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Abstract

Over the past two decades, a number of methods have been proposed for solving maritime collision avoidance
problems. Most of these works take a single ship’s perspective and focus on one-to-one or one-to-many situations.
To more complicated many-to-many situations, less attention has been paid. To deal with the many-to-many collision
avoidance problem, this paper proposes a distributed coordination strategy which consists of two phases: firstly,
predictions of ship trajectories are made based on ship dynamics, giving different candidate rudder angles, and
potential collision risks that may be caused by each rudder angle selection are evaluated based on calculations of
collision risk parameters; secondly, an optimization strategy is adopted to find the most efficient collision avoidance
plan for the ships, namely, the rudder angles that each ship should take, and the corresponding operation time for
rudder steering, with the overall objective to minimize the sum of time that each ship spends in avoiding collisions
with the other ships. Simulation experiments are carried out to evaluate the effectiveness of the proposed method, as
well as the corresponding communication and computation costs.

Keywords: collision avoidance, distributed coordination, ship maneuverability, decision making

1. Introduction

Ship collisions can cause great losses of lives and property, and yield negative impacts to the maritime
environment. While advanced assistant systems, such as GPS (Global Positioning System), ARPA (Automatic Radar
Plotting Aid), AIS (Automatic Identification System), and ECDIS (Electronic Chart Display and Information System),
have been developed and installed on ships, collision accidents still happen every now and then. In addition, the
development of larger ships nowadays also sets higher requirements on collision avoidance methods. Therefore, it
is important to improve the intelligence and autonomy in assisting ships to make safe and quick decisions to avoid
potential collisions. Additionally, more and more attention has been paid to smart ships and, moreover, autonomous
ships. The ability of autonomous collision avoidance is a critical prerequisite to fulfill the idea of autonomous
navigation.

In practice, several methods have been adopted to avoid ship collisions, such as lookouts, radar and VHF radio.
The 1972 International Regulations for Preventing Collision at Sea (COLREGs), proposed by the International
Maritime Organization (IMO), is supposed to be obeyed by all ships. On the one hand, it describes potential collision
scenarios between encountering ships and provides a set of guidelines for safe maneuvering at sea. On the other hand,
it could also be hard to describe all possible conditions in the form of rules due to the complexity of actual maritime
environment. A number of maritime collision avoidance methods, such as ship domain, fuzzy theory, evolutionary
algorithms, and real-time control algorithms, have been proposed over the last two decades. Relevant literature reviews
can be found in (Tam et al., 2009; Johansen et al., 2016).
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Figure 1: Examples of encountering situations.

Figure 2: The maritime traffic near Yangshan Port in Shanghai, P. R. China (MarineTraffic, 2018).

Figure 1 gives examples of ships’ encountering situations, including a) one-to-one, b) one-to-many and c) many-
to-many situations. In one-to-one and one-to-many situations, two types of ships are considered, namely the own
ship and the target ship. In one-to-one situation, the own ship only considers one target ship at one time, while in
one-to-many situation, the own ship needs to consider a set of upcoming target ships, usually in a one-by-one manner.
Both situations take the perspective of own ship to avoid the collision with target ships, and the main anti-collision
decisions are made for the own ship, based on the prediction and estimation of the movements of target ships. It
is assumed that the own ship has a detection range, and that it can exchange messages with target ships within the
detection range. The own ship should always keep a safety domain, which is a circle with a certain radius between
itself and a target ship, otherwise collision accidents may happen. In a one-to-many situation as shown in Figure 1(b),
only the potential collision risks between the own ship m and the target ships i, j and n are considered, while the risks
between ships i, j and n themselves are usually ignored in the collision avoidance problem of own ship m.

As the anti-collision decisions of the involved ships are highly related, as a small change in the course of one
ship may affect the future decisions of the other ships, it is important to consider the impacts of all the encountering
ships’ collision avoidance decisions. Therefore, in many-to-many situations, it is assumed that the ships are able to
exchange information regarding their intended courses during the collision avoidance procedure via a communication
and coordination structure. Figure 2 gives an example that shows the real-time traffic density of ships near Yangshan
Port in Shanghai, P. R. China. It can be seen that in practice, multiple ships encountering situations happen frequently,
especially in the open sea near a seaport.
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When multiple ships encounter one another, the decision for each ship to maneuver for avoiding the collision
depends on many factors, such as ship speed, course, relative position, and ship maneuverability. In general, ship
course alteration is more effective than ship speed alteration as it leads to faster effects. Meanwhile, the alteration
of a ship’s course is also easier to be observed both visually and on radar by surrounding ships (Wang et al., 2017).
In practice, a ship’s rudder angle affects its rudder forces and moments, therewith leading to changes in its course.
Therefore, this paper considers rudder angle alteration as the main collision avoidance decision.

To optimize the collision avoidance operation of multiple ships, it is important to make sure that the ships choose
suitable rudder angles. This paper aims to find optimal rudder angles and operation time of rudder steering for
multiple encountering ships with collision risks using a distributed coordination scheme. The motivation for adopting
a distributed scheme is threefold: firstly, it is natural to model their interactions in a distributed way, as they are
independent parties; secondly, the peer-to-peer style of a distributed scheme is more tolerant to message loss, delay,
and asynchronous information; thirdly, distributing the search for a consistent collision avoidance plan over a set of
ships reduces the computational burden and reliance on a single coordinator or controller.

Precise predictions of potential collision risks between multiple ships, as well as accurate estimation of the effects
that ships’ anti-collision decisions lead to, form the basis of efficient collision avoidance coordination. Therefore, it
is important to consider the impacts of ship dynamics, steering and propulsion system. Meanwhile, integrated and
intelligent optimization strategies are required to ensure the efficiency of collision avoidance decisions. This paper
proposes a distributed coordination approach for solving the multiple ships collision avoidance problem considering
both the maneuverability of individual ships and mutually-affected anti-collision decisions. It is assumed that each
ship can exchange information regarding its position, course, and speed with the other ships.

The coordination strategy consists of two phases: firstly, each ship makes predictions regarding its potential
trajectories with different rudder angles and dynamically calculating collision risk parameters; secondly, a
coordination scheme based on distributed constraint optimization (DCOP) is formulated, and typical DCOP
algorithms are adopted to search for globally optimal solutions for multiple ships. In order to evaluate the computation
and communication costs of the distributed coordination strategy, experiments are carried out. This results in insight
into the type, amount, and size of messages involved when multiple ships exchange information to find globally
optimal solutions.

1.1. Related work

1.1.1. Collision risk evaluation
Collision risk evaluation is the basis of collision avoidance decision making. The most commonly used parameters

are the Distance at the Closest Point of Approach (DCPA) and the Time to the Closest Point of Approach (TCPA), for
more details we refer the readers to a survey on ship collision risk evaluation in (Xu and Wang, 2014). In recent years,
new collision risk evaluation methods have been proposed. A real-time multi-ship collision evaluation is proposed
in (Zhen et al., 2017), consisting of a spatial clustering process (DBSCAN) for detecting clusters of encounter ships,
and a multi-ship collision risk index model for encounter ships within each cluster. A new analytic formula for
domain-based collision risk parameters is introduced in (Szlapczynski and Szlapczynska, 2016), including the degree
of domain violation (DDV) and the time to domain violation (TDV) as indices.

