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Teaching Robots Impact Tasks by Performing
Demonstrations

Sven Uitendaal
Supervisors: Jens Kober, and Alessandro Saccon

Abstract—While robots execute many tasks where physical
interaction with the environment is required, it is still challenging
to control a robot that deliberately makes contact at a non-
zero velocity, especially with multiple contact points that are
impacted simultaneously. When there is a mismatch between
planned and actual impact time, the robot typically does not
respond as desired. In this paper, we demonstrate that an Impact-
Aware Learning from Demonstration (IA-LfD) framework, that
is based on Reference Spreading, can be developed and validated
by physical experiments on real robots. The proposed IA-LfD
framework is based on the following key aspects: (a) generating
suitable ante-impact and post-impact tracking references from
demonstrations; (b) development and validation of an impact
detection mechanism to identify the contact transition, typically
consisting of multiple impacts. The validation of the approach
shows in particular the advantage of using an intermediate phase
controller in reducing peak contact forces and oscillations during
the dynamic contact transition, when compared to baseline
approaches not using this controller. In addition, the validation
highlights the role played by active/physical contact damping
during the contact transition to improve execution performance.

Index Terms—Learning from Demonstration, Reference
Spreading, Impact.

I. INTRODUCTION

S INCE the development of robots gets more advanced,
robots take more place in our daily life. This can be seen

in household machines, e.g. automatic vacuum cleaners, or
in warehouse robots. Many tasks require physical interaction
with the environment, e.g., running or picking up packages.
Where robots used to be programmed manually to execute
these skills, nowadays a more intuitive methodology to teach
skills to robots is Learning from Demonstration (LfD) [1]. LfD
refers to the process of transferring skills from a human teacher
to a robot by performing demonstrations. Robots can learn
skills directly from demonstrations, e.g., by fitting Movement
Primitives (MPs) through the trajectories that a robot has
carried out during demonstrations.

When a robot makes contact with its environment at a non-
zero velocity, one or more impacts take place. The jumps in the
velocity and peaks in the forces in the robot’s trajectory, that
result from the impacts, can cause a closed-loop controller to
destabilize, due to an improper definition of the tracking error
[2], [3]. In the case of a planned trajectory with jumps, the

S. Uitendaal and J. Kober are with the Department of Cognitive
Robotics, Delft University of Technology, Mekelweg 2, 2628
CD Delft, The Netherlands. A. Saccon is with the Group of
Dynamics and Control, Eindhoven University of Technology, Groene
Loper 5, 5612 AE Eindhoven, The Netherlands. (email:
s.j.uitendaal@student.tudelft.nl, J.Kober@tudelft.nl, A.Saccon@tue.nl).

destabilization is caused by the unavoidable time mismatch
between the nominal impact and the actual impact, causing a
peak in the velocity error and in the difference between contact
force and desired contact force, both causing a peak in the
closed-loop commands. This destabilization is also referred as
the ‘peaking phenomenon’ [2] and is visualized in Fig. 1a
and 1c. This phenomenon can be avoided by establishing
contact with a relative velocity of almost zero [4], but using
a low velocity limits the performance. In tasks like stamping
and hitting, impacts are required. In other tasks, like running,
picking up objects, and poking objects, slowing down the robot
will result in a longer execution time, and is contradictory to
how humans naturally execute these kind of tasks.

Many tasks require not only to make an impact, but ideally
to make it happen at different locations simultaneously. In
practice, the ideal simultaneous impacts will not take place
at exactly the same time, but slightly after another. Whereas
for cases with single impacts, methods exist to predict the
post-impact state [5], the state cannot be predicted during the
time interval in which the impacts take place, since identifying
the order of impacts is impossible to predict [6]. Since in
reality one has to deal with ‘practical-simultaneous’ impacts,
controlling a robotic system leads to further challenges to
define the tracking error and to decide what type of control
action one should employ.

In this paper, the Impact-Aware Learning from Demonstra-
tion (IA-LfD) framework, that is described and validated with
a numerical simulation in [7], is tested on a real robot setup,
by executing tasks that involve practical-simultaneous impacts.
This framework makes use of an impact-aware control ap-
proach, called Reference Spreading (RS), which is described
in more detail in Sec. II-C. To our knowledge this is the first
research that demonstrates RS for ideally simultaneous impact
tasks on a multi-DoF robotic arm in an experimental setting. In
this approach, a trajectory is divided in an ante-impact, an in-
terim, and a post-impact phase, and each phase has a different
control strategy. Using RS in a real robot setup requires online
detection of impacts to switch phases. A scenario is developed
where the robot moves freely during the ante-impact phase,
then impacts its environment and finally stays in contact during
the post-impact phase. Two different tasks have been taught to
the robot within this scenario. Demonstrations are performed
via teleoperation, thus not distorting the impact dynamics (i.e.
the natural inertia and damping parameters of the system) that
would result from physically guiding a robot. Experiments are
executed on a Franka Emika Panda 7-DoF robotic arm, and



Mismatch between reference and plant
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Reference Spreading (RS)
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Fig. 1. A mismatch between nominal jump time τi in the reference α and jump time ti of the plant x causes a peak in the tracking error e(t) = α(t)−x(t).
RS solves this by using extended ante-impact and post-impact trajectories ᾱa and ᾱp.

demonstrations are performed by recording the desired pose
of the end-effector using an HTC VIVE Pro Controller 2.0,
and by using this pose as reference for the robot.

In summary, this paper contributes to the development of the
combination of LfD with RS by: 1) validating the implemen-
tation of the IA-LfD framework from [7] on a practical robot
setup and showing the improvement in performance of using
a separate interim phase strategy; 2) showing the beneficial
effects of additional active damping during the interim phase
to absorb vibrations, when damping is not naturally present
in the physical structure of the robot and the environment; 3)
developing a suitable impact-detection method to identify the
beginning and estimate the end of the time interval in which
practical-simultaneous impacts take place.

This paper is organized as follows: in Sec. II, the robot
dynamics are described, and background information about
RS and impact detection methods are described. In Sec. III the
developed control approach and impact detection method are
presented. Sec. IV shows our experiments, and our conclusions
and recommendations are provided in Sec. V.

II. BACKGROUND AND PRELIMINARIES

In this section, background information is provided about
the robot dynamics, the IA-LfD control framework, and the
state of the art of impact detection methods.

A. Robot Dynamics and Control

The dynamics of a rigid robotic arm with n joints are
modeled as follows:

M(q)q̈ +C(q, q̇) + g(q) = τm − τ ext, (1)

where q ∈ Rn are the joint positions, M ∈ Rn×n the inertia
matrix, C ∈ Rn the combined Coriolis and centrifugal forces,
g ∈ Rn the gravity, τm ∈ Rn the motor torques and τ ext ∈
Rn are the joint torques caused by the external forces acting
on the end-effector. In free motion τ ext = 0. The external
Cartesian wrench F ext (i.e. the forces and torques) that is
acting on the end-effector can be calculated using the external
joint torques by

F ext = (J⊤)†τ ext, (2)

with J the (geometric) Jacobian, and (J⊤)† denoting the
Moore-Penrose pseudoinverse of J⊤.

With a robotic arm that is torque-controlled, the motor
torques can compensate for gravity and Coriolis and centrifu-
gal forces by choosing

τm = C(q, q̇) + g(q) + τ cmd, (3)

where τ cmd are the commanded joint torques. If a control
equation is defined in operational space, the robotic arm can
be controlled via

τ cmd = J⊤F cmd + τns, (4)

with F cmd the commanded wrench in operational space, and
τns the nullspace joint torques, that can be used to control
the redundant degrees of freedom.

B. Impedance Control

Impedance control [8] is a control method that can be used
in situations where a physical interaction with the environment
is made. In addition, impedance control is able to absorb
impacts [9]. The impedance control equation is built up in
such a way that the end-effector is attached to a virtual spring-
damper system, such that is pulled towards a goal position.

Using a combination of the formulations of [10] and [11],
the control equation is defined as

F cmd = K(xd − x)−Dẋ+ F d, (5)

which is impedance control with an additional feedforward
term F d. The result is used in (4). It uses position and
wrench references xd and F d, and it solves the static spring-
damper system with stiffness K and damping D, and x is the
current position of the end-effector. When there is a mismatch
between desired wrench F d and actual external wrench F ext,
the equation is stabilized by the pose and velocity feedback,
with a position offset dependent on the mismatch in wrenches.



C. Impact-Aware Control Framework

Current methods that can control a system that is exposed to
impacts are changing the control parameters, for example by
slowing down the system before impact to a relative velocity
of (almost) zero [4], or to a maximum feasible ante-impact
velocity [3], or by adapting the control gains [12], [13]. Other
methods require a case specific ‘glueing’ function design [14],
or are only suited for periodic impacts [15], e.g., a bouncing
ball. Impedance control is suited for absorbing impacts, but
is not impact-aware [9]. Then there are also hybrid control
approaches, which use different strategies based on impacts
that have or have not taken place. A method that mirrors a
reference trajectory on an impacted surface requires an impact
formulation of the environment [16]. Methods that do not
need such a formulation of the environment use a different
formulation for the tracking error [2], or make use of RS [7],
[17]–[19].

