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Abstract The aim of this paper is to improve semiseasonal forecast of groundwater availability in
response to climate variables, surface water availability, groundwater level variations, and human
water management using a two-step data-driven modeling approach. First, we implement an ensemble of
artificial neural networks (ANNs) for the 300 wells across the High Plains aquifer (USA). The modeling
framework includes a method to choose the most relevant input variables and time lags; an assessment of
the effect of exogenous variables on the predictive capabilities of models; and the estimation of the
forecast skill based on the Nash-Sutcliffe efficiency (NSE) index, the normalized root mean square error,
and the coefficient of determination (R2). Then, for the ANNs with low- accuracy, a MultiModel
Combination (MuMoC) based on a hybrid of ANN and an instance-based learning method is applied.
MuMoC uses forecasts from neighboring wells to improve the accuracy of ANNs. An exhaustive-search
optimization algorithm is employed to select the best neighboring wells based on the cross correlation
and predictive accuracy criteria. The results show high average ANN forecasting skills across the aquifer
(average NSE > 0.9). Spatially distributed metrics of performance showed also higher error in areas of
strong interaction between hydrometeorological forcings, irrigation intensity, and the aquifer. In those
areas, the integration of the spatial information into MuMoC leads to an improvement of the model
accuracy (NSE increased by 0.12), with peaks higher than 0.3 when the optimization objectives for
selecting the neighbors were maximized.tT

1. Introduction

Growing demands for agricultural water increase the stress on supplies as the population grows and the
climate becomes more volatile (Iglesias & Garrote, 2015; Portmann et al, 2010). In this variable
supply-and-demand trade-off, groundwater (GW) helps sustain a consistent intensification of agricultural
productivity around the world. However, GW withdrawals have also led to a GW depletion of 283 km>/year
worldwide (Wada et al., 2010). Consequences of aquifer overexploitation span from drying up of wells,
reduction of water in streams and lakes, and water quality degradation to increased pumping costs, land
subsidence, decreased well yields, and water rationing (Bartolino & Cunningham, 2003; Nayak et al.,
2006). Dalin et al. (2018) and Butler et al. (2018) evidence irrigation as one of the main drivers of agriculture's
sustainability and GW depletion. The effective management of water resources is an imperative task (Galelli
et al., 2010) to be approached with various time scales in mind. In particular, water resources reallocations
are planned semiseasonally to seasonally to optimize water use efficiency and maintain soil field capacity in
the agricultural working lands and sustain water systems.

Water management encompasses social (di Baldassarre et al., 2013), economical (Giuliani et al., 2014), and
operational (Giuliani et al., 2015) aspects. From an operational perspective, water table forecasts are
fundamental to implementing optimal GW management policies and to conserving water resources
(Coppola et al., 2005) across geopolitical and geophysical limits. With the aim of providing accurate
forecasts, in the past two decades the use of data-driven models (DDMs) in the hydrological field has
expanded (for a review, see Abrahart et al., 2012), with studies on rainfall-runoff modeling (Solomatine &
Dulal, 2003), flood (Solomatine & Xue, 2004), and drought forecasting (Le et al., 2016). There are also
DDM applications in GW, for example, by Coppola et al. (2003), who studied the ability of artificial neural
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networks (ANNs) to predict water table levels with a lead time (LT) of 30 days near a public supply wellfield.
Sun (2013) applied ANNS to predict GW level changes using GRACE and PRISM data as inputs across the US.
The use of spatially distributed inputs also evidenced the potential of coupling data driven models with spatial
interpolation techniques. Tapoglou et al. (2014) implemented a hybrid ANN-Kriging model to simulate daily
GW level variations across the Isar River in Bavaria, Germany (7,100 kmz). They concluded that the
ANN-Kriging approach could be successfully used in aquifers where the hydrogeological information is con-
strained. Sun et al. (2016) analyzed the ability of ANNs to predict water table depth in a swamp forest in
Singapore, establishing that accurate estimates could be obtained with a daily LT, whereas the performance
decreased for the LT of a week. Yadav et al. (2017) compared the performance of extreme learning machines
and support vector machines in forecasting monthly GW levels in two different wells in Canada, discovering
that extreme learning machines outperformed support vector machines in both analyzed case studies. We
carried out a study to compare the predicting capabilities of five different DDMs to forecast seasonal (1- to
4-month) GW levels in different hydrological regimes (Amaranto et al., 2018). It was found that all the
DDMs outperformed baseline models (autoregressive and naive) and that the error increased in water deficit
conditions. Sahoo et al. (2017) used different machine learning (ML) algorithms to predict water level changes
in the High Plains (HP) aquifer and the Missouri River Basin (USA), establishing that the best results are
obtained when decomposing the input using spectrum analysis before forcing the ANN. The authors also con-
cluded that ANNs outperformed hybrid linear and nonlinear regression models. Guzman et al. (2017) imple-
mented nonlinear autoregressive neural networks (NARX) to forecast the daily GW level in a well in the
Mississippi River Valley aquifer. Wunsch et al. (2018) used NARX for monthly (1 to 6 months) GW level fore-
casts in several wells in southwest Germany. Both obtained encouraging results, indicating the suitability of
NARX for predicting GW levels. Rakhshandehroo et al. (2018) used wavelet ANNs to predict the GW levelin a
shallow well in Florida and a deep well in Arkansas, concluding that noisy GW fluctuations in the shallow
well caused higher error, which led to their obtaining the highest accuracy for the deep well.

Despite encouraging results obtained at the basin and hydrogeological unit scales, few applications in scien-
tific literature address implementing GW forecasting systems at the (large) aquifer scale (see, e.g., Sahoo
et al., 2017). At the large scale, different land use and hydrometeorological conditions might occur; and their
relationship with the modeling forecasting skills (i.e., how the predicting accuracy changes at the occurrence
of such different conditions) at different LTs is yet to be understood and quantified.

Furthermore, to the best of the authors' knowledge, little has been done in designing and testing alternative
data-driven modeling strategies aimed at improving the traditionally used models, which would aggregate,
for example, regional geospatial GW information into a model. Our experience and results of other studies
show that in many cases there might be a poor (temporal) autocorrelation in the GW-related time series,
which leads to inaccuracies in ANN models built for a single location. In this situation, the inclusion into
the model of spatially distributed information (including information from other models) might improve
its forecasting skills, especially in case of high spatial correlation between GW signals at various locations.

The objectives of this research are as follows:

1. to analyse the accuracy of existing models (ANN) at different locations and LTs, taking into account het-
erogeneity in land use weather and hydrogeological conditions occurring through the aquifer;

2. to explore a hybrid multimodeling approach, combining ANN models and instance-based learning (IBL)
techniques, combining forecasts from several (optimally) selected neighboring wells, and thus overcom-
ing the limitations of single models (this multimodel will be referred to as a MultiModel Combination, or
MuMoC); and

3. to develop a GW forecasting framework to predict semi-seasonal (1- to 4-month) water level changes, at
the large aquifer scale.