1.1.2. Decision making in multiple ship encounter situations
To eliminate the insufficiency of ignoring ship maneuverability in the process of avoiding collisions, a ship

maneuverability-based collision avoidance support system in close-quarter situations is proposed in (Wang et al.,
2017). Characteristics of ship dynamics to calculate collision avoidance parameters and a PID controller in ship
maneuvering are considered. The work in (Johansen et al., 2016) presents a concept for ship collision avoidance
based on model predictive control. A finite set of alternative control behaviors is generated by varying offsets to the
guidance course angle commanded to the autopilot, and changes to the propulsion command ranging from nominal
speed to full reverse. Using simulated ship trajectory predictions, each alternative control behavior is evaluated with
respect to its compliance with the COLREGS’72 and associated collision risks, in order to find the optimal control
behavior. These works take a single ship perspective and mainly consider one-to-one ship encountering situations.

Regarding multi-ship encounter situations, a Distributed Local Search Algorithm (DLSA) and a Distributed Tabu
Search Algorithm (DTSA) have been adopted in (Kim et al., 2015) to find optimal courses for each involved ship.
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More specifically, when multiple ships encounter one another, it is assumed that the highest priority to choose the next
course will be given to the ship that can reduce collision risk most significantly with course alteration. Each individual
ship computes its collision risk based on the information on current courses that it receives from the neighboring ships.
This process is repeated until the collision risk disappears. Later on, to reduce the communication burden and shorten
the computation time, this approach has been extended by introducing a Distributed Stochastic Search Algorithm
(DSSA), which allows each ship to change its intention in a stochastic manner immediately after receiving all of the
intentions from the other ships in (Kim et al., 2017). While these works consider a distributed coordination structure
involving multiple ships, the maneuverability of the ships has not been taken into account. As the main collision
avoidance decision is course alteration, ignoring the characteristics of ship dynamics may cause situations in which
the ships cannot change their course as fast as planned.

A decision support system for ship collision avoidance is proposed for Istanbul Strait in (Perera et al., 2015). The
system uses manually controlled and reciprocally passing ships’ data to train artificial neural networks (ANN), with
the aim to make predictions of ships’ future locations three minutes in advance. If collision risks exist, warnings
would be sent to the Vessel Traffic Services (VTS) center and to the ships’ personnel. In (Zhang et al., 2015), a
distributed and real-time multi-ship anti-collision decision support formulation is presented that considers both course
alteration and speed alteration. The decision-making process is distributed: each ship makes decisions based on its
own judgment according to a set of pre-defined rules, while keeping on monitoring and receiving information from
other ships.

1.1.3. Anti-collision trajectory planning
A number of optimization methods have been proposed to assist ships in finding collision-free and optimal

trajectories in literature. Most of of these collision avoidance approaches are limited to one-to-one and one-to-many
situations. Existing methods include Genetic Algorithm (Tam and Bucknall, 2010), Fuzzy Logic (Perera et al., 2011),
Branch and Bound (Mohamed-Seghir, 2012), A* Algorithm (Naeem et al., 2012), Ant Colony Optimization (Escario
et al., 2012; Lazarowska, 2014), Cooperative Path Planning (Tam and Bucknall, 2013), Neural Network (Simsir et al.,
2014), Fast Marching Method (Liu and Bucknall, 2015), Multi-criteria Optimization (Lazarowska, 2017a), etc. This
paper mainly discusses the most recent work on trajectory planning methods in many-to-many situations, in which
the objective is to optimize all the trajectories of the involved ships.

Szlapczynski (2011) proposed an evolutionary algorithm-based safe trajectory planning for ships. Later on,
Szlapczynski (2013a,b) extend this approach to make it applicable within Traffic Separation Scheme (TSS) governed
by the IMO. These changes include detecting and penalizing TSS violations using a specialized fitness function,
and the genration of safe trajectories that are already partially valid within a TSS. In (Szlapczynski, 2015), further
improvements are made on these approaches for ship trajectories in restricted visibility according to the rule 19 of
COLREGs.

Tam and Bucknall (2013) developed a deterministic collision avoidance path planning algorithm to provide
collision-free path for all involved ships. The algorithm plans navigation paths for all encountering ships in a
cooperative mode, from a multi-ship perspective. Hornauer et al. (2015) proposed a partly-cooperative decentralized
trajectory optimization algorithm to avoid collision between ships. The movement for non-cooperative ships is
computed by a Bayesian model using the data from AIS. The probability of the estimated position for a passive ship
that predicts the trajectories by historic probabilistic models is accurately computed. In (Szlapczynska, 2015), a ship
maneuver auto-negotiation system is proposed, in which the ships can communicate with each other and negotiate
their maneuvers via the designed negotiation procedure while assuring compliance with COLREGs. Lazarowska
(2017b) proposes a decision support system to plan a safe, optimal path for a ship where both static and dynamic
obstacles are both considered. It utilizes the idea of a trajectories database, which is later on searched through to find
the best solutions.

1.2. Contribution

The main contribution of this paper are:

• Proposal of a distributed coordination mechanism with guarantees on solution optimality. The distributed
mechanism does not require any instructions from a centralized system, which means that the ships can
find optimal collision avoidance decisions by themselves, with peer-to-peer communication. This ensures the
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robustness and autonomy of the proposed approach. In addition, the optimality of solutions is also guaranteed
because of the distributed constraint optimization algorithms used for solving the collision avoidance problem.

• Dynamic calculation of collision risk parameters using accurate maneuverability models. When a ship starts
maneuvering to avoid collisions with other ships, the collision risks between itself and the other ships are also
changing. Without accurate predictions on the changes of collision risks over time when the involved ship starts
maneuvering, the generated collision avoidance decisions may not be accurate. Therefore, this paper considers
an empirical maneuvering model of ships (Liu et al., 2017), so as the calculate collision risk among multiple
ships in a dynamic way.

• Investigation and analysis of the communication costs of the distributed coordination mechanism. While a
distributed mechanism is not rare in the existing literature, the actual communication costs incurred by ship-
to-ship interactions have been rarely studied. For this, the incurred communication costs including the types,
numbers, and sizes of messages exchanged between ships during the distributed coordination process are studied
in this paper. This can give practitioners insights regarding the communication requirements for implementing
the proposed approach.

1.3. Outline
This remainder of the paper is organized as follows. Section 2 introduces the structure of the proposed approach.

Detailed descriptions of the two phases part of approach are given in Section 3 and Section 4. Experimental results
are presented in Section 5. Conclusions and future work are given in Section 6.

2. Structure of the proposed approach

Figure 3 shows the structure of the proposed approach that consists of two phases. Initially, information regarding
the current states of the ships within a certain detection range and the maritime environment are considered as known.
Phase 1 concerns the dynamic calculation of collision risk parameters based on ship maneuvering model. Given
the current ship states and environmental information, for each candidate rudder angle, predictions of ship’s future
trajectories are made based on ship maneuvering model. According to the coordinates and ship states on the predicted
trajectories, collision risk parameters can be obtained. Based on collision risk parameters including time to the closest
point of approach (TCPA) and distance at the closest point of approach (DCPA), Phase 2 concerns a distributed
coordination model of multiple ships. Distributed constraint optimization-based methods are incorporated to search
for optimal solutions, with which optimal rudder angle and the rudder steering time that each ship should take are
determined.

