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Abstract

This study investigates the calibration of accelerometer data for the Next Generation Grav-
ity Mission (NGGM), proposed by the European Space Agency. With improved precision,
NGGM aims to continue gravity field observations beyond the Gravity Recovery and Climate
Experiment Follow-On (GRACE-FO) mission. The mission consists of a satellite pair mea-
suring Earth’s gravity field using an onboard laser tracking instrument. To isolate the gravity
field signature in these observations, each satellite carries accelerometers to estimate non-
gravitational accelerations. This thesis supports the accelerometer calibration process by ap-
plying lessons from previous gravity field missions.
A historical review of gravity missions highlights the evolution of scientific and hardware re-
quirements. The study examines accelerometer principles, sources of instrumental imperfec-
tions, and existing data calibration techniques. NGGM’s preliminary design includes multiple
accelerometers placed away from the satellite’s center of mass, allowing the use of shaking
manoeuvres—first introduced in the GOCE mission—for calibration.
A comprehensive model is developed that can generate shaking manoeuvres with varying
thrust magnitudes, shaking durations, and shaking frequencies to excite the satellite. This
model is used in conjunction with various accelerometer units (two, three, and four accelerom-
eter layouts are considered) and their placement in the satellite’s body frame to evaluate the
calibration quality against the scientific requirements posed for the mission.
Results indicate that along-track accelerometer placement minimizes non-gravitational accel-
eration measurement errors due to enhanced centrifugal acceleration from the satellite’s pitch
rate during calibration. Furthermore, the along-track placement performs better than radial
placement, even though it has the same centrifugal acceleration boost. The suspected cause
is the electrode layout of the accelerometer, which boosts the acceleration signal due to the
projection of the angular acceleration about the y-axis onto the z component of the linear ac-
celeration. The radial placement of the accelerometers provides no additional signal to the
x-component of the linear acceleration due to a lack of projection. Lower shaking frequencies
improve calibration by accumulating higher angular rates over time. However, due to volume
constraints imposed by the laser tracking instrument, cross-track placement may be more
favourable. This configuration requires higher thrust levels, as the absence of a pitch rate
signal on the cross-track axis worsens the signal-to-noise ratio of the observations, which war-
rants a revision of the thruster requirements and accelerometer performance. Moreover, more
than two accelerometers reduce measurement errors by providing redundancy in the obser-
vations. Even with three accelerometers placed in the along-track direction, at least 24 hours
of shaking at maximum thrust, as stated by the thruster requirement, is required for effective
calibration. Lower thrust or shorter shaking durations would necessitate four accelerometers,
two on the x-axis and two on the y-axis. Finally, the accelerometer pair’s arm length is treated
as a free variable, as it has minimal impact on calibration performance.
This report provides foundational insight for future gravity missions. Smart accelerometer
placement and shaking manoeuvre parameters can improve the measurement quality of the
non-gravitational forces and subsequently improve gravity field recovery, which is crucial for
tackling the climate crisis.

iv
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A Area of the electrode plate [m2]
Σy Noise covariance matrix [m2/s4]
Ω Angular rate matrix [rad/s]
ωi True angular rates [rad/s]
Ω̇ Angular acceleration matrix [rad/s2]
ω̇i True angular acceleration [rad/s2]
Isp Specific impulse of the thruster [s]
Ki Diagonal quadratic factor matrix [s2/m]
x Calibration parameters vector [s2/m]
u Inverse of the amplitude spectral density of a given vari-

able
[unit/

√
Hz]

J Jacobian/Design matrix of a generalised least-squares
fit or Mass moment of inertia of the satellite

[-,kgm2]

Cr Radiation pressure coefficient of the satellite [-]
∆ȳ Decorrelated reduced observation vector [-]
∆y Reduced observation vector [-]
G Matrix containing the effect of gravity gradients, centrifu-

gal, and Euler accelerations
[-]

J̄ Decorrelated Jacobian/Design matrix of a generalised
least-squares fit

[-]

Jext Jacobian/Design matrix of a generalised least-squares
fit extended

[-]

S Diagonal scale factor matrix [-]
Wcij Angular acceleration coupling matrix common mode [-]
Wdij Angular acceleration coupling matrix differential mode [-]
Wi Angular acceleration coupling matrix [-]
BW Bandwidth of the shaking signal rectangular pulse [-]
Mcij Calibration matrix of common mode [-]
Mdij Calibration matrix of differential mode [-]
Mi Calibration matrix containing scale factors, misalign-

ments and non-orthogonality of sensitive axes
[-]



Symbols xiv

CD Drag coefficient in satellite’s aerodynamic frame [-]
e Eccentricity of an orbit [-]
ϵ0 Dielectric constant [-]
k Power ratio between high frequency and low frequency

ASD filter
[-]

Q1 First quartile of the data [-]
Q3 Third quartile of the data [-]
q Quaternions [-]
RI/AF Rotation matrix from satellite’s aerodynamic frame to in-

ertial frame
[-]

σi Standard deviation of estimated parameter from least
sqaures.

[-]

v Impulse response [-]
N Window length in Welch’s method for estimating Ampli-

tude Spectral Density (ASD)
[-]

x(ext) Calibration parameters vector extended [-]
x0 Approximation of calibration parameters vector [-]
xB x-axis of body-fixed frame [-]
x̂0 Updated calibration parameters vector [-]
y0 Observation vector of approximated data of a gener-

alised least-squares fit
[-]

xB y-axis of body-fixed frame [-]
y Observation vector of measured data of a generalised

least-squares fit
[-]

xB z-axis of body-fixed frame [-]
tsh Shaking duration [hrs]
m Satellite’s mass [kg]



1
Introduction

Since the early 2000s, the field of space geodesy has made a giant leap. For the first time,
measuring Earth’s gravity globally and consistently with high accuracy was possible. By mea-
suring both spatial and temporal variations of gravity, one could get a deeper understanding
of the underlying dynamics of mass changes in the interior and on the surface of the Earth. It
allows us to monitor processes such as water-cycle changes, sea level rise and glacial activity
(Chen et al., 2006; National Research Council et al., 1997; Tapley et al., 2019), which have
become increasingly important recently against the backdrop of climate change and global
warming.
In the very early stages of spaceflight, analysis of deviations from a Keplerian orbit induced by
the local gravity field made it possible to determine the flattening and pear shape of the Earth
corresponding to the lower degree and order coefficients of the spherical harmonic representa-
tion of Earth’s gravity field (O’Keefe et al., 1959). In the following years, with greater coverage
of Earth with more satellites, increased global distribution of tracking stations, and the im-
provement of satellite tracking technology like Satellite Laser Ranging (SLR) (D. E. Smith et
al., 1972; Strugarek et al., 2019), Doppler Orbitography and Radiopositioning (DORIS) (Willis
et al., 2010), and Global Navigation Satellite System (GNSS) (Y. Bock & Melgar, 2016; Stru-
garek et al., 2019) provided greater resolution and thus determination of higher order terms
(Flechtner et al., 2021; Kornfeld et al., 2019). However, extracting gravity data as a tertiary
objective with the use of satellites reached its natural limits due to insufficient accurate ob-
servations and modelling of non-gravitational forces such as atmospheric drag and solar and
Earth radiation pressure (Flechtner et al., 2021). Thus, this warranted the need for dedicated
gravitational field missions.
The following features were envisaged for these dedicated missions (Flechtner et al., 2021):

1. Low Earth Orbit (LEO) satellites with altitudes between 250 and 500 km.
2. Global coverage of Earth by using polar circular orbits.
3. Uninterrupted 3D determination of position through high-low satellite orbit tracking.
4. Recording of non-gravitational forces acting on the satellite with high-precision accelero-

meters.
5. Using observation techniques such as low-low satellite-to-satellite tracking or in-situ mea-

surement of gravitational gradients for dedicated measurement of gravitational field sig-
nal.

The first flight of a French-made ASTRE electrostatic accelerometer aboard Columbus (Nati
et al., 1994), and the development of the Global Positioning System (GPS) constellation for

1



2

high-low satellite tracking were significant milestones for the realisation of gravitational mis-
sions such as Challenging Mini-Satellite Payload (CHAMP)1, Gravity Recovery and Climate
Experiment (GRACE), GRACE Follow On (GRACE-FO)2, and GOCE3.
The accelerometer is a crucial component for these gravity missions. As mentioned, the devia-
tions in orbital trajectory are due to the local gravity field and the non-gravitational forces acting
on the satellite. The accelerometers can accurately measure the non-gravitational forces and
separate their effects on the satellite’s Center of Mass (COM) from the impact of gravitational
variations, which are of interest. However, the accelerometers are not perfect. They are rid-
dled with noise, biases, and scale factors (section 2.2); therefore, the data must be calibrated.
But due to the high resolution and sensitivity of accelerometers to measure accelerations as
small as 10−10ms−2Hz−1/2 (Touboul et al., 2004) to measure the non-gravitational forces in
LEO in all three axes, the electrostatic force for controlling the proof mass are not strong
enough to lift the proof mass in a 1-g environment for testing (Touboul, Foulon, & Willemenot,
1999). Over the past two decades, several calibration techniques have been formulated rang-
ing from using GPS observations (Helleputte et al., 2009; Visser & van den IJssel, 2016; Visser,
2007) to using global gravity fields, star tracker data (Rispens & Bouman, 2009), force mod-
elling (Wöske et al., 2019) or even dedicating shaking manoeuvres (Frommknecht et al., 2011;
Siemes et al., 2019).
The 2018 US Earth Science Decadal Report listed mass transport observations as one of
the top priorities of Earth observation (National Academies of Sciences, Engineering, and
Medicine, 2018). GRACE-FO is contributing to it by continuing the time series from GRACE.
More studies are being carried out to determine a new concept named Next Generation Grav-
ity Mission (NGGM) to be launched at the end of the current decade to improve the spatial and
temporal resolution of gravity data. NGGM follows the footsteps of its predecessors and ap-
plies the lessons learnt from them through better performing accelerometers used on GOCE
and Low-Low Satellite-to-Satellite Tracking (LL-SST) via laser tracking tested on GRACE-FO.
This thesis focuses on the critical aspect of the upcoming NGGM mission that is yet to be
addressed: the data calibration of onboard accelerometers. It explores the different configu-
rations of accelerometers and shaking manoeuvres that would suit the strict science require-
ments posed. By analysing the past calibration techniques and adapting them to the antici-
pated design of future gravity missions, this research aims to identify the effective strategies for
minimizing the measurement errors and ultimately aid in high-quality gravity field observation.
The report is structured in the following way. Chapter 2 aims to understand the evolution of
gravity missions and highlight the main takeaways. It describes the state-of-the-art by review-
ing the electrostatic accelerometer concept and what each gravity mission offers. Based on
satellite designs, the different calibration techniques developed are discussed. Chapter 3 then
provides an overview of the recent studies published on NGGM to determine its preliminary de-
sign. Chapter 4 then establishes the research gap, the main research question, sub-questions
and requirements onmethodology to guide the thesis. In Chapter 5, the algorithms to generate
the accelerometer data and tools to calibrate the accelerometer are outlined in detail. Chap-
ter 6 presents the verification checks to ensure the correct implementation of the method laid
out in Chapter 5. Chapter 7 presents the calibration performance results for different configu-
rations and shaking manoeuvres and compares them against the scientific requirement posed
on non-gravitational acceleration measurement. Finally, Chapter 8 concludes the findings by
answering the research question and providing recommendations for future work.

1https://www.gfz-potsdam.de/en/section/geomagnetism/infrastructure/gfz-satellite-mission-champ
2https://grace.jpl.nasa.gov/
3https://www.esa.int/Enabling_Support/Operations/GOCE

https://www.gfz-potsdam.de/en/section/geomagnetism/infrastructure/gfz-satellite-mission-champ
https://grace.jpl.nasa.gov/
https://www.esa.int/Enabling_Support/Operations/GOCE


2
A Review of Satellite Missions with

Accelerometers

This chapter assesses the history of the gravity missions and the electrostatic accelerome-
ters used onboard. Section 2.1 briefly motivates the need for an accelerometer on board the
satellites, with its working principle explained in Section 2.2. Then, Section 2.3 outlines the pre-
vious flown gravity missions with their scientific contributions and primary instruments. Finally,
Section 2.4 discusses the accelerometer data calibration techniques used on these missions.

2.1. Significance of Accelerometers for Space Missions
Numerous space applications require dedicated accelerometers with ranges and sensitivities
optimized for the in-orbit environment. For microgravity experiments onboard the International
Space Station, acceleration and vibration levels must be closely monitored for a controlled
environment (McPherson et al., 2009).
In the field of physics experiments researching observation of gravity waves, measurements of
very weak accelerations are required for the drag compensation systems on board Laser Inter-
ferometer Space Antenna (LISA) satellites to maintain a soft environment to detect the gravita-
tional waves (Danzmann, 2000). The LISA mission will benefit from a very quiet environment,
contrary to ground-based experiments like VIRGO or Laser Interferometer Gravitational-Wave
Observatory (LIGO) limited by the low-frequency seismic noise (Josselin et al., 2001).
Furthermore, ultra-sensitive accelerometers have two main applications in the field of Earth
observation. First, measuring surface forces acting on LEO satellites provides information
about Earth’s atmospheric density, high-altitude winds, and the radiation pressure from the
Sun and Earth. Second, the accelerometers are crucial to the global and accurate recovery of
the Earth’s gravity field. The accelerometers are used to quantify the non-gravitational forces
acting on the satellite and extract a gravity signal which is purely dictated by the Earth’s mass
distribution, both on the surface and the interior. The accelerometer is generally installed at the
COM in order to be not affected by centrifugal and Euler accelerations (Touboul, Willemenot,
et al., 1999; Touboul, Foulon, & Willemenot, 1999).

2.2. Working Principle of an Electrostatic Accelerometer
The measurement principle of an electrostatic accelerometer is based on the levitation of a
proof mass (generally parallelepipedal shape) inside a cage surrounded by electrode pairs
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2.2. Working Principle of an Electrostatic Accelerometer 4

(Figure 2.1a). The electrode pairs are used for capacitive position sensing and electrostatic
restoring force generation. Figure 2.1b shows the diagram of a single axis for accelerometers
used in gravity missions. The proof mass (grey square) is suspended between two electrodes
(thin black rectangles) with a control voltage V . The proof mass is charged by a thin wire1 with
a polarisation DC voltage Vp and an AC detection voltage Vd(t), thus giving proof mass a total
voltage

Vt = Vp + Vd(t).

(a) (b)

Figure 2.1: a) An individual accelerometer electrode pairs and layout (Frommknecht et al., 2011). b) Concept of
a capacitive accelerometer for one axis (Frommknecht et al., 2003).

Considering that V and Vt are positive, the system is inherently unstable as the proof mass
will start moving towards the −V electrode. Therefore, a servo control mechanism with a
Proportional-Integrative-Derivative (PID) feedback loop is used to keep the proof mass mo-
tionless in the centre of the cage with a gap of d from the cage. The position of the proof mass
is measured using a detection mechanism by comparing the capacitance values between the
proof mass and the electrode (Frommknecht et al., 2003). The overall capacitive force is given
by

Fcap =
1

2
ϵ0A(E2

1 − E2
2), (2.1)

where ϵ0 is the dielectric constant, A is the area of the electrode, and Ei is the electric field
between the proof mass and the electrode plates. Given the relation that E = V/s, V is
the voltage difference between the proof mass and the electrode, and s = d + x is the true
distance. For first-order analysis, the distance x is considered small compared to d, and the
AC detection voltage Vd(t) does not affect the proof mass (Nati et al., 1994).
Thus, the capacitive force is

Fcap ≈
1

2
ϵ0A

(
(V − Vp)

2

d2
− (V + Vp)

2

d2

)
, (2.2)

(2.3)
1The wire is a feature of accelerometers made by ONERA.
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which is equivalent to the acceleration

a = −2
ϵ0A

md2
VpV. (2.4)

The capacitive acceleration imparted is proportional to the electrode area A and inversely
proportional to the square of the gap size d. The advantage of a smaller gap size is that the
proof mass can be lifted under 1-g conditions for ground testing, but it greatly reduces the
measurement precision because the noise in the control voltage has an amplified effect on
the acceleration due to the increase in slope.
Figure 2.2 shows themain contributors to the accelerometer measurement noise. The detector
circuit noise of the control loop (pink line) and the measurement noise (dark blue) due to the
digitisation by the Analog-to-Digital Converter dominate the noise spectrum above and below
0.1Hz, respectively. At even lower frequencies, the electronic bias (light blue) creeps in due to
thermal variations from the satellite undergoing eclipse phases in LEO. Therefore, electronics
should preferably be housed in a thermally stable structure.
Furthermore, due to the imperfect alignment of accelerometer axes, scale factors Mi, non-
linearity due to quadratic dependency in the measurement Ki, and projection of angular ac-
celeration due to electrode layout Wi leads to a measurement model deviating from the per-
fect measurements represented by Equation 2.5, where bi and ni add a constant bias and
frequency-dependent noise, respectively (Siemes et al., 2019; Touboul et al., 2016).

ameas
i = bi +Miai +Kia

2
i +Wiẇi + ni (2.5)

Figure 2.2: Noise performance of the GOCE accelerometer along their ultra-sensitive axis (Touboul et al., 2016).

When external forces act on the spacecraft, the servo control mechanism of the accelerome-
ter nullifies the relative motion between the proof mass and the cage. The acceleration cor-
responding to the required force to bring the proof mass back to the centre of the cage is
representative of the external acceleration and can be expressed as (Siemes et al., 2019)
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a = −(V −Ω2 − Ω̇)r + ang, (2.6)

where V is the gravity gradient tensor, Ω2r is the centrifugal acceleration, Ω̇r is the Euler
acceleration, r is the vector from the satellite’s COM to the accelerometer cage’s centre, and
ang the non-gravitational accelerations acting on the satellite. Ω and Ω̇ are the angular rate
and angular acceleration matrix, respectively. Note that the acceleration due to the satellite’s
self-induced gravity is ignored as it is considered negligible. Moreover, since the cage is rigidly
mounted to the satellite, linear and Coriolis acceleration w.r.t. COM are thus zero (Bouman
et al., 2004).

2.3. Past missions
Three pioneering dedicated gravity field missions were launched in the past two decades.
Sections 2.3.1 to 2.3.3 will provide a brief overview of each mission, showcasing how the
scientific objectives evolved and with it the performance demand of the accelerometers.

2.3.1. CHAMP
The German CHAMP satellite was designed to study the Earth’s global gravitational and
magnetic field. The primary goal was to improve the resolution of long wave components
(~1000 km) of the gravitational field and a secondary objective of studying radio occultation of
received GPS signals for remote sensing of atmosphere and ionosphere (Reigber et al., 1996).
The accelerometer was placed at the COM to avoid centrifugal and Euler accelerations act-
ing on the accelerometer. The electrostatic accelerometer STAR was manufactured by the
French company ONERA, providing a resolution of 3× 10−9ms−2 (Touboul et al., 2012).
The satellite was launched into a circular orbit with an altitude of 454 km and an inclination
of 87.3 ° (Flechtner et al., 2021). CHAMP was the first mission designed specifically to col-
lect continuous gravimetry data with a polar orbit providing global coverage. The onboard
GPS receiver and STAR accelerometer enabled continuous determination of kinematic satel-
lite positions and extraction of pure gravitational signal for the first time, as the inaccurate and
insufficient models of atmosphere and radiation pressure can be replaced directly with in-situ
measurements. CHAMP data improved the accuracy of gravity models by a factor of around
four compared to pre-CHAMP models (Reigber et al., 2002). This mission proved to be an
essential stepping stone for the NASA/DLR mission GRACE.

