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Abstract

New railway bridges for high-speed trains are being built in a many countries around the world. In
addition to the construction of new bridges, existing bridges are ageing. These two factors make the
assessment of railway bridges essential. The bridges are designed considering certain predefined reli-
ability criteria to account for the variability in load and resistance. However, for the assessment of these
bridges, a probabilistic analysis of the structure in the presence of uncertainties is recommended. This
thesis presents a probabilistic analysis of a railway bridge based on a case study of a newly constructed
bridge. In the analysis performed, uncertainties in concrete material properties are incorporated. Given
the unavailability of measured data in the location of bridge construction, expert judgment elicitation is
carried out to estimate for the uncertainties in loading conditions of a train. Further, these uncertainties
are incorporated in a finite element analysis to estimate the bridge response in the form of shear force
and bending moment. The variables corresponding to the maximum shear force and the maximum
bending moment, as well as the loading conditions and the material properties, are then merged into a
Non-Parametric Bayesian Network. Conditionalization of the developed Bayesian networks is carried
out to draw inferences on the bridge response when evidence on load or material properties is known. It
is shown that expert judgment elicitation can be applied for risk assessment of railway bridges. Further,
the developed Non-Parametric Bayesian network can be used to estimate and update the probability
of failure. Improvements to this study can be made by updating the probability of failure in the event of
an earthquake.
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Introduction

1.1. General Overview

The growth of economies and increase in population calls for improvement in the transportation in-
frastructure in the world. In response to this growing need, many major developing economies in the
world are building railway infrastructure for high-speed trains. Several countries are also introducing
rail passenger trains on long span bridges. Moreover, there is a need to ensure safety concerning the
superstructure and substructure of ageing bridges. The rapidly changing needs of the economy and
the constant requirement to ensure safety is making reliability assessment of bridges under railway
loading essential.

For design of bridges, the design codes incorporate certain factors to account for safety which
are applied to loads as well as resistance models. These factors of safety are defined to account for
variability in the applied loads and resistance offered by the structure. However, to perform a reliability
assessment of the bridge is a probabilistic analysis in the presence of uncertainties is recommended.
This comprehensive approach gives the structural engineer a deeper insight into the factors influencing
structural reliability.

For the reliability of a railway bridge, trainloads can be treated as moving loads on the bridge.
However, to derive the uncertainty in the train loads, a reliable source of measured data is required.
However, such data does not exist for all railway systems in the world, and only a few countries have
made recent progress in measuring the axle load data for railway systems. Unavailability of measured
data for different variables is a limitation in civil engineering due to cost or technical difficulties. To
overcome this limitation, a structural approach, called Structured Expert Judgment has been proposed
by several researchers with the aim of treating expert opinion as scientific data. In this research, this
methodology is introduced for probabilistic analysis in structural mechanics.

Nowadays, with advanced computational tools available, Finite Element (FE) Analysis of different
bridge configurations can be performed. FE approach also offers the advantage of assessing the most
critical section in the structure more thoroughly. Usually, a simply supported bridge is modelled to
perform bridge reliability. Hence in this research, a simply supported bridge is modelled to perform
further reliability assessment.



2 1. Introduction

1.2. Aim of the Research

This research intends to perform a probability analysis of a concrete bridge under railway axle load and
material uncertainty using expert judgment studies.

In order to fulfill the aim of the research, the following objectives and research questions are defined
as follows:

» Expert Judgment studies

— What are the results of the expert judgment elicitation to estimate the axle load uncertainty
in a train running at a velocity of 160km/h?
— What is the level of similarity between expert judgment elicitation performed in Mexico to the
axle load measurements in the Netherlands?
+ Finite Element Modeling of the bridge

— How to model a simply supported bridge using a finite element methodology to perform
computationally efficient large number of simulations for reliability analysis?

 Probabilistic Analysis of the bridge

— How to develop a Non-Parametric Bayesian Network for a simply supported bridge model
with load and material uncertainty?
— What are the effects of conditionalization on the bridge response ?

— What is the probability of failure of the bridge?

1.3. Research Methodology

Reliability

Unit FEA Unit

rli:i:'?:n\iar'l:tt)ﬁsn:vggel Develop deterministic
4 Ity FEA Model

eg loads, material, model

Estimate the uncertainty
in axle loads in train
running at 160km/h

i

Estimate the material

Perform Expert Update Train axle load
Judgment Studies values

Based on past

researche.g > Update Material

uncertainty JCSS, experiments Properties
Build Non Parametric
Bayesin Network to
model marginal
distributions and Run FEA
dependency Derive Maximum Shear
force and Maximum

Bending moment at the
initially chosen critical
Calculate limit state function section
Z=R-S

Compute probability of
failure that is P(Z<0)

Figure 1.1: Research Methodology
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1.4. Thesis outline

This thesis is structured such that there is a comprehensive understanding and description of the re-
search objective and questions.

» Chapter 1 discusses the general overview, research objective and questions and the overall
methodology followed

» Chapter 2 contains necessary background information on material uncertainty, expert judgment
studies, finite element modelling of the bridge, and lastly existing guidelines on finite element
reliability analysis.

» Chapter 3 gives a detailed description of the expert judgment methodology and results elicited in
this research.Appendix B contain necessary questionnaire for the understanding of this chapter.

» Chapter 4 presents a description of the case study of the bridge considered in this research. Finite
element modelling details of the bridge are also discussed in this chapter

* In chapter 5, a probabilistic analysis of the bridge is presented using NPBN

» The final chapter 6 closes this research with conclusions and recommendations






Literature Review

This chapter gives a background information on existing models and available understanding on the
different components used in this research. In section 2.1,the uncertainty modelling in a structural
system is described. section 2.2 discusses the concrete bridge modelling techniques proposed by
researchers over the years. In section 2.3, available literature on a combined study of reliability methods
and finite element modelling is presented. The last section, section 2.4, summarizes the findings from
the literature and its application in this research.

2.1. Modeling of Load and Resistance Uncertainty

To assess the reliability of a structural system, a probabilistic analysis is performed. For probabilistic
analysis of existing structures, knowledge of the load and resistance models is required. To model
the uncertainties involved in material properties, dimensions, and methods of analysis (discussed in
section 2.3), resistance can be treated as a random variable [65]. Furthermore, the basic load combi-
nations of any structural analysis include dead load, live load and dynamic load (ignoring environmental
loads, additional loads due to deformations, etc). This research discusses only the first two types of
combinations since the dynamic load analysis can be avoided, for the given speed and bridge config-
uration. The following section presents the available literature on some of the methodologies that can
be used to develop statistical models for these load and resistance components.

2.1.1. Load Uncertainty: Discussing the application of Expert Judgment Studies
Live load on a railway bridge comprises of a range of forces produced by moving vehicles. Usually,
the static and dynamic components of the live loads are modelled separately. Several parameters
including the span length, truck weight, axle loads, shaft configuration, position of the vehicle on the
bridge (transverse and longitudinal), beam spacing, and the stiffness of structural members (slab and
girders) influence the effect of the load on the bridge. These parameters primarily influence the static
load of the vehicle on the bridge. Parameters influencing the dynamic component of the vehicular loads
are not considered because the speed of the train is less than 200km/h and therefore according to the
Eurocode 2004, the dynamic component can be neglected. One of the techniques of estimating un-
certainty in the static load components is measuring Weight-in Motion (WiM) using sensors (described
in Appendix D). In the event of unavailability a similar data recorded by sensors, this research pro-
poses using Expert Judgment (EJ) studies to estimate load uncertainties. Detailed description of the
methodology is presented in chapter 3. The following section presents the background information on
EJ studies, or in other words EJ elicitation.

Expert Judgment Elicitation has been practiced by engineers, scientists and decision makers over
the past many years. They often come across situations when no relevant data is available due to
cost, technical difficulties or the uniqueness of the situation. In such situations, expert opinion can be
treated as one of the alternate source of data to model parameter uncertainties [22][45][81]. One of
the earliest study that formalized EJ was performed by Commission et al.[19] for risk assessment of
nuclear power plants. Most of the data used for the first extensive risk evaluation of chemical instal-
lations (Canvey Island 1978) came from expert judgments. Over the course of the years, the method

5



6 2. Literature Review

for elicitation and aggregation of individual experts’ assessments improved and formalized. The first
attempt of a structured and well-thought procedure for the whole expert elicitation process was done
for the NUREG 1150 study (USNRC 1990) Cooke. Seven years later, guidance on uncertainty and use
of experts (USNRC 1997) was published during which a study on expert judgment and accident conse-
quence uncertainty analysis [30] began. The latter study led to the publication of Procedures guide on
structured expert judgment[20]. In [21], Cooke mentioned about the development of a ’practical model
with a transparent mathematical foundation’ for expert judgment elicitation and aggregation, and also
presented case studies of past EJ studies. Details of the models presented by Cooke are described
later.

