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A B S T R A C T

Residential environments are central to addressing urban heat stress for vulnerable populations and are prime 
target areas for implementing climate adaptation strategies. The reliance on urban heat island (UHI) intensity 
mapping alone has been argued to provide limited guidance for adaptation efforts, whereas linking heat patterns 
to the built environment characteristics through frameworks such as Local Climate Zones (LCZ) provides 
actionable insights for developing neighborhood cooling strategies. However, the widely used LCZ maps have a 
few limitations, such as misrepresenting variation within types because they cannot account for sub-classes 
beyond the standardized framework. This paper presents an unsupervised clustering approach to identify resi
dential typo-morphologies across 99 Dutch cities, enhancing their relevance for urban heat vulnerability as
sessments. The analysis reveals that five morphological and canopy parameters (FSI, GSI, OSR, Havg, and FVC) 
selected from 17 parameters are sufficient to identify nine distinct residential typo-morphologies relatable to 
LCZs within 100 m × 100 m grid cells. The evaluations demonstrate that our approach detects underrepresented 
LCZ types and reveals new sub-classes absent from standard LCZ classifications. Key findings include detection of 
high-density areas (LCZ 42) reflecting recent urban densification with one of the highest UHImax next to LCZ 2 
(4.2–4.9 K), and vegetation-differentiated variants within sparse and low-rise categories LCZ 9D and LCZ 6D, 
distinguished by distinctive UHImax (0.5–0.7 K) higher compared to their reference base types. Notably, tree 
coverage remains low across low-rise and compact typo-morphologies, revealing substantial opportunities for 
greening interventions. This data-driven refinement preserves LCZ's global comparability while considering local 
specificity, providing improved frameworks to inform targeted climate adaptation strategies in residential 
environments.

1. Introduction

The past decade has been the warmest on record, with global tem
peratures rising by 1.54 (±0.13) ◦C above pre-industrial levels (Kennedy 
et al., 2024). At the same time, climate change is increasing the fre
quency and intensity of extreme heat events, leading to serious health 
risks globally. European cities face heightened vulnerability due to aging 
populationsand a lack of acclimatization to high temperatures, with 
heat-related mortality projected to rise significantly as heatwaves 
become more frequent (IPCC 2023; García-León et al., 2024). Moreover, 
the impacts of heat exposure are more pronounced in cities because of 
the urban heat island (UHI) effect, where urban areas are warmer than 

their surrounding rural counterparts (Oke, 1978).
The UHI effect intensifies heat exposure and risk, particularly for 

vulnerable populations, such as the elderly, chronically ill, and those 
with limited mobility, who are often bound to their place of residence 
(Kenny et al., 2024; Palme & Salvati, 2021). Understanding UHI varia
tion across residential neighborhoods is therefore critical for targeting 
heat adaptation efforts, especially for those at risk. Morphological pa
rameters, such as building height, density, and canyon orientation play a 
key role in modulating temperature through shading, heat storage, and 
the trapping of infrared radiation (Masson et al., 2020; Oke, 1978; Souch 
and Grimmond, 2006). At night, dense urban areas retain more heat and 
restrict airflow within street canyons, limiting cooling (Li et al., 2020; 
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Thravalou et al., 2021). The effectiveness of heat mitigation and adap
tation measures depends on how urban form influences heat retention 
and whether sufficient space is available to implement interventions 
(Bassolino et al., 2021; Rahmani and Sharifi, 2025; Villaverde et al., 
2024).

To support targeted interventions, researchers, urban planners and 
practitioners can benefit from standardized frameworks for classifying 
residential typo-morphologies, which refers to the combinations of 
building density, configuration, and land cover characteristics that 
shape local heat vulnerability within cities. It has been argued that 
relying on UHI intensity maps alone offers limited guidance for heat 
adaptation, whereas linking heat patterns to the built environment of
fers stakeholders insights for designing neighborhood cooling strategies 
(Alexander and Mills, 2014; Martilli et al., 2020). One widely estab
lished effort to do so is by leveraging the Local Climate Zones (LCZ) 
classification developed by Stewart and Oke (2012), which provides a 
standardized framework that categorizes neighborhoods into 10 built 
and 7 natural types based on surface roughness, land cover, and ge
ometry, all of which shape their thermal behavior. These categories 
were developed to enhance comparability of intra-urban UHI assess
ments beyond traditional urban–rural contrast.

Although LCZ mapping is a standard tool in urban climate studies 
(Bechtel and Daneke, 2012; Ching et al., 2018), it faces three key limi
tations for residential heat vulnerability assessment. First, the LCZ maps 
does not explicitly encode land use or function, limiting their ability to 
distinguish residential areas from commercial areas. Second, accuracy 
challenges arise from supervised classification relying on crowdsourced 
and satellite data, which vary in quality and contributor expertise 
(Bechtel et al., 2019), leading to inconsistencies in LCZ mapping efforts 
(Eldesoky et al., 2019; Geletič and Lehnert, 2016; Hidalgo et al., 2019; 
Rodler and Leduc, 2019; Verdonck et al., 2017). In the Netherlands, for 
example, certain built LCZ types (e.g., LCZ 2 and LCZ 4, which largely 
consist of historical and post-war buildings) are severely underrepre
sented or nearly absent (see Table A.1). Third, the framework's pre
defined categories limits the possibility of identifying residential 
sub-classes that reflect local or regional variations in urban form, a 
limitation acknowledged by Stewart and Oke (2012). In response, re
searchers have manually incorporated LCZ sub-classes to evaluate UHI 
impacts across socio-economic neighborhoods (López-Guerrero et al., 
2024) and to assess both extreme heat and air pollution risks in resi
dential areas (Steeneveld et al., 2018). Another study developed LCZ 
sub-classes to represent different land cover types for residential areas in 
arid regions (Eldesoky et al., 2022). Collectively, these studies illustrate 
the need for data-driven refinements that allow for systematic identifi
cation of residential typo-morphologies.

Besides LCZs, other efforts have sought to refine typo-morphologies 
for climate risk assessments using supervised learning. In the 
Netherlands, neighborhoods have been classified by historical building 
periods to assess climate stress (Kleerekoper et al., 2017; Kluck et al., 
2023), with similar classification efforts applied in Germany (Iqbal et al., 
2024; Klopfer, 2023). This approach leverages the fact that buildings 
from specific historical periods share construction methods, materials, 
and architectural styles, all of which influence thermal mass, ventilation 
patterns, and heat retention. However, while this historical categoriza
tion provides a practical starting point, it shares similar limitations as 
LCZs, as both are based on predetermined, expert-driven categories that 
assume homogeneity within groups. In reality, the built environment is 
highly heterogeneous, with neighborhoods often containing mixed 
building periods, varied construction qualities, and other modifications 
that do not conform to specific historical classification (Geiß et al., 
2019). These predefined taxonomies may oversimplify complex urban 
fabrics and overlook emergent residential forms that do not fit estab
lished typologies. Unsupervised clustering offers a potential alternative 
by reducing expert bias and autonomously revealing unrecognized 
urban form patterns (Wang and Biljecki, 2022).