2.3.2. GRACE and GRACE-FO
In 2002, GRACE was launched as a collaboration of National Aeronautics and Space Admin-
istration (NASA) and Deutsches Zentrum für Luft- und Raumfahrt (DLR). It was based on the
concept of inter-satellite ranging between a pair of twin satellites in LEO (Wolff, 1969). The pri-
mary scientific objective of GRACE was to improve temporal variations in Earth’s gravitational
field down to a spatial scale of 300 km averaged over 30 days and a long-term time-average
model down to a spatial scale of less than 200 km. This corresponds to a spherical harmonic de-
gree and order of 70 or higher for temporal variations and 150 or higher for the time-averaged
(static) model (Kornfeld et al., 2019), a huge improvement in the medium-to-long wavelengths
of gravity field compared to CHAMP (Tapley et al., 2004). It provided monthly estimates of the
global gravity field to determine changes in Earth’s mass distribution.
The mission consisted of a pair of satellites with a near-circular orbit at an initial orbital alti-
tude of 500 km and an inclination of 89 °, separated by a distance of 220 km linked with a high
precision dual-frequency K/Ka-band Microwave Instrument (MWI) (Kornfeld et al., 2019). Fig-
ure 2.3 shows the GRACE measurement concept. For example, when the leading satellite



2.3. Past missions 7

approaches a positive mass anomaly such as a mountain range, it gets accelerated more
strongly by the gravitational force than the trailing satellite, thus increasing the distance to
the trailing satellite. Once the leading satellite has passed the range, the mass anomaly will
impart the same pull on it and decelerate it, while the trailing satellite will accelerate as it just
approached the range. Finally, when both satellites move away from the range, the trailing
satellite is decelerated more strongly than the leading satellite, which is further away. This
generates a detectable signature in the distance between the two satellites measured by the
MWI.

Figure 2.3: GRACE mission concept.

The range measurements are sensitive not only to the gravitational signal due to Earth’s mass
distribution but also to the non-gravitational accelerations. These were measured accurately
again by a high-precision SuperSTAR accelerometer supplied by ONERA (Touboul, Wille-
menot, et al., 1999) mounted at the COM of each satellite to minimize the coupling of rotational
accelerations on linear accelerations. The SuperSTAR accelerometer is based on the design
of the STAR accelerometer flown on CHAMP with additional improvements to accommodate
a resolution of 10−10ms−2Hz−1/2 demanded by GRACE (Kornfeld et al., 2019).
GRACE was a revolutionary mission, with its 15+ years of data being instrumental in studying
climate change and the overuse of water resources. It significantly contributed to monitoring
groundwater levels, river basins worldwide, and glacial mass loss in Greenland, Antarctica
and mountain ranges, which led to sea level rise (Tapley et al., 2019).
GRACE-FO was as a continuation of GRACE, having similar scientific objectives. Its objective
is to provide continuity in gravity field observations and the collection of long-term data on the
effects of climate change. The orbit design is similar to that of GRACE with a near-circular
polar orbit of an altitude of 500 km. GRACE-FO structurally has same outer dimensions as
GRACE. A new addition to the payload was a new Laser Ranging Interferometer (LRI) as a
technology demonstration for future gravity missions. It measures the inter-satellite distance
like the MWI but with a much higher sensitivity and lower noise.
The range change measurements should be processed at the COM position; however, the
COM is already occupied by the accelerometer. Therefore, an off-axis symmetric configuration
using a Triple Mirror Assembly (TMA) is employed to correctly route the incoming and outgoing
laser beams. The accelerometer is similar to the one on GRACE but with minor improvements.
However, GRACE and GRACE-FO have only one accelerometer, which is a single point of
failure. In fact, the accelerometer on GRACE-FO-2 underperformed and degraded the qual-
ity of measurements, which forced to model non-gravitational forces acting on GRACE-FO-2
using accelerometer data of GRACE-FO-1 (Landerer et al., 2020).
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2.3.3. GOCE
GOCE was the first Earth Explorer Mission of European Space Agency (ESA) launched in
2009 (Drinkwater et al., 2003). It employed a different technique to study gravity by measuring
the gradients of the gravitational vector, the second derivative of the gravitational potential
(Rummel & Colombo, 1985).
GOCE accomplishes this with a three-axis Electrostatic Gravity Gradiometer (EGG). It con-
sists of six ultra-sensitive accelerometers developed by ONERA mounted on a stable carbon-
carbon structure in a diamond configuration, with two accelerometers aligned on each axis
with a noise level at 10−12m/s2/Hz−1/2 (Drinkwater et al., 2003; Floberghagen et al., 2011;
Touboul, Willemenot, et al., 1999; Willemenot et al., 1999).
The scientific objective of GOCE was to model the static gravity field and geoid with a high
spatial resolution and accuracy. It was designed to resolve spatial features up to 100 kmwith an
accuracy of 1 mGaL (=10−5ms−2) corresponding to medium to short wavelengths (Drinkwater
et al., 2003).
GOCE uses a combination of two systems to achieve its high performance. With a GPS
receiver on board, its orbital trajectory can be measured with centimetre accuracy and be used
to derive the lower order harmonics of the gravitational field (H. Bock et al., 2011), while the
increased details of the gravitational field were then measured by the EGG in a Measurement
Bandwidth (MBW) of 5-100 mHz (Drinkwater et al., 2003; Flechtner et al., 2021).
The satellite was launched into a sun-synchronous polar orbit with an altitude of around 280 km
and an inclination of 96.7◦. The Drag-Free and Attitude Control System (DFACS) provided a
quiet environment to the EGG by compensating the non-gravitational forces acting on the
spacecraft as it descended to a lower altitude to reduce the effects of EGG imperfections on
the acceleration and to sustain the mission duration of 3 years at such a low altitude. Although
the along-track axis of DFACS consisted of ion thrusters, only cold-gas thrusters were available
for controlling the attitude in the two remaining axes, which lacked thrust amplitude modulation
(Floberghagen et al., 2011).

2.4. Calibration of Accelerometers
In section 2.2, we saw that the measured acceleration is riddled with error terms which need to
be corrected before it can be used to derive gravity field solutions. As an example to show the
importance of calibration, the performance of calibrated and uncalibrated accelerometer data,
the GOCE case is presented. The gravitational field is conservative, such that the acceleration
due to gravity can be represented as

g = ∇V (2.7)

Assuming that the mass distribution is stationary at a given moment, and the effects of other
sources such as the Sun, Moon, atmosphere, and oceans are corrected for, the acceleration
may be regarded as source-free, giving rise to the Laplace condition (Rummel et al., 2011):

∇ · g = Vxx + Vyy + Vzz = 0, (2.8)

also called the trace of the gravity gradient tensor V .
This condition formed the basis for assessing the performance of the gradiometer. In Fig-
ure 2.4a, the ASD of the uncalibrated data (black curve) is 100mE

√
Hz (1mE = 10−12 s−2)

at 0.1Hz and increases strongly toward lower frequencies. In contrast, the trace of the cali-
brated data shown in Figure 2.4b is 20mE

√
Hz in the frequency range from 0.01Hz to 0.1Hz,
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showcasing an improvement over the uncalibrated data by order of magnitude.

(a) (b)

Figure 2.4: Trace (black) and individual diagonal gravity gradient Vxx, Vyy, and Vzz (red, green and blue)
performance for the gradiometer (Frommknecht et al., 2011). a) Uncalibrated gradiometer. b) Calibrated

gradiometer

Equation 2.6 depicts that the represented quantity differs depending on the position of the ac-
celerometer in the satellite. In the case of CHAMP, GRACE, and GRACE-FO, the accelerom-
eters were placed at the COM, resulting in r being zero and thus measuring only the non-
gravitational accelerations. Also, GRACE missions had mass trim mechanisms to correct the
offset of the accelerometer from the COM. Whereas for GOCE, due to the EGG structure, the
individual measurements included gravity gradients and Euler and centrifugal accelerations.
Several data calibration techniques have been developed from these missions:
1. Calibration using GPS-based orbit determination: All the previous missions carried a

GPS receiver on board for precise time tagging and orbit determination. The satellite’s
orbit can be estimated with high precision using a dynamical model whose parameters
are iteratively adjusted by correcting their a priori values with GPS observations in the
least squares solution (Montenbruck et al., 2005). In this calibration method, the non-
gravitational force models used in the dynamical model are replaced directly by the cali-
brated accelerometer measurements

acal = Sameas + b (2.9)

where S is a diagonal scale factor matrix. The scale and bias factors are then estimated
in the least-squares adjustment procedure (Helleputte et al., 2009; Visser, 2007). This
method showed a high correlation between the scale factors and bias due to low sensi-
tivity in the acceleration signal. Scale factors from other calibration techniques (Bouman
et al., 2011) were used. However, estimation of scale factors was possible during occa-
sional orbit manoeuvres, generating a strong enough acceleration signal (Visser & van
den IJssel, 2016).

2. Calibration using gravity field models and star sensor data: External global gravity field
models and/or terrestrial gravity field data in conjunction with the star sensor data are
used to correct the errors in gravity gradients and angular rates measured by the gra-
diometer to the ones from the model at low frequencies (Rispens & Bouman, 2009;
Visser, 2008).



2.4. Calibration of Accelerometers 10

3. Calibration using Poynting energy flux observations: Calibration where the GOCE EGG
disturbances were related to ionosphere dynamics using Poynting energy flux, which
indicates the flow of electromagnetic energy driving the ionosphere winds. However, it
is an indirect method and the observations were limited to North America (Ince & Pa-
giatakis, 2017).

4. Calibration via force modelling: This method involves modelling the non-gravitational
forces acting on the satellite and comparing the simulated accelerometer data with the
observations (Wöske et al., 2019). However, the downside of this method is that it re-
quires very accurate knowledge of the spacecraft structure, material and aerodynamic
properties. Furthermore, the non-gravitational models are notoriously inaccurate due
to the uncertainty in solar activity prediction, the atmosphere’s fast dynamics, and/or
reliance on empirical data. Table 4 in ref. (Bruinsma et al., 2018) shows the density
ratios of modern thermosphere models. All the models have a 10-20% difference in at-
mospheric density compared to in-situ observations. Also, the availability of accurate
thermosphere models removes the need for accelerometers. Moreover, the method
fixes the scale factors as it is not sensitive enough to estimate bias and scale factors
together.

5. Calibration using shaking manoeuvres: This was an internal calibration method as it
solely used the data measured by sensors on board GOCE. It generated significant
pseudo-random linear and angular acceleration signals at high frequencies in the MBW.
The benefit of this method was large, distinguishable non-gravitational signals, and the
gravity gradient signal considered below the instrument’s noise level made it easier to
model the parameters in the calibration model (Frommknecht et al., 2011).

Regardless of the method, the GOCE gravity solutions suffered from significant perturbations
in the scale factors, especially in the cross-track direction at geomagnetic poles (Bouman et
al., 2011). Most methods used an accelerometer model with the quadratic factor Ki in Equa-
tion 2.5 neglected. This was possible as a correction was implemented at the accelerometer
level by offsetting the proof mass such that the value of the 2nd-order term was below a
given threshold (Frommknecht et al., 2011). Although the majority of the effect was removed,
Siemes (2018) concluded that extending the model to include the quadratic factor removes
the persistent perturbation to a large extent.



3
Next Generation Gravity Mission

From Chapter 2, there is a clear trend on how the scientific requirements evolved and became
more demanding for each mission. This was further realisable due to an upgrade in available
technology, especially the accelerometers and implementation of different concepts.
This chapter provides an overview of the proposed NGGM mission. Section 3.1 provides an
overview on what new contributions NGGM provides compared to previous missions. In Sec-
tion 3.2 follows the measurement principle NGGM relies upon. Lastly, Section 3.3 describes
the preliminary design of NGGM and the main instruments on board.

3.1. Scientific Objective of NGGM
Although GOCE supplied a global static map of gravity with unprecedented details, it lacked
in providing monthly snapshots like GRACE. NGGM therefore aims to measure the temporal
variations of the gravity field over a long period to provide continuity in data sets as a part of the
Mass change And Geosciences International Constellation (MAGIC), a joint venture between
NASA and ESA. ESA will therefore supply NGGM, one of the two pairs of the constellation,
with the scientific objective of measurement of the geoid with an accuracy of 1 mm at a spatial
resolution of 500 km every 3 days and 150 km every 10 days for at least 7 years (Dionisio
et al., 2018; ESA et al., 2023; Massotti et al., 2021).
GRACE and GRACE-FO monthly gravity solutions are limited due to five main error sources,
namely the accelerometer measurement errors, inter-satellite range measurement errors, pre-
cise orbit determination errors, aliasing due to spatial and temporal under-sampling, and errors
in background models used for de-aliasing. Furthermore, the gravity field solutions were more
sensitive in the North-South direction due to the polar orbit of the formations (Flechtner et al.,
2016)
The inter-satellite measurement errors can be improved for future missions by including Laser
Tracking Instrument (LTI) and the accelerometer errors through better hardware and data cali-
bration methods. Additionally, a lower inclination of the satellite pair is proposed to gain more
sensitivity in the East-West direction. Elsaka et al. (2014) compares different orbit configura-
tions and concludes that if the budget allows, a Bender configuration (see Figure 3.1) would
provide the best gravity field solution. The Bender configuration consists of two satellite pairs,
one in a polar orbit and another at a lower inclination of around 65◦ (Dionisio et al., 2018). A
bender constellation thus improves the East-West sensitivity, and an additional pair also adds
more space-time sampling points to better track the fast variations. Each pair was anticipated
to fly in an in-line formation around 100 km apart at an altitude of around 360 km

11
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Figure 3.1: In-line formation (left) and Bender constellation (right) (Haagmans et al., 2020).

3.2. NGGM Measurement Principle
NGGM relies on the samemeasurement principle of ranging as of GRACE. Instead of a MWI, it
uses a LTI system with much lower noise. The LL-SST exploits the satellites as ”proof masses”
immersed in Earth’s gravity field. The fundamental observable is

∆d = ∆dG +∆dD, ∆d̈D = ∆ang = ang1 − ang2 (3.1)

where ∆d is the distance variation between the two satellite’s COM produced as shown in
Figure 3.2. This range change observed by LTI is a sum of distance variation ∆dG due to
gravitational accelerations g and distance variation ∆dD due to non-gravitational forces ang

acting on the satellites’ COM (represented by D in the figure) (Cesare & Sechi, 2013).

Figure 3.2: Principle of LL-SST technique for measuring Earth’s gravity field (Cesare & Sechi, 2013).

The relative distance change imparted by the non-gravitational forces along the line joining
the COMs is observed by integrating the forces ang1 and ang2 measured by the electrostatic
accelerometers on board satellites.

3.3. NGGM Spacecraft Design
Figure 3.3 shows the preliminary design of the satellite. It is similar in design to the GRACE
satellite, with solar panels mounted on the main structure. Thus, the GRACE satellites will
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form the reference for the dimensions for the rest of the report. The upper limit of each satellite
conforming to launcher requirements has been set to 1000 kg (Dionisio et al., 2018).
This section provides an overview of the main components on board NGGM satellites. These
include the LTI (Section 3.3.1), the accelerometer (Section 3.3.2), the propulsion system (Sec-
tion 3.3.3) and the attitude sensors (Section 3.3.4). For each, if relevant, an explanation for its
selection is provided, along with its performance, requirements, and position in the satellite.

Figure 3.3: NGGM satellite envisioned structure (Massotti et al., 2022).

3.3.1. Laser Tracking Instrument (LTI)
Two concepts of laser tracking instruments were investigated (Nicklaus et al., 2019):

• Transponder scheme: Similar to the one used on GRACE-FO (Kornfeld et al., 2019).
The laser beam from satellite 1 is amplified on satellite 2 and retransmitted to the first
satellite.

• Retroreflector scheme: The laser beam transmitted from satellite 1 is passively reflected
by satellite 2.

The inter-satellite distance measured by the LTI is between the COMs of the satellites. Only an
off-axis configuration (also known as racetrack configuration) is considered as it was deemed
superior over the on-axis due to less criticality w.r.t. to polarisation, straylight, complexity due
to optical elements in the beam path and complexity of the operation.
Moreover, out of the two concepts, the transponder scheme is deemed to be a feasible con-
cept for NGGM as only this scheme could cover the required separation from 100 km to 300 km.
The retroreflector was also feasible for 100 km with increased laser power, but it would de-
mand too much power for higher distances. Also, the transponder scheme has heritage from
GRACE-FO, thus bringing in knowledge and technology already available (Nicklaus et al.,
2019; Nicklaus et al., 2022).
The laser beam from the distant spacecraft is superimposed with the local oscillator beam.
A beam-splitter redirects a part of the light to a Differential Wavefront Sensor (DWS), which
measures the misalignment between the incoming and locally generated beam. This data is
then used to actuate the Fast Steering Mirror (FSM) to align the beams.
The goal performance requirement of the ASD of the inter-satellite relative distance variation is
considered for LTI (Massotti et al., 2021), which is given in an analytical form as (Encarnação
et al., 2024)

A(f)NGGM,ρ = LISR10
−13

√
1 +

(
0.01

f

)2
√
1 +

(
0.001

f

)2 [ m√
Hz

]
, (3.2)
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where LISR is the inter-satellite range and f is the frequency.

3.3.2. Accelerometer
It is stipulated that the non-gravitational accelerations experienced by NGGM shall be mea-
sured at least at the level of GOCE (ESA et al., 2023). As done with the previous missions,
ONERA will supply a new generation of MicroSTAR-class electrostatic accelerometers. It will
have identical performance on all three axes with a heavier cubic proof mass with six identical
electrode plates (Figure 3.4a) in contrast to GOCE and GRACE, which only had two ultra-
sensitive axes. The gap between the proof mass and the electrodes is increased compared
to previous missions to attain higher precision with a measurement range of ±6.4×10−6ms−2

(Christophe et al., 2018). The MicroSTAR accelerometer onboard the GRACE-FO satellites
have a weight of 1.5 kg with a size of 90mm × 90mm × 70mm with a power consumption of
2W (Christophe et al., 2015). The new prototype tested for NGGM has a smaller cubic proof
mass (Christophe et al., 2018), but the size of the whole instrument is not reported. Thus, the
old size will be used in this report.
Figure 3.4b presents an overview of the ASD of the performance of the MicroSTAR accelerom-
eter compared to the goal of the NGGM mission for relative non-gravitational acceleration
measurement error projected along the Line of Sight (LoS) of the satellites. The accelerome-
ter can resolve a maximum of 0.5Hz according to the Nyquist-Shannon sampling theorem, as
the data readout available to the user is assumed to have a sampling frequency fs of 1Hz.

(a) (b)

Figure 3.4: a) The core of MicroSTAR with the cubic PM is surrounded by six identical electrode plates (Cesare
et al., 2022). b) Overview of the noise ASD of MicroSTAR (Encarnação et al., 2024).

The goal scenario (Massotti et al., 2021) and the noise performance (Christophe et al., 2018)
of the accelerometer are written in the analytical form as (Encarnação et al., 2024)

A(f)NGGM,ng = 5× 10−12
√

1 + (0.001/f)2 + (100f2)2
[
ms−2

√
Hz

]
, (3.3)

A(f)MircroSTAR,ng = 2× 10−12
√
1.2 + 0.002f−1 + 6000f4

[
ms−2

√
Hz

]
. (3.4)

This requirement is defined for the satellite’s science mode operation, where it is drag com-
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pensated in the along-track direction.
As discussed earlier in Section 2.3.2, the accelerometer was a single point of failure for
GRACE-FO. The degradation of the accelerometer on the second satellite affected the mis-
sion’s performance. Therefore, at least two accelerometers are considered for NGGM for
redundancy. The possible configurations are (see Figure 3.5):

• Two accelerometers symmetrically placed around the COM on any of the three axes
(Haagmans et al., 2020; Massotti et al., 2020).

• Three accelerometers, one at the COM and two symmetrically placed around the COM
on any of the three axes.