According to Clemen and Winkler [17], there are two available approaches for elicitation and ag-
gregation of individual experts’ assessment namely, behavioural and mathematical approaches. In
mathematical approach, a single ‘combined’ assessment per variable is constructed by applying pro-
cedures or analytical models operating on the individual assessments. On the contrary, in behavioural
aggregation, experts interact with the aim of achieving group consensus. The most popular behavioural
methods are the Delphi technique and the Nominal Group. As reported by Ouchi [68], one of the dis-
advantages of behavioural methods is that there are no formal rules to reconcile differences when ex-
perts are unable to come to a consensus. Cooke points out that experts become overconfident during
group interaction leading to more extreme probability estimates. Generally, mathematical approaches
are perceived to give more accurate results in aggregating expert opinions [17]. In this research, the
Cook’s method which is based on mathematical approach is used.

In Delft University of Technology, several studies representing more than 80,000 elicited questions
have been performed with the aim of developing methods and tools to support the formal application
of expert judgment. Applications were made in a variety of sectors, such as nuclear applications, the
chemical and gas industries, toxicity of chemicals, external effects (pollution, waste disposal sites, in-
undation, volcano eruptions), aerospace sector and aviation sector, the occupational sector, the health
sector, and the banking sector [31]. The techniques as developed can be applied to give quantitative
assessments or qualitative and comparative assessments. From quantitative assessments, nominal
values of parameters can be derived for practical applications. From qualitative and comparative as-
sessments, ranking of variables can be derived.

Expert Judgment elicitation is performed for estimation of ‘uncertainty’ and 'dependence’. The
methodologies to elicit uncertainty is different, though based on similar techniques, from methodolo-
gies to elicit dependence. 'Uncertainty’ can be defined as something that is not known or certain. One
of the ways to become certain is by observation. Dependence in a probabilistic sense can be defined
as the influence of event A on event B. More details on dependence is given in section 3.1.2. For an
uncertainty or dependence model to be robust, a structured approach to eliciting variables of interest
is recommended [45]. This is referred to as Structured Expert Judgment (SEJ). SEJ formally refers to
the deliberate effort to subject the entire process of elicitation to transparent methodological rules, with
the goal of treating expert judgments as scientific data in a formal decision process. More details about
SEJ can be found in [41], [62], and [21].

Eliciting Uncertainty

In [22], Cooke and Goossens discuss four models for combining expert opinion for uncertainty elicita-
tion; Bayesian Combination of expert assessments; Non-Bayesian combination of expert distributions;
Linear Opinion pools; Performance based weighting — the classical model. The Classical model [21]
is easy to apply, easy to explain and does not use equal weighting (see chapter 3). Hereafter all the
discussion is based on the classical model since it is used in this research for eliciting uncertainty. The
Classical Model, a performance based weights use two quantitative measures of competency : Cali-
bration and Information [5]. Calibration measures the statistical likelihood that an expert’s assessment
corresponds to those of experimentally measured values. Information measures the degree to which
an expert’s uncertainty distribution is concentrated that is how far are the 5th and 95th quantile assess-
ments. Seed variables are used to measure the calibration and information. Seed variables are based
on data available from experiments or measurements (refer Appendix B for more details). A closed
source software EXCALIBUR ' has been used for the analysis and aggregation of expert judgments
for majority of past studies. Recently, a number of cross validation studies have been conducted
using Eggstaff's MATLAB code [24] [18]. In a recent research development at Delft, Leontaris and

TEXCALIBUR is freely available at http://www.lighttwist.net/wp/excalibur
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Morales-Napoles developed a MATLAB toolbox, called ANDURILZ, that consists of different functions
and supports the majority of the features of EXCALIBUR. This toolbox facilitates higher accessibility to
researchers of the current methods and gives them an opportunity to explore different approaches or
extensions to current methods.

Eliciting Dependence

According to [81], there are three approaches for dependence modelling. The first approach is appli-
cable to Bayesian (belief) Networks (BNs), copulas, parameterised families of multivariate distributions
and Bayes Linear methods, in which the dependence between stochastic variables are modelled di-
rectly. In the second approach, auxiliary variables which are not a part of the model variables, are also
included for the ease of quantification. The third approach, uncertainties are assessed on some out-
put variables to calibrate uncertainties on the randomly distributed variables. Overall, there is limited
guidance on eliciting dependencies [81], however some progress has been made on BNs (chapter 3).
Therefore in this research, BNs have been used and discussed hereafter. To elicit the dependence
structure between variables, methods have been proposed to derive rank correlations between vari-
ables [20] [17]. Most of the proposed methods are attached to bivariate dependencies. According to
them, The experts are either asked for dependencies directly or indirectly (e.g. a conditional probability
of exceedance, a probability of concordance, a probability of discordance). Though it is not decisive,
however, few previous experimental results indicate that obtaining bivariate dependence by using the
direct method is more accurate [17].

The process of eliciting multivariate dependence is more complex than that for bivariate depen-
dence. Hence a flexible modeling tool is favoured to elicit multivariate dependence. Non-parametric
Bayesian network (NPBN) is one of such tools to represent multivariate dis- tributions.Hanea et al. [33]
has discussed few applications of NPBN for dependence modeling. NPBNs are quantified in terms
of univariate marginal distributions, rank correlations, and conditional rank correlations. The univari-
ate marginal distributions can be elicited from experts using the methods described in earlier section,
including the classical method, in the event of unavailability of relevant data. To elicit dependence un-
der such a situation, rank correlations and conditional rank correlations can be assessed from experts
[33]. Similar to bivariate dependence, the experts can be asked for rank correlations directly or indi-
rectly. In one of the previous studies, conditional probabilities of exceedance was elicited [56] and in
the other, ratios of rank correlations were elicited [61]. It is still inconclusive whether the experts can
more accurately estimate conditional rank correlations through estimates of conditional probabilities
of exceedance or through directly estimating bivariate rank correlation coefficients. Another interest-
ing topic of discussion is the measure of ’calibration’ or accuracy of experts multivariate dependence
assessments. To the best of the author’s knowledge, there is currently only method of estimating cali-
bration score, for multivariate assessments [58]. The proposed method calculates the calibration score,
dCal by using the Hellinger distance (see chapter 3 for more details). Whether some other measures
of distance in Gaussian distribution, including those given by [4], have similar characteristics to those
of dCal is subject to future research.

2.1.2. Material Uncertainty

The inputs required for the resistance model in a probabilistic assessment of a structure are usually
material uncertainties and geometrical uncertainties. Factors influencing the material uncertainties,
that is, concrete uncertainties for this research, along with various methodologies proposed in the past
to model them are discussed here.

Uncertainties in concrete properties are reported in the literature by several researchers Rack-
witz[73], Caspeele [15], Vrouwenvelder [80],etc. and the Probabilistic Model Code developed by Joint
Committee on Structural Safety summarized most findings. The deviation in material properties can
be related to variability in the following [84] - Concrete composition (ratio of water and cement); mate-
rial properties of cement, aggregate, purification of water. Other factors including operating conditions
(mixing technology, transportation, curing, etc.); testing norms; maintenance conditions and environ-
mental factors also influence the concrete material properties [84].

In general, in a probabilistic risk assessment of a structure, uncertainties in strength of materials
are represented by models in terms of probability distributions e.g. Gaussian distribution. According to

2Available at https://github.com/ElsevierSoftwareX/SOFTX_2018_39
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Rackwitz [73], the uncertainties in strength of materials can be broadly classified into two types - the first
accounts for spatial or time-dependent variations in material properties in a given structure and can be
modelled using random field approach as proposed in Probabilistic Model Code [44]; the second type of
uncertainty neglects in-homogeneity and is expressed in terms of probability distribution. Usually, the
latter type of uncertainty is preferred for advanced probabilistic analysis and for assurance of structural
reliability. It is noted here that in this research, only the second type of uncertainty is considered.

