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Anticipating the occurrence and effects of mass transport limitations during fermentation scale-up is essential for 
commercialization, as heterogeneities might affect microorganisms. Tools like Computational Fluid Dynamics 
(CFD) aid this analysis but are computationally intensive, limiting design space exploration and consequently, 
fermentation optimization. Compartment models (CMs) based on CFD simulations offer an affordable alternative 
but require CFD recalibration with changing geometries or operating conditions, restricting their usage in 
optimization.

In this work, we introduce a hybrid machine-learning-aided compartment model (ML-CM) that accounts for 
flow pattern dynamics upon changes in both volume and stirring speed in a stirred tank bioreactor. The ML-

aided dynamic compartment model (dyn-CM) enabled the spatiotemporal study of a process in 1/500th of the 
fermentation simulation time, maintaining reasonable accuracy. This method facilitates fed-batch fermentation 
modeling, process optimization, and scale-up effect analysis with modest computational resources, supporting 
reactor design and operational improvements within a defined operating space.

1. Introduction

Scaling up fermentation processes is a critical step in bioprocess de-

velopment; as scale-up is challenging and expensive, it is sometimes 
called ‘the (bioprocess) valley of death’ (Kampers et al., 2022). Scal-

ing effects are regarded as responsible for performance losses and their 
mitigation has proved to be expensive and time-consuming (Crater and 
Lievense, 2018; Delvigne et al., 2017; Herwig et al., 2021; Kampers et 
al., 2022; Noorman, 2011). One of the challenges upon scale-up is that 
the concentration gradients experienced by cells change with scale due 
to transport limitations, which may induce changes in the cellular re-

sponse, and therefore affect process performance (Bylund et al., 1998; 
Haringa et al., 2018; Xu et al., 1999). To reduce the risk of unantici-

pated performance loss, scale-down studies, where cells are subjected 
to variations in their environment may be conducted (Lara et al., 2006; 
Neubauer and Junne, 2010). However, such studies typically only pro-

vide qualitative insights into the potential of productivity losses. This 
led to a rising interest in model-based approaches, where detailed hy-

drodynamic models and cell kinetic models are coupled to make scale-up 
performance predictions for specific reactor systems. Typically, this has 
been addressed using a validated framework based on Computational 
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Fluid Dynamics (CFD) (Delvigne et al., 2017; Herwig et al., 2021; Lapin 
Alexei and Reuss, 2004, 2006). The drawback of these models is their 
high computational demand, which means that only one or a few op-

erating conditions may be assessed, making the methods unsuitable for 
(iterative) process optimization. Additionally, the conditions inside the 
reactor are assumed to be stationary (Haringa et al., 2018; Puiman et 
al., 2022; Siebler et al., 2019). In reality, fermentations are typically 
dynamic fed-batch operations, in which liquid volume and operating 
conditions change in time. Current state-of-the-art CFD simulations can-

not feasibly account for this due to computational expense and time de-

mand. Hence, to consider the impact of heterogeneous conditions inside 
the bioreactor on process performance over the full process duration, 
and to optimize (dynamic) process conditions, computationally cheaper 
methods, that still feature adequate spatial resolution, are required. 
Compartment-based models (CMs) are an example of such computation-

ally cheaper methods (Cui et al., 1996; Vrábel et al., 2000) where the 
bioreactor is approximated as a network of ideally mixed sub-volumes 
or ‘compartments’ (Delafosse, 2014; Nadal-Rey et al., 2021a).

While a high spatial resolution (1 × 106 mesh elements) is required 
to accurately solve flowfields from first principles (Haringa et al., 2018), 
a lower spatial resolution (1 × 103 mesh elements) typically suffices to 
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Fig. 1. Concept of a compartment model (CM) for two zones defined based on the turbulent kinetic energy for a stirred tank reactor. 

capture phenomena relevant to process performance, such as mixing 
and subsequent gradients in substrate concentration, once the flowfield 
is known (Haringa et al., 2022). A simple depiction of these compart-

ments is shown in Fig. 1. Each compartment corresponds to a local zone 
of the fluid and the interaction between the compartments is used to 
describe the transport mechanisms within the reactor. Prior studies uti-

lizing CM have shown good performance in predicting mixing, gradient 
occurrence, and productivity when compared with CFD models, at a 
fraction of the computation time for CFD (De Carfort et al., 2024; Nadal-

Rey et al., 2021a; Tajsoleiman et al., 2019). This is due to the decoupling 
of phenomena in compartment models making their runtimes signifi-

cantly shorter than those of a fully-coupled CFD model (Jourdan et al., 
2019).

The main objective of spatially-resolved bioreactor models is to study 
heterogeneity in nutrient availability, which follows from an interplay 
between localized feeding, biokinetics (i.e., consumption rate), hydro-

dynamics (i.e., mixing), and reactor design and type (Nadal-Rey et al., 
2021b). Hence, it is key the CM replicates large-scale mixing with suf-

ficient accuracy that depends on its parameterization, e.g. the number 
of compartments, their volumes, connections among them, and the ex-

change flow formulation (Delafosse, 2014; Tajsoleiman et al., 2019). 
The first generation of compartment models was manually configured 
(Cui et al., 1996; Jourdan et al., 2019; Vrábel et al., 2000), relying 
strongly on the user’s expertise. Later approaches used detailed CFD 
simulations to configure the compartments via a ‘zoning’ algorithm (De-

lafosse, 2014; Nadal-Rey et al., 2021a; Tajsoleiman et al., 2019). In these 
approaches, a compartment map of the reactor is created based on hy-

drodynamic parameters like axial, and radial velocities (Nadal-Rey et 
al., 2021a; Tajsoleiman et al., 2019) and the turbulent energy dissipa-

tion rate (Bai et al., 2023), among others.

Still, despite the relevance of fed-batch operation most compart-

ment models currently consider steady-state operation. One underlying 
reason is that, upon changing hydrodynamic conditions, new CFD simu-

lations are required to calibrate the CM. However, once the CM has been 
constructed, it can be used to quickly assess various scenarios, such as 
different feed locations (Losoi et al., 2022), feed rates, or cell kinetics 
(Haringa et al., 2022), provided that the hydrodynamics do not sub-

stantially change. With this, significant computational reductions can 
be achieved when assessing or optimizing for a given hydrodynamic 
condition.

Prior studies have suggested several strategies for recalibrating the 
exchange flows across compartments (𝜙𝑖,𝑗 ). For steady-state simula-

tions, linear correlations are based on changes in dimensionless numbers 
(Bai et al., 2023), stirring speed, or power input as proposed by Taj-

soleiman et al. (2019). However, this methodology cannot deal with 
changes in the operating volume, which does not just change the mag-

nitude of the flowrates, but also the flow pattern. Hence, we seek to 

develop a more general methodology that can deal with such dynam-

ics. For this, a step-wise interpolation was presented to handle discrete 
changes in volume for a fed-batch fermentation by recalibrating the 
compartment model at given time points with new CFD data (Nadal-

Rey et al., 2021a).

However, the requirement to run several CFD simulations to recal-

ibrate the CM upon volume changes adds considerable computational 
cost, negating an advantage of compartment modeling. This is especially 
true in cases of process optimization where many (dynamic) conditions 
are to be evaluated, or when including process control in the simulation, 
in which case the process dynamics are not known upfront and need to 
be resolved during runtime (Oliveira et al., 2024). To cope with such 
situations, a methodology flexible enough to adapt the compartment 
parameterization (i.e. volumes and exchange flowrates) for certain op-

erating conditions (e.g. volume, stirring speed), without requiring a CFD 
re-run, is desired.