• Four accelerometers, with two forming a pair placed symmetrically around the COM. A
total of three orientations are possible.

Figure 3.5: Possible accelerometer configurations. The accelerometers in each layout are free to be placed on
any axis. For Layout 4, the placement can be in planes parallel to the xy, yz, or xz planes.

All configurations can have a varying inter-accelerometer arm length for the pairs. GOCE
shaking calibration method is considered since the off-centre placement of the accelerometers
gives sensitivity to angular accelerations. Furthermore, it relies only on the data produced by
sensors on board the spacecraft. Gravity models will be used for calibration as the primary
purpose of NGGM is to measure gravity using LL-SST, unlike GOCE, which measured the
gravity via a EGG.
Combining the ASD requirements of the LTI and the accelerometer, one can derive the ASD
requirement of the complete system in acceleration units by using Equations (3.2) and (3.3)
(Massotti et al., 2021) as

A(f)NGGM,sys =
√

[A(f)NGGM,ρ(2πf)2]2 +A(f)NGGM,ng. (3.5)

Choosing an inter-satellite distance of 220 km (Cesare et al., 2022), the combined requirement
(red line) is shown in Figure 3.6. Below 1mHz, the combined requirement is dictated by the
accelerometer (dashed black line) and above by the LTI system (dotted blue line).
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Figure 3.6: Combined requirement on relative non-gravitational measurement error

3.3.3. Propulsion
Each spacecraft is anticipated to be equipped with two identical types of ion thrusters, Drag
Control Thruster (DCT) and Fine Control Thruster (FCT) (Massotti et al., 2020, 2021). Two
15 mN-class DCT thrusters in cold redundancy provide the along-track force for drag com-
pensation, formation control, and orbit maintenance. Two operating regimes are specified for
it:
A cluster of the mN-class FCT micro thrusters compensates the cross-track and radial drag
forces and provides attitude and pointing control. The operating range requirement of the
FCT is between 1µN and 2mN. With a satellite mass of 1000 kg, the maximum acceleration
requirement of the FCT thruster is 2× 10−6ms−2. Moreover, it is stipulated that the propellant
mass for DCT+FCT shall not exceed 100 kg.
The noise requirement of the thruster is defined as (Massotti et al., 2021)

A(f)thruster =


≤ 100µN/

√
Hz, if f < 0.3mHz

Linear if 0.3mHz < f ≤ 0.03Hz

≤ 1µN/
√
Hz if f > 0.03Hz

(3.6)

However, due to budget constraints, a full three axes DFACS system may not be utilized but
is drag-free only on the along-track axis with proportional cold gas thrusters on the cross-track
and radial directions (Massotti et al., 2022). This study will assume the cold gas thrusters have
a similar thrust noise requirement and use it as the actual noise as a conservative estimate.

3.3.4. Attitude Determination Sensors
A star tracker camera is one of the satellite’s most important attitude-determination sensors.
It is essentially a digital camera with a focal plane laid out by Charged-Coupled Device (CCD)
or Complementary Metal-Oxide Semiconductor (CMOS) at a distance f (focal length) behind
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the vertex, the origin of the optical system. A x, y and z right-hand coordinate system with the
vertex is depicted in Figure 3.7. The z-axis is also known as the tracker’s boresight (Markley
& Crassidis, 2014).

Figure 3.7: Star tracker geometry (Markley & Crassidis, 2014).

The NGGM satellites are expected to have four star-tracker camera heads. Generally, the
primary three-star trackers’ boresights are arranged perpendicular to each other to ensure
complete occultation of the sky by the Earth, Sun, and Moon for more than one star tracker is
avoided. The fourth is added for redundancy purposes. Like GOCE, at least two-star trackers
will be active at any given time (Massotti et al., 2020). Thus, the study will assume uninter-
rupted attitude observations available during the calibration.
It is assumed that NGGM would be equipped with a state-of-the-art Micro Advanced Stellar
Compass (µASC) star tracker sensor developed by Danmarks Tekniske Universitet (DTU),
which has already flown on GRACE and the Swarm mission (Herceg et al., 2017). The noise
ASD of the (µASC) star sensor for attitude is characterized as (Goswami et al., 2021)

A(f)µASC,θ = 8.5× 10−6
√

f−1

[
rad√
Hz

]
. (3.7)

In addition to the star trackers, there would be six coarse Earth and Sun sensors (Haagmans et
al., 2020). However, they are not relevant for calibration studies as they are not as accurate as
the star trackers and are generally used during the detumbling phase to stabilise the satellite
after launch vehicle separation. The DWS is not considered for calibration as the laser link
during the shaking manoeuvre is expected to be broken.
Finally, the accelerometer can also provide attitude information by measuring the angular ac-
celerations as it contains multiple electrodes on each face of the cage. The noise ASD of the
MicroSTAR accelerometer for angular acceleration is characterized (Christophe et al., 2018)
and written in analytical form (Encarnação et al., 2024) as

A(f)MircroSTAR,ω̇ = 1× 10−10
√
0.4 + 0.001f−1 + 2500f4

[
rad s−2

√
Hz

]
. (3.8)



4
Research Proposal

Section 4.1 aims to consolidate the research gap and formulate the research questions to
guide the research activities. Section 4.2 then provides an initial outline to guide the methodol-
ogy development with requirements to limit the scope of the thesis. Finally, refer to Appendix C
for thesis planning.

4.1. Research Questions
The satellite pairs will carry at least two accelerometers on board based on recent research on
NGGMmentioned in chapter 3. However, recent studies have focused mainly on the LTI (Nick-
laus et al., 2019) and optimizing the orbit design (Massotti et al., 2021). For the accelerometer,
only mentions of its structure and achievable noise performance are present. As highlighted
in Section 2.4, a large performance difference exists between calibrated and uncalibrated ac-
celerometers. There is a lack of detailed analysis of optimal configurations and performance.
Further, ground testing is no longer possible as lifting the proof mass under 1g of acceleration
is impossible due to the increased sensitivity on all three axes by increasing the gap between
the electrodes and proof mass. Based on the findings in section 2.4, the focus shall be on cal-
ibration, especially with shaking manoeuvres due to a partial GOCE-like setup, an extensive
accelerometer model and the success of its calibration method which relied solely on the data
from the sensors on board the spacecraft. However, the calibration method used a single type
of shaking manoeuvre at a high-frequency range of 50 to 100mHz with six accelerometers on
board.
Considering the above, this thesis aims to support calibrating the accelerometer data for
NGGM incorporating the lessons learnt from the previous gravity missions. An analysis of
different accelerometer configurations and shaking manoeuvres can help provide a founda-
tional insight into the number of accelerometers required, their favourable placement and the
shaking signal, given the noise characteristics of the current state-of-the-art sensors. The
research objective is then defined as follows:
To what extent can the shaking manoeuvres help calibrate the accelerometers by incor-
porating accurately the noise and error characteristics of the accelerometers and star
trackers?
A list of sub-questions based on the main research question follows to further structure and
aid this work:
1. What is a favourable configuration of accelerometer placement to retrieve

non-gravitational acceleration along the laser’s LoS?

18
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(a) What is the error in the non-gravitational acceleration along the laser’s LoS?
2. What shaking manoeuvre is optimal for data calibration?

(a) What is the error in non-gravitational acceleration along the laser’s LoS?
3. What is the effect of the shaking manoeuvre on mission performance?

(a) How long does the shaking have to last?
(b) How much of the resources would be used?

4.2. Model development
This study will explore the possibilities of having multiple accelerometers placed on different
axes and different shaking manoeuvres that can be employed for calibrating the accelerometer
data for NGGM. Therefore, a flexible and comprehensive methodology is required to answer
the research questions. The methodology development will be split into two main components:
1. Calibration tool: This tool calibrates the accelerometer data based on the input data it

receives. It should be able to handle different numbers of accelerometers at different axis
placements. The model should output the estimated and true parameters (only possible
in a simulation environment) resulting from calibration. This tool operates on any input
data as long as it is provided in its desired format. It is independent of the data supplied
to it.

2. Data generation tool: This tool shall handle all the tasks related to data generation that
will be supplied as input to the Calibration tool. The tool shall be able to create a user-
defined orbit with flexibility to incorporate different physical models. The data generation
tool will be built around TudatPy (Dirkx et al., 2023) as it is ideal for this purpose. The
tool shall also be able to generate a user-defined shaking manoeuvre signal about all
axes of the body-fixed frame by defining its characteristics in the frequency domain.

The following set of requirements and constraints is derived to aid the tools’ development and
limit the scope of the study:
1. The satellite shall have at least two and at most four accelerometers on board. One

accelerometer is a single point of failure, and more than four accelerometers are too
expensive from the perspective of cost and accommodation.

2. The calibration method shall optimally use the star sensors and accelerometer data for
attitude determination. Since the attitude information is available from two sensors, the
attitude information can be combined to limit the effect of noise on the observations.

3. TheMicroSTAR accelerometer developed byONERA is used as a reference for the noise
characteristics of the accelerometer. It is the state-of-the-art accelerometer available on
the market, and it has improvements based on the lessons and heritage of previous
gravity missions.

4. The satellite shall have modulation-capable cold-gas thrusters. This allows for gener-
ating a desired shaking signal in the frequency domain and does not limit it to a single
frequency.

5. Laser link tracking is not considered in the calibration model. It is assumed that the
attitude control system can achieve it after calibration.

6. The satellite is already detumbled and pointing along the LoS before the shaking ma-
noeuvre is performed, allowing us to focus our efforts on the calibration.

7. The shaking manoeuvre can be applied for a variable duration.
8. It is assumed that the satellite’s attitude control systemwill remove any bias accumulated

in angular rates during shaking to keep the attitude under control.
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9. The NGGM satellite pair will fly at an inclination of 65◦.
10. The satellite pair will fly in a circular orbit.
11. The satellite pair will fly at an altitude of 396 km.
12. An inter-satellite distance of 220 km is maintained between the pair.
13. The satellite is drag-compensated in its body-fixed x-direction during calibration to reduce

the effect of accelerometer hardware imperfections along the LoS, which predominantly
lies in the body-fixed x-direction (along track).

Requirements 9-12 stem from the optimal orbital parameters of the inclined pair in the Bender
configuration. The calibration tool works as a post-processing tool accepting accelerometer
measurements; therefore, the data generation tool is also set up such that the data outputted
resembles accelerometer data that a user will receive. No control system with closed loop
feedback is implemented for the shaking manoeuvre with the assumption that the thrusters
can achieve the user-defined signal, as the aim is to study calibration, not the satellite’s attitude
control.



5
Methodology

This chapter describes the toolbox implemented for this thesis. Figure 5.1 provides an
overview of the toolbox. The first part of the toolbox is for ”Data generation”, described in
Section 5.1. It involves two steps
1. Reference orbit generation (blue box): This part generates a reference NGGM orbit,

which outputs the gravity gradients based on satellite position w.r.t. the Earth, quater-
nions for attitude and non-gravitational acceleration to generate a true acceleration signal
Section 5.1.1.

2. Accelerometer imperfections (green box): The accelerometer model is presented here,
where hardware imperfections are introduced to generate a realistic accelerometer sig-
nal (Section 5.1.2).

The output of the blue and green boxes is combined to generate a measured signal represen-
tative of an acceleration signal with noise sensed by an accelerometer on board a satellite.
The second part of the toolbox is dedicated to accelerometer data calibration by performing the
least squares operation described by Section 5.2. The least squares problem is initialised by
an initial guess of the parameters to be estimated, through which observations and the design
matrix are initialised. The least squares problem is solved iteratively until the error between
the measured and reconstructed observations reaches the noise level in the accelerometer.

21
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Figure 5.1: Overview of the two main tools implemented.

5.1. Data Generation
This section explains the steps to generate a realistic signal outputted by an accelerometer
on board a satellite. Section 5.1.1 explains how a reference NGGM orbit is created with Sec-
tion 5.1.2 defining the accelerometer model. Data from these two sections is combined to
generate a (simulated) measured acceleration signal typically resembling data available to
end users in a real mission.

5.1.1. Reference Orbit
The NGGM pair orbit is simulated using TudatPy to generate an accelerometer signal. The
following assumptions are made for the orbit setup:
1. Only the trailing satellite is considered for calibration. The shaking manoeuvre is spe-

cific to a satellite and independent of the other satellite in the pair. The relative non-
gravitational acceleration measurement error along the LoS is then calculated using the
RMS. It is assumed that the same measurement error is experienced by the leading
satellite but is independent for simplification.

2. The leading satellite is used in the simulation only to guide the attitude of the trailing
satellite. TudatPy allows defining a rotation model on the satellite where the body-fixed
x-axis is imposed to lie in a user-defined inertial direction. This inertial direction for the

https://py.api.tudat.space/en/stable/rotation_model.html#tudatpy.numerical_simulation.environment_setup.rotation_model.custom_inertial_direction_based
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trailing satellite to point to is the LoS vector connecting the pair. The outputted quater-
nions are used to obtain the attitude information of the satellite. It is assumed that the
attitude information output has no interruptions.

3. The x-axis of the trailing satellite points along the LoS vector connecting the pair, which is
roughly along the orbit, the z-axis roughly in the nadir direction, and the y-axis completing
the right-hand coordinate system.

Table 5.1 lists the initial conditions used for orbit simulation. The orbital altitude 396 km, inclina-
tion of 65◦, and a separation of 220 km between the satellites for the inclined pair is considered
(Cesare et al., 2022). The eccentricity is zero for a circular orbit. The argument of periapsis
does not mean much for a circular orbit. The true anomaly, the longitude of the ascending
node, with the argument of periapsis, is arbitrarily chosen, at least ensuring that the pair expe-
riences the eclipse phase.

Table 5.1: Initial conditions for the orbit

Kepler elements
Semi-major axis a 6774 km Longitude of ascending node Ω 23.4 ◦

Eccentricity e 0 True anomaly of NGGM 1 θ 30 ◦

Inclination i 65 ◦ Distance b/w NGGM 1 & 2 220 km
Argument of periapsis ω 20 ◦

The GRACE-FO satellite (Wen et al., 2019) is used as a reference to define the aerodynamic
and radiation pressure model of the NGGM pair. The aerodynamic acceleration is modelled
by

r̈aero = − 1

m
RI/AF

1

2
ρv2airSref

CD

0
0

 (5.1)

where m is the mass of the satellite, RI/AF is the rotation matrix from the satellite’s aerody-
namic frame to the inertial frame, ρ is the atmospheric density at the current satellite position,
vair is the satellite’s airspeed w.r.t. Earth’s atmosphere, Sref is the reference area of the
satellite, and CD is the drag coefficient in satellite’s aerodynamic frame. The lift and side
force coefficients are not considered because the incident velocity is mainly in the along-track
direction. A CD = 2.5 (Wöske et al., 2019), Sref = 0.955m2 (Wen et al., 2019), and the NRLM-
SIS00 atmosphere model for density is chosen for the aerodynamic interface. NRLMSIS00 is
widely used as it provides a global representation of the atmosphere and is readily available
in TudatPy.
For the radiation pressure acceleration, a box model of the satellite is constructed using the
inbuilt functionalities of TudatPy. The Sun is defined as an isotropic point source with an irra-
diance of 1361Wm−2 at 1AU for direct solar radiation. The Earth is modelled as an extended
source discredited into panels (Knocke et al., 1988; Stiller, 2023) for albedo and thermal radi-
ation. The satellite is defined as a rectangular box with identical reflection law settings for all
the panels. As mentioned, GRACE-FO is used as a reference with the parameters defined in
Table 5.2.

https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/propagation_setup/translational/radiation_pressure_acceleration.html#radiation-pressure-acceleration
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Table 5.2: Box model parameters (Wen et al., 2019)

Parameter Value
Length [m] 3.1225
Width [m] 1.944
Height [m] 0.775
Specular reflection coefficient [-] 0.4
Diffuse reflection coefficient [-] 0.26

To integrate the orbit, an RK4 integrator with a fixed step size of 1 s is selected since the
accelerometer output data frequency for calibration will be 1Hz. Figure 5.2a shows the norm
of the position error for the Euler and RK4 integrators w.r.t. a benchmark orbit calculated with
the RK4 integrator with a fixed time step of 0.25 s. The Euler integrator yields a high position
error from the start of the orbit, with the error reaching up to 1000 km. The RK4 integrator is
stable and has an error less than 1mm.
A simple point-mass gravity field of Earth is utilized for the gravitational models in orbit gen-
eration. Figure 5.2b shows the effect of adding different gravity field models on the position
difference w.r.t. to the point mass model of Earth. The effect of Jupiter is negligible, with the
Sun and Moon affecting the position by a few tens of metres. However, the position is greatly
affected by using a point mass model compared to a high fidelity (e.g. D/O 120) gravity field
model of Earth. The position is only of concern in the acceleration signal generation because
the gravity gradients effect on the accelerometer signal is a function of the satellite’s position
w.r.t. Earth. However, the RMS difference in the gravity gradients is approximately 10% (anal-
ysis not shown). The majority of the position error is in the along- (blue line) and cross-track
(orange line) direction of the orbit, and only a few kilometres in the altitude (green line) as
highlighted in Figure 5.3. The gravity gradients calculation is decoupled from orbit generation
using a gravity gradients calculator (Personal Communication: C. Siemes). During the early
stages of development, multiple orbits generation was envisioned, which would lead to long
integration times for orbit if a detailed Earth model is used. Therefore, a point mass model of
Earth is picked for quick orbit generation, and subsequently, a detailed model is chosen in the
gravity gradients calculator to generate a realistic accelerometer signal.

(a) (b)

Figure 5.2: a) Norm of position error of Euler and RK4 integrator over the course of the day with a time step of
1 s when compared to a benchmark RK4 with a time step of 0.25 s. b) Norm of position difference due to the
addition of an acceleration model to the point mass model of Earth w.r.t. to just a point mass model of Earth.
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Figure 5.3: Position error between Earth’s D/O = 120 and point mass model in the Local-Vertical,
Local-Horizontal frame of reference

The acceleration acting on the satellites in the pseudo-inertial J2000 frame, with the origin at
the centre of Earth can then be represented as

r̈tot = − µ

|rEs|3
rEs + r̈ng, (5.2)

where r̈tot is the total acceleration acting on the satellite’s COM, rEs is the position of a satellite
relative to Earth in the J2000 frame, r̈ng is the non-gravitational acceleration consisting of the
aerodynamic and radiation pressure accelerations, and µ is Earth’s gravitational parameter
with a value of 398 600 km3/s2 1.
The spacecraft position obtained after integrating the orbit is inputted in a gravity gradients
calculator to get the gravity gradients in the satellite’s body-fixed frame to generate a realistic
signal. Figure 5.4 compares the ASD sensitivity of the acceleration signal generated Vzz gravity
gradient for an off-centre accelerometer placement for different D/O gravity field against the
accelerometer noise in the frequency domain (refer to Section 5.1.2 for accelerometer noise
generation). The vertical drop represents the upper limit contribution to the acceleration signal
in the frequency domain for the given D/O gravity field. The higher D/O inclusion adds signal
to the high frequencies, but eventually, at D/O = 130, the signal strength from Vzz falls below
the defined accelerometer noise level, making it indistinguishable from noise. Vzz was the
limiting gravity gradient for selecting the D/O out of the six gravity gradients (not shown), thus
selecting a D/O for Vzz will be applicable for other gravity gradients as well.

1https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
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Figure 5.4: Sensitivity of Vzz gravity gradient for an off-centre accelerometer for various D/O of gravity field
compared against the accelerometer noise.

Thus, the non-gravitational acceleration ang, the quaternions q describing the attitude and the
gravity gradients based on D/O 130 outputted by the orbital simulation are used as an input
to build the acceleration signal in Section 5.1.2.