In order to quantify the concrete uncertainties, one of the first probabilistic model is reported by Mirza
et al. [55] based on experiments in United States, Canada and Europe. Later on, in [84], Wisniewski
et al. reviewed the existing probabilistic models for concrete according to which the model proposed
by Joint Committee of Structural Safety [44] is considered to be very comprehensive. Assessment
of material uncertainty, should ideally be made from experimental tests on large number of samples.
However, in reality, only limited amount of results from experiments can be reported [26]. Compressive
strength f,, of standard specimens ( defined for cylinder of 300mm height and 150mm diameter) is
considered as a reference property of concrete when tested according to standard conditions and aging
period of 28 days ( See ISO/DIS 2736 and ISO 3893). Other properties of concrete can be related to
this reference strength according to [8] and are summarized in Table 2.1 .

Table 2.1: Concrete input values related to reference strength

fe Mpa)  fee (Mpa)  E. (Mpa) v
mean fa *0f  03f2°  Eco(fom/10)Y° 0.15
cov 15% 20% 8% -
distribution lognormal lognormal lognormal -

From Table 2.1, the mean values of of concrete properties can be computed based on the mean
value of concrete compressive strength. However, the coefficient of variation and the distribution type
for other properties of concrete are not computed from the properties of compressive strength. There-
fore, even though the concrete properties are highly inter-correlated [84], they are not full dependent,
thatis, ps.gc # 1. There is not enough literature evidence on the correlation between the properties of
concrete, however, p ~ 0.85 — 0.90 is considered in this research.

2.2. Finite Element Modelling of Bridge

In this section, literature concerning the concrete slab-box girders-column arrangement is elaborated.
The first part discusses the guidelines proposed by Sustainable Bridges project carried out in Europe.
The second part of the section explains the methodologies proposed in the past for numerical modeling
of the bridge.

Guidelines proposed by Sustainable Bridges project

In order to fullfil the present and future demands on improved capacities for the passenger and freight
traffic on the European railway network, a project called Sustainable Bridges was launched. The inten-
tion of the project was to develop a toolbox of new systems and methods for assessment, strengthening
and monitoring of the European railway bridges [11]. Certain guidelines on modelling and assessment
of load and resistance are given in [74], [14], [72]. These guidelines have been adopted in this research
for modeling the geometry of the bridge and hence has been elaborated as follows.

Table 2.2: Suitability of models for the analysis of global effects (usually longitudinal analysis of the bridge deck)

Longitudnal Configuration

Initial Assessment

Intermediate Assessment

Enhanced Assessment

beam, grillage,

Beams* beam beam, grillage FEM

Frames 2-D frame 2-D or 3-D frame 3-D frame, FEM
Arches 2-D frame 2-D or 3-D frame 3-D frame, FEM
Trusses 2-D frame 2-D or 3-D frame 3-D frame, FEM

Note: * this includes box girders, slabs, slab on beams, trough bridges, etc.
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Doubts

INITIAL

Site Visit
Study of Documents
Simple Calculation Checks

INTERMEDIATE
Further inspections
Detailed Calculations/Analysis
Material investigations

Doubts Confirmed

ENHANCED
Refined calculations/analysis
Laboratory Examinations
Statistical Modelling
Reliability-based assessment
Economic decision analysis

Simple repair or strengthening
solves the problem

Compliance with codes
and regulations

Monitoring
Strengthening/Repair
of Bridge
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bridge

Figure 2.1: Flow diagram for reassessment of existing bridges [29]
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The structural analysis of the bridge is performed to determinate the internal forces, moments, shear
stresses, strains and deformations. Material resistance is considered to perform capacity checks with
respect to cross-sectional forces and moments under dead and live loads. The modeling of the bridge
geometry can be idealized based on the methodologies explained above. For idealizations on material
geometry, four different methods (According to CEN2004a and CEN2004b) can be adopted:

+ Linear elastic analysis - Can be used for the verification of Serviceability Limit State(SLS) as well
as Ultimate Limit State (ULS).

* Linear elastic analysis with limited redistribution - Can be used for the verification of ULS. It gives
a more realistic distribution of stresses than Linear Elastic analysis. It can be used for probabilistic
approaches.

+ Plastic analysis - It is an efficient method for verification for all bridge types in ULS.

» Non-linear analysis - It takes into account both material (cracking, buckling, etc.) and geometric
non-linearity. The method can be used for all bridge types in SLS as well as ULS.

As reported in [13], there are many levels of modelling complexity for trains moving over the bridges,
depending on the assumptions made (Linear, Non-linear, Plastic) and the simplifications considered .
In addition to these complexities, the dynamic effects of high-speed railway lines play an important role
in the total load effects developed in the structure during a vehicle passage [13].At present, Eurocode
1 2004 contains the design requirements related to the dynamics of railway bridges. According to the
Eurocode 2004, it is not always necessary to perform a dynamic analysis. Section 6.4.4 of Eurocode
1, part 2 provides the criteria to determine whether a static or a dynamic analysis is required. As stated
earlier, according to the Eurocode requirements, a dynamic analysis is not necessary.
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Numerical Modeling of the Bridge
The equation of motion of a bridge modelled in FE under a series of time-varying forces can be ex-
pressed by

[Mplitp + [Cplup + [Kplup = f (2.1)

where
[Mp] = global mass matrix,kg
[C,] = global damping matrix,Ns/m
[Ky] = global stiffness matrix,N/m
[ii,] = nodal acceleration matrix, m/s?2
[2,] = nodal velocity matrix, m/s
]
]

[up] = nodal bridge displacements and rotations, m/s?
[f»] = interaction forces between the train and the bridge acting on each bridge node at time t

The matrices, [M,], [Cp] and [K}] in Equation 2.1 depend on the type and number of elements used in
modelling the bridge deck and columns. FE packages like ABAQUS, LS-DIANA,ANSYS, NASTRAN,
etc. could be used to construct these models. According to [9], ABAQUS [39] has the capability to
represent the behavior of a realistic structure and to predict deflections, strains, and stresses while
minimizing unnecessary complexities. These advantages along with those mentioned in Table 2.6 are
the reasons for favouring ABAQUS in this research. More details on basic concepts of FE methodology
is given in Appendix C.

There are four generally accepted techniques of FE modeling of bridge - (a) 1D Beam model; (b)
2D Plate modeling (c) 2D grillage model [83] (d) 3D FE model. The 1D beam model is an approximate
analysis model according to Aashto[2] to consider in-plane shear and bending moment. For bridges
with long spans, the whole bridge can be considered to be a 1D beam model. This method can be
adopted for determining the shear force and longitudinal moments. The dead loads can be approxi-
mated by the corresponding mass density and geometry. However, live loads are maximized by loads’
lateral position and girder influence lines, which are called live load envelopes. Many bridge codes,treat
the longitudinal and transverse effects of wheel loads as uncoupled phenomena for the ease of design.
The design live-load moment due to train loads is first estimated by obtaining the maximum train mo-
ment on a single girder. This maximum single girder moment is then multiplied by a factor to obtain the
design moment. This factor is referred as the live-load distribution factor [7].

Grillage bridge models (see Figure 2.2) have been used by bridge engineers for many years. This
method was pioneered by Lightfoot and Sawko [52]. It is easy to comprehend and use, relatively in-
expensive and has given accurate results in the past for a wide variety of bridge types [32]. In Bridge
Deck Behaviour [32], guidelines of modelling diverse bridge types have been given. The general idea
of this methodology is to represent the deck by an equivalent grillage of beams. A grillage mesh can
be seen as a skeleton mesh of 1-D beams in ’x’ and 'y’ directions. In Figure 2.2, an example of the
model is shown where M, is bending moment about x axis for beam oriented along x and similarly M,,
is bending moment about y axis for beam oriented along y. The girders are modelled as longitudinal
beams (in Figure 2.2 along x direction) with longitudinal stiffness and the traverse beams (in Figure 2.2
along y direction) are modelled to introduce transverse stiffness. Ideally, the grillage mesh generated
should be such that the internal forces, moments and vertical deflections in any grillage beam should
be equal to the resultant of the stresses on the cross section of the part of the slab the beam repre-
sents [32]. Despite its wide usage, grillage modelling has certain drawbacks. The internal forces are
not continuous at grillage nodes,hence it is difficult to ensure the same twisting curvature in two per-
pendicular directions (k.,=k,,). Other aspects which are ignored by the grillage method are effects
of construction sequence, reinforcement modelling, analysis of secondary effects, in-plane effects and
nonlinear response of deck [69].

