O-Cloud processing units. The workloads differ in

their volume and SNR, and similarly the PUs are heterogeneous in terms of technology (CPU or

HA), capacity and energy consumption. We find experimentally that CPU-based PUs can process

small and cleaner (high SNR) workloads with less energy; while GPU-based PUs can be used for

voluminous and/or low-SNR data to ensure their timely processing. Therefore, we argue that a RIC

at non-Real-Time (non-RT) can devise an intelligent workload assignment policy which dictates

how the vBSs can leverage the PUs’ diversity to balance energy costs and performance (successfully

processed loads). Such a policy needs to adapt to the time-varying properties of workloads and

PUs; and allocate fairly in the long-run the O-Cloud capacity across the vBSs, and the energy

costs across the PUs. This latter property increases reliability (via load balancing), and is key for

multi-vendor O-Clouds where the PUs are owned by different business entities.

The second problem concerns a new radio control policy, similar in flavor to those in [14–16].

The starting point here is our experiments (Sec. 6) showing that HAs consume almost the same

energy per TB independently of its length
4
. Thus, if users transmit larger TBs, the vRAN will

consume less energy per bit. This creates an opportunity for the RIC to introduce a highly dynamic

(i.e., at near-RT scale) minimum TB size policy (minTB) for each user, preventing transmission of

small TBs. Nevertheless, such a policy will inevitably deteriorate the latency for users, as they might

need to refrain from transmitting despite having non-empty (MAC-layer) buffers. It is therefore

imperative to strike a balance between the energy savings and transmission delays; and further,

to disperse fairly these delays across the users so as to avoid excessive service deterioration for

some of them. Deciding the minTB thresholds requires access to the user traffic and HA energy

costs, which change with time and are typically unknown when such near-RT policies are devised.

Further, it involves solving large-scale optimization problems in almost real-time scales.

We design a novel optimization toolbox for the above compute and radio control policies based

on online learning, cf. [46, 79]. Our approach relies on the celebrated Follow The Regularized Leader

(FTRL) framework [80], that has been particularly successful in the design of data-adaptive and

robust decision policies [58]. We extend FTRL here to account for the specifics of these problems,

namely we equip it with a two-sided long-term fairness metric, so as to support fairness w.r.t. cost

savings across the servers and fairness w.r.t. performance gains across users over its entire operation;

and we include predictions for the unknown (system and user) parameters. Achieving fairness

in such dynamic decision models is technically challenging, and previous works are confined to

per-slot fairness (which impacts efficiency), with only few exceptions, e.g., [44, 55, 81]. We overcome

this barrier through a saddle-point transformation where in the dual space we track the two fairness

4
GPUs have StreamingMultiprocessors that parallelize workloads effectively, and LDCP codes are amenable to parallelization.
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metrics. The predictions, on the other hand, bring in the optimistic learning aspect [66, 76], and,

if used judiciously, can expedite the learning rate when they are (relatively) accurate, without

deteriorating it otherwise. The proposed algorithms offer optimality guarantees (i.e., regret) w.r.t.
ideal benchmark policies one could only devise using oracles, and which hold for a wide range of

perturbation models including adversarial ones. Our contributions are thus summarized as follows:

• We present new experimental results for the computing delay and energy costs in O-RAN,

which motivate the design of dynamic and adaptive compute and radio control policies.

• We develop a lightweight learning framework for designing control policies which: (i) assign
fairly the vBSs’ compute workloads to O-Cloud processing units; and (ii) decide TB size thresholds,

towards reducing the vRAN energy costs while ensuring fair performance across users.

• We prove the policies have sublinear regret under adversarial scenarios and assess their

implementation overheads and dependency on system parameters, user demands and predictions

accuracy. Along the road we develop technical results that improve these learning techniques.

•We evaluate the policies using trace-driven and synthetic simulations, and we implement them

at an O-RAN-compliant testbed to measure the actual vBS performance and PUs energy costs.

Notation. ∥ · ∥, ∥ · ∥∞, and ∥ · ∥1 denote the ℓ2 (Euclidean), ℓ∞ and ℓ1 norms. Vector transpose

and the Hadamard product are denoted ⊤ and ◦, respectively. We denote vectors with small bold

typeface letters and use subscripts to index them. We use 𝒙1:𝑡 for the sum of vectors

∑𝑡
𝑖=1

𝒙𝑖 , and do
so also for scalars. 𝒙𝑡 time-indexes vector 𝒙 , and {𝒙𝑡 }𝑇𝑡=1

denotes the sequence 𝒙1, 𝒙2, . . . , 𝒙𝑇 . When

the horizon is not relevant, we write {𝒙𝑡 }𝑡 . The ℓ2 diameter of a set X is denoted by 𝐷X .
Outline of Paper. Sec. 2 reviews the related work about O-RANs and online learning. Sec. 3

presents the systemmodel, the load assignment learning problem and its saddle-point reformulation.

Sec. 4 provides a brief background on FTRL and introduces the optimistic FTRL algorithm for the

load assignment problem; while Sec. 5 presents the model and algorithm for the TB threshold policy.

We provide motivating experiments, and extensive simulation and experimental evaluation of the

two algorithms in Sec. 6. The remaining proofs and additional results can be found in the Appendix.

2 LITERATURE REVIEW
2.1 Resource Management in vRANs
Resource management solutions for mobile networks can be broadly classified into those using

analytical functions that map control actions to performance metrics, e.g., [21, 45, 77, 86]; solutions

that employ offline-trainedMLmodels, e.g., [22, 74]; and techniques that adapt to network conditions

and user demands [4, 13, 39, 89, 91]. Unfortunately, function-based models rely on parameters that

are most often unknown in vRANs; while the efficacy of ML models depends on the availability of

representative training data [90]. Examples of more adaptive solutions include Bayesian learning

for optimizing video analytics [39] and BS energy costs [14, 15, 17]; and Reinforcement Learning

for spectrum management and wireless scheduling [2, 91], among many others. These approaches

have high overhead, e.g., require expensive matrix inversions, and provide optimality guarantees

only under stationary conditions; therefore, they are typically employed for longer-term static

resource control policies. Other practical solutions tailored to vRAN resource management include

hybrid offline-trained and online-adapted vBS workload predictions [38], or regression models [40],

so as to increase the utilization of the employed CPUs. These works do not provide optimality or

fairness guarantees, and operate in real-time as opposed to the non-RT scale of our assignment

policy; thus can be used concurrently.

Here, we rely instead on the theory of online convex optimization (OCO) which: (i) does not
require access to performance/cost functions or system/user-related parameters; and (ii) offers
guarantees under a wide range of scenarios, including adversarial ones [92]. The robustness of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 17. Publication date: March 2024.
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OCO is particularly useful for vRANs which, due to the virtualized vBS functions, exhibit volatile

performance and, importantly, high energy costs [18, 26, 38, 40]. These experimental findings

motivated the design of policies about the vBSs’ transmission power, modulation and coding

schemes, spectrum usage, and others, which aim to curb the vRANs energy costs [14, 15, 17]. Such

policies can be devised centrally by the RIC and applied to different vBSs concurrently [33, 42].

These solutions become more interesting due to HAs that are increasingly common in industry-

grade vBS-hosting platforms [32, 49]. HAs are already used in cloud computing where, due to their

high cost, it is imperative to utilize them effectively [31, 54]. When it comes to vBS functions, the

performance and energy costs of HAs are substantially different from CPUs as our experiments

find, hence paving the road for new energy-saving policies. Our proposal includes a new near-

RT radio control policy that decides the minimum TB size each user can employ; and a non-RT

compute-control policy which assigns vBSs’ workloads to CPU and HAs. Both policies optimize

performance and energy consumption, while being fair in terms of the service offered to users and

the energy costs dispersed across the PUs.

2.2 Fairness & Online Learning
Fairness is a key metric in resource management and has been extensively applied in cloud com-

puting [27, 87] and communication systems [5, 52], among many others [68, 71, 75]. More recently,

[59, 60] focused on max-min throughput fairness in RANs, e.g., via spectrum management; [85]

studied the fair allocation of computing capacity to vRAN functions and edge services; [67] consid-

ered cost-fairness in multi-tenant O-RANs where operators lease computing for their vBS functions;

while [37, 45, 64] focus on virtualization and slicing. These interesting works, however, do not con-

sider the inherent system and user dynamics in vRANs and/or do not provide fairness guarantees.

Achieving fairness in such dynamic problems is indeed challenging, even from a theoretical point

of view. Previous works have studied slot fairness criteria [50, 82, 83] where in each decision round

the problem of fairness is tackled independently of the past or future decisions. By definition, the

scope of these fairness metrics is limited and it results in higher price of fairness [25, 81]. More

ambitious approaches attempt to achieve horizon fairness, where the fairness metric is enforced

across the entire system operation, not instantly. We also refer the reader to the interesting work [6]

that discusses fairness in wireless networks over multiple time scales.

Recent studies on horizon fairness assume the utility functions to be either known or non-

adversarial, e.g., study the stochastic version, [6, 19, 23, 30, 44, 55, 81]. Instead, we target a framework

that drops these assumptions. The closest to our work is [81], which we extend here in many ways.

First, we use a novel optimistic learning fairness algorithm that leverages predictions for the

performance and costs. Secondly, we consider a two-sided alpha-fairness criterion, i.e., w.r.t. cost

savings across the servers andw.r.t. performance across users, where the two fairness parameters can

be even different. And, finally, we employ a tailored learning algorithm with minimal computation

and memory requirements. Namely, we rely on the FTRL framework [58] and draw ideas from

optimistic learning [66, 76] that has been recently used, e.g., for caching [61] and network control

[9]. Here, we extend the optimistic learning algorithms to our problems, aiming for low computation

and memory requirements and constant (not only sublinear) regret for perfect predictions.

Finally, it is worth noting the connection of fairness with load-balancing techniques. The majority

of studies in this latter area focus on the asymptotic regime and consider stochastic loads or servers

with fixed capacities; see discussion of literature in [88]. Works that do drop these assumptions

include [65] which assigns equal-length jobs with known deadlines; and [29] which considers

max-min fairness from the servers’ (minimize maximum load) or jobs’ (maximize minimum service)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 17. Publication date: March 2024.
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Fig. 3. (a): A non-RT controller at the Service & Management Orchestration (SMO) framework devises the
load assignment policy every ∼ 1−10 seconds and sends it to the vBSs via the A1 interface. (b): Timing
diagram of assignment implementation and learning policy.

perspective. Our model and motivation is different. We aim at fairness (i.e., balance) w.r.t. time-

varying and unknown job-utility and server-cost functions, we make no assumptions about the

load arrivals, and our policies operate at time-scales where queue stability is of no concern.

3 SYSTEMMODEL AND FAIRNESS REGRET
We start with the system model for the assignment problem; define the learning problem and regret

metrics; and propose a saddle-point reformulation which is used in the algorithm design in Sec. 4.

3.1 Model & Problem Statement
We consider a vRAN with a set I of 𝐼 = |I | vBSs, and a set J of 𝐽 = |J | of PUs (or, servers)
that comprise the O-Cloud. The operation of the system is time-slotted and the slot duration is

considered ∼ (1 − 10) seconds, since this is a non-RT policy implemented by a RIC at the SMO,

Fig. 3(a). We study the system for a set T of 𝑇 = |T | slots, and focus on the more computation-

demanding uplink [14, 18]. During every slot 𝑡 , each vBS 𝑖 ∈ I injects into the O-Cloud an amount

of 𝜆𝑖𝑡 ≥ 0 data (bytes), stemming from its users, and we define 𝝀𝑡 = (𝜆𝑖𝑡 , 𝑖 ∈ I). The required

computations for these data, e.g., for FFT or FEC decoding, depend on their volume and wireless

conditions that affect their SNR, see Fig. 1-2 and [18, 40]. Hence, in practice the value of 𝝀𝑡 and
their computations are revealed at the end of each slot 𝑡 . On the other hand, each server 𝑗 ∈ J
has computing capacity of 𝐶 𝑗𝑡 cycles during each slot 𝑡 , and we define 𝑪𝑡 = (𝐶 𝑗𝑡 , 𝑗 ∈ J). We study

the general case where the capacities might change over time. Similar to the loads, we assume 𝑪𝑡
becomes known at the end of each slot.

A non-RT controller decides the O-Cloud assignment policy, i.e., how much data (or, load) from

each vBS will be routed to each server. We denote with 𝑥𝑖 𝑗𝑡 ∈ [0, 1] the load portion of vBS 𝑖 that is

sent to server 𝑗 during slot 𝑡 , and hence 𝑥𝑖 𝑗𝑡𝜆𝑖𝑡 is the assigned data from that vBS. We also define

the assignment vector 𝒙𝑖𝑡 = (𝑥𝑖 𝑗𝑡 ,∀𝑗 ∈ J) for each vBS 𝑖 ∈ I; the vector 𝒙 𝑗𝑡 = (𝑥𝑖 𝑗𝑡 ,∀𝑖 ∈ I) for
each server 𝑗 ∈ J ; and the total assignment 𝒙𝑡 = (𝑥𝑖 𝑗𝑡 ,∀𝑖 ∈ I, 𝑗 ∈ J). These decisions are subject
to a simplex constraint for each vBS, thus each 𝒙𝑡 , 𝑡 ∈ T , belongs to set:

X =

𝒙 ∈ [0, 1]𝐼 · 𝐽 :

∑︁
𝑗∈J

𝑥𝑖 𝑗 = 1,∀𝑖 ∈ I
 . (1)

The assignment policy is updated at the beginning of each slot 𝑡 and shapes the system perfor-

mance during that slot. If the controller assigns more load to a server than its capacity, then (part

of) this data will not be processed before its deadline [26]. This means that the associated vBSs
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will suffer reduced throughput [40, 41]. Thus, the benefit for a vBS when using a server decreases

sharply when the total load approaches the server’s capacity. We model this effect through a

(possibly) time-varying utility vector function 𝒖𝑡 (𝒙) =
(
𝑢𝑖𝑡 (𝒙), 𝑖 ∈ I

)
, where 𝒖𝑡 :R𝐼× 𝐽 ↦→ R𝐼+ is

assumed non-negative and concave. Each element 𝑢𝑖𝑡 (𝒙) ∈ [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 ] denotes the performance

for vBS 𝑖 ∈ I under assignment 𝒙 , and captures the server heterogeneity, e.g., through 𝑪𝑡 .
Accordingly, we use functions 𝒉𝑡 : R𝐼× 𝐽 ↦→ R𝐽+, to model the energy cost savings for the servers at

each slot 𝑡 ∈T , whereℎ 𝑗𝑡 (𝒙) ∈ [ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥 ] is the cost reduction5 of server 𝑗 ∈ J under assignment

𝒙 . This reduction is calculated with reference to the (unknown) energy cost the server would have

paid, had it served the entire load in the network. Put it differently, these functions model the

benefits from dispersing the load across multiple servers instead of using only one. In line with

prior works, e.g., [85], and based on our measurements (Sec. 6) we consider these functions to

be non-negative and concave on 𝒙 . Our analysis can be applied to any type of utility and cost

functions satisfying these minimal requirements, and we study a specific example in Sec. 6.