The hypotheses associated with this study can be formulated as follows: (1) cross-space estimations of effi-
ciency indices (Nash-Sutcliffe efficiency [NSE] index, root mean square error [RMSE], and R calculated
by comparing observed versus predicted data) will allow for determining the spatial distribution of semisea-
sonal forecasting skills of GW well-level changes in the HP aquifer; and (2) an increase in the forecast skill of
a single model, represented by an improved efficiency index, will be achieved through the aggregation of the
spatial and temporal inputs in MuMoC, by combining local ANN models with outputs from models for other
locations, and will be proportional to the quality of these latter models.
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Figure 1. (a) High Plains aquifer monitoring network; (b) groundwater (GW) level changes in the 1950-2013 period (McGuire, 2017); (c) average monthly preci-
pitation (mm) in the 1980-2016 period; and (d) percentage of irrigated area (Ozdogan & Gutman, 2008).

2. Material
2.1. Study Area and Available Data

The HP aquifer (Figure 1a) extends for 450,000 km? in the central part of the United States. It underlies parts
of eight states: Colorado, Kansas, Nebraska, Oklahoma, South Dakota, Texas, Wyoming, and New Mexico.
As can be seen from Table 1, Nebraska occupies the largest portion of the aquifer (37% of the total area), fol-
lowed by Texas (20%) and Kansas (18%). The aquifer consists of hydraulically connected geologic units of
later Tertiary or Quaternary age (Gutentag et al., 1984). Quaternary deposits are mainly alluvial, dune-sand,

:::zljnlEach of the Eight States That Belong to the HP Aquifer and Percentage of the Total HP Aquifer Area
State
SD NE CcO KS WY OK NM TX
Area (kmz) 12,779 167,302 34,462 79,921 20,950 19,341 24,670 93,170
% total 2.8 36.9 7.6 17.6 5 4.2 5.4 20

Note. HHigh Plains; SD = South Dakota; NE = Nebraska; CO = Colorado; KS = Kansas; WY = Wyoming; OK =
Oklahoma; NM = New Mexico; TX = Texas.
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and valley-fill deposits. Tertiary rocks include the Brule Formation, the Arikaree group, and the Ogallala
Formation. The Ogallala Formation covers about 342,000 km? (75% of the total aquifer area). The aquifer
presents itself mainly in unconfined conditions, and its saturated thickness ranges from less than 20 m to
more than 400 m in central Nebraska (McGuire, 2017).

Starting in the 1950s (a period also referred to as predevelopment), agriculture experienced a major growth,
and now the area overlying the HP aquifer is one of the most developed agricultural landscapes in the United
States. The National Agricultural Statistics Service (2011) estimated that the market value of the agricultural
products in the HP aquifer is about $35 billion per year. According to Maupin and Barber (2005), the HP
aquifer ranks first in the United States for total GW withdrawals. This caused a GW depletion in the HP aqui-
fer of about 330 km® in the past 70 years, corresponding to about 8% of the total GW storage before predeve-
lopment (McGuire, 2011). As can be seen from Figure 1b, GW depletion is not uniform through the HP
aquifer; it is negligible in the north portion (Nebraska averages ~0.3 m) and much greater in the central
and south portions (Kansas averages ~7 m, and Texas averages ~11 m). Scanlon et al. (2012) studied the spa-
tial distribution of the depletion rates from 1997 to 2007 and, by extrapolating the depletion trend, they esti-
mated that the saturated thickness of the HP aquifer could drop to less than 6 m in 35% of the southern HP
aquifer within the following 30 years, rendering those areas incapable of supporting irrigation. Spatial var-
iation in GW depletion may reflect spatiotemporal differences in water demands (WDs) by irrigation and
supplies through recharge (Scanlon et al., 2012). Recharge in the HP aquifer is mainly driven by precipita-
tion, and the surface water-GW drainage is limited to a few rivers (e.g., the Platte in Nebraska and the
Arkansas in Kansas). Precipitation (Figure 1c) follows a west-to-east gradient; it is at maximum in eastern
Nebraska and eastern Kansas (60-75 mm/month) and at minimum in Wyoming, Texas, and New Mexico
(less than 30 mm/month). Houston et al. (2013) computed the net aquifer recharge in the years 2000-
2009, estimating a maximum recharge rate of about 22 mm/year occurring in the eastern part of Nebraska
and alongside the Arkansas River. A minimum recharge rate of less than 4 mm/year occurs in South
Dakota, western Kansas (except the area alongside the Arkansas River), New Mexico, and Texas. Scanlon
et al. (2012) report estimates of recharge rates in the HP aquifer of about 92 mm/year in the Sand Hills area
(Nebraska) and a recharge rate smaller than the withdrawal rate by almost a factor of 10 in some areas of
Texas and Kansas. Irrigation intensity (Figure 1d; Ozdogan & Gutman, 2008) is highest in eastern
Nebraska (almost 100% of irrigated area) but is also high in Kansas and Texas, while agriculture in South
Dakota is mainly rain fed.

The Global Land Data Assimilation System developed by Rodell et al. (2004) provided a monthly estimation
of precipitation (P, mm/month) and evapotranspiration (ET, mm/month), with a spatial resolution of 1/8°
latitude x longitude (about 15 X 15 km). Pumping data were unavailable for the HP aquifer. However, a
study by Amaranto et al. (2018) found that including the crop WD as an input variable, improves ANN skills
in GW level forecasting by about 20%. So the current study also uses the crop WD (mm/month) as a proxy to
represent GW withdrawals. To estimate the WD for the six major crops in the HP aquifer (corn, soybeans,
wheat, cotton, alfalfa, and sorghum), we applied the Food and Agriculture Organization of the United
Nations (FAO) 56 methodology (Allen et al., 1998). Hence, the demand is computed as a product of reference
ET and crop coefficients (which depend on crop type, sowing date, and harvesting date). Reference ET is
computed with the Blaney-Criddle method (Blaney & Criddle, 1962), which takes latitude and temperature
as inputs. Crop parameters were obtained from the FAO 56 database.

The U.S. Geological Survey (2015) has monitored GW (in meters below land surface) and discharge (Q, m>/
day) in the HP aquifer. In this study, we filtered the complete U.S. Geological Survey GW database in order to
include stations with a minimum observation requirement of 10 years of data (120 observations) and missing
data no higher than 25%. After we implemented the filter, 300 wells remained available for analysis
(Figure 1a). Discharge data were extracted for the stream gauges closest to the selected monitoring wells.
Summary of all variables used in the study, along with the temporal resolution, timeline, and source is pre-
sented in Table 2.