Plate bridge models (see Figure 2.3) have been investigated by several researchers [67] [48] [38],][85]
[12] [29]. These models are based on the Kirchhoff plate theory. The Kirchhoff plate theory assumes
out of plane strains to be negligible. Kinematic, constitutive and equilibrium equations can be used
for every plate element to calculate the moments which are shown in Figure 2.3 as M,, M,, and M,,,
acting on each face, and also to calculate shear @, @, as shown in Figure 2.3.1t is noted here that the
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moments and shear forces are functions of the nodal vertical displacement and stiffness properties of
the plate.
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Figure 2.2: Grillage model of a bridge deck [29]
E,i
My=bl—2—(k +vk)> Eyi
y <1 —“ v, oY T M,=a m(k,{ +vyky)
Original Slab Plate model ‘\‘ L b
Deck |

Plate Properties
a,b: dimensions of plate element

i: second moment of area per unit breadth [ d72

j: torsional constant per unit breadth

Material Properties

ox ady

Vy, Uy Poisson’s Coefficients \ Mxy = a(Gkyy))

Q; =a (E)mx + _amyx)

E,, Ey, : Moduli of Elasticity 0= b om,, N amy, M;x = b(Gkyj)
G: Shear Modulus y dy ox
2w %w a*w
Curvatures: ky = F ky = a_yz; xy = Kyx = W

Figure 2.3: Plate model of a bridge deck [29]
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Figure 2.4: 2-D grillage meshes [32]

2.3. Finite Element Reliability Assessment

In order to predict the failure of a structure, uncertainty in material properties, applied loads, dimensions,
etc. should be taken into account[78]. Based on the above section, it is clear that advances in FEA
make it applicable to complex problems like bridges. To factor uncertainties in FEA it is recommended
to perform probabilistic finite element analysis (PFEA), which is often termed as finite element reliability
analysis (FERA) ([35] 2004, 2006,2007).

What is Finite Element Reliability Analysis?

The term finite element reliability analysis refers to a method which accounts for uncertainties in geom-
etry, material properties and applied loads in a finite element model [6]. Such uncertainties should be
modelled as random or stochastic fields. It is a perception that in some structures, the response sen-
sitivity of the structures is associated with material properties or geometry of the structure. Therefore,
even small uncertainties in these properties can effect the structural reliability. The underlying as-
sumption in a structural reliability problem is that the structural is either in safe state or failure state.The
boundary between these two states is known as the limit-state surface.

In finite element reliability analysis, the the problem is defined in terms of a set of random model
variables x and a finite element model defined by response vector u = u(x) for a given realization
of x for k components. A set of continuous and differentiable limit-state function can be defined as
z;(u(x)),i = 1,2,..., k where z; < 0 indicates failure for the i** component of the structural system. The
failure domain is defined as the union of the component events such that the probability of failure is
P(UK_,z) < 0[36]. To obtain these results by first order reliability method(FORM) and second order
reliability method (SORM) (See Appendix A), a 'design point’ has to be determined [23] on the limit-
state failure surface. Finding the design point poses a constrained optimization problem. In the context
of finite element reliability analysis, this means computing the finite element response sensitivities with
respect to the model parameters [35].

System vs Member level assessment

Safety assessment of a bridge can be performed at two levels, system level or member level. In mem-
ber level assessment, it is assumed that the failure of a member implies failure of the structural system.
However, failure of one of the component/members of the bridge may or may not mean the collapse of
the whole structure. This is because, most bridges consist of a system of interconnected components
and members. Therefore, the reliability of a single member may or may not be representative for the
whole bridge. Hence a system level assessment should also be performed. Since the research is
performed in Europe, the safety assessment guidelines written in Eurocode are followed. The safety
rules in the Eurocode [43] are based on a member level. Additionally, the partial factors provided in
the Eurocode, are based on linear relation between the loads and the corresponding internal forces in
the members.

Levels of approximation

Over the last few decades, the design codes have become increasingly complex, and are however
still not sufficient to assess the existing structures. One of the recommended strategies to overcome
this limitation is the use of levels-of-approximation(LoA) approach. This approach is recommended by
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Muttoni and Ruiz [63] in the fib Model Code [8]. In this approach, a hypothesis is made depending on
the level of the accuracy required. This hypothesis is based on the application of the use of the theories
related to physical parameters in the structural system. In cases, where the required accuracy is not
very high, a safe hypothesis can be adopted for simple and quick analysis. If the degree of accuracy
is not sufficient for a given analysis, for example, design of complex structures, assessment of existing
structures, etc., then the hypothesis can be refined for better estimates of the response.

In the Netherlands, the LoA approach is followed for the assessment of existing slab bridges. These
levels are further elaborated as follows:

* Level of Approximation 1 : It is also called in Quick Scan method (Vergoossen et al., 2013).
The results of shear stress is in the form of Unity Check that is the ratio of design shear stress
over design shear capacity [50]. This method is similar to performing hand calculations based on
design codes.

+ Level of Approximation 2: In this level of approximation, a linear finite element model is analyzed
to determine the shear stress distribution [50].

» Level of Approximation 3: To achieve higher accuracy and results closer to reality, non-linear
finite element models are built and analyzed to determine the structural behaviour under applied
loads. [50].

 Level of Approximation 4: Though the results of LoA 3 are generally sufficient, however in cases
where estimation of structural capacity influences economic costs for example, strengthening in
existing bridges, more refined analysis is required. For such analysis, LoA 4 is adopted [50].

Accuracy

100%

Safety Margin

Level IV

Level 1Nl

Level Il

Level |

Required Time

Figure 2.5: Representation of the increasing Levels of Approximation,[63]

In this research, a probability of failure of the structure (Pr) due to bending failure is estimated using
probabilistic techniques. Although the above mentioned levels of approximation are defined for shear
stress, they are extended for bending moment stress for this research.

Review on existing reliability-based methods

To assess the probability of failure of a bridge member in shear or bending, probability density functions
of the applied loads, resistance models and material models have to be taken into account. In Proba-
bilistic Model Code, developed by the Joint Committee on Structural Safety [44], recommendations on
the probabilistic density functions for a reinforced concrete solid slab as well prestressed concrete are
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given. These functions differ slightly from those given by Nowak and Szerszen [65]. In [49], Lantsoght
et al. proposed that the probability density function of the resistance model of beam failing in shear
is different from the case of concrete solid slab bridges subjected to concentrated wheel loads due to
transverse load redistribution. Lantsoght et al. found that a conservative approximation of a resistance
model can be made based on a lognormal distribution. In this research, this recommendation has
been adopted and the material resistance model is based on lognormal distribution. More details on
the material uncertainties is given in section 2.1.2.

Different geographies in the world prescribe different reliability index (See Appendix A) for the as-
sessment of existing structures. These values are listed in Table 2.3. The target reliability values in
Table 2.3 are prescribed for a reference period of one year at member level for ULS. In the Netherlands,
Dutch Guidelines for the Assessment of Existing Bridges (RBK) have been developed. The reliability
levels in RBK are from NEN-EN 1990:2003 [27] and NEN 8700:2011 [1], and are shown in Table 2.4.
Moreover, Steenbergen et al. performed highway bridge assessment under full probabilistic analysis
and derived partial safety factors for shear force assessment for given reliability indices (see Table 2.4).
To the best of author’s knowledge, such a study, however, has not been performed for railway bridges.

