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ARTICLE INFO ABSTRACT

Residential environments are central to addressing urban heat stress for vulnerable populations and are prime
target areas for implementing climate adaptation strategies. The reliance on urban heat island (UHI) intensity
mapping alone has been argued to provide limited guidance for adaptation efforts, whereas linking heat patterns
to the built environment characteristics through frameworks such as Local Climate Zones (LCZ) provides
actionable insights for developing neighborhood cooling strategies. However, the widely used LCZ maps have a
few limitations, such as misrepresenting variation within types because they cannot account for sub-classes
beyond the standardized framework. This paper presents an unsupervised clustering approach to identify resi-
dential typo-morphologies across 99 Dutch cities, enhancing their relevance for urban heat vulnerability as-
sessments. The analysis reveals that five morphological and canopy parameters (FSI, GSI, OSR, Hayg, and FVC)
selected from 17 parameters are sufficient to identify nine distinct residential typo-morphologies relatable to
LCZs within 100 m x 100 m grid cells. The evaluations demonstrate that our approach detects underrepresented
LCZ types and reveals new sub-classes absent from standard LCZ classifications. Key findings include detection of
high-density areas (LCZ 45) reflecting recent urban densification with one of the highest UHI 5 next to LCZ 2
(4.2-4.9 K), and vegetation-differentiated variants within sparse and low-rise categories LCZ 9p and LCZ 6p,
distinguished by distinctive UHIpax (0.5-0.7 K) higher compared to their reference base types. Notably, tree
coverage remains low across low-rise and compact typo-morphologies, revealing substantial opportunities for
greening interventions. This data-driven refinement preserves LCZ's global comparability while considering local
specificity, providing improved frameworks to inform targeted climate adaptation strategies in residential
environments.

Dataset link: Clustering Approach to
Residential Typo-morphologies Across Multiple
Dutch Cities for Urban Heat Vulnerability
Assessment (Original data)
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1. Introduction their surrounding rural counterparts (Oke, 1978).

The UHI effect intensifies heat exposure and risk, particularly for

The past decade has been the warmest on record, with global tem-
peratures rising by 1.54 (+0.13) °C above pre-industrial levels (Kennedy
et al., 2024). At the same time, climate change is increasing the fre-
quency and intensity of extreme heat events, leading to serious health
risks globally. European cities face heightened vulnerability due to aging
populationsand a lack of acclimatization to high temperatures, with
heat-related mortality projected to rise significantly as heatwaves
become more frequent (IPCC 2023; Garcia-Leon et al., 2024). Moreover,
the impacts of heat exposure are more pronounced in cities because of
the urban heat island (UHI) effect, where urban areas are warmer than
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vulnerable populations, such as the elderly, chronically ill, and those
with limited mobility, who are often bound to their place of residence
(Kenny et al., 2024; Palme & Salvati, 2021). Understanding UHI varia-
tion across residential neighborhoods is therefore critical for targeting
heat adaptation efforts, especially for those at risk. Morphological pa-
rameters, such as building height, density, and canyon orientation play a
key role in modulating temperature through shading, heat storage, and
the trapping of infrared radiation (Masson et al., 2020; Oke, 1978; Souch
and Grimmond, 2006). At night, dense urban areas retain more heat and
restrict airflow within street canyons, limiting cooling (Li et al., 2020;
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Thravalou et al., 2021). The effectiveness of heat mitigation and adap-
tation measures depends on how urban form influences heat retention
and whether sufficient space is available to implement interventions
(Bassolino et al., 2021; Rahmani and Sharifi, 2025; Villaverde et al.,
2024).

To support targeted interventions, researchers, urban planners and
practitioners can benefit from standardized frameworks for classifying
residential typo-morphologies, which refers to the combinations of
building density, configuration, and land cover characteristics that
shape local heat vulnerability within cities. It has been argued that
relying on UHI intensity maps alone offers limited guidance for heat
adaptation, whereas linking heat patterns to the built environment of-
fers stakeholders insights for designing neighborhood cooling strategies
(Alexander and Mills, 2014; Martilli et al., 2020). One widely estab-
lished effort to do so is by leveraging the Local Climate Zones (LCZ)
classification developed by Stewart and Oke (2012), which provides a
standardized framework that categorizes neighborhoods into 10 built
and 7 natural types based on surface roughness, land cover, and ge-
ometry, all of which shape their thermal behavior. These categories
were developed to enhance comparability of intra-urban UHI assess-
ments beyond traditional urban-rural contrast.

Although LCZ mapping is a standard tool in urban climate studies
(Bechtel and Daneke, 2012; Ching et al., 2018), it faces three key limi-
tations for residential heat vulnerability assessment. First, the LCZ maps
does not explicitly encode land use or function, limiting their ability to
distinguish residential areas from commercial areas. Second, accuracy
challenges arise from supervised classification relying on crowdsourced
and satellite data, which vary in quality and contributor expertise
(Bechtel et al., 2019), leading to inconsistencies in LCZ mapping efforts
(Eldesoky et al., 2019; Geletic and Lehnert, 2016; Hidalgo et al., 2019;
Rodler and Leduc, 2019; Verdonck et al., 2017). In the Netherlands, for
example, certain built LCZ types (e.g., LCZ 2 and LCZ 4, which largely
consist of historical and post-war buildings) are severely underrepre-
sented or nearly absent (see Table A.1). Third, the framework's pre-
defined categories limits the possibility of identifying residential
sub-classes that reflect local or regional variations in urban form, a
limitation acknowledged by Stewart and Oke (2012). In response, re-
searchers have manually incorporated LCZ sub-classes to evaluate UHI
impacts across socio-economic neighborhoods (Lopez-Guerrero et al.,
2024) and to assess both extreme heat and air pollution risks in resi-
dential areas (Steeneveld et al., 2018). Another study developed LCZ
sub-classes to represent different land cover types for residential areas in
arid regions (Eldesoky et al., 2022). Collectively, these studies illustrate
the need for data-driven refinements that allow for systematic identifi-
cation of residential typo-morphologies.