3. Dynamic calculation of collision risk parameters considering ship maneuverability

In order to construct the distributed coordination model for collision avoidance, collision risks among multiple
ships need to be quantified via collision risk parameters. As expressed in Section 1.1.1, distance at the closest point of
approach (DCPA) and time to the closest point of approach (TCPA) between two ships are commonly used in literature
to evaluate the potential risks between any two ships. This paper adopts the same parameters here. In practice, ships’
states such as speeds, coordinates, and courses are changing over time: the DCPA and TCPA between any two ships
are therefore also changing over time. Hence, this paper considers a dynamic way of calculating the DCPA and TCPA
between any two ships.

Table 1 gives the symbols and the corresponding definitions used in this paper. Ship set V , prediction time
T prediction, and minimum safety distance Dsafe are known parameters. Based on ship dynamics, ship states including
surge and sway speed (ui(t),vi(t)), velocity Vi(t), heading angle ϕi(t), coordinates (xi(t),yi(t)) are determined. Then,
the relative distance Ri j(t), relative velocity V R

i j (t), relative bearing angle βR
i j(t) and relative heading angle ϕR

i j(t)
between any two ships are determined, in order to calculate collision risk parameters DCPA

i j (t) and T CPA
i j (t). Rudder

angle δi and rudder steering time T steering
i are the main decision variables. Considering typical ship maneuvering, this

paper assumes that the rudder angle ranges from -30◦ on the port side to +30◦ on the starboard side (±30◦) in steps of
10◦. Therefore, rudder angle variable δi ∈ Di = {−30◦,−20◦,−10◦,0◦,10◦,20◦,30◦}.
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Figure 3: Structure of the proposed approach

Table 1: Symbols and definitions.

Symbols Definitions
V a set of encountering ships
T prediction length of trajectory prediction time
Dsafe minimum safe distance that any two ships should keep to avoid collision
(ui(t),vi(t)) forward speed u and sway speed v of ship i at time t
Vi(t) velocity of ship i at time t
ϕi(t) heading angle of ship i at time t
(xi(t),yi(t)) coordinates of ship i on x axis and y axis at time t
Ri j(t) relative distance between ships i and j at time t
V R

i j (t) relative velocity between ships i and j at time t
βR

i j(t) relative bearing angle between ships i and j at time t
ϕR

i j(t) relative heading angle between ships i and j at time t
DCPA

i j (t) distance between ships i and j at their closest point of approach (CPA) at time t
T CPA

i j (t) traveling time from ship i’s position to its CPA with ship j at time t
δi rudder angle that ship i takes
Di domain of variable δi
T m

i j shortest rudder steering time for ship i to avoid collision with ship j
Dm

i j domain of variable T m
i j

T steering
i shortest rudder steering time for ship i to avoid collisions with other ships
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In order to evaluate the effects of the chosen rudder angles on the collision risks, trajectories of ships are predicted
based on ship dynamics. Firstly, for each ship i ∈ V , it takes a value for its rudder angle δi from its variable domain
Di, and calculates the trajectories with different rudder angles in a prediction time T prediction based on on a ship
maneuvering model. A ship’s trajectory consists of a series of ship coordinates over time t.

The maneuvering model for a ship i is expressed as follows:


(m+mx)u̇− (m+my)vr− xGmr2 = XH +XP +XR

(m+my)v̇+(m+mx)ur+ xGmṙ = YH +YP +YR

(Iz + x2
Gm+ Jz)ṙ+ xGm(v̇+ur) = NH +NP +NR,

(1)

where subscripts H,P,R represent the hull, the propeller, and the rudder, respectively; m,mx, and my are ship mass,
added mass in x-direction, and added mass in y-direction, respectively; Iz and Jz are moment of inertia and added
moment of inertia around the z-axis, u and v are ship longitudinal and lateral speed, respectively; r is ship yaw rate
around midship, and the dot notation of u,v and r represents the derivative of each parameter. For more details
regarding the model, we refer the readers to (Liu et al., 2017). Given different rudder angles, the hydrodynamic force
XR due to rudder acting on midship in x− direction is determined, thereby the forward speed u and acceleration u̇ in
x−axis, as well as sway speed v and acceleration v̇ in y−axis are also determined. Based on the ship motion variables
(u,v) and (u̇, v̇), coordinates (x(t),y(t)) of the ship on x-axis and y-axis at time t can be calculated.

Secondly, based on the ship coordinates and speeds over time t, this paper calculates the distance at the closest
point of approach DCPA

i j (t) and time to the closest point of approach T CPA
i j (t) between any two ships i and j over time

t. As an example, Figure 4 shows the relative position of two encountering ships based on the applied coordinate
systems and relevant symbols. The ships are assumed to sail in the earth-fixed coordinate system o0− x0y0z0 with a
body-fixed coordinate system o−xyz on the midship point. The predicted trajectory is the path of the center of gravity
O in the o0−x0y0z0 system. In addition, speed (u,v), acceleration (u̇, v̇), force (X ,Y ), and moment N, are also defined
on midship O.

Ship i

Ship j

(xj(t),yj(t))

o0

x0

y0

yi

Vi(t)

ui(t)

xi

oi

-vi(t)

Vj(t)

uj(t)

vj(t)

Vi(t)

VR(t)

Rij(t)

(xi(t),yi(t))

Relative heading angle

ßR(t)

φR(t)

xj

yj

xi

xj

x0

φj(t)

φi(t)

Figure 4: The relative position between two encountering ships based on earth-fixed coordinate system.

This phase determines the TCPA and DCPA of each ship at time t, represented as T CPA
i j and DDCPA

i j within the
trajectory prediction time T prediction. The relative distance Ri j(t), relative bearing angle βR

i j(t), relative speed V R
i j (t)

and relative heading angle ϕR
i j(t) between ships i and j are calculated as follows:
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Ri j(t) =
√
(x j(t)− xi(t))2 +(y j(t)− yi(t))2 (2)

β
R
i j(t) = arctan

(
x j(t)− xi(t)
y j(t)− yi(t)

)
+∆β

R
i j(t), where, ∆β

R
i j(t) =

 0, x j(t)≥ xi(t),y j(t)≥ yi(t)
2π, x j(t)< xi(t),y j(t)≥ yi(t)
π. others

(3)

V R
i j (t) =

√
(Vj(t)sinϕ j(t)−Vi(t)sinϕi(t))2 +(Vj(t)cosϕ j(t)−Vi(t)cosϕi(t))2 (4)

ϕ
R
i j(t) = arctan

(
Vj(t)sinϕ j(t)−Vi(t)sinϕi(t)
Vj(t)cosϕ j(t)−Vi(t)cosϕi(t)

)
+∆ϕ

R
i j(t) (5)

where, ∆ϕ
R
i j(t) =

 0, Vj(t)sinϕ j(t)≥Vi(t)sinϕi(t),Vj(t)cosϕ j(t)≥Vi(t)cosϕi(t)
2π, Vj(t)sinϕ j(t)<Vi(t)sinϕi(t),Vj(t)cosϕ j(t)≥Vi(t)cosϕi(t)
π. others

(6)

DCPA
i j (t) = Ri j(t)sin

(
ϕ

R
i j(t)−β

R
i j(t)−π

)
(7)

T CPA
i j (t) =

Ri j(t)cos
(

ϕR
i j(t)−βR

i j(t)−π

)
|V R

i j (t)|
. (8)

After collision risk parameters T CPA
i j and DDCPA

i j are known for ship i and j, it is important to identify when the
collision risks among these two ships have been eliminated. When no collision risk exists between one ship and the
rest of ships, this ship can terminate rudder steering and keep its current states. After the ship has passed its closest
points of approach with the other ships, it can switch back to its original course.