Table 2.3: Target reliability index different countries and International Bodies at member level for ULS [74]

Country Canada USA Denmark Europe JCSS ISO
(AASHTO ]
(Reference) E:Cse\’\f/s&oo 1994 [66]); E\N/eKr%:erZ’S))r[—Ba‘%t (EN (eSS, - (ISO,
" (AASHTO 1990, 2001)[27] 2001) [44] 1999)[54]
2000 [16]) 2003)[25]
2003 [3])
Design 3.75 3.75 4.2 4.7 4.2 4.7
Assessment  3.25 2.5 4.2 4.3 - 4.7

Table 2.4: Different reliability levels for assessment of existing structures given in the Guideline for existing
bridges (RBK)

Reliability level B Reference period
RBK Design 4.3 100 years

RBK Reconstruction 3.6 30 years

RBK Usage 3.3 30 years

RBK Disapproval 3.1 15years

Note: All considered values are for Consequences Class 3 (highway bridges) built under the regulations for
construction of 2003 or earlier

Over past few years, there is increased interest in reliability-based methods for bridges. Schlune
et al.[75] showed that for beams subjected to combined shear and bending, the required reliability level
(given in NEN-EN 1992-1-1:2005) is not achieved. Encouraged by similar findings, reliability-based
methods for assessment of existing bridges also have been developed in different geographies. In
Switzerland, a systems-level safety evaluation combined with nonlinear finite element analysis was
developed [71]. In the United States,existing reinforced concrete bridges were also studied for shear
capacity based on a probabilistic analysis [40]. Furthermore, reliability analysis for existing bridges
under seismic events have also been studied following the 2011 Virginia earthquake [46]. Procedures
on linking non-destructive testing results with probabilistic analysis methods have been developed in
Germany [10] .

Based on the review of existing models and research in reliability-based assessment of existing
bridges, variation in the safety philosophy is observed. For the design of new bridge, the uncertainty
in structural resistance is associated with material uncertainty; geometrical uncertainty and method
of analysis (level of approximation) [65]. For the assessment of an existing bridge, according to the
ideology followed in the Netherlands, the geometric properties are not treated as random since the
structure has already been built [76], and the geometrical uncertainties are ignored. On the contrary,
in North America [79],the uncertainty on the geometric properties is fully modelled.
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Existing software and limitations

The purpose of this section is to describe the existing computational tools available to perform reliability
analysis in finite element framework. To the best of author’s knowledge there are limited software
platforms available that include in its interface both finite element method and reliability analysis. There
are currently two available alternatives listed as below:

» Combine a general purpose FE analysis software, e.g., ABAQUS, with an existing reliability plat-
form, e.g., NESSUS/ISIGHT

» Using object oriented programming language e.g. Tcl, to write one’s own FEA program, e.g.,
OpenSees

The advantages and disadvantages between the two given alternatives are listed in Table 2.5.

Table 2.5: Comparison between the two computational approaches to perform FERA [6]

Software Advantages Disadvantage
-License Cost
- Ease of Use -Linking between various platforms
FEA Software e.g. ABAQUS _ - ohical User interface e.g. ABAQUS with ISIGHT or

ABAQUS with Matlab

FEA 0 -Flexibility to program different -Knowledge of advanced
program €.9. Lpensees reliability algorithm e.g. FORM, SORM  programming

In FE program approach, there is currently one popular open source option, OpenSEES, that com-
bines FE analysis and probabilistic methodology. Further documentation on the program can be found
online®. However, there are many commercial general purpose software available for FE analysis.
During the past decades, these software have undergone improvements to apply the best known mod-
els describing behaviour of materials, structural elements etc. into numerical finite element code. The
most popular commercial software along their main for nonlinear analysis of the structures are given
in Table 2.6. This serves as a guideline for this research to favour ABAQUS amongst available FEA
software.

Table 2.6: FEA software and their features for non-linear analysis

Features related to nonlinear modelling

FEM Software Non linearity Non linearity of  Tension Time

of steel concrete stiffening  dependent effects Buckling
ATENA yes yes yes yes yes
DIANA yes yes yes yes yes
ABAQUS yes yes yes yes yes
ANSYS yes yes yes yes yes
NASTRAN yes Limited Limited yes Limited
PERMAS yes Limited Limited yes Limited
SOLVIA yes yes yes Limited yes
LUSAS yes yes yes yes yes
TDV yes yes Limited yes yes

Shttp://opensees.berkeley.edu/
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2.4. Conclusions

The key findings from the literature review reported is summarized as follows. To perform a probabilistic
assessment on a structure, load and resistance models can be built using random distributions of vari-
ables. In the unavailability of measured data, expert judgment studies can be performed. In addition,
the expert judgment elicitation can be performed for eliciting both uncertainty and dependence following
a structured approach. However, the methodologies for assessing the expert performance are differ-
ent. Further, factors influencing material uncertainty are widely studied and a log-normal distribution
for concrete properties has been proposed.

The finite element modeling of a concrete bridge can be performed with four approaches - 1D Beam
model, 2D plate Model, 2D grillage Model, 3D FE model. 1D beam model is the least accurate and
computationally most favourable approach. 3D model on the contrary is computationally most intensive
and also most accurate. An favourable level of accuracy can be achieved using 2D plate model or
2D grillage model. Further, depending on the level of approximation which can be accepted for the
analysis, a suitable modelling technique can be chosen. It is observed that there is a variation in the
safety philosophy followed by different countries and codes. Furthermore, all countries do not treat all
properties of the bridges as uncertain variables.

Finite element reliability analysis of a bridge required computational tools that can combine reliability
analysis with finite element framework. FEA programming and combining FE software with a reliability
platform, are two approaches that are available currently to perform a FERA.






Expert Judgment Elicitation

Expert Judgment study is undertaken to elicit uncertainty and dependency for variables for which mea-
sured or historical data is unavailable. In this section, the methodology of the structured expert judg-
ment is explained, followed by a discussion on the elicited variables. Thereafter, quantification of expert
opinion based on performance measures is discussed. The expert judgment questionnaire developed
for this research is given in Appendix B.

3.1. The Methodology

Expert Judgment Elicitation is not a new practice in science and technology. Further, to treat expert
opinion as reliable and robust data, a formal, a structured approach is followed. This is known as
Structured Expert Judgment. As introduced in chapter 2, there are different techniques to quantify
uncertainty and dependency. In this study, uncertainty is estimated using the Cooke’s Classical Model
which is described in section 3.1.1. Dependence elicitation and quantification technique is explained
in section 3.1.2.

3.1.1. Eliciting Uncertainty
The Classical Model used in this research assesses uncertainty in the form of probability distributions.
The differentiating feature of the Classical Model is that it combines the expert opinion based on a
performance-based weighted-average model. In order to assess the experts’ performance, two mea-
sures, calibration and information scores are used. Detailed explanation is provided in subsequent
sections.

At TU Delft, an approach to implement Structured Expert Judgment using the Classical Model has
been developed which is discussed as follows [5]:

» Multiple experts are selected. According to Cooke and Goossens [22], the minimum number of
experts to be assessed is four. The number of experts in this research is 7.

» Experts are individually asked questions regarding the uncertainty over the result of possible mea-
surements or observations. The variables over which uncertainty is elicited is within the domain
of expertise of the experts. These variables are called the target variables. The experts give
their subjective uncertainty distribution in predefined quantiles in a continuous range. Typically,
5th  50t" and 95" quantiles are elicited.

» The experts are asked for their opinions on uncertainty over variables, the true values of which
are known or will be known to the analyst but remains unknown to the experts at the moment of
elicitation. These variables are called the seed variables.

» The experts are treated as statistical hypothesis and are scored based on their calibration and
information. The calibration score of each expert is derived using expert’s belief on seed variables.

+ A different weight is assigned to each expert based on the calibration score provided he/she has
a score higher than a threshold value. A combination of expert assessment is prepared using
weighted average pooling.

19
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The Classical Model :A brief description

In continuance of the approach to implementing the Classical Model described above, this section
defines the basic tools which are used in the Classical Model to measure and combine the experts’
assessment.

Calibration

In simple terms, calibration measures the extent to which an experts’ assessment is representative
of the uncertainty in the variables. Thus, calibration questions are used to define an indicator to as-
sess the validity of the hypothesis that an expert’'s uncertainty assessment will represent true value
for unknowns. Expert Calibration is done from expert opinion on the seed variables described above.
Assuming there are E experts, e = 1...E, and each of them answers N seed variables and N, target
variables. Both seed and target variables are assessed for three quantiles that are 5", 50" and 95t".
More quantiles can also be assessed from each expert, however, in this research study only these
three quantiles are considered. Thus, for each question there are j = 1 ...4 interquantile bins which in
this case are (0; 0.05], (0.05; 0.5], (0.5; 0.95], (0.95; 1.00). the probability vector p is:

0.05
0.45

p =( 0.45 ) 3.1
0.05

The empirical version of p for expert e, is given by s(e) = (s1...s4). For N seed variables, there are
x = x; ... xy true realizations. Each of these realisations must be in one of the quantile bins assessed
by the expert. Then, for an expert e, s;(e) is equal to the number of realisations of seed variables falling
in the jth inter-quantile assessed by expert e divided by the total number of seed variables.