These challenges highlight the need for approaches that refine 

residential neighborhoods to be both globally comparable and contex
tually relevant. This paper therefore aims to refine representative resi
dential typo-morphologies for enhanced urban heat vulnerability 
assessment using an unsupervised, data-driven approach. Furthermore, 
we pursue two interrelated objectives: (i) First, we identify which urban 
morphological and canopy parameters maximize separation between 
residential clusters while maintaining interpretability (Bishop & Nas
rabadi, 2006). This involves exploring different parameter combinations 
to determine which parameter set most effectively distinguishes resi
dential typo-morphologies. (ii) Second, we demonstrate the relevance of 
the derived residential typo-morphologies for urban heat vulnerability 
assessment. To achieve this, we pursue three complementary evalua
tions, where we compare the clustering results with standard LCZ pa
rameters, verify against building construction distribution by historical 
period and secondary 3D sources (e.g., Google Earth and 3DBAG), and 
analyze UHImax intensity patterns. Ultimately, this approach maintains 
the global comparability of LCZs while enhancing local relevance, 
providing researchers, urban planners and practitioners with a frame
work for advancing research and planning targeted climate adaptation 
interventions.

2. Methodology

2.1. Study area

In this study, we examined Dutch residential settlements with pop
ulation densities exceeding 1,000 inhabitants per km². In total, the study 
area encompassed 99 Dutch cities (Fig. 1). The Netherlands has a 
temperate maritime climate, with cities characterized by compactness 
and relatively small land areas.

For the clustering analysis, the morphological and canopy parame
ters were aggregated into 100 m × 100 m grid cells provided by 
Statistics Netherlands (CBS) for 2023. The grid covers approximately 
186,580 hectares in total and has been filtered to include only resi
dential areas with at least five inhabitants, in line with CBS’s privacy 
restrictions on smaller populations. The use of this grid offers three key 
advantages. First, it enables users to link socio-economic census data 
provided by CBS for future research extensions. Second, it ensures 
temporal consistency through fixed boundaries, unlike changing 
administrative boundaries. Third, it adopts the 100 m × 100 m resolu
tion used in existing LCZ classifications, ensuring a consistent reference 
scale when comparing the clustering results.

Fig. 2 presents the methodological workflow adopted in this study. 
First, Principal Component Analysis was applied to identify the pa
rameters that maximize variance and separation in the data space. Next, 
the Davis-Boudlin index, an internal clustering validation metric, was 
used to determine the optimal number of clusters (k) for the k-means 
algorithm. Finally, the clustering results were evaluated through three 
complementary approaches, which are described in detail in Section 2.5.

For reproducibility, all analyses were conducted using R (version 
4.4.0) and Python, with all data, code, and analytical procedures fully 
documented and available at the 4TU.ResearchData repositiory.

2.2. Urban morphological and canopy parameters

Table 1 presents 17 parameters from the domains of urban planning 
and urban climatology that influence microclimates, as identified 
through theoretical and empirical studies. All mathematical formulas 
and data sources used for calculating the parameters are provided in 
Table A.2 in the appendix.

Building heights represent a key parameter regulating temperatures 
within urban canyons by affecting wind patterns, radiation exposure and 
heat absorption (Oke, 1978). During the night, tall buildings can influ
ence urban temperatures in various ways. On one hand, they can 
contribute to warming by trapping radiation and facilitating the hori
zontal movement of warm air, known as advection, into cooler areas 
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(Kolokotsa et al., 2022). On the other hand, tall buildings can promote cooling through vertical air mixing, as turbulence brings cooler air from 

Fig. 1. Geographic locations of rural weather stations and Dutch municipalities with a population density ≥ 1000 inhabitants/km².

Fig. 2. Flowchart of the research methodology.
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higher altitudes to street level (Oke et al., 2017).
Also important are the floor space index (FSI), which reflects the 

vertical density of buildings, and the ground space index (GSI), which 
measures the horizontal coverage of buildings. Both FSI and GSI influ
ence how much solar radiation penetrates into street canyons and open 
areas, thus affecting heat accumulation (Maiullari et al., 2021; Yang 
et al., 2013). Similarly, the open space ratio (OSR) represents the pro
portion of open spaces relative to built-up areas, where the size of open 
spaces affect heat absorption and solar gain (Kolokotsa et al., 2022; 
Villaverde et al., 2024).

Street length (SL) influences both airflow within urban canyons and 
serves as a proxy for vehicular traffic activity, with longer streets typi
cally retaining more traffic and creating adverse thermal effects (Guo 
et al., 2024; Wu et al., 2022). Canyon axis orientation (CAO) affects air 
temperature by determining solar exposure on building facades, (Oke, 
1997) and by blocking prevailing winds, and limiting natural cooling 
(Elbondira et al., 2021; Wu et al., 2022; Yin et al., 2019). Likewise, the 
frontal area index (FAI) measures how much building surface area is 
exposed to prevailing wind, another key factor in influencing airflow 
patterns (Grimmond and Oke, 1999).

The aspect ratio (H/W) represent the ratio of building height to street 
width and significantly influences several microclimate factors such as 
radiative exposure (Oke et al., 2017). However, we exclude it because 
street width is not trivial to estimate, particularly in open spaces, parks, 
and intersections where multiple interpretations are possible (Lindberg 
et al., 2015). To compensate for H/W, we incorporate proxy measures of 
area-wide compactness versus sprawl, including the average Euclidean 
distance from the block center to buildings (DCR) and the minimum 
distance to the nearest building (DB), which capture the spacing be
tween buildings and the degree of contiguity within building blocks 
(Joshi et al., 2022). Additionally, we incorporate the wall area index 
(WAI), which quantifies building surfaces interacting with the ambient 
air and provides an alternative to H/W by representing vertical surfaces 
involved in radiation exchange and energy uptake (Boccalatte et al., 
2023; Sützl et al., 2024).

Another significant parameter influencing urban microclimate is sky 
view factor (SVF), which measures the fraction of sky visible from street 
level and plays a critical role in modulating both incoming shortwave 
radiation and outgoing longwave radiation, thereby affecting surface 
heating and nocturnal cooling (Middel et al., 2018).