5.1.2. Accelerometer Model
A perfect accelerometer that is rigidly mounted on board the satellite away from the COM
measures the true acceleration at the nominal position rnpi in a body-fixed frame of the satellite
as

anp
i = −(V −Ω2 − Ω̇)rnpi + ang, (5.3)

where V is the gravity gradient tensor, Ω̇ is the angular acceleration matrix and Ω is the
angular rate matrix (referred collectively as rotational acceleration terms), and ang is the non-
gravitational acceleration. The matrices definition is as follows:

V =

Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

 , Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ,

Ω̇ =

 0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0

 , Ω2 =

−ω2
y − ω2

z ωxωy ωxωz

ωxωy −ω2
x − ω2

z ωyωz

ωxωz ωyωz −ω2
x − ω2

y


Taking the experience from GOCE, a comprehensive model of the measured acceleration by
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an accelerometer is represented as (Siemes et al., 2019)

ameas
i = bi +Miai +Kia

2
i +Wiẇi + ni, (5.4)

where ameas
i is themeasured acceleration, bi is the acceleration bias, ai is the true acceleration

at the real accelerometer position (potentially deviating from the nominal position), Mi is the
calibration matrix accounting for scale factors, misalignments and non-orthogonality of the
accelerometer sensitive axes, Ki is the diagonal quadratic factor matrix, Wi is the angular
acceleration coupling matrix consisting three non-zero elements depending on the electrode
layout and proof mass control, ω̇i is the true angular acceleration, and ni is the measurement
noise.
The true acceleration ai for an accelerometer at a real location ri is

ai = −(V −Ω2 − Ω̇)ri + ang. (5.5)

For further mathematical derivations, two types of acceleration modes are defined: differential
and common mode accelerations as

adij =
1

2
(ai − aj) (5.6)

acij =
1

2
(ai + aj). (5.7)

This facilitates rewriting the model as follows:[
ameas
dij

ameas
cij

]
=

[
bdij
bcij

]
+

[
Mcij Mdij

Mdij Mcij

] [
adij

acij

]
+

1

2

[
Ki −Kj

Ki Kj

] [
a2
j

a2
j

]
+

[
Wdij

Wcij

]
ω̇ +

[
ndij

ncij

]
, (5.8)

where all the variables in differential and common mode are defined analogously. The calibra-
tion requires the accelerometer at the nominal intended positions as this defines the signal it
senses. Thus, the differential and common mode signal sensed by the accelerometers at the
nominal positions is

anp
dij = −(V −Ω2 − Ω̇)rnpdij , (5.9)

anp
cij = −(V −Ω2 − Ω̇)rnpcij + ang. (5.10)

But the real accelerometer positions ri will have a slight deviation from the nominal position
rnpi modelled by

ri = rnpi + δri, (5.11)

where δri is the position deviation. Thus, the acceleration at the real position can be written
in terms of the nominal position:

ai = −(V −Ω2 − Ω̇)(rnpi + δri) + ang = anp
i − (V −Ω2 − Ω̇)δri, (5.12)

adij = −(V −Ω2 − Ω̇)(rnpdij + δrdij) = anp
dij − (V −Ω2 − Ω̇)δrdij , (5.13)

acij = −(V −Ω2 − Ω̇)(rnpcij + δrcij) + ang = anp
cij − (V −Ω2 − Ω̇)δrcij . (5.14)
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By substituting the above relations in Equation 5.4, the measured acceleration can be ex-
pressed in terms of acceleration sensed at nominal positions plus all the relevant parameters
required for calibration as

ameas
i = bi+Mi(a

np
i − (V −Ω2− Ω̇)δri)+Ki(a

np
i − (V −Ω2− Ω̇)δri)

2+Wiẇi+ni. (5.15)

Adding Accelerometer Hardware Imperfections
Once a true acceleration signal at nominal position is constructed using Equation 5.3, hard-
ware imperfections defined in Equation 5.15 are introduced to generate a measured ac-
celerometer signal that a real accelerometer may observe.
The matrix structure of the Wi is assumed to be

Wi =

 0 0 0
Wi,21 0 Wi,23

0 Wi,32 0

 . (5.16)

The matrix structure depends on the electrode layout and the accelerometer’s proof mass
control. Here, it is assumed that the x-axis electrodes control only linear accelerations, the
y-axis controls roll and yaw, and the z-axis controls the pitch of the proof mass, where x-, y-,
and z-axis are defined in the satellite’s body-fixed frame of reference. The matrix structure is
assumed to be the same for all layouts.
The imperfections are drawn from a standard normal distribution with the definitions provided
in Table 5.3. The values are judged based on the values reported by Siemes et al. (2019) as
the accelerometers on board NGGM will be supplied by ONERA, similar to the ones on GOCE
if not better (Christophe et al., 2018).

Table 5.3: Generation of accelerometer imperfections

Mi = I3x3 + 10−3 ×N(0, 1)3x3
Ki ∼ 10×N(0, 1)3x3

Wi,21,Wi,23,Wi,32 ∼ 10−4 ×N(0, 1)
δrd13 ∼ 10−3 ×N(0, 1)3x1
δrc13 ∼ 10−3 ×N(0, 1)3x1

The individual accelerometer position offsets can be derived from the differential and common
mode offsets:

δr1 = δrc13 + δrd13 δr3 = δrcij − δrdij (5.17)

The final hardware imperfection to generate a measured signal is adding the noise ni. It is as-
sumed that ASDs are given as one-sided spectral density plots, and all subsequent methods
involving Fast Fourier Transform (FFT) are based on the one-sided spectral density definition.
For a real signal, the amplitude spectrum is symmetric across the positive and negative fre-
quencies (S. W. Smith, 1999). In a noise signal, the signal’s phase is randomized and does
not matter. Thus, to generate a noise signal with a given ASD, one simply has to convolve its
impulse response with the white noise w(t), which is equivalent to multiplying these signals in
the frequency domain. The steps are summarized in Algorithm 1. The bias is not generated
as the method anyways filters out the bias in the measured signal (refer to Section 5.2.2)
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Algorithm 1 Generation of a noise signal from a desired ASD

1: Create a one-sided amplitude spectrum of the desired ASDA(f) for fk = k−1
2K for k ∈ [0,K]

where K is an odd integer
2: Take the inverse FFT to get the impulse response in time domain → IFFT(A(f)) = v(t)
3: Create a white noise signal → w(t)
4: Convolve the impulse response with white noise signal → v(t) ∗ w(t) ▷ Equivalent to

multiplication in frequency domain

A few considerations when applying algorithm 1.
1. The number of frequency points of the ASD has to be odd so that it generates a sym-

metric impulse response in the time domain. This is important because a FFT operation
assumes any input to be a periodic signal, with each period repeating every K point se-
lected (lag of length K). With an odd integer of points, the signal can be shifted in the
selected time domain and maintain symmetry.

2. A convolution of a signal of length N with a filter of length M generates an output of (N+M-
1) length. But in a convolution operation, the first and last M points are affected by edge
effects (S. W. Smith, 1999). Therefore, the white noise generated must be of length
(N+M-1), where N is the length of the acceleration signal, such that after convolution
with the filter, the truncated output signal equals the length of the input signal.

The linear acceleration noise ASD of the accelerometer defined by Equation 3.4 and generated
using Algorithm 1 is given in Figure 5.5a. The black line is the desired ASD defined by the
Equation 3.4, and the ASD of the noise in the x,y and z direction after applying Algorithm 1 is
given by the coloured lines. The ASD is obtained by taking the square root of Power Spectral
Density (PSD) estimated by a modified method described by Welch (1967), where the mean is
replaced by the median for robustness to outliers and selection of Hann window for windowing
(Harris, 1978). The ASD shape of the generated noise follows the defined analytical ASD
description of the instrument.
The angular acceleration noise is similarly generated. However, since the attitude information
is available from the star trackers and the accelerometer, as explained in subsection 3.3.4,
the noise ASDs defined by Equations (3.7) and (3.8) can be combined optimally as (Stummer
et al., 2011)

A(f)ω̇,comb =

(
1

[A(f)θ(2πf)2]2
+

1

A(f)2ω̇

)−1

. (5.18)

The noise spectra after data fusion are shown in Figure 5.5b. The angular acceleration noise
(black line) and star sensor noise (purple line) are defined analytically by Equations (3.7)
and (3.8), respectively. The red line is the reconstructed analytical ASD obtained from Equa-
tion 5.18. The blue, orange and green lines show the final angular acceleration noise in x, y
and z. The reconstruction shows that above 0.1mHz, the accelerometer provides a less noisy
reading of the angular accelerations than the star trackers.
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(a) (b)

Figure 5.5: a) ASD of accelerometer’s linear acceleration noise. b) ASD of the reconstructed angular
acceleration noise.

Finally, the thruster noise defined by Equation 3.6 is similarly generated. The thruster noise
and linear acceleration noise are added to ang, the angular acceleration noise to ω̇i, and the
angular rate noise to ωi, which is found by simply integrating the angular acceleration noise
using a trapezoidal integration scheme.

5.1.3. Shaking Manoeuvre
The shaking manoeuvre signals will be generated similarly to the noise generation described
in subsection 5.1.2. Figure 5.6 shows an example ASD of a shaking signal. It follows the same
steps as noise generation, with the analytical ASD being defined first, followed by convolution
with white noise. Four parameters define the shaking signal, with the first three defining the
analytical ASD of the shaking signal in the frequency domain:
1. Thrust acceleration magnitude of ASD Tacc: The thrust acceleration magnitude defines

the ceiling of the rectangular pulse shown in Figure 5.6.
2. Upper bound frequency fUB: The frequency at which the pulse drops to a lower level.
3. Lower bound frequency fLB: The frequency at which the pulse rises to the ceiling.
4. Shaking duration tsh: Parameter to set the duration of the shaking of the satellite. In this

chapter, the shaking duration is fixed to 24 hrs. In Chapter 7, different shaking durations
are analysed.

The lower bound frequency fLB is fixed to be 4 units (0.4fUB) lower than the upper bound
frequency fUB, throughout the thesis. The bandwidth BW of the pulse was found to be not
an influential factor; thus, it was fixed to a similar width used for the GOCE mission. The
lower level of the signal in the frequencies below fLB is an order of magnitude lower than that
inside the bandwidth of the pulse. Since the accelerometer has a sampling frequency of 1Hz,
after fUB, the ASD is defined to linearly decrease until 0.5Hz to resemble the shaking signal
signature used for GOCE. Equation 5.19 encapsulates the steps listed above.
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A(f)shaking =


Tacc/10, f < fLB

Tacc, fLB < f < fUB

−Tacc
10

(
f−fUB
0.5−fUB

− 1
)
, f > fUB

(5.19)

fLB = fUB − (0.4 · fUB) (5.20)

The shaking signal is defined to be identical for all three axes for both linear and angular
accelerations.

Figure 5.6: ASD of the shaking signal.

5.2. Accelerometer Calibration
With the data generation tool implemented (Section 5.1), the data generated can be used as
input for the calibration tool to estimate the imperfections. Section 5.2.1 outlines the observa-
tion equations to set up the non-linear least squares problem. Section 5.2.2 then explains the
least squares fit and the need to linearize the observation equations, which is subsequently
done in Section 5.2.3. Next,Section 5.2.4 highlights the setup of the equations in the code,
and finally, a summary of the whole process is presented in Section 5.2.5.

5.2.1. Derivation of Observation Equations
As discussed in Section 3.3.2, three configurations will be implemented, named Layouts 2, 3
and 4, for two, three and four accelerometers on board, respectively. Below, the equations for
Layout 3 placed on the y-axis will be outlined in detail as it has both the differential and the
common mode equations. Layouts 2 and 4 with different axis placements can be analogously
derived (not shown).
Assume the origin is at the satellite’s COM in the satellite’s frame of reference. The nominal
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positions of the accelerometers are then defined as

rnp1 =

 0
Ly

2
0

 , rnp2 =

00
0

 , rnp3 =

 0

−Ly

2
0

 , (5.21)

where is the Ly is the gradiometer arm length (line connecting accelerometers 1 and 3). Thus,
accelerometers 1 and 3 are placed symmetrically around the COM, and accelerometer 2 is at
the COM. The accelerations can be simplified to

anp
2 = anp

c13 = ang, (5.22)
anp
d13 = −(V −Ω2 − Ω̇)rnpd13. (5.23)

With a constellation of three accelerometers, there are a total of nine observations available
(ameas

1 , ameas
2 , ameas

3 ). The gravity gradients V and the rotational terms Ω and Ω̇ are known
from the satellite position and quaternions, leaving the three components of ang as unknowns.
Thus, we have six equations that can be used to solve for the calibration parameters. The first
set of three equations is based on the differential mode derived from Equation 5.8:

ameas
d13 = bd13 +Mc13ad13 +Md13ac13 +

1

2
K1a

2
1 −

1

2
K3a

2
3 +Wd13ω̇ + nd13. (5.24)

Inserting the acceleration at nominal positions yields

ameas
d13 = bd13 +Mc13(a

np
d13 − (V −Ω2 − Ω̇)δrd13)

+Md13(a
np
c13 − (V −Ω2 − Ω̇)δrc13)

+
1

2
K1(a

np
1 − (V −Ω2 − Ω̇)δr1)

2

− 1

2
K3(a

np
3 − (V −Ω2 − Ω̇)δr3)

2

+Wd13ω̇ + nd13.

(5.25)

Based on Equation (5.25), the scalar parameter δrd13y cannot be estimated as it has the same
effect as scaling anp

d13 which is accounted by the matrix Mc13. Furthermore, Equation 5.25
is a non-linear function requiring linearization for performing a least squares fit. Let Mc13 =
Hc13 + δδMc13, whereHc13 = I + δMc13 is an approximation, with a deviation of δMc13 from
the identity matrix, of Mc13 with δδMc13 an update to the approximation. Md13 is defined
analogously.
Substituting the definitions to Equation 5.26 leads to acceleration as a function of acceleration
at nominal positions and the calibration parameters:

ameas
d13 = fd(δδMc13, ...) = bd13 + (Hc13 + δδMc13)(a

np
d13 − (V −Ω2 − Ω̇)δrd13)

+ (Hd13 + δδMd13)(a
np
c13 − (V −Ω2 − Ω̇)δrc13)

+
1

2
K1(a

np
1 − (V −Ω2 − Ω̇)δr1)

2

− 1

2
K3(a

np
3 − (V −Ω2 − Ω̇)δr3)

2

+Wd13ω̇ + nd13.

(5.26)
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The second set of three equations is based on commonmode acceleration from Equation 5.22:

0 = anp
c13 − anp

2 = ac13 − a2 + (V −Ω2 − Ω̇)(δrc13 − δr2). (5.27)

Using Equations (5.4) and (5.8) to write the true acceleration at real position as a function of
measured acceleration, Equation 5.27 can be expanded to

0 = M−1
c13[a

meas
c13 − bc13 −Md13ad13 −

1

2
K1a

2
1 −

1

2
K3a

2
3 −Wc13ω̇ − nc13]

−M−1
2 [ameas

2 − b2 −
1

2
K2a

2
2 −W2ω̇ − n2] + (V −Ω2 − Ω̇)(δrc13 − δr2).

(5.28)

Using the definitions H2 = I + δM2 and Hc13 = I + δMc13 and the acceleration at nominal
positions, the final form of the observation equation is

0 = fc(δδM2, ...) =[H−1
c13 −H−1

c13δδMc13δδH
−1
c13]·

[ameas
c13 − bc13 −Md13(a

np
d13 − (V −Ω2 − Ω̇)δrd13)

− 1

2
K1(a

np
1 − (V −Ω2 − Ω̇)δr1)

2 − 1

2
K3(a

np
3 − (V −Ω2 − Ω̇)δr3)

2

−Wc13ω̇ − nc13]

−[H−1
2 −H−1

2 δδM2H
−1
2 ] · [ameas

2 − b2 −
1

2
K2(a

np
2 − (V −Ω2 − Ω̇)δr2)

2)

−W2ω̇ − n2] + (V −Ω2 − Ω̇)(δrc13 − δr2).

(5.29)

Note that the parameter δr2 is assumed to be zero by adjusting the satellite’s COM with trim
masses. Refer to Appendix A.1 for derivation of M−1

2 and M−1
c13. Equations (5.26) and (5.29)

establish the functions that will be linearized and used in a least-squares fit to estimate the
calibration parameters.

5.2.2. Nonlinear Least Squares
The observation equations derived in Section 5.2.1 are nonlinear functions f(x) of the calibra-
tion parameters x, i.e.

y = f(x), (5.30)

where y is the observation vector. For a least-squares fit, the nonlinear equations have to be
linearized via Taylor series expansion by truncating the higher order terms:

y = f(x0) +
∂f(x)

∂x

∣∣∣∣
x=x0

∆x +O(∆x2), (5.31)

where x0 is an approximation for the parameters and ∆x = x − x0. By introducing the
Jacobian/Design matrix as

J =
∂f(x)

∂x

∣∣∣∣
x=x0

(5.32)

and the reduced observation vector

∆y = y − f(x0), (5.33)
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The least-squares solution gives the parameter update

∆x̂ = (JTΣ−1
y JT )JTΣ−1

y ∆y, (5.34)

where Σy is the noise covariance matrix of the observation vector. The parameters are ob-
tained by adding the parameter update to the approximate parameters:

x̂ = x0 +∆x̂. (5.35)

The approximation can be improved by setting x0 = x̂0 and reiterating the linearization.

Decorrelating Observation Noise
The noise in the observation vector holding accelerometer data is frequency-dependent (colo-
ured noise). Since the accelerometer samples at a uniform rate, the noise covariance matrix
Σy holds the auto-covariance function of the noise having a Toeplitz matrix structure. This
means the noise at different samples is related, and the relation only depends on the time
difference between the samples. This holds only under the assumption that the noise analysed
is stationary (Siemes, 2012).
With such a structure, decorrelation filters can be set up to account for the coloured noise.
Suppose A(f) is a one-sided amplitude spectral density of the noise. The decorrelation filter
is set up sampling the spectral density at normalized frequencies fk = k−1

2K for k ∈ [0,K − 1]
where K is an odd integer, and taking the reciprocals, except for the first element corresponding
to A(f0), which is set to zero:

u =


0

A(f1)
−1

.

.
A(fK/2+1)

−1

 . (5.36)

An odd sampling will help to make the filter symmetric about the middle sample in the time
domain. Setting the first element to zero ensures that the output of the correlation filter has
zero mean, avoiding any negative impact on the accelerometer bias. The impulse response
of the correlation filter is obtained by taking the inverse FFT transform

v = IFFT (u). (5.37)

Rearranging v as

v =



vceil(K/2)

.

.
vK−1

v0
.
.

vceil(K/2)−1


(5.38)

makes the impulse response a symmetric filter. Now the filter can be convolved (*) with the
observation vector y and the columns of design matrix J , i.e.

∆ȳ = w(t) ∗∆y, J̄ = w(t) ∗ J , (5.39)
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resulting in the following decorrelated, linear system of equations

∆ȳ = J̄∆x. (5.40)

For decorrelated observation equations, ordinary least squares fit can be applied to obtain the
parameter update

∆x̂ = (J̄T J̄ )J̄T∆ȳ. (5.41)

Since the convolution’s first and lastK elements are affected by edge effects, they are trimmed
away, equivalent to ignoring those observations when calculating the parameter update. How-
ever, the decorrelation filter must be initialised for the first least squares operation. Since
random noise dominates at high frequencies and systematic and model errors are at low fre-
quencies, a bandpass filter with a passband of 0.1mHz to 100mHz is implemented. After the
first operation, the correlation filters are constructed as detailed in Algorithm 2.

Algorithm 2 Realization of the decorrelation filter
1: Define a one-sided amplitude spectral density A(f) for fk = k−1

2K for k ∈ [0,K] where K is
an odd integer

2: Take the reciprocal except the first element u =


0

A(f1)
−1

.