The goal of the controller is to devise a sequence of assignment policies {𝒙}𝑇𝑡=1
so as to achieve a

two-sided fairness criterion: (i) fairness w.r.t. the average utility perceived by the vBSs over the

horizon T , i.e., w.r.t. (1/𝑇 )∑𝑡 ∈T 𝒖𝑡 (𝒙𝑡 ); and (ii) fairness w.r.t. to the average energy cost savings

of servers, i.e., (1/𝑇 )∑𝑡 ∈T 𝒉𝑡 (𝒙𝑡 ). To do so, the controller needs to overcome two challenges. First,

to decide the per-slot assignment 𝒙𝑡 in a way that optimizes the immediate performance and costs

while tracking these two long-term (horizon) fairness criteria. Secondly, it needs to achieve this

balance without information about the system parameters {𝝀𝑡 , 𝑪𝑡 }𝑡 , and functions {𝒖𝑡 ,𝒉𝑡 }𝑡 , which
are time-varying, unknown, and revealed after each 𝒙𝑡 is decided, see Fig. 3(b). In fact, we adopt the

most general perturbation model where these parameters are assumed to be decided dynamically

by an adversary aiming to deteriorate the system operation [92]. Clearly, a policy that performs

well under these conditions, can also perform under more benign static or stationary scenarios
6
.

For the fairness criteria, we employ the generalized 𝛼-fairness function [5, 63]:

𝐹𝛼 (𝒖) �
∑︁
𝑖∈I

𝑓𝛼 (𝑢𝑖 ) where 𝑓𝛼 (𝑢𝑖 ) �
{
𝑢1−𝛼
𝑖

−1

1−𝛼 , for 𝛼 ∈ R≥0\{1},
log(𝑢𝑖 ), for 𝛼 = 1.

(2)

Parameter 𝛼 determines the type of fairness we wish to enforce; e.g., 𝛼 =1 yields the proportional

fairness metric, while 𝛼 → ∞ leads to max-min fairness. We define a similar fairness function for

the cost savings, 𝐹𝛽 (𝒉) =
∑
𝑗∈J 𝑓𝛽 (ℎ 𝑗 ), where in general it can be 𝛼 ≠ 𝛽 .

We evaluate the efficacy of the assignment policies using the metric of static regret which is

extended here to capture the two-sided horizon fairness as follows:

R𝑇 (𝐹𝛼 , 𝐹𝛽 ) � sup

{𝒖𝑡 ,𝒉𝑡 }𝑇𝑡=1

{
𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝒖𝑡 (𝒙★)
)
+ 𝐹𝛽

(
1

𝑇

∑︁
𝑡 ∈T

𝒉𝑡 (𝒙★)
)

−𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝒖𝑡 (𝒙𝑡 )
)
− 𝐹𝛽

(
1

𝑇

∑︁
𝑡 ∈T

𝒉𝑡 (𝒙𝑡 )
) }

.

(3)

This metric evaluates the policy that decides {𝒙𝑡 } dynamically over T , by using a hypothetical

benchmark 𝒙★ that could be only devised with access at 𝑡 =0 to all loads, capacities, and functions:

𝒙★ = arg max

𝑥∈X

{
𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝒖𝑡 (𝒙)
)
+ 𝐹𝛽

(
1

𝑇

∑︁
𝑡 ∈T

𝒉𝑡 (𝒙)
)}

.

5
Parameters ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 , as well as 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 , can be determined based on the vBS operation envelope.

6
A policy designed for adversarial environments might not be, in general, ideal (i.e., best-performing) for static environments

and can be outperformed by algorithms tailored for such specific scenarios, when one has guarantees for their existence.
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We aim to find {𝒙𝑡 }𝑇𝑡=1
that ensures the loss compared to 𝒙★ will diminish to zero, for any realization

of the unknown parameters, as is evidenced from the regret definition in (3).

3.2 Reformulation & Solution Approach
Unfortunately, off-the-shelf (online) convex optimization algorithms cannot be applied directly on

this problem, due to the time-averaging in the argument of functions 𝐹𝛼 (·) and 𝐹𝛽 (·), which does

not allow the necessary (for these techniques) decomposition over time; see also [1, 81]. To tackle

this issue, we introduce a proxy function Ψ𝑡 : Θ × Φ × X ↦→ R with two types of dual variables,

𝜽 ∈ Θ and 𝝓 ∈ Φ, as follows:

Ψ𝑡 (𝜽 , 𝝓, 𝒙) = Ψ𝛼𝑡 (𝜽 , 𝒙)+Ψ
𝛽

𝑡 (𝝓, 𝒙), (4)

where functions Ψ𝛼𝑡 : Θ × X ↦→ R and Ψ
𝛽

𝑡 : Φ × X ↦→ R, are defined as:

Ψ𝛼𝑡 (𝜽 , 𝒙) = (−𝐹𝛼 )★(𝜽 ) − 𝜽⊤𝒖𝑡 (𝒙), Ψ
𝛽

𝑡 (𝝓, 𝒙) = (−𝐹𝛽 )★(𝝓) − 𝝓⊤𝒉𝑡 (𝒙), (5)

and the dual variables are bounded in Θ � [−1/𝑢𝛼
𝑚𝑖𝑛

,−1/𝑢𝛼𝑚𝑎𝑥 ]𝐼 and Φ � [−1/ℎ𝛽
𝑚𝑖𝑛

,−1/ℎ𝛽𝑚𝑎𝑥 ] 𝐽 .
Function (−𝐹𝛼 )★(·) is the Fenchel convex conjugate of −𝐹𝛼

(
𝒖𝑡 (𝒙)

)
[20, Ch. 4], i.e.,

(−𝐹𝛼 )★(𝜽 ) = max

𝒙∈X

{
𝜽⊤𝒖𝑡 (𝒙) −

(
− 𝐹𝛼 (𝒖𝑡 (𝒙))

)}
= max

𝒙∈X

{
𝜽⊤𝒖𝑡 (𝒙) + 𝐹𝛼

(
𝒖 (𝒙)

)}
, (6)

and similarly we define (−𝐹𝛽 )★(𝝓) for function −𝐹𝛽
(
𝒖𝑡 (𝒙)

)
. Interestingly, given the function

structure in (2), these proxy functions can be expressed analytically as

Ψ𝛼𝑡 (𝜽 , 𝒙) =
𝐼∑︁
𝑖=1

𝛼 (−𝜃𝑖 )1−1/𝛼 − 1

1 − 𝛼 − 𝜽⊤𝒖𝑡 (𝒙), Ψ
𝛽

𝑡 (𝝓, 𝒙) =
𝐽∑︁
𝑗=1

𝛽 (−𝜙 𝑗 )1−1/𝛽 − 1

1 − 𝛽 − 𝝓⊤𝒉𝑡 (𝒙), (7)

and when 𝛼 = 1 we get Ψ𝛼𝑡 (𝜽 , 𝒙) = −1 − log(−𝜽 ) − 𝜽⊤𝒖𝑡 (𝒙), and similarly for 𝛽 = 1 and Ψ
𝛽

𝑡 .

These functions are suitable for our problem as we can recover the fairness objective with a

minimization operation [20, Th. 4.8]. That is, leveraging their biconjugate equivalence we can write:

𝐹𝛼
(
𝒖𝑡 (𝒙)

)
= min

𝜽 ∈Θ
Ψ𝑎𝑡 (𝜽 , 𝒙) and 𝐹𝛽

(
𝒉𝑡 (𝒙)

)
= min

𝝓∈Φ
Ψ
𝛽

𝑡 (𝝓, 𝒙). (8)

At the same time, Ψ𝑡 (𝜽 , 𝝓, 𝒙) is linear on the utility and cost values, hence with this transformation

we can maximize a (separable) sum of functions instead of a (non-separable) concave function of

them. Putting these together, the problem we aim to solve has at its core the (per-slot) program:

max

𝑥∈X

{
𝐹𝛼

(
𝒖𝑡 (𝒙𝑡 )

)
+ 𝐹𝛽

(
𝒉𝑡 (𝒙𝑡 )

)}
= max

𝑥∈X

{
min

𝜽 ∈Θ
Ψ𝛼𝑡 (𝜽 , 𝒙) + min

𝝓∈Φ
Ψ
𝛽

𝑡 (𝝓, 𝒙)
}
, (9)

which we will tackle with a saddle-point algorithm that updates the primal and dual variables

successively, performing independent (but coordinated) learning in the primal and dual space. In

particular, we will be running an OCO algorithm on 𝒙 to bound the primal-space regret:

R
𝑥
𝑇 �

𝑇∑︁
𝑡=1

(
Ψ𝑡 (𝜽𝑡 , 𝝓𝑡 , 𝒙) − Ψ𝑡 (𝜽𝑡 , 𝝓𝑡 , 𝒙𝑡 )

)
, ∀𝒙 ∈ X, (10)

and similarly, we will learn using the proxy function in the dual spaces, to bound:

R
𝜃
𝑇 �

𝑇∑︁
𝑡=1

(
Ψ𝛼𝑡 (𝜽𝑡 , 𝒙𝑡 ) − Ψ𝛼𝑡 (𝜽 , 𝒙𝑡 )

)
,∀𝜽 ∈ Θ, R

𝜙

𝑇
�

𝑇∑︁
𝑡=1

(
Ψ
𝛽

𝑡 (𝝓𝑡 , 𝒙𝑡 ) − Ψ
𝛽

𝑡 (𝝓, 𝒙𝑡 )
)
, ∀𝝓 ∈ Φ. (11)

Wewill show in the next section that we can use these regret bounds to upper-bound the horizon-fair

regret R𝑇 (𝐹𝛼 , 𝐹𝛽 ), which is the goal of the RIC here.
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4 LEARNING ALGORITHMS AND ASSIGNMENT POLICY
We now present the learning algorithms in the primal and dual space and characterize their regret

bounds, which we then combine to build the controller’s assignment policy and assess its regret.

4.1 OFTRL Algorithms
We will perform the RIC policy learning using optimistic FTRL algorithms [66, 76]. In the OFTRL

template, the variables are updated at the beginning of each new slot 𝑡 + 1 using a time-varying

regularizer 𝑟1:𝑡 (𝒙), all past function gradients and a prediction for the function gradient at slot 𝑡 + 1

(the optimistic element). Such predictions, if incorporated carefully, can improve the learning rate

when accurate, without sacrificing performance when they are inaccurate. For example, one can use

past values of vBS loads as a prediction for the next loads without risking no-learning conditions if

there is a distribution shift. Optimistic learning has been recently used, e.g., for content caching

[61] or routing [9], but not for vRANs and not in conjunction with allocative fairness.

The performance of such FTRL algorithms is shaped by the regularizers. A typical choice is

the quadratic regularizer 𝑟1:𝑡 (𝒙)= 𝜎1:𝑡

2
∥𝒙 ∥2

and its proximal variant which uses instead ∥𝒙− 𝒙𝑡 ∥2
.

Parameters {𝜎𝑡 } encode information about the system properties and the predictions’ accuracy.

When the constraint is a simplex, the entropic regularizer 𝑟1:𝑡 (𝒙)= 𝜎𝑡
∑
𝑖∈I 𝑥𝑖 log(𝑥𝑖 ) allows a closed-

form derivation of 𝒙𝑡 and achieves lower dependency on the decision space diameter. Proximal

regularizers require more memory and computations to optimize the variables, but achieve O(1)
regret when all predictions are accurate. On the other hand, non-proximal regularizers (as the

entropic) are computationally-efficient but yield sublinear (not constant) regret O(
√
𝑇 ) even with

perfect predictions, see [66]. Here, we use a quadratic regularizer in the dual space and an entropic

one for the primal space. What is more, we tune these algorithms to achieve O(1) regret for perfect
predictions (despite being non-proximal), and provide closed-form derivations in both cases.

4.1.1 OFTRL with Quadratic Regularizer. We start with the analysis of the learning in the dual

spaces Θ and Φ. The proposed OFTRL dual updates for these minimization problems are:

𝜽𝑡+1 = arg min

𝜽 ∈Θ

{
𝑞1:𝑡 (𝜽 ) + 𝜽⊤ (𝜿1:𝑡 + �̃�𝑡+1)

}
, (12)

𝝓𝑡+1 = arg min

𝝓∈Φ

{
𝑝1:𝑡 (𝝓) + 𝝓⊤ (𝝁1:𝑡 + �̃�𝑡+1)

}
, (13)

where 𝑞1:𝑡 (𝜽 ) =
∑𝑡
𝜏=0

𝑞𝜏 (𝜽 ) and 𝑝1:𝑡 (𝝓) =
∑𝑡
𝜏=0

𝑝𝜏 (𝝓) are the aggregate dual regularizing functions
imposed at slot 𝑡 ; vectors 𝜿1:𝑡 =

∑𝑡
𝜏=1

∇𝜽Ψ
𝑎
𝜏 (𝜽𝜏 , 𝒙𝜏 ), 𝝁1:𝑡 =

∑𝑡
𝜏=1

∇𝝓Ψ
𝛽
𝜏 (𝝓𝜏 , 𝒙𝜏 ) are the aggregate

dual gradients; and �̃�𝑡+1, �̃�𝑡+1 denote the respective gradient predictions for 𝑡 + 1. Following the

rationale in [62, 66] and based on the geometry of these spaces, we propose the regularizers:

𝑞1:𝑡 (𝜽 ) =
𝜎1:𝑡

2

∥𝜽 ∥2

2
where 𝜎1:𝑡 = 𝜎

√√
𝑡∑︁
𝜏=1

∥𝜿𝜏 − �̃�𝜏 ∥2

2
, 𝜎 = 2

√
2/𝐷Θ, (14)

𝑝1:𝑡 (𝝓) =
𝜉1:𝑡

2

∥𝝓∥2

2
where 𝜉1:𝑡 = 𝜉

√√
𝑡∑︁
𝜏=1

∥𝝁𝜏 − �̃�𝜏 ∥2

2
, 𝜉 = 2

√
2/𝐷Φ, (15)

which impose regularization commensurate to the prediction errors up to each slot 𝑡 ∈ T . It

follows that 𝑞1:𝑡 (𝜽 ) is 1-strongly-convex w.r.t. the norm ∥𝜽 ∥ (𝑡 ) =
√
𝜎1:𝑡 ∥𝜽 ∥, which has dual norm

∥𝜽 ∥ (𝑡 ),★ = ∥𝜽 ∥/√𝜎1:𝑡 , and similarly for 𝑝1:𝑡 (𝝓), see [58].
If we apply the OFTRL updates (12)-(13) with regularizers (14)-(15), we can upper-bound the

regret in the dual spaces as the next result states, which holds as is for Φ as well.
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Lemma 4.1. For a compact convex set Θ, update (12) with regularizer (14) yields regret:

R
𝜃
𝑇 ≤ 4

√
2DΘ

√√√
𝑇∑︁
𝑡=1

∥𝜿𝑡 − �̃�𝑡 ∥2

2
. (16)

This result improves the optimistic regret bound of quadratic regularizers by enabling constant

regret O(1), as opposed to sublinear (not constant) regret [66], in the case of perfect predictions.