Lastly, both pervious and impervious surfaces influence urban hy
drological processes by modifying the local surface energy balance. High 
impervious surface density (IMD) exacerbates urban heating by raising 
near-surface air temperatures, as impervious surfaces absorb solar ra
diation and release it primarily as sensible heat (Zhang et al., 2021). In 
contrast, fractional vegetation cover (FVC) mitigates heat accumulation 
by converting solar energy into latent heat through evapotranspiration 
and reducing incoming solar radiation through shading, thereby alle
viating UHI effects (Dirksen et al., 2019; Zhang et al., 2021).

2.3. Pre-processing for clustering

Principal Component Analysis (PCA) is commonly used as a pre- 
processing step in clustering analyses (see e.g., Chen et al., 2022; 
Joshi et al., 2022; Villaverde et al., 2024), as it reduces data dimen
sionality by identifying key axes of variance (Ding and He, 2004). 
However, PCA was not used for clustering in this study, but rather for 
visualizing and transforming the data (i.e., 17 parameters listed in 
Table 1) into a space that revealed key structure through variance, 
thereby informing clustering. Furthermore, we used PCA biplots in our 
exploratory data analysis to understand which key parameters contrib
uted the most to the overall variance structure and helped identify 
natural groupings in the data. Biplots provided a multivariate visuali
zation approach that captured the joint contribution of all parameters in 
explaining the overall data structure, rather than examining individual 
pairwise relationships, and helped guide the selection of key parameters Ta
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for subsequent k-means clustering analysis.
For the pre-processing stage, all parameters were standardized using 

z-scores and cleaned for outliers prior to the analysis to avoid the vari
ance of one parameter dominating the others (Tardioli et al., 2018; 
Gewers et al., 2021). We repeatedly refined the parameter selection 
using PCA biplots, removing those with low contributions (i.e., loading 
factors) and retained parameters that maximized the cumulative 
explained variance in the first two principal components, aiming for a 
threshold greater than 80%. However, the biplots served as a heuristic 
visualization tool to guide search, they alone cannot determine which 
parameter sets will yield well-separated clusters (Jolliffe and Cadima, 
2016). Consequently, in Section 2.4., we employed an internal valida
tion metric to objectively assess the clustering results of the various 
parameter sets explored through biplot analysis.

2.4. Clustering analysis

To perform the clustering analysis, we used the k-means clustering 
algorithm for its computational efficiency (Murphy, 2022), given the 
extensive geographic coverage and large volume of geospatial data 
involved in this study. Previous research have shown that k-means 
effectively identifies various typo-morphologies in urban areas (Joshi 
et al., 2022; Schirmer and Axhausen, 2019; Sützl et al., 2024; Villaverde 
et al., 2024; Wu et al., 2022). The algorithm partitioned the data into k 
non-overlapping clusters by minimizing the squared distances between 
data points and their centroids, thereby reducing intra-cluster variance 
and increasing inter-cluster separation (Murphy, 2022).

A prerequisite for k-means clustering is choosing a distance metric 
and selecting k. For this analysis, Euclidean distance was chosen as the 
distance metric. To guide the selection of k, we used the Davies-Bouldin 
Index (DBI), which evaluated the clustering quality by assessing both 
cluster compactness and separation. A lower DBI value indicated better 
separation between clusters and lower internal variance. By minimizing 
DBI, we found a k which maximizes separation while minimizing in
ternal variance (Xiao et al., 2017).

2.5. Evaluation of clustering result

The clustering results were then evaluated through three comple
mentary approaches: comparative, contextual, and UHImax analysis.

2.5.1. Cluster-LCZ comparison
We selected the parameters Havg, SVF, and IMD from the World 

Urban Database and Access Portal Tools (WUDAPT) LCZ dataset 
developed for the European domain (Demuzere et al., 2019) for the 
comparison against the derived clustering results. The Havg values spe
cifically reflect building height averages for Amsterdam, as these were 
the only city-level averages available in the dataset. In contrast, SVF and 
IMD values represent averages derived from selected European cities, 
consistent with the approach in Demuzere et al. (2019). We also incor
porated the GSI, which is equivalent to the building plan fraction (λp) as 
specified in Oke et al.’s (2017) global lookup table.

2.5.2. Contextual assessment
To evaluate how well the clustering results reflect observable urban 

form types, we focused on four polycentric Dutch cities (Amsterdam, 
Rotterdam, Utrecht, and The Hague). The contextual assessment was 
carried out through secondary sources, including the 3D Registration of 
Buildings and Addresses (3DBAG) viewer and Google Earth. These cities 
represent a wide range of housing types that mirror broader residential 
trends across Northwest Europe (Dekker et al., 2012; Priemus, 2018). 
Additional contextual checks were performed by examining the distri
bution of construction building periods within each cluster, providing 
further objectivity to the evaluation process. In total, four historical 
periods were defined to capture key morphological transitions and 
policy interventions that shaped urban housing development: these are 

pre-war (< 1950), post-war (1950–1975), urban renewal (1975–1990), 
and VINEX (< 1990).

2.5.3. UHImax analysis
We evaluated the UHImax profiles of clustering results for the four 

major Dutch cities. To calculate UHImax, we applied the semi-diagnostic 
equation proposed by Theeuwes et al. (2017). This equation estimates 
daily UHImax occurrences at a high spatial resolution by combining rural 
hourly meteorological data, including diurnal temperature range (DTR), 
total solar irradiance (S), and average wind speed (U) from nearby 
weather stations (Fig. 1.), as well as urban parameters, specifically SVF 
and FVC. The UHImax equation is expressed as follows: 

UHImax = (2 − SVF − FVC)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
DTR3⋅S

)/
U4

√

(1) 

For this study, we analyzed the 95th percentile UHImax during the 
summer of 2022 (June to September), modeled at a spatial resolution of 
5 m. The 95th percentile was calculated separately for each city, to 
represent extreme heat conditions. It is also important to note that 
UHImax only occurs under favorable meteorological conditions 
(Theeuwes et al., 2017). This period included a nationwide heatwave 
from 9 to 16 August, as reported by Royal Netherlands Meteorological 
Institute (KNMI). For further details on how the modeled UHImax was 
operationalized and access to the dataset, readers can refer to Habib 
et al. (2025).

3. Results

In this section, we present the results of the unsupervised clustering 
analysis applied to residential neighborhoods across 99 highly urban
ized Dutch cities. We first report the optimal parameter set selection and 
cluster configuration. We then characterize the clustering results (i.e. 
typo-morphologies) and evaluate their compatibility with existing LCZs, 
their contextual validity, and their relationship with UHImax intensity.