The core idea of RS is to divide the reference trajectory
into an ante-impact and a post-impact phase, based on the
nominal impact time. The reference trajectories for both the
ante-impact and the post-impact phase are extended in time, so
that they partially overlap. As can be seen in Fig. 1, peaking
is prevented by switching from ante-impact to post-impact
reference trajectory directly when an impact has taken place. In
case of practical-simultaneous impacts, an additional strategy
can be used for the interim phase. In [6] and [7], an interim
control strategy is used that only uses pure feedforward control
during the interim phase, and [19] proposes the additional use
of positional feedback.

D. Learning from Demonstration

Tasks with impacts can be taught to the robot by performing
demonstrations. In [7], the trajectories of the end-effector in
the demonstrations are used to create Probabilistic Movement
Primitives (ProMPs) [20]. Before fitting ProMPs on the data,
the trajectories are first extended around their nominal impact
time. When executing the learned task, the ProMPs are used
as reference trajectories.

E. Impact Detection Methods

The detection of impacts can be a challenging process. Even
at low velocities, impacts take only a couple of milliseconds
[3], so in order to gather sufficient information to detect
impacts, data acquisition has to happen with a high sampling
frequency, and the algorithm to detect impacts has to be fast
to be able to process all this information and respond in time.
Current methods detect impacts based on jumps in the velocity
or based on force data.

Impacts cause abrupt changes in velocity signals. By iden-
tifying these changes, impacts can be detected. In [21], an
impact detection method is described that puts a threshold
on the difference between consecutive velocity datapoints.
When this threshold is exceeded, an impact is detected. The
method described in [22] detects jumps in the velocity by
using position data and is called Jump-Aware (JA) filter. This
method uses a window with an adaptive window length, and it

uses the position measurements within this window to make a
prediction for the next position value. An impact is detected if
the difference between the prediction and the measured value
of the next datapoint exceeds a certain threshold.

As explained in Sec. I, impacts are collisions with the
environment, resulting in peaks in the forces that are acting on
the robot. In [23], a walking robot is trained to detect impacts
based on the Z component of the Cartesian force, calculated
using the measured joint torques. First, a nominal force profile
is recorded by executing the walking motion, while hanging
above the ground. When the robot is walking on the ground,
an impact is detected when the difference between measured
and nominal force exceeds a certain threshold. Although this
method is simple and model-free, it requires a large data
storage, and it is situation dependent, as per type of movement
a nominal force profile needs to be recorded. Several collision
detection methods discussed in [24], are based on the external
joint torques τ ext in (1). Since direct sensing of τ ext is
usually not available on robotic arms, an estimation of τ ext

can be made by using a momentum observer. The momentum
observer described in [24] provides a first-order estimation
of τ ext. A robot is in physical contact with its environment
if |τ ext| > 0, with |.| indicating the absolute value of each
of the vector’s indices, however due to disturbances in the
external torque estimation, a threshold ϵ can be used, such
that a collision is detected if |τ̂ ext| > ϵ, with τ̂ ext denoting
the estimation of τ ext, which is the output of the observer.

The author of [25] points out that such a method does not
detect multiple impacts, when contact with the environment is
maintained after the first impact. He uses the fact that since
τ̂ ext is a first-order estimation, a peak in the external joint
torques τ ext results in a step in the estimation τ̂ ext, which
is equivalent to a peak in the estimation rate ˙̂τ ext, thus an
impact is detected when | ˙̂τ ext| > ϵ. Although the true value of
˙̂τ ext is unknown, Euler differentiation of τ̂ ext can be used to
estimate ˙̂τ ext. This is a similar approach to high-pass filtering
τ̂ ext, which deals with dynamic modelling errors, and provides
more sensitive impact detection according to [24].

III. METHOD

Our method consists of an offline part and an online part.
In the online part of the method, the robot is executing the
task using impedance control, with a feedforward term during
contact. The offline part is very similar to the RS framework in
a LfD setting of [7]. Reference trajectories of ante-impact and
post-impact phase are created using recorded demonstration
data. The data of demonstrations are segmented into ante-
impact and post-impact phases, based on the times of impact.
Whereas [7] was assuming to know the times of impacts, since
it was implemented in a simulation, our method relies on an
impact detection method. As mentioned in Sec. II-C, reference
trajectories are made by fitting ProMPs on the segmented
demonstration data.

The motion of the robot is described as the position and
orientation of the end-effector in the ante-impact phase xa and
θa, as well as the position, orientation, and contact wrench in



the post-impact phase xp, θp, and F p. Since the robot is freely
moving in the ante-impact phase, it is assumed that the contact
wrench F a = 0.

A. Segmentation and Alignment of Demonstration Data

In order to use RS, the demonstration datasets need to be
segmented into the different phases. For creating ProMPs of
each phase, the time domain of each dataset needs to cover the
same time domain. Therefore the data of each phase is aligned
in time, and to make the time domains of equal length, the
datasets are trimmed. It is assumed that all the demonstrations
are executed with more or less the same velocity.

1) Segmentation: The ante-impact phase starts at the be-
ginning of the recording and ends one datapoint before the
first impact, such that it is free of impacts. The post-impact
phase starts at the time of the last impact of the practical-
simultaneous impacts. This has the consequence that post-
impact dynamics are still present in the post-impact phase, but
this can be compensated by post-processing the demonstration
data. The datapoints in the interim phase are not used in
creating reference trajectories. The segmentation of data can
be viewed in Fig. 2.

Ante-impact phase
Ante-impact extension
Post-impact phase
Post-impact extensions
Interim phase

Fig. 2. Demonstration data is segmented into ante-impact, interim, and post-
impact phase. The data of the ante-impact and post-impact are then extended
around the nominal impact times.

2) Time-alignment: Whereas in the numerical simulation
study of [7], information from the simulations could be used
to align demonstrations, in a practical study we have to
look for a common point in the recorded demonstrations.
The demonstration datasets of both the ante-impact and post-
impact phases all have one common point: the point in time
when (initial/full) contact is established. As this is easy to
implement, these points in time are used to align the datasets.
Since the ante-impact phase ends when initial contact between
the robot and environment is established, the data from the
ante-impact phase are aligned such that the last datapoint of
each dataset has the same timestamp. In the post-impact phase,
full contact is established at the start of the phase, so datasets
are aligned at the first datapoint. However, the alignment of
demonstrations could be further analyzed, since the approach
used does not take into account different contact locations

and multiple ante-impact and post-impact phases in case of
multiple contact establishments throughout the task.

3) Trimming Datasets: In order to fit ProMPs on the
datasets, the time domain of each dataset should be of equal
length. Time modulation techniques, such as introducing a
phase variable [20] or Dynamic Time Warping [26], cannot
be used, since the modulation of time distorts the velocity,
and the velocity strongly influences the behaviour of the robot
when establishing contact. Instead, the datasets are trimmed.
Unnecessary datapoints are removed, such that the time do-
mains from datasets of different demonstrations have equal
length. For the ante-impact phase, the datapoints at the start
of the trajectory are discarded, until each demonstration covers
the same time domain. The post-impact phase is trimmed at
the end of the demonstration data.

B. Extending Trajectories
To apply RS, the ante-impact and post-impact trajectories

need to be extended around the nominal impact time for a
sufficiently large time interval that accounts for the expected
impact time uncertainty. Similar to [7], the wrench trajectories
are extended using a zero order hold, while the position
and orientation trajectories are extended using a first order
hold. A first order hold position extension corresponds to a
constant velocity extension, which encourages the system to
impact with the same velocity as planned. It also ensures the
establishment of contact. The same counts for the orientation
extension. Similar reasoning is used for the extension of
the wrench. Extending with a constant wrench encourages
the system to apply the same wrench as planned after the
impact has taken place. Additionally, whereas a linear wrench
extension would lead to extremely high/low wrench commands
when the mismatch in impact time is large and the wrench
gradient is nonzero, this will not be the case with a constant
wrench extension.

The data is extended by keeping the time step between
extended datapoints equal to the average sampling period Ts

of the recorded data. This is done to prevent the ProMP from
overfitting on the extended data. The extension times can be
described as

t̄k = text + k · Ts, (6)

with for the ante-impact phase text = tL−1 is the last time
step of the recorded demonstration, and k ∈ {1, 2, ..., Next},
with Next denoting the number of extended datapoints. For
the post-impact phase text = t0 and k ∈ {−Next,−Next +
1, ..., 1}.