4.1.2 OFTRL Algorithm with Entropic Regularizer. For the primal update we employ entropic

regularization due to the multi-simplex structure of X. The update for this problem is
7
:

𝒙𝑡+1 = arg min

𝒙∈X

{
𝑟1:𝑡 (𝒙) − 𝑥⊤

(
𝒈1:𝑡 +𝒘1:𝑡 + �̃�𝑡+1 + �̃�𝑡+1

)}
(17)

where 𝑟1:𝑡 (𝒙) is the aggregate regularization at 𝑡 ; vectors 𝒈1:𝑡 =
∑𝑡
𝜏=1

∇𝒙Ψ
𝑎
𝜏 (𝜽𝜏 , 𝒙𝜏 ) and 𝒘1:𝑡 =∑𝑡

𝜏=1
∇𝒙Ψ

𝛽
𝜏 (𝝓𝜏 , 𝒙𝜏 ) are the aggregate primal-space gradients; and �̃�𝑡+1 and �̃�𝑡+1 the gradient predic-

tions for 𝑡 + 1. The proposed entropic regularizer for this multi-simplex constraint is:

𝑟1:𝑡 (𝒙) =
𝜂1:𝑡

2

©«𝐼 log 𝐽 +
∑︁
𝑖∈I

∑︁
𝑗∈J

𝑥𝑖 𝑗 log𝑥𝑖 𝑗
ª®¬ , where 𝜂1:𝑡 = 𝜂

√√
𝑡∑︁
𝜏=1

∥𝒈𝜏 +𝒘𝜏 − �̃�𝜏 − �̃�𝜏 ∥2

∞. (18)

Each 𝑟1:𝑡 (𝒙) is now 1-strongly-convex w.r.t. norm ∥𝒙 ∥ (𝑡 ) = ∥𝒙 ∥1

(
𝜂1:𝑡/𝐼

)
1/2

(see Lemma 8.1 in

Appendix). This update yields regret in the primal space that is upper bounded by the next Lemma.

Lemma 4.2. For the convex set X defined in (1), the update (17) with regularizer (18) ensures:

R
𝑥
𝑇 ≤

(√
2𝐼

𝜂
+ 𝜂𝐼 log 𝐽

2

) √√√
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞ where 𝜂 = min


1

2

,

√︄
2

√
2

log 𝐽

 . (19)

Similarly to R
𝜃
𝑇 and R

𝜙

𝑇
, this result ensure regret R

𝑥
𝑇 = O(1) when the predictions are perfect,

while we still get R
𝑥
𝑇 = O

(√
𝑇
)
even when the predictions are maximally inaccurate.

4.1.3 Implementation. Given the tight deadlines of the vBS functions and the scale of vRANs, it is

imperative the algorithm to be lightweight. To that end, we solve analytically its core optimization

steps. Applying first-order optimality conditions on (7), we can express the partial gradients as:

𝒈𝑡 =
(
−

𝐼∑︁
𝑖=1

𝜃𝑖𝑡
𝜗𝑢𝑖𝑡 (𝒙𝑡 )
𝜗𝑥𝑖 𝑗𝑡

, 𝑖 ∈ I, 𝑗 ∈ J
)
, 𝒘𝑡 =

(
−

𝐽∑︁
𝑗=1

𝜙 𝑗𝑡
𝜗ℎℎ𝑡 (𝒙𝑡 )
𝜗𝑥𝑖 𝑗𝑡

, 𝑖 ∈ I, 𝑗 ∈ J
)
, and (20)

𝜿𝑡 =
(
− (−𝜃𝑖𝑡 )−

1

𝛼 − 𝑢𝑖𝑡 (𝒙𝑡 ), 𝑖 ∈ I
)
, 𝝁𝑡 =

(
− (−𝜙 𝑗𝑡 )−

1

𝛽 − ℎ 𝑗𝑡 (𝒙𝑡 ), 𝑗 ∈ J
)
. (21)

Furthermore, both the dual and primal variable updates can be performed with closed-form expres-

sions leveraging the following formulas.

Proposition 1. The closed-form solution to 𝜽𝑡+1 in iteration (12) is given by

𝜃𝑖,𝑡+1 = min

max

−
𝜅𝑖,1:𝑡 + �̃�𝑖,𝑡+1

2

√
2

𝐷Θ

√︃∑𝑡
𝜏=1

∥𝜿𝜏 − �̃�𝝉 ∥2

,
−1

𝑢𝛼
𝑚𝑖𝑛

 ,
−1

𝑢𝛼𝑚𝑎𝑥

 ,∀𝑖 ∈ I . (22)

A similar expression can be derived for variables {𝜙 𝑗𝑡 }, while for the primal update we can use:

7
Note that, as the primal-space problem is a minimization one the aggregate gradient here has a minus sign.
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Proposition 2. The closed-form solution to 𝒙𝑡 in iteration (17) is given by:

𝑥𝑖 𝑗,𝑡+1 =
exp

(
2𝜔𝑖 𝑗𝑡/𝜂1:𝑡

)∑
𝑗∈J exp

(
2𝜔𝑖 𝑗𝑡/𝜂1:𝑡

) , ∀𝑖 ∈ I, 𝑗 ∈ J , (23)

where 𝜔𝑖 𝑗𝑡 � 𝑔𝑖 𝑗,1:𝑡 +𝑤𝑖 𝑗,1:𝑡 + 𝑔𝑖 𝑗,𝑡+1 + �̃�𝑖 𝑗,𝑡+1,∀𝑖, 𝑗, 𝑡 , and 𝜂1:𝑡 is given by (18).

Such closed-form expressions are commonly used for entropic regularizers over one simplex [79],

and we extend this idea for the multi-simplex set X. This allows to run the primal updates with

O(1) memory since we maintain only the aggregate gradients, and with O(1) computation time.

4.2 Horizon-Fair Assignment Policy
We leverage the above results of regret and the expressions for the primal and dual updates to

design the optimistic FTRL policy for the assignment problem; see Algorithm 1. The initialization

(lines 1-2) requires minimal information, i.e., the dimension of the primal and dual-space constraint

sets and the number of vBSs and servers. The first assignment is drawn randomly (line 3). After

running the first slot with policy 𝒙1, we observe the utility and cost functions and the respective

gradients (line 5), as these have been set by the adversary. Accordingly we calculate the primal and

dual gradients (lines 6-7) using the provided closed-form expressions, and we obtain the predicted

gradient vectors for the next slot (line 8). This information is used to build the primal and dual

regularizers and calculate the assignment policy 𝒙𝑡+1 and the dual variables, 𝜽𝑡+1 and 𝝓𝑡+1, that will

be used during the next slot (line 9). These steps are repeated throughout the horizon T , which is

not required as input to the algorithm nor has to be fixed in advance. The performance of Algorithm

1 is characterized by the following theorem.

Theorem 4.3. Algorithm 1 attains regret:

R𝑇 (𝐹𝛼 , 𝐹𝛽 ) ≤
1

𝑇

(√
2𝐼

𝜂
+ 𝜂𝐼 log 𝐽

2

) √√√
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞ + 4

√
2𝐷Θ

𝑇

√√√
𝑇∑︁
𝑡=1

∥𝜿𝑡 − �̃�𝑡 ∥2

2

+ 4

√
2𝐷Φ

𝑇

√√√
𝑇∑︁
𝑡=1

∥𝝁𝑡−�̃�𝑡 ∥2

2
+ 1

𝑇

𝑇∑︁
𝑡=1

(
𝜽𝑡− ¯𝜽𝑇

)⊤
𝒖𝑡 (𝒙★)+

1

𝑇

𝑇∑︁
𝑡=1

(
𝝓𝑡− 𝝓𝑇

)⊤
𝒉𝑡 (𝒙★)

where 𝐷Θ = ( 1

𝑢𝛼
𝑚𝑖𝑛

− 1

𝑢𝛼𝑚𝑎𝑥
)
√
𝐼 , 𝐷Φ = ( 1

ℎ
𝛽

𝑚𝑖𝑛

− 1

ℎ
𝛽
𝑚𝑎𝑥

)
√
𝐽 , ¯𝜽𝑇 �

1

𝑇

∑𝑇
𝑡=1

𝜽𝑡 , 𝝓𝑇 � 1

𝑇

∑𝑇
𝑡=1

𝝓𝑡 .

Proof. First, we observe that since we perform OFTRL on the dual variables 𝜽 , we get:

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑎𝑡 (𝜽𝑡 , 𝒙𝑡 ) −
1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑎𝑡 (𝜽 , 𝒙𝑡 ) ≤
𝑅𝜃
𝑇

𝑇
=

4

√
2𝐷Θ

𝑇

√√√
𝑇∑︁
𝑡=1

∥𝜿𝑡 − �̃�𝑡 ∥2

2
.

where the last step follows from Lemma 4.1. Similarly, for the dual variables 𝝓, we get:

1

𝑇

𝑇∑︁
𝑡=1

Ψ
𝛽

𝑡 (𝝓𝑡 , 𝒙𝑡 ) −
1

𝑇

𝑇∑︁
𝑡=1

Ψ
𝛽

𝑡 (𝝓, 𝒙𝑡 ) ≤
𝑅
𝜙

𝑇

𝑇
=

4

√
2𝐷Φ

𝑇

√√√
𝑇∑︁
𝑡=1

∥𝝁𝑡 − �̃�𝑡 ∥2

2
.
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Algorithm 1 Fair and Balanced Assignment Policy (non-RT RIC)

Require: 𝐼 , 𝐽 , Multi-simplex X ∈ RI× 𝐽 , 𝛼, 𝛽 ≥ 0, [𝑢𝛼
𝑚𝑖𝑛

, 𝑢𝛼𝑚𝑎𝑥 ], [ℎ
𝛽

𝑚𝑖𝑛
, ℎ
𝛽
𝑚𝑎𝑥 ].

1: Θ =
[
−1/𝑢𝛼

𝑚𝑖𝑛
,−1/𝑢𝛼𝑚𝑎𝑥

] 𝐼
, Φ =

[
−1/ℎ𝛽

𝑚𝑖𝑛
,−1/ℎ𝛽𝑚𝑎𝑥

] 𝐽
⊲ Initialize the dual spaces

2: 𝜂 = min

{
1/2,

√︃
2

√
2/log 𝐽

}
, 𝜎 = 2

√
2/𝐷Θ, 𝜉 = 2

√
2/𝐷Φ ⊲ Initialize the regul. parameters

3: 𝒙1 ∈ X, 𝜽1 ∈ Θ, 𝝓1 ∈ Φ ⊲ Initialize primal and dual vars
4: for 𝑡 = 1 to 𝑇 do
5: Observe 𝒖𝑡 (𝒙𝑡 ), 𝒉𝑡 (𝑥𝑡 ), ∇𝒙𝒖𝑡 (𝒙𝑡 ), ∇𝒙𝒉𝑡 (𝒙𝑡 ) ⊲ Adversary selects losses
6: Compute primal gradients 𝒈𝑡 ,𝒘𝑡 with (20)

7: Compute dual gradients 𝜿𝑡 , 𝝁𝑡 with (21)

8: Obtain predictions �̃�𝑡+1, �̃�𝑡+1, �̃�𝑡+1 and �̃�𝑡+1

9: Compute 𝒙𝑡+1 with (23), 𝜽𝑡+1 and 𝝓𝑡+1 with (22) ⊲ Update assignment and dual vars
10: end for

On the other hand, the OFTRL on the primal variables 𝒙 with the above regularizer, yields:

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑎𝑡 (𝜽𝑡 , 𝒙★) +
1

𝑇

𝑇∑︁
𝑡=1

Ψ
𝛽

𝑡 (𝜽𝑡 , 𝒙★) −
1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑎𝑡 (𝜽𝑡 , 𝒙𝑡 ) −
1

𝑇

𝑇∑︁
𝑡=1

Ψ
𝛽

𝑡 (𝜽𝑡 , 𝒙𝑡 ) ≤

𝑅𝑥
𝑇

𝑇
=

(√
2𝐼

𝜂𝑇
+ 𝜂𝐼 log 𝐽

2𝑇

) √√√
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞, (24)

where we applied the regret bound from Lemma 4.2. Now, using (24) we can write:

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑎𝑡 (𝜽𝑡 , 𝒙𝑡 ) +
1

𝑇

𝑇∑︁
𝑡=1

Ψ
𝛽

𝑡 (𝝓𝑡 , 𝒙𝑡 ) + R
𝑥
𝑇 ≥ 1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑎𝑡 (𝜽𝑡 , 𝒙★) +
1

𝑇

𝑇∑︁
𝑡=1

Ψ
𝛽

𝑡 (𝝓𝑡 , 𝒙★)

=
1

𝑇

[
𝑇∑︁
𝑡=1

(−𝐹𝑎)★(𝜽𝑡 ) − 𝜽⊤
𝑡 𝒖𝑡 (𝒙★)

]
+ 1

𝑇

[
𝑇∑︁
𝑡=1

(−𝐹𝛽 )★(𝝓𝑡 ) − 𝝓⊤
𝑡 𝒉𝑡 (𝒙★)

]
≥ (−𝐹𝑎)★(𝜽 ) − 𝜽⊤

(
1

𝑇

𝑇∑︁
𝑡=1

𝒖𝑡 (𝒙★)
)
− 1

𝑇

𝑇∑︁
𝑡=1

(𝜽𝑡 − ¯𝜽 )⊤𝒖𝑡 (𝒙★)

+ (−𝐹𝛽 )★(𝝓) − 𝝓⊤

(
1

𝑇

𝑇∑︁
𝑡=1

𝒉𝑡 (𝒙★)
)
− 1

𝑇

𝑇∑︁
𝑡=1

(𝝓𝑡 − 𝝓)⊤𝒉𝑡 (𝒙★)

≥ min

𝜽 ∈Θ

{
(−𝐹𝛼 )★(𝜽 ) − 𝜽⊤

(
1

𝑇

𝑇∑︁
𝑡=1

𝒖𝑡 (𝒙★)
)}

− 1

𝑇

𝑇∑︁
𝑡=1

(𝜽𝑡 − ¯𝜽 )⊤𝒖𝑡 (𝒙★)

+ min

𝝓∈Φ

{
(−𝐹𝛽 )★(𝝓) − 𝝓⊤

(
1

𝑇

𝑇∑︁
𝑡=1

𝒉𝑡 (𝒙★)
)}

− 1

𝑇

𝑇∑︁
𝑡=1

(𝝓𝑡 − 𝝓)⊤𝒉𝑡 (𝒙★)

= 𝐹𝑎

(
1

𝑇

𝑇∑︁
𝑡=1

𝒖𝑡 (𝒙★)
)
+ 𝐹𝛽

(
1

𝑇

𝑇∑︁
𝑡=1

𝒉𝑡 (𝒙★)
)
− 1

𝑇

𝑇∑︁
𝑡=1

(𝜽𝑡 − ¯𝜽 )⊤𝒖𝑡 (𝒙★) −
1

𝑇

𝑇∑︁
𝑡=1

(𝝓𝑡 − 𝝓)⊤𝒉𝑡 (𝒙★)

We conclude by rearranging and using the biconjugate equivalence (8) forΨ𝑎𝑡 (𝜽𝑡 , 𝒙𝑡 ),Ψ
𝛽

𝑡 (𝝓𝑡 , 𝒙𝑡 ). □

Discussion. There are some important notes in order here. First, observe the last two terms in

the regret bound which quantify how much each dual vector deviates from its average (over T ).
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Fig. 4. (a): The near-RT controller decides the TB threshold (minTB) policy for each user at each slot; and the
TBs are processed at a HA-equiped server. (b): Timing diagram of the learning algorithm for the minTB policy.