3.1. Exploratory data analysis

In Fig. 3., the biplots reveal how removing low-contribution pa
rameters increases the cumulative explained variance of the first two 
dimensions of the PCA. Starting with all 17 parameters (panel a), the 
first two dimensions explained only approximately 38% of the total 
variance, potentially indicating redundancy and noise among these pa
rameters based on their directional similarities and varying 
contribution.

Most of the improvement in cumulative explained variance occurred 
after removing the parameters related to canyon axis orientation 
(CAONS, CAOEW, CAONWSE, and CAONESW). A previous study on detecting 
urban morphological patterns have shown that canyon orientation often 
shows no clear influence in their classification models, whereas factors 
such as average building height, density, and the number of building 
blocks contribute more effectively (Taubenböck et al., 2018).

As other low-contribution parameters were progressively removed, 
the cumulative explained variance increased to over 80% in panels (g), 
(h), and (i). Since biplots provide only a heuristic visualization of clus
tering patterns, DBI analysis was used to quantitatively evaluate cluster 
separation.

3.2. Number of clusters

To guide the selection of k, we evaluated each parameter set using 
the DBI (Fig. 4). The plot in Fig. 4 reveals that both the 5 and 4b 
parameter sets (panels g and i) achieved the lowest DBI scores, on 
average. The 4b parameter set shows a notable minimum at k = 8, while 
the 5 parameter set reaches its lowest point at k = 9. Based on these 
findings, we proceeded to evaluate the clustering results for k = 8 (4b 
parameters) and k = 9 (5 parameters). The 5 parameter set showed the 
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closets alignment with parameters of the established LCZ categories. In 
contrast, the 4b parameter set generated numerous variations of low-rise 
LCZs and lead to mid- and high-rise types to be grouped together, 
reducing their distinguishability (see Table A.3 in the appendix).

3.3. Clustering results

Applying k-means clustering to five parameter sets (FSI, GSI, OSR, 
Havg, and FVC) produced nine distinct residential typo-morphologies 
relatable to existing LCZs. Table 2 and Fig. 5 presents the morpholog
ical and canopy characteristics of each cluster, while Fig. 6 and Fig. 7
provide schematic representations, spatial distributions, and grid cell 
counts. The derived clusters align with six established LCZ types while 
revealing sub-classes not captured by the standard framework. Below we 
characterize each cluster according to its morphological and canopy 
parameters, as well as its correspondence to LCZ types: 

• Cluster 1 (LCZ 9 — sparsely built): Features detached housing with 
the highest vegetation coverage (FVC ~ 70%), low building coverage 
(GSI ~ 15%), and low-rise structures (< 3 stories). This cluster ex
hibits the lowest mean UHImax intensity (2.8 K) and is predominantly 
located nearby suburban peripheries.

• Cluster 2 (LCZ 9D — sparsely built, low vegetation variant): En
compasses a variant within the sparsely built category, the ‘D’ 
subscript indicates higher sealed surface coverage (IMD ~ 35% 
compared to ~ 20% in Cluster 1), reduced FVC and tree coverage (<
25%), but similar building heights and footprint.

• Cluster 3 (LCZ 6 — open low-rise): Comprises largely of semi- 
detached houses with moderate vegetation coverage (FVC ~ 50%). 
Buildings remain low-rise (< 3 stories) with moderate building 
coverage (GSI ~ 30%).

• Cluster 4 (LCZ 6D — open low-rise, low vegetation variant): Rep
resents a less vegetated variant of open low-rise housing, featuring 

Fig. 3. PCA biplots: (a) 17 parameters, (b) 13 parameters, (c) 11 parameters, (d) 9 parameters, (e) 7 parameters, (f) 6 parameters, (g) 5 parameters, (h) 4a pa
rameters, and (i) 4b parameters. Vectors represent the loadings of each parameter on the first two principal components, with color intensity indicating their 
contribution.

Fig. 4. DBI scores across different numbers of clusters (k) for six parameter sets.
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similar building heights (< 3 stories) but significantly lower green 
space (FVC ~ 30%) and reduced tree coverage compared to Cluster 
3. Together, Clusters 3–4 comprise the most extensive spatial 
coverage in Dutch residential areas.

• Cluster 5 (LCZ 3 — compact low-rise): Contains compact row 
housing arranged in dense linear configurations with small private 
gardens. Buildings maintain similar heights to Clusters 1–4 (< 3 
stories), but have considerably denser building footprints (GSI ~ 
45%) and more impervious surfaces (48–91%) compared to Clusters 
1–4.

• Cluster 6 (LCZ 5 — open mid-rise): Consists of open mid-rise 
building arrangements with moderate vegetation cover (FVC ~ 
40%), lower building coverage (GSI ~ 30%) with taller building 
structures (5 stories) compared to Cluster 5.

• Cluster 7 (LCZ 2 — compact mid-rise): Reflects compact mid-rise 
developments that are predominantly located in city cores. The 
building stock consists largely of historical buildings (< 1950), 
averaging four stories and often forming courtyard-like configura
tions with little space for greenery and trees. It exhibits the highest 
mean UHImax intensity (4.5 K).

• Cluster 8 (LCZ 4 — open high-rise): Corresponds to open, high-rise 
areas where approximately half of the building stock consists of 
post-war structures built between 1950 and 1975. Typically located 
at the peripheries of city centers and features taller building struc
tures (6–8 stories) with moderate building coverage (GSI ~ 25%).

• Cluster 9 (LCZ 42 — compact high/mid-rise): Exhibits the highest 
building coverage (GSI ~ 70%) and extensive surface sealing. The 

mix of pre-war and post-war buildings indicates urban infill in city 
cores, where modern high-rise buildings are situated adjacent to 
compact mid-rise fabric (LCZ 2).

3.4. Evaluation of residential typo-morphologies

3.4.1. LCZs comparison
The derived clusters show varying degrees of correspondence with 

established LCZ categories (Table 2). Parameter-by-parameter analysis 
reveals at times patterns of strong alignment and systematic deviation. 
GSI values demonstrate strong correspondence, consistently aligning 
with Oke et al. (2017) ranges across most cluster types. However, sys
tematic deviations emerged in other parameters.