Whereas the position and orientation data of the ante-impact
phase are extended using the constant velocity value at the
end of the ante-impact trajectory, this cannot be done in the
post-impact trajectory, since the velocity at the start of the
post-impact trajectory is heavily influenced by post-impact
vibrations, resulting in oscillatory behaviour in the velocity
signal, as is pointed out in [5]. To eliminate these oscillations
in the velocity signal, the velocity used for extending the post-
impact trajectories is the approximated post-impact velocity



according to the method of [5], which uses around 3 oscillation
periods of the post-impact velocity to make the approximation.
The velocity data that is used for the approximation is then
replaced by the approximated post-impact velocity.

C. Detecting Impacts

As mentioned in Sec. I, impacts take place when the robot
collides with its environment, resulting in peaks in the contact
force. In Sec. II-E, it is described that the external joint torque
estimation by a momentum observer can be used to detect
these peaks, by taking the Euler differentiation of the estimated
external joint torques

˙̂τ ext,k ≈ τ̂ ext,k − τ̂ ext,k−1

tk − tk−1
, (7)

with tk denoting the k-th time instant. At times when the
estimation rate exceeds a threshold ϵ, an impact at joint j is
detected if

τ̂ jext,k − τ̂ jext,k−1

tk − tk−1
> ϵj . (8)

Although this method gives insight about which joints are
affected by the impact, making a good choice for ϵ can
be challenging, since a value ϵj for each joint has to be
determined, and tuning these values is not very intuitive,
because the value for each joint depends on the robot’s
configuration. A more intuitive approach is to detect impacts
in the operational space, since impacts take place in the robot’s
operational space. Given that F ext = [f⊤

ext m
⊤
ext]

⊤, with fext

and mext the external force and torque vectors, and F ext

coming from (2), we propose to change (8) to

∥fk − fk−1∥
tk − tk−1

> ϵ, (9)

with fext written as f for the sake of readability, and ϵ a
bounding constant. By taking the magnitude of f , the detection
of impacts is direction independent. Since impacts acting on
the robot only result in forces that are applied to the robot,
the estimation rate of the external force magnitude ḟ , with
f = ∥f∥, is positive when an impact takes place. Thus, in
order to reduce the number of false positive impact detections,
we can formulate that an impact is only detected under the
condition of (9) and

∥fk∥ > ∥fk−1∥. (10)

A drawback of the method (9), (10), is that the detection
of impacts relies on only two consecutive datapoints, thus
making it not robust against missing datapoints and noise. A
solution is offered by the JA filter, which, as mentioned in
Sec. II-E, uses an adaptive window of multiple datapoints for
the detection of impacts. Although the JA filter is introduced
as a method to find changes in the slope of the position signal,
and thus steps in the velocity signal, we show that it can also
be used to find jumps in the external force signal. In Fig. 3,
it can be seen that when an impact takes place, a peak in the

Fig. 3. While the actual external force is an impulse when an impact takes
place at t = timp, the momentum observer output is a step, since it is a first
order estimation.

external force appears. When contact is then established, the
external force stays constant. Since the momentum observer
described in Sec. II-E provides a first-order external force
estimation, the impulse results in a step response, after which
the observer output converges to the constant external force
value. Therefore, the JA filter can be used to detect jumps
in the external force signal. In this method, a prediction for
the current datapoint is made by using an adaptive window of
previous datapoints. If the actual value differs too much from
the prediction, a jump is detected. Namely, a jump in signal
q at timestep k is detected when

∥qk − p(q
k
)∥ > b(q

k
), (11)

with p and b the prediction and bounding functions, and q
k
=

[qk−mk
, qk−mk+1, ..., qk−1], where mk is the current window

length. The prediction p(q
k
) is an extrapolation of q

k
, which

can be retrieved by e.g. a polynomial fit. The window length
updates each step according to

mk+1 =

{
0, (11),
min(M,mk + 1), otherwise,

(12)

where M denotes the maximum window length. The detection
of impacts using this method is visualized in Fig. 4.

Fig. 4. JA filter: an impact is detected when the difference between datapoint
q and prediction p(q) exceeds the value of bound b(q). Since an impact can
take a few milliseconds, using the JA filter directly after a detection can result
in a second detection of the same impact.

In (9), fk−1 can be used as a prediction p, whereas [tk −
tk−1]ϵ can be used as a bound b. This method can incorporate
multiple datapoints by choosing prediction function

p(f
k
) = f̄

k
, (13)



where f̄
k

stands for the mean force vector of f
k
, and

bounding function

b(f
k
) =

tk − tk−mk

mk
ϵ, (14)

with ϵ a bounding constant, and mk is the window length
as described in (12). The positive estimation rate can be
incorporated by changing (10) to

∥fk∥ > ∥p(f
k
)∥. (15)

As mentioned in Sec. II-E, an impact can take a couple of
milliseconds. As a consequence, the force rate can exceed the
threshold for multiple consecutive timesteps, which can result
in multiple detections of the same impact, as can be seen in
Fig. 4. To prevent this, the JA filter can be turned off for
a certain time interval after an impact detection. In order to
achieve this, the window length mk in (12) stays at 0 when

tk − timp < Timp, (16)

where timp is the timestamp of the last detected impact, and
Timp is a time interval in which the JA filter is not used,
because the previous detected impacts dynamics can still be
measured in the data. In our JA filter, the window length update
is defined by modifying (12) to

mk+1 =

{
0 [(11) and (15)] or [(16)]
min(M,mk + 1), otherwise.

(17)

D. Controller Structure

Since in the different phases (ante-impact, interim, and post-
impact) the robot has a different contact state (free movement,
contact partially established, and full contact), for each of
the phases a different control strategy is proposed. Each of
these strategies use the impedance control formulation of (5).
Additional to the phase strategies, a strategy that determines
when to switch from one phase to the next phase is proposed.
In summary, the controller consists of a strategy for the 1)
ante-impact phase; 2) interim phase; 3) post-impact phase; and
it also contains 4) a strategy to switch from ante-impact to
interim to post-impact phase.

1) Ante-Impact Phase: During the ante-impact phase, the
robot is moving freely, while tracking the learned position
trajectory. The commanded force (5) is used to track the
position reference trajectory, with F d = 0, since the robot
does not have to exert a force on the environment.

2) Post-Impact Phase: The robot is in full contact with its
environment during the post-impact phase, meaning that it is
exerting a force on the environment. The commanded force
formulation (5) is used, where F d is a learned desired force
the robot has to exert, in addition to the attractor force to
the reference position. This desired force is learned based on
estimated external force data.

3) Interim Phase: As mentioned in Sec. I, a tracking error
cannot be defined during the interim phase, since it is impossi-
ble to predict the order in which impacts take place. Assuming
that when an impact takes place, the system is damped by the
physical structure of the robot and the environment, an interim
control strategy that uses solely position feedback is proposed
in [19], where the extended ante-impact position reference is
tracked during the interim phase. This means that D = 0 in
(5), and F d = 0 as in the ante-impact phase. However, when
the physical structures of the robot and the environment lack
damping, it might be a good idea to actively provide damping
in the control equation to reduce oscillations. Therefore we
propose to continue to track the ante-impact trajectory during
the interim phase, while damping is actively provided in the
control equation.

4) Switching Strategy: Whereas in a numerical simulation,
such as [7] and [19], there can be switched from ante-impact
to interim phase and from interim to post-impact phase by
using knowledge of the simulation, in practical experiments
we can only rely on the detection of impacts. Similar to
the numerical simulations, the switch from the ante-impact
to interim phase can be done at the detection of the first
impact. However, switching from interim to post-impact phase
is not so straightforward. Besides that the order in which the
impacts takes is impossible to predict, multiple impacts can
take place around the same time, so that they will be detected
as one impact. In addition, the total number of impacts is also
configuration and shape dependent, making it impossible to
determine which impact detection corresponds to the end of
the interim phase. Therefore we propose to use a switching
strategy, in which the switching from interim to post-impact
phase takes place at time t1+Tint, where t1 is the time instant
of the first detected impact, and Tint is a constant duration of
the interim phase, of which the value can be determined based
on demonstrations.

IV. EXPERIMENTAL STUDY

To validate the impact detection method that is described
in Sec. III-C and the control approach from Sec. III-D, two
different experiments have been conducted with a Franka
Emika Panda 7-DoF robotic arm. In both the experiments,
the robot had to learn ideal simultaneous impact tasks. An
HTC VIVE Pro Controller 2.0 is used with two base stations
to provide reference poses for the demonstrations.

A. Tasks and Setup

The two experiments are shown in Fig. 5. A wooden plank
with a length of 70cm is used as end-effector. In the first
experiment, the robot has the task to stamp on the table.
After establishing contact with the table, the robot has to keep
pushing down, so that contact with the table is maintained.
In the second task, the robot has to wipe out a whiteboard.
The vertical movement is similar to the motion of the first
task. The addition of this experiment w.r.t. the first experiment,
is the horizontal motion. The robot moves horizontally with
an approximate constant velocity, but when contact with the



Fig. 5. From left to right experiments 1-2. The arrow shows the movement
direction.

whiteboard is established, friction forces act on the robot
in opposite direction of the horizontal movement. Part of
the impact energy will be absorbed by the frictional forces,
providing physical damping during the interim phase.