.
A(fK/2+1)

−1


3: Perform Inverse Discrete Fourier Transform (IDFT) on u to get the time domain impulse

response v = IFFT (u)

4: Rearrange to make it a symmetric decorrelation filter w =



vceil(K/2)

.

.
vK−1

v0
.
.

vceil(K/2)−1



5.2.3. Linearizing the Observation Equations
To linearize the nonlinear Equations (5.26) and (5.29), the partials w.r.t. all input parameters
must be derived to construct the design matrix.

Differential Mode
For convenience, arrange fd in Equation 5.26 such that each row of observation equations
contain x,y and z-components of fd for a given epoch and define Gn = −(Vn −Ω2

n − Ω̇n):

Fd =


fT
d,1

.

.

.
fT
d,N

 =


bTd13
.
.
.

bTd13

+


(anp

d13,1 +G1δrd13)
T (Hc13 + δδMc13)

T

.

.

.
(anp

d13,N +GNδrd13)
T (Hc13 + δδMc13)

T

+ ... (5.42)
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Refer to Appendix A.2 to construct and isolate the parameter vector from a product of matrices
and Appendix B.1 to construct the partials of the differential mode observations w.r.t. δrd13 and
δrc13.
The partials for the design matrix J are obtained by vectorising the matrices with operator vec
and applying the Kronecker product (⊗) as explained in Appendix A.2. The operator col(A, n)
and row(A) return the n-th column and row of a matrix A, respectively. The final form of the
partials is as follows:

∂vec(Fd)

∂vec(δδMT
c13)

= I3x3 ⊗


.
.

(anp
d13,n +Gnδrd13)

T

.

.

 , (5.43)

∂vec(Fd)

∂vec(δδMT
d13)

= I3x3 ⊗


.
.

(anp
c13,n +Gnδrc13)

T

.

.

 , (5.44)

∂vec(Fd)

∂vec(KT
1 )

=
1

2
I3x3 ⊗


.
.

((anp
1,n +Gnδr1)

2)T

.

.

 , (5.45)

∂vec(Fd)

∂vec(KT
3 )

= −1

2
I3x3 ⊗


.
.

((anp
3,n +Gnδr3)

2)T

.

.

 , (5.46)

∂vec(Fd)

∂vec(W T
d13)

= I3x3 ⊗


.
.

ω̇T
n

.

.

 , (5.47)
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∂vec(Fd)

∂(δrd13)
=



.

.
row(Hc13,1)Gn

.

.
row(Hc13,2)Gn

.

.
row(Hc13,3)Gn

.

.



+



.

.
(anp

1x,n + row(Gn,1)δr1)2K1xrow(Gn,1)
.
.

(anp
1y,n + row(Gn,2)δr1)2K1yrow(Gn,2)

.

.
(anp

1z,n + row(Gn,3)δr1)2K1zrow(Gn,3)
.
.



+



.

.
(anp

3x,n + row(Gn,1)δr3)2K3xrow(Gn,1)
.
.

(anp
3y,n + row(Gn,2)δr3)2K3yrow(Gn,2)

.

.
(anp

3z,n + row(Gn,3)δr3)2K3zrow(Gn,3)
.
.



,

(5.48)

∂vec(Fd)

∂(δrc13)
=



.

.
row(Hd13,1)Gn

.

.
row(Hd13,2)Gn

.

.
row(Hd13,3)Gn

.

.



+



.

.
(anp

1x,n + row(Gn,1)δr1)2K1xrow(Gn,1)
.
.

(anp
1y,n + row(Gn,2)δr1)2K1yrow(Gn,2)

.

.
(anp

1z,n + row(Gn,3)δr1)2K1zrow(Gn,3)
.
.



−



.

.
(anp

3x,n + row(Gn,1)δr3)2K3xrow(Gn,1)
.
.

(anp
3y,n + row(Gn,2)δr3)2K3yrow(Gn,2)

.

.
(anp

3z,n + row(Gn,3)δr3)2K3zrow(Gn,3)
.
.



.

(5.49)
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Common Mode
Again arrange fc such that each row of observation equations contain x,y and z-components
of fc for a given epoch and defineGn = −(Vn −Ω2

n − Ω̇n). First, the partials related to a2 are
analysed:

Fc =


fT
c,1

.

.
fT
c,N

 = ...−


.
.

(ameas
2,n −K2(a

np
2,n +Gnδr2)

2 −W2ω̇)T

.

.

 (H−1
2 −H−1

2 δδM2H
−1
2 ) + ...

(5.50)

The following partials are

∂vec(Fc)

∂vec(δδMT
2 )

= H−1
2 ⊗


.
.(

(ameas
2,n −K2(a

np
2,n +Gnδr2)

2 −W2ω̇)T
)
H−T

2

.

.

 , (5.51)

∂vec(Fc)

∂vec(KT
2 )

= H−1
2 ⊗


.
.(

(anp
2,n +Gnδr2)

2
)T

.

.

 , (5.52)

∂vec(Fc)

∂vec(W T
2 )

= H−1
2 ⊗


.
.

ω̇T
n

.

.

 . (5.53)

Next, the terms related to ac13 are analysed:

Fc =


.
.

(ameas
c13,n −Md13(a

np
d13,n +Gnδrd13)−Wc13ω̇n)

T

.

.

 (H−T
c13 −H−T

c13 δδM
T
c13δδH

−T
c13 )

− 1

2


.
.

(K1(a
np
1,n +Gnδr1)

2 +K3(a
np
3,n +Gnδr3)

2)T

.

.

 (H−T
c13 −H−T

c13 δδM
T
c13δδH

−T
c13 ).

(5.54)

The partials are
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∂vec(Fc)

∂vec(δδMT
c13)

= −H−1
c13 ⊗




.

.
(ameas

c13,n −Md13(a
np
d13,n +Gnδrd13)−Wc13ω̇n)

T

.

.

H−T
c13



+
1

2
H−1

c13 ⊗




.

.
(K1(a

np
1,n +Gnδr1)

2 +K3(a
np
3,n +Gnδr3)

2)T

.

.

H−T
c13

 ,

(5.55)

∂vec(Fc)

∂vec(δδMT
d13)

= −H−1
c13 ⊗




.

.
(anp

d13,n +Gnδrd13)
T

.

.


 , (5.56)

∂vec(Fc)

∂vec(KT
1 )

= −1

2
H−1

c13 ⊗




.

.
((anp

1,n +Gnδr1)
2)T

.

.


 , (5.57)

∂vec(Fc)

∂vec(KT
3 )

= −1

2
H−1

c13 ⊗




.

.
((anp

3,n +Gnδr3)
2)T

.

.


 , (5.58)

∂vec(Fc)

∂vec(W T
c13)

= −H−1
c13 ⊗




.

.
ω̇T

.

.


 . (5.59)

Refer to Appendix B.2 for a detailed derivation of common mode observation partials w.r.t.
δrd13 and δrc13.
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∂vec(Fc)

∂(δrd13)
=

−



. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,1) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,1)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,2) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,2)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,3) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,3)

. .

. .



+



. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,1) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,1)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,2) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,2)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,3) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,3)

. .

. .



−



.

.
row(H−1

c13Md13Gn,1)
.
.

row(H−1
c13Md13Gn,2)

.

.
row(H−1

c13Md13Gn,1)
.
.


,

(5.60)
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∂vec(Fc)

∂(δrc13)
=

−



. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,1) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,1)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,2) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,2)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,3) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,3)

. .

. .



−



. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,1) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,1)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,2) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,2)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,3) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,3)

. .

. .



−



.

.
row(Gn,1)

.

.
row(Gn,2)

.

.
row(Gn,3)

.

.


.

(5.61)

5.2.4. Arrangement of Observations and Parameters
With the partials derived w.r.t. each parameter, the observations and parameters can now
be arranged to perform the least squares fit. The following arrangement is performed for the
observations y, approximation of the observations y0 using f(x0) and the parameters x:

y =

[
yd

yc

]
, y0 = f =

[
vec(Fd)
vec(Fc)

]
, (5.62)

where

yd = vec



(ameas

d13,1)
T

.

.
(ameas

d13,N )T


 , yc = 03N×1 (5.63)
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and

x(ext) =



vec(δδMT
2 )

vec(δδMT
c13)

vec(δδMT
d13)

vec(K1)
vec(K2)
vec(K3)
vec(Wd13)

vec(W2 −Wc13)
rc13
rd13


. (5.64)

The parameter vector x(ext) contains all the elements of every matrix, but several elements
are zero by definition and thus can be removed. The six off-diagonal elements of the quadratic
factor matricesK1,K2, andK3, and the six elements of the matrices Wd13 and (W2 −Wc13)
are zero. W2 and Wc13 cannot be estimated independently, but only their combined effect.
Therefore, W2 is, by definition, set to zero. Finally, the parameter rd13y is removed since it
cannot be estimated due to the same effect as the scaling accounted by Mc13. The trimmed
parameter vector x can be written as

x = select(x(ext)), (5.65)

and apply the same operator to the design matrix Jext acting on its columns:

J = select(J (ext)). (5.66)

5.2.5. Estimation Algorithm
Building the system requires the true acceleration at nominal positions anp

i for which the non-
gravitational acceleration ang is required. Since this data is not available when processing
real data, it is estimated iteratively.
From Equation 5.4, the calibrated acceleration can be inferred as

acal
i = M−1

i (ameas
i −Kia

2
i −Wiω̇) (5.67)

The above equation requires the knowledge of true acceleration for the quadratic term a2
i .

It is estimated by intialising a2
i = (ameas

i )2 to calculate acal
i and then iterated to by setting

a2
i = (acal

i )2. Then, the calibrated acceleration at nominal position acal,np
i is found by

acal,np
i = acal

i −Giδri (5.68)

The lowest-noise estimate for the non-gravitational accelerations is

arcst
ng =

1

3
(acal,np

1 + acal,np
2 + acal,np

3 ) (5.69)

The final estimation algorithm for the calibration parameters is presented in Algorithm 3.
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Algorithm 3 Accelerometer parameters estimation
1: Input Data:

• Accelerations ameas
1 , ameas

2 , and ameas
3

• Angular velocity ω from the star sensors and/or accelerometer
• Gravity gradients V
• Iterations P for the stochastic model
• Iterations Q for calculating the quadratic term of the acceleration
• Iterations R for linearization

2: Calculate ω̇ from ω
3: Initialise the parameter vector x0 = 0
4: for p=0,...,P-1 do ▷ Loop over stochastic model
5: Convert x0 to Mi, Ki, Wi, and δri
6: Initialise decorrelation filters w(t) as 0.1-100 mHz bandpass filters
7: Initialise acal

i = ameas
i

8: for q=0,...,Q-1 do ▷ Loop over quadratic term estimation
9: Calculate acal

i = M−1
i (ameas

i −Ki(a
cal
i )2 −Wiω̇)

10: end for ▷ End quadratic model loop
11: Calculate acal,np

i = acal
i −Giδri

12: Calculate arcst
ng = 1

3(a
cal,np
1 + acal,np

2 + acal,np
3 )

13: for r=0,...,R-1 do ▷ Loop over linearization
14: Construct y and y0 using Equation 5.62
15: Construct J using Equation 5.66
16: ȳ = w ∗ y ▷ Decorrelate
17: ȳ0 = w ∗ y0

18: J̄ = w ∗ J
19: Trim ȳ, ȳ0, and J̄ ▷ To remove edge effects of convolution
20: ∆x̂ = (J̄T J̄ )−1J̄T (ȳ − ȳ0)
21: x0 = x0 +∆x̂
22: end for ▷ End linearization loop
23: Reconstruct y0 using Equation 5.62
24: Calculate the residuals e = y − y0

25: Estimate ASD A(f) from e ▷ Using Welch’s method. Generates 6 ASDs
26: Update the decorrelation filter w from A(f) using Algorithm 2.
27: end for ▷ End stochastic model loop
28: Convert x0 to Mi, Ki, Wi, and δri



6
Verification & Validation

This chapter outlines the steps to verify and validate the tools developed for this thesis. Sec-
tion 6.1 verifies the reference orbit generation, followed by Section 6.2, where the designmatrix
and least squares implementation are verified. Finally, the toolbox is validated by estimating
parameters from the GOCE satellite.

6.1. Orbit Verification
With a simple point mass orbit, a few simple checks can be performed to verify if the orbit is
computed as expected. The x-axis of the trailing satellite labelled NGGM2 in Figure 6.1 points
along the LoS vector. Since the LoS is roughly in the along-track direction, the z-axis of the
spacecraft roughly points in the nadir direction. Given a separation distance of 220 km, the
angle between the r2 and zB is

θ =
|r21|
2|r2|

=
220

2× 6774
= 0.93◦ (6.1)

The estimated angle for vectors pointing in opposite directions would be 179.07◦. Figure 6.2a
shows the evolution of θ between r2 and xB. The angle stays constant throughout the orbit
with a value of 179.07◦ as calculated, thus verifying that the rotation model imposed on the
trailing satellite to point its body-fixed x-axis along the LoS is working as intended.
Another simple check is to verify the angular velocity about the y-axis. Since it is a point mass
circular orbit, the expected angular velocity about the y-axis of the body frame can be written
as

ωy =

√
µ

(RE + h)3
=

√
398600

(6378 + 396)3
= 1.13 mrad s−1 (6.2)

where RE is the radius of the Earth and h the altitude of the satellite pair. The sign of the
ωy should be negative for NGGM2 as it rotates clockwise about the y-axis to follow the LoS
vector. The average angular rate about the y-axis of the body frame from the simulation is
ωy = −1.134 mrad s−1 as shown by the orange line in Figure 6.2b. The angular velocities
about the x- and z-axis are zero as the attitude is fixed. Thus, the magnitude and direction of
angular velocities are as expected.

44
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Figure 6.1: Orientation of body axes of NGGM 2

(a) (b)

Figure 6.2: a) The angle between the z-axis and the vector connecting NGGM2 with the Earth’s centre. b)
Angular rates about x-, y- and z-axis of satellite’s body-fixed frame.

Finally, the altitude of the pair and the inter-satellite distance between the pair are given Fig-
ures 6.3a and 6.3b, respectively. The altitude stays constant at 396 km and the separation
at 220 km throughout the simulation as it was defined, confirming that the orbit simulation is
setup and works as expected.
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(a) (b)

Figure 6.3: a) Altitude as a function of time. b) Inter-satellite separation as a function of time

6.2. Calibration Verification & Validation
The calibration procedure involves twomain steps: building the designmatrix from observation
equations for linearization and performing the least squares adjustment.
To verify if these are implemented correctly, three checks will be performed:

1. Check if the designmatrix is correctly constructed by comparing it to the numerical deriva-
tive

2. Analyse the error in estimated parameters without noise in observations. This verifies if
the least squares algorithm is correctly set up.

3. Analyse the error in estimated parameters with noise in observations. This checks if the
decorrelation filters are working.

Here, the verification and validation of Layout 3 on the y-axis are presented. The same proce-
dure follows for Layouts 2 and 4 and/or x- and z-axis placement (not shown).

6.2.1. Design Matrix
Consider a non-linear observation equations system stated as

y = f (x) (6.3)

Using the Taylor series expansion up to the first order, the function can be estimated for each
parameter in x as

f (xi) = f (xi,0) + col(J , i)|xi=xi,0∆xi +O(∆x2i ). (6.4)

By rearranging the equation, the error between the numerical derivative and the analytical
derivative estimated by the design matrix column for each parameter in x is expressed as

ei =
f (xi)− f (xi,0)

∆xi
− col(J , i)|xi=xi,0 ≈ O(∆xi). (6.5)

The error is of order ∆xi if Equation (6.3) is not linear in relationship, where ∆xi = xi − xi,0.
For Layout 2, there are 47 parameters in x. By computing a ratio between the error obtained
by selecting a random vector x0 and varying each parameter by a small value dx and dx/10,
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the ratio should be of a value of 10. Since the error vector is a function of time, the RMS is
calculated to obtain a single value for ratio calculation. This allows us to verify if each design
matrix column is implemented correctly.
Figures 6.4 and 6.5 showcases the ratio between the RMS error for each parameter with a
variation of dx and dx/10 for differential and common mode, respectively. From Equation 5.25,
the relationship between the observations and parameters for differential mode is linear except
the δr parameters. In Figure 6.4, the δr seen from index 42 onwards all have a ratio of 10.
M2 has no points as the differential mode is not a function of it. For other parameters, the
points seen arise due to numerical errors in computation.
Whereas for common mode acceleration, Equation 5.28 tells us that the observation vector
has a non-linear relationship with the parameters of matricesM2,Mc13, and δr. In Figure 6.5,
for all, the error ratio has an expected value of around 10. Interestingly, the parameters of
δr are stable and are exactly 10, whereas parameters of M2 and Mc13, fluctuate close to
the value of 10. δr has a square relationship; therefore the error is exactly predicted by ∆x
when Taylor expanded. However, matrices M2 and Mc13 have an inverse relationship with
the observation vector such that the higher order terms of ∆x will have an effect, too, leading
to minor fluctuations. Parameters of Md13, K , and W are linearly related, and as discussed,
the error seen in the figure are purely numerical errors.
Thus, the design matrix for both differential and common mode is implemented correctly.

Figure 6.4: Ratio of RMS of the error between the numerical derivative and the design matrix when for variation
with dx and dx/10 for each parameter in differential mode.
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Figure 6.5: Ratio of RMS of the error between the numerical derivative and the design matrix when for variation
with dx and dx/10 for each parameter in common mode.

6.2.2. Least Squares
Noiseless Model
The least squares verification will first be done without noise to check the correct implemen-
tation of the least squares algorithm. Starting from the parameters that are offset w.r.t. the
simulated truth, the estimated parameters converge to the true values if the algorithm is imple-
mented correctly. The least squares is initialised with the initial guess x0 = 0. The shaking
signal parameters used in verification are given in Table 6.1 with an inter-accelerometer arm
length Ly = 0.6m.

Table 6.1: Shaking signal parameters for verification

Parameter Value

T 3× 10−6 m/s2/
√
Hz

fUB 0.1Hz

Figure 6.6 shows the error between the true and estimated parameters with noiseless obser-
vations, with the initial guess and the final estimated solution. The error between the estimated
and true parameters at the end of estimation algorithm has reduced by a factor of 109 for the
K parameters and 1014 for the other parameters when compared to the error made due to the
initial guess giving a clear evidence of convergence. The K parameters have a higher error
as they are multiplied by the square of the acceleration signal, which is already in the order
of µms−2, leading to a weak observation signal for the estimation. Figures 6.7 and 6.8 fur-
ther confirm that the ASD of the measurement error (dashed red line) is well below the noise
characteristics of the accelerometer (blue line) for noiseless observations.
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Figure 6.6: Estimation error in parameters x for noiseless observations. All the parameters are unitless except
K and dr having units [s2/m] and [m], respectively.

Figure 6.7: Amplitude spectral density of the retrieved measurement error for the differential acceleration mode
for the noiseless model.
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Figure 6.8: Amplitude spectral density of the retrieved measurement error for the common acceleration mode for
the noiseless model.