Havg values show relatively strong alignment with WUDAPT refer
ences for lower-rise classes, while values for mid- and high-rise clusters 
are marginally higher, particularly in the high-rise category. For 
example, open high-rise clusters (Cluster 8) yield 25–44 m compared to 
WUDAPT's 12.5 m. As shown in Fig. 6, the clustering approach in this 
study is particularly effective at identifying high-rise urban forms that 
are underrepresented in existing EU WUDAPT data (see Table A.1 in the 
appendix). Similarly, IMD values are systematically higher across all 
derived clusters, particularly pronounced in compact developments 
where values reach 48–97% compared to WUDAPT's estimates. Both 
deviations of Havg and IMD may reflect the contextual traits of Dutch 
residential environment compared to other European cities considered 
in the WUDAPT's dataset.

Meanwhile, SVF values of the derived clusters are systematically 

Table 2 
Correspondence between derived clusters and LCZs. The first column presents the derived clusters (Clusters 1-9) which adopt the naming convention of existing LCZs.

Derived clusters – LCZs GSI (%) H (m) SVF (%) IMD (%)

Data-driven Oke et al. (2017) Data-driven WUDAPT 
(AMS)

Data-driven WUDAPT 
(EU)

Data-driven WUDAPT 
(EU)

(1) Sparsely built — LCZ 9 6–18 10–20 6–9 8.6 32–60 72–85 1–47 5–21
(2) Sparsely built — LCZ 9D 7–23 10–20 6–9 8.6 46–70 72–85 7–63 5–21
(3) Open low-rise — LCZ 6 21–33 20–40 5–8 8.2 36–54 74–82 25–70 15–38
(4) Open low-rise — LCZ 6D 27–38 20–40 5–8 8.2 42–56 74–82 38–82 15–38
(5) Compact low-rise — LCZ 3 40–57 40–70 6–9 11.1 38–54 68–79 48–91 52–73
(6) Open midrise — LCZ 5 17–38 20–40 13–20 12.1 32–56 72–80 23–76 34–57
(7) Compact midrise — LCZ 2 53–79 40–70 9–17 14 29–49 66–74 55–97 63–80
(8) Open high-rise — LCZ 4 10–40 20–40 25–44 12.5 32–56 60–79 23–76 37–43
(9) Compact high/mid-rise — LCZ 42 54–86 40–60 16–45 − 31–54 63 37–98 91

Fig. 5. Distribution of morphological and canopy parameters of Cluster (1–9). Outliers beyond the displayed y-axis range are not shown for visual clarity. Tree 
coverage is one of three vegetation types that make up FVC along with shrubs and grass coverage.
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lower and more variable (29–70%) than WUDAPT's constrained ranges 
(60− 85%) across all LCZs. The SVF differences may stem from the 
higher spatial resolution DSM datasets used in this study compared to 
the coarser resolution methods underlying WUDAPT classifications, 
where SVF values are constrained to street-level perspectives and do not 
include SVF values from spaces such as courtyards, parks, and private 
gardens.

3.4.2. Contextual evaluation
The numerical and geographical distribution of the derived clusters 

(i.e., typo-morphologies) across the Netherlands, as shown in Fig. 5, 
along with the summaries of the building stock by construction period 
outlined in Table 3 and morphological and canopy parameter charac
teristics (Table 2 and Fig. 3), guided expert assessments during the 
second phase of evaluation.

The spatial distribution of the nine identified clusters across the 
Netherlands reveals varying patterns that reflect the country's historical 
urban development. Sparse and open low-rise categories dominate the 
clustering results, collectively representing approximately 79% of all 
grid cells and demonstrating the typically dispersed, low-density nature 
of Dutch residential developments. 

• Low-rise and suburban transition (Cluster 1-4)

The prevalence of Clusters 1–4 (LCZ 6 and LCZ 9) increased sub
stantially from 13–22% of the land area in 1950 to 30–43% in recent 
decades. This expansion reflects the gradual growth of low-density de
velopments outside urban cores, which aligns with urban sprawl pat
terns. Table 3 shows a temporary deceleration in this expansion between 
1975 and 1990, which aligns with documented Dutch policy initiatives 
aimed at limiting urban sprawl during this period (Bontje, 2005).

Overall, Clusters 1–4 exhibit subtle morphological differences among 
themselves. Clusters 1–2 are characterized by extremely low building 
coverage (GSI < 0.23) and high open space ratios (OSR ~ 0.8). Mean
while, Clusters 3–4 maintain the low-rise character while increasing 
built-up density (GSI ~ 0.3). Within these pairs, Cluster 2 differs from 
Cluster 1, and similarly, Cluster 4 differs from Cluster 3, primarily in 
land cover characteristics (FVC and IMD) rather than building density or 
height.

Cluster 5 represents the more compact end of low-rise development 
with dense row housing with small private gardens. 

• Mid- and high-rise urban areas (Cluster 5–9)

Mid-rise morphologies (Clusters 6–7) account for less than 8% of the 
urban fabric in this study, though their spatial concentration in major 
polycentric urban centers makes them appear more prominent in Fig. 7. 
Moreover, spatial distribution of Cluster 7 is largely within the historical 
city cores, where most of the building stocks were constructed before 
1950 (Table 3). These mid-rise historical areas, such as Amsterdam's 
neighborhoods adjacent to the canal districts, are characterized by 
distinctive courtyard configurations and narrow street canyons. Mean
while, high-rise morphologies, like Cluster 8, predominantly represent 
post-war housing estates (1950–1975) at the city peripheries, while 
Cluster 9 is concentrated in urban cores, particularly evident in Rot
terdam's reconstructed center, where more than half of the buildings are 
contemporary high-density developments blending compact mid-rise 
and high-rise characteristics.

3.4.3. UHImax analysis
Fig. 8 shows the gradients of UHImax intensities in all residential 

typo-morphologies, with differences of 1.7 ± 0.4 K between sparsely 

Fig. 6. Schematic illustration showing (a) the distribution of the residential typo-morphologies arranged relative to its relationship between height and density; (b) 
the total distribution of residential typo-morphologies grid cells across the geographic study area as shown in Fig. 1.

Table 3 
Distribution of residential LCZ types in the Netherlands by building construction period, showing the percentage of buildings in each 100 m × 100 m grid cell cor
responding to their predominant historical periods.