In the experiments, it is tried to create inelastic practical-
simultaneous impacts, such that after initial contact between
the robot and the environment, the end-effector does not
bounce off to make contact again, but stays in contact. Soft
covering reduces the impact [27], so the wooden plank is
covered in cloth. In addition, the end-effector is moved with
maximum feasible velocities, as impacting the environment
with larger velocities can result in bouncing. By covering the
plank in cloth, a sort of bone-flesh structure is created, which
provides some damping.

For performing demonstrations, the impedance controller
(5) with F d = 0 is used, where each of the components of
the commanded force F cmd is saturated to not exceed the
value of 50N. The value of 50N is determined experimentally,
such that the robot does not violate its joint torque limits
when impacting, but can still exert a large force. This safety
measurement prevents the robot from breaking itself or the
environment by accident and it helps prevent the robot from
shutting itself in safety mode for exceeding its joint torque
limits.

Both during the demonstrations and the executions of the
learned tasks the robot is controlled with a frequency of
500Hz. As mentioned in Sec. II-E, data acquisition has to hap-
pen with a high sampling frequency in order to detect impacts,
since impacts take only a couple of milliseconds. This high
frequency provides the JA filter with enough data to detect
impacts, while the 2ms between two consecutive datapoints
are sufficient to complete its calculations. In addition it allows
the robot to respond with a delay of only 2ms to a detected
impact.
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Fig. 6. Applying a JA filter with a window length of M = 10 on
demonstration data of the stamping experiment results in the detection of
2 impacts. After the detection of an impact, there is a time window in which
there are no prediction and bound available, since the JA filter is turned off
after a detection.

B. Impact Detection

In order to use the switching strategy described in
Sec. III-D, a method that detects the moment an impact
has taken place is required. Impacts are detected under the
conditions (11) and (15), using prediction (13) and bound
(14). The software from Franka Emika is providing external
force estimation by using the momentum observer described
in [24]. In these estimations, the time from the start of an
impact until a peak in the estimated force magnitude, easily
takes more than 10 datapoints. With this knowledge, a JA filter
with a maximum window length of M = 10 datapoints, and
an impact duration of Timp = 25 · 0.002s = 0.05s is applied.
The bounding constant ϵ = 4.0/0.002 = 2000N s−1 is chosen
such that the peaks in the difference between measurements
and predictions ∥f − p(f)∥ in Fig. 6 exceed the bounding
value.



Fig. 6 shows that the detected impact times are close to the
times of jumps in the velocity and the external force. Two clear
peaks in the difference between measurements and predictions
are visible around the jump times, indicating that with the
right choice for ϵ, impacts will be detected at these points in
time. Note that impacts are detected with a few milliseconds
delay. The points of detection in Fig. 6 are at points in time
when jumps in external force and velocity already have been
(partially) made. The reason of this delay is that an impact is
only detected when the difference between measurement and
prediction exceeds the bounding value ϵ, which takes a few
milliseconds after the jump has started.

Something else that can be seen in Fig. 6 at the bottom,
is that at some points in time, the bounding value is a bit
larger than the nominal value of 4.0N. This is due to a
datastream that is not entirely stable, and some datapoints
arrive later than the planned 2ms sampling period after the
previous datapoint. Due to the formulation of the bounding
function, the bounding value is larger at these points, and the
method is robust against this instability in the datastream. This
robustness can be increased by using a larger window length,
at the price of a larger delay.

Figure 7 shows the difference between measurements and
predictions when the JA filter is applied without bounding
function, i.e. no impacts are detected, so mk in (17) is never
reset to 0. In such a plot, the influences of tuning the JA filter
and disturbances in the signal clearly can be seen. In Fig. 7, at
the time of the second detected impact, at t ≈ 4.4s, multiple
peaks show up, where in each peak the difference between
measurement and prediction exceeds the bounding value of
4.0N for more than one datapoint, indicating that if the JA
filter was not turned off for some time after the detection of
an impact according to (17), multiple detections of the same
impact would have taken place.

Furthermore, some oscillatory behaviour in the difference
between measurements and predictions can be seen in Fig. 6
at the bottom (especially until the first impact at t ≈ 4.1s).
These oscillations are caused by noise in the external force
estimation, and are undesired, since the bounding value has to
be adjusted in order to not detect false positives. Whereas the
robot starts in free motion, with no external forces applied, it
can still be seen in Fig. 6 that the external force magnitude
is not equal to 0N, and is oscillating. This inaccuracy in the
external force estimation of the Panda robotic arm is addressed
by [28] and can be caused by noise in sensors, inaccurate
modeling of dynamics, and friction. Since we are looking at
the external force rate, the offset is not a problem, but the
oscillations are. In Fig. 7, the influence of the oscillations
in the external force estimation to the difference between
measurements and predictions can clearly be seen. Around
the time of the first impact, at t ≈ 4.1s, the lower peaks,
that are caused by these oscillations, reach values up to
half the value of the first impact peak, making it difficult
to choose an appropriate threshold that indicates whether a
peak is an impact or not. Thus, with the provided external
force estimations, impacts can only be detected with a suitable
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Fig. 7. The difference between measurements and predictions when using
the JA filter of Fig. 6 without a bounding function.

bounding value, and the jump in the external force estimation
must be large enough to be distinguished from the estimation
noise.

C. Executing the Learned Task

To validate the use of tracking the ante-impact position
reference in the interim phase as originally proposed in [19]
on a real robot setup, and to show the effect of using active
damping, the stamping and sliding tasks, illustrated in Fig. 5,
will be executed using the learned and post-processed ante-
and post-impact reference trajectories created as explained in
Sec. III-A and III-B. We will compare the two controllers
with an interim strategy, i.e. the two controllers described in
Sec. III-D, of which one uses damping during the interim
phase and one uses purely feedforward control, against a)
an impact-unaware controller, which switches to the post-
impact strategy at the nominal impact time, and is considered
as baseline, and b) the classical RS controller [17], which
switches directly to the post-impact phase at the detection of
an impact, and has no intermediate phase. In both the stamping
and the sliding task, the duration of the interim phase, as
described in Sec. III-D, Tint = 300ms.

To simplify the movement and focus only on the linear
movement direction, in both of the experiments it is tried to
maintain a constant orientation of the end-effector. In order
to prevent undesired rotations from still happening due to
recorded post-impact motions, we have hardcoded a rotational
velocity of 0, and a desired torque trajectory of 0. Further
research can be about investigating more complex movements,
with a nonzero rotational velocity.

1) Stamping Task: As explained in Sec. IV-A, in the
stamping task, the robot executes a vertical stroke movement
to impact the table, after which it keeps pushing down. The
associated plots can be seen in Fig. 8. The dashed-dotted lines
are the references for the different strategies. It can be seen in
Fig. 8 that the references switch to the post-impact phase at
different points in time. The baseline (blue) reference switches
first, because the nominal impact time is at t ≈ 3.8s. Second,
the classic RS controller (red) reference switches to the post-
impact phase, because the first impact for this execution takes
place at t ≈ 3.9s. The controllers with an interim phase
(yellow and purple) switch both at t ≈ 4.2s, which is 0.3s after
their first detected impact. The slight difference in switching
times is due to different impact detection times of the first
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the reference is not informative, but only helps to establish contact. The lag
in the position with respect to the position reference is due to the fact that no
velocity reference is used.

impact. This is inevitable, and can be caused by slightly
different conditions, like slight difference in initial conditions,
friction in the joints, and noise in the power supply.

The beneficial use of RS (red) in comparison with the
baseline (blue) can clearly be seen in Fig. 8. The position error
of the baseline controller converges quickly to 0. However, the
post-impact force is applied too early, causing a large impact
force and a large velocity overshoot at t ≈ 4.0s, in comparison
with the impact-aware strategies at t ≈ 4.1s. It can also be seen
that the end-effector bounces off the impacted environment
when using the baseline controller, after the position error has
reached a value of 0 at t ≈ 4.0s. The same can be seen in
the velocity plot, which shows a positive value at this time,
indicating that the robot is moving away from the table. The
same thing happens with the classical RS controller (red) at
t ≈ 4.1s, but to a lesser extent.

For the controllers that make use of an interim strategy,
the idea behind removing the active damping in (5), is that
the system is damped by the impacts. Under this assumption,
applying only active stiffness, while tracking the position
reference, should result in a smooth establishment of con-
tact with the impacted environment. However, Fig. 8 shows
oscillations in the velocity (third plot), and a peak in the
contact force (fourth plot) at the moment of impact at t ≈ 4.1s
in the RS controller where damping is removed during the
interim phase (purple). The velocity even reaches a positive
value, indicating that the robot bounces off the impacted
environment. This indicates that the robot’s physical structure
and the environment are not providing sufficient damping for
a smooth establishment of contact. To compensate for this,
active damping can provided by keeping a damping term in the
control equation. It can be seen in the yellow plot that having
an active damping term results in a much lower impact force
and much smaller and less oscillations in the velocity signal
when compared to the controller that uses no active damping
in the interim phase.