These deviations depend on the type of the adversary, and remain sublinear under certain general

conditions. Namely, the utility and cost functions can change in a non-i.i.d. fashion, even arbitrarily,

as long as their perturbations remain within a sublinearly-growing perturbation budget. And there

are two types of such budgets: budgeted severity, where we measure the severity of the adversary

by summing the absolute value of (utility and cost) perturbations for the entire time-horizon; and

partitioned severity, where we divide the time-horizon into contiguous partitions and calculate the

absolute value of perturbations over each partition. As long as the perturbations satisfy at least one

budget condition, the regret will remain sublinear. We refer the reader to [81] for further details,

and stress that this condition is significantly milder than those in prior static or stochastic fairness

frameworks [6, 43, 69]. We provide instances of such adversarial environments in Sec. 6.

The theorem also highlights the effect of predictions. The first two terms of the regret bound are

eliminated when the predictions are perfect, while the algorithm suffers additional regret which

is commensurate to the prediction errors (measured with the ℓ∞ norm). In any case, these terms

remain below O(
√
𝑇 ). This reveals that predictions expedite the learning process while we retain

the worst-case guarantees when they are inaccurate. Observe also that the bound depends on the

numbers of servers only logarithmically, a known advantage of entropic regularizers, but has linear

dependency on the number of vBSs. This is due to the structure of the constraint set X which

consists of 𝐼 (not 1) simplices. Similarly, the diameters 𝐷Θ and 𝐷Φ, which depend on the minimum

and maximum utility and cost values, affect only linearly the regret bound.

Finally, regarding its implementation, leveraging the closed-form expressions for the decision

updates, Algorithm 1 can be executed with O(1) memory and O(1) calculations, without the need
to solve any optimization problem at runtime. At the same time, the algorithm is oblivious to

user demands, system state (e.g., costs and available capacity), and channel conditions. These two

features, along with its general convergence properties, make the proposed framework particularly

useful from a practical point of view. As a last note, we wish to stress that our work advances the

state-of-the-art by using closed-form expressions and predictions, and importantly by combining

two different fairness metrics. An O-RAN operator will, of course, need to normalize carefully the

utility and cost functions in order to achieve the desirable balance of these metrics, which is also

affected by the values of 𝛼 and 𝛽 . For instance, one can divide each function with its maximum

attainable value or simply scale them with a properly-selected parameter. We explore this aspect

experimentally in Sec. 6.1.

5 FAIR SERVICE OF USERS AND VBS COST MINIMIZATION
Next, we study how a vBS can serve fairly its users in terms of latency by controlling the minimum

size of their transmitted TBs, and minimize its own energy cost at the same time. Setting a threshold

for the minimum TB size, the vBS prevents short TB transmissions that, as our experiments show
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(Sec. 6.2) increase the energy cost. On the other hand, such thresholds introduce waiting times

for users that might be non-negligible, e.g., for latency-critical services. According to O-RAN

specifications and previous feasibility studies, e.g., [14–16], such radio control policies can be

devised by a near-RT RIC and implemented with msec granularity and on per-user basis. We abuse

slightly the notation here by redefining some parameters and variables.

5.1 Model
We consider a vBS that serves a set I of 𝐼 = |I | users during a time period of 𝑇 slots, where each

slot consists of 𝑁 TTIs (e.g., 𝑁 = 100), and we focus on the uplink again. During each slot 𝑡 , each

user 𝑖 ∈ I creates a certain amount of traffic (bytes) that needs to be transmitted to the vBS. We

denote with 𝜇𝑖𝑡𝑛 ≥ 0 the bytes created by user 𝑖 from the beginning of the slot up to TTI 𝑛, and

define the vectors 𝝁𝑖𝑡 = (𝜇𝑖𝑡𝑛, 𝑛 ≤ 𝑁 ) for each user 𝑖 and each slot 𝑡 , and the vector 𝝁𝑡 = (𝝁𝑖𝑡 , 𝑖 ∈ I)
for the data of all users in slot 𝑡 . The uplink transmission of a user is realized as soon as, and as

many times as, its accumulated buffer load reaches the minimum TB size minTB. We denote with

𝒚𝑡 = (𝑦𝑖𝑡 ≥ 0, 𝑖 ∈ I) the vector of minTB values for slot 𝑡 , which in the general case can be different

for each user. These values are upper-bounded by the total number 𝐾 of transport blocks a vBS can

support
8
. Hence, each 𝒚𝑡 belongs to the set Y = [0, 𝐾]𝐼 .

The minTB strategy 𝒚𝑡 is decided by the vBS at the beginning of each slot in order to balance

the service latency and its energy cost when processing the transmitted data. Our experiments

show that large TB values improve the energy consumption per processed bit (J/b); yet they induce

longer waiting times for the user traffic, see Sec. 6. Clearly, the more data is required before an

uplink transmission is initiated, the more the user needs to wait to receive service. We consider

a general model where the utility function 𝑢𝑖𝑡 : R𝐼 ↦→ R+ denotes the (expected) performance

perceived by user 𝑖 when the minTB strategy is 𝒚𝑡 . The vector 𝒖𝑡 (𝒚) = (𝑢𝑖𝑡 (𝒚), 𝑖 ∈ I) can measure

directly the latency or a proxy metric such as time the user (MAC layer) buffer is empty
9
as in [16].

Furthermore, we denote with 𝑐𝑡 : R𝐼 ↦→ R+ the vBS energy cost, which is considered to be convex

and decreasing on 𝒚. Our analysis below does not require any further assumptions on these utility

and energy cost functions, while in Sec. 6 we provide examples based on testbed measurements.

The vBS aims to maximize the long-term latency fairness and minimize the average energy cost:

𝐺𝛼 ({𝒚𝑡 }𝑡 ) = 𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝒖𝑡 (𝒚𝑡 )
)
− 1

𝑇

𝑇∑︁
𝑡=1

𝑐𝑡 (𝒚𝑡 ), (25)

and to do so with a dynamic minTB policy {𝒚𝑡 }𝑡 which ensures sublinear regret:

R𝑇 (𝐺𝛼 ) � sup

{𝒖𝑡 ,𝑐𝑡 }𝑇𝑡=1

{
𝐺𝛼

(
𝒚★

)
−𝐺𝛼 ({𝒚𝑡 }𝑡 )

}
(26)

where 𝐺𝛼
(
𝒚★

)
is the best performance (fairness and cost) that can be achieved if at 𝑡 = 0 the

utilities and costs for the entire T were known. This metric differs from the fairness-only criterion

of the previous section due to the requirement for cost reduction and the constraints’ geometry.

5.2 Algorithm & Regret Bounds
The algorithm for this problem is based on the following modified proxy function:

Ψ𝑐𝑡 (𝜽𝑡 ,𝒚𝑡 ) � (−𝐹𝛼 )★(𝜽𝑡 ) − 𝜽⊤
𝑡 𝒖𝑡 (𝒚𝑡 ) − 𝑐𝑡 (𝒚𝑡 ). (27)

8
Depending on the channel conditions, the actual number and size of transport blocks the vBS can support might fluctuate.

Here, 𝐾 is the maximum possible number, and at each slot the exact bound is set by the vBS real-time scheduler.

9
Recall that buffer queue length minimization is commonly used for reducing network delay, see e.g., [70].
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Algorithm 2 Fair and Cost-efficient minTB Policy

Require: Compact convex set Y ∈ RI, 𝛼 ≥ 0, [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 ]
1: Θ =

[
−1/𝑢𝛼

𝑚𝑖𝑛
,−1/𝑢𝛼𝑚𝑎𝑥

] 𝐼
⊲ Initialize the dual space

2: 𝜎 = 2

√
2/𝐷Θ, 𝜂 = 2

√
2/𝐷Y ⊲ Initialize the regul. parameters

3: 𝒚1 ∈ Y, 𝜽1 ∈ Θ ⊲ Initialize the primal and dual vars
4: for 𝑡 = 1 to 𝑇 do
5: Observe 𝒖𝑡 (𝒚𝑡 ), 𝑐𝑡 (𝒚𝑡 ), ∇𝒚𝒖𝑡 (𝒚𝑡 ), ∇𝒚𝑐𝑡 (𝒚𝑡 ) ⊲ Incur reward and loss
6: Compute gradients 𝒔𝑡 , 𝒎𝑡 .
7: Obtain gradient predictions �̃�𝑡+1 and �̃�𝑡+1

8: Compute 𝒚𝑡+1 using (28) and 𝜽𝑡+1 using (29).

9: end for

The analysis is based on the observation that the addition of the cost function 𝑐𝑡 (·), which is

independent of the dual variables, does not affect the algebraic operations on the proxy function.

The primal OFTRL update is:

𝒚𝑡+1 = arg min

𝒙∈Y

{
𝑟1:𝑡 (𝒚) −𝒚⊤ (

𝒔1:𝑡 + �̃�𝑡+1

)}
, with 𝑟1:𝑡 (𝒚) =

𝜂∥𝒚∥2

2

√√
𝑡∑︁
𝜏=1

∥𝒔𝜏 − �̃�𝜏 ∥2

2
(28)

where 𝒔𝑡 =∇𝒚Ψ
𝑐
𝑡 (𝜽𝑡 ,𝒚𝑡 ) is the gradient of the proxy function w.r.t. the primal variables in slot 𝑡 ,

and includes both the utility and the cost function differential (a linear operation), and �̃�𝑡+1 is the

respective utility and cost gradient prediction for 𝑡+ 1. Similarly, the dual update is:

𝜽𝑡+1 = arg min

𝜽 ∈Θ

{
𝑞1:𝑡 (𝜽 ) + 𝜽⊤ (𝒎1:𝑡 + �̃�𝑡+1)

}
, with 𝑞1:𝑡 (𝜽 ) =

𝜎 ∥𝜽 ∥2

2

√√
𝑡∑︁
𝜏=1

∥𝒎𝜏 − �̃�𝜏 ∥2

2
(29)

where 𝒎𝑡 = ∇𝜽Ψ
𝑐
𝑡 (𝜽𝑡 ,𝒚𝑡 ). The detailed steps of the method are outlined in Algorithm 2, which

follows the same template as Algorithm 1, sans the proxy function and the gradient definition (and

its prediction) in the primal space. The regret of Algorithm 2 is summarized next.

Theorem 5.1. Algorithm 2 attains regret:

R𝑇 (𝐺𝛼 ) ≤
4

√
2𝐷Y
𝑇

√√√
𝑇∑︁
𝑡=1

∥𝒔𝑡− 𝒔𝑡 ∥2

2
+ 4

√
2𝐷Θ

𝑇

√√√
𝑇∑︁
𝑡=1

∥𝒎𝑡− �̃�𝑡 ∥2

2
+ 1

𝑇

𝑇∑︁
𝑡=1

(
𝜽𝑡− ¯𝜽𝑇

)⊤
𝒖𝑡 (𝒚★)

where 𝐷Θ = ( 1

𝑢𝛼
𝑚𝑖𝑛

− 1

𝑢𝛼𝑚𝑎𝑥
)
√
𝐼 , ¯𝜽𝑇 = (1/𝑇 )∑𝑇

𝑡=1
𝜽𝑡 , and 𝐷Y is the diameter of set Y.

Discussion. The regret bound in the above Theorem verifies that the proposed OFTRL framework

can deliver, also for this scenario, the desirable performance. We see that the first two regret terms

shrink proportionally to the prediction errors and in any case do not exceed O(
√
𝑇 ). On the other

hand, the residual last term captures the perturbation of the dual variables from their respective

horizon-long average value, modulated by the optimal utility vector and depends on the adversary

strategy, cf. discussion of Theorem 4.3 and [81]. The execution of Algorithm 2 is lightweight as one

can readily devise closed-form updates similar to those presented in Sec. 3, and, as such, suitable for

the near-RT RIC. Finally, it is worth stressing that one can extend the above model by scalarizing the

two criteria, i.e., weighting the two metrics so as to reflect the operational priorities w.r.t. fairness

of performance for the users versus the energy cost of the vBS. This scalarization serves also the

purpose of unifying the units of measure. We elaborate further on this aspect in Sec. 6.
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6 PERFORMANCE EVALUATION
We evaluate the proposed algorithms in a range of scenarios under realistic conditions. First, we use

a simulator to assess the regret and performance - cost trade-off in these problems. The simulator

uses traffic traces obtained from a real-world operational network and employs utility and cost

functions that are built using measurements. Secondly, we implement the algorithms in an O-RAN-

compliant experimental platform that follows the design principles in [78]. Thus, we measure the

actual energy consumption and the processing latency of different baseband processors: two HAs

and a pool of CPU cores. The platform uses two Nvidia GPU V100 as HAs and implements the O-

RAN Acceleration Abstraction Layer (AAL) using Intel DPDK BBDev
10
according to specifications

[3]. The AAL abstracts the O-Cloud computing resources as Logical Processing Units (LPUs). Note

that the HAs consist of PCI boards which, although being faster in processing the workloads, they

incur additional latency to transfer data from the software controller to the HA through a PCI bus,

[57]. This latency is accounted for in our experimental setup, as it is part of the GPU processing

time. For the CPU, we use an Intel Xeon Gold 6240R CPU with 32 cores, where 16 of them are

assigned to signal processing tasks.

We generate the user traffic following the pattern from traces collected from a real BS using

[36]. Based on this, we generate the TBs, modulate them according to 5G specifications, add noise

based on the SNR of the traces, and finally inject them into the system. The platform processes

the incoming signals using the open-access software library Intel FlexRAN [48]. We measure the

energy consumption using the drivers of each PU, i.e., RAPL and nvidia-smi for the CPU and

GPU, respectively. Fig. 5 presents a schematic of our experimental platform. Finally, we note that

in O-RAN architecture [42], the non-RT and near-RT RICs operate closed-loops at, respectively,

>1 second and 10-100 millisecond timescales. These timescales indicate how often the controller

shall enforce a new policy [53]. To comply with such requirements, the application of the policy

needs to be performed within a time window smaller than the timescale of the RICs. We confirm

that all our algorithms require a negligible amount of time to execute (<10 ms), rendering them

suitable to operate in the O-RAN RICs.

6.1 Load Assignment Control Policy
This section evaluates the vBSs’ load assignment policy, which can be implemented as an rApp

with a non-RT RIC at the SMO framework, and refers to a timescale of 1 second.