Hence, we present a method in which CFD data are used to train a 
machine learning (ML) model, that will provide a compartment param-

eterization as output, given the filling volume (𝑉𝐿) and stirring speed 
(𝑁𝑠) as inputs. We will test our framework on the exchange flows given 
a fixed grid for a single-phase stirred tank at different filling volumes 
equipped with a Rushton impeller (max. 133 m3). Our work aims to 
show that coupling a CFD-CM with an ML algorithm allows rapid and 
sufficiently accurate representation of flow features within the vessel, 
enabling design space exploration and full simulation of a fed-batch fer-

mentation.

2. Materials and methods

In this section, we present the models and methods used to deploy 
the modeling workflow. We describe the aim of the approach including 
the reactor and process we modeled, the setup of the CFD models used 
to obtain the training data, the settings of the respective compartment-

based models, and the interpolating module (i.e., the neural-network-

based module).

2.1. Proposed workflow

A library of hydrodynamic data (i.e., frozen flow maps) was collected 
for different operating conditions using a conventional CFD approach, 
which was considered the ground truth for subsequent analyses. Further 
details of the operating conditions can be consulted in Appendix A.4. 
A set of CM realizations was generated from the CFD simulations to 
train the neural network used to create compartment-based parameteri-

zations at any given working volume. These parameterizations allowed 
for the analysis of the evolution of substrate stratification during the 
fermentation. Fig. 2 depicts the workflow used in this work.
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Fig. 2. Workflow for analyzing scale-up effects under dynamic conditions (i.e., variation of liquid heights - H𝐿) using compartment models (CMs) and a neural 
network as an inferring module for new CM realizations.

Fig. 3. Artistic representation of the 133 m3 reactor evaluated. 

2.2. The reactor model and operating conditions

A 133 m3 stirred vessel (𝑇 = 5m) with a single Rushton turbine (RT) 
and 4 baffles was considered. The aspect ratios are: for the impeller (𝐷
= 𝑇 /3), baffles (𝐵 = 𝑇 /10), and clearance from the bottom of the 
vessel to the impeller (𝐶 = 𝑇 /3) (Couper et al., 2012). A sketch of the 
reactor is shown in Fig. 3 and further details about the dimensions of the 
geometry can be found in Appendix A.1 (see Fig. A.13). The properties 
of the media were assumed to be the ones of water at 20 ◦C (i.e., 𝜌 = 
998.2 kgm−3, 𝜇 = 1.003mPas).

2.3. CFD setup

Single-phase simulations were conducted using Ansys FLUENT™ 
2023R1 with GPU acceleration to obtain flow maps for different filling 
volumes of the stirred tank ranging from 63.5 to 133m3 and different 
stirring speeds ranging from 0.25 up to 1.46 s−1 . Within this oper-

ating range, the specific power input (𝜖) varies from 3.95 × 10−5 to 
1.52W kg−1.

The multiple reference frame (MRF) approach and the standard 𝑘−𝜀
turbulence model were used to simulate the movement of the impeller 
and turbulent flow conditions, respectively. The mesh used for the spa-

tial discretization of the system consisted of around 2 million cells. The 
walls were assumed to have a no-slip condition, and the top wall that 
simulated the liquid’s free surface had a no-shear condition (i.e. 0 Pa). 
The simulations were considered to have converged once the residuals 
were lower than O(10−4) and a coefficient of variation (CV) for the im-

peller’s torque of less than 1% was obtained.

The software was run in a workstation equipped with 16 AMD Ryzen 
ThreadripperPRO™ 5955WX CPUs, 64 GB RAM, and an Nvidia GeForce 
RTX 3090 graphics card. Mixing time determination for these simula-

tions was conducted using frozen flow fields. Details about the settings of 
the methods and controls implemented in the simulations can be found 
in Appendix A.3.

2.4. The compartment model (CM)

Fixed compartment layouts, with equal-volume compartments, as-

suming axisymmetry were defined for this study and were labeled by 
the number of divisions in the axial (𝑁𝑎𝑥) and radial (𝑁𝑟 = 5) directions 
as follows A[𝑁𝑎𝑥]R[𝑁𝑟]. For the axial direction, a compartment height 
(𝑑ℎ) of 15 cm was determined as the suitable parameter after evaluating 
different layouts (see Appendix B.1). This layout showed the best agree-

ment of the studied layouts with the frozen flow field calculated from 
CFD. We used planar data (2D) from the CFD simulations to calibrate the 
compartment models, following (Tajsoleiman et al., 2019) to be data-

efficient, but our approach can equally be applied to CM on 3D data 
as in (Haringa et al., 2022). From the CFD models solved in FLUENT™, 
the values for the velocity components, coordinates, and turbulence ki-

netic energy were extracted from the nodes of an XY-plane rotated 45◦
along the Z-axis (see Fig. 4). These data were stored as .csv files, which 
makes the routine CFD-platform agnostic.

From these files, the intercompartment flow rates (𝜙(𝑖,𝑗)) were cal-

culated using a Python script according to the approach outlined in 
(Delafosse, 2014; Haringa et al., 2022; Tajsoleiman et al., 2019). These 
flow rates are assumed to result from the contribution of a convective 
and turbulent term to account for the major mechanisms responsible for 
momentum transfer in such a closed system (Delafosse, 2014):

𝜙(𝑖,𝑗) = 𝜙𝑐 (𝑖,𝑗) + 𝜙𝑡(𝑖,𝑗) (1)

For the boundary sampling distance (𝑑𝑏) a value of 2 cm at both sides 
from each intercompartmental boundary was set, and the average ve-

locity across faces was weighed by the relative distance of the sampled 
points to the boundary. When less than 2 extracted data points were 
available within the 𝑑𝑏 distance, an interpolation routine was employed 
to estimate the flows within a 3𝑑𝑏 window at both sides from the bound-

aries of the compartments:

𝜙𝑐 (𝑖,𝑗) =𝐴𝑐 (𝑖,𝑗)𝑢(𝑖,𝑗) where 𝑢(𝑖,𝑗) =
𝑁∑
𝑘=1

(𝑢𝑘𝑑𝑏,𝑘) (2)

In Equation (2), 𝐴𝑐 (𝑖,𝑗) denotes the area of the interface between the 
adjacent compartments, 𝑢𝑘 is the velocity at a particular sampling point 
at a 𝑑𝑏,𝑘 distance from the intercompartmental boundary.

The turbulent intercompartment flows were determined using Equa-

tion (3). Similarly, as for the velocity, the turbulence kinetic energy was 



Chemical Engineering Science 308 (2025) 121396

4

H. Maldonado de León, A. Straathof and C. Haringa 

Fig. 4. Sketch of the system’s simplification during a mixing experiment. The dotted line represents the streamline (𝐿𝑠), following Groen (1994), for 3D and 2D-

axisymmetrical representations to the farthest detection point. The light blue plane corresponds to the one used for extracting the data.

averaged using the relative distance to the boundary as a weighting fac-

tor. The overall exchange flows between compartments were calculated 
as introduced in Equation (1) and stored in a matrix F. Here the entries 
in each row describe the flows into compartment 𝑖 from neighboring 
ones (Delafosse, 2014).