3. Methodology

To achieve the objectives described above, we designed and implemented a data-driven forecast framework
(Figure 2) on 300 wells across the HP aquifer. First, we divided the collected P, ET, Q, WD, and GW level data
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Table 2
Summary of Input and Output Variables: Units, Temporal Resolution, Time Span, and Data Sources
Variable Units Resolution Time span Source
GW m Monthly Jan 1980/Nov 2017 https://waterdata.usgs.gov/nwis/gw
P mm/month monthly Jan 1980/Nov 2017 https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing_download.php
ET mm/month monthly Jan 1980/Nov 2017 https://ldas.gsfc.nasa.gov/nldas/NLDAS2model_download.php
Q m’/ day daily Jan 1980/Nov 2017 https://waterdata.usgs.gov/nwis/gw
WD mm/month monthly Jan 1980/Nov 2017 http://www.fao.org/docrep/X0490E/x0490e07.htm

Note. GW = groundwater depth; precipitation; ET = evapotranspiration; Q = streamflow; WD = water demand.

into training and test sets. We normalized the training and test sets between 0 and 1 with the minimum and
maximum values of the former (see section 3.1). To select the most relevant input variables and lags, we
applied the model-based input variable selection (IVS) procedure developed by Amaranto et al. (2018;
using ANN as the model) to the training set (see section 3.2). The resulting variables from the IVS were

then used to force the models.

Inputs: Precipitation,
evapotranspiration, water demand,
groundwater level.
Output: Future groundwater level

Yy

Data Division and Transformation

h 4

IVS: Select relevant variables and lags

v
Training, 10-fold cross-validation
Optimize architecture ” Train ANN
v
ANN
v

Test Set: Evaluate the models
accuracy across the High Plains at
different lead times (OBJ1)

Bad Model (b)

OBJECTIVE 1; ANN

e o e e e e e e e e e e e e e

OBJECTIVE 2; MuMoC

v

Neighboring wells (ne)

|
X

Combine ANN forecast from ne; using
IBL

v

Optimize selection of ne;

T
h 4

OBJ2: Overcome single-model
limitations by creating MuMoC

(™

Figure 2. Methodological framework. (top) ANN, applied to all 300 wells in the area. (bottom) Applied for all the b wells.

Sections 3.1 to 3.4 provide a detailed explanation of each of the blocks in the flowchart. ANN = artificial neural
network; IBL = instance-based learning; IVS = input variable selection; MuMoC = MultiModel Combination;

NSE = Nash-Sutcliffe efficiency.
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To optimize the architecture (number of neurons) of the ANN (se section 3.3), we further divided the train-
ing set into training proper and cross-validation sets. The RMSE on the cross-validation set was used to
define the number of nodes in the hidden layer. This procedure is called 10-fold cross-validation because
the training is repeated 10 times for various splits (in the proportion 9:1) of the training data set, every time
the ANN architecture is optimized and an ensemble of 10 predictors is generated (one for each fold). Finally,
we use the test set to evaluate the performance of the forecasts (NSE) of the ensemble average.

If the performance on the test set is unsatisfactory (NSE < 0.6), the model is classified as “bad” (b), and
MuMoC, a hybrid ANN-IBL model (see section 3.4), is implemented. Even though there are no standard cri-
teria for assessing a model's performance, for typical hydrological modeling, Moriasi et al. (2007),
Christiansen (2012), and Me et al. (2015) proposed values of the NSE index above 0.5. To be conservative,
this study raised the proposed threshold up to 0.6. The main purpose of MuMoC is to combine the GW fore-
cast from “neighboring” wells (from hereon referred to as ne) to produce a more accurate forecast in b. To do
so, we developed an exhaustive-search optimization algorithm to select the best wells (ne) geolocalized near
b (see section 3.4.1). The criteria used for the selection of a certain well are the forecast skill of the model in
ne wells and the cross correlation between the GW level trajectories in ne and b. Then, ANN forecasts from
ne; are combined by using IBL to produce GW forecasts in b (see section 3.4.2). The effectiveness of the
MuMoC method is assessed by comparing the extent of the improvement in the resultant NSE values with
those obtained with the single ANN.

3.1. Data Division and Normalization

The implementation of a DDM requires the output in the training and the test sets to have similar statistical
distributions (Bhattacharya & Solomatine, 2006). This usually entails performing several random splits of
data and then comparing the statistical properties (e.g., mean and standard deviation) of the training and
testing sets in each split. In this study, each data set (one per well) was randomly sampled 100 times, thus
creating 100 data set realizations of the output value. At each split, the mean and standard deviation of
the resulting splits were computed, as well as the ratios up and oi between the normalized means and stan-
dard deviations of the training set testing set correspondingly. Ideally, the training and test sets would have
the similar mean and standard deviation, so uz and oz would be close to 1. Therefore, the split that mini-

mizes the Euclidean distance (defined as dis = \Z/ (ug—1)*> + (og—1)*) was used to divide the data.

The iterative random split described above minimizes the Euclidean distance between training and testing
average and standard deviation. Therefore, it increases the likelihood of the models to be trained on hydro-
logical conditions that are similar to those occurring in validation. However, in the hydrological field, it is
often required to test the predictor on the most recent data. Consequently, we added a second experiment
where the initial 70% of the data were used for training the model, and the remaining 30% were used to
test them.

3.2. Input Variable Selection

A key step in building DDMs is selecting relevant input variables and time lags, a procedure commonly
known as IVS. To do this, one could perform an exhaustive search on the input space. However, when the
number of candidate input variables (and time lags) is high, an exhaustive search can be computationally
expensive: If n is the number of candidate inputs, there are 2" — 1 possible combinations. When considering
also the appropriate lags to be chosen, the complexity of the problem increases further to (2" — 138 and this
makes pure exhaustive search an option only for problems with a small number of inputs. Use of (nonex-
haustive) optimization approaches allows for a much more efficient search. For example, Bowden et al.
(2005) proposed to use genetic algorithm for this purpose (they termed it GAGRNN, since it was applied
to a general regression neural network). Elshorbagy et al. (2010a) suggested using partial mutual informa-
tion and cross correlation as criteria for selection, and Galelli and Castelletti (2013) applied a tree-based
iterative search method. Interested readers can find an evaluation framework of IVS algorithms in Galelli
et al. (2014).