Another interesting aspect of adding an interim control
strategy can be seen when looking at the plot of the com-
manded force, that is f cmd in F cmd = [f⊤

cmd m⊤
cmd]

⊤ in
(5). In Fig. 8 at the bottom, the Z component of f cmd for
the stamping task is plotted. It can be seen that applying the
post-impact force reference before fully establishing contact,
results in large jumps in f cmd. This is the case for the
baseline controller (blue) at t ≈ 3.8s and the classical RS
controller (red) at t ≈ 3.9s. Adding an interim phase where the
extended ante-impact trajectory is tracked, helps to establish
contact and to already exert a force on the environment, before
switching to a post-impact strategy. This makes the jump in
f cmd significantly smaller when there is switched to the post-
impact strategy at t ≈ 4.2s. It can be seen in Fig. 8, that
for the controller that does not use damping in the interim
phase (purple), another jump in f cmd takes place at t ≈ 3.9s.
This jump occurs due the fact that damping is removed at the
beginning of the interim phase.

2) Sliding Task: As explained in Sec. IV-A, the sliding
movement absorbs part of the impact energy, and this (par-
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Fig. 9. Velocity and contact force in the Z direction for the sliding task.

tially) damps the robot. The resulting velocities and forces
in Z direction can be seen in Fig. 9. Since the ante-impact
velocity is larger for this task than for the pushing task, the
recorded contact forces are larger at their maximum values
as well, especially at the baseline (not shown as it exceeds
robot limits and experiment had to be stopped) and RS without
interim phase (red). This large step in force reference makes
the robot exceed its feasible joint torque limits when using the
baseline controller, and therefore this could not be recorded.
This does however show the usefulness of RS.

In Fig. 9, it can be seen that the physical damping has
effect, because the velocity profiles of the two controllers
with an interim phase strategy (yellow and purple) are almost
identical. The force plots of the two controllers is also very
similar, with a slightly larger impact force at t ≈ 2.45s for the
controller that does not actively use damping in the interim
phase (purple). The trajectories in the X direction however
are different. Figure 10 shows that the lack of active damping
causes the velocity to reach larger values, and the force to
oscillate, which might not be the desired behaviour. An idea
could be to actively dampen the movement, except for the
direction in which the impact takes place, under the condition
that damping in that direction is provided sufficiently by the
physical structures of the robot and the environment.

V. CONCLUSION AND FUTURE WORK

In this paper, a validation of RS control is performed on
a real robot setup, building up from the IA-LfD framework
originally detailed in [7], and by filling in the missing compo-
nents needed to translate this framework from numerical simu-
lation to physical experiments. We have developed an impact
detection method that can be used within the framework of
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Fig. 10. Velocity and contact force in the X direction for the sliding task.

RS. Furthermore, we have shown the effectiveness of using
an interim phase in case of planned simultaneous impacts. We
have also shown that when damping is lacking in the physical
structures of the robot and the environment, the addition of
active damping during the interim phase can help to smoothly
establish contact between the robot and the environment, by
reducing the peak force.

We think however, that the physical structure of the robot
should provide damping when establishing contact. Future
work can involve the design of end-effectors and robots that
provide enough damping. In addition, since current provided
external force signal is somewhat noisy, an improvement for
the detection of impacts would be to have better external
force estimations, to be capable of detecting impacts involving
lower forces. Better results from the momentum observer can
be achieved by modeling disturbances such as friction, e.g.
with friction observer such as the one described in [29]. Also,
it can be investigated how to use the original formulation
of the JA filter [22] to detect impacts. In our research, this
implementation gave issues with the instable datastream of the
robot, where sometimes one or two datapoints were missing.
If the original formulation of the JA filter is used, the missing
datapoints have to be taken into account, or a more stable
datastream has to be used. Further research in combining
LfD with RS can be done. As mentioned in Sec. III-A, the
time-alignment of different demonstrations could be further
investigated. Other possible research can be about investigating
more complex movements, involving a nonzero rotational
velocity, or about making small changes in the trajectories, for
example by using different starting and ending conditions, or
about removing the time-dependence of reference trajectories,



e.g., by teaching the impact map to the robot based on
demonstrations to predict the post-impact velocity.

REFERENCES

[1] S. Calinon, Learning from Demonstration (Programming by Demonstra-
tion). Berlin, Heidelberg: Springer Berlin Heidelberg, 2018, pp. 1–8.
[Online]. Available: https://doi.org/10.1007/978-3-642-41610-1 27-1

[2] J. J. B. Biemond, N. van de Wouw, W. P. M. H. Heemels, and
H. Nijmeijer, “Tracking control of mechanical systems with impacts,”
in 2012 American Control Conference (ACC), 2012, pp. 258–263.

[3] Y. Wang, N. Dehio, A. Tanguy, and A. Kheddar, “Impact-aware
task-space quadratic-programming control,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.01987

[4] S. S. M. Salehian, M. Khoramshahi, and A. Billard, “A dynamical
system approach for softly catching a flying object: Theory and ex-
periment,” IEEE Transactions on Robotics, vol. 32, no. 2, pp. 462–471,
2016.

[5] I. Aouaj, V. Padois, and A. Saccon, “Predicting the post-impact velocity
of a robotic arm via rigid multibody models: an experimental study,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), 2021, pp. 2264–2271.

[6] M. Rijnen, H. L. Chen, N. van de Wouw, A. Saccon, and H. Nijmeijer,
“Sensitivity analysis for trajectories of nonsmooth mechanical systems
with simultaneous impacts: a hybrid systems perspective,” in 2019
American Control Conference (ACC), 2019, pp. 3623–3629.

[7] S. de Zwart, “Impact-aware learning from demonstration,” MSc thesis,
Delft University of Technology, Faculty of Mechanical, Maritime
and Materials Engineering (3mE), Delft Center for Systems and
Control (DCSC), 2019. [Online]. Available: https://repository.tudelft.nl/
islandora/object/uuid%3Ac6f91fb2-2544-4802-bcda-4ee70ab0e2be

[8] N. Hogan, “Impedance control: An approach to manipulation: Part i
- theory, part ii - implementation, part iii - applications,” Journal of
Dynamic Systems, Measurement, and Control, vol. 107, no. 1, pp. 1–24,
03 1985.

[9] T. Senoo, M. Koike, K. Murakami, and M. Ishikawa, “Impedance control
design based on plastic deformation for a robotic arm,” IEEE Robotics
and Automation Letters, vol. 2, no. 1, pp. 209–216, 2017.

[10] F. J. Abu-Dakka and M. Saveriano, “Variable impedance control and
learning—a review,” Frontiers in Robotics and AI, vol. 7, 2020. [Online].
Available: https://www.frontiersin.org/article/10.3389/frobt.2020.590681

[11] S. Sidhik, M. Sridharan, and D. Ruiken, “Towards a framework
for changing-contact robot manipulation,” 2021. [Online]. Available:
https://arxiv.org/abs/2106.10969
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A
From Demonstrations to Reference

Trajectories
As explained in Sec. III-A, when demonstrations are recorded, the data of each demonstration is first
segmented into an ante-impact, a post-impact, and an interim phase. The datasets are aligned based on
the end of the ante-impact phase and the start of the post-impact phase, and then trimmed to cover the
same timespan. After extending the trajectories for using Reference Spreading, Probabilistic Movement
Primitives (ProMPs) are created to represent the trajectories.

To formulate the segmentation, the datapoints will be labeled according to their phase. Datapoints
belonging to the ante-impact phase get the superscript a, whereas datapoints belonging to the post-
impact phase get the superscript p. Datapoints in the interim phase get no superscript, as they are not
used in creating reference trajectories.

Data of demonstration d consist of the Cartesian position xd and velocity ẋd, Cartesian orientation
θd, and, only in the post-impact phase, contact force fd.

A.1. Segmentation and Alignment
As explained in Sec. III-A, the segmentation of data is done based on the time that impacts take place.
The ante-impact phase starts at the beginning of the trajectory and ends at the start of the interim
phase. The interim phase starts at the time of the first impact and ends one datapoint before the last
impact. The last impact marks the start of the post-impact phase in the segmentation, so that enough
data are available to estimate the post-impact velocity, which will be explained in Sec. A.2. The interim
phase is not used to create reference trajectories.

A.1.1. Aligning Demonstrations
The datasets of demonstrations are aligned with the time when contact is partially/fully established as
reference point, since this is a common point in time for all the data of the ante-impact phase and the
post-impact phase.