10
https://doc.dpdk.org/guides/prog guide/bbdev.html
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6.1.1 Experimental Motivation. In Fig. 6 we delve into the traffic trace (see also Fig. 1), to observe

the high variability of the allocated radio resources and network conditions (evidenced from MCS)

in a single cell. This highlights the importance of RIC control policies to be adaptive, a need that

becomes even more crucial in small and/or mobile cells. Secondly, Fig. 7 presents the processing time

and energy cost when a CPU server processes one TB, for different TB sizes and SNRs. Comparing

these results with those in Fig. 9, we find that CPU spends less energy per TB compared to a HA,

especially for low SNRs, but this cost increases substantially with the TB size (amount of data).

These findings highlight the potential benefits of an intelligent load assignment policy.

6.1.2 Simulation Study. We consider a simple model where the vBS utility
11
increases linearly

with its load that is decoded at the assigned server, as long as the server is not overloaded, and

it decreases rapidly when the server is assigned load that exceeds its capacity. In particular, the

utility each vBS 𝑖 ∈ I receives when sending 𝑥𝑖 𝑗𝑡𝜆𝑖𝑡 load to a server 𝑗 ∈ J , is:

𝑢𝑖 𝑗𝑡 (𝒙𝑡 ) = 𝑥𝑖 𝑗𝑡𝜆𝑖𝑡 · min

{
1, 1 − 1

𝐶 𝑗𝑡

(∑︁
𝑘∈I

𝑥𝑘 𝑗𝑡𝜆𝑘𝑡

𝑛𝑘𝑡

(
𝜁
𝑗

𝑘𝑡
𝑛𝑘𝑡 + 𝑜 𝑗𝑘𝑡

)
−𝐶 𝑗𝑡

)}
where 𝜆𝑘𝑡 are the bytes sent by vBS 𝑘 ∈ J during 𝑡 and 𝑛𝑘𝑡 the average TB size of the flow (across

all users). Parameters 𝜁
𝑗

𝑘𝑡
and 𝑜

𝑗

𝑘𝑡
model the slope and intercept for the processing time of server 𝑗 ,

for the (average) SNR of vBS 𝑘 during 𝑡 ; and we note that 𝜁
𝑗

𝑘𝑡
≈ 0 for HA-based servers

12
. These

parameters are obtained by fitting measurements as those in Fig. 7(left). Essentially the parenthesis

term assess the portion of time that exceeds the server capacity, which we use to calculate how

much vBS data are not decoded. Note that we use a more coarse-grained estimation for the number

of expected TBs here than the respective expression in Sec. 6.2, due to the aggregation over longer

time periods (1 sec instead of 100 msecs) and over multiple base stations.

For the cost function, we study the general case where the monetary energy cost can be different

for each server, and we define the respective price vector 𝒑𝑡 = (𝑝 𝑗𝑡 >0, 𝑗 ∈ J) (cost/J). Based on

our experiments, we define a different (average) energy saving function for each server type:

ℎ 𝑗𝑡 (𝒙 𝑗𝑡 ) = 𝜑ℎ𝑝 𝑗𝑡
∑︁
𝑖∈I

(1 − 𝑥𝑖 𝑗𝑡 )𝜆𝑖𝑡
𝑛𝑖𝑡

·
(
𝛿
𝑗

𝑖𝑡
𝑛𝑖𝑡 + 𝛾 𝑗𝑖𝑡

)
, 𝑗 ∈ J . (30)

Parameters 𝛿
𝑗

𝑖𝑡
and 𝛾

𝑗

𝑖𝑡
are the slope and intercept of the energy consumption profiles in Fig. 7(right)

and Fig. 9(a-right), and 𝜑ℎ is the normalization parameter and it is set by the operator to prioritize

11𝑢𝑖 𝑗𝑡 (𝒙𝑡 ) is concave on 𝒙𝑡 , see Appendix.
12
The values of these parameters can be non-zero (but still very small) for certain TB value ranges. The algorithm and

analysis are readily applicable to those cases, as well.
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throughput or energy. For HA servers, the energy depends on the number of TBs and their average

SNR (𝛿
𝑗

𝑖𝑡
≈ 0); while for legacy CPU servers, it also depends on the TB size. Recall that we define

ℎ 𝑗𝑡 as a cost reduction (energy savings) function, hence it is calculated w.r.t. the maximum possible

cost for each server, i.e., when it serves all demand.

We consider the following two scenarios where we simulate a stationary and a non-stationary

environment by setting 𝜆𝑖𝑡 , 𝑛𝑖𝑡 , 𝑝 𝑗𝑡 ,𝐶 𝑗𝑡 , and average SNR 𝑠𝑖𝑡 , ∀𝑖 ∈ I, 𝑗 ∈ J , 𝑡 ∈ T , as:

• Scenario 1 (Synthetic, Stationary). 𝐼 = 5 vBSs and 𝐽 = 4 servers, and the parameters are drawn

randomly from uniform distributions: 𝜆𝑖𝑡 ∼ U[4 · 10
6, 6 · 10

6), 𝑛𝑖𝑡 ∼ U[4 · 10
4, 6 · 10

4), 𝑠𝑖𝑡 ∼
U[10, 30), 𝑝 𝑗𝑡 ∼ U[10, 15), and𝐶 𝑗𝑡 ∼ U[0, 10). We set 𝛼 = 𝛽 = 𝜑ℎ = 1, unless stated otherwise.

• Scenario 2 (Synthetic, Non-stationary). 𝑪𝑡 follows a periodic pattern, while 𝝀𝑡 , 𝒏𝑡 , 𝒔𝑡 , and
𝒑𝑡 have vanishing perturbations. We draw the mean values for 𝑪𝑡 , 𝝀𝑡 , 𝒏𝑡 , 𝒔𝑡 , and 𝒑𝑡 from
U[0, 10), U[4 · 10

6, 6 · 10
6),U[4 · 10

4, 6 · 10
4),U[10, 30), and U[10, 15), respectively; and

we perturb 𝑪𝑡 with a sine wave of period

√
𝑇 , 𝝀𝑡 , 𝒏𝑡 , 𝒔𝑡 with vanishing Gaussian noise scaled

with 𝑡−1
, and 𝒑𝑡 with vanishing Gaussian noise scaled with 0.1𝑡−1

. We set 𝛼 = 𝛽 = 𝜑ℎ = 1. 𝑪𝑡
has sublinear partitioned severity and the other parameters have sublinear budgeted severity.

We first estimate the intercept and slope parameters 𝜁
𝑗

𝑖𝑡
, 𝑜
𝑗

𝑖𝑡
, 𝛿
𝑗

𝑖𝑡
, and 𝛾

𝑗

𝑖𝑡
using the measurements

obtained from the testbed and linear regression for each SNR value; and then use Algorithm 1. The

horizon-fair regret is shown in Fig. 8(a), aggregated over 5 independent runs. Aligned with the

theoretical analysis, the algorithm achieves sublinear (in fact, negative) fairness regret in both the

stationary and non-stationary scenarios. Indeed, we observe the convergence in these experiments

is particularly fast, as it requires only a few tens of slots to reach the performance of the benchmark.

6.1.3 Experimental Evaluation. Next, we evaluate the algorithm on an O-RAN compliant platform

[78]. We consider a setting with 5 identical vBSs with 100 users each. As explained above, the traffic

generation and SNR patterns are based on traffic traces collected from real BSs, we scale the energy

saving function by setting 𝜑ℎ = max{𝜆𝑖𝑡 }/max{𝑝 𝑗𝑡 } so that both the utility (𝑢𝑖𝑡 (𝒙𝑡 )) and energy

saving (ℎ 𝑗𝑡 (𝑥 𝑗𝑡 )) functions are scaled between 0 and max{𝜆𝑖𝑡 }. We measure the PUs energy and

normalized throughput (ratio of successfully decoded TBs) from the experimental platform at TTI

granularity and aggregate the measurements to produce decisions at the non-RT timescale. In order

to emulate heterogeneous HAs, we half the speed of the second GPU (using the Nvidia drivers) and

artificially double its energy cost in our measurements. We also consider two identical CPUs.

For comparison, we implement two new algorithms, namely a slot-fair algorithm, in line with

suggestions in [50, 82, 83]; and an algorithm that maximizes the aggregate system utility (utilitarian),
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Fig. 9. (a): Experimental measurement of computing time and energy consumption per TB, for different
TB sizes. (b): Energy consumption per bit and average bit delay for a GPU HA as a function of the TB size
threshold (minTB) and for different amplification factors applied to the traffic traces.

without catering for any type of fairness. Namely, the objective of the slot-fair algorithm is to

maximize the fairness in each slot, whereas the objective of the utilitarian algorithm is to maximize

the sum of HAs’ energy savings and vBSs’ utilities. To simplify the comparison, we use the non-

optimistic versions of our algorithm.

The Table in Fig. 8(c) summarizes the trade-off between the average throughput per vBS and

the PUs’ energy consumption when we impose the fairness criteria. As expected, the utilitarian

algorithm (i.e., 𝛼 = 𝛽 = 0) outperforms Algorithm 1 in regards to total throughput and energy.

However, Fig. 8(b) clearly shows that the utilitarian solution directs most demand to GPU1 and the

CPUs, and does not employ GPU2 which is intentionally designed to be slower and more energy-

consuming in this scenario. That is, the utilitarian solution allows the maximization of energy

savings and throughput by not using the worse GPU, since there are no fairness requirements. In

contrast, the fair algorithms direct a significant portion of the vBSs demand to GPU2, increasing

the energy consumption. The horizon fair algorithm is more fair than the slot fair algorithm with

respect to energy dispersion amongst HAs, ending up almost equalizing the energy consumption

of both GPUs. Fig. 8(c) also indicates that modifying 𝛼 and 𝛽 parameters has an unintentional effect

on the prioritization of different objectives. Due to the exponential nature of 𝛼−fairness function,
increasing 𝛼 prioritizes the utilities more, and results in more throughput; while increasing 𝛽

prioritizes the energy savings more, which results in reduced energy consumption. The decision of

𝜑ℎ should be made attentively to prevent any side effect when modifying the fairness parameters.

6.2 minTB Control Policy
Next, we evaluate the near-real-time compute control policy minTB that can be applied to each vBS

independently. As in the previous section, we provide experimental motivation for the problem,

run simulations with traces, and implement the solution at an O-RAN testbed.

6.2.1 Experimental Motivation. Fig. 9(a) presents the processing time and energy consumption

of a GPU server (a common HA) for different TBs and SNRs. The processing time is practically

independent of the TB size, an advantage stemming from the GPU’s parallelization capability.

Similarly, the energy consumption increases only slightly with the TB size. For example, with

15 dB SNR, the energy cost for 20 and 100 kb TBs (5× increase) is 1.7 and 2.8 mJ respectively

(0.5× increase)
13
. Nevertheless, users often transmit TBs of small length, see [38] and our traces,

thus inducing unnecessary energy costs. The minTB policy can tackle this issue. Indeed, in the

experiments presented in Fig. 9(b), we see how the minTB value affects the vBS energy and the

13
This small increase arises for very large load increments that require engaging additional processing elements of the GPU.
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delay for users with different loads. For example, with a minimum TB size of 25 kb, the energy

consumption drops up to 4× and the delay increases up to 20 msec, compared to when not using

any threshold, which is currently the default implementation of software-defined base stations.

The minTB policy can be implemented as an xApp in the Near-RT RIC, which operates in slots

of ∼100 ms. The users send data at each TTI (every 1 ms) and can provide feedback about their

buffer status at such fine granularity. The algorithm selects the minTB value for each user and

communicates (via the O1 interface) this rule to vBS, which is enforced by the radio scheduler at

every TTI. The policy is updated every slot (100 TTIs), based on the users’ feedback and experienced

delay (calculated by the RIC), and the reported vBS energy consumption during the previous slots.

6.2.2 Simulation Study. The algorithms require a model for the utility and cost functions which

we build using experimental results. Let us denote with 𝑏𝑖𝑡 the number of data generation events
of user 𝑖 during each slot 𝑡 ∈ T , and with 𝜌𝑖𝑡 the average number of bits generated at each such

event, and define 𝒃𝑡 = (𝑏𝑖𝑡 , 𝑖 ∈ I), 𝝆𝑡 = (𝜌𝑖𝑡 , 𝑖 ∈ I). We assume that these values follow a Poisson

distribution during each slot, but can change arbitrarily across different slots. Hence, we employ

the following approximation for the HA energy cost:

𝑐𝑡 (𝒚) = 𝜑
∑︁
𝑖∈I

𝛽 (𝑠𝑖𝑡 )𝜋𝑖𝑡 = 𝜑
∑︁
𝑖∈I

𝛽 (𝑠𝑖𝑡 )𝑏𝑖𝑡
𝜌𝑖𝑡

𝑦𝑖

(
1 − 𝑒−

𝑦𝑖
𝜌𝑖𝑡

)
, (31)

where 𝜋𝑖𝑡 is the expected number of TBs user 𝑖 will generate in slot 𝑡 , 𝛽 (·) is the mapping from SNR

to a cost coefficient (as SNR affects the energy cost); 𝑠𝑖𝑡 is the average SNR of user 𝑖 in 𝑡 (calculated

at the end of the slot); and 𝜑 a normalization parameter that can prioritize cost over fairness, if

necessary. For the utility function, we use the percentage of time the user’s buffer is empty [16].

This metric acts as a proxy for the delay. As the network is not in saturation most of the time, we

assume that each user empties its buffer as soon as its data exceeds the TB threshold. Based on

that, we derive the following approximation:

𝑢𝑖𝑡 (𝒚) = Pr(𝐵𝑖𝑡 = 0) = 𝜌𝑖𝑡

𝑦𝑖

(
1 − 𝑒−

𝑦𝑖
𝜌𝑖𝑡

)
, (32)

where 𝐵𝑖𝑡 is the number of bits in the buffer of user 𝑖 in time slot 𝑡 , and Pr(𝐵𝑖𝑡 = 0) the probability
of empty buffer. Users experience more delay and the HA energy incurred by the user decreases as

the value of the TB threshold increases. The approximations (31) and (32) captures this dependency

and both the cost and utility functions are decreasing functions. We validate these functions using

real data gathered from the O-RAN platform (see Appendix).

We consider the following three scenarios for the simulations:

• Scenario 1 (Synthetic, Stationary). The vBS serves 𝐼 =10 users, and the parameters are uniformly

random as 𝑏𝑖𝑡 ∼ U(10, 40), 𝜌𝑖𝑡 ∼ U(5 · 10
4, 10

5), 𝑠𝑖𝑡 ∼ U(20, 30), ∀𝑖 ∈ I, 𝑡 ∈ T .

• Scenario 2 (Traced-driven). We use the above traces from a vBS obtained with [36], and

generate the values for 𝑏𝑖𝑡 , 𝜌𝑖𝑡 , and 𝑠𝑖𝑡 for 5 users whose data parameters (i.e., 𝜌𝑖𝑡 ) are scaled

by 1, 2, 4, 6 and 8.