Besides LCZs, other efforts have sought to refine typo-morphologies
for climate risk assessments using supervised learning. In the
Netherlands, neighborhoods have been classified by historical building
periods to assess climate stress (Kleerekoper et al., 2017; Kluck et al.,
2023), with similar classification efforts applied in Germany (Igbal et al.,
2024; Klopfer, 2023). This approach leverages the fact that buildings
from specific historical periods share construction methods, materials,
and architectural styles, all of which influence thermal mass, ventilation
patterns, and heat retention. However, while this historical categoriza-
tion provides a practical starting point, it shares similar limitations as
LCZs, as both are based on predetermined, expert-driven categories that
assume homogeneity within groups. In reality, the built environment is
highly heterogeneous, with neighborhoods often containing mixed
building periods, varied construction qualities, and other modifications
that do not conform to specific historical classification (Geil et al.,
2019). These predefined taxonomies may oversimplify complex urban
fabrics and overlook emergent residential forms that do not fit estab-
lished typologies. Unsupervised clustering offers a potential alternative
by reducing expert bias and autonomously revealing unrecognized
urban form patterns (Wang and Biljecki, 2022).

These challenges highlight the need for approaches that refine
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residential neighborhoods to be both globally comparable and contex-
tually relevant. This paper therefore aims to refine representative resi-
dential typo-morphologies for enhanced urban heat vulnerability
assessment using an unsupervised, data-driven approach. Furthermore,
we pursue two interrelated objectives: (i) First, we identify which urban
morphological and canopy parameters maximize separation between
residential clusters while maintaining interpretability (Bishop & Nas-
rabadi, 2006). This involves exploring different parameter combinations
to determine which parameter set most effectively distinguishes resi-
dential typo-morphologies. (ii) Second, we demonstrate the relevance of
the derived residential typo-morphologies for urban heat vulnerability
assessment. To achieve this, we pursue three complementary evalua-
tions, where we compare the clustering results with standard LCZ pa-
rameters, verify against building construction distribution by historical
period and secondary 3D sources (e.g., Google Earth and 3DBAG), and
analyze UHI, intensity patterns. Ultimately, this approach maintains
the global comparability of LCZs while enhancing local relevance,
providing researchers, urban planners and practitioners with a frame-
work for advancing research and planning targeted climate adaptation
interventions.

2. Methodology
2.1. Study area

In this study, we examined Dutch residential settlements with pop-
ulation densities exceeding 1,000 inhabitants per km?. In total, the study
area encompassed 99 Dutch cities (Fig. 1). The Netherlands has a
temperate maritime climate, with cities characterized by compactness
and relatively small land areas.

For the clustering analysis, the morphological and canopy parame-
ters were aggregated into 100 m x 100 m grid cells provided by
Statistics Netherlands (CBS) for 2023. The grid covers approximately
186,580 hectares in total and has been filtered to include only resi-
dential areas with at least five inhabitants, in line with CBS’s privacy
restrictions on smaller populations. The use of this grid offers three key
advantages. First, it enables users to link socio-economic census data
provided by CBS for future research extensions. Second, it ensures
temporal consistency through fixed boundaries, unlike changing
administrative boundaries. Third, it adopts the 100 m x 100 m resolu-
tion used in existing LCZ classifications, ensuring a consistent reference
scale when comparing the clustering results.

Fig. 2 presents the methodological workflow adopted in this study.
First, Principal Component Analysis was applied to identify the pa-
rameters that maximize variance and separation in the data space. Next,
the Davis-Boudlin index, an internal clustering validation metric, was
used to determine the optimal number of clusters (k) for the k-means
algorithm. Finally, the clustering results were evaluated through three
complementary approaches, which are described in detail in Section 2.5.

For reproducibility, all analyses were conducted using R (version
4.4.0) and Python, with all data, code, and analytical procedures fully
documented and available at the 4TU.ResearchData repositiory.

2.2. Urban morphological and canopy parameters

Table 1 presents 17 parameters from the domains of urban planning
and urban climatology that influence microclimates, as identified
through theoretical and empirical studies. All mathematical formulas
and data sources used for calculating the parameters are provided in
Table A.2 in the appendix.

Building heights represent a key parameter regulating temperatures
within urban canyons by affecting wind patterns, radiation exposure and
heat absorption (Oke, 1978). During the night, tall buildings can influ-
ence urban temperatures in various ways. On one hand, they can
contribute to warming by trapping radiation and facilitating the hori-
zontal movement of warm air, known as advection, into cooler areas
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Fig. 1. Geographic locations of rural weather stations and Dutch municipalities with a population density > 1000 inhabitants/km?.
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cooling through vertical air mixing, as turbulence brings cooler air from
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higher altitudes to street level (Oke et al., 2017).
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cally retaining more traffic and creating adverse thermal effects (Guo
et al., 2024; Wu et al., 2022). Canyon axis orientation (CAO) affects air
temperature by determining solar exposure on building facades, (Oke,
1997) and by blocking prevailing winds, and limiting natural cooling
(Elbondira et al., 2021; Wu et al., 2022; Yin et al., 2019). Likewise, the
frontal area index (FAI) measures how much building surface area is
exposed to prevailing wind, another key factor in influencing airflow
patterns (Grimmond and Oke, 1999).

The aspect ratio (H/W) represent the ratio of building height to street
width and significantly influences several microclimate factors such as
radiative exposure (Oke et al., 2017). However, we exclude it because
street width is not trivial to estimate, particularly in open spaces, parks,
and intersections where multiple interpretations are possible (Lindberg
etal., 2015). To compensate for H/W, we incorporate proxy measures of
area-wide compactness versus sprawl, including the average Euclidean
distance from the block center to buildings (DCR) and the minimum
distance to the nearest building (DB), which capture the spacing be-
tween buildings and the degree of contiguity within building blocks
(Joshi et al., 2022). Additionally, we incorporate the wall area index
(WAI), which quantifies building surfaces interacting with the ambient
air and provides an alternative to H/W by representing vertical surfaces
involved in radiation exchange and energy uptake (Boccalatte et al.,
2023; Siitzl et al., 2024).

Another significant parameter influencing urban microclimate is sky
view factor (SVF), which measures the fraction of sky visible from street
level and plays a critical role in modulating both incoming shortwave
radiation and outgoing longwave radiation, thereby affecting surface
heating and nocturnal cooling (Middel et al., 2018).

Lastly, both pervious and impervious surfaces influence urban hy-
drological processes by modifying the local surface energy balance. High
impervious surface density (IMD) exacerbates urban heating by raising
near-surface air temperatures, as impervious surfaces absorb solar ra-
diation and release it primarily as sensible heat (Zhang et al., 2021). In
contrast, fractional vegetation cover (FVC) mitigates heat accumulation
by converting solar energy into latent heat through evapotranspiration
and reducing incoming solar radiation through shading, thereby alle-
viating UHI effects (Dirksen et al., 2019; Zhang et al., 2021).