Noise model
Finally, decorrelation filters are incorporated into the algorithm to account for the noise in the
least squares fit. To ensure its proper functioning, the least squares fit for noisy observations
should converge to the noise level of the observations. The expected pure noise level for
the differential mode and common mode, excluding instrument imperfections except for the
position offset, can be written as

ndiff =
(n1 − n3)

2
+ (Gmeas −Gtrue)rd13 +

1

2
((Gmeas −Gtrue)r1 + n1)

2

+
1

2
((Gmeas −Gtrue)r3 + n3)

2 +W true
d13 ω̇noise

(6.6)

ncomm = n2 +W true
2 ω̇ − (n1 + n3)

2
− (Gmeas −Gtrue)δrc13 −

1

2
((Gmeas −Gtrue)r1 + n1)

2

− 1

2
((Gmeas −Gtrue)r3 + n3)

2 −W true
c13 ω̇

(6.7)

This information is derived only for analyzing the tool. It is unavailable in a real mission, as
one does not know the true values.
An inspection in the frequency domain (Figures 6.9 and 6.10) is performed by estimating the
ASD of the final residual of the least squares fit (orange) and the expected noise (blue) calcu-
lated by Equations (6.6) and (6.7). Both for differential and common mode, the ASD agrees in
shape and magnitude with the expected noise residual. Furthermore, looking at Figure 6.11,
the error of the final estimated solution is smaller than the solution estimated initially with the
bandpass filter in the first least-squares step (corresponds to the p=0, r=0 of for loops in steps
4 and 13 of Algorithm 3), except for a few parameters of K and W which is attributed to the
random chance due to noise in the observations. Globally, the final solution (corresponds to
p=P-1 and r=R-1 of for loops in steps 4 and 14 of Algorithm 3) has an error roughly an order of
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magnitude lower than the first step error. In conclusion, the least squares algorithm with the
decorrelation filter is set up correctly.

Figure 6.9: Amplitude spectral density of the expected and retrieved noise for the differential acceleration mode.

Figure 6.10: Amplitude spectral density of the expected and retrieved noise for the common acceleration mode.
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Figure 6.11: Estimation error in parameters x for noisy observations. All the parameters are unitless except K
and dr having units [s2/m] and [m], respectively.

Validation
For validation, parameters from GOCE mission (Personal Communication: C. Siemes) are
used as the true parameters and estimated by Algorithm 3. In Figure 6.12a, the initial guess
for Mc13 parameters is already good, having an error of ≈ 10−5, so the estimated solution
does not improve unless a higher thrust acceleration is simulated. The δr parameters are not
provided; thus, they cannot be compared. The indices 42-46 in the figure are spurious. The
estimated parameters are normalized (Figure 6.12b) to show the deviation of each parameter
from the true parameter as

z =
xi − xtruei

σi
, (6.8)

where σi is the standard deviation of each estimated parameter, plotted in a 3σ confidence
region which accounts for 99.7% of cases. All parameters fall within the confidence region
except index 39, which corresponds to the W23 element (Equation (5.16)) of the common
mode W matrix. Note that the GOCE had six accelerometers, whereas the validation has
only three accelerometers, making it more susceptible to noise if the simulated thrust is not
high enough, or it could be by random chance. Nevertheless, the parameters are statistically
within 3σ deviation from true values,
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(a) (b)

Figure 6.12: a) Estimation error in parameters x for noisy observations. All the parameters are unitless except
K having a unit[s2/m]. b) Deviation of each parameter w.r.t. the true parameters normalized by the standard

deviation (Z-score) with the 3σ confidence region.



7
Results

This chapter explores the calibration results of different accelerometer configurations and shak-
ing signal settings. Section 7.1 outlines the design space explored for this study. Next, in Sec-
tion 7.2, the response variables to assess the calibration quality are described. Section 7.3
then systematically identifies the favourable configuration and shaking manoeuvres for NGGM.
The sensitivity and result analysis are combined in this report. Finally, Section 7.4 looks at
a special case of a modified response variable in light of accelerometer configuration restric-
tions.

7.1. Design space
To arrive at an optimal configuration of the accelerometers and optimal region of parameters
for the shaking signal, the following settings are explored:

• Thrust acceleration magnitude Tacc: [2, 4, 6] ×10−6 m/s2/
√
Hz

• Shaking duration tsh: [6, 12, 18, 24] hrs
• Upper bound frequency fUB: [0.01, 0.1] Hz. The text will frequently refer to them as low-
and high-frequency shaking.

• Inter-accelerometer arm length L: [0.4, 0.6, 0.8] m
• Layout: [2, 3, 4]
• Axis: [x, y, z]. For Layout 4, x-, y- and z-axis placement correspond to the accelerometer
pairs in xy-, yz- and xz-plane of the body-fixed axis, respectively.

The thrust acceleration range and shaking frequency fUB = 0.1Hz take inspiration from the
GOCE where the thrust accelerations of at least 10−6m/s2/

√
Hz and up to 10−5m/s2/

√
Hz are

applied in the range of 0.05Hz to 0.1Hz. Thrust acceleration lower than 2× 10−6m/s2/
√
Hz is

insufficient as the observations are too noisy for calibration. The GOCE satellite was shaken
for 24 hrs; however, in this study, different shaking times are analysed, as lower shaking
times will help conserve fuel. A low shaking frequency fUB = 0.01Hz is also analysed. The
GOCE satellite was shaken only at high frequency because the gravity gradient signal was
lower than accelerometer noise (Frommknecht et al., 2011). This shaking manoeuvre was
specific to GOCE, as the mission measured Earth’s gravity gradient tensor. NGGM’s objective
is to measure the gravity field via LL-SST. Three inter-accelerometer lengths are explored to
determine their effect. The lower limit of 0.4m stems from the size of the accelerometer with
a side of 90mm. An arm length of 0.4m gives 0.2m on either side of COM. A margin of at
least 0.1m between the COM and the accelerometer is reserved space for other components

54
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if required. The upper limit of 0.8m is arrived by rounding up the height of 0.72mmGRACE-FO
satellite (Wen et al., 2019). Longer arm lengths will boost the gravity gradients and rotational
acceleration signals for calibration, but it will also amplify the noise from those terms if the
calibration quality is bad. A bandwidth BW of 0.4fUB units is fixed for the pulse of the shaking
signal in the frequency domain (refer to Section 5.1.3). Finally, three layouts with three different
axis placements are considered, giving rise to nine possible configurations.
The signal generation process (pseudo) randomly generates noise, where the random num-
ber generator’s seed can affect the calibration results. Thus, multiple seeds for a given con-
figuration and shaking signal settings are considered to examine the distribution effect of the
variables on the results and not draw false conclusions from a single outcome due to a random
chance.
Given the many possible shaking signal settings for each configuration, running each possible
combination for multiple seed realisations is impractical, given the long calibration times due
to the size of the linear system of equations to be solved. Therefore, the configurations and
settings with a significant effect will be narrowed down step by step using 30 seeds. Once the
favourable setting is chosen, realisations from 200 seeds are run to ensure a result with more
statistical confidence.

7.2. Response variables
Two response variables assess the different shaking manoeuvres. Section 7.2.1 describes
the power ratio metric to assess the calibration performance. Section 7.2.2 gives steps for a
rough estimation of the fuel consumption for a given shaking manoeuvre.

7.2.1. Power ratio
To quantify the quality of the calibration, we look at the relative non-gravitational acceleration
measurement error, which has to satisfy the requirement defined by Equation (3.3) and shown
in Figure 3.6. Since it is a simulation environment, the estimation error can be compared to
the true observations.
Using Equations (5.67) to (5.69), the non-gravitational acceleration is reconstructed from the
estimated parameters after calibration. The reconstruction is done in science mode for two
days to reduce the impact of high-frequency noise, where the satellite is drag-compensated
in the along-track direction and no shaking signal is present. The error w.r.t. the true non-
gravitational force is given by

ϵng = atrue
ng − arcst

ng . (7.1)

A maximum satellite-to-satellite pointing error of 1× 10−5 rad is allowed (Massotti et al., 2021).
Figure 7.1 outlines the projection of error vector ϵng on to the maximum allowed LoS vector.
The direction in the y- and z-direction is taken as the angle deviation due to small angles.
Therefore, the projection of the error vector onto LoSmax is the dot product between them.
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Figure 7.1: Projection of error vector onto the LoS vector in xy-plane body fixed plane.

Thus, the non-gravitational acceleration measurement error along the LoS vector is

ϵng,LoS = ϵng · LoSmax. (7.2)

The error along the LoS vector is mainly in the along-track direction because if the deviation
is larger than 1 × 10−5 rad, the tracking link is broken anyways. The error in the cross-track
and radial direction has a negligible effect (confirmed via analysis, not shown in the report);
however, for completeness, it is included in the error calculation.
For a pair of satellites, assuming that they and the calibration are identical and independent,
the relative non-gravitational acceleration measurement error is the RMS of the two errors
written as

ϵng,LoS,rel =
√
ϵ2ng,LoS,1 + ϵ2ng,LoS,2 =

√
2ϵ2ng,LoS,1 =

√
2ϵng,LoS,1. (7.3)

The aim of the calibration is that ϵng,LoS,rel satisfies the imposed requirement by Equation 3.3.
For example, in Figure 7.2, the ASD of ϵng,LoS,rel for a sample calibration against the require-
ment is given. In all shaking signal cases, it is at low frequencies where the requirement is
violated (shown by the region between green vertical lines). The random instrument noise
dominates at high frequencies above 10mHz. However, at low frequencies, errors in param-
eter estimation would lead to errors being amplified by the gravity gradients and rotational
acceleration terms as they have a higher magnitude at lower frequencies, with peaks occur-
ring at the orbital frequency 0.2mHz and its harmonic frequencies. Therefore, the efforts will
be focused on satisfying the requirement in the range of 1× 10−4Hz to 1× 10−3Hz. Satisfying
the requirement in this range will also inherently follow at higher frequencies, as the noise
floor of the accelerometer is already below the requirement. Furthermore, the accelerometer
dictates the requirement in the chosen frequency range, whereas at higher frequencies, LTI is
the limiting hardware on the requirement (refer to Section 3.3.2).
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Figure 7.2: Example ASD of ϵng,LoS,rel in science mode after calibration against the requirements.

A single metric will be convenient for comparing the multiple settings posed. The area under
the graph in PSD domain gives the power in the frequency band of 1× 10−4Hz to 1× 10−3Hz.

PBW = Σf=10−3

f=10−4(A(f))2df (7.4)

Where df is the bin width based on the window length N chosen for estimating the ASD using
Welch’s method and the sampling frequency fs of the accelerometer, calculated as

df =
fs
N

=
1

27001
= 3.703× 10−5Hz. (7.5)

The window length is five times the duration of a single orbit, such that the ASD can resolve
down to 3.703 × 10−5Hz. In most studies, the length is chosen as a rule of thumb with a
margin, as they aim to capture at least the orbital frequency. Note that a longer or shorter
window length leads to sharp peaks or merging of peaks, respectively. A longer window length
can resolve smaller frequencies compared to a shorter window length (Equation 7.5). With a
shorter window, the frequencies within a relatively larger bin will merge into a single peak.
Therefore, the derivation of the metric is specific to the choices made here but consistent with
other studies.
Finally, a ratio between the power from the ϵng,LoS,rel and the power from the requirement
(black dashed line in Figure 7.2) in the frequency range of 1× 10−4Hz to 1× 10−3Hz provides
a quantifiable metric to assess the performance of calibration for a given shaking signal setting:

ratio =
Pϵng,LoS,rel

Preq
(7.6)

If the ratio is below 1, the requirement is satisfied. The ratio is always positive.
A shaking duration of 6 hrs is set as the lower limit to have at least two windows to estimate
the ASD with a length of N = 10000 and resolve at least 1× 10−4Hz in the frequency domain.
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7.2.2. Fuel Consumption
The simulation outputs the shaking acceleration time series both for linear and angular accel-
erations. Assuming the mass m of the spacecraft to stay constant at 1000 kg and the specific
impulse Isp = 60 s of the cold gas thruster (Wertz et al., 2011), the mass rate ṁfuel is given by

ṁfuel =
mash(t)

Ispg0
(7.7)

where ash(t) is the linear shaking acceleration and g0 is the gravitational acceleration at sea
level. Summing the absolute values (irrespective of the thrust direction) of the mass rate gives
a preliminary estimate of fuel consumed (the data is available at every 1 s).
The moment exerted on the satellite by angular accelerations is required to relate it to the fuel
consumption. The expression relating angular accelerations ω̇ to the external moment M is

M = Jω̇ + ω × Jω , (7.8)

where J is the inertia tensor of the satellite.
The inertia tensor is based on GRACE-FO’s leading satellite (Wen et al., 2019), which is scaled
to the mass of NGGM, assuming that the mass distribution does not change.

J =
1000

601.214
·

110.491 −1.024 0.347
−1.024 580.673 0.036
0.347 0.036 649.690

 kgm2 (7.9)

It is assumed that the moments are generated by linear thrust in only the y- and z-axis thrusters
(based on GRACE-FO) given by

M =

Mx

My

Mz

 =

−z · Fy

−x · Fz

x · Fy.

 (7.10)

By rearranging the equations, the linear force can be used to generate the angular accelera-
tions can be expressed as

Fy =
Mx +Mz

x− z
, Fz = −My

x
. (7.11)

The mass rate is subsequently calculated from the extracted linear acceleration by dividing the
force in each direction Fx,y,z by the satellite’s mass. Finally, the generated linear and angular
accelerations are assumed to be independent. Thus, the total mass rate is an addition of both
mass rates, giving a conservative estimate of fuel consumption.
GOCE performed 24 shaking manoeuvres for calibration in a four-year mission due to the drift
of accelerometer imperfections with time (Siemes et al., 2019). Assuming a similar drift occurs
for NGGM, 42 shaking manoeuvres will be required for a seven-year mission.

7.3. Narrowing down to favourable settings
Axis Placement Analysis
To start, Table 7.1 shows the settings selected for the first analysis. From here on, each new
shaking setting will be displayed in this table format with an ID given to each table, which will
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be included in the figure to track which figure belongs to which shaking setting. In all box plots,
the thrust acceleration is varied on the plot’s x-axis to get a global view of the effect of settings.

Table 7.1: Initial shaking settings (ID: Setting 1)

tsh [hrs] fUB [Hz] L [m] Layout [-] Axis [-]
24 0.1 0.6 3 x, y, z

Figure 7.3 gives the box plot representation of ratio variation across 30 seeds for different
thrust values at a given axis placement. The box plot contains the following features:

• The middle black line in the box is the median. The median is robust against large outlier
values compared to the mean.

• The bottom line of the box is the first quartile Q1. 25% of the data lies below this value.
• The top line of the box is the third quartile Q3. 75% of the data lies below this value.
• The box contains the middle 50% of the data.
• The height of the box is the Inter-Quartile Range (IQR), given by IQR = Q3 − Q1. Tal-
l/slender box shows high variability in the data.

• The whiskers (T and ⊥) are ±1.5 × IQR away from the quartiles. Note that since the
ratio is always positive, the lower whisker will end at the minimum value in the dataset if
Q1− 1.5× IQR is larger than the minimum ratio in the dataset.

• The points outside the whiskers are defined as outliers. They are not analysed and
discarded.

• The crosses in the box plots are the means.
• The red dashed line is the defined ratio requirement of 1.

The median ratio for x-axis placement (blue boxes) is more than an order of magnitude lower
than the y-axis (orange boxes) and approximately by a factor of six from the z-axis (green
boxes). The spread (box height) for the x- and z-axis reduces approximately by a factor of
two as the thrust acceleration magnitude increases, whereas the y-axis spread stays more or
less consistent spanning an order of magnitude, indicating that the calibration is more robust
to different noise realisations for the x- and z-axis accelerometer placement.
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Figure 7.3: Box plot of Ratio vs Thrust for different axis placement (ID: Setting 1).

The reason for poor performance for the y-axis placement can be narrowed to Equation 5.5.
For an accelerometer away from the COM, the acceleration expression can be simplified for
different axis placements as

• x-axis placement:

a = −

 Vxx + ω2
y + ω2

z

Vxy − ωxωy − ω̇z

Vxz − ωxωz + ω̇y

 rx + ang (7.12)

• y-axis placement:

a = −

Vxy − ωxωy + ω̇z

Vyy + ω2
x + ω2

z

Vyz − ωyωz − ω̇x

 ry + ang (7.13)

• z-axis placement:

a = −

Vxz − ωxωz − ω̇y

Vyz − ωyωz + ω̇x

Vzz + ω2
x + ω2

y

 rz + ang. (7.14)

The diagonal elements of the centrifugal acceleration matrix Ω2 of Equation 5.5, which corre-
spond to the first, second and third element of the column in Equations (7.12) to (7.14). For
a given axis placement, the centrifugal acceleration along that axis is the sum of the squares
of the angular velocities about the other two axes. For the x- and z-axis placement, ω2

y is
involved, which can be broken down during the shaking manoeuvre as

ω2
y = (ωy,nom +∆ωy)

2 = ω2
y,nom +∆ω2

y + 2ωy,nom∆ωy = ∆ω2
y + 2ωy,nom∆ωy, (7.15)
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where ωy,nom is the constant nominal pitch rate of the satellite due to its approximately along-
track attitude given by Equation 6.2, and ∆ωy is the pitch rate resulting from the shaking
manoeuvre. The calibration operation filters out the constant rate and only applies the shak-
ing signal ∆ωy, but the shaking signal in the term 2ωy,nom∆ωy gets boosted by the constant
pitch rate of the orbit compared to ∆ωx and ∆ωz. The nominal pitch rate of 1.13mrad s−1 is
two orders of magnitude higher than the magnitude of the pitch rate from the shaking manoeu-
vre. Thus, the total angular rate signal during shaking about the y-axis is also two orders of
magnitude higher than ∆ωx and ∆ωz as highlighted in Figure 7.4a.

(a) (b)

Figure 7.4: a) ASDs due to angular accelerations and the square of angular rates of the shaking signal. b) ASD
of ϵng,LoS,rel in science mode after calibration for the x- and z-axis accelerometers placement.

However, one should notice a similar performance for the z-axis. Looking at the ϵng,LoS,rel
ASD in Figure 7.4b, there is no difference in the error signature for accelerometers placed on
the x (dark blue) or z-axis (light blue) for the same set of hardware parameters. This suggests
that the better performance of the x-axis placement stems from a better estimation of the
parameters during calibration rather than an effect of noise amplification due to axis placement
during the reconstruction of arcst

ng in science mode. The suspected cause lies in the definition
of the electrode layout of the accelerometer. From Equation 5.16, the angular acceleration is
projected only onto the y and z-component of themeasured linear acceleration (Equation 5.15).
Therefore, for the x-axis placed accelerometers, the z component of the linear acceleration
signal should get a boost from the angular acceleration projection compared to the z-axis
placed accelerometers, which do not get any signal amplification on the x component. Since
the W parameters are an order of magnitude smaller than M parameters (Table 5.3), the
ASD of the acceleration signal is plotted in Figure 7.5 without the ang and ω̇ in Equations (7.12)
and (7.14) to see the effect of electrode layout. The pulse ceiling of the z component of the
linear acceleration (orange) in Figure 7.5a is roughly five times that of the x component ceiling
(purple) in Figure 7.5b.
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(a) (b)

Figure 7.5: a) ASD of linear acceleration components for x-axis placed accelerometers. b) ASD of linear
acceleration components for z-axis placed accelerometers.

Shaking Frequency Analysis
Moving forward, the effect of shaking frequency is analysed (Table 7.2).

Table 7.2: Shaking settings after axis placement (ID: Setting 2)

tsh [hrs] fUB [Hz] L [m] Layout [-] Axis [-]
24 0.1, 0.01 0.6 3 x

Before carrying out the analysis, the thrust acceleration magnitude at different frequencies
has to be investigated. Figures 7.6a and 7.7a show the ASD of the filter with Tacc = 2 ×
10−6m/s2/

√
Hz used to generate the high- and low-frequency signal and its corresponding

time domain signal, respectively. The high-frequency signal varies in the time domain from
−1.5×10−6 to 1.5×10−6ms−2 (Figure 7.6b). The low-frequency shaking signal with the same
thrust magnitude in the ASD has a variability of −6×10−7 to 6×10−7ms−2 in the time domain
(Figure 7.7b). This discrepancy arises because the higher-frequency shaking signal has a
higher area under the pulse in the frequency domain, leading to greater power.
To match the same time domain magnitude variability across high and low-frequency shaking,
the power of the low-frequency signal is amplified by scaling up the acceleration magnitude of
the ASD filter in the frequency domain. The power of the signal is given by the

P = Σf=0.5
f=fs/N

A(f)2df, (7.16)

where df is defined by Equation 7.5.
The scale factor to amplify the low-frequency signal is calculated as the power ratio between
the high- and low-frequency shaking:

k =

√
Pfhigh

Pflow

. (7.17)

The acceleration magnitude of the ASD filter is scaled by this factor (Figure 7.8a). The ASD of
the filter is lifted, with the pulse ceiling approximately thrice its original value. The correspond-
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ing time domain acceleration signal (Figure 7.8b) now has a similar variability −1.5× 10−6 to
1.5× 10−6ms−2 in magnitude.