For this study, we use an adaptation of the constrained input variable selection (CIVS), a methodology devel-
oped and implemented by Amaranto et al. (2018). CIVS is an exhaustive search that is however constrained
by rules based on knowledge of GW physics. Consequently, instead of testing every possible input
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combination, models' performance is evaluated only for those combinations that respects a set of predefined
rules. The original CIVS rules were developed for a single-well case study in the HP aquifer, in a corn-
irrigated area where the aquifer was unconfined and particularly shallow. Here CIVS is expanded to 300
wells across the HP aquifer characterized by strong spatial heterogeneity in weather, land use, and hydro-
geological properties. The rules below (more general with respect to the original CIVS rules) were imple-
mented on P, ET, WD, Q, and GW in each of the 300 wells for the analyzed 1-, 2-, 3- and 4-month LTs.

1. The number of time lags for the autoregressive GW term is equal to the order of the autoregressive model,
after which, with an increase in its order, there is no improvement in the RMSE on the cross-validation
set.

Deciding the number of autoregressive terms for a DDM is a complex procedure for which no clear rules
have been defined. For example, Solomatine et al. (2008) used cross correlation as a criterion for streamflow
forecast applications in two different rivers, selecting only the autoregressive terms having input-output cor-
relations above 0.9 and 0.8 (the last two lags), respectively. Shiri and KigI (2011) run a genetic programming
model testing up to four autoregressive terms. In this present study, we set the number of autoregressive
terms based on modeling results.

2. The maximum number of time lags for WD and ET is equal to 3, and the only lagged variables included
are x, (Where x is either WD or ET), x; _ 1, and x; _ , (as described in Amaranto et al., 2018).

WD and ET are variables that represent the evapotranspirative requirements, which in irrigated landscapes
are proxies of unavailable GW pumping data. GW well level changes in response to GW withdrawals for irri-
gation in unconfined aquifers can be noted within a few days to 1 month. McMahon et al. (2011) support
such assumptions in their analyses on GW recharge. Since some of the wells in the current analysis were
located in areas with high water table depth, the time in this study was extended up to 3 months.

3. The maximum number of lags for P is equal to 12. However, only three of the 12 lags are tested in the
exhaustive search. The three tested lags are those corresponding to the 3-month P with higher cross cor-
relation with the outputs.

Given the high spatial heterogeneity in soil properties and water table depths, we can assume that
precipitation-induced recharge occurs at different rates in different locations. Therefore, information on P
from the previous year was included as an input candidate. However, to limit the search, only the 3-month
P carrying the maximum amount of information (i.e., maximum cross correlation with the output) was
tested. In other words, for each well, the cross correlation between each rainfall and GW level was computed.
The rainfall trimester having the maximum cross correlation with the output was selected and tested in the
constrained exhaustive search.

4. At least two exogenous variables among P, ET, and WD must be considered in the input set at the same
time.

The reasons behind the implementation of this rule are twofold: (a) The rule excludes from all the combina-
tions to test all the input candidates of size 2 (i.e., being x; _ , any of the aforementioned variables at any con-
sidered lag 7, all the combinations including only [GW and x; _ .] are not considered). Therefore, it reduces
computational time. (b) The HP is an aquifer heavily used for irrigation, whose dynamics are governed by
the interaction of natural (P and ET) and human intervention-related (WD, and also ET if we consider that
the ET demands depend on agriculture) variables. Consequently, this rule excludes all the candidates not
including both natural and anthropogenic factors.

5. Lag “jumps” (or gaps) are not allowed. This means that if x, is considered as an input, then x; _ , cannot
be an input candidate in the considered subset.

This choice was based on the reasonable assumption that if x; is considered a driver for changes in y, the only
other reasonable driver would be x; _ ;, rather than x; _ ».

6. Assuming a relatively fast water exchange between rivers' streambeds and the water table (according to
Hatch et al., 2006, river seepage is estimated from daily to monthly), only the last average monthly value
of Q is included as an input candidate.

Thus, each well was coupled with the closest discharge station.
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7. However, when a streamflow station (or the closest streambed) is located far from the well (or when the
exchange of water is too fast to be identified on a monthly scale), Q and GW might be completely uncor-
related. As a consequence, there are two options: whether to include or disregard discharge as an input
variable. The latter occurs when the interaction between Q and GW is too fast or when the distance is too
long. The former applies when GW and Q are well correlated. Based on the above, if m is the number of
candidate subsets resulting from implementing rules 1 to 5, the overall number of candidates to test will
be 2m. Half of them will be the original candidates (i.e., GW and Q are not correlated), and the other half
will be the same candidates with the addition of Q, (i.e. GW and Q are correlated).

After applying the rules above, the total number of input subsets was reduced from 29,791 (if we consider
five variables and three lags) to 312. For each combination, the data were divided into training and testing
sets; a 10-fold cross-validation was performed on the training set to train an ensemble of 10 multilayer per-
ceptrons (MLPs); and the average RMSE on the cross-validation set was computed, and the result was stored.
The best input subset was the one that minimized the average RMSE on the cross-validation set.

Also, in order to show the contribution of the exogenous variables on the ANN predicting performances in
the different areas of the aquifer, the NSE of the best input combination on the cross-validation set is com-
pared with the NSE obtained by an autoregressive ANN (a neural network forced using only the autoregres-
sive term current-past GW level).

3.3. Modeling Techniques

3.3.1. Artificial Neural Networks

MLP neural networks are a widely used and very well developed technique (Haykin, 2004) in water-related
studies (e.g., Elshorbagy et al., 2010b; Abrahart et al., 2012). An MLP is composed of an input layer, a hidden
layer, and an output layer. The input layer has as many nodes as the number of inputs, and its nodes just
distribute inputs further. The number of nodes in the hidden layer is directly related with the complexity
of the problem analyzed and to the number of input neurons. The number of nodes in the output layer is
equal to the number of outputs; often, there is only one. The connection between layers occurs through a
matrix of weights (w, which have as many rows as the inputs and as many columns as the nodes in the layer),
which also expresses the strength of the connection. Nonlinearity is ensured by a sigmoidal transfer function
in the nodes of the hidden (and often of the output) layer(s).

When training an MLP, it is important to optimize the number of nodes in the hidden layer. In this study, the
number of nodes was selected from a set of values ranging from 5 to 17. The resilient backpropagation algo-
rithm was used to train all neural networks using the R package RSNNS (Bergmeir & Benitez, 2012).

3.4. MultiModel Combination

The ANN models were built for all 300 wells in the aquifer. Predicting performances were evaluated for LTs
ranging from 1 to 4 months. For all the prediction horizons, in the case of poorly performing models (NSE <
0.6), the ANN was classified as b. Then, a MuMoC approach using GW predictions from selected neighbor-
ing wells was built, with the aim of providing a more accurate forecast. For simplicity and to reduce compu-
tational time, we focused on the b wells, and “good” well performances are not further improved.