𝜙𝑡(𝑖,𝑗) =𝐴𝑐 (𝑖,𝑗)
√

2𝑘𝑡(𝑖,𝑗)∕3 where 𝑘𝑡(𝑖,𝑗) =
𝑁∑
𝑝=1 

(𝑘𝑡𝑝𝑑𝑏,𝑘) (3)

It is important to note that some inaccuracies can be introduced dur-

ing the sampling routine that might affect the predicted values for the 
intercompartmental flows and lead to mass imbalances over compart-

ments. This is alleviated using a flow reconciliation routine that ensures 
mass conservation. This routine solves an optimization problem with 
equality constraints, which is defined as follows:

F̂ = argmin
EF=0 

(||F𝑚𝑒𝑎𝑠 − F||) (4)

In Equation (4), F̂ is the reconciled flow matrix, EF = 0 corresponds 
to the mass conservation constraint, where E is the coefficient matrix 
that contains entries of 1 for flows incoming and −1 for outgoing ones 
for each compartment, F𝑚𝑒𝑎𝑠 corresponds to the flow matrix as calcu-

lated from the data extracted from the CFD realizations. This problem is 
solved via a least-square routine embedded in the iterative lsqrmethod 
(The SciPy Community, 2024).

2.5. Dynamics through machine learning

To avoid having to run expensive CFD simulations for each new oper-

ating point, we use a machine learning module based on a feed-forward 
neural network developed in Tensorflow 2.16.2. This module infers the 
flow rates (𝜙𝑟𝑎𝑑 and 𝜙𝑎𝑥) upon changes in the filling level (𝐻𝐿) and 
stirring speed (𝑁𝑠) for fixed compartment layouts as outlined in the 
previous section. Hence, the smallest volume increments that can be re-

solved correspond to ≈2.95m3. This dynamic CM (dyn-CM) is based on 
Equation (5) such that a coarse representation of the system’s hydrody-

namics is obtained.

(𝜙𝑟𝑎𝑑 ,𝜙𝑎𝑥) = 𝑓 (𝑧𝑝𝑜𝑠, 𝑟𝑝𝑜𝑠,𝐻𝐿,𝑁𝑠) (5)

The neural network had 13 hidden layers, after hyperparameter 
optimization using KerasTuner 1.4.7 (Further details can be found in 
Appendix C), each one containing 100 neurons. A learning rate of 

2.290 × 10−3 was used during the training phase and 110 epochs. The 
Rectified Linear Unit (ReLU) function was used to drive neuron acti-

vation. The loss function of the neural network was based on the root 
mean square error (Equation (6)) between the observed (𝜙𝑖,𝑗 (x)𝑜𝑏𝑠) and 
predicted exchange flow rates (𝜙𝑖,𝑗 (x)𝑝𝑟𝑒𝑑 ).

𝑀𝑆𝐸(𝑤,𝑏) = 1 
2𝑛

∑
x

||𝜙𝑖,𝑗 (x)𝑜𝑏𝑠 − 𝜙𝑖,𝑗 (x)𝑝𝑟𝑒𝑑 ||2 (6)

In Equation (6), 𝑤 are the weights gathered in the network, 𝑏 is the 
biases, 𝑛 is the number of inputs for training and x corresponds to the 
input vector containing the set of variables outlined in Equation (5). A 
set of CFD-CM parameterizations for stirred vessels with liquid volumes 
ranging from 63.5 to 123m3 and stirring rates from 0.25 to 1.46 s−1 were 
employed for training the neural network.

2.6. Validation

2.6.1. Mixing time determination

To assess the accuracy of the CM in replicating large-scale mixing, 
a comparison of the dimensionless 95% mixing time (𝑁𝑡𝑚,95%) from 
both CFD and CM realizations was made. Hence, the mixing time was 
determined using up to 5 probes, depending on the filling level, and 
considering a 95% degree of homogeneity. The probes were placed at 
the radial position r = 2.25 m, axial positions h = 0.5, 1.0, 2.0, 4.0, and 
6.0 m, and on the XY-plane rotated 45◦ along the vertical axis, such that 
the plane is between two baffles. The tracer was injected 0.25m below 
the liquid surface, at a radial position r = 0.42m at the opposite side of 
the probes (see Fig. 4). The CM results were validated against full CFD 
mixing simulations with equal operational settings; more details about 
the settings for the simulations used for determining the mixing time 
can be found in Appendix A.3.2.

For all the CM-based simulations, the dispersion of the tracer in 
the compartments corresponding to the coordinates of the probes men-

tioned above is tracked. In a similar way as outlined before, the mixing 
time is determined once the homogeneity degree of 95% is achieved.

2.6.2. Incorporating microbial kinetics

As a second means of evaluation, we compare substrate gradients 
which require a kinetic model. Thus, we incorporated the hyperbolic 
black-box kinetic model. The biomass-specific substrate uptake rate (𝑞𝑠) 
is defined in Equation (7) as a function of the extracellular substrate con-
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Table 1
Kinetic parameters for black-box model.

Parameter Value Unit 
𝑞𝑠,𝑚𝑎𝑥 1.90 ×10−2 mols mol−1x h−1
𝛼 1.00 ×10−3 molp mol−1x
𝐾𝑠 18.0 ×10−6 mols kg

−1

𝐾𝑠,𝐼 2.50 ×10−6 mols kg
−1

𝑚𝑠 5.00 ×10−3 mols mol−1x h−1
𝑌𝑥∕𝑠 3.96 molx mol−1s
𝑌𝑥∕𝑠 0.174 molp mol−1s

Table 2
Initial conditions of the fermentation 
and molar mass of species involved.

Parameter Value Unit 
𝐶𝑠,0 150.0 ×10−6 mols kg

−1

𝐶𝑥,0 1.250 molx kg
−1

𝑉𝐿,0 67.74 m3

𝑀𝑊𝑠 180.2 gs mol−1s
𝑀𝑊𝑥 28.05 gx mol−1x

centration. Additionally, 𝑞𝑠 is linked to growth, production, and main-

tenance via the Herbert-Pirt relation Equation (8). In this hypothetical 
example, we work with a black box kinetic model that was deliberately 
designed to be responsive to the effect of substrate gradients; Equa-

tion (9) gives a growth-coupled production term, that is inhibited at 
high extracellular substrate concentration. We stress this model is not 
based on any particular organism or product, it was chosen solely to 
demonstrate the potential impact of spatial heterogeneity in a fed-batch 
process, and allow comparison with an ideally mixed fed-batch model. 
These relations allow us to derive an expression for growth dependent 
on the substrate concentration (𝐶𝑠).

𝑞𝑠 = 𝑞𝑠,𝑚𝑎𝑥

(
𝐶𝑠

𝐾𝑠 +𝐶𝑠

)
(7)

𝑞𝑠 =
𝜇

𝑌𝑥∕𝑠
+
𝑞𝑝

𝑌𝑝∕𝑠
+𝑚𝑠 (8)

𝑞𝑝 = 𝛼𝜇

(
𝐾𝑠,𝐼

𝐾𝑠,𝐼 +𝐶𝑠

)
(9)

In the previous equations, 𝜇 is the specific growth rate; 𝑚𝑠 is the 
maintenance coefficient; 𝐾𝑠 is the affinity constant to the substrate; 
𝑌𝑥∕𝑠 is the biomass to substrate yield; 𝑞𝑝 is the specific product forma-

tion rate; 𝑌𝑝∕𝑠 is the product to substrate yield; 𝛼 is the proportionality 
constant of product formed; 𝐾𝑠,𝐼 is the inhibition constant for prod-

uct formation. The constant feeding rate of the substrate was set to 
0.45mols s−1 at a 50%(w∕w) concentration. The density of the feed 
stream was assumed to be that of water at 25 ◦C. The values for the 
parameters of the metabolic model and initial conditions used in the 
present study can be found below in Tables 1 and 2, respectively.