Ante-Impact Phase
In the ante-impact phase contact is (partially) established at the end of the trajectory. The timestamp
of each datapoint is amended such that the impact takes place at ti = 0. This results in

t̂
a|d
k = t̃

a|d
k − t̃

a|d
L̂a|d−1

k ∈ {0, L̂a|d − 1}, (A.1)

with t̃
a|d
k denoting the recorded timestamp of the datapoint at timestep k in the ante-impact phase of

demonstration d, L̂a|d is the number of datapoints in the ante-impact phase before trimming, and t̂
a|d
k

is the time-aligned timestamp before trimming.
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Post-Impact Phase
A similar approach is used for the post-impact phase, but contact is here fully established at the start
of the trajectory. The time-alignment is now formulated as

t̂
p|d
k = t̃

p|d
k − t̃

p|d
0 k ∈ {0, L̂p|d − 1}, (A.2)

where t̃
p|d
k denotes the recorded timestamp of the datapoint at timestep k in the post-impact phase of

demonstration d, L̂p|d is the number of datapoints in the post-impact phase before trimming, and t̂
p|d
k

is the time-aligned timestamp before trimming.

A.1.2. Trimming Data
In order to create ProMPs, the datasets are trimmed to cover the same time domain. Trimming is done
based on the dataset with the shortest time interval, that is the time interval from the start until the
end of the dataset.

Ante-Impact phase
For the ante-impact phase, the dataset with the shortest time interval is the dataset with the last
starting time. The trimmed ante-impact phase of demonstration d consist of datapoints that fulfill the
condition

t̂
a|d
k ≥ max

d
t̂
a|d
0 k ∈ {0, L̂a|d − 1}. (A.3)

The resulting ante-impact dataset now has La|d datapoints.

Post-Impact phase
A similar approach is used for the post-impact phase, but now the dataset with the shortest time interval
is the dataset with the first ending time. The trimmed post-impact phase of demonstration d consists
of datapoints that fulfill the condition

t̂
p|d
k ≤ min

d
t̂
p|d
L̂p|d−1

k ∈ {0, L̂p|d − 1}. (A.4)

The resulting post-impact dataset now has Lp|d datapoints.

A.2. Extending Trajectories
In order to apply RS, the ante-impact and post-impact trajectories need to be extended, so that they
overlap during the time interval where impacts can be expected. As explained in Sec. III-B, for extending
the trajectories, mainly the ideas of [10] have been used. In that approach, the position and velocity
trajectories are extended by using a constant velocity, whereas the force trajectories are extended by
keeping a constant value. Extending the velocity trajectories with a constant value will keep the ante-
impact and post-impact velocities the same as in the demonstrations, even though there is a mismatch
in nominal impact time and actual impact time. Contact establishment is ensured by extending the
position with a constant slope, corresponding to the extended velocity. The constant extension of force
trajectories is done due to similar reasoning. The post-impact force will remain the same, even when
there is a mismatch between nominal impact time and actual impact time.

In the demonstration has been tried to maintain a constant orientation. However, around the time
of impacts the end-effector of the robot is likely to rotate a bit, due to the impacts. If these orientations
are extended using a constant slope, then over time the difference between the extended orientation
and our desired, constant orientation can become large. Therefore the orientation is extended using a
constant value.

Furthermore, we noticed that the velocity trajectories show oscillations at the start of the post-
impact phase. The velocity is not yet converged to its steady-state value, which makes extensions using
the values of the first datapoint not redundant. A method that estimates the post-impact velocity
[2], that uses roughly three periods of oscillations, is used to estimate the post-impact velocity, which
will be used to extend the position and velocity data. After these three oscillation periods the data is
converged better to its steady state value. Therefore the position and velocity data in this time interval
are replaced by their extended versions.
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A.2.1. Extended Datapoints
The number of extended datapoints is

Next = ⌈Text · fs⌉, (A.5)

with Text the extension time interval, fs the sampling frequency of the recorded data, and ⌈⌉ that stands
for ceiling the result. The timestamps of these datapoints are divided evenly, with a time difference of
1/fs between them. In the ante-impact phase the timestamps of the extended trajectory are

t̄
a|d
k =

{
t
a|d
k k ∈ {0, La|d − 1},
t
a|d
La|d−1 + [k − La|d + 1] · Ts k ∈ {La|d, La|d +Next − 1},

(A.6)

where Ts = 1/fs is the sampling period. The timestamps of the extended post-impact trajectory are

t̄
p|d
k =

{
t
p|d
0 + k · Ts k ∈ {−Next,−1},
t
p|d
k k ∈ {0, Lp|d − 1}.

(A.7)

In the post-impact position and velocity trajectories, the datapoints in the first three oscillation
periods are replaced by their extended version. With the time interval of three oscillations Tfit, the
selection of datapoints in this interval fulfill the condition

t
p|d
k ≤ Tfit k ∈ {0, Lp|d}. (A.8)

If the number of datapoints in this selection is Nfit, then the post-impact phase has Next+Nfit extended
datapoints in the position and velocity trajectories.

A.2.2. Extending Data with a Constant Value
The trajectories of the velocity, orientation, and contact force are all extended using a constant value.
Dataset ya|d of the ante-impact trajectory of demonstration d can be extended using a constant value,
which is the datapoint just before the interim phase y

a|d
ext = y

a|d
La|d−1. Using this constant value, the

extended ante-impact trajectory is formulated as

ȳ
a|d
k =

{
y
p|d
k k ∈ {0, La|d − 1},
y
a|d
ext k ∈ {La|d, La|d +Next − 1}.

(A.9)

A similar approach is used for the post-impact trajectory. Using post-impact value yp|dext, the extended
post-impact trajectory for the orientation and force is formulated as

ȳ
p|d
k =

{
y
p|d
ext k ∈ {−Next,−1},
y
p|d
k k ∈ {0, Lp|d − 1}.

(A.10)

The first datapoint of the post-impact phase can be taken as constant extension value, yp|dext = y
p|d
0 .

As mentioned, in the post-impact velocity trajectory the datapoints of the first three oscillations are
replaced by its extended version. The extension of the post-impact velocity trajectory is formulated as

v̄
p|d
k =

{
v
p|d
ext k ∈ {−Next, Nfit − 1},

v
p|d
k k ∈ {Nfit, Lp|d − 1},

(A.11)

with v
p|d
ext an approximation of the post-impact velocity. The method to get this approximation is

explained in Sec. A.2.4.

A.2.3. Extending Position Data
The position trajectories can be extended using a constant velocity. For the ante-impact trajectory
of demonstration d, this can be done by using the velocity just before the start of the interim phase
va|d = ẋ

a|d
La|d−1. The extended ante-impact position trajectory of demonstration d can now be formulated

as
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x̄
a|d
k =

{
x
a|d
k k ∈ {0, La|d − 1},

x
a|d
La|d−1 + va|d · t̄a|dk k ∈ {La|d, La|d +Next − 1}.

(A.12)

The post-impact trajectory can be extended by using the post-impact velocity vp|d. The method to
give an approximation of this is explained in Sec. A.2.4. Using this post-impact velocity, the extended
post-impact position trajectory can be formulated as

x̄
p|d
k =

{
x
p|d
Nfit

− vp|d · [t̄p|dNfit
− t̄

p|d
k ] k ∈ {−Next, Nfit − 1},

x
p|d
k k ∈ {Nfit, Lp|d − 1}.

(A.13)

A.2.4. Approximation of the Post-Impact Velocity
Due to the oscillations in the velocity signal after an impact has taken place, taking the velocity value
at a time directly after the impact for extending the trajectories is not very reliable. Taking the velocity
value of a slightly different timestamp can result in a totally different value. A good alternative would
be using the velocity value of the rigid-body response.

An approximation of the post-impact velocity of the rigid-body response can be retrieved using the
method of [2]. On each of the components of the Cartesian velocity of ẋ

p|d
k , with k ∈ {0, Nfit}, the

fitting function

ffit(t,p) = v− + at+A(eγt cos (ωt+ ϕ)− cos (ϕ)) (A.14)

is fitted, where t denotes the time after the impact, v− the ante-impact velocity, and p := (a,A, γ, ω, ϕ)
is the set of optimization parameters. Because the post-impact trajectory starts at the time of the last
impact of the interim phase, the value of the first datapoint is used as ante-impact velocity v−.

After optimizing the parameters p via SciPy’s nonlinear optimization function curve_fit [9] the
virtual rigid-body response is retrieved by

vrb(t) = v− −A cos (ϕ) + at, (A.15)

and the value at impact time vrb(0) = v− −A cos (ϕ) is considered as the post-impact velocity.

Ante-impact phase
Ante-impact extension
Interim phase
Post-impact phase
Post-impact extensions
Data used for fitting
Fitted function
Linearization term

Figure A.1: The segmentation of velocity data into ante-impact, interim, and post-impact phase. The ante-impact and
post-impact trajectories are extended around their nominal impact time. A part of the post-impact data is used to

estimate the post-impact velocity. This part is replaced by an extended version, due to its oscillatory behaviour.
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A.3. Creating ProMPs
ProMPs are introduced by [5] as a general probabilistic framework for representing and learning move-
ments. A ProMP represents the movement as a distribution of demonstrations. In addition to that, it is
possible to define different start and goal positions, as well as via-points. Using the ProMP, a different
trajectory can be calculated with these via-points, while taking into account the variability over the
demonstration. For fitting a ProMP, it is important for the demonstrations to be time-aligned.