For the two ships in Figure 4, maneuvering time T m
i j needs to be determined for ship i to avoid collisions with

ship j. Time T m
i j represents the earliest time at which the closest distance between them is larger than the minimum

safe distance DCPA
i j ≥ Dsafe. This implies that at time T m

i j , the ships have both reached relatively safe states because
they are able to keep enough safe distance between one another afterwards. In addition, to avoid situations in which
the close quarters situation happen long before the closest point of approach is actually reached, the relative distance
between them should always be larger than the minimum safe distance Dsafe during time T m

i j , otherwise T m
i j =+∞. In

other words, if any two ships i and j have already reached their closest point before the time when their DCPA
i j ≥ Dsafe

when they take rudder angles s∗i and s∗j , the rudder angle pair (s∗i , s∗j ) are infeasible for them.
At the end of this phase, values to variables DCPA

i j , T CPA
i j , T m

i j are determined for any two ships i, j ∈ V , and that
domain Dm

i j of variable T m
i j has been constructed.

4. Distributed coordination based on distributed constraint optimization

Based on the ships’ trajectories and collision risk parameters, the coordination model of multiple ships is
formulated adopting the distributed constraint optimization (DCOP) formalism. Different optimization objectives
are proposed and three solution algorithms are presented.

4.1. Distributed constraint optimization

A DCOP is defined as consisting of a set of agents, variables and constraints between variables that reflect the
costs/utilities of assignments to variables. Control of values of variables in DCOPs is distributed, with agents only
able to assign values to variables that they own. Furthermore, agents are assumed to know only the constraints
involving variables that they own. The DCOP formalism has been mainly applied in meeting scheduling, coordination
of sensors in networks, resource allocation in disaster evacuation, synchronization of traffic lights, and management
of power distribution networks (Hosseini et al., 2013; Zivan et al., 2009; Kumar et al., 2009; Lass et al., 2008). The
DCOP method has also been adopted to assist inland ships in finding optimal visiting sequences to different container
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terminals within a large seaport in our earlier work (Li et al., 2016). Distributed constraint optimization is well suited
for formulating those problems since they are distributed by nature.

This paper adopts the DCOP formalism as defined in (Petcu, 2009), in which a DCOP is represented by a triple
〈A ,COP ,R ia〉, where:

• A = {A1, . . . ,AM} is a set of M agents;

• COP = {COP1, . . . ,COPM} is a set of disjoint, local Constraint Optimization Problems (COPs); COPm is called
the local sub-problem of agent Am; COPi is defined by a triple 〈Xm,Dm,Ri〉, where Xm = {Xm1, . . . ,Xm|Xm|} is a
set of |Xm| variables that belong to Am; Dm = {dm1, . . . ,dm|Xm|} is a set of finite variable domains of the variables
in Xm; Ri = {rm1, . . . ,rm|Rm|} is a set of |Rm| utility functions. These utility functions are used to represent
objectives, as well as both hard and soft constraints. For hard constraints, the value of the utility function is 0
if the constraint is satisfied; otherwise the value is −∞. For soft constraints, for different combinations of the
values for variables, different values will be assigned to the utility functions.

• R ia = {ria
1 , . . . ,r

ia
|R ia|} is a set of so-called inter-agent utility functions defined over variables of multiple agents.

Each ria
l : scope(ria

l )→ R expresses the utility for a joint decision obtained by the agents that have variables
involved in ria

l . The agents that have variables can decide on the values of these variables involved in ria
l and are

called “responsible” for ria
l . Inter-agent utility functions are considered known to all agents involved, i.e, those

agents of which the local variables are part of the inter-agent utility function.

The objective of the agents solving a DCOP is to find the assignment to all variables such that the sum of values of
all utility functions (representing the objectives, hard and soft constraints) are maximized. So, the agents determine:

X∗ = arg max
M

∑
m=1

(
|Rm|

∑
v=1

rmv(Xm1, . . . ,Xi|Xm|)

)
+
|R ia|

∑
l=1

ria
l

.
Since variables from different agents can be constrained via inter-agent utility functions, to make sure these

constraints represented by the inter-agent utility functions are satisfied and to find the optimal solution X∗, agents
need to communicate and exchange messages. Those messages include information on the assignments of values to
variables and the associated utility values.

In our case, the coordination model consists of a number of |V | ship agents, and each ship agent i owns rudder
angle variable δi, and rudder steering time variables T m

i j and T steering
i . The collision risks among ships when they select

different rudder angles are represented via utility functions rinter
i j , which is constructed based on variables T m

i j , T steering
i

and T CPA
i j . The intra-agent utility functions that represent the relations of T m

i j and T steering
i within each ship agent i are

represented via utility functions rintra
i .

4.2. Formulating utility functions and optimization objective

The inter-agent utility function rinter
i j between any two ships i, j ∈ V , and the intra-agent utility function for each

ship agent i are expressed as follows. Utility function rinter
i j ensures that the rudder steering time should be consistent

with the rudder angles that any two ship chooses. Utility function rintra
i j is used to represent the time that ships spend

in avoiding potential collisions.

rinter
i j =

{
0 : if δi = s∗i ,δ j = s∗j ,T

m
i j = sm∗

i j ∀s∗i ∈ Di,∀s∗j ∈ D j,∀sm∗
i j ∈ Dm

i j .

+∞ : otherwise
(9)

rintra
i =

{
U intra−ship

i : if δi = s∗i ,T
m

i1 = s∗i , · · · ,T m
i|V | = sm∗

i|V | ∀s∗i ∈ Di,∀sm∗
i1 ∈ Dm

i1, · · · ,∀sm∗
i|V | ∈ Dm

i|V |.

+∞ : otherwise
(10)

The optimization objective of the formulated problem is to minimize the sum of the utility values of the inter-agent
and intra-agent utility functions, defined as

9



δ
∗ = arg min

(
∑
i∈V

∑
j∈V, j 6=i

rinter
i j + ∑

i∈V
rintra

i

)
.

Utility value U inter−ship
i needs to be defined, so as to evaluate the efficiency of the collision avoidance decisions

using the proposed utility functions. This paper considers three types of optimization objectives:

1. Ob j1: minimize the sum of rudder steering times of all involved ships. With this optimization objective, the
value of U inter−ship

i equals the longest maneuvering time that ship agent i spends in avoiding collision with the
other ships, which means U inter−ship

i = max j∈V, j 6=i T m
i j .

2. Ob j2: minimize the sum of the travel time to its closest point of approach of all involved ships. With this
optimization objective, the value of U inter−ship

i equals the longest time that ship agent i spends in traveling to its
CPAs with the other ships, which means U inter−ship

i = max j∈V, j 6=i T CPA
i j .

3. Ob j3: minimize the total time all the involved ships spend in avoiding collisions. With this optimization
objective, the value of U inter−ship

i equals the sum of rudder steering time and the traveling time to ship i’s

CPAs with the other ships, which means U inter−ship
i = max j∈V, j 6=i

(
T m

i j +T CPA
i j

)
.