3. Results and discussion

This section summarizes the results obtained from implementing 
the proposed workflow. First, a validation of the CFD-based compart-

ment model (CFD-CM) is introduced by comparing the mixing time 
obtained via conventional CFD and CFD-CM realizations. This is fol-

lowed by evaluating the accuracy of the inferring module to predict CM 
parameterizations upon changes in the working volume, referred to as 
the dynamic compartment model (dyn-CM). Later, the capabilities for 
predicting species transport and gradient evolution for a fed-batch op-

eration are showcased. Finally, remarks on the current limitations and 
future developments of the dynamic CM approach are presented.

Fig. 5. Comparison of dimensionless mixing times calculated by the CFD-CM 
approach to CFD. Markers are simulations, the red dashed line is the parity line, 
and the black dashed lines represent the ±30% error margin.

Fig. 6. Reduction in runtime corresponding only to a mixing experiment for 
realizations of a 98.2m3 stirred vessel using different methods. Note that time 
for resolving flow is not accounted for.

3.1. CFD-based compartment model (CFD-CM)

Fig. 5 compares the dimensionless mixing time (𝑁𝑡) from the com-

partment model with those from the CFD simulations. These results 
suggest that the predictions from the compartmental layout allow for 
calculating the mixing times within a ±30% error margin for CFD-based 
CM realizations. The extent of the error is attributed to the loss in res-

olution of the flow field and is similar to that reported in (Tajsoleiman 
et al., 2019). It was noted that the difference increases as the system 
deviates from the standard aspect ratio (𝐻∕𝑇 > 1) or has two stirrers.

Additionally, this comparison enabled the assessment of the capabil-

ities of the low-resolution model for capturing the physical phenomena 
and the identification of trade-offs between the approaches regard-

ing their predictive capabilities and the demand for computational re-

sources. Hence, Fig. 6 shows that the CFD-CM approach outperformed 
the typical CFD workflow in terms of computational time for estimat-

ing the mixing time of a 98.2m3 vessel, even when leveraging GPU 
acceleration. Here, a reduction by up to a factor of ≈720 in runtime 
was obtained for estimating the mixing time when using a CPU-driven 
approach, where steady-state-like hydrodynamics is solved first and is 
followed by species transport using a frozen flowfield. Employing GPU 
acceleration for solving the flowfield resulted in a four-fold reduction 
when compared to the CPU-driven workflow.

A closer inspection of the coarser model was made by comparing 
the mixing curves and concentration maps of the system filled at sev-

eral levels. The mixing curves were obtained from fully coupled CFD 
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Fig. 7. Comparison of different response curves for determining the mixing time via the fully-coupled CFD and the CFD-CM model for a 98.2m3 tank. 

Fig. 8. Snapshots at different 𝑁𝑡 values for a mixing experiment solved using a fully-coupled CFD simulation (top) and its CM counterpart (bottom) at an intermediate 
filling volume of 98.2m3. The plane shown corresponds to the one from Fig. 4.

and CFD-CM realizations. For example, Fig. 7 shows the curves for a 
filling volume of 98.2m3. Some deviations are observable between the 
response curves from the CFD and CFD-CM approaches that result in 
an 4.4% underestimation of the dimensionless mixing time. It is impor-

tant to note that the mixing time is determined by the response curve 
corresponding to the same probe location in both methods. In agree-

ment with the mixing curves, the normalized concentration maps for 
the CFD-CM simulation (Fig. 8) show that this coarse realization pre-

dicts a faster local mixing but captures the patterns and overall mixing 
time predicted by CFD. The effect of this phenomenon on the prediction 
of fermentation profiles and gradients is addressed later.

These findings indicate that some phenomena are being lost given 
the settings and assumptions of the model (i.e., the axisymmetry of the 
system, selection of the plane from which the data are extracted, ideal 
mixing in the compartments, and ignoring the presence of the baffles). 
This abstraction of the CFD-CM approach suggests a localized faster 
dispersion of the tracer within the system, even though it delivers mix-

ing times comparable with those obtained from CFD simulations. Such 
trends were also obtained for other realizations that can be consulted in 
Appendix B.3 and were previously reported and attributed to unresolved 
axial and radial flows (Delafosse, 2014; Haringa et al., 2022). Alleviat-

ing strategies might include incorporating a more rigorous evaluation 
based not only on the overall mixing phenomena (i.e., mixing time) but 
also on the lack of fit (i.e., RMSE) of the response curves as presented in 
(Cui et al., 1996), incorporating a constant for describing the intensity of 
mixing in the axial direction (Cui et al., 1996), using more recent com-

partmentalization approaches such as the ones outlined in (De Carfort 
et al., 2024; Haringa et al., 2022) or a combination thereof.

3.2. Dynamic compartment model (dyn-CM)

The previous section presented an analysis of the results obtained 
using exclusively a CFD-CM approach. However, these realizations are 
dependent on prior knowledge of the flow structure. Now we consider 
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Fig. 9. Comparison of dimensionless mixing times calculated by CFD-CM and 
inferring module (dyn-CM). Markers are simulations, the red dashed line is the 
parity line, and the black dashed lines represent the ±30% error margin.

cases where the CM parameterization was predicted from a neural net-

work. This was done to predict the exchange flow rates corresponding 
to intermediate filling volumes. Hence, this section focuses on assessing 
the inferring capabilities of the neural network-based parameterization, 
first, for conditions used during training and later, for unseen ones. This 
is followed by an inspection of the error in estimating the intercompart-

mental flow rates, presented as maps of local error.

3.2.1. Mixing inferred by the dyn-CM for training points

Fig. 9 shows the deviations for the dimensionless mixing times pre-

dicted by the CFD-CM and inferring module to the CFD and CFD-CM, 
respectively. Overall, the dyn-CM showed a good comparison with di-

rect compartmentalization of the same CFD simulation, and adhered to 
the 30% error compared with CFD which was observed for direct CM. 
Thus, highlighting the effect of the direct CFD-CM parameterization on 
the flow features and phenomena being captured (see Appendix B.1); 
hence, the results produced by the inference module. One exception was 
observed for a case where the system deviates from the standard aspect 
ratio (i.e., 𝐻∕𝑇 = 1.25), the ML-based module provided a CM real-

ization that estimated a mixing time out of the error margin deemed 
suitable for exploratory analysis. Similarly to the assessment of the 
CFD-CM approach, an analysis of the mixing curves revealed some dif-

ferences from the ones obtained from fully coupled CFD simulations 
(see Appendix B.3). This is mainly attributed to the inherent simplifica-

tions introduced by the coarse-grained realizations via the CM approach 
rather than the estimations from the ML-based dynamic CM.