• Scenario 3 (Synthetic, non-stationary). We consider 𝐼 = 5 users with data generation and SNR

values that follow an adversarial ping-pong pattern which, further, is different for each user:

𝑏𝑖𝑡 =

{
10 if 𝑡 < 2

𝑖−1 (mod 2
𝑖 )

40 otherwise

, 𝑠𝑖𝑡 =

{
20 if 𝑡 < 2

4−𝑖 (mod 2
5−𝑖 )

30 otherwise

.

We restrict the adversary to have sublinear budgeted severity and set 𝝆𝑡 as 𝜌𝑖𝑡 = 𝜌𝑖 + 10
4𝑛𝑖𝑡/𝑡

where 𝜌𝑖 ∼ U(5 · 10
4, 10

5) and 𝑛𝑖𝑡 ∼ N(0, 1).
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Fig. 10. (a): Regret R𝑇 (𝐺𝛼 ) of Algorithm 2 for different number of slots𝑇 , averaged over 10 runs. (b): Energy
savings and user delay (performance) for different values of 𝜑 , and 𝛼 = 1. (c) : Delay of each user with respect
to 𝛼 and HA’s energy consumption per bit (dashed lines), for 𝜑 = 50.

The fairness parameter is set to 𝛼 = 1, unless stated otherwise. Finally, we consider two types of

predictions: good and moderate predictions. We obtain the prediction of the gradients in step 8 of

Algorithm 1 by first calculating the actual gradient in the next slot and then adding a Gaussian

noise, scaled with the gradient and accuracy coefficient. For the good predictions, the accuracy

coefficient is 0.001, whereas for moderate predictions, we set the coefficient to 0.3. For instance, the

good prediction of �̃�𝑡+1 is calculated as �̃�𝑡+1 = 𝒈𝑡+1 + 0.001𝒏𝑡+1 ◦ 𝒈𝑡+1 where 𝒏𝑡+1 is Gaussian noise.

Fig. 10(a) plots the regret R𝑇 (𝐺𝛼 ) for the above scenarios and prediction models. In Scenario 1

(left), Algorithm 2 converges independently of the quality of predictions. In Scenario 2 (center), the

algorithm with good predictions achieves lower regret and converges faster, as expected. However,

due to high variations in the utility values of these traces (unrestricted adversary), the residual (last)

term in Theorem 5.1 is not eliminated. Finally, Fig. 10(a-right) shows the results for the restricted

adversarial scenario where all algorithms achieve zero regret for 𝑇 >1000.

6.2.3 Experimental Evaluation. Next, we implement and evaluate Algorithm 2 in a testbed. The

minTB policy 𝒚𝑡 is derived using the cost and utility models (31)-(32), and then implemented in the

platform where we measure the actual energy consumption and (average) delay for each user.

First, we evaluate the effect of 𝜑 which balances the importance of energy cost and user utility.

In Fig. 10(b), we compare the energy consumption of the minTB policies with the default policy

where no threshold is applied to TBs, i.e., 𝒚 = 0 (current default in such vBS). We calculate the

energy saving of the minTB policy with respect to the default policy and plot the average measured

delays. As 𝜑 increases, the energy savings improve alongside an increase in average delay. We

see, for instance, that we can save a remarkable amount of 67% energy compared to the case no

TB threshold is used, at the expense of ∼15msec additional average delay for the users; and we

can save up to 72% energy without incurring more than ∼38msec delay, by tuning the control

parameter 𝜑 accordingly. Next, we showcase how this delay is dispersed across the users. Fig. 10(c)

plots the average (over time) delay per user in Scenario 2 with 5 users for 𝛼 = 0 (aggregate delay

minimization), 𝛼 = 1 (proportional fairness), and 𝛼 → ∞ (max-min fairness). Since the data of each

user might induce different energy costs due to their SNR and/or volume, the RIC will naturally

apply a different minTB policy per user, hence inducing a different delay for each of them. The value

of 𝛼 affects these decisions directly. Indeed, we see that the delay dispersion is more fair when we

set 𝛼 = 1 and 𝛼 → ∞; while the latter creates>3× more energy consumption.

7 CONCLUSIONS
O-RAN, and similar virtualized RAN architectures, promise unprecedented performance and ver-

satility for next generation of mobile networks, yet their energy costs are likely to constitute a
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prohibitive deployment factor. Motivated by this, we propose a radio-control policy and a compute-

control (assignment) policy which cater for the energy consumption of vBSs and their O-Cloud

processing units. The policies balance the user-perceived performance (throughput and transmis-

sion delay) with the network’s energy costs, and importantly, disperse them fairly across the users

and the servers (respectively) throughout the entire operation of the system. The decision engine of

the policies utilizes online learning algorithms (optimistic FTRL) that are tailored for the problem

at hand, and as such is robust to a wide range of (unpredictable) parameter perturbations. We

prove and demonstrate the optimality of these algorithms using a range of scenarios, both with

simulations and testbed experiments, and measure energy savings (per vBS) up to 72% when the

users can tolerate ∼ 38msec additional delay, on average.
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8 APPENDIX
This section provides the remaining proofs for the results presented in the previous sections, as

well as some additional evaluation results for the interested reader. Please note that we abuse

slightly the notation by redefining and reusing some symbols, in order to keep the presentation

streamlined.

8.1 Proof of Lemma 4.1
This lemma applies to the dual update for 𝜽𝑡+1 in (12) that uses the regularizers (14). Applying [66,

Theorem 2], we can write:

R
𝜃
𝑇 − 𝑞1:𝑇−1 (𝜽★) ≤

𝑇∑︁
𝑡=1

∥𝜿𝑡 − �̃�𝑡 ∥2
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2
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2
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Similarly, from the proof of the same Theorem, we extract the inequality:

R
𝜃
𝑇 − 𝑞1:𝑇−1 (𝜽★) ≤

𝑇∑︁
𝑡=1

(
𝜿𝑡 − �̃�𝑡

)⊤ (
𝜽𝑡 − 𝝑𝑡

)
≤

𝑇∑︁
𝑡=1

∥𝜿𝑡 − �̃�𝑡 ∥ (𝑡−1),∗∥𝜽𝑡 − 𝝑𝑡 ∥ (𝑡−1) (34)

where 𝝑𝑡 = arg min

𝜽 ∈Θ

{
𝑞1:𝑡−1 (𝜽 ) + 𝜽⊤

𝑡∑︁
𝜏=1

𝜿𝜏

}
(35)

is the prescient action that is selected with knowledge of next-round cost 𝜿𝑡 (instead of using

predictions). Recalling the properties of the selected regularizer, we rewrite (34) as:

R
𝜃
𝑇 − 𝑞1:𝑇−1 (𝜽★) ≤
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𝑡=1

∥𝜿𝑡 − �̃�𝑡 ∥2 (36)

where we used the fact that Θ has a bounded diameter 𝐷Θ. Combining (33) and (36), we can follow

the rationale in [72, Sec. 7.6], and write:

R
𝜃
𝑇 − 𝑞1:𝑇−1 (𝜽★) ≤ min

DΘ

𝑇∑︁
𝑡=1

∥𝜿𝑡 − �̃�𝑡 ∥2,

𝑇∑︁
𝑡=1

(1/𝜎)∥𝜿𝑡 − �̃�𝑡 ∥2

2√︃∑𝑡−1

𝜏=1
∥𝜿𝜏 − �̃�𝜏 ∥2

2


=

𝑇∑︁
𝑡=1

min

𝐷Θ∥𝜿𝑡 − �̃�𝑡 ∥2,
(1/𝜎)∥𝜿𝑡 − �̃�𝑡 ∥2

2√︃∑𝑡−1

𝜏=1
∥𝜿𝜏 − �̃�𝜏 ∥2

2


=

𝑇∑︁
𝑡=1

√√√
min

{
D2

Θ∥𝜿𝑡 − �̃�𝑡 ∥2

2
,
(1/𝜎)2∥𝜿𝑡 − �̃�𝑡 ∥4

2∑𝑡−1

𝜏=1
∥𝜿𝜏 − �̃�𝜏 ∥2

2

}
(𝛼 )
≤

𝑇∑︁
𝑡=1

√√√
2

1

D2

Θ ∥𝜿𝑡−�̃�𝑡 ∥2

2

+
∑𝑡−1

𝜏=1
∥𝜿𝜏−�̃�𝜏 ∥2

2

(1/𝜎 )2 ∥𝜿𝑡−�̃�𝑡 ∥4

2

=
√

2

𝑇∑︁
𝑡=1

√︄
(1/𝜎)2D2

Θ∥𝜿𝑡 − �̃�𝑡 ∥4

2

(1/𝜎)2∥𝜿𝑡 − �̃�𝑡 ∥2

2
+ D2

Θ

∑𝑡−1

𝜏=1
∥𝜿𝜏 − �̃�𝜏 ∥2

2

=

𝑇∑︁
𝑡=1

(1/𝜎)DΘ

√
2∥𝜿𝑡 − �̃�𝑡 ∥2

2√︃
(1/𝜎)2∥𝜿𝑡 − �̃�𝑡 ∥2

2
+ D2

Θ

∑𝑡−1

𝜏=1
∥𝜿𝜏 − �̃�𝜏 ∥2

2

(𝛽 )
≤

𝑇∑︁
𝑡=1

(1/𝜎)DΘ

√
2∥𝜿𝑡 − �̃�𝑡 ∥2

2√︃
(1/𝜎)2

∑𝑡
𝜏=1

∥𝜿𝜏 − �̃�𝜏 ∥2

2

=

𝑇∑︁
𝑡=1

DΘ

√
2∥𝜿𝑡 − �̃�𝑡 ∥2

2√︃∑𝑡
𝜏=1

∥𝜿𝜏 − �̃�𝜏 ∥2

2

(𝛾 )
≤ 2DΘ

√
2

√√√
𝑇∑︁
𝑡=1

∥𝜿𝑡 − �̃�𝑡 ∥2

2

where (𝛼) uses that the minimum between two numbers is less than their harmonic mean; (𝛽)
assumes that (1/𝜎) ≤ DΘ, which is satisfied by the proposed value for 𝜎 (see below); and (𝛾) applies
an identify from [12, Lemma 3.5]. To conclude, it suffices to observe that 𝑞1:𝑇−1 (𝜽★) can be upper

bounded due to boundedness of Θ as follows:

𝑞1:𝑇−1 (𝜽★) ≤ 𝜎D2

Θ

√√√
𝑇∑︁
𝑡=1

∥𝜿𝑡 − �̃�𝑡 ∥2

2
,

and the value of parameter 𝜎 that minimizes the constant factor above is 𝜎 = 2

√
2/𝐷Θ.

8.2 Proof of Lemma 4.2
We start by characterizing the strong convexity of the entropic regularizer 𝑟1:𝑡 that we use in the

primal update. We note that this is not the typical entropic regularizer used in FTRL (or Mirror

Descent) algorithms, cf. [58]. Here, the regularizing parameter does not have a constant term (this
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allows us to get O(1) for perfect predictions), and the constraint set is a set of simplices, i.e., a

multi-simplex, instead of a single simplex binding all variables.

Lemma 8.1. Consider the convex set X = {𝑥𝑖 𝑗 ≥ 0 :

∑
𝑗∈J 𝑥𝑖 𝑗 = 1, ∀𝑖 ∈ I}, and the nonnegative

convex function 𝑟1:𝑡 : X ↦→ R+ defined in (18) as:

𝑟1:𝑡 (𝒙) =
𝜂1:𝑡

2

©«𝐼 log 𝐽 +
∑︁
𝑖∈I

∑︁
𝑗∈J

𝑥𝑖 𝑗 log𝑥𝑖 𝑗
ª®¬ , where 𝜂1:𝑡 = 𝜂

√√
𝑡∑︁
𝜏=1

∥𝒈𝜏 +𝒘𝜏 − �̃�𝜏 − �̃�𝜏 ∥2

∞

Then, function 𝑟1:𝑡 (𝒙) is 1-strongly convex with respect to the norm ∥𝒙 ∥ (𝑡 ) = ∥𝒙 ∥1

√︃
𝜂1:𝑡

𝐼
.

Proof. Let us define 𝒙𝑖 = (𝑥𝑖 𝑗 , 𝑗 ∈ J) and 𝒚𝑖 = (𝑦𝑖 𝑗 , 𝑗 ∈ J), and the unit simplex X𝑖 = {𝑥𝑖 𝑗 ≥
0 :

∑
𝑗∈J 𝑥𝑖 𝑗 = 1}. Then, from the standard analysis of the entropic regularizer it holds that the

(simpler) reguarlizer defined as

𝑟𝑖 (𝒙𝑖 ) = log 𝐽 +
∑︁
𝑗∈J

𝑥𝑖 𝑗 log𝑥𝑖 𝑗 (37)

is 1-strongly convex w.r.t. the ℓ1 norm over X𝑖 , and therefore it holds:

𝑟𝑖 (𝒚𝑖 ) ≥ 𝑟𝑖 (𝒙𝑖 ) + ∇𝑟𝑖 (𝒙𝑖 )⊤ (𝒚𝑖 − 𝒙𝑖 ) +
1

2

∥𝒚𝑖 − 𝒙𝑖 ∥2

1
, ∀𝑖 ∈ I, (38)

Hence, we can write:

𝑟1:𝑡 (𝒚)
𝜂1:𝑡/2

=
∑︁
𝑖∈I

𝑟𝑖 (𝒚𝑖 ) ≥
∑︁
𝑖∈I

𝑟𝑖 (𝒙𝑖 ) +
∇𝑟1:𝑡 (𝒙)
𝜂1:𝑡/2

⊤
(𝒚 − 𝒙) +

∑︁
𝑖∈I

1

2

∥𝒚𝑖 − 𝒙𝑖 ∥2

1

(𝛼 )
≥

∑︁
𝑖∈I

𝑟𝑖 (𝒙𝑖 ) +
∇𝑟1:𝑡 (𝒙)
𝜂1:𝑡/2

⊤
(𝒚 − 𝒙) + 1

2𝐼
∥𝒚 − 𝒙 ∥2

1

=
𝑟1:𝑡 (𝒙)
𝜂1:𝑡/2

+ ∇𝑟1:𝑡 (𝒙)
𝜂1:𝑡/2

⊤
(𝒚 − 𝒙) + 1

2I
∥𝒚 − 𝒙 ∥2

1
⇒ (39)

𝑟1:𝑡 (𝒚) ≥ 𝑟1:𝑡 (𝒙) + ∇𝑟1:𝑡 (𝒙)⊤ (𝒚 − 𝒙) + 𝜂1:𝑡

𝐼
∥𝒚 − 𝒙 ∥2

1
(40)

where in (𝛼) we used the inequality (𝑎1 + 𝑎2 + . . . + 𝑎𝑛)2 ≤ 𝑛(𝑎2

1
+ 𝑎2

2
+ . . . + 𝑎2

𝑛). □

With this result at hand, we can proceed to prove Lemma 4.2 following a similar approach as in

the proof of Lemma 4.1. From [66, Theorem 2], we can write:

R𝑇 − 𝑟1:𝑇−1 (𝒙★) ≤
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

(𝑡−1),∗ =
𝑇∑︁
𝑡=1

𝐼

𝜂1:𝑡−1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞

=

𝑇∑︁
𝑡=1

𝐼 ∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞

𝜂

√︃∑𝑡−1

𝑘=1
∥𝒈𝑘 +𝒘𝑘 − �̃�𝑘 − �̃�𝑘 ∥2

∞

. (41)

Similarly, from the proof of the same Theorem, we can write:

R𝑇 − 𝑟1:𝑇−1 (𝒙★) ≤
𝑇∑︁
𝑡=1

(
𝒈𝑡 +𝒘𝑡− �̃�𝑡 − �̃�𝑡

)⊤ (
𝒙𝑡 − 𝝌𝑡

)
≤

𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡− �̃�𝑡 ∥ (𝑡−1),∗∥𝒙𝑡 − 𝝌𝑡 ∥ (𝑡−1)

where 𝝌𝑡+1 = arg min

𝒙∈X

{
𝑟1:𝑡 (𝒙) + 𝒙⊤ (

𝒈1:𝑡+1 +𝒘1:𝑡+1

)}
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is the prescient action that is selected with knowledge of next-round cost 𝒈𝑡+1. Recalling the

properties of the entropic regularizer, we have:

R𝑇 − 𝑟1:𝑇−1 (𝒙★) ≤
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡− �̃�𝑡−�̃�𝑡 ∥ (𝑡−1),∗∥𝒙𝑡− 𝝌𝑡 ∥ (𝑡−1) =
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡− �̃�𝑡− �̃�𝑡 ∥∞∥𝒙𝑡−𝝌𝑡 ∥1⇒

R𝑇 − 𝑟1:𝑇−1 (𝒙★) ≤
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥∞
(
∥𝒙𝑡 ∥1 + ∥𝝌𝑡 ∥1

)
≤ 2I

𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡−�̃�𝑡−�̃�𝑡 ∥∞, (42)

where in the last step we used the fact that 𝒙𝑡 , 𝝌𝑡 ∈ X, and they have non-negative elements.