Proportion of ground surface covered by vegetation (tree canopy >2.5 m, shrubs, and low vegetation) relative to site area,

sprawl; it measures the average distance between buildings relative to a reference point (i.e., centroid of a given site).
excluding rooftop vegetation and agricultural land.

The ratio of total exterior vertical wall surface area to total building footprint.
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The proportion of street length oriented in a specfic direction (e.g., north-south, east-west) relative to the street length within a

o
3
=
&
°
g
5
S
S
8
%
2
=
8
1%
-
[
=
&
=9
a
o
8
3
=
=
3
=
4
-
3
g
3
&
5
o
S
k=t
&
&
o
L
=
s,
>
o
L
=
20
e
It
3
-
&
=
3
2
a,
°
8
«
I
-
5
-
3
3
L=}
—_
5
g
3
8
sy
3
o
2
o
-
2
7
2
5
g
g
60
8
=
E
=)
£
3]

J
B~
@
©
=
5
P
53
g
=
3
2
s
S
s
3
[
i~}
&
Q
5
IS
<]
i)
Q
4
&
5
=
i
a,
5
Pt
)
o
k=]
5
g
é

The ratio of the total building surface area perpendicular to theoncoming wind direction to the plan area of a given site.

The average minimum distance between nearby buildings in a given area.
The fraction of the total site area that is covered by impervious surfaces (e.g., parking, roads, rooftops, etc.).

o
=]
)
g
N

°
1
>
)

°

S
(=]

=y
7]
=
L)

°

—
<
£
1=}
9]

N
=)
9]

=

£
@
B3]
=}
[
2
(2
2
a
2
-

2
I
[
-
<

o

2
[=9
]

8

=
5]

g
=)
&

£
Q

&
o0
=)

E

g

|
=

Qo

o
S
o)

k=]
<
£
o

<=

B

The ratio of visible sky to the total hemisphere when viewed from a specific point on the ground.

The 95 percentile height of all buildings in a given area.

The average height of all buildings in a given area.

The total length of streets in a given area.

=1
” % . 2.3. Pre-processing for clustering
gl= v 3 23
=
El&] 2 o s &§&& 2 Hmao . . -
= 5 £ I&g 2% o35 $33=s8 é %‘: = Principal Component Analysis (PCA) is commonly used as a pre-
g processing step in clustering analyses (see e.g., Chen et al., 2022;
‘B Joshi et al., 2022; Villaverde et al., 2024), as it reduces data dimen-
ki E° 5 sionality by identifying key axes of variance (Ding and He, 2004).
k= % g However, PCA was not used for clustering in this study, but rather for
g 2 R £ N visualizing and transforming the data (i.e., 17 parameters listed in
= > ; .
2 - § g ‘é z Table 1) into a space that revealed key structure through variance,
z y % 23 3 ; thereby informing clustering. Furthermore, we used PCA biplots in our
g " § 5 o g by g g g ko exploratory data analysis to understand which key parameters contrib-
z g = = < X ow E Q . . .
= % g EE .8 £ £ b g3 % uted the most to the overall variance structure and helped identify
‘T r=I] <5 £ w > . . . . . . . .
§ 52 888 B g '; § o g g < natural groupings in the data. Biplots provided a multivariate visuali-
= 00 L5} v = = . s s . . .
- 5| & g g i'a‘ § 5 § s g % SEES zation approach that captured the joint contribution of all parameters in
o > s8|= <5} 8 sE S = 2o .. e
- G| 5 SIRs) g [SER=ER7] < > <
SI|ElE E2& E8 28z SZEE ex1.31a1.mr1g the? over'all data structure,' rather than .exammmg individual
= O pairwise relationships, and helped guide the selection of key parameters



M. Habib et al.

for subsequent k-means clustering analysis.

For the pre-processing stage, all parameters were standardized using
z-scores and cleaned for outliers prior to the analysis to avoid the vari-
ance of one parameter dominating the others (Tardioli et al., 2018;
Gewers et al., 2021). We repeatedly refined the parameter selection
using PCA biplots, removing those with low contributions (i.e., loading
factors) and retained parameters that maximized the cumulative
explained variance in the first two principal components, aiming for a
threshold greater than 80%. However, the biplots served as a heuristic
visualization tool to guide search, they alone cannot determine which
parameter sets will yield well-separated clusters (Jolliffe and Cadima,
2016). Consequently, in Section 2.4., we employed an internal valida-
tion metric to objectively assess the clustering results of the various
parameter sets explored through biplot analysis.

2.4. Clustering analysis

To perform the clustering analysis, we used the k-means clustering
algorithm for its computational efficiency (Murphy, 2022), given the
extensive geographic coverage and large volume of geospatial data
involved in this study. Previous research have shown that k-means
effectively identifies various typo-morphologies in urban areas (Joshi
et al., 2022; Schirmer and Axhausen, 2019; Siitzl et al., 2024; Villaverde
et al., 2024; Wu et al., 2022). The algorithm partitioned the data into k
non-overlapping clusters by minimizing the squared distances between
data points and their centroids, thereby reducing intra-cluster variance
and increasing inter-cluster separation (Murphy, 2022).

A prerequisite for k-means clustering is choosing a distance metric
and selecting k. For this analysis, Euclidean distance was chosen as the
distance metric. To guide the selection of k, we used the Davies-Bouldin
Index (DBI), which evaluated the clustering quality by assessing both
cluster compactness and separation. A lower DBI value indicated better
separation between clusters and lower internal variance. By minimizing
DBI, we found a k which maximizes separation while minimizing in-
ternal variance (Xiao et al., 2017).

2.5. Evaluation of clustering result

The clustering results were then evaluated through three comple-
mentary approaches: comparative, contextual, and UHI,,x analysis.

2.5.1. Cluster-LCZ comparison

We selected the parameters Hayg, SVF, and IMD from the World
Urban Database and Access Portal Tools (WUDAPT) LCZ dataset
developed for the European domain (Demuzere et al., 2019) for the
comparison against the derived clustering results. The Hayg values spe-
cifically reflect building height averages for Amsterdam, as these were
the only city-level averages available in the dataset. In contrast, SVF and
IMD values represent averages derived from selected European cities,
consistent with the approach in Demuzere et al. (2019). We also incor-
porated the GSI, which is equivalent to the building plan fraction (},) as
specified in Oke et al.’s (2017) global lookup table.