3.2.2. Mixing inferred for unseen operational conditions

Having established capabilities to replicate mixing times for training 
points, we move to testing points. The results for the unseen operating 
conditions used as a test set are shown in Fig. 10. The extreme points 
correspond to conditions out of the training space, for which the infer-

ring module provided estimates with a relative error larger than ±30%. 
For a fast mixing case (i.e., 𝑉𝐿 = 67.74m3 and 𝑁𝑠 = 1.25 s−1) the mix-

ing time was overpredicted by the dyn-CM by 60% and for a slow mixing 
one (i.e., 𝑉𝐿 = 133m3 and 𝑁𝑠 = 1.25 s−1), it was underpredicted by 
56%. This highlights that accuracy is significantly compromised when 
assessing conditions outside the training space. The evaluation of the 
intermediate cases corresponding to three intermediate filling volumes 
67.74, 97.19, and 112.90m3 stirred at a rate of 1.25 s−1 revealed that the 
dyn-CM provides sufficiently accurate predictions for the mixing times 
of unseen working volumes. This comparison confirmed that the error 
of the mixing times reduces when using the dyn-CM as the working 
volume of the system increases. Analyzing the corresponding mixing 
curves revealed considerable limitations on the mixing behavior cap-

tured by the dyn-CM approach, especially for the 67.74m3 case. This is 

Fig. 10. Comparison of dimensionless mixing times calculated by the inferring 
module and CFD-CM for the testing points. Markers are simulations, the red 
dashed line is the parity line, and the black dashed lines represent the ±30%
error margin.

a consequence of the errors related to the estimations of the intercom-

partmental flow rates (𝜙(𝑖,𝑗)) at several locations of the corresponding 
compartment map, especially at the area where the axial flow from the 
impeller collides with the wall of the reactor. The assessment of such lo-

cal errors for these three operating stages is presented in Appendix B.2. 
These current shortcomings can be mitigated by using more advanced 
compartmentalization approaches; we will explore refinement of the 
model for improved quantitative performance in follow-up work. For 
the current purposes of assessing the general approach, we deem the 
overall agreement is acceptable in representing the flow patterns, hence 
the mixing phenomena in the system at different operating points.

3.3. Tracking process dynamics through the proposed framework

The established framework for predicting flow patterns and mixing 
sets the stage for a more comprehensive analysis. Here, we evaluate its 
capabilities when coupling the workflow to a black-box kinetic model 
to estimate concentration profiles and gradient evolution. By integrat-

ing these concentration dynamics into our workflow, we can predict 
how species are dispersed throughout the reactor, providing deeper in-

sights in the interplay between hydrodynamics, species transport, and 
microbial kinetics.

3.3.1. Fed-batch fermentation profiles

Fig. 11 shows the profiles of substrate and biomass during a 43-

h long fed-batch fermentation obtained from an ideally-mixed model 
(IDM) and a dynamic compartment-based realizations updated on dis-

crete volume increments (Δ𝑉 ≈ 2.95m3). This series of realizations 
required around 4.38min to determine the spatiotemporal distribution 
of species, thus representing 1/500th of the fermentation duration.

For the biomass and product, discrepancies between the models were 
noticeable after 5 h of running the fermentation. This is mainly due to 
the inhibition of product formation in regions of the reactor where the 
substrate concentration is larger than 𝐾𝑠,𝐼 , thus diverting the substrate 
consumption towards growth. This is also reflected in the differences in 
the substrate profile obtained from both models. In the dyn-CM, slightly 
more substrate is present in the system but agrees with the trends pre-

dicted by the IDM. The reason for such deviations lies in the effect of 
both kinetics and transport encompassed in the first Damköhler number 
(𝐷𝑎𝐼 = 𝜏𝑐𝑖𝑟𝑐∕𝜏𝑟𝑥𝑛) where we take 𝜏𝑐𝑖𝑟𝑐 ≈ 𝑡𝑚,95%∕4 and substrate con-

sumption 𝜏𝑟𝑥𝑛 =𝐾𝑠∕(𝑞𝑠,𝑚𝑎𝑥𝐶𝑥) (Haringa et al., 2018). Since 𝜏𝑟𝑥𝑛 ≲ 𝜏𝑐𝑖𝑟𝑐 , 
𝐷𝑎𝐼 ≳ 1 after 10.5 h of fermentation, the occurrence of gradients was 
expected. This validates that the dynamic CM can capture the mixing 
phenomena with the added value of providing temporal and spatial in-

formation on species distribution. The 95% confidence interval of the 
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Fig. 11. Fed-batch fermentation profile for substrate (S), biomass (X), and product (P) using an ideally-mixed model (IDM) and a dynamic CM approach. Results 
from the IDM are shown as dashed lines, continuous lines with markers represent the volume-averaged concentrations from all the compartments of the dynamic 
CM simulations. Squares represent substrate, circles indicate biomass, and triangles denote product. The shaded region corresponds to the 95% confidence interval 
of the substrate concentration in the CM.

Fig. 12. Comparison of substrate uptake gradients (𝑞𝑠∕𝑞𝑠,𝑚𝑎𝑥) predicted by CFD (left) and dynamic CM (right) at different time points of the fed-batch fermentation. 
a) 10.0 h, and b) 30.5 h.

substrate concentration of the compartments shows the extent of the 
heterogeneity within the vessel, which is discussed in the following sec-

tion.

3.3.2. Expected substrate consumption gradients

Estimation of the substrate consumption gradients was carried out 
assuming a homogeneous biomass concentration within the reactor. 
Hence, Fig. 12 shows the evolution of the substrate consumption gra-

dients as 𝑞𝑠∕𝑞𝑠,𝑚𝑎𝑥. The shape and extent of the major structures, such 
as the higher uptake rates closer to the feeding point and subsequent 
decrease in the bulk liquid, are captured by the dynamic CM approach 
and correspond to the ones predicted from CFD. Numerical differences 
occurred and were attributed to the reduction in overall spatial resolu-

tion and errors introduced by the parameterization of the CM as shown 
in Section 3.1, consequently being transferred to the dynamic CM ap-

proach. Such differences are evident for the regions below the impeller, 
where the dynamic CM predicts slower local mixing conditions than 
CFD; thus reducing the substrate availability.

In this particular case, the large value for the first Damköhler number 
(𝐷𝑎𝐼 > 1) led to considerable gradients. The occurrence of these gradi-

ents resulted in the CM predicting 71.5molp less than the IDM by the 
end of the fermentation (i.e., 30.3%(w∕w) decrease). This is because the 
ideal mixing model cannot locally capture the inhibition of the substrate 

in product formation, thus growth is under-predicted. This outcome con-

firms that the dynamic CM can capture the mixing phenomena while 
providing temporal and spatial information on species distribution. Fur-

thermore, it reproduced to some extent the gradients observed in CFD 
at different time points despite the underlying assumptions.

The dynamic compartment model approach allows the prediction 
of the mixing phenomena as the liquid level rises. Thus, it enables the 
study of the evolution of the gradients as media is added to the system 
with a minute-long time expense; something infeasible with current CFD 
methods. For instance, such reduction might result in up to two orders 
of magnitude of runtime while using 1 CPU, which makes it amenable 
for design space exploration running several simulations in parallel in a 
computing cluster, rather than having to work sequentially as for CFD 
simulations. Hence, it constitutes a stepping stone for rapidly evaluat-

ing different designs, feeding strategies, and operating conditions. While 
this work focuses only on the formulation of the method and its imple-

mentation for a case study as proof of concept, it could equally be used 
for other fermentation processes.

3.4. Limitations and future developments

Our proposed method creates a dynamic, spatially resolved, and 
computationally efficient model. In this specific implementation for a 
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stirred tank bioreactor, it effectively captures the impact of liquid level 
variations and stirring speeds on mixing and gradient evolution with rea-

sonable accuracy, while requiring minimal training data. This allows us 
to overcome one of the main limitations of compartment-based models 
for fed-batch processes by avoiding frequent recalibrations. However, 
some limitations remain and must be addressed. Three key areas to focus 
on in future developments include extending the capabilities to handle 
diverse geometrical and operational (e.g. airflow) features in the system, 
handling categorical variables for developing a more generic model with 
several reactor geometries, and improving the accuracy and easing the 
training of comparable ML-based methodologies.

Thus far, the introduced methodology does not account for differ-

ent geometrical features such as several impellers or types of them, the 
number of baffles, cooling coils, other internals, or even different reactor 
geometries. Including such features will naturally require generating a 
new set of training data. Managing complex reactor geometries, such 
as airlifts with external circulation loops, will necessitate the imple-

mentation of an appropriate compartmentalization strategy, potentially 
similar to the one outlined in (De Carfort et al., 2024).