Combining (41) and (42), we can follow the rationale in [72, Sec. 7.6], and write:

R𝑇 − 𝑟1:𝑇−1 (𝒙★) ≤ min

2I
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥∞,
𝑇∑︁
𝑡=1

𝐼 ∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞

𝜂

√︃∑𝑡−1

𝑘=1
∥𝒈𝑘 +𝒘𝑘 − �̃�𝑘 − �̃�𝑘 ∥2

∞


=

𝑇∑︁
𝑡=1

min

2𝐼 ∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥∞,
𝐼 ∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞

𝜂

√︃∑𝑡−1

𝑘=1
∥𝒈𝑘 +𝒘𝑘 − �̃�𝑘 − �̃�𝑘 ∥2

∞


= 2𝐼

𝑇∑︁
𝑡=1

min

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥∞,
∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞

2𝜂

√︃∑𝑡−1

𝑘=1
∥𝒈𝑘 +𝒘𝑘 − �̃�𝑘 − �̃�𝑘 ∥2

∞


= 2𝐼

𝑇∑︁
𝑡=1

√√√
min

{
∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞,
∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥4

∞

4𝜂2
∑𝑡−1

𝑘=1
∥𝒈𝑘 +𝒘𝑘 − �̃�𝑘 − �̃�𝑘 ∥2

∞

}
(𝛼 )
≤ 2𝐼

𝑇∑︁
𝑡=1

√√√
2

1

∥𝒈𝑡+𝒘𝑡−�̃�𝑡−�̃�𝑡 ∥2

∞
+ 4𝜂2

∑𝑡−1

𝑘=1
∥𝒈𝑘+𝒘𝑘−�̃�𝑘−�̃�𝑘 ∥2

∞
∥𝒈𝑡+𝒘𝑡−�̃�𝑡−�̃�𝑡 ∥4

∞

= 2

√
2𝐼

𝑇∑︁
𝑡=1

√︄
∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥4

∞

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞ + 4𝜂2
∑𝑡−1

𝑘=1
∥𝒈𝑘 +𝒘𝑘 − �̃�𝑘 − �̃�𝑘 ∥2

∞

(𝛽 )
≤ 2

√
2𝐼

𝑇∑︁
𝑡=1

√︄
∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥4

∞
4𝜂2

∑𝑡
𝑘=1

∥𝒈𝑘 +𝒘𝑘 − �̃�𝑘 − �̃�𝑘 ∥2

∞

=

√
2𝐼

𝜂

𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞√︃∑𝑡
𝑘=1

∥𝒈𝑘 +𝒘𝑘 − �̃�𝑘 − �̃�𝑘 ∥2

∞

(𝛾 )
≤

√
2𝐼

𝜂

√√√
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞

where (𝛼) uses that the minimum between two numbers is less than their harmonic mean; (𝛽)
assumes that 𝜂2 ≤ 1/4 or 𝜂 ≤ 1/2; and in (𝛾) we applied the identity [12, Lemma 3.5]. To conclude,

it suffices to observe that 𝑟1:𝑇−1 (𝒙★) can be upper bounded as follows:

𝑟1:𝑇−1 (𝒙★) =
𝜂1:𝑇−1

2

©«𝐼 log 𝐽 +
∑︁
𝑖∈I

∑︁
𝑗∈J

𝑥𝑖 𝑗 log𝑥𝑖 𝑗
ª®¬ ≤ 𝜂1:𝑇−1

2

𝐼 log 𝐽

=
𝜂𝐼 log 𝐽

2

√√√
𝑇−1∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞ ≤ 𝜂𝐼 log 𝐽

2

√√√
𝑇∑︁
𝑡=1

∥𝒈𝑡 +𝒘𝑡 − �̃�𝑡 − �̃�𝑡 ∥2

∞
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8.3 Proof of Proposition 1
Iteration (12) requires the solution of a convex optimization problem. Since we use non-proximal

regularizers, we can provide a closed-form expression using the KKT conditions [24, Chapter 4]. In

detail, in order to calculate 𝜽𝑡+1, we need to solve:

min

𝒙

𝜎1:𝑡

2

∥𝜽 ∥2 + 𝜽⊤ (𝜿1:𝑡 + �̃�𝒕+1)

s.t. 𝜃𝑖 ≥ 𝜃 𝑙𝑖 , ∀𝑖 ∈ I,
𝜃𝑖 ≤ 𝜃𝑢𝑖 , ∀𝑖 ∈ I .

where 𝜃 𝑙𝑖 and 𝜃
𝑢
𝑖 are the lowest and largest values the dual variables can attain (and depend on the

maximum utility values). First, we define the vectors 𝝎𝑡 � 𝜿1:𝑡 +�̃�𝑡+1 � (𝜔𝑖𝑡 , 𝑖 ∈ I), 𝜽 𝑙 = (𝜃 𝑙𝑖 , 𝑖 ∈ I),
𝜽𝑢 = (𝜃𝑢𝑖 , 𝑖 ∈ I); and introduce the non-negative dual variables 𝝀 and 𝝁 to relax the respective

constraints and define the Lagrangian:

L(𝜽 ,𝝀, 𝝁) = 𝜎1:𝑡

2

∥𝜽 ∥2 + 𝜽⊤𝝎𝑡 + 𝝀⊤ (𝜽 𝑙 − 𝜽 ) + 𝝁⊤ (𝜽 − 𝜽𝑢).

Applying the KKT conditions we can write for the optimal solution 𝜽★
, 𝝀★

, and 𝝁★:

(1) Stationarity:

∇𝜽L(𝜽 ,𝝀, 𝒗) = 0 ⇒ 𝜎1:𝑡𝜃
★
𝑖 + 𝜔𝑖𝑡 − 𝜆★𝑖 + 𝜇★𝑖 = 0, ∀𝑖 ∈ I .

(2) Complementary slackness: 𝜆𝑖
★(𝜃 𝑙𝑖 − 𝜃★𝑖 ) = 0, and 𝜇𝑖

★(𝜃★𝑖 − 𝜃𝑢𝑖 ) = 0, ∀𝑖 ∈ I.
(3) Primal feasibility: 𝜃 𝑙𝑖 ≤ 𝜃★𝑖 ≤ 𝜃𝑢𝑖 , ∀𝑖 ∈ I.
(4) Dual feasibility: 𝜆★𝑖 ≥ 0, 𝜇★𝑖 ≥ 0, ∀𝑖 ∈ I.
Using the above conditions and exploring the different cases for satisfying the complementary

slackness conditions, we can see from the proposed expression in (22), that indeed 𝜃★𝑖,𝑡+1
can admit

the following values:

• 𝜃★𝑖,𝑡+1
=

−𝜔𝑖𝑡

𝜎1:𝑡
⇒ All 4 conditions are satisfied by setting 𝜆★𝑖 = 0, 𝜇★𝑖 = 0.

• 𝜃★𝑖,𝑡+1
= 𝜃 𝑙𝑖 ⇒ 𝜃 𝑙𝑖 ≥

−𝜔𝑖𝑡

𝜎1:𝑡
. Setting 𝜇★𝑖 = 0, 𝜆★𝑖 = 𝜎1:𝑡𝜃

𝑙
𝑖 + 𝜔𝑖𝑡 ≥ 0 satisfies all 4 conditions.

• 𝜃★𝑖,𝑡+1
= 𝜃𝑢𝑖 ⇒ 𝜃𝑢𝑖 ≤ −𝜔𝑖𝑡

𝜎1:𝑡
. Setting 𝜆★𝑖 = 0, 𝜇★𝑖 = −𝜎1:𝑡𝜃

𝑢
𝑖 − 𝜔𝑖𝑡 ≥ 0 satisfies all 4 conditions.

8.4 Proof of Proposition 2
The update (17) involves solving the convex problem (dropping the time index of variables):

min

𝒙
𝑟1:𝑡 (𝒙) − 𝒙⊤ (𝒈1:𝑡 +𝒘1:𝑡 + �̃�𝑡+1 + �̃�𝑡+1)

s.t.

∑︁
𝑗∈J

𝑥𝑖 𝑗 = 1, ∀𝑖 ∈ I,

𝑥𝑖 𝑗 ≥ 0, ∀𝑖 ∈ I,∀𝑗 ∈ J .

First, we define 𝝎𝑡 � 𝒈1:𝑡 +𝒘1:𝑡 + �̃�𝑡+1 + �̃�𝑡+1 � (𝜔𝑖 𝑗𝑡 , 𝑖 ∈ I, 𝑗 ∈ J) and introduce the dual variable

vectors 𝝀 ∈ R𝐼 · 𝐽+ and 𝝁 ∈ R𝐼 , to define the Lagrangian:

L(𝒙,𝝀, 𝝁) = 𝑟1:𝑡 (𝒙) − 𝒙⊤𝝎𝑡 − 𝝀⊤𝒙 +
∑︁
𝑖∈I

𝜇𝑖

( ∑︁
𝑗∈J

𝑥𝑖 𝑗 − 1

)
.

The KKT conditions are:
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(1) Stationarity: ∇𝒙L(𝒙,𝝀, 𝝁) = 0, which yields the following:

if 𝑥𝑖 𝑗 > 0 :

𝜂1:𝑡

2

(
log𝑥𝑖 𝑗 + 1

)
− 𝜔𝑖 𝑗𝑡 − 𝜆𝑖 𝑗 + 𝜇𝑖 = 0, ∀𝑖 ∈ I, ∀𝑗 ∈ J ,

if 𝑥𝑖 𝑗 = 0 : −𝜔𝑖 𝑗𝑡 − 𝜆𝑖 𝑗 + 𝜇𝑖 = 0, ∀𝑖 ∈ I, ∀𝑗 ∈ J .

(2) Complementary slackness: 𝜆𝑖 𝑗𝑥𝑖 𝑗 = 0, ∀𝑖 ∈ I, 𝑗 ∈ J .

(3) Primal feasibility: 𝑥𝑖 𝑗 ≥ 0,
∑
𝑗∈J 𝑥𝑖 𝑗 = 1, ∀𝑖 ∈ I,∀𝑗 ∈ J

(4) Dual feasibility: 𝜆𝑖 𝑗 ≥ 0,∀𝑖 ∈ I, 𝑗 ∈ J .

Setting 𝝀 = 0, and solving for 𝜇𝑖 in each equation, we obtain:

𝜇𝑖 = −𝜂1:𝑡

2

(
log𝑥𝑖 𝑗 + 1

)
+ 𝜔𝑖 𝑗𝑡 , ∀𝑖 ∈ I, ∀𝑗 ∈ J ,

and replacing the proposed expression for 𝒙 from (23), we get ∀𝑖 ∈ I:

𝜇𝑖 = −𝜂1:𝑡

2

©«
2𝜔𝑖 𝑗𝑡

𝜂1:𝑡

− log
©«
∑︁
𝑗∈J

exp

(
2𝜔𝑖 𝑗𝑡

𝜂1:𝑡

)ª®¬ + 1
ª®¬ + 𝜔𝑖 𝑗𝑡 = 𝜂1:𝑡

2

log
©«
∑︁
𝑗∈J

exp

(
2𝜔𝑖 𝑗𝑡

𝜂1:𝑡

)ª®¬ − 𝜂1:𝑡

2

,

where notice that 𝜇𝑖 contains summations over all elements of J , and hence its value does not

depend on the variable derivative 𝑗-wise. Therefore, this solution satisfies all KKT conditions, since

the primal variables and the 𝜆𝑖 𝑗 variables are nonegative, and it holds:

∑︁
𝑗∈J

exp

(
2𝜔𝑖 𝑗𝑡/𝜂1:𝑡

)∑
𝑗∈J exp

(
2𝜔𝑖 𝑗𝑡/𝜂1:𝑡

) = 1, ∀𝑖 ∈ I, 𝑗 ∈ J ,

8.5 Proof of Theorem 5.1
Using [81, Lemma 2], we can write:

𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝒖𝑡 (𝒚𝑡 )
)
= min

𝜽 ∈Θ

{
(−𝐹𝛼 )★(𝜽 ) − 𝜽 · 1

𝑇

𝑇∑︁
𝑡=1

𝒖𝑡 (𝒚𝑡 )
}
= min

𝜽 ∈Θ

{
1

𝑇

𝑇∑︁
𝑡=1

(−𝐹𝛼 )★(𝜽 ) − 𝜽⊤𝒖𝑡 (𝒚𝑡 )
}
.