3.4.1. Selection of Neighboring Wells

Figure 3a illustrates a b well (a black point) characterized as a poorly performing ANN forecast GW 1(;[ 4o T he

ne
(t+7)

and ultimately produce an improved forecast. The new forecasted GW level in b will be therefore

purpose is to develop a model that combines the accurate forecasts GW from the neighboring ne-wells

/\bnew p— W S
Gw([+r) - ne;fe‘ne (Gw?tir)) (1)

where nes is the subset of ne, which is used to build the improved model. In fact, among all the possible ne,
the selection of neighbors is limited only to those that

1. have accurate forecasts and
2. are well correlated with the observed data in the b-well.

Once the b well is identified, all the ne wells falling within a radius r (optimized by trial and error) are
selected (Figure 3b). For each of them, the NSE in the test set NSE(ne) and the cross correlation c(ne,
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Figure 3. Schematic representation of the process for selecting neighboring wells in MuMoC. (a) Example map representing a b well and the ne wells in the neigh-
borhood and (b) sketch of a Pareto front in the two-dimensional objective space. MuMoC = MultiModel Combination.

b) with the GW measurements in b are computed. Ideally, we would like to select wells having c(ne, b) and
NSE(ne) — 1. Unfortunately, the two objectives could be conflicting: If c(ne, b) — 1, then the neighboring
model would be similar to b, which by definition has low NSE. The best situation one can expect is to
have enough neighboring wells that are sufficiently correlated with b and that have accurate forecasts at
the same time.

Being the two objectives conflicting, nes can be found by solving the following optimization problem:

nes = argmax|J; J,| (2a)
ne
where

J1 = NSE(ne) (2b)
J» = c(ne, b) (20)

subject to
NSE(ne)>NSErr (2d)
c(ne, b)>crr (2e)

where J; and J; are the objective functions to be maximized, NSErg and cry represent the forecasting accu-
racy threshold of ne and the minimum cross correlation between the b and ne, for ne to be considered a can-
didate, respectively.

By representing the values assumed by the objectives NSE(ne) and c(ne, b) in two-dimensional objective
function space, like in Figure 3b, it is possible to notice that some of the alternatives might not respect the
constraints and are therefore not considered as candidates (orange points in the red rectangles). Among
the set of all the ne that satisfy the constraints (orange and blue points outside the red rectangles), only those
that are not Pareto dominated are selected as input nes for MuMoC (blue points). The Pareto front is deter-
mined by solving exhaustively the problem defined in equations (2a)-(2e) (the exhaustive
search optimization).

3.4.2. Combination of Forecasts at Neighboring Wells

Once the input set for each of the b is selected, the ANN forecasts of the ne; are combined with a k-nearest
neighbor (k-nn) algorithm.

The k-nn algorithm belongs to the family of IBL methods. Often, they are also referred to as the “lazy” learn-
ing algorithm because, while many machine learning algorithms (such ANN) produce a generalization from
the training data as soon as the data have been seen, IBL methods postpone the modeling efforts until a new
instance (NI) in the test set becomes available (Witten & Frank, 2005). Once that happens, the NI is com-
pared with existing data using a distance metric (usually the Euclidean distance), and the closest k existing
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Figure 4. Schematic representation of forecast combination component in MuMoC: (a) Training matrix and (b) combina-
tion algorithm. MuMoC = MultiModel Combination; TR = training matrix; ne; = ith neighbor; (GW:’;‘)> = forecasted
groundwater level in neighbor i at time j; NI = new instance.

instances are used to estimate the output for the new one usually as an average, or the distance-weighted
average of the outputs of these closest k instances. This method is also often referred as the k-nn method
(Witten & Frank, 2005).

Here the MuMoC method is applied as described in Figure 4 in all the four LTs analyzed in this study: The
neighboring wells selection produces an input matrix TR (Figure 4a) with ns columns (as the number of

selected neighbors) and N rows (as the number of time steps in the training set). Each instance (é\\V’( N ))
J

in TR represents the ANN GW forecast in the ith neighbor at time step j. When a NI in the test set is available
(at time t = N + j), the GW level is forecasted with an ANN in each of the neighbor ns (Figure 4B). To esti-

mate 6\\7&71(’]\, H) the Euclidean distance d between NI and each row of TR is computed. Therefore, d is a row

vector with N elements. The k-nn algorithm extracts only the k output instances in TR having the smallest

distances and uses them to compute G\\N?N +j) as the average of their corresponding outputs.

To implement the model combination, we chose four parameters: NSEtg (NSE threshold), ¢ (cross-corre-
lation threshold), r (radius of influence), and k (number of neighbors). The value of NSEtg and cry are set to
0.6 and 0.5, respectively; r was selected in each well by trial and error: The radius formed between a b well
and a neighboring was progressively increased by 10 km until no improvements in the Pareto set were found
for three consecutive progressions. The number of neighbors k was selected from a set of values ranging from
2 to 11 by minimizing the error on the cross-validation set. The k-nn algorithm was implemented using the R
package lazy (Birattari & Bontempi, 2003).

3.5. Metrics of Performance

Metrics of performance are used to express the skill of the forecast by aggregating model residual in time
(Fenicia et al., 2007). Since different metrics may enhance different aspects of the error while neglecting
others, the use of multiple error statistics is recommended (Gupta et al., 1998). To this aim, we use three
metrics of performance: the NSE, the coefficient of determination (R2), and the normalized RMSE
(RMSE,). All estimated for the 300 observation wells. The main reason behind the choice of the three
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error statistics is to identify: (1) the value of the error with respect to the variance (NSE), (2) the correlation
between the observed and predicted value (R%); and (3) the value of the squared residuals with respect to the
average (RMSE,). The NSE (equation (3a)) provides a score in the interval ( — co ; 1] for the error variance.
An NSE value equal to 1 represents a perfect predictor, while an NSE value equal to 0 represents the predict-
ing capability of the average of the population. R* (equation (3b)) indicates the strength of the correlation
between observed and predicted values. It can vary between 0 and 1, with values close to the unity, indicat-
ing strong correlation. The RMSE provides insights into the square difference between the observed obser-
vations and simulation. Here, to facilitate the comparison between different scales, the RMSE is normalized
by the average (equation (3c)).

NSE = 1—72%(01'_13 ) (3a)
Zl:l (a_oi)z
2
RZ — ZN ( )(P P) (3b)
VI (0-0)" /3 (P-Py)?
Y, (0P
RMSE, = TN (3c)

where N is the number of instances in the test set, and P;, O;, P, and O are correspondingly the predicted vari-
able, the observed one, and their respective mean values.

To assess the predictive capability of the ANN at different locations and at different LTs, we study the varia-
tion of the three indexes both spatially (different wells) and temporally (for an increase in LTs).