In its current formulation, the methodology is suitable for operating 
dynamic processes in a certain reactor design; such capabilities are simi-

lar to the ones provided by existing and emerging commercial platforms. 
The particular implementation in this work considers a single-phase case 
study. For aerated bioprocesses, further dynamics such as aeration (e.g., 
regime, bubble size, bubble coalescence, etc.) and changes in the physi-

cal properties of the medium (e.g. density, viscosity, and surface tension) 
are desired. To tackle this limitation, a suitable new CFD database sim-

ulating such dynamics is required, then it must be compartmentalized, 
and the dynamic CM must be retrained.

If a large CFD database is available, a generic model could be trained 
to cope with different geometries. Such a generic model would enable 
a broader industrial use of the proposed workflow. Nonetheless, deal-

ing with categorical parameters would be required. Alternatives might 
include using transformers to update the existing model given new ge-

ometries without needing to retrain or using too much data. Moreover, 
increasing the number of operating conditions used as training data and 
refinement in the compartmentalization approach will lead to more ac-

curate models, which will be explored in future studies.

Given the rapid advancements in machine learning, we can ex-

pect more accurate or easier-to-train methods for modeling dynamics 
to become available soon. Future work could explore alternative ma-

chine learning approaches, such as transformers (Alkin et al., 2024), 
convolutional neural networks, and physics-informed neural networks 
(Trávníková et al., 2024). These approaches have the potential to asso-

ciate mechanical and operational features with engineering predictions 
based on CFD simulations. Thus, overcoming shortcomings of current 
approaches such as high data demand and physically inconsistent pre-

dictions/models. However, regardless of the specific architecture, the 
general approach remains the same: with enough CFD data, a learning 
model can effectively create dynamic reduced-order models for compre-

hensive process evaluation.

4. Conclusion

A software-agnostic method for creating a dynamic compartment 
model based on data extracted from CFD simulations for bioreactors 
was developed in this work. The model leverages the capabilities of 
compartment-based models and machine learning to infer model param-

eterizations for different filling volumes and stirring rates. This work-

flow proved useful for studying spatial and temporal heterogeneities in 
processes with varying working volumes like fed-batch fermentations.

The coarse compartmentalization layout estimated mixing times 
within a ±30% error margin compared to the ones predicted using 
high-resolution CFD, which agrees with previous studies. A similar error 
margin was observed in the dynamic compartment model, with greater 
deviations when inferring parameterizations out of the training space. 

However, the error was deemed reasonable for screening and prelimi-

nary analysis of fermentation operating conditions.

By coupling the workflow with a biokinetic model, the spatiotempo-

ral calculation of species distribution during a 43 h long fed batch fer-

mentation was resolved in 1/500th of the fermentation duration while 
accounting for varying working volumes. This provided insight not only 
into the fermentation profiles, which agree with the trends predicted 
by an ideal-mixed model but, also into the substrate stratification pre-

dicted by CFD at two time points. Thus, we demonstrate the ability of 
the model to provide insight into the so-called scale-up effects for fer-

mentations.

The workflow we implemented can be further expanded to extend 
its current capabilities while preserving its essence: having sufficient 
CFD data available, a learning model is a promising means of creat-

ing dynamic reduced-order models for full-process evaluation. While we 
constrained ourselves to stirred tanks equipped with a single Rushton 
impeller for single-phase systems, evaluating other reactor configura-

tions and designs must be plausible. Thus, this work aims to become 
a stepping stone for future works focused on implementing and refin-

ing the current workflow to enable the analysis of different and more 
complex geometries (e.g., impeller designs, combinations thereof, aspect 
ratios, etc.), multiphase systems (e.g., varying aeration rates), and cel-

lular history via population balances or stochastic particle models using 
an approach based on the basic principle outlined in this work.

Nomenclature

Abbreviations

Abbreviation Definition 
A Axial divisions 
AMD Advanced Micro Devices 
CFD Computational Fluid Dynamics 
CRD Computational Reaction Dynamics 
CM Compartment model 
CV Coefficient of variation 
CPU Central process unit 
GPU Graphics processing unit 
IC Intercompartmental 
ML Machine-learning 
MRF Multiple reference frame 
R Radial divisions 
RAM Random Access Memory 
RT Rushton Turbine 
RTX Ray Tracing Texel eXtreme 

Symbols

Symbol Definition Unit 
𝐴𝑐 Cross-sectional area between compartments m2

𝑏 Bias -

𝐶 Concentration molkg−1
𝐷𝑎𝐼 First Damköhler number -

𝑑𝑏 Distance to boundary m
𝑒 Error -

𝐹 External forces N
𝐾 Constant molkg−1
𝑘𝑡 Turbulence kinetic energy m2 s−2
𝑔 Gravity acceleration m s−2
𝐻 Height m
ℎ Axial position m
𝑀 Torque N m−1

𝑚𝑠 Maintenance coefficient mols mol−1x h−1
𝑁𝑎𝑥 Number of axial divisions -

𝑁𝑐 Number of compartments -

𝑁𝑟𝑎𝑑 Number of radial divisions -

𝑁𝑠 Stirring speed s−1
𝑁𝑡 Dimensionless time -

(continued on next page)
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(continued) 
Symbol Definition Unit 
𝑝 Pressure N m−2

𝑞 Biomass specific rate molmol−1x h−1
𝑟 Radial position m
𝑇 Diameter of vessel m
𝑡 Time s
𝑢 Velocity component m s−1
𝑉 Volume m3

𝑤 Weights -

𝑌 Molar yield molmol−1

Greek alphabet

𝛼 Product to biomass yield molp mol−1x
𝜖 Specific power input W kg−1
𝜀 Turbulent energy dissipation rate m2 s−3
𝜇 Dynamic viscosity kgm−1 s−1
𝜇 Specific growth rate h−1
𝜌 Density kgm−3

𝜏 Characteristic time s
𝜎 Surface tension m s−1
𝜙 Intercompartmental flow rate m3 s−1

Subscripts

0 Ungassed conditions

abs Absolute

ax Axial

C Compartment

c Convective term

circ Circulation

I Inhibition

i Number of destination compartment

j Number of origin compartment

k Time step or element number

L Liquid

m Mixing

meas Measured

p Product

pred Predicted

r Radial

rel Relative

rxn Reaction

s Substrate

t Turbulent term

x Biomass
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Appendix A. CFD modeling

A.1. Reactor geometry

Fig. A.13. Sketch of the reactor geometry of up to 133 m3. Details about the 
dimensions are presented in Table A.3.

Table A.3

Reactor dimensions for the different cases evaluated in this study.

Dimension Value Description 
m

T 5 Diameter of tank 
H 3.22 up to 6.77 Height of tank 
D 1.67 Diameter of impeller 
A 0.27 Shaft diameter 
B 0.50 Width of baffle 
C 1.67 Bottom clearance of impeller 
e 0.085 Clearance between baffles and walls 
b 0.417 Width of impeller blade 
w 0.334 Height of impeller blade 
c 0.533 Diameter of impeller coupling to shaft 
q 0.067 Thickness of impeller disk 
p 1.25 Diameter of impeller disk 

A.2. Meshing

After placing all the elements required for each reactor configuration 
in an assembly file in Autodesk® Inventor Professional™ 2021, the gen-

erated geometry was exported as .step file, that was imported in Ansys 
SpaceClaim 2023 R1™ for checking for any for defects, extra edges, and 
missing faces. Then, a .pmdb file containing the geometry and the defi-

nition of the boundary conditions was created. This file was imported in 
Ansys Fluent Meshing™ for creating the geometry mesh for each case of 
study. Since the aim of this work focuses on the fluid domain within the 
reactor, the impellers and baffles were extracted from the reactor geom-

etry. Details about the meshing workflow can be found in Tables A.4 and 
A.5, any parameter that is not described should be taken as the default 
one.