2.5.2. Contextual assessment

To evaluate how well the clustering results reflect observable urban
form types, we focused on four polycentric Dutch cities (Amsterdam,
Rotterdam, Utrecht, and The Hague). The contextual assessment was
carried out through secondary sources, including the 3D Registration of
Buildings and Addresses (3DBAG) viewer and Google Earth. These cities
represent a wide range of housing types that mirror broader residential
trends across Northwest Europe (Dekker et al., 2012; Priemus, 2018).
Additional contextual checks were performed by examining the distri-
bution of construction building periods within each cluster, providing
further objectivity to the evaluation process. In total, four historical
periods were defined to capture key morphological transitions and
policy interventions that shaped urban housing development: these are
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pre-war (< 1950), post-war (1950-1975), urban renewal (1975-1990),
and VINEX (< 1990).

2.5.3. UHlI gy analysis

We evaluated the UHIy, 4 profiles of clustering results for the four
major Dutch cities. To calculate UHI ., we applied the semi-diagnostic
equation proposed by Theeuwes et al. (2017). This equation estimates
daily UHI; 5 occurrences at a high spatial resolution by combining rural
hourly meteorological data, including diurnal temperature range (DTR),
total solar irradiance (S), and average wind speed (U) from nearby
weather stations (Fig. 1.), as well as urban parameters, specifically SVF
and FVC. The UHI,,x equation is expressed as follows:

UHlyax = (2 — SVF—FVC)/ (DTR*:S) /U @

For this study, we analyzed the gs5th percentile UHI,ox during the
summer of 2022 (June to September), modeled at a spatial resolution of
5 m. The 95™ percentile was calculated separately for each city, to
represent extreme heat conditions. It is also important to note that
UHIox only occurs under favorable meteorological conditions
(Theeuwes et al., 2017). This period included a nationwide heatwave
from 9 to 16 August, as reported by Royal Netherlands Meteorological
Institute (KNMI). For further details on how the modeled UHI,,x was
operationalized and access to the dataset, readers can refer to Habib
et al. (2025).

3. Results

In this section, we present the results of the unsupervised clustering
analysis applied to residential neighborhoods across 99 highly urban-
ized Dutch cities. We first report the optimal parameter set selection and
cluster configuration. We then characterize the clustering results (i.e.
typo-morphologies) and evaluate their compatibility with existing LCZs,
their contextual validity, and their relationship with UHI,,,4 intensity.

3.1. Exploratory data analysis

In Fig. 3., the biplots reveal how removing low-contribution pa-
rameters increases the cumulative explained variance of the first two
dimensions of the PCA. Starting with all 17 parameters (panel a), the
first two dimensions explained only approximately 38% of the total
variance, potentially indicating redundancy and noise among these pa-
rameters based on their directional similarities and varying
contribution.

Most of the improvement in cumulative explained variance occurred
after removing the parameters related to canyon axis orientation
(CAOns, CAOgw, CAOnwsk, and CAOngsw). A previous study on detecting
urban morphological patterns have shown that canyon orientation often
shows no clear influence in their classification models, whereas factors
such as average building height, density, and the number of building
blocks contribute more effectively (Taubenbock et al., 2018).

As other low-contribution parameters were progressively removed,
the cumulative explained variance increased to over 80% in panels (g),
(h), and (i). Since biplots provide only a heuristic visualization of clus-
tering patterns, DBI analysis was used to quantitatively evaluate cluster
separation.

3.2. Number of clusters

To guide the selection of k, we evaluated each parameter set using
the DBI (Fig. 4). The plot in Fig. 4 reveals that both the 5 and 4b
parameter sets (panels g and i) achieved the lowest DBI scores, on
average. The 4b parameter set shows a notable minimum at k = 8, while
the 5 parameter set reaches its lowest point at k = 9. Based on these
findings, we proceeded to evaluate the clustering results for k = 8 (4b
parameters) and k = 9 (5 parameters). The 5 parameter set showed the
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contribution.

closets alignment with parameters of the established LCZ categories. In
contrast, the 4b parameter set generated numerous variations of low-rise
LCZs and lead to mid- and high-rise types to be grouped together,

reducing their distinguishability (see Table A.3 in the appendix).

3.3. Clustering results

Applying k-means clustering to five parameter sets (FSI, GSI, OSR,
Havg, and FVC) produced nine distinct residential typo-morphologies
relatable to existing LCZs. Table 2 and Fig. 5 presents the morpholog-
ical and canopy characteristics of each cluster, while Fig. 6 and Fig. 7
provide schematic representations, spatial distributions, and grid cell
counts. The derived clusters align with six established LCZ types while
revealing sub-classes not captured by the standard framework. Below we
characterize each cluster according to its morphological and canopy
parameters, as well as its correspondence to LCZ types:

Davies—Bouldin Index

e Cluster 1 (LCZ 9 — sparsely built): Features detached housing with
the highest vegetation coverage (FVC ~ 70%), low building coverage
(GSI ~ 15%), and low-rise structures (< 3 stories). This cluster ex-

hibits the lowest mean UHI .y intensity (2.8 K) and is predominantly
located nearby suburban peripheries.

e Cluster 2 (LCZ 9p — sparsely built, low vegetation variant): En-
compasses a variant within the sparsely built category, the ‘D’
subscript indicates higher sealed surface coverage (IMD ~ 35%
compared to ~ 20% in Cluster 1), reduced FVC and tree coverage (<
25%), but similar building heights and footprint.
e Cluster 3 (LCZ 6 — open low-rise): Comprises largely of semi-
detached houses with moderate vegetation coverage (FVC ~ 50%).
Buildings remain low-rise (< 3 stories) with moderate building
coverage (GSI ~ 30%).
e Cluster 4 (LCZ 6p — open low-rise, low vegetation variant): Rep-
resents a less vegetated variant of open low-rise housing, featuring
0 |
o Parameter Sets
+ 17 parameters
I 13 parameters
AN hd . —+- 11 parameters
< + ) . \ +—T7 —~X~- 9 parameters
o X / t+ F. - . t —O- 7 parameters
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Fig. 4. DBI scores across different numbers of clusters (k) for six parameter sets.
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Clusters

