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Abstract. Additive Manufacturing allows for considerably more form
freedom compared to existing manufacturing technologies but still faces
the limitation of building overhanging parts. The overhang limitation in
additive manufacturing prevents the direct production of topology opti-
mized parts. We present an overhang constraint that incorporates this
manufacturing limitation into topology optimization. The overhanging
regions in a design iteration are detected using front propagation and
a global constraint is formulated by aggregating the local constraints
within the design domain. Since the constraint is formulated in a con-
tinuous manner, it can be discretized for any type of mesh, and with
an arbitrary minimum allowable overhang angle. Furthermore, it is eas-
ily extensible to 3D. The Ordered Upwind Method is used to solve the
constraint, and adjoint sensitivities are used for efficient evaluation. The
newly developed constraint is demonstrated on 2D examples having an
unstructured mesh. Overhang free designs are obtained with smooth con-
vergence behaviour.

Keywords: Topology optimization · Additive manufacturing · Over-
hang constraint · Front propagation

1 Introduction

Additive manufacturing has become increasingly popular because it enables the
production of complex, topology optimized, parts which cannot be manufac-
tured by conventional production methods. However, additive manufacturing
also exhibits some design limitations, one of which is the overhang limitation,
which is the focus of this study.

The degree of overhang is usually measured by the angle a down-facing sur-
face makes with the base plate, as shown in Fig. 1. A surface is overhanging if
the overhang angle α is lower than the minimum allowable overhang angle αoh,
which depends on e.g. the type of additive manufacturing process and the mater-
ial used. For metals, αoh is typically 45◦ [1], but for plastics it can be much lower.
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(a) (b)

Fig. 1. The overhang angle is defined as the angle α a down-facing surface has with
the base plate (a). Surfaces with a lower than allowed overhang angle need to be
supported (b).

If a surface is overhanging, support structures are required for manufacturing,
displayed in Fig. 1b. However, support structures increase the build time, add
material cost, and their removal can be a difficult task especially from internal
channels. Therefore, imposing an overhang constraint and henceforth eliminat-
ing the requirement of support structures in topology optimization is a highly
demanded feature from industry.

So far, few studies addressed the overhang constraint for topology optimiza-
tion. Brackett et al. [2] proposed a methodology to measure overhang for evolu-
tionary topology optimization. However this method has not been implemented.
Gaynor and Guest [3] developed an overhang constraint for density based topol-
ogy optimization. Their constraint combines a wedge shaped filter with Heaviside
projection to obtain an overhang free design. However, the number of iterations
required for convergence was high. Langelaar [4] presented an overhang con-
straint that evaluates the amount of material below each element to determine
if an element is supported, and applies this as a filter. Overhang free designs are
obtained, however, it is only applicable to rectangular structured meshes, and
the minimum allowable overhang angle is dictated by the element aspect ratio.

This study presents an overhang constraint based on a front propagation
method to identify overhanging areas. Due to the continuous nature of the front
propagation method, the constraint is formulated independent of the mesh used
to discretize the problem. Furthermore, the minimum allowable overhang angle
to be imposed can be freely chosen. The Ordered Upwind Method [5] is used
to solve the front propagation problem efficiently, and it allows for the use of
adjoint sensitivities. This makes the evaluation of the overhang constraint and its
sensitivities computationally tractable. The overhang constraint and examples
will be presented in a 2D setting.

2 Overhang Detection

In order to constrain the overhang, a method to detect it has to be devised. Once
overhanging regions are detected, a constraint can be formulated to suppress
these regions. This section will introduce a novel overhang detection method
based on front propagation.
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2.1 Detecting Overhang with Front Propagation

Front propagation methods track an initial curve Γ0 as it evolves in space. This
has a clear resemblance with the additive manufacturing process, where with
every added layer, the boundary of the product advances. Instead of tracking
the propagating front explicitly, the arrival time field of the propagation is cal-
culated. The arrival time of a point in space represents the time at which the
front reaches to that location. The front propagation can then be reconstructed
by observing contour levels of the arrival time field. How the front propagates,
is ultimately determined by a speed function, which dictates the speed of the
front in each direction and location.