Clusters—LCZs Pre-war (< 1950) Post-war (1950–1975) Urban renewal (1975–1990) VINEX (> 1990)

(1) — LCZ 9 22.0 24.7 17.4 36.0
(2) — LCZ 9D 18.5 21.9 16.8 42.8
(3) — LCZ 6 13.9 30.6 25.0 30.6
(4) — LCZ 6D 13.0 30.3 20.8 35.9
(5) — LCZ 3 31.1 20.2 16.9 31.8
(6) — LCZ 5 13.4 38.8 12.7 35.2
(7) — LCZ 2 53.2 10.7 11.7 24.4
(8) — LCZ 4 1.4 49.7 9.78 39.1
(9) — LCZ 42 10.8 23.1 13.9 52.2
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built and compact areas in the four analyzed cities. Table A.1 in the 
appendix shows that the WUDAPT LCZ classification identifies only 930 
ha of compact mid-rise (LCZ 2) across the entire Netherlands, whereas 
our approach detects 8,279 ha within the 99 Dutch cities alone. Simi
larly, open mid-rise (LCZ 5) and open high-rise (LCZ 4) types are nearly 
absent from WUDAPT dataset, yet they collectively account for 9% of 
the total grid cells. Without this refined mapping, the range of UHImax 
range would not be unobserved, as these typo-morphologies would be 
erroneously aggregated into other LCZ types. Importantly, WUDAPT 
LCZ classifications in the Netherlands underrepresent the densest 
morphological types (LCZ 2 and LCZ 42), which means overlooking 
neighborhoods that experience the highest heat exposure.

Across all four cities, consistent UHImax patterns emerge with respect 
to density, height, and land cover. Sparsely built areas (LCZ 9) consis
tently show the lowest intensities (2.5–3.1 K), while compact mid- and 
high-rise areas (LCZ 2 and LCZ 42) exhibit the highest UHImax (4.1–4.9 
K) intensities. As expected, between LCZ 9 and the densest types, 
increasing density corresponds to a reduction in green coverage. FVC 
decreases from 70% in LCZ 9 to 15% in LCZ 2, while IMD shows the 
opposite trend, increasing from approximately 25% to 70%. Similarly, 
building footprints (i.e., GSI) increases from 12% in sparse types to 
65–70% in compact ones (Fig. 5, Table 2), illustrating how built-up areas 
replace vegetated surfaces as density increases. The identified sub- 
classes (LCZ 6D and LCZ 9D) also exhbit distinct UHImax intensities 

compared to their respective base types (LCZ 6 and LCZ 9). Despite 
having similar Havg and GSI values, LCZ 9D and LCZ 6D exhibit higher 
UHImax intensities than their non-D counterparts, which is higher by 
0.5–0.7 K and 0.5–0.6 K, respectively. These differences also correspond 
to approximately 15% and 25% lower FVC in the D-variants of LCZ 9 and 
LCZ 6, respectively. Notably, LCZ 6D reaches UHImax intensities (3.5–4.1 
K) similar to open high-rise types (3.1–3.9 K), despite its substantially 
lower average building height (Havg 5–8 m).

Remarkably, tree cover across all typo-morphologies ranges from 
15% to 30%, but most typologies are below 15%. Open mid-rise and 
high-rise types (LCZ 4–5) have the highest vegetation coverage after LCZ 
9. The strongest contrast occurs between LCZ 9 and LCZ 42, where 
vegetation cover differs by roughly 50%. This highlights substantial 
opportunities to expand tree cover in residential areas (especially low- 
rise areas) to help reduce heat exposure.

4. Discussion and conclusions

Motivated by the limitations of existing urban morphological clas
sifications, such as LCZs and other supervised classifications based on 
historical building period, this study developed an unsupervised, data- 
driven approach to refine residential typo-morphologies for the Dutch 
context. Our results demonstrate that our approach can preserve the 
global comparability of LCZs while improving representation of urban 

Fig. 7. Geographical distribution of the classification in Amsterdam, Rotterdam, Utrecht, and The Hague. Empirical examples (bottom-right) of the residential typo- 
morphologies found in the Dutch urban landscape; source: Google Earth, © Google LLC, 2025.
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diversity within residential settlements. Below, we discuss our findings 
in relation to the two research objectives, followed by practical impli
cations, study limitations, and future research directions.

4.1. Parameters selection for residential typo-morphologies

The first key finding of this study is that PCA reveals five parameters 
(GSI, FSI, OSR, Havg and FVC), account for most explained cumulative 
variance (80%) across all parameters sets evaluated. Together, these five 
parameters capture the key aspects of urban morphology and canopy 
(density, height, spacing, and vegetation), features that LCZ classifica
tion similarily relies on. Notably, FSI, GSI, OSR, and Havg are all needed 
to represent urban morphological characteristics, despite being strongly 
correlated. Urban morphology research shows that these density-related 
parameters, along with average building height, form a distinctive 
'spatial fingerprint' reflecting specific urban forms (Pont and Haupt, 
2023). Considering density parameters in isolation can be misleading. 
For instance, the same FSI value may correspond to either low-rise 
buildings covering entire plots or high-rise towers on small footprints 
(Pont and Haupt, 2023).

These results suggest that morphological parameters rooted in urban 
planning practice may capture LCZ characteristics more effectively than 
some traditional urban canopy parameters, at the given 100 m × 100 m 
spatial resolution examined in this study. Traditional parameters like 
SVF, while climatically relevant, may introduce noise when character
izing morphological form since they integrate both built structures and 
vegetation canopy. The practical significance of these morphological 
parameters is further supported by studies demonstrating their 
measurable impacts on building energy demands (Dab’at and Alqadi, 
2024; Liu et al., 2025) and pedestrian-level microclimate during hot 
summers (Zhang et al., 2022). Ultimately, the benefit of these five pa
rameters lies in their familiarity to urban planners and practitioners, 
facilitating integration into climate adaptation planning workflows.

4.2. Refined residential typo-morphologies and UHImax patterns

Another key finding is that our data-driven approach identified nine 
residential LCZ types, improving the detection of underrepresented 
categories (LCZ 2, LCZ 4, LCZ 5) while revealing new sub-classes (LCZ 
6D, LCZ 9D, and LCZ 42) not captured by standard LCZ classifications. 

Across the four cities, the absolute UHImax differences (1.7 ± 0.4 K) 
occur between the densest urban cores (LCZ 42 and LCZ 2) and sparsely 
built areas (LCZ 9). Furthermore, the modeled UHImax intensities in our 
study likely underestimate the total air temperature differences, espe
cially for compact typo-morphologies. This underestimation likely stems 
from Eq. (1) not accounting for additional heat contributions from 
anthropogenic sources (e.g., traffic and building energy use) that typi
cally characterize compact city centers (Javadpoor et al., 2024).