Following the definition of 𝐺𝛼 ({𝒚𝑡 }𝑡 ) and combining it with the above result, we can write:

𝐺𝛼 ({𝒚𝑡 }𝑡 ) =𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝑢𝑡 (𝒚𝑡 )
)
− 1

𝑇

∑︁
𝑡 ∈T

𝑐𝑡 (𝒚𝑡 )= min

𝜽 ∈Θ

{
1

𝑇

[
𝑇∑︁
𝑡=1

(−𝐹𝛼 )★(𝜽 )− 𝜽⊤𝒖𝑡 (𝒚𝑡 )
]}

− 1

𝑇

𝑇∑︁
𝑡=1

𝑐𝑡 (𝒚𝑡 )

= min

𝜽 ∈Θ

{
1

𝑇

[
𝑇∑︁
𝑡=1

(−𝐹𝛼 )★(𝜽 ) − 𝜽⊤𝒖𝑡 (𝒚𝑡 ) − 𝑐𝑡 (𝒚𝑡 )
]}

= min

𝜽 ∈Θ

{
1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑐𝑡 (𝜽 ,𝒚𝑡 )
}
. (43)
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Fig. 11. Energy dispersion amongst PUs for different 𝛼 − 𝛽 pairs. Util. stands for utilitarian algorithm.

Denoting with R
𝑦,𝑐

𝑇
the primal-space regret (in analogy with (10)), we have:

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑐𝑡 (𝜽𝑡 ,𝒚𝑡 )+
R
𝑦,𝑐

𝑇

𝑇
=

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑐𝑡 (𝜽𝑡 ,𝒚★)=
1

𝑇

𝑇∑︁
𝑡=1

(−𝐹𝛼 )★(𝜽𝑡 )−
1

𝑇

𝑇∑︁
𝑡=1

𝜽⊤
𝑡 𝒖𝑡 (𝒚★)−

1

𝑇

𝑇∑︁
𝑡=1

𝑐𝑡 (𝒚★)

(𝛾1 )
≥ (−𝐹𝛼 )★

(
1

𝑇

𝑇∑︁
𝑡=1

𝜽𝑡

)
− 1

𝑇

𝑇∑︁
𝑡=1

𝜽⊤
𝑡 𝒖𝑡 (𝒚★) −

1

𝑇

𝑇∑︁
𝑡=1

𝑐𝑡 (𝒚★)

= (−𝐹𝛼 )★( ¯𝜽 )− ¯𝜽 ·
(

1

𝑇

𝑇∑︁
𝑡=1

𝒖𝑡 (𝒚★)
)
− 1

𝑇

𝑇∑︁
𝑡=1

(𝜽𝑡 − ¯𝜽 )⊤ · 𝒖𝑡 (𝒚★) −
1

𝑇

𝑇∑︁
𝑡=1

𝑐𝑡 (𝒚★)

≥ min

𝜽 ∈Θ

{
1

𝑇

𝑇∑︁
𝑡=1

(−𝐹𝛼 )★(𝜽 ) − 𝜽⊤𝒖𝑡 (𝒚★) − 𝑐𝑡 (𝒚★)
}
− 1

𝑇

𝑇∑︁
𝑡=1

(𝜽𝑡 − ¯𝜽 )⊤𝒖𝑡 (𝒚★)

= min

𝜽 ∈Θ

{
1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑐𝑡 (𝜽𝑡 ,𝒚★)
}
− 1

𝑇

𝑇∑︁
𝑡=1

(𝜽𝑡 − ¯𝜽 )⊤𝒖𝑡 (𝒚★)
(𝛾2 )
= 𝐺𝛼 (𝒚★) −

1

𝑇

𝑇∑︁
𝑡=1

(𝜽𝑡 − ¯𝜽 )⊤𝒖𝑡 (𝒚★), (44)

where (𝛾1) follows from Jensen’s inequality and the convexity of (−𝐹𝛼 )★, and in (𝛾2) we used (43).

Next, we define the dual-space regret R
𝜃,𝑐

𝑇
(in analogy to (11)) and relate it to function 𝐺𝛼 , namely:

R
𝜃,𝑐

𝑇
=

𝑇∑︁
𝑡=1

Ψ𝑐𝑡 (𝜽𝑡 ,𝒚𝑡 ) −
𝑇∑︁
𝑡=1

Ψ𝑐𝑡 (𝜽 ,𝒚𝑡 ) for every 𝜽 ∈ Θ

(𝛾3 )
=

𝑇∑︁
𝑡=1

Ψ𝑐𝛼,𝑡 (𝜽𝑡 ,𝒚𝑡 ) −𝑇𝐺𝛼 ( [𝒚𝑡 ]) . (45)

where (𝛾3) follows from the definition of𝐺𝛼 ({𝒚𝑡 }𝑡 ) as the minimizer of the averaged proxy function

values w.r.t. 𝜽 ∈ Θ, see (43). Now, we can combine (44) and (45), and write:

𝐺𝛼 ( [𝒚𝑡 ]) +
R
𝜃,𝑐

𝑇

𝑇
=

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝑐𝑡 (𝜽𝑡 ,𝒚𝑡 ) ≥ 𝐺𝛼 (𝒚★) −
1

𝑇

𝑇∑︁
𝑡=1

(𝜽𝑡 − ¯𝜽 )⊤𝒖𝑡 (𝒚★) −
R
𝑦,𝑐

𝑇

𝑇
.

Rearranging, we arrive at the main result of the theorem.

8.6 Additional Experiments and Evaluation Results
This section includes further results that could not be included in the main part of the paper due to

lack of space. All the results presented in this section are obtained using the O-RAN compliant

experimental platform presented in Sec. 6.
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Fig. 12. (a): Delay dispersion amongst users for different 𝛼 , non-optimistic FTRL (left) and OFTRL with Naive
forecast (right). (b): Utility (probability of empty buffer) dispersion amongst users for different 𝛼 values,
non-optimistic FTRL (left) and OFTRL with Naive forecast (right).

We start with the assignment (compute control) policy. Fig. 11 shows the dispersion of throughput

amongst vBSs and energy of PUs using the horizon fair, and utilitarian algorithms as in Sec. 6.1. In

Fig. 11, the difference between 𝛼 = 1, 𝛽 = 1 (orange) and 𝛼 = 1, 𝛽 = 2 (black) indicates that as 𝛽 is

increased, energy is distributed more fairly among servers with the horizon fair algorithm. Also

note that the horizon fair algorithm disperses the energy fairly and uses both of the GPUs, whereas

the utilitarian algorithm chooses to use only the faster and cheaper GPU to reduce its energy with

an unfair use.

Next, we provide additional results on the radio control policy (minTB). Fig. 12 shows the disper-
sion of actual measured delay, and percentage of the user buffer being empty, amongst different

users when using the non-optimistic FTRL and OFTRL with Naive forecast [47] algorithms. We

consider the configuration of Scenario 2, detailed in Sec. 6.2. We see that the delays and utilities of

the users are dispersed more fairly as 𝛼 increases.

8.7 Derivation of Convex Utility and Cost Functions in Sec. 6.2
Our policy makes decisions every 100 ms, and we need to approximate the probability of empty

buffer and expected energy cost between decisions, depending on 𝒚𝑡 , 𝒃𝑡 , 𝝆𝑡 , and 𝒔𝑡 . To approximate

𝒖𝑡 , we assume that data generation of each user 𝑏𝑖𝑡 follows a Poisson distribution, where the times

between data generations are exponentially distributed with the parameter 1/𝑏𝑖𝑡 and each data

generation consists of 𝜌𝑖𝑡 number of bits. We stress, however, that this is a non-binding assumption

(other models can be studied), and that we allow the parameters of the distribution to change

arbitrarily (based on the adversary model) across the different slots.

We designed the system such that the user data is transmitted when the number of bits in

the buffer or each user 𝑖 ∈ I exceeds the threshold 𝑦𝑖𝑡 , where we denote the number of bits as

𝐵𝑖𝑡 = 𝑏𝑖𝑡𝜌𝑖𝑡 . Here, for notational convenience we drop the subscripts 𝑖 and 𝑡 and derive a utility

function for each user 𝑖 in each time slot 𝑡 . Additionally, we define a new time variable 𝜏 ∈ [0, 1)
within the time slot 𝑡 and denote the number of bits in the user buffer at time 𝜏 as 𝐵𝜏 . Next, we

calculate Pr
(
𝐵𝜏 > 0 and 𝜏 <

𝑦

𝑏𝜌

)
as:

Pr
(
𝐵𝜏 > 0 and 𝜏 <

𝑦

𝑏𝜌

)
= Pr

(
𝜏 ≥ time of the first bit generation and 𝜏 <

𝑦

𝑏𝜌

)
= Pr

(
time of the first bit generation ≤ 𝜏 <

𝑦

𝑏𝜌

)
=

∫ 𝑦

𝑏𝜌

0

(
1 − 𝑒−𝑏𝜏

)
𝑑𝜏
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Fig. 13. Comparison of 𝑢 (𝑦) with the real measurement of probability of empty buffer. Legends are 𝜌 (left)
and traffic multiplier (right).

Now, we calculate the portion of time the user has non-empty buffer when 𝜏 ∈ [0, 1) as

1 − 𝑢 (𝑦) = Pr
(
𝐵𝜏 > 0 and 𝜏 <

𝑦

𝑏𝜌

)
𝑏𝜌

𝑦
=
𝜌𝑒

− 𝑦

𝜌 + 𝑦 − 𝜌
𝑦

Thus, we have 𝑢 (𝑦) =
𝜌

𝑦

(
1 − 𝑒−

𝑦

𝜌

)
. Note that when 𝑦 → 0, 𝑢 (𝑦) = 1 and for larger 𝑦 values

𝑢 (𝑦) ≈ 𝜌

𝑦
. We approximate the cost function similarly, since the probability of empty buffer is an

indicator of the rate of data transmissions, i.e., the buffer is empty right after the transmission up

until the first data generation after the last transmission. Therefore, we can approximate the number

of data transmissions by 𝑏 ·𝑢 (𝑦). We then multiply this with the cost multiplier due to SNR, and the

cost scaling parameter to calculate hardware cost induced by user 𝑖 as 𝑐 (𝑦) = 𝜑𝛽 (𝑠)𝑏 𝜌
𝑦

(
1 − 𝑒−

𝑦

𝜌

)
.

We sum this cost function for all users to calculate the HA cost. We show that the functions are

convex as 𝑢′′ (𝑦) ≥ 0 is always satisfied.

Fig. 13 demonstrates a comparison between our approximation function 𝑢 (𝑦) and the real

measurement of empty buffer probability gathered using our testbed. Here, in the approximation

we modify 𝜌 , and in the real measurements we multiply the user traffics to increase the demand.

8.8 Convexity of Functions in Sec. 6.1
First, we prove that the utility function in Sec. 6.1 is indeed concave.

𝑢𝑖 𝑗 (𝒙) = 𝑥𝑖 𝑗𝜆𝑖 · min

{
1, 1 − 1

𝐶 𝑗

(∑︁
𝑘∈I

𝑥𝑘 𝑗𝜆𝑘

𝑛𝑘

(
𝜁
𝑗

𝑘
𝑛𝑘 + 𝑜 𝑗𝑘

)
−𝐶 𝑗

)}
We do not use the time subscript 𝑡 for notational simplicity. Note that the piecewise minimum of

two concave functions is also concave, and it is sufficient to prove that both functions inside min{}
after multiplied with 𝑥𝑖 𝑗𝜆𝑖 are concave. The LHS, 𝑥𝑖 𝑗𝜆𝑖 is a linear function, thus concave. Therefore,

it is sufficient to show that:

𝑥𝑖 𝑗𝜆𝑖 −
𝑥𝑖 𝑗𝜆𝑖

𝐶 𝑗

(∑︁
𝑘∈I

𝑥𝑘 𝑗𝜆𝑘

𝑛𝑘

(
𝜁
𝑗

𝑘
𝑛𝑘 + 𝑜 𝑗𝑘

)
−𝐶 𝑗

)
,

is concave. We calculate the Hessian matrix 𝑯 of

𝑓𝑖 𝑗 (𝒙) = 𝑥𝑖 𝑗𝜆𝑖 −
𝑥𝑖 𝑗𝜆𝑖

𝐶 𝑗

(∑︁
𝑘∈I

𝑥𝑘 𝑗𝜆𝑘

𝑛𝑘

(
𝜁
𝑗

𝑘
𝑛𝑘 + 𝑜 𝑗𝑘

)
−𝐶 𝑗

)
,
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as 𝑯 � ∇𝒈 where 𝒈 � ∇𝑓𝑖 𝑗 (𝒙), 𝑯 ∈ R(𝐼 · 𝐽 )×(𝐼 · 𝐽 )
and 𝒈 ∈ R(𝐼 · 𝐽 )

. Denoting
𝜆𝑖
𝑛𝑖

(
𝜁
𝑗

𝑖
𝑛𝑖 + 𝑜 𝑗𝑖

)
� 𝑘𝑖 , we

can write:

𝑔𝑖 𝑗 = 2𝜆𝑖 − 𝑥𝑖 𝑗
2𝜆𝑖𝑘𝑖

𝐶 𝑗
− 𝜆𝑖

𝐶 𝑗

∑︁
𝑖′≠𝑖

𝑥𝑖′ 𝑗𝑘𝑖′ ,

𝑔𝑖′ 𝑗 = −
𝑥𝑖 𝑗𝜆𝑖𝑘𝑖′

𝐶 𝑗
,

𝑔𝑖 𝑗 ′ = 0,

𝑔𝑖′ 𝑗 ′ = 0, (46)

for the values of 𝒈 where 𝑖′ ≠ 𝑖, 𝑗 ′ ≠ 𝑗 . The Hessian matrix 𝑯 = ∇𝒈 has the following elements:

𝐻𝑖 𝑗,𝑖 𝑗 = −2𝜆𝑖𝑘𝑖

𝐶 𝑗
, 𝐻𝑖 𝑗,𝑖′ 𝑗 = −𝜆𝑖𝑘𝑖

′

𝐶 𝑗
, 𝐻𝑖 𝑗,𝑖 𝑗 ′ = 0, 𝐻𝑖 𝑗,𝑖′ 𝑗 ′ = 0,

𝐻𝑖′ 𝑗,𝑖 𝑗 = −𝜆𝑖𝑘𝑖
′

𝐶 𝑗
, 𝐻𝑖′ 𝑗,𝑖′ 𝑗 = 0, 𝐻𝑖′ 𝑗,𝑖 𝑗 ′ = 0, 𝐻𝑖′ 𝑗,𝑖′ 𝑗 ′ = 0,

𝐻𝑖 𝑗 ′,𝑖 𝑗 = 0, 𝐻𝑖 𝑗 ′,𝑖′ 𝑗 = 0, 𝐻𝑖 𝑗 ′,𝑖 𝑗 ′ = 0, 𝐻𝑖 𝑗 ′,𝑖′ 𝑗 ′ = 0,

𝐻𝑖′ 𝑗 ′,𝑖 𝑗 = 0, 𝐻𝑖′ 𝑗 ′,𝑖′ 𝑗 = 0, 𝐻𝑖′ 𝑗 ′,𝑖 𝑗 ′ = 0, 𝐻𝑖′ 𝑗 ′,𝑖′ 𝑗 ′ = 0. (47)

Hence, 𝑯 is a negative semi definite matrix, thus 𝑓𝑖 𝑗 (𝒙) is a concave function of 𝒙 .
The cost efficiency function ℎ 𝑗 (𝒙 𝑗 ) is a linear function of 𝒙 , hence concave.
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