Consider the geometry given in Fig. 2, that is to be printed on the base plate
Γ0 in the positive y-direction. For αoh = 45◦, the shaded region will be over-
hanging. The goal is to detect this region using front propagation. When a front
initially at Γ0 is propagated with isotropic speed function within this geometry,
it starts to curve around corners, as can be seen in Fig. 3a. In order to obtain an
arrival time field that represents the printing sequence of individual layers, the
speed function is modified such that the front travels faster in directions deviat-
ing from the build direction. This increase in speed compensates for the larger
distance to be travelled in the hanging region, so that the front stays parallel to
base plate Γ0, as illustrated in Fig. 3b.

Fig. 2. A part which, when manufactured from the baseplate Γ0, will have an overhang-
ing region (shaded). The rate at which the layers can expand without failure defines
the overhanging angle αoh.

(a) (b) (c) (d)

Fig. 3. Contour plots of the arrival time fields for (a) an isotropic speed function,
(b) an anisotropic speed function that gives equal arrival times per layer, and (c) an
anisotropic speed function that delays the propagation in overhanging regions, and (d)
for the delay field u, from which the overhanging region can be identified.
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Finally, in order to detect overhang, the propagation speed is decreased when
the front travels in a direction lower than the minimum allowable overhang angle,
as shown in Fig. 3c. Consequently, the shortest possible arrival time for a point is
the arrival time of a front that has travelled straight from the base plate towards
that point. For the case depicted in Fig. 2, this is the distance to the base plate
divided by the propagation speed:

Tmin(x) =
x · e2

fe2

, (1)

where e2 is the unit vector in the build direction, and fe2 the propagation speed
in that direction. In all non-overhanging regions, the arrival times are equal to
the minimum arrival times, while in overhanging regions the arrival times exceed
the minimum arrival time. Therefore overhang is detected by simply determining
a delay field:

u(x) = T (x) − Tmin(x). (2)

When u = 0, there is no overhang, and when u > 0 there is overhang (Fig. 3d).

2.2 Anisotropic Speed Function

In order to decrease the propagation speed when the front travels in directions
lower than αoh, the speed function needs to be direction dependent. Consider
a point x, whose arrival time is to be calculated, as illustrated in Fig. 4. The
arrival time is updated from a point xa on the front, where the arrival times are
known. The new arrival time can then be calculated by

T (x) = T (xa) +
‖x − xa‖

f(a)
, (3)

where a = (x−xa)/(‖x−xa‖), a unit vector pointing from xa to x, and f(a) is the
speed function, dependent on the direction of the update. The update direction
is defined as α = arctan (a2/a1). Let us first consider a speed function that gives
equal arrival times per layer as in Fig. 3b. With unity vertical propagation speed,
the time difference between the points should match the height difference, i.e.

T (x) − T (xa) = (x − xa) · e2. (4)

Combining Eqs. 3 and 4, the speed function is derived:

f1(a) =
‖x − xa‖

(x − xa) · e2
=

1
a · e2

. (5)

In order to obtain an arrival time field as shown in Fig. 3c, the front needs to be
delayed in overhanging regions. This is achieved by decreasing the speed function
whenever the update direction a is below the critical overhang angle, i.e. when
α < αoh or α > π − αoh. This can be done in numerous ways, and for numerical
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Fig. 4. The calculation of the arrival time for a point x from a known point xa on the
current front indicated by the dashed line.

Fig. 5. Polar plot of the speed function for αoh = 45◦. The tangential axis represents
propagation direction, and the radial axis represents propagation speed.

reasons detailed in Sect. 4, the speed function for propagation in directions below
αoh is chosen as:

f2(a, αoh) =
cot(αoh)
|a · e1| (6)

where e1 is the unit vector orthogonal to the build direction. It can be shown
that f1 < f2 when α is above the critical overhang angle, f1 = f2 when α = αoh

and f1 > f2 when α is below the critical overhang angle.
For numerical convenience, the propagation speed in directions opposite to

the build direction, where α > π, is chosen similar to the propagation profile in
the build direction. From Eqs. 5 and 6 the speed function can be deduced as:

f(a, αoh) =
1

max (tan(αoh) |a · e1| , |a · e2|) , (7)

which is depicted in Fig. 5.