Number of realizations < 5" quantile

s1(e) = N (3.2)
5t" quantile < Number of realizations < 50" quantile
sz(e) = N (3.3)
50th quantile < Number of < 95"
s3(e) = N (3.4)
Number of realizations > 95" quantile
sa(e) = (3.5)

N

The experts exhibit their uncertainty assessment skill by the agreement of their vector s;(e) with the
vector p. Only assessing the true value of the seed variables is not enough. To be a good uncertainty
assessor, one’s assessment should capture the true value in one’s different quantile bins.The relative
information between p and s(e) is given by

sj(e

@) = Y fsi Lt

j=1..4 J

} (3.6)

where
I(s(e)|p) = relative information of distribution s(e) with respect to p,I(s(e)|p) is x?-distributed
with 3 degrees of freedom in this case

If sj(e) is equal to pj;, then the natural logarithm will produce a value of 0, implying no relative
information by between the expert’s uncertainty assessment and probability vector p. It means that if
one believed p then learns s, one would be surprised or disagree with the outcome.

Experts’ assessments are treated as statistical hypotheses. The null hypothesis for each expert H,
is that the inter quantile interval containing the true value for each variable is drawn independently from
the vector p .

The calibration score is given by

C. = P{2NI(s(e)|p = r|Hy} (3.7)
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where
C, = Calibration score of expert, e
r = percentile of interest in the y? distribution of interest

The calibration score C(e) is the probability that a deviation at least as large as r could be observed on
N realisations if H, were true. r is evaluated from 2N1I(s(e)|p) for the data corresponding to a particular
expert. An expert whose data for seed variables tests this hypothesis as completely true gets a score
of 1. Therefore, the calibration score is defined in a range of [0, 1] with 1 being the highest score and 0
being the lowest score. Scores close to zero indicate that it is unlikely that the expert probabilities are
correct. Usually, the minimum score at which an expert’s contribution is included is 0.05.

Information

Information score measures the degree to which the uncertainty distribution is spread out. The degree
of concentration of the distribution is measured relative to a background measure which, in the Classical
Model, is uniform or log-uniform distribution. To establish a uniform background measure, first an
intrinsic range of I = [qs, q¢s] is chosen such that g5 is the least valued 5t" percentile of all experts
uncertainties for a variable and qqs is the highest valued 95" percentile of all experts uncertainties for
a variable. While estimating g5 and go5 for seed variables, the values of true realizations are also taken
into consideration. This intrinsic range [gs,q45] is modified to a new wider range I* = [q;, ] Where :

q1 = qs — k * (o5 — q5)/100 (3.8)
dn = qos + k * (qos — q5)/100 (3.9)

A value of k is chosen by the analyst such that the range is neither too broad nor too narrow. In this
research k=10% is chosen which is recommended by Cooke. Then, the information score is estimated
as the average relative information with respect to the background measure of distribution I+. The
Information score is computed per expert as

p—1 + .. +p4lnp—4
q i

3.10
5,0 — 4, ] ( )

N
1

I =—Z[lnq = q +piin

© NL AR dni — qos,i

In Equation 3.10, background measure is applied as uniformly distributed. For a log-uniformly dis-
tributed background measure, the log of q; would be used instead of g;. It is observed that the infor-
mation score is not dependent on the realisations (other than being used when calculating the intrinsic
range) and hence information score may also be computed for the target variables. This approach is
commonly followed in the classical model and is implemented in EXCALIBUR".

Combined Score

A combination of the expert’s uncertainty distributions is called Decision Maker (DM). Each expert is
given a weight based on their performance on assessment of the seed variables. This method of com-
bination is called the performance-based weighed pooling or the performance based DM. Here, the
performance score is calculated as the combined score which is the product of the calibration score
and information score. Expert with higher score contributes more to the DM. Therefore, the decision
maker is influenced by an expert who can better estimate the uncertainties in his/her field of expertise.
It is important to note that statistical accuracy dominates informativeness, that is, a poor calibration
score cannot be compensated by high information score. The weight of an expert is given by

wy(e) = Indy(C,) * Ce I, (3.11)

where
Ind, = indicator function
C, = calibration score
I, = information score
w, (e) = weight of expert

"Originally developed at TU Delft, used for application of Cooke’s Classical model, Lighttwist Software maintains EXCALIBUR
now
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Ind, denotes an indicator function for the minimum threshold value (typically 0.05) of calibration
score. This indicator facilitates selection of experts based on their expertise. If the expert score exceeds
a, only then the expert is assigned a weight. In a linear pooling of item i for all experts, with the total
number of experts E, let the decision maker assessment be denoted by (DM, (x)), then Equation 3.12
shows the weighted average method of calculating DM, (x).

DMo() = ) Wo(€)fai/ ) Wa(e) (3.12)
E E

where
fe,i = expert e’s probability density function for item i

In the performance-based DM, the value of « is chosen such that the calibration score of the DM is
maximised. The weights in a performance based DM are constructed by a strictly proper scoring rule
in an appropriate asymptotic sense, that is, experts receive their maximal expected long-run weight by
stating their true belief.

The following methods can determine the DM weights:

» Global Weight : This method of weighing uses weights which are based on the performance of
each expert. The weight for each expert remains the same for all items.

» Equal Weight : Weights are not based on experts performance, and every expert receives the
same weight, w, = 1/Ng, where N is the number of experts.

 Item Weight : Each item can have a different set of weights. It is based on the information score
of all experts per item.

The equal weight DM system gives equal weights to all experts. Such a combination often gives
unreasonably large confidence bounds when assessments are pooled together. The item weight DM
system recognises the differential expertise of experts with respect to seed variables. If an expert has
less knowledge about an item then choosing quantiles that are spread further apart which lowers the
information score for that item. The global and item weight DM can further be optimised by numerical
iteration on the calibration and information scores. As an alternative, the minimum allowable calibration
score a could be increased.

Besides different methods of weighing, the classical method recommends two methods of scaling
- uniform and logarithmic. It is recommended by Cooke to use logarithmic scaling when a range of
values to be elicited for variables or its true realisation ( in case of seed variables) spans over three
orders of magnitude. In the case of log-uniform scaling, the experts’ assessment are converted to log
values, and the background measure for information score is also taken to be log-uniform. The scoring
and combining principles in logarithmic scaling is the same as that of uniform scaling.

3.1.2. Eliciting Dependence
Two quantities A and B are independent if beliefs about A do not change when given information about
B.In statistical sense,

P(ANB)

PAIB) = =555

(3.13)
where
P(A|B) = probability of occurrence of A given occurrence of B. If A and B are independent,
then P(A|B) = P(4)
P(A n B) = probability of occurrence of both A and B
P(B) = probability of occurrence of B

The theoretical background of the concepts applied in this section is given in section 5.1.
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Bayesian Networks Bayesian Networks(BNs), which are popularly also known as Bayesian Belief
Networks, Causal nets, graphical probability networks or simply BBN is an approach for graphical
modelling of problems relating to uncertainty and probabilistic assessments. A detailed description of
BNs is given in section 5.1.

Example : Consider the Figure 3.1 which consists of four variables with conditional correlations.
During the elicitation, the experts are asked for certain probabilities :

Suppose X, is observed to be greater than its respective median value, what is the probability that
X, is also observed to be greater than its median value .

Question 1: P, = P(Fx, (X;) > 0.5|F, (X;) > 0.5)

Suppose X,, X5 are observed to be higher than their respective median value, what is the probability
that X, is also observed to be higher than its median value

Question 2: P, = P(Fx, (X;) > 0.5|Fx, (X3) > 0.5, Fy, (X3) > 0.5)

Suppose X,, X;,X, are observed to be higher than their respective median value, what is the prob-
ability that X, is also observed to be higher than its median value

Question 3: P, = P(Fy, (X;) > 0.5|F, (Xz) > 0.5, Fx, (X3) > 0.5, Fx, (X,) > 0.5)

1

T T1,3)2 } I1,412,3

2 3 4

Figure 3.1: Bayesian Network with conditional rank correlations [56]

To calculate the exceedance probability P;, double integral of the bivariate standard normal density
function ¢ (u, v, p,,,) is taken. The computed exceedence probability is a function of p,,,. The prob-
ability estimated by the expert for question 1 is given by this exceedence probability. Corresponding
to the expert’s probability, product moment correlation p,,,, can be obtained (see Figure 3.2). Further,
using the relation given by Equation 5.17, the p, , can be then converted to the rank correlation, r; ,

To estimate the rank correlation correlations r 53 and ry 53 4, @ repeated inverse integral of the distri-
bution of the form ¢ (u, w, v, py,w, Py w) has to be taken. This would give p; ;3 which can be converted
to 1, 2|3 for a normal copula using the same relation given in Equation 5.16 and Equation 5.17.