Clusters

Table 2
Correspondence between derived clusters and LCZs. The first column presents the derived clusters (Clusters 1-9) which adopt the naming convention of existing LCZs.
Derived clusters — LCZs GSI (%) H (m) SVF (%) IMD (%)
Data-driven Oke et al. (2017) Data-driven WUDAPT Data-driven WUDAPT Data-driven WUDAPT
(AMS) (EU) (EU)
(1) Sparsely built — LCZ 9 6-18 10-20 6-9 8.6 32-60 72-85 1-47 5-21
(2) Sparsely built — LCZ 9p, 7-23 10-20 6-9 8.6 46-70 72-85 7-63 5-21
(3) Open low-rise — LCZ 6 21-33 20-40 5-8 8.2 36-54 74-82 25-70 15-38
(4) Open low-rise — LCZ 6p 27-38 20-40 5-8 8.2 42-56 74-82 38-82 15-38
(5) Compact low-rise — LCZ 3 40-57 40-70 6-9 11.1 38-54 68-79 48-91 52-73
(6) Open midrise — LCZ 5 17-38 20-40 13-20 12.1 32-56 72-80 23-76 34-57
(7) Compact midrise — LCZ 2 53-79 40-70 9-17 14 29-49 66-74 55-97 63-80
(8) Open high-rise — LCZ 4 10-40 20-40 25-44 12.5 32-56 60-79 23-76 37-43
(9) Compact high/mid-rise — LCZ 4, 54-86 40-60 16-45 - 31-54 63 37-98 91
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Fig. 5. Distribution of morphological and canopy parameters of Cluster (1-9). Outliers beyond the displayed y-axis range are not shown for visual clarity. Tree
coverage is one of three vegetation types that make up FVC along with shrubs and grass coverage.

similar building heights (< 3 stories) but significantly lower green
space (FVC ~ 30%) and reduced tree coverage compared to Cluster
3. Together, Clusters 3-4 comprise the most extensive spatial
coverage in Dutch residential areas.
Cluster 5 (LCZ 3 — compact low-rise): Contains compact row
housing arranged in dense linear configurations with small private
gardens. Buildings maintain similar heights to Clusters 1-4 (< 3
stories), but have considerably denser building footprints (GSI ~
45%) and more impervious surfaces (48-91%) compared to Clusters
1-4.
Cluster 6 (LCZ 5 — open mid-rise): Consists of open mid-rise
building arrangements with moderate vegetation cover (FVC ~
40%), lower building coverage (GSI ~ 30%) with taller building
structures (5 stories) compared to Cluster 5.
Cluster 7 (LCZ 2 — compact mid-rise): Reflects compact mid-rise
developments that are predominantly located in city cores. The
building stock consists largely of historical buildings (< 1950),
averaging four stories and often forming courtyard-like configura-
tions with little space for greenery and trees. It exhibits the highest
mean UHI,,x intensity (4.5 K).
Cluster 8 (LCZ 4 — open high-rise): Corresponds to open, high-rise
areas where approximately half of the building stock consists of
post-war structures built between 1950 and 1975. Typically located
at the peripheries of city centers and features taller building struc-
tures (6-8 stories) with moderate building coverage (GSI ~ 25%).
e Cluster 9 (LCZ 4, — compact high/mid-rise): Exhibits the highest
building coverage (GSI ~ 70%) and extensive surface sealing. The

mix of pre-war and post-war buildings indicates urban infill in city
cores, where modern high-rise buildings are situated adjacent to
compact mid-rise fabric (LCZ 2).

3.4. Evaluation of residential typo-morphologies

3.4.1. LCZs comparison

The derived clusters show varying degrees of correspondence with
established LCZ categories (Table 2). Parameter-by-parameter analysis
reveals at times patterns of strong alignment and systematic deviation.
GSI values demonstrate strong correspondence, consistently aligning
with Oke et al. (2017) ranges across most cluster types. However, sys-
tematic deviations emerged in other parameters.

Hayg values show relatively strong alignment with WUDAPT refer-
ences for lower-rise classes, while values for mid- and high-rise clusters
are marginally higher, particularly in the high-rise category. For
example, open high-rise clusters (Cluster 8) yield 25-44 m compared to
WUDAPT's 12.5 m. As shown in Fig. 6, the clustering approach in this
study is particularly effective at identifying high-rise urban forms that
are underrepresented in existing EU WUDAPT data (see Table A.1 in the
appendix). Similarly, IMD values are systematically higher across all
derived clusters, particularly pronounced in compact developments
where values reach 48-97% compared to WUDAPT's estimates. Both
deviations of Hayg and IMD may reflect the contextual traits of Dutch
residential environment compared to other European cities considered
in the WUDAPT's dataset.

Meanwhile, SVF values of the derived clusters are systematically
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Fig. 6. Schematic illustration showing (a) the distribution of the residential typo-morphologies arranged relative to its relationship between height and density; (b)
the total distribution of residential typo-morphologies grid cells across the geographic study area as shown in Fig. 1.

Table 3

Distribution of residential LCZ types in the Netherlands by building construction period, showing the percentage of buildings in each 100 m x 100 m grid cell cor-

responding to their predominant historical periods.

Clusters—LCZs Pre-war (< 1950) Post-war (1950-1975)

Urban renewal (1975-1990) VINEX (> 1990)

(1) —1CzZ9 22.0 24.7
(2) —LCZ 9p 18.5 21.9
(B)—1CzZ6 13.9 30.6
(4) —LCZ 6p 13.0 30.3
(5)—1Cz3 31.1 20.2
(6) —LCZ5 13.4 38.8
(7) —1CzZ 2 53.2 10.7
8)—1Cz4 1.4 49.7
(9) —LCZ 4, 10.8 23.1

17.4 36.0
16.8 42.8
25.0 30.6
20.8 35.9
16.9 31.8
12.7 35.2
11.7 24.4
9.78 39.1
13.9 52.2

lower and more variable (29-70%) than WUDAPT's constrained ranges
(60—85%) across all LCZs. The SVF differences may stem from the
higher spatial resolution DSM datasets used in this study compared to
the coarser resolution methods underlying WUDAPT classifications,
where SVF values are constrained to street-level perspectives and do not
include SVF values from spaces such as courtyards, parks, and private
gardens.

3.4.2. Contextual evaluation

The numerical and geographical distribution of the derived clusters
(i.e., typo-morphologies) across the Netherlands, as shown in Fig. 5,
along with the summaries of the building stock by construction period
outlined in Table 3 and morphological and canopy parameter charac-
teristics (Table 2 and Fig. 3), guided expert assessments during the
second phase of evaluation.