2.3 Governing Equation

In the previous subsection, Eq. 3 governs how the arrival time of point x can be
calculated from a given update direction a. However, the update direction for any
point is determined such that minimum arrival time is attained (i.e., the direction
from which the front reaches the point first). Therefore, arrival time is deter-
mined by minimizing Eq. 3 for all directions a ∈ S1, S1 =

{
a ∈ R2 | ‖a‖ = 1

}
.
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By doing so and linearising around x, the front propagation problem can be
described as a boundary value problem governed by the equation

min
a∈S1

{(∇T (x) · a)f(a)} = 1, x ∈ Ω,

T (x) = 0, x ∈ ∂Ω,
(8)

where Ω is the interior of the domain and ∂Ω is the (partial) boundary of the
domain where the front is initiated. This equation is known as the Hamilton-
Jacobi-Bellman equation and is often found in optimal control problems. At the
boundary, the arrival times are known to be zero, and from there, arrival times
can be progressively calculated throughout the domain, advancing the front.
Effectively, the front is advanced by calculating for every location the fastest
path to the known front.

3 Integration in Topology Optimization

The overhang detection method introduced in Sect. 2 forms the basis of our
proposed overhang constraint. As opposed to imposing the minimum overhang
angle implicitly through a filter, as in the works of Gaynor and Guest [3] and
Langelaar [4], it will be imposed explicitly with a constraint. This implemen-
tation is schematically shown in Fig. 6a. First, the density field ρ is filtered, as
it is customary in topology optimization to control length scale and prevent
checkerboarding [6]. Then, from the filtered densities ρ∗ overhang is detected
and the printable densities ξ are obtained. The objective and constraint evalua-
tions are still performed on ρ∗ as usual, and the overhang constraint is evaluated
comparing the printable densities ξ with the physical densities ρ∗.

Fig. 6. Explicit implementation of the overhang constraint. The overhang detection
block (b) returns the printable densities ξ from the physical densities ρ∗, which are
compared to the physical densities in the overhang constraint (a).
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3.1 The Overhang Detection Procedure

The overhang detection procedure comprises of three steps as shown in Fig. 6b.
First, the filtered densities ρ∗ are pre-processed for the front propagation. Then,
the front propagation is performed which gives the arrival time field T . Lastly,
the arrival times are post-processed to obtain the printable densities ξ.

In Sect. 2, the front propagation method was introduced for a predefined
geometry of a fully dense solid. However, in topology optimization, the geometry
is defined by a density field which can vary between 0 (void) and 1 (fully dense).
In order to propagate the front only through fully dense regions, the speed
function (Eq. 7) is scaled by a speed scaling field φ. Because the speed function
can not be zero (it would result in division by zero), a lower bound on φ, vvoid, is
introduced to control the minimum velocity in void areas. Furthermore, RAMP
penalization [7] is added to either promote or suppress the front propagation in
half dense areas. This gives the following relation between the densities and the
speed function:

φ(x) = vvoid + (1 − vvoid)
ρ∗(x)

1 + q(1 − ρ∗(x))
, (9)

fs(φ(x),a, αoh) = φ(x)f(a, αoh), (10)

where q is the penalization factor. The relation between φ and ρ∗ for different
penalization values is shown in Fig. 7. With the speed function given in Eq. 10,
the front propagation is executed. The arrival times are initialized at the base
plate for the preferred building direction, and Eq. 8 is solved to obtain the arrival
time field.

With the known arrival time field, the delay field u(x) (Eq. 2) can be eval-
uated. For the rectangular speed function (Eq. 10), the maximum propagation
speed in the build direction through fully dense regions fe2 = 1ms−1. The delay
field u(x) = 0 for manufacturable regions and u(x) > 0 for overhanging regions.

Fig. 7. RAMP penalization scheme
of the filtered densities for different
q with vvoid = 0.2.

Fig. 8. The relation between the delay field u
and the printable densities ξ for different values
of k.
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In order to compare printable densities with the original densities, a printable
density field is defined such that it is 1 for manufacturable regions and ranges
between 0 and 1 for overhanging regions. Therefore the following relation is used
to relate arrival time delay and printability:

ξ(x) = 2−k(u(x)), (11)

where k[s−1] controls how rapidly printability decreases with an increasing delay.
It is defined as follows:

k = fe2/β, (12)

where β[m] is a typical length after which the printability of an overhanging part
is halved. By defining k as such, the printable densities ξ are dimensionless, as
are the original and filtered densities ρ and ρ∗. The relation between ξ and u for
different values of k is displayed in Fig. 8.