4.3. Solution algorithms

Once the DCOP model has been established, a solution algorithm is required to solve the problem. Different
DCOP algorithms define in different ways how the variable value assignments and the utility values are passed from
one ship agent to another. The DCOP-based coordination strategy does not require a central controller to receive
and send information from/to all the ship agents. DCOP solution algorithms can be categorized as complete and
incomplete algorithms. Complete algorithms are guaranteed to find optimal solutions, if they exists. Complete
algorithms typically do an exhaustive search over the problem space. This paper incorporates traditional complete
DCOP algorithms, Synchronous Branch and Bound (SyncBB) (Hirayama and Yokoo, 1997), Dynamic Programming
Optimization Protocol (DPOP) (Petcu, 2009), Asynchronous Forward Bounding (AFB) (Gershman et al., 2006) to
solve the formulated problem.

4.3.1. SyncBB
The simplest and first complete DCOP algorithm is SyncBB (Hirayama and Yokoo, 1997), which is a

straightforward distributed adaptation of the centralized branch-and-bound mechanism. In branch-and-bound, the
search for the optimal solution aimed at guiding by a global accumulated cost named bound. SyncBB is a distributed
version of branch-and-bound and aims to guide the search through a heuristic applied over the optimization objective.

The solution process of SyncBB is given in Algorithm 1. Firstly, assume that all variables and agents are arranged
in a linear order with the priority δi � δm · · · � δn. The message passing starts with the highest priority variable δ1, the
ship agent that owns this variable sends a so-called single Current Partial Assignment (CPA) message that includes the
value assigned to δ1 and the associated utility value to the next ship agent (line 1-2). Each ship agent that receives the
CPA extends it by including a value assignment of its own variable δm and the corresponding utility value based on the
utility function it shares with other variable assignments appearing in the received CPA (line 7-8). Whenever a CPA
reaches a new full assignment at the last ship agent, the accumulated utility value of the CPA is the utility value of the
full variable assignment (line 13-15). This utility value will then be broadcast to all other ship agents, and each ship
agent can use this utility value as an upper bound (UB). When the utility value of a new CPA exceeds the utility value
of the current UB, it will be broadcast again as the new UB (line 10-12). Recursively, each ship agent that receives
a CPA checks if its CPA accumulated utility value is larger than the UB. If this is true (line 5-6), implying that the
previous variable assignment can be improved, ship agent m will send Backtrack message to the previous agent m−1
(line 17), and that the previous agent m−1, upon receiving Backtrack message (line 9), will choose the next value in
its variable domain, and send it to agent m again. When a ship agent has checked all values in its domain, it broadcasts
message TERMINATE to other ship agents (line 16). When the last ship agent has checked all values in its domain,
the last discovered full assignment is reported as the optimal solution (line 20-21).
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Algorithm 1 Distributed coordination steps of ship agents based on SyncBB.

Require: a linear ordering of variables δ1 � δm · · · � δn
1: if m = 1 then x1

i ← choose first δ∗1 ∈ D1 such that u1(δ
∗
1)< ∞

2: if there exists such a δ∗1 then send message (CPA, (δ∗1), u1(δ
∗
1)) to δ2

3: else broadcast messages INFEASIBLE
4: for each received message M, ship agent do
5: if M = (UB,(δ∗1, . . . ,δ

∗
n), u) then

6: u∗← u and record (δ∗1, . . . ,δ
∗
n), u) as the best solution found so far

7: if M = (CPA,(δ∗1, . . . ,δ
∗
m−1), u) then

8: (δ1, . . . ,δm−1, u)← (δ∗1, . . . ,δ
∗
m−1) and ūm← u

9: if M = (Backtrack) then Dm← Dm \{δ∗m}
10: // Look for a better value for δm
11: δm← find first δ∗m ∈ Dm such that ūm +um(δ

∗
m, ·)> u∗

12: if there exists δ∗m then
13: if m = n then
14: Record (δ∗1, . . . ,δ

∗
n) as the best solution found so far

15: Broadcast message M = (UB,(δ∗1, . . . ,δ
∗
n), u∗)

16: if Dn = empty then broadcast message TERMINATE
17: else send message BACK to xn−1

i
18: else send message (CPA, (δ∗1, . . . ,δ

∗
m, ūm +um(δ

∗
m, ·)) to δm+1

19: else
20: if m = n then broadcast message TERMINATE
21: else send message BACK to δm+1

Algorithm 2 Distributed coordination steps of ship agents based on DPOP.
1: Phase 1: DFS structure generation: establish DFS
2: Run DFS generation algorithm, each variable is considered as a node and each agent controls a set of variables. Label nodes

as parent/child nodes, edges are identified as tree/back edges.
Phase 2: UTIL propagation: bottom-up UTIL message propagation

3: //Join local utility functions:
4: u(δi, parentδi

, ·)← ∑u∈{u′∈U|δi∈scope(u′)∧scope(u′)∩(childrenδi∪pseudo−childrenδi )=∅}u(δi, ·)
5: //Join with received messages
6: for each δ j ∈ childrenδi

, ship agent i do
7: Wait for the message (UTIL,u(δ j, ·))
8: u(δi, parentδi

)← ui(δi, parentδi
, ·)+u j(δ j, ·)

9: //Project out δi:
10: if δi is not the root variable then
11: δ∗i (parentδi

, ·)← argmaxδi
{u(δi, parentδi

, ·)}
12: u(parenδi

, ·)←maxδi
u(δi, parentδi

, ·)
13: Send the message (UTIL, u(parentδi

, ·)) to parentδi

14: else δ∗i ← argmaxδi
{u(δi)}

Phase 3: VALUE propagation: top-down VALUE message propagation
15: //Root variable sends its optimal value to children nodes
16: if δi is not the root variable then receive message (VALUE, u(δi,δparenti , ·)) from parent of variable node δi
17: Wait for message (VALUE, u∗parent , ·) from parent
18: δi← δ∗i (uδi

= u∗
δ∗i
, ·)

19: for each δ ∈ childrenδi
, ship agent i do

20: Send the message (VALUE, δ∗i , sep∗
δ∗i

)
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4.3.2. DPOP
DPOP (Petcu, 2009) is based on dynamic programming. The solution process of DPOP is given in Algorithm 2.
Firstly, a depth-first-search (DFS) structure is established using a distributed DFS algorithm. Each variable is

considered as a node in this structure. Each ship agent controls a set of variables. The nodes are consistently labeled
as parent or child nodes, and the edges that connect variable nodes are identified as tree or back edges. The second
phase is called UTIL propagation, which involves the propagation of accumulated utility values from bottom to top
through the constructed DFS tree. For each variable δi belonging to ship agent i, ship agent i joins all utility functions
involving δi together, while ignoring all utility functions that involve at least one descendant of xm

i (line 3-4). Here, a
descendant node of a variable node refers to its children nodes or its children’s children nodes.

Each ship agent i waits for the reception of a so-called UTIL message from each of the child nodes of childreni,
and joins them all together with its intra utility function (line 6-8). Finally, agent i eliminates δi from the join, and
sends the resulting utility value to its parent node of parentδi (line 10-13). The maximum achieved utility for the
whole subtree rooted at δi, as the function of the value for the parent node of δi and also the values for other variables
that are higher than δi in the DFS tree (line 13). The set of variables in the UTIL message for variables sent by agent
i is called the separator sep(δi), which includes δi’s parent and pseudo-parents nodes, i.e., the ancestors of δi but not
directly connected, as well as δi’s descendant’s pseudo-parent that are above δi in the DFS tree. Therefore, a UTIL
message for variable δi contains the optimal utility value obtained in the subtree of each instantiation of separator
sepδi .