To quantify the improvement in predicting capabilities brought by implementing MuMoC in b, we compare
(in all the b) the NSE obtained by MuMoC in the test set with the one obtained by the single ANN.
Mathematically, this can be expressed as

ANSE = NSEmumoc —NSEany (3d)

4. Results and Discussion
4.1. Evaluation of ANN Forecasting Capability Across the HP Aquifer

The modeling experiments produced the results presented in Figure 5, which represents the NSE in the test-
ing set for the four LTs analyzed in this study. Looking at this figure and Table 3, one can observe overall
good modeling performances across the aquifer. This is particularly true for an LT of 1 month, in which
situation only Kansas has an NSE lower than 0.9.

In Figure 5, one can notice an increase in the error (decrease in NSE) when the LT increases. However, this
did not happen uniformly throughout the aquifer: The decrease in NSE between 1 and 4-month LTs was
marginal in the southern states of Texas (0.03), New Mexico (0.002), and Oklahoma (0.05) and in the north-
ern state of South Dakota (0.07); on the other hand, in Nebraska (the eastern part in particular) and Kansas,
the decrease in model performance was more evident as the LT increased. By looking at Table 3, one can see
that the NSE value decreased from 0.85 (LT = 1 month) to 0.72 (LT = 4 months) in Kansas and from 0.93 (LT
= 1 month) to 0.81 (LT = 4 months) in Nebraska.

The explanation for this might lie in the different hydrogeological and land use conditions that occur
through the aquifer. In the southern area (from Texas up to the Kansas-Oklahoma border), the aquifer is
usually much deeper (with depth peaks of more than 100 m below land surface) than in the north. Since
the hydraulic conductivity through the aquifer is approximately in the same order of magnitude (1073~
10~* m/s in more than 95% of the HP; Gutentag et al., 1984), high depth causes here a delay in the contribu-
tion of meteorological variables, precipitation in particular (which is already less than half that in eastern
Nebraska and eastern Kansas). In addition, due to the high difference in elevation between the riverbed
and the water table level (and the absence of major streams in the area), the interaction between surface
water and GW in this area can also be considered null.
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Table 3

Average Nash-Sutcliffe Efficiency (NSE) Values in the Testing Set

LT =1 Month

LT =2 Months

Legend:

* 0.0 <NSE<04

* 0.4<NSE<0.6
0.6 < NSE<0.8

* 0.8 <NSE<0.9

® 0.9<NSE<0.95

* 0.95<NSE<I1.0

Figure 5. Nash-Sutcliffe efficiency (NSE) in the testing set in the four lead times (LTs) analyzed.

Figure 6 shows the R* and the RMSE,, values (at 4 months' LT) with respect to the average GW table
depth. Here a high Pearson correlation coefficient (0.96) and low error values (RMSE,, in the order of
1073, corresponding to a RMSE of about 10 cm) in areas with high GW depth seem to indicate that
the southern portion of the aquifer is nonsensitive to hydroclimatic forcings. The main drivers of water

N
State wells 1 month 2months 3 months 4 months
South Dakota 70 0.97 0.95 0.93 0.90
Nebraska 68 0.93 0.88 0.84 0.81
Colorado 1 0.99 0.99 0.99 0.99
Kansas 110 0.85 0.79 0.75 0.72
‘Wyoming 32 0.97 0.94 0.93 0.91
New Mexico 1 0.99 0.99 0.99 0.99
Oklahoma 2 0.98 0.95 0.95 0.93
Texas 15 0.98 0.98 0.97 0.95

table changes are GW withdrawals for irrigation. Consequently, GW
levels in this area experienced a slow depletion trend in the past 60
years (as confirmed by McGuire, 2017), and its dynamics are dominated
by the autoregressive component. This is also supported by the high
autocorrelation of the GW level time series (usually higher than 0.85
after 4 months) and by the CIVS results. In this regard, Figure 7 shows
the improvement in performances (in terms of NSE) when exogenous
variables are included in the input set. As can be seen in Figure 7, in
the southern part of the aquifer the improvement is marginal (often
below 0.05 in NSE). The presence of the dominant autoregressive com-
ponent creates the perfect condition for obtaining a very high forecast
performance even with high LTs. A good modeling performance in deep
and relatively isolated aquifers (with respect to shallow ones) was also
found by Rakhshandehroo et al. (2018).
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Figure 6. Graphical representation of (left) R? and (right) RMSE,, values versus average groundwater (GW) level in the
testing set for 4 months' LT.

In the northern part of the aquifer (South Dakota), the water level is shallow (usually between 5 and 20 m
below the land surface, as can be seen from Figure 6). However, the recharge is small (from less than half
to less than one tenth of Nebraska's, for example), the hydraulic conductivity is the lowest in the aquifer
(10™* according to Gutentag et al., 1984; 10~ according to Luo & Pederson, 2012), and the irrigation inten-
sity in that area is also low (less than 20%; Figure 1d) because most of the cropping lands are rain fed. This
may lead to a delay in the aquifer's recharge from precipitation, since a good fraction of precipitation might
be lost to leaf interception and another fraction to fulfilling the crop WD. This is also observed in negligible
interseasonal variability in GW table changes.

In contrast, a significant decrease in model performances is observed in eastern Nebraska and Kansas, espe-
cially along the Platte and Arkansas Rivers, where the NSE and R? values are sometimes lower than 0.6 and
the RMSE,, reaches its peak (0.36).

Eastern Nebraska is the most intensively cultivated area in the aquifer (as indicated by the predominant red
color in this particular area of Figure 1d), with GW-based irrigation intensity often higher than 90%. In addi-
tion, here the estimated net recharge to the aquifer is around 150 mm/year (Scanlon et al., 2012), about 100
times the estimated recharge value for Texas. A shallow water table (most of the time lower than 10 m below
surface) enables a strong and fast interaction between surface water and GW. Thus, high water consumption
from irrigation and high ET rates cause major and fast water depletions during the growing season.
However, high rainfall (as can be seen from Figure 1c, eastern Nebraska has, together with eastern
Kansas, the highest rainfall in the aquifer) and a strong interaction with streamflow bring the water table
levels back to long-term stationary conditions as soon as the growing season ends. Analysis of the CIVS
results in this area revealed, as shown in Figure 7, an improvement in the model performance based on
increases in NSE of about 0.23 when exogenous variables were included in the input set with respect to
an autoregressive neural network. Therefore, the combination of those land use, climatic, and hydrogeolo-
gical conditions contribute to the nonlinearity of the system and, consequently, affect the performance of the
model. Similar results were also found by Amaranto et al. (2018), who illustrate how the fast late-spring-to-
summer withdrawal and autumn-to-early-spring recharge cause fast and difficult-to-predict water level
changes. The same occurs in eastern Kansas (along the Arkansas River). Here despite the influence of irriga-
tion intensity and precipitation-driven recharge being lower than those in western Nebraska, they are much
higher than those wells in Texas and South Dakota (as can be seen in Figures 1lc and 1d). The
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LT =1 Month LT = 2 Months

Legend:

® (0.0 <ANSE<0.02
° (.02 <ANSE <0.05
> 0.05 <ANSE<0.1
e (.l <ANSE<0.2

° (.2 <ANSE<04
e (0.4 <ANSE<0.6

Figure 7. ANSE values obtained in the four lead times (LTs) under investigation. ANSE is defined as the difference in
Nash-Sutcliffe Efficiency (NSE) obtained in the cross-validation set between the artificial neural network generated by
the CIVS and an autoregressive artificial neural network with no exogenous input.

interdependence between precipitation and irrigation with the GW level changes is also evident in the
Arkansas River basin, where the GW-Arkansas River interactions confirmed what Scanlon et al.
(2012) reported.