The spatial distribution of the nine identified clusters across the
Netherlands reveals varying patterns that reflect the country's historical
urban development. Sparse and open low-rise categories dominate the
clustering results, collectively representing approximately 79% of all
grid cells and demonstrating the typically dispersed, low-density nature
of Dutch residential developments.

e Low-rise and suburban transition (Cluster 1-4)

The prevalence of Clusters 1-4 (LCZ 6 and LCZ 9) increased sub-
stantially from 13-22% of the land area in 1950 to 30-43% in recent
decades. This expansion reflects the gradual growth of low-density de-
velopments outside urban cores, which aligns with urban sprawl pat-
terns. Table 3 shows a temporary deceleration in this expansion between
1975 and 1990, which aligns with documented Dutch policy initiatives
aimed at limiting urban sprawl during this period (Bontje, 2005).

Overall, Clusters 1-4 exhibit subtle morphological differences among
themselves. Clusters 1-2 are characterized by extremely low building
coverage (GSI < 0.23) and high open space ratios (OSR ~ 0.8). Mean-
while, Clusters 3-4 maintain the low-rise character while increasing
built-up density (GSI ~ 0.3). Within these pairs, Cluster 2 differs from
Cluster 1, and similarly, Cluster 4 differs from Cluster 3, primarily in
land cover characteristics (FVC and IMD) rather than building density or
height.

Cluster 5 represents the more compact end of low-rise development
with dense row housing with small private gardens.

e Mid- and high-rise urban areas (Cluster 5-9)

Mid-rise morphologies (Clusters 6-7) account for less than 8% of the
urban fabric in this study, though their spatial concentration in major
polycentric urban centers makes them appear more prominent in Fig. 7.
Moreover, spatial distribution of Cluster 7 is largely within the historical
city cores, where most of the building stocks were constructed before
1950 (Table 3). These mid-rise historical areas, such as Amsterdam's
neighborhoods adjacent to the canal districts, are characterized by
distinctive courtyard configurations and narrow street canyons. Mean-
while, high-rise morphologies, like Cluster 8, predominantly represent
post-war housing estates (1950-1975) at the city peripheries, while
Cluster 9 is concentrated in urban cores, particularly evident in Rot-
terdam's reconstructed center, where more than half of the buildings are
contemporary high-density developments blending compact mid-rise
and high-rise characteristics.

3.4.3. UHIpgy analysis
Fig. 8 shows the gradients of UHI .y intensities in all residential
typo-morphologies, with differences of 1.7 + 0.4 K between sparsely
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Fig. 7. Geographical distribution of the classification in Amsterdam, Rotterdam, Utrecht, and The Hague. Empirical examples (bottom-right) of the residential typo-
morphologies found in the Dutch urban landscape; source: Google Earth, © Google LLC, 2025.

built and compact areas in the four analyzed cities. Table A.1 in the
appendix shows that the WUDAPT LCZ classification identifies only 930
ha of compact mid-rise (LCZ 2) across the entire Netherlands, whereas
our approach detects 8,279 ha within the 99 Dutch cities alone. Simi-
larly, open mid-rise (LCZ 5) and open high-rise (LCZ 4) types are nearly
absent from WUDAPT dataset, yet they collectively account for 9% of
the total grid cells. Without this refined mapping, the range of UHIax
range would not be unobserved, as these typo-morphologies would be
erroneously aggregated into other LCZ types. Importantly, WUDAPT
LCZ classifications in the Netherlands underrepresent the densest
morphological types (LCZ 2 and LCZ 4,), which means overlooking
neighborhoods that experience the highest heat exposure.

Across all four cities, consistent UHIy,x patterns emerge with respect
to density, height, and land cover. Sparsely built areas (LCZ 9) consis-
tently show the lowest intensities (2.5-3.1 K), while compact mid- and
high-rise areas (LCZ 2 and LCZ 4,) exhibit the highest UHI o (4.1-4.9
K) intensities. As expected, between LCZ 9 and the densest types,
increasing density corresponds to a reduction in green coverage. FVC
decreases from 70% in LCZ 9 to 15% in LCZ 2, while IMD shows the
opposite trend, increasing from approximately 25% to 70%. Similarly,
building footprints (i.e., GSI) increases from 12% in sparse types to
65-70% in compact ones (Fig. 5, Table 2), illustrating how built-up areas
replace vegetated surfaces as density increases. The identified sub-
classes (LCZ 6p and LCZ 9p) also exhbit distinct UHI,,x intensities

compared to their respective base types (LCZ 6 and LCZ 9). Despite
having similar Hayg and GSI values, LCZ 9p and LCZ 6p exhibit higher
UHI .« intensities than their non-D counterparts, which is higher by
0.5-0.7 K and 0.5-0.6 K, respectively. These differences also correspond
to approximately 15% and 25% lower FVC in the D-variants of LCZ 9 and
LCZ 6, respectively. Notably, LCZ 6p reaches UHI,,,x intensities (3.5-4.1
K) similar to open high-rise types (3.1-3.9 K), despite its substantially
lower average building height (H,yg 5-8 m).

Remarkably, tree cover across all typo-morphologies ranges from
15% to 30%, but most typologies are below 15%. Open mid-rise and
high-rise types (LCZ 4-5) have the highest vegetation coverage after LCZ
9. The strongest contrast occurs between LCZ 9 and LCZ 45, where
vegetation cover differs by roughly 50%. This highlights substantial
opportunities to expand tree cover in residential areas (especially low-
rise areas) to help reduce heat exposure.

4. Discussion and conclusions

Motivated by the limitations of existing urban morphological clas-
sifications, such as LCZs and other supervised classifications based on
historical building period, this study developed an unsupervised, data-
driven approach to refine residential typo-morphologies for the Dutch
context. Our results demonstrate that our approach can preserve the
global comparability of LCZs while improving representation of urban
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Fig. 8. Mean UHI,,,y intensity (K) of derived clusters across the four largest Dutch cities. Values represent air temperature differences relative to baseline conditions.

diversity within residential settlements. Below, we discuss our findings
in relation to the two research objectives, followed by practical impli-
cations, study limitations, and future research directions.