(a) (b)

Figure 7.6: a) Filter ASD to generate the high-frequency signal. b)Time domain representation of the
high-frequency shaking with an RMS of 4.08× 10−7 ms−2.

(a) (b)

Figure 7.7: a) Filter ASD to generate the low-frequency signal without thrust scaling. b) Time domain
representation of the low-frequency shaking without thrust scaling with an RMS of 1.51× 10−7 ms−2.
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(a) (b)

Figure 7.8: a) Filter ASD to generate the low-frequency signal with thrust scaling. b) Time domain representation
of the low-frequency shaking with thrust scaling with an RMS of 4.1× 10−7 ms−2.

With the thrust acceleration appropriately scaled to have the same magnitude variability in
the time domain, the ratio variation across 30 seeds for different thrust acceleration values
for high and low-frequency shaking is highlighted in Figure 7.9. For all thrust acceleration
levels, the low-frequency shaking (blue boxes) produces ratio values approximately half in
value compared to its counterpart for the Q3, with lower variation.

Figure 7.9: Box plot of Ratio vs Thrust for high and low shaking frequency (ID: Setting 2).

This is explained by the angular rates for the high- and low-frequency shaking in the time
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domain presented by Figures 7.10a and 7.10b in the satellite’s body-fixed frame. The lower
frequency shaking (Figure 7.10b) accumulates a higher magnitude of angular rates with a
variation of about ±6× 10−5 rad s−1, thrice the angular rate magnitude achieved at the higher
frequency shaking (Figure 7.10a). This is again tied into Equation 5.5, where higher angular
rates will boost the acceleration signal due to centrifugal force for off-centre accelerometers
during calibration.

(a) (b)

Figure 7.10: Time domain evolution of angular rates. a) Angular rates at high-frequency shaking. b) Angular
rates at low-frequency shaking.

Figure 7.11 compares the ratio across 200 seeds for scaled and unscaled thrust acceleration
cases. When the thrust scaling is omitted, the low-frequency produces higher valued ratios
with approximately half the realizations violating the requirement, than when scaling is applied,
confirming the conclusion drawn from just 30 realizations. Without the thrust scaling, the thrust
magnitude in the time domain is smaller, so the frequency effect cannot be compared on the
same grounds. A choice was made to compare them similarly at the acceleration unit level.

Figure 7.11: Box plot of Ratio vs application of thrust scaling for high- and low-frequency shaking
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Layout and Arm Length Analysis
Fixing the configuration with placement on the x-axis with a low frequency shaking, the layout
and inter-accelerometer arm lengths are varied with the values given in Table 7.3. Three
different layouts with varying numbers of accelerometers are described in Section 3.3.2. The
x-axis placement for Layout 4 has one pair on the x-axis and the other on the y-axis. Also,
three gradiometer arm lengths for the pair are explored to observe any effect on the distance
from the COM.

Table 7.3: Shaking settings for layout and arm length variations (ID: Setting 3)

tsh [hrs] fUB [Hz] L [m] Layout [-] Axis [-]
24 0.01 0,4, 0.6, 0.8 2, 3, 4 x

Figures 7.12a and 7.12b illustrates the ratio distribution for different layout configurations and
the inter-accelerometer arm lengths across 30 seeds, respectively. In Figure 7.12a, having an
additional accelerometer in Layout 3 (orange boxes) than in Layout 2 (blue boxes) lowers the
median ratio by ≈ 1.5. Layout 3 performs better with a lower median than Layout 2 because
of the addition of common mode observations. In contrast, Layout 2 only has differential
mode equations, thus having three fewer observation equations to solve during calibration,
making the parameter estimation more susceptible to noise in observations. However, the
performance improvement only becomes apparent at higher thrust acceleration levels. At
thrust acceleration of Tacc = 2 × 10−6m/s2/

√
Hz (leftmost group of boxes), the variability

between the two (blue and orange boxes) is quite similar, indicating susceptibility to noise
in the observations. On the other hand, Layout 4 (green boxes) significantly outperforms
the other two layouts by an order of magnitude. Although adding an accelerometer at the
COM in Layout 3 provides another set of observations, the centre accelerometer is oblivious
to the impact of gravity gradients and rotational acceleration terms as it is at the COM. In
contrast, with an additional pair on another axis in Layout 4, not only does it provide common
mode observations but also an additional set of differential mode observations, thus adding
sensitivity of gravity gradients and rotational acceleration to the observations, resulting in an
improved performance by a significant reduction in ratio magnitude and variability across the
seeds.
Figure 7.12b depicts the effect of inter-accelerometer arm lengths on the ratio quality. One
would expect that having a longer arm length will help boost the gravity gradients and rotational
acceleration effects during calibration, but the same applies when reconstructing arcst

ng and ϵng.
However, the ratio variation and median across all the lengths have similar variability (box
height) and medians, and no stand-out improvement in ratio for a given arm length. Therefore,
the inter-accelerometer arm length is deemed as a trivial factor and is left as a free variable
for designers.
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(a) (b)

Figure 7.12: a) Box plot of Ratio vs Thrust for Layouts 2, 3 and 4. b) Box plot of Ratio vs Thrust for gradiometer
arm lengths of 0.4, 0.6 and 0.8 m. (ID: Setting 3)

Shaking Duration Analysis
Finally, the shaking duration for calibration is varied, lasting a few hours to a day, as given in
Table 7.4. For the time being, Layout 3 is selected as the improved performance of Layout
4 would not explicitly highlight the shaking duration’s effect. Figure 7.13 visualizes the ratio
variation for duration settings. As expected, longer shaking durations help lower the ratio Q3,
as longer shaking leads to more observations for the least squares inversion. At a thrust
acceleration of 2 × 10−6m/s2/

√
Hz (leftmost group), a shaking duration of at least 24 hrs is

required to be confident that the requirement is fulfilled as the box lies well below it because for
shorter durations (blue, orange and green box), the boxes violate the requirement. To achieve
short durations, one must choose a higher thrust acceleration magnitude.

Table 7.4: Shaking settings for shaking duration variation (ID: Setting 4)

tsh [hrs] fUB [Hz] L [m] Layout [-] Axis [-]
6, 12, 18, 24 0.01 0.6 3 x



7.3. Narrowing down to favourable settings 68

Figure 7.13: Box plot of Ratio vs Thrust for different shaking durations (ID: Setting 4).

A higher thrust acceleration (middle and rightmost group) lowers the ratio for all settings as the
box height gets shorter by approximately 1.5. This indicates that randomness plays a major
role in calibration performance at lower thrust levels. Opting for a higher thrust acceleration
gives more freedom to select other variables, such as the shaking duration and frequency,
which can help conserve fuel, and the number of accelerometers and their placement, which
is imperative for the volume and power budget of the satellite. However, a thrust value of
2 × 10−6m/s2/

√
Hz is already at the limits of the FCT requirements considered in this report

(refer to Section 3.3.3), making those variables vital for the performance of the calibrated
accelerometers.

Confirming the Analysis across 200 seeds
A shaking duration analysis of 200 seed realizations is conducted to gain further confidence
in the choices made so far with the settings mentioned in Table 7.5. Figure 7.14 depicts that
at least 24 hrs of shaking (middle teal coloured box) is indeed required for the middle 50%
of the ratios produced to be below the requirement. Around 88% of realizations satisfy the
requirement. For longer shaking durations, the ratio improves, but the reduction rate slows
down as well. Figure 7.15a depicts the evolution of the square root of the ratio’s median
as the shaking duration increases, normalized to the 6 hrs of shaking. The red line is the
theoretical

√
n law, which states that the standard error of the estimated parameters in a least

squares fit reduces by a factor of
√
n, where n is the number of observations in a least squares

problem. The normalizedmedian does not fully agree with the law. The law is for the estimated
parameters of the least squares fit following a normal distribution. In contrast, the ratio is a
derived parameter that does not follow a normal distribution but a right-skewed distribution, as
shown in Figure 7.15b, where the histogram representation of the ratio for different shaking
durations is given. The right-skewness can also be spotted from all the box plots where the
mean of the ratio lies close to or above the Q3 of the data set. However, qualitatively, it does
signify that the reduction rate slows down for higher shaking durations. Shaking durations
above 30 hrs have little performance improvement, with approximately 95% of realizations
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satisfying the requirement.
At a thrust acceleration of 2× 10−6m/s2/

√
Hz, an average of 0.16 kg of fuel is consumed at 24

hrs per manoeuvre. A total of 6.72 kg of fuel is consumed in the mission’s lifetime if 42 shaking
manoeuvres are performed.

Table 7.5: Shaking settings for shaking duration variation at Tacc = 2× 10−6 m/s2/
√
Hz. (ID: Setting 5)

Tacc [m/s2/
√
Hz] tsh [hrs] fUB [Hz] L [m] Layout [-] Axis [-]

2× 10−6 6, 12, 18, 24, 30, 36, 42 0.01 0.6 3 x

Figure 7.14: Box plot of Ratio vs Duration for 200 realizations (ID: Setting 5)

(a) (b)

Figure 7.15: a) Median of the square root of the ratio normalized w.r.t. the 6 hrs of shaking duration (ID: Setting
5). b) Percentage histogram of ratio for different durations (ID: Setting 5).
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If the budget allows, one could always opt for one additional accelerometer for Layout 4, as
it greatly outperforms other layouts. Figure 7.16 shows the ratio variation for Layout 4 across
200 seeds. It allows us to lower the thrust acceleration level to 6×10−7m/s2/

√
Hz and reduce

the shaking duration to 6 hours (second group’s blue box). This leads to a fuel consumption of
0.012 kg per manoeuvre. As discussed, an additional pair adds sensitivity to gravity gradients
and rotational acceleration terms on another axis. However, this comes at a price of additional
power consumption of 2W and a mass of 1.5 kg.

Figure 7.16: Box plot of Ratio vs Thrust for different shaking durations for Layout 4.

7.4. Modified Power Ratio
Due to the accommodation of the LTI assembly, the along-track placement of the accelerome-
ters may not be possible. Layout 3 with y-axis placement is envisioned to be flown on board the
NGGM satellites. As discovered in Section 7.3, the y-axis placement is the worst-performing
due to the absence of a constant pitch rate from attitude control, making the configuration
susceptible to noise for calibration. However, the presence of the centre accelerometer in
Layout 3 allows a modified approach to reconstruct the non-gravitational acceleration arcst

ng for
science mode.
Previously, arcst

ng was constructed by averaging the calibrated acceleration at nominal posi-
tions of all three accelerometers using Equation 5.69. However, the off-centre placement and
position offset δr will increase the estimation error of calibrated acceleration in Equation 5.67.
Therefore, instead of reconstructing arcst

ng by averaging the three accelerometers, arcst
ng is re-

constructed by just the centre accelerometer. It has no gravity gradients and rotational accel-
eration effects as it is defined as the reference for COM. The rest of the steps to calculate the
power ratio follow as described in subsection 7.2.1. The shaking signal settings are defined
in Table 7.6. The thrust acceleration is set to the upper limit for FCT and a shaking duration
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of 24 hrs to simulate a likely scenario for the mission. The shaking frequency is also varied
since its performance was not assessed for the y-axis placement.
Figure 7.17 compares the effect of two ways of reconstructing arcst

ng on the ratio at high- and
low-frequency shaking. Using just the central accelerometer provides no improvement over
averaging all three accelerometers, as the median, Q1, andQ3 are similar when incorporating
all three or using just the central accelerometer for high- and low-frequency shaking. Even
shaking at low frequency proves to be fruitless, as the observations are too noisy. Moreover,
Figure 7.18 shows that utilizing only the central accelerometer increases the noise, especially
at high frequencies, which is averaged out when using three accelerometers.
As it turns out, the off-centre placement and position offset δr are not influential in reconstruct-
ing the measurement error in science mode. During the calibration, all three accelerometers
have to be used, and due to the placement on the y-axis, the estimation of M and K ma-
trices is marred, leading to poor calibration quality. Only 35% of realizations out of 200 (re-
trieved from the histogram, not shown) fall under the requirement for low-frequency shaking
compared to 88% for the same shaking signal, but the accelerometers were placed on the
x-axis. A higher thrust acceleration is a must to calibrate this configuration. From Figure 7.19,
a thrust acceleration of at least 8 × 10−6m/s2/

√
Hz is required for the box to fall below the

requirement, which is not possible with the current cold gas thruster’s capability. Additionally,
such high thrust acceleration falls outside the measurement range ±6.4 × 10−6ms−2 of the
accelerometers. Assuming it is possible, it will consume at least 0.80 kg of fuel for 30 hrs of
shaking, which results in around 34 kg of fuel for 42 shaking manoeuvres.

Table 7.6: Shaking settings for modified metric. (ID: Setting 6)

T [m/s2/
√
Hz] tsh [hrs] fUB [Hz] L [m] Layout [-] Axis [-]

2× 10−6 24 0.01, 0.1 0.6 3 y

Figure 7.17: Box plot of Ratio vs Shaking frequency for arcst
ng reconstruction using all three accelerometers or

just the central accelerometer (ID: Setting 6).
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Figure 7.18: ASD of the ϵng,LoS,rel for arcst
ng reconstruction by averaging all three accelerometers or utilizing just

the central accelerometer at T = 2× 10−6 m/s2/
√
Hz (ID: Setting 6).

Figure 7.19: Box plot of Ratio vs Thrust for 24 and 30 hrs of shaking for Layout 3 placed on y-axis.



8
Conclusion and Recommendations

This chapter brings a conclusion to the study by answering the research questions in Sec-
tion 8.1 based on the results presented in Chapter 7, as well as the recommendations for
future work in Section 8.2.

8.1. Conclusion
This study aimed to support the accelerometer data calibration for the proposed NGGM mis-
sion, incorporating the lessons learnt from previous gravity missions. The development of a
comprehensive calibration tool allowed the exploration of multiple accelerometer configura-
tions at varying shaking signals to understand the factors influencing the calibration perfor-
mance. The objective of this thesis was to answer the following research question:
To what extent can the shaking manoeuvres be used to calibrate the accelerometers by incor-
porating accurately the noise and error characteristics of the accelerometers and star trackers?
To achieve this, the following set of sub-questions was formulated. Each sub-question is ad-
dressed in the following paragraphs, leading to answering the main research question.
1. What is a favourable configuration of accelerometer placement to retrieve non-gravitat-

ional acceleration along the laser’s LoS?
The calibration of the data is best when the accelerometers are placed along the x-axis of
the body-fixed frame (approximately in the along-track direction), followed by the z-axis,
and the y-axis performs the worst. This is attributed to the presence of an angular rate
of −1.13mrad/s about the y-axis (pitch rate) arising from the satellite’s attitude following
approximately an along-track pointing of its body-fixed x-axis. The presence of pitch
rate boosts the centrifugal acceleration of the shaking manoeuvre for the x- and z-axis
placed acceleration, contrary to the y-axis placement. Moreover, the x-axis performs
better than the z-axis, even though the pitch rate effect is also felt for the radially placed
accelerometers. Analysis of the relative non-gravitational measurement error ϵng,LoS,rel
for the same set of parameters revealed that the accelerometer placement makes no
difference in the error signature, indicating that the along-track placement performance
stems from the better estimation of parameters during calibration. Due to the electrode
layout of the accelerometers, the along-track placed accelerometers get a signal boost
due to the projection of the angular acceleration about the y-axis onto the z component of
the linear acceleration. The radially placed accelerometers lack any projection of angular
acceleration on the x component of the linear acceleration, leading to worse estimation
relatively.
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Having more accelerometers further aids the calibration. Layout 3 produces a lower
median error ratio by ≈ 1.5 than Layout 2 due to the addition of common mode obser-
vations. However, the variability in the ratio is similar at lower thrust acceleration levels
at 2× 10−6m/s2/

√
Hz with a shaking duration of 24 hrs. Layout 4 outperforms the other

layouts with a median lower by a factor of 4 to 6, and has little variability with the same
shaking manoeuvre setting. A second pair of accelerometers provides common mode
observations and an additional sensitivity to gravity gradients, centrifugal and Euler ac-
celerations, which are lacking in Layout 3.
Finally, the inter-accelerometer length (distance between the accelerometers in a pair)
has little effect on calibration with lengths tested between 0.4 to 0.8m. The ratio values
are similar across all thrust levels, with no standout improvement for a particular length.
Due to the accommodation of the LTI assembly, only a y-axis placement might be pos-
sible for the accelerometers. Layout 3 allows us to modify the calculation of ϵng,LoS,rel in
science mode by accounting only for the central accelerometer to avoid the error ampli-
fication due to the off-centre placement of accelerometers. The calibration performance
shows no improvement for the modified metric. On the contrary, the noise at higher
frequencies is amplified. A thrust of at least 8 × 10−6m/s2/

√
Hz is required to have a

chance of fulfilling the requirement with confidence. But the thrust falls outside the mea-
surement range of the accelerometers. If an along-track configuration is considered, the
racetrack configuration of the LTI system may have to be modified with longer optical
tubes to accommodate the accelerometers in an already tight space, making the LTI
system vulnerable to thermal effects.

2. What shaking manoeuvre is optimal for data calibration?
The lower frequency shaking improves the calibration quality as it is more stable across
different seeds and is less prone to producing large ratios. It shows a lower variability
due to the accumulation of a higher angular rate magnitude variation during shaking
compared to the high-frequency signal. However, to compare the shaking frequency
on similar grounds, the thrust acceleration is scaled during the low-frequency shaking
signal generation to have the same magnitude variability in acceleration units for low-
and high-frequency shaking. The thrust of the low-frequency ASD filter used to create
the shaking signal must be scaled as it has a lower power due to a lower area under the
signal than the high-frequency shaking ASD filter. This produces a similar magnitude
variability of the acceleration shaking signal in the time domain, but also increases the
angular rates of the shaking signal for low-frequency shaking.
Longer shaking durations improve the quality by adding more observations into the least
squares problem. But, the rate of improvement slows down at higher shaking durations
with the reduction of the square root of the ratio’s median roughly following the

√
n law.

The discrepancy arises as the ratio is a derived parameter and follows a right-skewed
distribution instead of a normal distribution.
A higher thrust acceleration improves the shaking quality by reducing the ratio values
and variability across all settings. A high enough thrust acceleration, such as more than
4×10−6m/s2/

√
Hz, gives more freedom to choose other variables such as the number of

accelerometers, their placement in the body and the shaking duration of calibration but
any acceleration higher than ±6.4× 10−6ms−2 falls outside the measurement range of
the accelereomters. Additionally, given the current thruster requirements and cold gas
thrusters capability, a maximum of 2 × 10−6m/s2/

√
Hz is considered which is already

at the limits of thrusters for fulfilling the ϵng,LoS,rel requirement for Layout 3 placed on
x-axis at 24 hrs of shaking duration. Any lower thrust or shaking duration would require
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switching to Layout 4.
3. What is the effect of the shaking method on mission performance?