ProMPs are used to represent the reference trajectories of the position, orientation and contact force
of the robot’s end-effector. The velocity data from demonstrations is used to improve the accuracy of
the position ProMPs. Separate ProMPs are created for both the ante-impact and the post-impact
phase.

A.3.1. Formulation of ProMPs
In order to create a ProMP, a function that consist of weighted basis function is fitted on the data
of each demonstration. The Z weights wd are optimized such that demonstration dataset yd can be
approximated by

ỹd(t) = Φ⊤(t)wd, (A.16)
with Z basis functions Φ(t) = [ϕ1(t)

⊤, ...,ϕZ(t)
⊤]⊤. The set of basis functions ϕz(t) = [ϕz(t)] when only

the signal y = [y]⊤ itself is known, but can also be extended with derivatives e.g. ϕz(t) = [ϕz(t), ϕ̇z(t)]
when the first order derivative y = [y, ẏ]⊤ is also known.

The optimal values for the weights of demonstration d can be calculated via

wd = Φ†
ty

d
t , (A.17)

where yd
t = [yd(0), ..., yd(T )]⊤ and Φ†

t is the Moore-Penrose pseudo-inverse of Φt. With the weights for
each demonstration calculated, the ProMP can approximate the mean trajectory with

ỹ(t) = Φ⊤(t)µw, (A.18)
with µw denoting the mean set of weights.

A.3.2. Radial Basis Functions
Radial Basis Functions (RBFs) are basis functions that are often used for stroke movements in ProMPs
[5]. The zth RBF is formulated as a Gaussian

ϕz(t) = e−
(t−cz)2

2h , (A.19)
with center cz and width h. The centers of the different RBFs can be evenly distributed over the time
interval of the ProMP.

A.3.3. The derivative of the ProMP
The use of a combination of different orders of derivatives results in a better approximation of the original
signal [4]. For using the first order derivative of the data, the set of basis functions ϕz(t) = [ϕz(t), ϕ̇z(t)].
The derivative of RBF ϕz(t) is

ϕ̇z(t) = − t− cz
h

ϕz(t). (A.20)

When the first order derivative is used to create the ProMP, the ProMP can also be used to give an
accurate approximation of the first order derivative.

A.4. Representation of Orientation
For the creation of reference trajectories, the orientation of the end-effector is represented in Euler
angles. Even though the orientation is almost constant throughout the entire trajectory, small changes
of the robot’s configuration can result in discontinuities in the Euler angles, where they switch from π
to −π or vice versa. Such a discontinuity is problematic for the creation of ProMPs, and a continuous
signal is required.
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A solution is offered by rotation matrices. Whereas a rotation matrix is made up of 9 different
values, only 6 of them are needed to represent the rotation. These 6 values are the sin and cos of the
Euler angles, which are continuous signals. Using these values, the rotation matrix can be calculated
according to

R =

cosα − sinα 0
sinα cosα 0
0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 . (A.21)

In stead of using 3 Euler angles, a reference trajectory now has to be created for 6 variables. A
better approach would be to normalize the orientation, such that the Euler angles stay close to a value
of 0. This can be accomplished by using the initial orientation as frame of reference. The normalized
orientation can be formulated as

R̂ = R̄
−1

Rk, (A.22)

with R̂ the rotation matrix representing the normalized orientation, R̄ a normalization rotation
matrix representing the frame of reference, and Rk the rotation matrix at timestep k. As normalization
matrix, the initial rotation matrix R0 can be chosen, such that R̄

−
1R0 = I, I denoting the identity

matrix. If during the trajectory the end-effector stays close to its initial orientation, the Euler angles of
the normalized orientation can be used to create reference trajectories, as no discontinuities take place
anymore. Besides the normalized Euler angles, the normalization matrix needs to be remembered to
convert normalized orientation back to the robot’s operational space.

A.5. ProMPs from Demonstration Data
The extension of recorded demonstration data is done via the method described in Sec. A.2, with an
extension time interval of Text = 2.0s, which is sufficiently large. For the approximation of the post-
impact velocity, a time interval of Tfit = 200ms is used, because 200ms roughly corresponds to three
oscillation periods of the velocity data. For each ProMP there are 70 RBFs used per second, with
evenly divided centers cz over the time interval of the ProMP. They all have a width h = 0.25ms. A
number of resulting ProMPs can be seen in Fig. A.2 for the stamping task, and Fig. A.3 and A.4 for
the sliding task. The orientation is represented as normalized orientation, as described in Sec. A.4. The
normalization rotation matrix is chosen to be the initial rotation matrix of the first demonstration.
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Figure A.2: ProMPs of the stamping task for the position, velocity and force in the Z direction, and for the first
component of the normalized orientation.
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Figure A.3: ProMPs of the sliding task for the position, velocity and force in the Z direction, and for the first
component of the normalized orientation.
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Figure A.4: ProMPs of the stamping task for the position, velocity and force in the X direction, and for the third
component of the normalized orientation.



B
Impact Detection

The method that is used to detect impacts is explained in Sec. III-C. Before this method was developed,
other methods have been tried to detect impacts. These methods and their results are presented in this
chapter. Finally some additional plots of the current method are shown.

The plots in this chapter are based on the data of one of the demonstrations of the stamping
experiment. As explained in Sec. IV-A, in this task, the end-effector moves vertically, until it stamps
on a table. Velocities and forces act especially in the Z direction. The position, velocity and force plot
of this dataset are shown in Fig. B.1. It can be seen that jumps in the velocity and force take place at
t ≈ 4s and t ≈ 4.5s. These times correspond to the changes in the slope of the position plot.

B.1. Early Attempts
Early attempts of detecting impacts using a Jump-Aware filter, have been made by finding jumps in
the velocity data using Cartesian position data, and by using external force data. The attempts make
either use of the JA filter [7] or the force rate [6], that are both explained in Sec. II-B. All cases in
which the JA filter is used, make use of a constant bound b(q

k
) = cb, and a certain prediction function

p(q
k
).

B.1.1. Jump-Aware Filter with Position Data
Since impacts result in velocity jumps, impacts can be detected by identifying jumps in the velocity.
In [7] this is done based on position encoder data, whereas in our method, we use the data in the
robot’s operational space. A prediction for the current timestep tk can be made by fitting a second
order polynomial to the mk previous measurements and extrapolate at t = tk. In the second order
polynomial function y(s) = ξ0 + ξ1s+ ξ2s

2, with s = t− tk, ξ = [ξ0, ξ1, ξ2]
⊤ are the fitting parameters.

The parameters can be retrieved via linear least squares fitting methods. With this function fitted on
previous measurements, the prediction for the next timestep tk is y(tk−tk) = y(0) = ξ0. The prediction
for the current position xk can be made by predicting each of the individual components of xk using a
polynomial function.

Applying a JA filter to the position data, with a second order polynomial as prediction function, and
a maximum window length of M = 10, results in the difference between measurements and predictions
that is shown in Fig. B.2. It can be seen that the peaks at the jumping times in the velocity (t ≈ 4.0s
and t ≈ 4.5s) are present, although there are several thin larger peaks. Zooming in on one of those small
peaks in Fig. B.3 shows that these peaks exist due to missing datapoints. A datapoint at t ≈ 3.366s is
missing, and its value is shifted to the datapoint at t ≈ 3.368s, causing an inaccurate prediction.

The redundancy of the JA filter can be improved by using a larger window length. The resulting plot
of the difference between measurements and predictions where a maximum window length of M = 35
is used, is shown in Fig. B.4. Although the peaks due to missing datapoints still exist, the peaks
corresponding to the impacts are larger now, meaning that with the right choice for a bounding value,
the impacts will be detected. Tuning can still be problematic, as a bounding value that is slightly too
low can result in false positive detections due to those peaks of missing datapoints, and a value that is

22



B.1. Early Attempts 23

0

0.05

0.1

0.15

-0.15

-0.1

-0.05

0

0.05

3.5 4 4.5 5
0

20

40

60

Figure B.1: Position, velocity and estimated external force in the Z direction.
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Figure B.2: Difference between position measurements and predictions. Predictions are made by fitting a second order
polynomial. The JA filter uses a maximum window length of M = 10.
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Figure B.3: The plot of Fig. B.2 zoomed in around the peak at t ≈ 3.372. This peak is caused by a missing datapoint
at t ≈ 3.366.

too large results in missed detections. In addition, the use of a larger window length results in a larger
delay between the actual impact and the detection.
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Figure B.4: Difference between position measurements and predictions. Predictions are made by fitting a second order
polynomial. The JA filter uses a maximum window length of M = 35.