The third phase of DPOP is called VALUE propagation. At the end of the UTIL propagation phase, the root
variable (the variable node that initiates the DFS tree, with itself as the root) has obtained its own local optimal value
based on the messages it received (line 14). The ship agent that controls the value of the root variable sends this
optimal value to each of the child nodes of the root variable via VALUE messages (line 15). Recursively, for each
variable δi, when the corresponding agent receives a VALUE message from the parent node, it searches for its own
optimal value assignments during the UTIL propagation phase (line 16-18). To each of the child nodes childreni of
i, ship agent i sends to them not only the optimal value of δi, but also the optimal values for all the variables in δi’s
children node’s separator, altogether with the VALUE message agent i receives (line 19-20). Optimal decisions are
hereby propagated down the DFS tree, until all variables have been assigned optimal values.

4.3.3. AFB
AFB (Asynchronous Forward Bounding) (Gershman et al., 2006) to solve the formulated problem. Algorithm 3

shows the distributed coordination steps of multiple ship agents based on AFB. Starting from the ship with largest
number is the root node, and the ship with the smallest number is the top node. This is because the most risky ship
will be more willing to change its rudder angle to avoid collision risks with other ships. Firstly, if ship agent m is the
on the root node, it creates an empty CPA (Current Partial Assignment) message regarding the value assigned to its
variable δm and starts process assign CPA (line 22-28), and send CPA and the current utility value to higher agents.
Procedure assign CPA is used to find a value assignment for the current agent within the current bounds of the CPA.

Firstly, clear all estimates related to previous assignments (line 23). Then the agent try to assign every value
in its domain, and the assigned value must make sure that the sum of the utility values in the current CPA and the
estimate are smaller than the upper-bound (line 24). If so, the agent adds the selected value on the CPA (line 25-26).
Otherwise, the assignments of some higher priority agents must be changed, and thus backtrack is performed (line
22). If the agent is the last agent, then a complete assignment will be reached, and it is broadcast to all agents through
SOLUTION and CPA messages. If it is not the last agent, a CPA message will be send to the next agent (line 28).

When a ship agent receives the CPA from the lower ship agents (line 13), it adds the variable assignments in its
local view only if the current utility value is smaller than the global lower-bound. Otherwise, procedure backtrack is
carried out and the this agent sends the CPA to the previous agent to revise its variable assignment. A timestamp
mechanism is adopted to determine the most up-to-date CPA and discard old CPAs. When the message is not
discarded, the agent updates the timestamp of the CPA (line 14-15) and saves the received variable assignment (line
15). Only one agent performs one assignment on the CPA at a time. If the utility of received variable assignment
exceeds the upper-bound, it performs backtrack (line 16), otherwise, assign CPA is carried out to reassign another
value to its variable (line 17).

Each agent adds its variable assignment in CPA and replies through FB CPA messages for agent who do not
have assignments in the current CPA. When the agent receives a FB CPA message, the upper-bound is computed
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Algorithm 3 Distributed coordination steps of ship agents based on AFB.

Require: a linear ordering of variables δ1 � δm � ·· · � δn
1: if m = 1, starting from ship m, then find the first value δ∗m ∈ Dm such that um(δ

∗
m)< ∞, δm← δ∗m

2: if there exists such a δ∗m then send message (CPA, δ∗m, um(δ
∗
m)) to higher ship agent n

3: else broadcast messages INFEASIBLE
4: for each received message M do
5: if M = (FB CPA,(δ∗1, . . . ,δ

∗
m−1), u) then

6: if FB CPA.timestamp > (m−1).timestamp then
7: timestamp← FB CPA.timestamp; estimatem← local utility + future utility for δm
8: send message (FB ESTIMATE, (δ∗1, . . . ,δ

∗
m−1), m, estimatem,u) to δm

9: if M = (FB ESTIMATE,(δ∗1, . . . ,δ
∗
m+1),m+1, estimatem+1) then

10: if FB ESTIMATE.timestamp > (m−1).timestamp, m−1) then
11: estimatem← estimatem+1,
12: if u + all saved estimates ≤ UB then calls assign CPA to change variable assignment
13: if M = (CPA,(δ∗1, . . . ,δ

∗
m−1), u) then

14: if CPA.timestamp > m.timestamp then
15: timestamp← CPA.timestamp; D′m← Dm, (δ1, . . . ,δm−1, u)← (δ∗1, . . . ,δ

∗
m−1) , ūm← u ,and update CPA

16: if ūm−1 ≤ UB then backtrack
17: else calls assign CPA
18: if M = (SOLUTION,(δ∗1, . . . ,δ

∗
n), u) then

19: if SOLUTION has not already been recorded then
20: record assignments and optimal utility value
21: broadcast TERMINATE
22: // procedure assign CPA
23: clear estimates
24: iterate (from last assigned value) over Dm until found v ∈ Dm such that δm + estimate(CPA,m,v)≤ UB
25: if no such value exists then backtrack
26: else assign δm = v
27: if CPA is full assignment then u∗← u, and broadcast (SOLUTION,CPA,u∗)
28: else send CPA to δm+1 and send (FB CPA, δm, CPA) to ship agent ∀n > m
29: // procedure backtrack
30: clear estimates
31: if m = n then broadcast TERMINATE
32: else send CPA to δm−1

13



considering the utility of variable assignments on the CPA and the current agent (line 5-8). This estimate utility value
is returned to the sender by a FB ESTIMATE message (line 9-12). Upon receiving SOLUTION message, each agent
checks to see if the SOLUTION has already been recorded, and record the variable assignments if necessary and
optimal utility value, and terminates all agents (line 27).

5. Experimental results

Simulation experiments are carried out to assess and analyze the effectiveness of the proposed method. Firstly,
an example of the proposed coordination structure, and an example of a 7-ships encounter situation and simulated
trajectories of ships, as well as the distances between ships when they are operating to avoid collisions are given.
Secondly, the performance of the adopted DCOP algorithms with different optimization objectives are evaluated with
respect to computation time and communication costs. Finally, an analysis of the experimental results is given.

5.1. Experimental settings

Our experiments are performed on an Intel Core i7-7500 CPU with 8GB RAM running Windows 10. The
proposed method is implemented in MATLAB R2017a. The AFB algorithm is implemented with a latest version
of the FRODO2 toolbox (version 2.16) (Léauté et al., 2009). This paper selects the KVLCC2 tanker as a sample
ship and adopts the ship parameters from (SIMMAN 2008 committee, 2008). We set up 10 scenarios in which
7 homogeneous ships are encountering, with different courses and coordinates. Computation and communication
costs for coordinating the ships’ anti-collision decisions are calculated and evaluated based on these scenarios. The
minimum safety distance that each two ships should keep is set as DDCPA = 150m. It is noted that due to the lack of
real-world AIS data, this paper assumes that the ships that are approaching with one another within a circular area of
2.5km constitute a multiple ships coordination problem.