Assuming that 42 shaking manoeuvres are performed in the mission, Layout 3, with
accelerometers placed on the x-axis, will consume at least 7 kg of fuel in total for a thrust
of 2 × 10−6m/s2/

√
Hz and 24 hrs of shaking. Suppose the accelerometers must be

placed on the y-axis due to accommodation constraints, a higher thrust is necessary
with at least 24-30 hrs of shaking manoeuvres, consuming about 34 kg of fuel overall
assuming that the accelerometers and thrusters are capable to achieve it. Any lower
thrust or shaking duration to reduce fuel consumption would require opting for Layout
4 with four accelerometers. However, an additional accelerometer will add 1.5 kg to the
satellite’s mass and a power consumption of 2W. Although the derived estimates fall
within the 100 kg fuel limit, a smart selection of configuration can help conserve fuel for
other manoeuvres such as detumbling, orbit maintenance and laser acquisition, thus
prolonging the mission lifetime beyond seven years. Although Layout 4 helps conserve
fuel, the additional power consumption of 2W may be detrimental depending upon the
power budget. With the presence of the central accelerometer in Layout 3, the off-centre
accelerometers can be switched off during science mode to reconstruct arcst

ng to conserve
power.

Based on the current thruster requirements and hardware performance, an along-track place-
ment of accelerometers with low-frequency shaking is necessary to achieve an acceptable
level of calibration performance and fulfill the stipulated relative non-gravitational acceleration
measurement error. If the along-track placement is impossible due to LTI accommodation, the
thruster requirements and accelerometer characteristics must be revised to make the calibra-
tion more stable to random noise in the measured data.
Overall, calibrating accelerometer data with a shaking manoeuvre is a powerful technique that
accounts for a comprehensive accelerometer model that other calibration techniques lack. It
is an internal calibration technique that solely relies on the data recorded by the satellite’s
sensors on board, avoiding the reliance on generating a detailed satellite model and/or using
external physical models of the atmosphere or Earth’s gravitational field. However, the biases
in the data cannot be estimated using this method. A hybrid calibration method combining
the calibration via GPS-based orbit determination and calibration via shaking manoeuvre is
required for a total calibration. The GPS-based orbit determination calibration uses a simple
model of bias and scale factors for the accelerometer, where the scale factors can be supplied
by the calibration via a shaking manoeuvre.

8.2. Recommendations
This report established a foundation to study the different shaking manoeuvres and configura-
tions to aid the calibration of the proposed NGGM mission. Several points of interest require
further investigation and refinement to address the limitations encountered in this study:
1. The ratio metric to assess the calibration performance is influenced by the window length

selected in Welch’s method to estimate the ASD, and the sampling frequency of the
instrument. A different selection for them would result in a different spectrum. A metric
which stays comparable across accelerometers with different sampling rates and window
selection will help generalise the method to other missions.

2. The star-tracker and body-fixed frame are assumed to be aligned perfectly. A misalign-
ment for future studies should be considered to study the effect of this error.

3. The orbit generation in this study is used only for the satellite’s position w.r.t. Earth for
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gravity gradients and attitude observations. The shaking signal generation is decoupled
from the orbit simulation, assuming that any desired shaking signal can be generated
given an ASD. There is no closed-loop dynamic system simulating a shaking where
thruster limitations, such as slew and thruster command rates, are considered. Hav-
ing chosen an optimal region of the shaking signal, the settings could be refined more
appropriately, considering the thruster limitations. Furthermore, the attitude dynamics
are not considered. It is assumed that the attitude control system can meet the needs
of the shaking manoeuvre. Therefore a fully-coupled simulation between the satellite
dynamics and desired shaking signal is recommended.

4. The study considers the ion thruster noise and thrust range requirements as the thrusters’
noise and thrust range capabilities. Moreover, the cold gas thrusters are assumed to
have similar noise and thrust magnitude capabilities (even higher thrust for y-axis place-
ment of the accelerometers). The study should be refined once more information on the
thrusters is available. This study considers the noise requirement of thrusters as the
actual noise, which is a conservative estimate.

5. The shaking signal generation follows a similar production method as the noise of the
sensors, that is, convolving a filter of desired ASD with white noise. However, in a real
mission, the shaking signals are pseudo-random and pre-programmed into the flight
computer. Therefore, the shaking signal generation should be made more deterministic
once an optimal region of shaking settings is identified to run a comprehensive analysis
on narrowing down the optimum while considering the recommendations of the previous
point.

6. The orbit generation does not consider the effect of solar cycles on calibration perfor-
mance. At high solar activity, the non-gravitational signal has a higher signature. While
the satellite is assumed to be drag compensated in this study, the calibration perfor-
mance should be assessed for an uncompensated high solar activity scenario.

7. Finally, the calibration tool works independently of the data generation tool. Therefore,
the data generation tool can be tweaked according to different missions/applications. For
future studies, more emphasis has to be placed on the data generation tool.



A
Linearization Tools

A.1. Linearization of an Inverse Matrix
During the derivation of observation equations, partials of the inverse of the calibration matrix
M−1 w.r.t to the elements of the original matrix M are required, where M ≈ I .
Let the calibration matrix be expressed as

M = I + δM + δδM (A.1)

where I ≫ δM ≫ δδM . Further, using a Neumann series, an inverse of a matrix can be
written as

(I −A)−1 = I +A +A2 +A3 + ... (A.2)

Then the inverse of the calibration matrix is expressed as

M−1 = (I + δM + δδM )−1

= (I + δM + δδM )−1(I + δM )(I + δM )−1

= ((I + δM )−1(I + δM + δδM ))−1(I + δM )−1

= (I + (I + δM )−1δδM )−1(I + δM )−1

= (I − (I + δM )−1δδM +O(((I + δM )−1δδM )2))(I + δM )−1

= (I − (I + δM )−1δδM +O(δδM2))(I + δM )−1

= (I + δM )−1 − (I + δM )−1δδM (I + δM )−1 +O(δδM2)

(A.3)

Consider matrix M as a function of δM , M (δM ) = I + δM . Expanding it using a Taylor
series expansion, the linearized equation is

M (δM ) = I + δM0 + δδM , where δδM = δM − δM0 (A.4)

The inverse M−1 is also a function of δM from Equation A.1 and can be expanded into a
series using Equation A.3:

M−1(δM ) = (I + δM0)
−1 − (I + δM0)

−1δδM (I + δM0)
−1 (A.5)

where δδM = δM − δM0 is the parameter update to the approximate value δM0. Only
(I + δM0)

−1 is relevant when calculating the inverse M−1(δM0), and (I + δM0)
−1δδM (I +

δM0)
−1 is relevant for calculating the partials ∂(δM−1)

∂(δM )
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A.2. Derivatives of Matrix Products
In many instances, partials of a matrix product AXB is required w.r.t. the parameter matrix
X . Consider a matrix product C = AXB .
The vectorization operation vec(C ) stacks the columns of the matrix into one column vector c

c = vec(C ) = vec(AXB) = (BT ⊗A)x (A.6)

where ⊗ is the Kronecker product. Thus, the derivative of c w.r.t to x is

∂c

∂x
=

(BT ⊗A)x

∂x
= (BT ⊗A) (A.7)



B
Linearized Equations

B.1. Differential mode
For the partials w.r.t. to the position offsets, Fd needs to be arranged differently. Let’s look at
the term δrTd13G

T
n (Hc13 + δδMc13)

T in Equation 5.42. For further convenience, define Un =
(Hc13 + δδMc13)Gn. Then Fd can be written as

Fd = ...+


δrTd13U

T
1

.

.
δrTd13U

T
N

+ ...

= ...+


δrTd13col(UT

1 ,1) δrTd13col(UT
1 ,2) δrTd13col(UT

1 ,3)
. . .
. . .

δrTd13col(UT
N ,1) δrTd13col(UT

N ,2) δrTd13col(UT
N ,3)

+ ...

= ...+


col(UT

1 ,1)T δrd13 col(UT
1 ,2)T δrd13 col(UT

1 ,3)T δrd13
. . .
. . .

col(UT
N ,1)T δrd13 col(UT

N ,2)T δrd13 col(UT
N ,3)T δrd13

+ ...

(B.1)

where col(A, n) returns the n-th column of a matrix A. Note that col(AT , n) = row(A, n)T
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vec(Fd) = ...+ vec



row(U1,1)δrd13 row(U1,2)δrd13 row(U1,3)δrd13

. . .

. . .
row(UN ,1)δrd13 row(UN ,2)δrd13 row(UN ,3)δrd13


+ ...

= ...+



row(U1,1)
.
.
.

row(UN ,1)
row(U1,2)

.

.
row(UN ,2)
row(U1,3)

.

.
row(UN ,3)



δrd13 + ...,

(B.2)

Since

row(Un, r) = row((Hc13 + δδMc13)Gn, r)

= row((Hc13 + δδMc13, r)Gn,
(B.3)

the partials w.r.t. δrd13 and δrc13

∂vec(Fd)

∂(δrd13)
=



row(U1,1)
.
.

row(UN ,1)
row(U1,2)

.

.
row(UN ,2)
row(U1,3)

.

.
row(UN ,3)



+ ... =



row(Hc13,1)G1

.

.
row(Hc13,1)GN

row(Hc13,2)G1

.

.
row(Hc13,2)GN

row(Hc13,3)G1

.

.
row(Hc13,3)GN



+ ... (B.4)
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∂vec(Fd)

∂(δrc13)
=



row(Hd13,1)G1

.

.
row(Hd13,1)GN

row(Hd13,2)G1

.

.
row(Hd13,2)GN

row(Hd13,3)G1

.

.
row(Hd13,3)GN



+ ... (B.5)

But this is just one part of the partials w.r.t. the position offsets. In Equation 5.42 the terms
K1(a

np
1 +Gδr1)

2 and K3(a
np
3 +Gδr3)

2 depend on δr1 and δr3, respectively. Therefore, δr1
dependent term of Fd can be written as

vec(Fd) = ...+
1

2
vec




.

.
((anp

1,n +Gnδr1)
2)TKT

1

.

.


+ ... (B.6)

Since K1 is a diagonal matrix, it can be simplified to

vec(Fd) = ...+
1

2



.

.
(anp

1x,n + row(Gn,1)δr1)2K1x

.

.
(anp

1y,n + row(Gn,2)δr1)2K1y

.

.
(anp

1z,n + row(Gn,3)δr1)2K1z

.

.



+ ... (B.7)
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The partial w.r.t. δr1 is then

∂vec(Fd)

∂(δr1)
=



.

.
(anp

1x,n + row(Gn,1)δr1)2K1xrow(Gn,1)
.
.

(anp
1y,n + row(Gn,2)δr1)2K1yrow(Gn,2)

.

.
(anp

1z,n + row(Gn,3)δr1)2K1zrow(Gn,3)
.
.



. (B.8)

Similarly, the partial w.r.t. δr3 is (note the sign difference)

∂vec(Fd)

∂(δr3)
= −



.

.
(anp

3x,n + row(Gn,1)δr3)2K3xrow(Gn,1)
.
.

(anp
3y,n + row(Gn,2)δr3)2K3yrow(Gn,2)

.

.
(anp

3z,n + row(Gn,3)δr3)2K3zrow(Gn,3)
.
.



. (B.9)

For any function f , the partial derivative w.r.t. δrc13 can be written as

∂f

∂(δrc13)
=

∂f

∂(δr1)
· ∂(δr1)

∂(δrc13)
+

∂f

∂(δr3)
· ∂(δr3)

∂(δrc13)
(B.10)

Since δr1 = δrc13 + δrd13 and δr3 = δrc13 − δrd13

∂(δr1)

∂(δrc13)
= I ,

∂(δr1)

∂(δrd13)
= I ,

∂(δr3)

∂(δrc13)
= I ,

∂(δr3)

∂(δrd13)
= −I (B.11)

Therefore,
∂f

∂(δrc13)
=

∂f

∂(δr1)
+

∂f

∂(δr3)
, (B.12)

and similarly
∂f

∂(δrd13)
=

∂f

∂(δr1)
− ∂f

∂(δr3)
. (B.13)

Now, the partials in Equations (B.8) and (B.9) can be combined with partials in Equations (B.4)
and (B.5):
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∂vec(Fd)

∂(δrd13)
=



.

.
row(Hc13,1)Gn

.

.
row(Hc13,2)Gn

.

.
row(Hc13,3)Gn

.

.



+



.

.
(anp

1x,n + row(Gn,1)δr1)2K1xrow(Gn,1)
.
.

(anp
1y,n + row(Gn,2)δr1)2K1yrow(Gn,2)

.

.
(anp

1z,n + row(Gn,3)δr1)2K1zrow(Gn,3)
.
.



+



.

.
(anp

3x,n + row(Gn,1)δr3)2K3xrow(Gn,1)
.
.

(anp
3y,n + row(Gn,2)δr3)2K3yrow(Gn,2)

.

.
(anp

3z,n + row(Gn,3)δr3)2K3zrow(Gn,3)
.
.



,

(B.14)

∂vec(Fd)

∂(δrc13)
=



.

.
row(Hd13,1)Gn

.

.
row(Hd13,2)Gn

.

.
row(Hd13,3)Gn

.

.



+



.

.
(anp

1x,n + row(Gn,1)δr1)2K1xrow(Gn,1)
.
.

(anp
1y,n + row(Gn,2)δr1)2K1yrow(Gn,2)

.

.
(anp

1z,n + row(Gn,3)δr1)2K1zrow(Gn,3)
.
.



−



.

.
(anp

3x,n + row(Gn,1)δr3)2K3xrow(Gn,1)
.
.

(anp
3y,n + row(Gn,2)δr3)2K3yrow(Gn,2)

.

.
(anp

3z,n + row(Gn,3)δr3)2K3zrow(Gn,3)
.
.



.

(B.15)
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B.2. Common mode
First, the offset δrd13 is looked at:

Fc = ...+


.
.

δrTd13G
T
nM

T
d13(H

−T
c13 δδM

T
c13H

−T
c13 −H−T

c13 )
.
.

+ ... (B.16)

As derived during linearization of differential mode equations

∂vec




.

.
xTAT

n

.

.




∂x
=



.

.
row(An,1)

.

.
row(An,2)

.

.


, (B.17)

the partial w.r.t.. δrd13 is

∂vec(Fc)

∂(δrd13)
= −



.

.

row(H−1
c13Md13Gn,1)

.

.

row(H−1
c13Md13Gn,2)

.

.

row(H−1
c13Md13Gn,1)

.

.



, (B.18)

Second, consider the offset δrc13:

Fc = ...−


.
.

(δrc13 − δr2)
TGT

n

.

.

 . (B.19)

Using Equation (B.17), the partial is
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∂vec(Fc)

∂(δrc13)
= −



.

.
row(Gn,1)

.

.
row(Gn,2)

.

.
row(Gn,3)

.

.



. (B.20)

The partial w.r.t. offsets δr1 and δr3 are still to be derived:

Fc = ...− 1

2


.
.

((anp
1,n +Gnδr1)

2)TK1(H
−T
c13 −H−T

c13 δδM
T
c13δδH

−T
c13 )

.

.



− 1

2


.
.

((anp
3,n +Gnδr3)

2)TK3(H
−T
c13 −H−T

c13 δδM
T
c13δδH

−T
c13 )

.

.

+ ...

...+
1

2


.
.

((anp
2,n +Gnδr2)

2)TK2(H
−T
2 −H−T

2 δδMT
2 δδH−T

2 )

.

.

 .

(B.21)

The above equation is of the form

vec(Fc) = vec




.

.
((an +Anx)

2)TB
.
.


 =



.

.
((an +Anx)

2)T col(B ,1)
.
.

((an +Anx)
2)T col(B ,2)
.
.

((an +Anx)
2)T col(B ,3)
.
.



. (B.22)

Then, the partial of this equation is
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∂vec(Fc)

∂(x)
= 2



. .

. .
(an +Anx)

T col(An,1) ◦ col(B ,1) ... (an +Anx)
T col(An,3) ◦ col(B ,1)

. .

. .
(an +Anx)

T col(An,1) ◦ col(B ,2) ... (an +Anx)
T col(An,3) ◦ col(B ,2)

. .

. .
(an +Anx)

T col(An,1) ◦ col(B ,3) ... (an +Anx)
T col(An,3) ◦ col(B ,3)

. .

. .



,

(B.23)
where ◦ denotes element-wise multiplication. Using Equation (B.23), the partials are

∂vec(Fc)

∂(δr1)
=

−



. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,1) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,1)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,2) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,2)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,3) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,3)

. .

. .


,

(B.24)

∂vec(Fc)

∂(δr3)
=

−



. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,1) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,1)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,2) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,2)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,3) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,3)

. .

. .


.

(B.25)

δr2 is assumed to be zero; thus, its partials are not required. Finally, using Equations (B.12)
and (B.13), the partials can be combined to arrive at the final form:
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∂vec(Fc)

∂(δrd13)
=

−



. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,1) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,1)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,2) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,2)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,3) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,3)

. .

. .



+



. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,1) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,1)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,2) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,2)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,3) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,3)

. .

. .



−



.

.
row(H−1

c13Md13Gn,1)
.
.

row(H−1
c13Md13Gn,2)

.

.
row(H−1

c13Md13Gn,1)
.
.


,

(B.26)
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∂vec(Fc)

∂(δrc13)
=

−



. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,1) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,1)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,2) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,2)

. .

. .

(anp
1,n +Gnδr1)

T col(Gn,1) ◦ col(K1H
−T
c13 ,3) ... (anp

1,n +Gnδr1)
T col(Gn,3) ◦ col(K1H

−T
c13 ,3)

. .

. .



−



. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,1) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,1)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,2) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,2)

. .

. .

(anp
3,n +Gnδr3)

T col(Gn,1) ◦ col(K3H
−T
c13 ,3) ... (anp

3,n +Gnδr3)
T col(Gn,3) ◦ col(K3H

−T
c13 ,3)

. .

. .



−



.

.
row(Gn,1)

.

.
row(Gn,2)

.

.
row(Gn,3)

.

.


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C
Planning

Figure C.1 shows the work breakdown structure to aid the research by giving a hierarchical
view of the tasks in each phase of the thesis. It provides a framework to list down the major
activities and break them into smaller tasks. Based on the work breakdown structure, a Gantt
chart was proposed to keep track of the timeline highlighted by Figures C.2 to C.4.

Figure C.1: Work breakdown structure

Figure C.2 shows the initial plan of the thesis after the literature review. Themonths of July and
August were dedicated to developing the base methodology with Layout 3, y-axis placement,
since it is the method detailed in the report. The mid-term review was planned to be in the last
week of September. A total of six weeks of holidays were planned with two weeks in August,
two after mid-term, and two weeks during the winter break.
Figure C.3 then shows the updated plan after the mid-term review. The mid-term review was
delayed by three weeks. The delay was due to an additional two weeks of holidays taken
in August, one of which was not planned due to medical reasons. An additional week was
requested as I struggled with the implementation of the methodology due to code bugs. The
two-week holiday after the mid-term was cut short to one week. The month of November was
dedicated to the implementation of the other layouts in the methodology and the verification
of them.
Figure C.4 shows the final schedule that resulted towards the end of the thesis. An additional
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week was holiday was added in December again due to medical reasons. The start of the
sensitivity analysis was delayed by one week due to trouble with the implementation of other
layouts and coding errors, which delayed the verification and validation. The results phase
was tweaked to be fused with sensitivity analysis as the objective of the thesis was modified
from finding a single best optimal solution to an exploratory study where a region of shaking
manoeuvres was presented, which would be necessary for data calibration, given the physical
constraints. One additional week was requested in the month of February, as I went off track in
the month of January to understand and implement the factorial design method for sensitivity
analysis, which eventually was not applicable for the number of combinations at hand due to
multiple seed simulations.

Figure C.2: Initial Plan.

Figure C.3: Revised plan after mid-term review.

Figure C.4: Final schedule at the end of the thesis.
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