In the unavailability of historical data, these correlations are obtained from Expert Judgment elicita-
tion. Elicitation of expert’s beliefs about dependence between multiple variables is carried out with the
aim of obtaining quantitative assessments. When eliciting dependence from the experts, the analyst
drafts the elicitation based on a pre-determined multivariate stochastic model.

At this stage the expert has given probabilities as an answer to the questions, these probabilities
have to be ‘converted’ to rank correlations as explained above.

Calibration of Expert’s Dependence Estimates

This section is explained based on the technique given by [82] to compute expert calibration score of
dependence elicitation. Similar to Cooke’s method, it is also based on linear pooling of assessment
using equal weights and global weights.

Considered the BN shown in Figure 3.3. The aim is to fill the correlation matrix Equation 3.15
using expert assessment. In Equation 3.15, a correlation matrix is given where each item represents a
dependence between the row and column variables. For example, r, 3 represents the rank correlation
between X2 and X3. Since the correlations are direction independent, r, ;=13 ,.The variables X1, X2,
X3, X4 are shown in Figure 3.3 using nodes and arcs. Based on the theory in section 5.1, it can be
deduced that p; 3, = 0, p1423 = 0. Using the Equation 3.14, and substituting p; 3, = 0, py3 is
computed. similarly, other partial correlation coefficients can be calculated. p is then converted to rank
correlation (r), as described in the above section. More detail about conditional and unconditional
correlations is given in section 5.1.

P1,3 — P12 * P23

P1312 =
Ja-etaa-p

(3.14)
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Figure 3.2: Expert’s conditional probability assessment as a function of the rank correlation coefficient [81]
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(3.15)

Figure 3.3: Correlation matrix and Bayesian Network with unconditional rank correlations between seed variables

In [57] propose the Hellinger distance to assess the experts’ performance for multivariate depen-
dence assessment. in [59] a technique is proposed to assess whether experts can approximate the
dependence structure of a NPBN under the normal copula assumption to a desired level of accuracy.
For Gaussian copulas the Hellinger distance H is defined as:

det(X)Y*det(Xg) /4

HQe Xp) = Jl  (1/2det(T,) + 1/2det (L)) /2

where

Y.c = Correlation matrix of seed variables

2.z = Correlation matrix of expert elicitation of seed variables

The d-calibration score can then be defined as beginequation

D=1-HQc Xp)

(3.16)

(3.17)

The d-calibration score is defined in the range of [0, 1] with 1 being the perfect score. If the score is
equal to 0, then it implies that either at least two seed variables are linearly dependent and the expert
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does not assess this or the other way round. Combining the expert assessment by linear pooling is
defined according to Equation 3.18.

E
Zp = ) W@ 23 D) (3.18)

where
Xr = Resulting target correlation matrix
W (i) = Weight of expert i,W (e) = 1/E for equal weighting system
¥ = Target Correlation matrix
E = Number of experts

3.2. Elicited Variables

Bridge structural response is usually strongly correlated to the applied load. The applied load in the
form of individual axle load of the train can be measured using a weigh-in-motion (WiM) system. No
WiM is installed on the bridge under consideration; hence, individual axle loads are elicited using expert
judgment. The train under consideration is 97.8m long with five cars. Each car of the train has four
axles with one wheel on either side. The axle load is the total of the individual wheel load. The expert
judgment elicitation is performed under the assumption that the axle load distribution in all four axles
respectively, will be equal in each of the five cars. Four variables, load in axle 1 (Ax/7), load in axle2
(Ax/2), load in axle 3 (Ax/3) and load in axle 4 (Ax/4), are assessed by the experts.

The axle load model for road WiM described by Morales-Napoles et al. [60] establishes a depen-
dency between individual axle loads. It is assumed that the rail WiM behaves similar to road WiM.
Therefore, load in each axle is correlated to load in another axle in the train. Therefore, to include axle
load dependency in the statistical model, a correlation between the axle loads is elicited using expert
judgment.

3.3. The Elicitation

For this research, seven experts participate in assessing variable uncertainty and dependence based
on the methodologies described in section 3.1. Since this research was a pilot study, all experts are
not necessarily experts in railway engineering. All the experts, however belong to the civil engineering
community. First, the experts are given an in-person workshop to explain the methodology and the
goals of elicitation. To familiarize the experts with the tone of the questions, a training expert judgment
exercise is carried out. Following the training session, personal assessment of experts is performed in
approximately one hour. To maintain fairness and neutrality, the facilitator of the expert judgment work-
shop is present at all times. The expert judgment questionnaire prepared are included in Appendix B.

To elicit uncertainty in variables, four target variables and eight calibration variables are chosen.
The four target variables are the variables to be assessed, Ax/1, Ax/2, AxI3, Ax/4. In general, using
twelve or more seed questions is recommended for expert judgment elicitation. However, due to the
lack of relevant data on which seed questions can be framed, this research is limited to using eight seed
questions eliciting assessment on eight seed variables only. These eight seed variables can be seg-
mented into two groups. The first consisting of questions concerning the maximum weight measured
by a WiM system installed on a highway in the Netherlands in a certain time frame. The second group
consists of questions concerning the mean axle load measured by a WiM system installed on rail tracks
in the Netherlands. These variables are related to the axle load distribution in moving vehicles and are
thus associated with the target variables. To elicit dependence in variables, four target dependencies
and three calibration dependencies are chosen. The dependencies are elicited based on conditional
(exceedance)probabilities. The conditional probability is transformed into a rank correlation coefficient
(to build Bayesian Network ) under the assumption of normal copula densities of variables, using the
relation as shown in Figure 3.2.
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3.4. Results and Discussions

Uncertainty and dependence elicitation were performed in this thesis, based on Classical Model and
conditional probabilities technique. This section discusses the analysis of the elicitation and explains
the results observed.

3.4.1. Uncertainty

Seed Variables

Figure 3.4 and Figure 3.5 present the results obtained for all the seed variables. In the figures,
experts’ assessment for 5t 50t" and 95" percentile are marked with solid markers. The true value
is shown with a dark blue marker. Equal weight assessment is also shown on these graphs, which will

be discussed later in the section.
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Figure 3.4: Uncertainty distributions of the experts for seed question 1 to 4 - maximum axle load in Axle 1 to Axle
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Figure 3.5: Uncertainty distributions of the experts for seed question 5 to 8 - mean and maximum axle load in
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Target Variables

The general observations on the target variable elicitation of the Expert Judgment study follows:

» Most experts have a smaller interval width for all target variables as compared to the that of seed

variables.

+ All experts give similar target variable distribution for target variable 2 and 3. Target variable 2 is

the axle load distribution in axle 2 and target variable 3 is the axle load distribution in axle 3.

Figure 3.6 presents the results for target variable 1 and 2. In the figures, the bar limits are 5, 50"

and 95" percentile.
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Figure 3.6: Uncertainty distributions of the experts for all target variable 1
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Table 3.1: Calibration, Information and combined score for all experts

Information score Information score

Experts Calibration all variables seed variables Total Score
Expert1  8.76E-02 1.47 1.17 1.03E-01
Expert2 2.53E-04 1.41 1.44 3.65E-04
Expert3  3.44E-02 1.17 0.83 2.85E-02
Expert4  3.59E-08 1.64 1.98 7.10E-08
Expert5 6.63E-05 1.76 1.97 1.31E-04
Expert 6  1.44E-04 0.74 0.95 1.37E-04
Expert7  4.97E-08 1.96 2.29 1.14E-07

Table 3.2: Calibration and Information score for Decision Makers
EW: Equal Weight ; IW: Item Weight ; 0.02: significance value of 0.02; op=optimized; GW : Global weight

Information score

Calibration for seed variables
DM_EW 2.86E-01 0.18
DM_IW_0.02 6.69E-02 0.84
DM_IW_op 8.76E-02 1.17
DM_GW 0.02 6.69E-02 0.82
DM_GW_op 8.76E-02 1.17
DM_GW 6.69E-02 0.73

Calibration for uncertainty
Each expert contributes to the overall decision making based on their closeness to the true value in a
statistical sense using information scores and calibration scores, described in section 3.1.