In summary, areas of Nebraska and eastern Kansas are influenced by climate and management and regu-
lated by surface water-GW interactions. Those interdependencies bring high nonlinearities into the system,
decreasing the GW autocorrelation (very often below 0.4 after 2 months) and, combined with the unavail-
ability of observed pumping data, causing a loss in forecasting accuracy.

4.2. Evaluation of MuMoC Performances

Figure 8 shows the locations of the wells for which predicting performances did not satisfy the minimum
NSE requirement (NSE > 0.6). Figure 8 also evidences that all the wells are located either in Kansas or in
Nebraska. For this reason, further analysis will be devoted to those two states.

As can be seen from Table 4, most of the b wells are in Kansas. Furthermore, more sparsely distributed obser-
vations in Nebraska led to an average lower number of neighboring wells selected (ney). In two locations at
LTs 3 and 4 months it was practically impossible to find any neighboring wells that addressed all the con-
straints presented in equations (2b) and (2c) (and they were therefore excluded from further analysis).
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Figure 8. Locations of b wells.

Table 4

Number of b Wells (Nb) and Average Number of Selected Neighbors Nne
per b in Kansas and Nebraska From 1 to 4 Months' Lead Time (LT)

The improvement of the model's performance is evident by comparing Figure 9a with 9b. Implementing the
MuMoC brought the average NSE in Kansas very close to the 0.6 threshold for the four LTs analyzed and
brought an overall average improvement in the performance of about 25%. As a result, about 50% of the
wells in Kansas shifted from b to the good status. Results for Nebraska's b wells were less encouraging, since
the values of the NSE for MuMoC were lower and the improvement was negligible (ANSE = 0.02). One
explanation for this might be the lower number of neighboring wells available. Also, the variation of the
GW level may change dramatically even in a small region due to the heterogeneity of soil and rock med-
ium. It is therefore noteworthy to mention that the dense monitoring well network in Kansas allowed
for the identification of neighbors within 3 km from b. The cross-correlation values (often higher than
0.75 in this particular area) led the authors to believe that the conditions inherent to the aquifer system
for b and neg might be similar. This is also supported by the fact that the area in Kansas under investigation
(unlike the remaining 75% of the aquifer) belongs to the Quaternary undivided formation (Gutentag et al.,
1984). It is therefore possible to observe here high intraneighbor similarity. In addition, the values shown in
Figure 9 are an aggregated statistic that summarizes results by state. It is noteworthy that improvement in
model performances can vary from well to well and from region to region. Such variation on a smaller scale
(evident in the differences across states) might be explained by the quality of the selected neighbors in
Nebraska, where ne; wells were almost always less correlated with b and had lower predicting accuracy
when compared with Kansas.

Based on the above, Figure 10 shows the improvement in forecasting accuracy derived from the implemen-
tation of MuMoC with respect to ANN (ANSE, color of the circles) and the forecasting accuracy of MuMoC
(NSEnmumocs size of the circles). The x-axis represents the forecasting accuracy in the optimal neighbor ne,
while the y-axis represents the cross correlation between the optimal neighbor and the b well. The optimal
nes is the neighbor that minimizes the Euclidean distance from the ideal point (max[NSE(ney), c(nes, b)]).
Strong improvement combined with the good modeling performance is indicated by a big red circle in the
two-dimensional objective space.

Figure 10 illustrates how the MuMoC performance and performance improvement are strongly related
with the overall neighbors' data quality. In fact, when NSE(nes) and c(nes, b) are lower than 0.75 and
0.7, respectively, MuMoC performances are always lower than those based just on ANNs (with a mini-
mum ANSE of —0.2 and average NSE of 0.4). This case is relevant to Nebraska's b wells (nine out of
68 cases). On the other hand, when NSE(ne;) and c(neg, b) are higher than 0.9 and 0.75, respectively, there
is an average ANSE of about 0.18, with improvements of maximum per-
formance (ANSE) of about 0.30. In addition, all the wells that belong to
this category shifted from the b condition to the good condition, with an
average NSE value of 0.67 and maximum of 0.77. The main reason for

such a strong improvement might be that the spatial correlation of the

LT GW variations in the neighborhood of b dominated the temporal auto-

1 month 2 months 3 months 4 months correlation component, which in the case of the b wells was particularly

State Nb  Nne, Nb Nne, Nb Nne, Nb Nue %ow (often lower than 0.4 after 3 months). Therefore, when the forecasts

in nes are also accurate enough, MuMoC represents a more robust

Nebraska 2 2 v 2 o e N Z approach leading to an increase in the semiseasonal forecast skill with
Kansas 8 5 17 5.8 19 5.3 29 5

respect to ANNS.
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Table 5

MuMoC Results When Tested on the Most Recent Data
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Figure 11. Statewise comparison of ANN performances when iterative random sampling or most recent data are used as
test set: (a) 1-month lead time; (b) 2-month lead time; (c) 3-month lead time; and (d) 4-month lead time. ANN = artificial
neural network; NSE = Nash-Sutcliffe efficiency.

4.3. Performances Evaluation on the Most Recent Data

Figure 11 represents the results obtained by testing the ANN on the most recent data (final 30% of the time
series), in comparison with those achieved by iteratively splitting the training and test set (to maximize the
statistical similarity between them). Also, Figure 11 evidences that changing the splitting procedure leads to
imperceptible variations in forecasting performance in all the eight states and all the four LTs under analysis.
The error is marginally lower when the statistical similarity between the training and the test set is maxi-
mized. This result was expected, since the criteria for the training set selection ensured that the models were
calibrated on a range of values very similar to those used in testing. However, the maximum difference in
terms of forecasting accuracy (occurred in Nebraska for a LT of 4 months) does not go beyond —0.06 in
NSE, with an average decrease in NSE of about 4% when the model is tested on the most recent data.