LCZ 42 largely represents recent dense high-rise developments that 
have emerged since the 1990s as part of urban densification and infill 
projects in existing urban Dutch fabric (Nabielek, 2012). Although LCZ 
42 covers less than 1% of the study area, its detection is noteworthy, 
because both LCZ 42 and compact midrise areas (LCZ 2) experience the 
highest UHImax intensities (4.1–4.7 K), making them priority targets for 
heat adaptation interventions. Previous research shows that dense, 
poorly ventilated urban areas are associated with elevated rates of 
cardiovascular-related emergency calls during heatwaves, particularly 
in socially deprived neighborhoods (Zendeli et al., 2025).

Another aspect to consider is the contribution of UHI to indoor 
overheating. While open high-rise areas (LCZ 4) areas do not exhibit 
high UHImax compared to denser neighborhoods, their open urban form 
and the predominance of post-war dwellings make them vulnerable to 
heat exposure. Most of the Dutch post-war buildings lack mechanical 
ventilation, and without adequate solar protection, they are increasingly 
susceptible to indoor overheating (Hamdy et al., 2017). In our analysis, 
we observe that roughly half of the LCZ 4 dwellings date from the 
post-war period (1950–1975). Without refined identification of these 
residential typo-morphologies, vulnerability assessments risk under
estimating high-exposure areas, potentially overlooking neighborhoods 
where residents face significant heat stress.

4.3. Implications for climate adaptation planning

The refined typo-morphologies offer actionable frameworks for 
designing context-appropriate adaptation strategies that can guide both 
research and urban planning efforts. Studies in other European cities 
demonstrate that compact mid-rise areas (LCZ 2) exhibit the highest 
day- and nighttime land surface temperatures (Wu et al., 2022). In the 
Netherlands, most LCZ 2 buildings predate the 1950s, and their archi
tectural heritage, combined with limited space, calls for 

Fig. 8. Mean UHImax intensity (K) of derived clusters across the four largest Dutch cities. Values represent air temperature differences relative to baseline conditions.

M. Habib et al.                                                                                                                                                                                                                                  Sustainable Cities and Society 137 (2026) 107107 

10 



context-sensitive interventions such as cool roofing, courtyard greening, 
and green façade (Sützl et al., 2024).

Across many low-rise and compact typo-morphologies, tree cover is 
less than 25%, reflecting a general lack of shade and limited protection 
from heat exposure caused by direct solar radiation. Open low-rise de
velopments, particularly LCZ 3 and LCZ 6D, provide greater opportu
nities for street tree planting, as they offer more space to replace paved 
surfaces with greenery. Recently, several Dutch authorities have been 
addressing the high prevalence of paved surfaces through programs 
encouraging citizen-led initiatives (tegelwippen), in which residents 
participate by removing tiles in their neighborhoods (ANP, 2024). 
Integrating typo-morphological mapping could enable more strategic 
prioritization and monitoring of greening interventions by directing 
resources to areas with the highest heat exposure.

4.4. Limitations

There are inherent methodological limitations that warrant consid
eration. First, a notable limitation of this study lies in its reliance on the 
100 m × 100 m grid cell resolution provided by CBS, which may 
introduce biases related to the modifiable areal unit problem 
(Openshaw, 1984). Using a single spatial resolution can artificially 
segment continuous urban patterns, potentially affecting the interpre
tation of spatial relationships. Although the 100 m × 100 m grid rep
resents the finest publicly available spatial resolution from CBS, our 
analysis indicates that high-rise developments comprise only about 1% 
of all grid cells. This highlights the need for finer-scale data to capture 
such sparse morphological structures (Ullmann et al., 2022; Yu et al., 
2023). While testing other grid sizes would be ideal, the alternative 500 
m × 500 m grid cells from CBS is too coarse for the purposes of this 
analysis. Nevertheless, a key advantage of using the 100 m × 100 m grid 
lies in its compatibility with official socio-demographic data, supporting 
future research aimed at advancing climate adaptation strategies.

A second limitation relates to UHImax estimation. Because ground- 
truth measurements are not feasible given the geographic extent of 
this study, Eq. (1) approach is used instead. Notably, Eq. (1) has 
acknowledged limitations, as it does not solve the full set of physical 
equations governing heat transfer, energy balance, or fluid dynamics. It 
also does not account for anthropogenic heat and assumes uniform 
building materials which is an assumption that does not hold. Never
theless, Eq. (1) has been extensively validated in previous research 
(Dirksen et al., 2019; Habib et al., 2025; Koopmans et al., 2020; 
Theeuwes et al., 2017; Zhang et al., 2019), with reported RMSE values 
ranging from 0.9 K to 1.29 K.

4.5. Future research direction

Several promising research avenues emerge from this work. First, the 

typo-morphological refinements identified for the Dutch residential 
context can be used to facilitate comparability across other Northwest 
European cities with similar urbanization developments. Second, future 
studies can test the transferability of the parameter set and clustering 
methodology while potentially identifying region-specific morpholog
ical patterns relevant for climate adaptation. Third, integration with 
socio-economic and environmental datasets could explore relationships 
between detected morphological clusters and demographic character
istics, building on the method's compatibility with CBS grid data to 
inform equity-conscious climate adaptation strategies. Such integration 
would transform the morphological exposure framework developed 
here into a comprehensive vulnerability assessment tool, enabling re
searchers, urban planners and practitioners to identify areas where heat 
is most intense and where it poses the greatest risk to human health and 
wellbeing.
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Appendix

Table A.1 
Distribution of LCZ counts and corresponding surface areas (ha) across the Netherlands, based on 100 m × 100 m grid cells from WUDAPT. Only LCZs relevant to 
residential and urban built environment are considered in this study. LCZ 7 (lightweight low-rise), LCZ 8 (large low-rise), and LCZ 10 (heavy industry), typically 
associated with industrial or atypical European domains, are excluded.

LCZ 1 — Compact high- 
rise

LCZ 2 — Compact mid- 
rise

LCZ 3 — Compact low- 
rise

LCZ 4 — Open high- 
rise

LCZ 5 — Open mid- 
rise

LCZ 6 — Open low- 
rise

LCZ 9 — Sparsely 
built

0 930 3296 0 96 138699 1457

M. Habib et al.                                                                                                                                                                                                                                  Sustainable Cities and Society 137 (2026) 107107 

11 

https://www.sciencedirect.com/journal/sustainable-cities-and-society


Table A.2 
All mathematical formulas are specific to one 100 m × 100 m grid cell. All datasets are sourced from publicly available secondary sources or derived therefrom.

Mathematical formula Source Specification parameters

Havg = (1 /n)⋅
∑n

i=1

⃒
⃒Hmax,i −

Hmin,i
⃒
⃒

​ 3DBAG (2022) Average building height: where Hmax,i and Hmin,i denotes the maximum and minimum heights for each 
building i, respectively and n is the total number of buildings.