B.1.2. Detecting Impacts with Force Rate
As mentioned in Sec. I, impacts take place when the robot collides with the environment, resulting in
large external forces that suddenly act on the robot. As explained in Sec. II-C, a momentum observer
that gives a first order filtered estimation of the external forces, can be used to identify peaks in the
external forces. The author of [6] uses this to detect impacts based on the force rate. According to this
method, an impact is detected when ∥fk − fk−1∥/(tk − tk−1) > ϵ, with f the estimated external force,
and ϵ a constant. The magnitude of the Euler backward derivative of the external force estimation is
shown in Fig. B.5. Two regions with larger values can be seen, corresponding to the times of impact.
Because this method detects impacts based on only 2 datapoints, it is not robust to missing datapoints
and noise.

B.1.3. Jump-Aware Filter with Force Rate
As explained in Sec. III-C, the method of Sec. B.1.2 can be rewritten as a JA filter. This gives the
advantage that an impact detection is based on more than two datapoints, making it more robust to
noise and missing datapoints.

A more detailed version of Fig. 6 can be seen in Fig. B.6.
Based on Fig. B.6, the bounding constant in (14) can be set to ϵ = 4.0/0.002N s−1, with average

sampling period Ts = 0.002s, so that both the impacts are detected. The detected impacts in the
position, velocity and external force plot can be seen in Fig. B.7, which is a more detailed version of
Fig. 5.
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Figure B.6: Difference between external force measurements and predictions. Predictions are made by fitting a zero
order polynomial. The JA filter uses a maximum window length of M = 10.

B.2. Detection Delay
A problem of this method is that a delay between the actual impact and the moment of detection
is inevitable. There are not only delays in data acquisition, momentum observers, and algorithm
calculations, but there is also the threshold of the bounding function b(f

k
) (11) that needs to be

exceeded before an impact is detected. When this is finally the case, contact between the robot and
the environment has already been established. Even though all these delays added up can be in the
order of a few milliseconds, this still has significance, because an impact also takes just a couple of
milliseconds. For the online impact detection this delay is not problematic, because it will result in a
mismatch of only a few milliseconds between impact and reaction time. It is however problematic for
the offline learning process. The author of [1] points out that a delay of only 5 milliseconds can already
be enough for unreliable fitting of the post-impact velocity of [2], which is described in Sec. A.2.4.

An attempt to determine the detection delay and estimate the real time of impact has been made
under the assumption that without external disturbances the prediction function p(f

k
) should provide

an accurate prediction for the next datapoint fk, or p(f
k
) ≈ fk. When this is the case, then the

difference between measurement and prediction ∥∆k∥ = ∥fk − p(f
k
)∥ should be very small. An estima-

tion of the actual time of detection can now be done by finding the first local minimum of ∥∆k∥, with
k ∈ {i, i − 1, ..., i −Mi}, where i stands for the timestep the impact is detected at, and Mi stands for
the maximum window length to find this local minimum.

This analysis is performed on the results of Fig. B.7 to find the detection delays of the impacts. The
result can be seen in Fig. B.8. It can be seen that when taking the datapoint with a local minimum
value in the difference between measurements and predictions, the impact is detected at the start of the
jump in force and velocity, instead of halfway. Although this noncausal method cannot be used online,
it can be used for better segmentation in the offline algorithm.
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Figure B.7: Detected impacts shown in the position, velocity, and force plot, and the plot that shows the difference
between measurements and predictions.
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Figure B.8: Analyzing the detection delay results in timestamps that are more likely to be the start of the impact.



C
Experimental Results

In addition to the plots in Sec. IV-C, this appendix contains plots of the position, position error, velocity,
contact force, and commanded force for both the stamping task and the sliding task.

C.1. Stamping task
For the stamping task, the plots of the Z direction are shown in Fig. C.1. These are the same plots
that are already shown in Sec. IV-C. The corresponding plots for the X and Y direction have values
that stay approximately constant during the entire trajectory.

Figure C.2 shows the corresponding plots for the rotation around the X axis. The rotational
position reference remains almost constant through the entire trajectory, and there is no torque reference.
Deviations in the rotational velocity and the torque are mainly caused by a slightly tilted configuration
when the robot establishing contact. The baseline controller has the largest overshoots in rotational
velocity and torque, corresponding to the large impact forces at t ≈ 3.9s and t ≈ 4.0s. The controller
that uses damping in the interim phase has the smoothest transition from ante-impact to post-impact
phase, since the impact forces are the lowest when using this controller.

C.2. Sliding task
Figures C.4 and C.3 show the plots in the Z and X directions, which are also partly represented in
Sec. IV-C. For the Z direction plots of the controller that use an interim phase strategy, besides the
similar velocity and force trajectories, the position, position error, and commanded force plots are also
very identical.

Figures C.6 and C.5 show the plots of the rotation around the Z and X axis. Deviations in the
rotations around the X axis are mainly caused by the trajectory in the Z direction. It can be seen
in C.5 that the trajectories for both the controllers with an interim strategy are similar, although the
controller that does not use active damping in the interim phase has larger overshoots in the contact
torque and the rotational velocity at the moment of impact at t ≈ 2.45s.

The rotations around the Z axis are mainly caused by the frictional forces in the X direction.
Similar to the translational Z direction, the lack of damping in the controller that uses no damping in
the interim phase, causes large rotational velocities and large deviations of the rotation. When this is
undesired, it can be considered to only turn off the damping in the translational Z and the rotational
X directions, since the impact is only acting in those directions.
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Figure C.1: Position, position error, velocity, contact force, and commanded force in the Z direction of the stamping
task. During the interim phase, the error is shown as a dashed line.
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Figure C.2: Rotation, rotation error, rotational velocity, contact torque, and commanded torque around the X axis in
the stamping task. During the interim phase, the error is shown as a dashed line.
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Figure C.3: Position, position error, velocity, contact force, and commanded force in the X direction of the sliding
task. During the interim phase, the error is shown as a dashed line.
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Figure C.4: Position, position error, velocity, contact force, and commanded force in the Z direction of the sliding task.
During the interim phase, the error is shown as a dashed line.
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Figure C.5: Rotation, rotation error, rotational velocity, contact torque, and commanded torque around the X axis in
the sliding task. During the interim phase, the error is shown as a dashed line.



C.2. Sliding task 34

1.55

1.6

1.65

1.7

-0.1

-0.05

0

-0.2

0

0.2

0.4

0.6

-1

-0.5

0

0.5

1

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
-2

0

2

4

RS without interim phase
RS with damping
RS without damping
Reference

Figure C.6: Rotation, rotation error, rotational velocity, contact torque, and commanded torque around the Z axis in
the sliding task. During the interim phase, the error is shown as a dashed line.



D
Teleoperation Device

An HTC VIVE Pro Controller 2.0, depicted in Fig. D.1, is used as device to demonstrate tasks to the
robot. The whole teleoperation setup consists of the controller and two base stations. The device has
several tracking points ( 6 ) that the base stations use to determine its location and orientation, in its
own Cartesian reference frame. The pose of the device is used to create reference poses for the robot’s
end-effector. To read out the pose of the controller, code from [8] is used. In between the process of
reading the Cartesian pose of the device and the reference pose that was sent to the robot’s controller,
a converter is implemented. This converter takes care of converting the reference frame of the device
to the reference frame of the robot, and has some safety measures implemented. The workflow can be
seen in Fig. D.2.

Figure D.1: Schematic visualisation of the HTC VIVE controller. Image retrieved from [3].
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Figure D.2: Teleoperation demonstration workflow. After the safety button is released, the initial poses of the VIVE
controller and the robot are stored. New poses of the VIVE controller are used to calculate reference points for the

robot, while keeping the robot’s boundaries into account.

D.1. Giving Commands
Before starting the VIVE controller, the reference frames of the robot and the device are aligned to be
parallel. This is achieved by finding the yaw angle γ by which the device’s reference frame is rotated
around the vertical Z axis, with respect to the robot’s reference frame. At the start of the execution,
the initial position x0 and orientation θ0 of the robot, and the initial position of the device xvive

0

and orientation θvive
0 are stored. Using the current position of the VIVE controller xvive, the robot’s

reference position is calculated using the distance the device has traveled, according to

xd = x0 + xvive − xvive
0 . (D.1)

The reference orientation is calculated using the rotation matrices of the stored orientations and the
current orientation of the VIVE controller.

Rd = (Rvive
0

−1
Rvive)R0, (D.2)

where rotation matrix R can be constructed using the Euler angles of orientation θ and vice versa.

D.2. Safety Measures
The VIVE controller has several buttons, of which the one in the back ( 7 ) is used to stop the device.
With this button pressed, the converter does not send new reference poses to the robot. The initial
position xvive

0 and orientation θvive
0 are reset when the button is released.

Furthermore there is a saturation on the reference position. The user can set limitations for xmin <=
xd <= xmax, resulting in the converter to change the desired position to the closest value within range if
the calculated value falls outside the boundaries. The saturation is used for safety, because it can prevent
the robot to collide with the environment in an undesired way, as well as for decreasing the difficulty
of the demonstrations. It is easier for the human demonstrator to focus on one or two translational
directions than on three.
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