3.2 Constraint Formulation

The overhang constraint (Fig. 6a) compares printable and filtered densities, and
is formulated as follows: no location where material exists, should be overhang-
ing. Since ξ equals 1 when there is no overhang, and ρ∗ equals 1 when there is
material, the constraint is written as ξ(x) ≥ ρ∗(x) in Ω. This leads to a local con-
straint for every design variable, which is computationally expensive. Therefore
the constraints are aggregated into a single global constraint:

goh = max
x∈Ω

(ρ∗(x) − ξ(x)) ≤ 0. (13)

The maximum operator is evaluated using a smooth maximum approximation.

4 Numerical Implementation

Efficient evaluation of the front propagation problem and its sensitivities is of
paramount importance for its feasibility as an overhang constraint. Fortunately,
the directionality of the front propagation problem allows for a fast calculation of
the arrival time field: because the arrival time at one location can only influence
locations with a higher arrival time, the arrival times can be calculated with a
single-pass method. These methods start at the boundary, and propagate the
front by calculating arrival times in ascending order from the boundary. In prin-
cipal, the arrival time at every location only needs to be evaluated once, hence
the name single-pass. For isotropic speed functions, the Fast Marching Method
has been developed [8], which has been used in an optimization setting in for
example van Keulen et al. [9]. The Fast Marching Method has been expanded
into the Ordered Upwind Method [5] for anisotropic speed functions. Further-
more, iterative methods have been developed, called fast-sweeping methods, and
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mixtures of marching and sweeping methods. Additionally, parallelized methods
are available. However, since the performance of the Ordered Upwind Method
is sufficient and its implementation is straightforward, no alternatives have been
considered.

4.1 Ordered Upwind Method

For a detailed discussion of the Ordered Upwind Method, the reader is referred
to Sethian and Vladimirsky [5]. As stated in Sect. 2.3, a minimization problem
is solved for each point to obtain the lowest possible arrival time (Eq. 8). This
means that all the line segments that make the front, within a certain radius
of that point, are considered as a possible origin of the arrival time update.
From here onwards, an unstructured triangular mesh is considered, although the
procedure is similar for other types of meshes. For the case sketched in Fig. 9, in
order to update T (x), all the line segments x1x2, x2x3 and x3x4 are scanned to
find the update point xa on the front that gives the lowest arrival time. Per line
segment, the update point is parametrized by a scalar s, by which the arrival
time is minimized. This minimization is performed several times for every node,
and its evaluation time therefore determines for a large part the evaluation cost
of the constraint. With the speed function fs (Eq. 10), the arrival time for a
point becomes a piecewise linear function of s, with only four possible locations
for the minimum. The minimization can therefore be solved efficiently by merely
evaluating theses four locations. When the arrival time for a certain node i is
minimized, it is only a function of the local speed scaling φi, and the two other
arrival times at the nodes between which xa is interpolated:

Ti = h(Tj , Tk, φi)
def== hi. (14)

Fig. 9. The calculation of the arrival time for a point x from a known point xa on the
current front indicated by the dashed line. The parameter s determines the position
of xa, which in turn determines the update direction a which controls the propagation
speed.



1194 E. van de Ven et al.

4.2 Discretization of the Constraint

The constraint as defined in Eq. 13 is evaluated with the following smooth max-
imum approximation:

g̃oh =
∑n

i=1 vie
γvi

∑n
i=1 eγvi

, (15)

vi = ρ∗
i − ξi, (16)

where γ determines the smoothness of the approximation and n is the number
of nodes. For γ → ∞, g̃oh → max (vi). The smooth maximum approximation is
based on a weighted average, with exponential functions as the weights.

When a material region is not overhanging, ρ∗ and ξ are both equal to 1. This
means that v = 0. Consequently, an overestimating maximum approximation
such as the p-norm would falsely identify manufacturable regions as overhanging.
Therefore, Eq. 15, which is slightly underestimating, is chosen as a maximum
approximation. This implies that small violations of the overhang constraint will
be allowed. Although most printers can build overhanging features when they
are small, this is one of the disadvantages of constraint aggregation because it is
difficult to control the exact amount of overhang that is allowed. The constraint
violations can be observed in Fig. 11b.