H95 = P95
(
|Hmax, i − Hmin, i| : i = 1,

2, …, n
)

​ 3DBAG (2022) The 95th percentile of building heights: where n is the total number of buildings, and Hmax,i and Hmin,i 

denotes the maximum and minimum heights, for building i, respectively.

GSI = (1 /n)⋅
∑n

i=1
Ai /Alot,i ​ Rudifun (2022) Ground Space Index: where n is the total number of building blocks, Ai is the footprint of the building block 

i, and Alot, i is the total site area of building i.
FSI = (1 /n)⋅

∑n
i=1

Fi /Ai ​ Rudifun (2022) Floor Space Index: where n is the total number of building blocks, Fi is the total floor area of building block i 
(across all floors), and Ai is the footprint of the building i.

OSR = (1 /n)⋅
∑n

i=1

(
1 −

(
Ai /Alot,i

))
− (Fi /Ai )

​ Rudifun (2022) Open Space Ratio: where n is the total number of building blocks, 1 −
(
Ai /Alot,i ) denotes the unbuilt space 

of building block i and Fi /Ai is the floor area ratio of building block i. Note that the two expressions are 
constructed using the GSI and FSI, as described above.

SL = (1 /n)⋅
∑n

i=1
SLi ​ Derived from 

Land Registry and Public 
Registers Service (2025)

Street Length: where SLi represents the length of street i, and n is the total number of streets.

CAOdir = (1 /SL)⋅
∑n

i=1

(
SLdir,i

) ​ Derived from 
Land Registry and Public 
Registers Service (2025)

Canyon Axis Orientation: where n is the total number of streets in a given direction dir, SLdir,i represents the 
street length in a direction dir classified by 45-degree azimuth angle range (i.e, NS, EW, NESW, or NWSE), 
for a street i, and SL is the sum of all street lengths.

FAI = (1 /n)⋅
( ∑n

i=1
Aproj,i

)
/A ​ Derived from 

3DBAG (2022)
Frontal Area Index: where n is the total number of buildings, Aproj,i is total area of each building i facet 
projected onto the plane normal to the incoming wind direction and A is the total site area.

WAI = (1 /n)⋅
∑n

i=1
(Vi /Ai) ​ 3DBAG (2022) Wall Area Index: where Vi is the total exterior vertical surface area of each building i, Ai is the footprint of 

the building, and n is the total number of buildings.
DB = (1 /n)⋅

∑n
i=1

min
j∕=i

d
(
Bi,Bj

) ​ Derived from 
3DBAG (2022)

Minimum distance between buildings: where n is the total number of buildings, d
(
Bi,Bj

)
is the Euclidean 

distance between the buildings Bi,Bj.
DCR = (1 /n)⋅

∑n
i=1

d(C, Bi) ​ Derived from 
3DBAG (2022)

Distance Compactness Ratio: where n is the total number of buildings, d(C,Bi) is the 2D Euclidean distance 
from the centroid of the grid cell to the centroid of building i.

SVF ​ Habib et al. (2025) Sky View Factor: readers can refer to Habib et al. (2025) to obtain mathematical formulas and parameters 
used to operationalize the SVF calculation.

IMD = (1 /n)⋅
∑n

i=1
IMDi ​ Derived from 

Copernicus Land Monitoring 
Service (2018)

Impervious Surface Density Fraction: where n is the total number of grid cells, and IMDi is the impervious 
surface density (0-1) for each grid cell i.

FVC = (1 /n)⋅
∑n

i=1
(Ti + Gi + Si) ​ Derived from RIVM

(2022)
Fractional Vegetational Cover: where n is the total number of grid cells, Ti is the tree cover fraction (0-1), 
Giis the grass cover fraction (0-1), and Si is the shrub cover fraction (0-1) for each grid cell i, and together 
they do not exceed a value of 1.

Table A.3 
Summary of 4b parameters.

Derived clusters GSI (%) Havg (m) SVF (%) IMD (%)

(1) 6–18 6–9 32–60 1–47
(2) 7–23 6–9 46–70 7–63
(3) 21–33 5–8 36–54 25–70
(4) 27–38 5–8 42–56 38–82
(5) 40–57 6–9 38–54 48–91
(6) 17–38 13–20 32–56 23–76
(7) 53–79 9–17 29–49 55–97
(8) 10–40 25–44 32–56 23–76

Data availability

The data that support the findings of this study are openly available 
in the 4TU.ResearchData repository. 

Clustering Approach to Residential Typo-morphologies Across Mul
tiple Dutch Cities for Urban Heat Vulnerability Assessment (Original 
data) (4TU.ResearchData)
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Siedentop, S., Esch, T., & Taubenböck, H. (2019). Large-area characterization of 
urban morphology—Mapping of built-up height and density using TanDEM-X and 
Sentinel-2 data. IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing, 12(8), 2912–2927. https://doi.org/10.1109/JSTARS.2019.2917755
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Taubenböck, H., Kraff, N. J., & Wurm, M. (2018). The morphology of the arrival city - A 
global categorization based on literature surveys and remotely sensed data. Applied 
Geography, 92, 150–167. https://doi.org/10.1016/j.apgeog.2018.02.002

Theeuwes, N. E., Steeneveld, G.-J., Ronda, R. J., & Holtslag, A. A. (2017). A diagnostic 
equation for the daily maximum urban heat island effect for cities in northwestern 
Europe. International Journal of Climatology, 37, 443–454. https://doi.org/10.1002/ 
joc.4717

Thravalou, S., Mouzourides, P., Michael, A., Philokyprou, M., & Neophytou, M. (2021). 
A Field study on the environmental conditions of street canyons in dense, historic, 
and urban centres in the mediterranean. The Case of Nicosia, Cyprus. In Euro- 
Mediterranean Conference for Environmental Integration (pp. 637–640). Cham: 
Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43922-3_143. 

Ullmann, T., Hennig, C., & Boulesteix, A. L. (2022). Validation of cluster analysis results 
on validation data: A systematic framework. Wiley Interdisciplinary Reviews: Data 
Mining and Knowledge Discovery, 12(3), e1444.

Verdonck, M. L., Okujeni, A., S.van der, Linden, Demuzere, M., Wulf, R. D., & Coillie, F. V 
(2017). Influence of neighbourhood information on ‘Local Climate Zone’ mapping in 
heterogeneous cities. International Journal of Applied Earth Observation and 
Geoinformation, 62, 102–113. https://doi.org/10.1016/j.jag.2017.05.017
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