4.1. Parameters selection for residential typo-morphologies

The first key finding of this study is that PCA reveals five parameters
(GSI, FSI, OSR, Hgyg and FVC), account for most explained cumulative
variance (80%) across all parameters sets evaluated. Together, these five
parameters capture the key aspects of urban morphology and canopy
(density, height, spacing, and vegetation), features that LCZ classifica-
tion similarily relies on. Notably, FSI, GSI, OSR, and H,y, are all needed
to represent urban morphological characteristics, despite being strongly
correlated. Urban morphology research shows that these density-related
parameters, along with average building height, form a distinctive
'spatial fingerprint' reflecting specific urban forms (Pont and Haupt,
2023). Considering density parameters in isolation can be misleading.
For instance, the same FSI value may correspond to either low-rise
buildings covering entire plots or high-rise towers on small footprints
(Pont and Haupt, 2023).

These results suggest that morphological parameters rooted in urban
planning practice may capture LCZ characteristics more effectively than
some traditional urban canopy parameters, at the given 100 m x 100 m
spatial resolution examined in this study. Traditional parameters like
SVF, while climatically relevant, may introduce noise when character-
izing morphological form since they integrate both built structures and
vegetation canopy. The practical significance of these morphological
parameters is further supported by studies demonstrating their
measurable impacts on building energy demands (Dab’at and Alqadi,
2024; Liu et al., 2025) and pedestrian-level microclimate during hot
summers (Zhang et al., 2022). Ultimately, the benefit of these five pa-
rameters lies in their familiarity to urban planners and practitioners,
facilitating integration into climate adaptation planning workflows.

4.2. Refined residential typo-morphologies and UHI,q, patterns

Another key finding is that our data-driven approach identified nine
residential LCZ types, improving the detection of underrepresented
categories (LCZ 2, LCZ 4, LCZ 5) while revealing new sub-classes (LCZ
6p, LCZ 9p, and LCZ 4;) not captured by standard LCZ classifications.

10

Across the four cities, the absolute UHI,, differences (1.7 + 0.4 K)
occur between the densest urban cores (LCZ 4 and LCZ 2) and sparsely
built areas (LCZ 9). Furthermore, the modeled UHI,,, intensities in our
study likely underestimate the total air temperature differences, espe-
cially for compact typo-morphologies. This underestimation likely stems
from Eq. (1) not accounting for additional heat contributions from
anthropogenic sources (e.g., traffic and building energy use) that typi-
cally characterize compact city centers (Javadpoor et al., 2024).

LCZ 4, largely represents recent dense high-rise developments that
have emerged since the 1990s as part of urban densification and infill
projects in existing urban Dutch fabric (Nabielek, 2012). Although LCZ
45 covers less than 1% of the study area, its detection is noteworthy,
because both LCZ 4, and compact midrise areas (LCZ 2) experience the
highest UHI o« intensities (4.1-4.7 K), making them priority targets for
heat adaptation interventions. Previous research shows that dense,
poorly ventilated urban areas are associated with elevated rates of
cardiovascular-related emergency calls during heatwaves, particularly
in socially deprived neighborhoods (Zendeli et al., 2025).

Another aspect to consider is the contribution of UHI to indoor
overheating. While open high-rise areas (LCZ 4) areas do not exhibit
high UHI,x compared to denser neighborhoods, their open urban form
and the predominance of post-war dwellings make them vulnerable to
heat exposure. Most of the Dutch post-war buildings lack mechanical
ventilation, and without adequate solar protection, they are increasingly
susceptible to indoor overheating (Hamdy et al., 2017). In our analysis,
we observe that roughly half of the LCZ 4 dwellings date from the
post-war period (1950-1975). Without refined identification of these
residential typo-morphologies, vulnerability assessments risk under-
estimating high-exposure areas, potentially overlooking neighborhoods
where residents face significant heat stress.

4.3. Implications for climate adaptation planning

The refined typo-morphologies offer actionable frameworks for
designing context-appropriate adaptation strategies that can guide both
research and urban planning efforts. Studies in other European cities
demonstrate that compact mid-rise areas (LCZ 2) exhibit the highest
day- and nighttime land surface temperatures (Wu et al., 2022). In the
Netherlands, most LCZ 2 buildings predate the 1950s, and their archi-
tectural heritage, combined with limited space, calls for
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context-sensitive interventions such as cool roofing, courtyard greening,
and green facade (Siitzl et al., 2024).

Across many low-rise and compact typo-morphologies, tree cover is
less than 25%, reflecting a general lack of shade and limited protection
from heat exposure caused by direct solar radiation. Open low-rise de-
velopments, particularly LCZ 3 and LCZ 6p, provide greater opportu-
nities for street tree planting, as they offer more space to replace paved
surfaces with greenery. Recently, several Dutch authorities have been
addressing the high prevalence of paved surfaces through programs
encouraging citizen-led initiatives (tegelwippen), in which residents
participate by removing tiles in their neighborhoods (ANP, 2024).
Integrating typo-morphological mapping could enable more strategic
prioritization and monitoring of greening interventions by directing
resources to areas with the highest heat exposure.

4.4. Limitations

There are inherent methodological limitations that warrant consid-
eration. First, a notable limitation of this study lies in its reliance on the
100 m x 100 m grid cell resolution provided by CBS, which may
introduce biases related to the modifiable areal unit problem
(Openshaw, 1984). Using a single spatial resolution can artificially
segment continuous urban patterns, potentially affecting the interpre-
tation of spatial relationships. Although the 100 m x 100 m grid rep-
resents the finest publicly available spatial resolution from CBS, our
analysis indicates that high-rise developments comprise only about 1%
of all grid cells. This highlights the need for finer-scale data to capture
such sparse morphological structures (Ullmann et al., 2022; Yu et al.,
2023). While testing other grid sizes would be ideal, the alternative 500
m x 500 m grid cells from CBS is too coarse for the purposes of this
analysis. Nevertheless, a key advantage of using the 100 m x 100 m grid
lies in its compatibility with official socio-demographic data, supporting
future research aimed at advancing climate adaptation strategies.

A second limitation relates to UHl,,,x estimation. Because ground-
truth measurements are not feasible given the geographic extent of
this study, Eq. (1) approach is used instead. Notably, Eq. (1) has
acknowledged limitations, as it does not solve the full set of physical
equations governing heat transfer, energy balance, or fluid dynamics. It
also does not account for anthropogenic heat and assumes uniform
building materials which is an assumption that does not hold. Never-
theless, Eq. (1) has been extensively validated in previous research
(Dirksen et al., 2019; Habib et al., 2025; Koopmans et al., 2020;
Theeuwes et al., 2017; Zhang et al., 2019), with reported RMSE values
ranging from 0.9 K to 1.29 K.