A similar pattern can be observed when analyzing MuMoC performances (see Table 5).

As occurred in the previous analysis, all the wells that did not satisfy the constraints were located in either
Kansas or Nebraska, but the marginal decrease in ANN performance increased the overall number of b wells
(from 10 to 12 when LT = 1 month; from 38 to 43 when LT = 4 months).

When tested on the most recent data, MuMoC again outperformed
ANN in all the LTs under investigation, with an average performance
improvement of about 0.12 in NSE (23% improvement), a maximum

Lead time Nb uNSEpumoc MANSE max(ANSE) % class shift improvement of 0.41 in NSE, and an average of 38% of the wells shift-
lmonth 12 0.48 011 0.35 0.36 ing from the bad to good class.

2months 24 0.45 0.14 0.41 0.35 Furthermore, by comparing the numerical values in Table 5 with those
ST e 0.44 0.13 0.33 0.40 in Table 4 and Figures 9 and 10, an overall similitude is noticed
4 months 43 0.48 0.12 0.38 0.40

Note. Nb = number of b wells; uNSEnumoc = average NSE obtained with
MuMoC; uANSE = average performance improvement with respect to

between modeling performances with those obtained with the iterative
random sampling for the test set selection. The explanation for such a

ANN; max(ANSE) = maximum improvement; ANN = artificial neural small variation when changing the test set (for both ANN and

network; NSE
Combination.

Nash-Sutcliffe efficiency; MuMoC = MultiModel =~ MuMoC) probably lies in the fact that the statistical properties (average

and standard deviation) of the GW time series does not change
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dramatically through time. This allows the training and the test set to fit approximately the same statis-
tical distribution (even if not to the similarity extent obtained with the iterative random sampling), and
the ANN to be able to extrapolate the NIs with only a marginal loss of accuracy with respect to those
when the split is optimized.

5. Conclusions

The goal of this paper was to develop a GW forecasting framework to improve the semiseasonal (1- to 4-
month) predictability of water level changes, at the aquifer scale in the HP (USA). A data-driven modeling
approach based on ANNs was used to forecast semiseasonal GW changes in 300 wells across the HP aquifer.
ANN forecasting abilities were evaluated using NSE, R?, and RMSE,. Furthermore, the values of the error
statistics are contextualized with different hydrogeological, land use, and meteorological conditions across
the aquifer (objective 1). Then, when ANN performance did not satisfy the minimum NSE requirement
(0.6) for a certain well, we proposed an alternative modeling framework named MuMoC. MuMoC includes
an optimization algorithm to select wells in the geographical neighborhood of a bad (b) performing model
(using cross correlation and NSE in the neighbors as optimization criteria to maximize). Then, by combining
the ANN-forecasted GW level in the neighborhood, MuMoC provided an updated (and an expected
improved forecast) value in b (objective 2). The implementation of the proposed framework evidenced the
following:

1. Overall, the single-model (ANN) approach exhibited high forecasting accuracy through all the aquifer.
The average NSE was higher than 0.8 even when the LT was increased to 4 months in all the states.

2. The expected decrease in predictability of GW well levels using ANN with respect to LT was more con-
spicuous in eastern Nebraska (—0.12 in NSE from LT = 1 to LT = 4) and Kansas (—0.13 in NSE from
LT =1 to LT = 4), probably due to the strong effect that the integrated hydrometeorological and manage-
ment components have on the GW systems in those areas. Here precipitation had a strong influence,
combined with high surface-GW interaction and high irrigation intensity. This finding was also sup-
ported by the IVS results, which showed an average 0.2 decrease in NSE when exogenous variables were
excluded from the input set.

3. Decreases in performance with increasing LT were negligible in the southern part of the aquifer (~0.02)
where the GW system was strongly autocorrelated and the influence of exogenous variables was negligi-
ble. The constrained contribution of irrigation, recharge rates, deep aquifer water tables, and negligible
surface water-GW interaction requires further investigation to determine the causality of such good fore-
casting predictability.

4. Overall, MuMoC improved semiseasonal forecasts of changes in GW well levels by about 25%, based on
the NSE values of bad wells mainly in Kansas. However, the lack of good wells geolocated near the bad
wells in Nebraska led to poor improvements on the 1- to 4-month LTs. Conclusion number 2 may help
illustrate the complexity and causality of changes in GW well levels and also points up the need for addi-
tional data (a higher sampling frequency) of wells with shallow water tables and strong surface-GW
interactions.

5. The improvement in performance brought by implementing MuMoC proved particularly sensitive to the
quality of neighboring wells. When neighboring wells showed a high correlation (>0.75) with b and good
forecasting capability (>0.9), all the wells shifted to the good class (NSE from <0.6 to >0.6), with an aver-
age improvement (ANSE) of 0.18 (with peaks of ANSE = 0.3) and an average NSE of 0.67 (with peaks of
NSE = 0.77).

This study had three limitations. First, the feasibility of implementing MuMoC depends on the presence of
neighboring wells and, therefore, on data availability. Consequently, as is true with many models that
include a geospatial component, the method cannot be applied in very sparsely gauged aquifers where only
two or three stations are available. In addition, it is noteworthy to mention that the performances of MuMoC
were strongly dependent not just on the neighbor's availability but also on their qualities: forecasting accu-
racy and spatial correlation. This implies that an application of MuMoC is recommended in densely gauged
areas, in such a way that neighbors having similar physical trajectories (i.e., high correlations with the b
wells) of GW level are more likely to be found. We also encourage as a future research direction the testing
of MuMoC on different aquifers with different observation density across the globe, in order to further
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understand its range of applicability. Second, the absence of observed pumping data limits this study. Even
though crop WD and ET are used as proxies, the ANN accuracy is lower when irrigation is higher. We
recommend directing future research toward identifying better proxies to represent unknown pumping pat-
terns, perhaps by using remote sensing estimated ET trends and studying the trade-off between less data
availability (Moderate Resolution Imaging Spectroradiometer is available only for the past 18 years) and
improved pumping proxy. Third, the influence of the exogenous variables on the forecasting skills of
ANN is assessed here without distinguishing the specific contribution of each input. Consequently, we sug-
gest for a future research direction to implement a global sensitivity analysis of ANN models to observational
endogenous and exogenous inputs uncertainties. Sensitivity analysis would contribute toward understand-
ing the spatial distribution of the dominant principles of the hydrogeological processes across the aquifer
and guide the modelers toward a more robust decision of the variables to be selected. This could be done
by employing state-of-the-art techniques of sensitivity analysis (see, e.g., Pianosi et al., 2016).

In general, the results of this study were encouraging, indicating a forecasting framework that, when imple-
mented in operational practice, practitioners may use to improve GW management in the HP.
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