A.3. CFD setup

In this section, we describe the settings and models that were imple-

mented for the different simulations regarding this work. The following 
models are treated: turbulence and species transport along with their 
respective parameters.
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Table A.4

Typical parameters when meshing the different reactor ge-

ometries.

Meshing parameter Value/option 
Workflow Watertight meshing workflow 
Local sizing

Growth rate 1.2 
Size control type Body_Size 
Target mesh size [m] 0.025 
Surface mesh

Minimum size [m] 0.025 
Maximum size [m] 0.2 
Growth rate 1.2 
Describe geometry

Type Only fluid with no voids 
Change from wall to internal Yes 
Share Topology No 
Local Boundary Layers

Walls

Offset method type smooth-transition 
Number of layers 3 
Transition ratio 0.272 
Growth rate 1.2 
Add in fluid-regions 
Grow on Tank_walls 
Transition rotorbox

Offset method type smooth-transition 
Number of layers 3 
Transition ratio 0.25 
Growth rate 1.15 
Add in fluid-regions 
Grow on Rotorbox_walls 

Table A.5

Typical parameters when meshing the dif-

ferent reactor geometries - cont.

Meshing parameter Value/option 
Volume mesh

Fill with poly-hexcore 
Buffer layers 2 
Peel layers 2 
Min cell length [m] 0.025 
Max cell length [m] 0.2 
Improve volume mesh

Improve cell quality limit 0.3 

A.3.1. Turbulence model

Due to known experimental observations for the flow behavior in 
stirred tank reactors, along with proven comparisons of simulations, the 
Standard 𝑘− 𝜀 model was implemented in Ansys Fluent™ by setting the

viscous model with the parameters listed in Table A.6.

Table A.6

Parameters for the viscous model accounting for 
turbulence.

Viscous model 
Model k-epsilon 
k-epsilon model Standard 
Near-wall treatment Standard wall functions 
Model constants

Cmu 0.09 
C1-epsilon 1.44 
C2-epsilon 1.92 
TKE Parndtl Number 1.00 
TDR Prandtl Number 1.3 
Energy Prandtl Number 0.85 
Wall Prandtl Number 0.85 

Table A.7

Parameters for injection point of inert 
tracer in the STR models.

Parameter Value 
Name Tracer inlet 
Shape Sphere 
Coordinates [m] 
x-center -0.30 
y-center 0.25 offset from surface 
z-center 0.30 
Radius [m] 0.075 

Table A.8

Parameters for the species model when running the mixing time tests.

Species model 
Model Species transport -

Phase properties

Phase Liquid -

Phase material water-tracer -

Water-tracer mixture properties

Compounds in mixture
1. tracer -

2. water -

Density Volume weighted-mixing-law kgm−3

Viscosity 1.00 × 10−3 kgm−1 s−1
Mass diffusivity dilute-approx -

Diffusion coefficient for tracer 1.00 × 10−9 m2 s−1

A.3.2. Species transport

The mixing time determination was done by simulating the injection 
of an inert tracer within the liquid domain and assuming a batch vessel. 
In Ansys Fluent™ this transient simulation (Δ𝑡= 0.01 s) is performed 
by patching a zone that corresponds to the point of injection with the 
settings outlined in Table A.7. The molar concentration was set to 1.0 
kmolm−3. Additionally, a set of measuring points was defined to record 
the molar tracer’s concentration at different locations along a 45-degree-

rotated XY-plane (see Fig. 4). For all the tests where a tracer injection 
was needed, the properties and parameters shown in Table A.8 were 
defined for the species model.

As shown in Table A.8, a mixture called water-tracer was cre-

ated. This consists of the water and a copy of it. However, some prop-

erties had to be changed from the default mixture template as shown in 
the corresponding section of Table A.8.

A.3.3. Discretization schemes

Table A.9 shows the PV-coupling and spatial discretization schemes 
implemented in all the evaluated fully-coupled CFD models. Also, the 
specifications for the solution controls are shown. If not mentioned, the 
value for a specific option must be taken as the default one for Ansys 
FLUENT 2023R1.

A.3.4. Under-relaxation factors

In addition, a set of under-relaxation factors (URFs) were modified. 
This was done since a pressure-based coupled algorithm was se-

lected for solving the model with the non-linear nature of the equations 
being solved. The factors implemented can be consulted in Table A.9.

A.4. Operating conditions for simulations generated to train and validate 
the workflow

Table A.10 details the simulations used for training and testing the 
inferring module developed in this work. Also, the results for the di-

mensionless mixing times obtained from CFD, CFD-CM, and dyn-CM are 
provided.
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Table A.9

Discretization schemes used for the solution of transient simulations 
for the evaluated single-phase setups in this work.

Solution methods Solution controls 
Pressure-velocity coupling

Scheme SIMPLE 
Spatial discretization

Gradient Least squares Cell Based 
Pressure Second Order 0.3 
Density Second order upwind 0.5 
Momentum Second order upwind 0.45 
Turbulent kinetic energy Second order upwind 0.4 
Specific dissipation rate Second order upwind 0.4 
Tracera Second order upwind 0.99 
Transient formulationa Second order implicit -

a Used only when solving for the mixing-time analyses.

Table A.10

Operating parameters and dimensionless mixing times for simulations employed 
in this study.

Set Working volume Stirring speed CFD CFD-CM dyn-CM 
𝑉𝐿∕(m3) 𝑁𝑠 / (s−1) 𝑁𝑡 / (−) 𝑁𝑡 / (−) 𝑁𝑡 / (−)

Training 98.2 1.4 24 22.3 22.7 
Training 98.2 0.040 20 23.0 33.4 
Training 98.2 1.5 17 26.0 19.5 
Training 98.2 0.75 16 20.9 15.1 
Training 98.2 1.3 19 19.6 16.3 
Training 73.6 0.25 18 20.0 19.6 
Training 73.6 1.3 17 20.4 21.3 
Training 63.5 1.3 15 17.2 17.8 
Training 123 1.3 35 32.9 21.8 
Test 133 1.3 53 47.7 23.6 
Test 97.2 1.3 18 14.0 16.0 
Test 73.6 1.3 17 14.6 21.3 
Test 113 1.3 19 18.4 17.2 
Test 67.7 1.3 12 15.9 19.4 

Appendix B. Compartment modeling

B.1. Effect of compartmentalization layout on predicting capabilities

Different combinations of divisions on the three axes were used to 
establish the most suitable compartmentalization layout for this study. 
Fig. B.14 shows the effect of several layouts on the dimensionless mix-

ing times predicted by the compartment model. The shaded band in 
Fig. B.14 represents the error deemed suitable for design space explo-

ration when conducting scale-up studies. Prior studies have suggested 
that the layout should match naturally occurring boundaries in the flow-

field such that flow patterns are preserved (Cui et al., 1996; Haringa 
et al., 2022; Vrábel et al., 2000). Such boundaries are the midplane 
between impellers and the unidirectional discharge flow of radial im-

pellers. These boundaries result from colliding circulation loops estab-

lished in the axial direction (Groen, 1994). Hence, the most suitable 
layout to preserve the flow patterns, provide sound estimates of mixing 
times, and match many of the liquid heights in the training set was the 
one with 5 radial divisions, and as many axial ones with a separation 
of 15 cm that approximated the boundary of the circulation loops at the 
impeller discharge.