4.3 Sensitivities

The sensitivities are derived from the descritized equations. With adjoint sensi-
tivities, the computational effort for the sensitivity analysis becomes negligible;
only a single loop over all the nodes is required to evaluate the adjoint variables
and sensitivities. The sensitivities of the overhang constraint g̃oh with respect to
the arrival times follow directly from the chain rule:

∂g̃oh

∂Ti
=

∂g̃oh

∂ξi

∂ξi

∂ui

∂ui

∂Ti
=

∂g̃

∂ξi
(−k ln (2)ξi) . (17)

For the derivatives of the arrival times with respect to the velocity field, adjoint
sensitivites are used. These are obtained by adding the state equations (Eq. 14),
multiplied by the adjoint field λ, to the constraint g̃oh:

g̃∗
oh = g̃oh +

N∑

j=1

λj (Tj − hj) . (18)

The adjoint sensitivities with respect to the speed scaling field φ are given by

dg̃∗
oh

dφi
= −λi

∂hi

∂φi
, (19)

with

λj =
N∑

k=1

[
λk

∂hk

∂Tj

]
− ∂g̃oh

∂Tj
. (20)
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The sensitivities with respect to the densities follow from the chain rule:

dg̃∗
oh

dρi
= −λj

∂hj

∂φj

∂φj

∂ρ∗
j

dρ∗
j

dρi
, (21)

where ∂φj/∂ρ∗
j is the derivative of Eq. 9, and dρ∗

j/dρi is the derivative of the
density filter. The adjoint calculation can be initiated at nodes on which no other
nodes depend (e.g. nodes at the boundaries or when fronts collide). For these
nodes, the summation in Eq. 20 equals zero, and the second term follows from
Eq. 17.

5 Results

In this section, the overhang constraint is applied to two test cases: the cantilever
beam for several minimum allowable overhang angles, and a pull bar with αoh =
45◦. First, the choice of parameters associated with the front propagation and
constraint is discussed.

5.1 Choice of Parameters

The overhang detection procedure introduces three parameters:

• q, the penalization of propagation speed in half dense regions. The constraint
works best when q is chosen in the interval (−1, 0). This implies an ampli-
fication of speeds in half-dense regions, which allows the optimizer to shift
boundaries more easily. q = −0.2 is used.

• vvoid, the lower bound on the speed scaling field φ. vvoid can be chosen between
0 and 1. A value makes it unfavourable for supports to grow through void areas
compared to shifting existing boundaries, and has a large influence on how
active the constraint is at the start of the optimization. vvoid = 0.4 has been
chosen.

• β, the length after which the printable density halves in overhanging regions. β
controls how fast the printable densities decrease in overhanging regions with
increasing distance from overhanging regions. For an optimal convergence
behaviour, it is important to control over how many elements the printable
densities decrease from 1 to 0. Therefore, β is coupled with the typical mesh
size h and a multiplying factor c:

β = ch. (22)

When c is chosen too small, overhang will not be detected because only very
large delays are picked up. However, when c is too large, the printable density
field becomes close to discrete, which makes the constraint highly non-linear.
c = 3 seems a reasonable choice, which implies a bisection of the printability
per 3 element lengths.

Furthermore, the constraint introduces one additional parameter:

• γ, the smoothness of the maximum approximation (Eq. 15). γ = 15 has been
used.



1196 E. van de Ven et al.

Fig. 10. The cantilever test case.

(a) No constraint (b) 30◦ overhang constraint. Constraint violations are highlighted by
the light blue circles.

(c) 45◦ overhang constraint (d) 60◦ overhang constraint

Fig. 11. Optimized designs for the cantilever test case.