5.2. Coordination structures

Figure 5 presents an example that illustrates the coordination structure of the proposed approach. Each variable
constitutes a node. These variable nodes are connected based on different structures: nodes in SyncBB and AFB
are connected with a linear ordering; while the nodes in DPOP are connected with a depth-first-search structure.
Based on the way the variable nodes are structured, the variable assignments and the corresponding utility values
are passed from one node that is owned by an agent to the nodes owned by other agents. In Figure 5(a), Ship agent
1 owns variables δ1 and T13, this implies that Ship 1 only has collision risk with Ship 3. Similarly, Ship agent 5
owns variables δ5,T57,T56,T53 and T52, which means Ship 5 has collision risks with Ships 2, 3, 7 and 6. In addition,
Ship Variables that are owned by the same ship agent are connected with utility function rintra

i . Inter-agent utility
function rinter

i j connects variables that are owned by ship i and ship j, if collision risk exists between them. Figure
5(b) shows the DFS structure that connects different variables owned by different agents based on DPOP algorithm,
and Figures 5(c) and 5(d) describes the linear structure that connects variables based on SyncBB and AFB algorithm.
Information regarding each ship agent’s currently chosen values for its variables and the corresponding utility values
are propagated along with these structures.

5.3. An example of optimized collision avoidance decisions

Figure 6 presents an extreme case in which 7 ships are encountering one another as an example of a multi-ships
encountering situation. It shows the ships’ predicted trajectories when they keep their original courses unchanged.
The initial coordinates of ships are marked with ◦. After solving this problem with the proposed approach using
DPOP algorithm with objective Ob j1, rudder angles and the rudder steering time for each ship has been obtained.
Ships 1, 2, 3, 4, 5, 6 and 7 take rudder angle δ1 =−20◦, δ2 =−10◦, δ3 =−10◦, δ4 =−20◦, δ5 =−20◦, δ6 =−20◦

and δ7 =−20◦, respectively. The rudder steering time for these ships is 145 seconds. The rudder steering time of all
ships are equal because all 7 ships have collision risks with one another, and that the rudder steering time for them
should be consistent. Figure 7 shows the simulated trajectories of ships with the optimized rudder angle alterations
and operation time of rudder steering. The initial coordinate of each ship is marked with ◦, and the time at which
rudder maneuvering ends is marked with ∗. The point at which each ship can pass the CPA with the other ships is
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Figure 5: Coordination structure of the proposed approach
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Figure 9: Ship’s encountering time with each other.

marked with × along with the Ship ID. Figure 8 shows how the distances between the ships change over time. It can
be seen that the minimum safety distance is kept by any two ships.

Figure 9 shows the rudder steering time for each ship and its encountering time with the other ships. As an
example, it can be seen that Ship 1 passes its CPA with Ship 3 at time T CPA

13 = 175s, and then passes its CPA with Ships
4,5,6,7 simultaneously at time T CPA

14 = T CPA
15 = T CPA

16 = T CPA
17 = 184s, and finally passes the last ship, which is Ship 2 at

time T CPA
12 = 210s. Similarly, Ship 2 passes its CPAs with the rest of the ships with a sequence of Ship 6→ Ship 7→

Ship 3→ Ship 4→ Ship 1, and finally passes the last ship, which is Ship 5 at time T CPA
25 = 253s. After each ship passes

the CPA with the last ship, collision avoidance operation terminates and they can switch back to their original courses.
Therefore, Ships 1, 2, 3, 4, 5, 6 and 7 can go back to their original courses at 210s,253s,230s,201s,253s,198s,230s,
respectively.

5.4. Comparison of computation time
Figure 10 shows the computation time for solving the DCOP. The values reported in the figure are the maximum,

minimum and average of the computation times for solving the multiple ships collision avoidance problem with
different solution algorithms and optimization objectives in the 10 cases. It can be seen that among the three solution
algorithms, DPOP can solve the problem with the shortest time, while AFB solves the problem in relatively longer
time, and that SyncBB required the longest computation time. In addition, among the three optimization objectives,
objective Ob j2 requires the shortest computation time, while objective Ob j3 requires the longest computation time.
This may be caused by the fact that Ob j3 takes both the TCPA and rudder steering time into account via utility
functions, which means that the size of messages that include the information of utility values is larger that the size of
such messages in objectives Ob j1 and Ob j2.

5.5. Comparison of communication costs
To evaluate the communication costs in the coordination of multiple ships, this section analyzes the number of size

and messages that ships exchange, as well as the distribution of different types of messages during the information
exchange.

5.5.1. Number and size of messages exchanged during coordination
In order to compare the performance of different solution algorithms and optimization objectives in terms of

number and size of messages exchanged among ship agents during coordination, Figures 11, 12 and 13 summarize the
total number of messages, the total amount of information (in bytes) and the size of largest message (in bytes) sent. It
is noted that the values in these figures are ratios, which are calculated by dividing the total number of messages/total
amount of information/largest message size that each algorithm with each optimization objective requires in each
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Figure 10: Comparison of computation time.

cases, by the minimum total number of messages/total amount of information/largest message size that are required
by the algorithms and optimization objectives in that case.

The values reported in Figure 11 are the maximum, minimum and average values, with respect to the ratios
of the total number of messages exchanged in each algorithm and optimization objective. The values reported
in Figure 12 are the maximum, minimum and average values, with respect to the ratios of the total amount of
information exchanged in each algorithm and optimization objective. The values reported in Figure 13 are the
maximum, minimum and average values, with respect to the ratios of the largest message size sent/received in
each algorithm and optimization objective. Figures 11 and 12 show that algorithm DPOP requires fewest number
of messages and the least amount of information exchanged among ship agents, compared with algorithm AFB and
SyncBB. Algorithm AFB requires the largest information exchange with respect to message numbers and sizes. This
implies that the frequency of information exchange in ships’ coordination with algorithm AFB are substantially higher
than that of algorithm DPOP and SyncBB. Meanwhile, Figure 13 also shows that the largest message sizes that are
required during coordination with DPOP are substantially larger than that of AFB and SyncBB. In addition, among
different optimization objectives, it can be seen that objective Ob j1 requires less information exchange comparing
with objectives Ob j2 and Ob j3.

5.5.2. Distribution of types of messages involved during coordination
Table 2 and Figure 14 conclude the message types in SyncBB and their distribution in the total number and sizes

of messages in the information exchange between ship agents. It can be seen from Figure 14 that the main messages
exchanged in SyncBB are PATH, ELECT and Backtrack, as they make up a large proportion in both the total number
of messages (>99%) and amount of information (>95%) exchanged during coordination. This is because PATH
messages include the current partial assignments to the variables, which are the basis of the information that ship
agents exchange to find the variable assignments with the smallest utility values. ELECT messages are also important
for each ship agent to determine next variable node to sent messages. A Backtrack message is generated whenever
a ship agent cannot find any value assignments from its domain to make the current utility value smaller than the
global upper bound, and that this agent needs to send information to the previous agent to make adjustments on its
value assignments. The number of Backtrack messages depends on the domain sizes of each variable, if the variable
domain is large, ship agents need to spend more efforts in searching for possible value assignments to make the utility
values smaller than the global upper bound.

Table 3 and Figure 15 show the message types in DPOP and their distribution in the total number and sizes of
messages in the information exchange between ship agents. It can be seen from Figure 15(a) that ParallelDFSwrapper
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Figure 11: Comparison of number of messages exchanged during
coordination.
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Figure 12: Comparison of amount of information exchanged
during coordination.
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Figure 13: Comparison of size of largest messages required during coordination.
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Table 2: Type of messages involved in SyncBB.