B.2. Local error maps

Any inaccuracy in estimating the exchange flow rates between com-

partments drives the deviations from the ground truth (i.e., CFD sim-

ulations). Here we focus on three intermediate filling volumes: 67.74, 
97.19, and 112.90m3. Fig. B.15 shows a comparison of the mixing time 
predicted by the different methods employed in this work.

To assess the accuracy of the intercompartmental flow rate estima-

tions from the dyn-CM approach, the absolute and relative error in 

Fig. B.14. Comparison of different compartment heights (𝑑ℎ) for creating the 2D 
compartmentalization layout of several realizations of the stirred tank system 
(i.e., varying 𝐻𝐿).

Fig. B.15. Comparison of mixing times calculated via the Dyn-CM, CFD-CM, 
and fully-coupled CFD simulations for the intermediate filling volume of 67.74, 
97.19, and 112.9m3, respectively.

each compartment were calculated Equations (B.1) and (B.2). Hence, 
Figs. B.16 and B.17 show the relative and absolute error maps of the 
velocity magnitude, respectively, for the realizations using the dyn-CM 
approach for the operating states of 67.74, 97.19, and 112.90m3 at a 
stirring rate of 1.25 s−1.

𝑒𝜙,𝑎𝑏𝑠 = |𝜙(𝑖𝑗),𝑑𝑦𝑛−𝐶𝑀 |− |𝜙(𝑖𝑗),𝐶𝑀 | (B.1)

𝑒𝜙,𝑟𝑒𝑙 =
|𝜙(𝑖𝑗),𝑑𝑦𝑛−𝐶𝑀 |− |𝜙(𝑖𝑗),𝐶𝑀 ||𝜙(𝑖𝑗),𝐶𝑀 | ∗ 100% (B.2)

The local error maps suggest that the predictive module (i.e., dyn-

CM-based model) fails to accurately estimate the velocity components 
for some compartments where high velocities (e.g., closer to the im-

peller zone, sudden changes in the direction of the flows) or stagnant 
zones are expected (e.g., the bottom wall of the reactor, free surface, 
and center of axial circulation loops). These regions are characterized 
by the dominance of flows in a particular direction, thus a zero flow rate 
in another. For example, the flow rates for the compartments close to 
the wall of the reactor are predominantly axial, thus any radial compo-

nent lacks physical relevance. This results in a compartment for which 
the relative error is larger than 100% (see Fig. B.16c) but the abso-
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Fig. B.16. Relative error maps for realizations obtained from the dyn-CM approach for different working volumes. Magenta regions correspond to out-of-range error 
values; the bright yellow ones result in a numerical overflow.

Fig. B.17. Absolute error maps for realizations obtained from the dyn-CM approach for different working volumes. To ease the visualization, the data is presented 
in logarithmic values; where the purple regions correspond to below-range values.

lute error does not exceed 10m s−1 (see Fig. B.17c). For the case of the 
top surface and bottom wall, the error results in a numerical overflow 
since the axial component should not be present. Yet, this component 
is assigned a value different from zero (see Figs. B.16a to B.16c). These 
spurious predictions are mostly remediated during the flow reconcilia-

tion step. A closer inspection revealed that initial estimates might result 
in a six-fold deviation and, later, be reduced to 0.25 times the actual 
value. Nevertheless, further mitigation strategies are deemed necessary 
to avoid complete reliance on the reconciliation flow that solely closes 
the mass balance without any extra source of information about the 
direction of the flows other than the estimate provided by the model 
based on the neural network. In this regard, implementing a hybrid loss 
function that combines a data-driven term and a physics-based one that 
ensures mass conservation might be a sensible alternative.

Despite large local errors, we conclude the overall agreement is ac-

ceptable to represent the flow patterns, hence the mixing phenomena in 
the system at different operating points. We showcase its capabilities to 
provide means for the spatiotemporal analysis of the species distribution 
in a fed-batch fermentation process.

B.3. Comparison of preserved mixing phenomena using the CFD-CM, and 
dyn-CM approaches to CFD

Several realizations for different reactor filling volume conditions 
were generated using the CFD-CM approach presented in this work. 
These simulations allow an understanding of the effects of simplify-

ing the system on the response curves of the mixing phenomena (see 
Figs. B.18 to B.22). Simplifications correspond to assuming axisymme-

try, thus considering the mixing as occurring only in the axial direction 
and discretizing the system using ideally mixed volumes. These simplifi-

cations resulted in an abrupt increase in the normalized concentration of 
the tracer compared to the one predicted by CFD simulations, even when 
the peak-detection and plateau-reaching times are comparable to each 
other. Thus, it confirms that the CFD-CM approach, while achieving the 
system’s homogeneity at similar times to CFD and from the same limit-

ing probe, reduces the resolution of the phenomena within the system. 
This could be alleviated by introducing the third dimension in cartesian 
or polar coordinates (i.e., tangential direction) as previously introduced 
in (De Carfort et al., 2024) and (Haringa et al., 2022), respectively.
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Fig. B.18. Comparison of mixing curves from CFD-CM or dyn-CM (dotted) to CFD (solid) realizations at 67.74m3. 

Fig. B.19. Comparison of mixing curves from CFD-CM or dyn-CM (dotted) to CFD (solid) realizations at 97.20m3. 

Fig. B.20. Comparison of mixing curves from CFD-CM or dyn-CM (dotted) to CFD (solid) realizations at 98.20m3. 

Fig. B.21. Comparison of mixing curves from CFD-CM or dyn-CM (dotted) to CFD (solid) realizations at 112.9m3. 
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Fig. B.22. Comparison of mixing curves from CFD-CM or dyn-CM (dotted) to CFD (solid) at 122.7m3. 

Table C.11

Configuration of the best three models after hyper-

parameter optimization.

Trial Layers Learning rate Validation loss 
690 13 1.814 ×10−3 2.28971 ×10−3
249 16 0.687 ×10−3 2.41021 ×10−3
332 18 0.705 ×10−3 2.55433 ×10−3

Some greater deviations from CFD for predicting the mixing times 
when using the dyn-CM approach were observed. Similarly as for the 
CFD-CM approach, mixing curves were generated for seen and unseen 
operating stages, which revealed some spurious predictions for the ex-

change flow rates resulting in a loss of accuracy in predicting the mixing 
times. However, that loss of accuracy did not result in a loss of the over-

all phenomena being predicted by the dyn-CM approach.

Appendix C. Hyperparameter optimization

A hyperparameter optimization was performed using the keras 
tuner package over 1000 trials to find a more efficient inference model. 
The RandomSearch method was used for the tuner, and during the 
training, an EarlyStopping callback was used with a patience param-

eter of 20. After these, it was found that the topology with 13 hidden lay-

ers comprised of 100 neurons each and using a learning rate of around 
1.814×10−3 provided the best validation loss of around 2.290×10−3 af-

ter 110 to 160 iterations. The optimization routine provided three other 
candidates with different topologies and hyperparameters that are sum-

marized in Table C.11. The corresponding plots for the training and 
validation losses are shown in Fig. C.23, and the corresponding models 
are provided in the repository along with the data used for training.

Data availability

All relevant data generated or analyzed during this study is available 
at the 4TU.Data Repository (DOI: https://doi.org/10.4121/0a08d2ec-

8959-403f-afea-2b085dc9f3a6).
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