5.2 Cantilever Beam

For cantilever test case, a rectangular domain is clamped on the left side while
a vertical force is acting in the middle of the right side, as shown in Fig. 10.
The compliance is minimized while subject to a 50% volume constraint, and the
domain is meshed with unstructured triangles resulting in a 5443 nodes mesh.
Without an overhang constraint, the resulting design is as shown in Fig. 11a.
Although this design is already printable when rotated 90◦ clockwise or counter-
clockwise, for demonstration purposes the overhang constraint is added to make
the design printable in the displayed configuration. The optimized designs with
a minimum allowable overhang angle of 30◦, 45◦ and 60◦ are shown in Fig. 11b, c
and d respectively. For the most part, overhang free black and white designs are
obtained. Only for 30◦, some small overhanging regions still exist, as indicated by
the circles in Fig. 11b. This is caused by the constraint aggregation, where small
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Fig. 12. Convergence behaviour of the cantilever beam optimizations from Fig. 11.
The objective has been normalized with respect to the final objective of the optimiza-
tion without overhang constraint. The snapshots are from the 45◦ overhang constraint
optimization at iteration 5, 10, 25 and 50.

violations are not always picked up by the optimizer due to the underestimation
of the overhang in the aggregation, which can be solved by increasing either c
or γ (Sect. 5.1). The converge plots of the optimization are shown in Fig. 12.
First, an increase in objective is present because the overhang constraint must
be satisfied at the cost of the objective, but thereafter the objective decreases
smoothly. Because material needs to be sacrificed for support, the objective of the
overhang-constraint optimizations are generally higher. However, for the 30◦ and
45◦ optimizations, this is only 10% and 16% respectively. For the 60◦ constraint,
the objective increases by 47%, because of the large amount of support material
required. A complete angle sweep is shown in Fig. 13. Also here it is clearly
visible that the lower the αoh, the lower the objective.

Fig. 13. Objective values after 50 iterations for different αoh. The objectives are nor-
malized by the final objective of an optimization without overhang constraint.
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Fig. 14. The pull bar test case.

(a) No constraint (b) 45◦ overhang constraint

Fig. 15. Optimized designs for the pull bar test case.

5.3 Pull Bar

A more challenging test case for the overhang constraint is the pull bar. A rec-
tangular domain is clamped on the left side while a horizontal force is acting on
the right side, as shown in Fig. 14. The compliance is minimized while subject to
a 50% volume constraint. Without an overhang constraint, the optimal design is
a beam connecting the force to the fixed side, as displayed in Fig. 15a. However,
the bottom side of this beam is completely overhanging, so supports need to be
added from the bottom side to the beam. These supports will have no contribu-
tion to the stiffness of the structure under the given loading condition, and thus
completely counteract the objective with volume constraint. Therefore, it is a
good test to see if the constraint is able to generate fully dense supports, that
have no function other than supporting the design. As can be seen in Fig. 15b,
the constraint is able to create fully dense supports, at the cost of a 33% objective
increase.

6 Conclusion

In this paper a front propagation based overhang constraint has been proposed.
With the use of an anisotropic speed function, the front propagation is used to
mimic the manufacturing process. Due to the continuous nature of front propaga-
tion, the constraint can be used with an arbitrary minimum allowable overhang,
which has been demonstrated on the cantilever case. Moreover, the constraint
can be discretized on any mesh type. The Ordered Upwind Method is used to
solve the propagation efficiently, and with the use of adjoint sensitivities, the
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sensitivity evaluation requires only a single loop over all the nodes and its com-
putational cost is therefore negligible.

Results have been shown for the cantilever beam and the pull bar. In both
examples, the overhang is almost completely eliminated, without the use of con-
tinuation. Both cases converge roughly within the same number of iterations as
without an overhang constraint. In the pull bar case it is shown that fully dense
supports are generated, even if they have no contribution to the objective.

One of the disadvantages of a constraint formulation is that aggregation
allows for small violations of the constraint. This could be reduced by decreas-
ing the smoothness of the maximum approximation during the optimization,
but the continuation scheme will most likely be case dependent. Furthermore,
the constraint introduces four parameters, which affects the robustness of the
optimization. Although for some the value can be reasoned, others are chosen by
experiment. The implementation of the overhang constraint as a filter is the focus
of our future work, which will eliminate the parameters q and γ. Additionally,
constraint violations are expected to reduce.

Finally, due to the dimensionless formulation of the front propagation, it
is straightforward to extent the overhang detection to 3D, which is also being
currently developed.
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