4.5. Future research direction

Several promising research avenues emerge from this work. First, the
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typo-morphological refinements identified for the Dutch residential
context can be used to facilitate comparability across other Northwest
European cities with similar urbanization developments. Second, future
studies can test the transferability of the parameter set and clustering
methodology while potentially identifying region-specific morpholog-
ical patterns relevant for climate adaptation. Third, integration with
socio-economic and environmental datasets could explore relationships
between detected morphological clusters and demographic character-
istics, building on the method's compatibility with CBS grid data to
inform equity-conscious climate adaptation strategies. Such integration
would transform the morphological exposure framework developed
here into a comprehensive vulnerability assessment tool, enabling re-
searchers, urban planners and practitioners to identify areas where heat
is most intense and where it poses the greatest risk to human health and
wellbeing.
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Distribution of LCZ counts and corresponding surface areas (ha) across the Netherlands, based on 100 m x 100 m grid cells from WUDAPT. Only LCZs relevant to
residential and urban built environment are considered in this study. LCZ 7 (lightweight low-rise), LCZ 8 (large low-rise), and LCZ 10 (heavy industry), typically

associated with industrial or atypical European domains, are excluded.

LCZ 1 — Compact high-
rise

LCZ 2 — Compact mid-
rise

LCZ 3 — Compact low-

rise rise

LCZ 4 — Open high-

LCZ 5 — Open mid-
rise

LCZ 6 — Open low-
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built
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0 96 138699 1457
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All mathematical formulas are specific to one 100 m x 100 m grid cell. All datasets are sourced from publicly available secondary sources or derived therefrom.

Mathematical formula

Source

Specification parameters

Hipin,i
Hos =
2, .., n)

GSI = (1/n): >0 Ai [Ates

Havg = (1 /n)zil |Hmax.i -
|
9!

FSI=(1/n)-Y " F /A

OSR = (1/n)- Y1 (1~
(Ai JAwi ) — (Fi Ai)

SL=(1/m)-> " S
CAOs = (1/SL)-3 7 (SLari )

FAL = (1/m)-(Y7 | Apoji) /A
WAL = (1/n)- 37" (Vi /A)
DB =(1/n)- 3" mind(B;,B;)
DCR = (1/n)- Y} d(C, By)
SVF

n

IMD = (1/n)-3 " | IMD;

FVC =(1/n)- Y1 (Ti+ Gi + S)

5 (|Hmax, i = Hmin, i 11 =1,

3DBAG (2022)

3DBAG (2022)

Rudifun (2022)
Rudifun (2022)

Rudifun (2022)

Derived from

Land Registry and Public
Registers Service (2025)
Derived from

Land Registry and Public
Registers Service (2025)
Derived from

3DBAG (2022)

3DBAG (2022)

Derived from
3DBAG (2022)
Derived from
3DBAG (2022)
Habib et al. (2025)

Derived from

Copernicus Land Monitoring

Service (2018)
Derived from RIVM
(2022)

Average building height: where Hpay; and Hpin; denotes the maximum and minimum heights for each
building i, respectively and n is the total number of buildings.

The 957 percentile of building heights: where n is the total number of buildings, and Hpmax; and Hpin i
denotes the maximum and minimum heights, for building i, respectively.

Ground Space Index: where n is the total number of building blocks, A; is the footprint of the building block
i, and Ay, ; s the total site area of building i.

Floor Space Index: where n is the total number of building blocks, F; is the total floor area of building block i
(across all floors), and A; is the footprint of the building i.

Open Space Ratio: where n is the total number of building blocks, 1 — (A; /Ay; ) denotes the unbuilt space
of building block i and F; /A; is the floor area ratio of building block i. Note that the two expressions are
constructed using the GSI and FSI, as described above.

Street Length: where SL; represents the length of street i, and n is the total number of streets.

Canyon Axis Orientation: where n is the total number of streets in a given direction dir, SL4;; represents the
street length in a direction dir classified by 45-degree azimuth angle range (i.e, NS, EW, NESW, or NWSE),
for a street i, and SL is the sum of all street lengths.

Frontal Area Index: where n is the total number of buildings, Ayr;; is total area of each building i facet
projected onto the plane normal to the incoming wind direction and A is the total site area.

Wall Area Index: where V; is the total exterior vertical surface area of each building i, A; is the footprint of
the building, and n is the total number of buildings.

Minimum distance between buildings: where n is the total number of buildings, d(B;, B;) is the Euclidean
distance between the buildings B;,B;.

Distance Compactness Ratio: where n is the total number of buildings, d(C, B;) is the 2D Euclidean distance
from the centroid of the grid cell to the centroid of building i.

Sky View Factor: readers can refer to Habib et al. (2025) to obtain mathematical formulas and parameters
used to operationalize the SVF calculation.

Impervious Surface Density Fraction: where n is the total number of grid cells, and IMD; is the impervious
surface density (0-1) for each grid cell i.

Fractional Vegetational Cover: where n is the total number of grid cells, T; is the tree cover fraction (0-1),
Giis the grass cover fraction (0-1), and S; is the shrub cover fraction (0-1) for each grid cell i, and together
they do not exceed a value of 1.

Table A.3

Summary of 4b parameters.
Derived clusters GSI (%) Hayg (m) SVF (%) IMD (%)
1) 6-18 6-9 32-60 1-47
2 7-23 6-9 46-70 7-63
3) 21-33 5-8 36-54 25-70
4) 27-38 5-8 42-56 38-82
5) 40-57 6-9 38-54 48-91
6) 17-38 13-20 32-56 23-76
7) 53-79 9-17 29-49 55-97
® 10-40 25-44 32-56 23-76

Data availability

Mediterranean context. Energy and Buildings, 223, Article 110171. https://doi.org/
10.1016/j.enbuild.2020.110171
Bassolino, E., D’Ambrosio, V., & Sgobbo, A. (2021). Data exchange processes for the

The data that support the findings of this study are openly available
in the 4TU.ResearchData repository.

Clustering Approach to Residential Typo-morphologies Across Mul-
tiple Dutch Cities for Urban Heat Vulnerability Assessment (Original
data) (4TU.ResearchData)
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