Message name Definition
Backtrack The backtrack messages
UB The messages that broadcast by the last ship agent containing the current upper bound of utility values
SOLUTION The chosen assignments to variables
PATH The messages containing the current partial assignment
ELECT The message containing a protocol to elect a variable/agent
NextVarChosen The message containing the next variable chosen
NextVarProposal The message containing a proposal for the next variable to put in the variable order
NextVarRequest The message requesting a proposal for the next variable to put in the variable order
VarOrderNoSpace The messages containing the chosen linear order of variables

Backtrack, 
34.24%

ELECT, 
30.52%

NextVariableChosen, 0.07%
NextVariableProposal, 0.37%

NextVariableRequest, 0.37%

Path, 
34.24%

Solution, 
0.03%

UB, 
0.13%

VariableOrderNoSpace, 
0.03%

(a) Distribution of different message types in total number of
messages.

Backtrack, 
12.61%

ELECT, 
19.30%

NextVariableChosen, 0.23%

NextVariableProposal, 2.00%
NextVariableRequest, 1.16%

Path, 
63.05%

Solution, 
0.29%

UB, 
0.83%

VariableOrderNo
Space, 0.52%

(b) Distribution of different message types in total amount
of information.

Figure 14: Distribution of types pf messages involved during coordination with SyncBB in percentages.
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message constitute a large proportion of the total number of messages, due to the fact that ship agents need to
constantly exchange this type of message to construct the DFS-tree structure. During the coordination of multiple
ships based on DPOP, UTIL message include all possible utility values, which is ship rudder steering time (Ob j1),
or time to closest point of approach (Ob j2), or the total time a ship spends in avoiding collisions (Ob j3); VALUE
message include all possible rudder angles a ship selects. As the utility values are always larger than the values
assigned to rudder angle variables, a UTIL message has a larger size than that of a VALUE message. Therefore, while
UTIL message makes up a small proportion (10%) with respect to message numbers in Figure 15(a), it constitutes a
large proportion regarding total amount of information in Figure 15(b).

Table 3: Type of messages involved in DPOP.

Message name Definition
UTIL The messages containing utility values
VALUE The messages containing values assigned to variables
ParallelDFSwrapper The messages containing DFS messages for a particular candidate variable root

ParallelDFSwrapper
81%

UTIL
10%

VALUE
9%

(a) Distribution of different message types in total number of messages.

ParallelDFSwrapper
18%

UTIL
79%

VALUE
3%

(b) Distribution of different message types in total amount of
information.

Figure 15: Distribution of types pf messages involved during coordination with DPOP in percentages.

Table 4 and Figure 16 show the message types in AFB and their distribution in the total number and sizes
of messages in the information exchange between ship agents. It can be seen that CPA message only occupies a
small proportion in the information exchange and that FB-CPA and FB-ESTIMATE messages constitute the major
proportion with respect to both number and size of information exchanged. This is because FB-CPA messages are the
extension of CPAs, which are constantly sent from one ship agent to the other agents in order to dynamically calculate
the upper bound of the utility values, and the other agents return the estimated utility values via FB-ESTIMATE
messages.

5.6. Result analysis

Firstly, the proposed approach is able to provide ships with optimal decisions on rudder angle alteration and the
rudder steering time. Secondly, DPOP-based coordination is able to find optimal solutions in a shorter time than
AFB- or SyncBB-based coordination. Meanwhile, DPOP-based coordination also requires a lower communication
frequency and less amount of information exchange than the other two algorithms. Nevertheless, DPOP-based
coordination requires messages in larger sizes. For situations in which the communication bandwidth is limited,
DPOP may not be applicable. Under this circumstance, AFB-based coordination would be more suitable, as its
message sizes are smaller and the computation time is also acceptable. In addition, among optimization objectives
Ob j1, Ob j2 and Ob j3, objective Ob j1 is relatively better, as it has lower requirements on information exchange and
needs shorter computation time to find optimal solutions.
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Table 4: Type of messages involved in AFB.

Message name Definition
CPA The message containing the current partial assignment of variables
FB-CPA The messages containing CPA that will be sent from a ship agent to a destination receiver
FB-ESTIMATE The estimated lower bound of the utility value returned from the receiver to the sender ship agent
SOLUTION The chosen assignments to variables
UB The messages that broadcast by the last ship agent containing the current upper bound of utility values
ELECT The message containing a protocol to elect a variable/agent
NextVarChosen The message containing the next variable chosen
NextVarProposal The message containing a proposal for the next variable to put in the variable order
NextVarRequest The message requesting a proposal for the next variable to put in the variable order
VarOrderNoSpace The messages containing the chosen linear order of variables

CPA_MSG, 
3.97%

ELECT, 
12.79%

FB_CPA, 
47.47%

FB_ESTIMATE, 
35.39%

NextVariable
Chosen, 
0.03%

NextVariable
Proposal, 

0.14%

NextVariable
Request, 
0.14%

SOLUTION, 
0.01%

UpperBound, 
0.05%

VariableOrderNo
Space, 0.01%

(a) Distribution of different message types in total number of
messages.

CPA_MSG, 
4.65%

ELECT, 
1.92%

FB_CPA, 
52.06%

FB_ESTIMATE, 
40.92%

NextVariabl
eChosen, 

0.02%

NextVariabl
eProposal, 

0.18%

NextVariabl
eRequest, 

0.11%

SOLUTION, 
0.02%

UpperBound
, 0.06%

VariableOrder
NoSpace, 

0.05%

(b) Distribution of different message types in total amount
of information.

Figure 16: Distribution of types pf messages involved during coordination with AFB in percentages.
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6. Conclusions and future work

This paper proposes a distributed coordination strategy for assisting ships in making decisions on the most
efficient anti-collision operations when multiple ships encounter with one another and that collision risks exist among
them. The proposed method considers both the ship dynamics and the inter-related characteristic of the anti-collision
decision making. Based on the ships’ current states, the proposed method provides them with the rudder angles they
should choose and the corresponding rudder steering time. In addition, the type, number, and size of messages that are
calculated from the experiments can provide insight for practitioners regarding the communication costs to implement
such coordination strategies. This could increase the safety and reliability of a ships automated navigation, reduce the
psychological and physical burden of ship operators, and reduce the occurrence of ship collisions.

To enhance the applicability of the proposed method, further research is required. Firstly, its compatibility
with COLREGs should be extensively investigated, considering the fact that it is the foundation of ship collision
avoidance today. The integration of COLREGs in intelligent collision avoidance method is critical to ensure a smooth
transitioning from manned ships to future unmanned ships. Secondly, this paper deals with the multiple ships collision
avoidance problem from a distributed decision making perspective and does not consider the heading control or
tracking control regarding courses and trajectories of ships.

To further improve the efficiency of the anti-collision operations, advanced heading control algorithms should be
integrated with the coordination strategy, so that the ships can finish rudder steering operations more efficiently and
accurately. In addition, this paper adopts TCPA/DCPA as the main collision risk indicators, it would be interesting
to also consider other risk indicators and compare their performances in the future. Moreover, extensive experiments
based on real-world are required to validate the practical effectiveness and applicability of the proposed method.
Last but not least, it is also interesting to consider applying the proposed method to solve similar collision avoidance
problems in restricted waters.
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