The scores of all seven experts are presented in Table 3.1. The calibration score is defined in the
range of [0, 1] with 1 being the highest score and 0 being the lowest score. Usually, the minimum score
at which an expert’s contribution is counted is 0.05. The information score is measured relative to a
background measure and hence can be greater than 1. For the same reason, the information score
can be calculated for the target variables as well. The total score also called the combined score of
the expert is the product of the calibration score and information score. The detailed description of
calibration, information and combined score is given in section 3.1.1.

In the Table 3.1, the information score when both target and seed variables are considered is close
to the information score for only seed variables. This supports the assumption that the expert assesses
the target variables and seed variables with similar uncertainty. For expert 1, both the calibration and
information scores are very high. For Expert 4, 5 and 7, the calibration score is very low, and this
lowers their total score despite a good information score. Expert 2, 3 and 6 have better calibration
scores compared to experts 4, 5 and 7 with similar information scores hence have a higher total score.

Decision Maker

To arrive at a resulting uncertainty distribution for target variables, the expert uncertainties are com-
bined. The Decision Maker (DM) combines the expert distributions by using a weighting system (see
Equation 3.1.1. The selection of the weighting system is made by the analyst. The different weighting
system considered in this research are Global Weights (GW), Equal Weights (EW), and Item Weights.
(Iw).

The goal of the DM is to maximise the calibration and information score. The analyst accepts the
DM with the highest calibration and information score. In Table 3.2, all DM system have calibration
scores higher than 0.05; hence all of them are acceptable. Global weight and Item weight are rejected
because they are either equal to or lower than the calibration score of a single expert (Expert 1). There-
fore, DM_EW is the chosen Decision Maker for resulting uncertainty distributions. In Figure 3.7, the
confidence interval for both GW (without optimisation) and EW are spread out. Expert 2 - Expert7 have
calibration score less than 0.05; hence the analyst chooses Decision maker with an equal weighting
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system in order to choose the decision maker with highest calibration score.

Expert? [ | o
- <~ Realisation
Experts |
Experts | |
Expertd [ |
Expert3 [ |
Expert2 . |
Expertl |
GW_nop |

EW |

0 5 10 15 20 25 30
Axle Load (ton)

Figure 3.7: Uncertainty distributions for experts, equal weight DM and global weight DM for seed question 4
EW: Equal Weight ; GW,,,,, : Global Weight without optimization

Resulting Distributions

The probability distribution for target variables is estimated from the equal weighting Decision maker.
The DM provides with the 5th, 50th and 95th quantiles for the four target variables. The Oth and 100th
percentile is extrapolated to using the k=10% overshoot rule (section 3.1).

The resulting quantiles are presented in Figure 3.8. Based on these distributions, random values
can be retrieved using random sampling using a Monte-Carlo approach.
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Figure 3.8: Cummulative probability distribution from EJ elicitation on uncertainty



30 3. Expert Judgment Elicitation

3.4.2. Dependence
To obtain, the dependencies(described in section 5.1 and section 3.1.2) between the four variables,
Axl1, AxI2, AxI3 and Axl4, experts were asked to assess the conditional probabilities between seed
variables and target variables. The framing of the questions is of the following form [82]:
“Consider the pair of variables, X and Y. Suppose that Y has been observed to be above its median
value. Knowing this information, what is the probability that X also lies above its median value”
Following the description above, the definition of X and Y in this research is presented in Table 3.3.
The axle load in seed variables is associated with the WiM system installed on highways in the Nether-
lands. The axle load in target variables is associated with loads carries by train axles.

Table 3.3: X and Y definition for elicitation of dependence for seed and target variables

Seed Variables (Load in ton)

Target Variables (Load in ton)

X Y X Y
Question1 Axle1 Axle?2 Question 1 Axle 1 Axle 2
Question2 Axle2 Axle3 Question2 Axle2 Axle3
Question3 Axle3 Axle4 Question3 Axle3 Axle4
Question4 Axle4 Axle1

Table 3.4: Conditional probability assessment of all experts and realisations

Seed Variables

Target Variables

Q1 Q2 Q3 Q1 Q2 Q3 Q4

Expert 1 60% 80% 85% 60% 80% 80% 40%
Expert 2 80% 85% 90% 80% 80% 80% 60%
Expert 3 10% 40% 10% 20% 30% 30% 20%
Expert 4 60% 80% 90% 60% 70% 70% 50%
Expert 5 65% 70% 60% 70% 75% 75% 40%
Expert 6 50% 60% 70% 70% 75% 80% 85%
Expert 7 40% 70% 80% 85% 76% 85% T72%
Realisation 68.03% 71.09% 90.79%

In Table 3.4, expert’s beliefs about dependencies between seed and target variables are presented.
Comparing the results in Table 3.4 to Figure 3.2, it can be concluded that other than Expert 3, all experts
assess a positive correlation between seed variables. The true values or realisations also match the
experts’ beliefs. Expert 3 believes that both seed and target variables are negatively correlated. All
other experts think that the dependencies are related to the position of the axle and hence are positively
correlated; however each expert assesses different probabilities.

Calibration for dependence
The experts are given a calibration score through d-calibration score [58] which uses Hellinger distance
(section 3.1.2). More details about the methodology are presented in Figure 3.1.2.

axlel axle2 axle3 axle4
1 T T3 T4 axlel
se=| Ta 1 T3 T4 axle? (3.19)
731 T3, 1 T34 axle3
71 T2 743 1 axle4

The symmetrical rank correlation matrices for all experts (E1,..,E7) are presented in Equation 3.20 to
Equation 3.26, represented by 5, ¢ for each experti. The correlation matrix of true values or realisations
of the seed variables in given in Equation 3.29.
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2,1 13,2 74,3
Axle1 ———| Axle2 Axle3

Axle4

Figure 3.9: Bayesian Network with unconditional rank correlations between seed variables

1 0.31 0.25 0.23
< 0.31 1 0.81 0.72 )
ZElc =

025 081 1 089 (3.20)
023 072 089 1
1 081 072 0.69
081 1 089 085
22 ‘< 072 089 1 095 ) (3-21)
069 085 095 1
1 -095 03 -0.28
-095 1 -031 03
ZpsC = 03 -031 1 -0.95 (3-22)
-028 03 -095 1
1 031 025 024
031 1 081 0.77
ZEaC ‘< 025 081 1 095 ) (3-23)
024 077 095 1
1 045 027 0.09
045 1 059 0.19
ZEs€=| 027 059 1 031 (3.24)
0.09 019 031 1
1 12E-08 3.87E—09 2.34E — 09
1.2E - 08 1 0.31 0.19
ZE6C = | 387F - 09 0.31 1 0.59 (3.25)
2.34E — 09 0.19 0.59 1
1 -031 -019 -0.15
-031 1 059 048
ZE7€=| 019 059 1 0.81 (3.26)
-015 048 081 1

The d-calibration score lies in the range [0, 1], where 0 is the worst score, and 1 is the best score.
If the d-calibration scores lie below a threshold value, then the expert is given a 0 score. Based on
the individual d-calibration score, each expert’'s contribution to the total score is calculated and then
assigned a weight. This method is followed in the global weight system of combining experts’ assess-
ment. In equal weight system, each expert is assigned the same weight irrespective of the d-calibration
score. In Table 3.5, the resulting d-calibration score for the different weighing methods considered in
this research is presented. It is observed that the global weighing system has a better d-calibration
score. The objective is to maximise the calibration score. Therefore global weights are used in this
research.

Table 3.5: d-calibration score for combination of experts

d-calibration score
0.4521
0.7925

Equal weights
Global weights

The maximum calibration threshold for global weights is 0.6950. In Table 3.6, a d-calibration score of
each expertis listed. Itis observed that only Expert 4 has a score higher than the optimum threshold and
hence gets a weight of 1. Comparison of Equation 3.29 and Equation 3.27 supports that combination
using equal weighing system, only 7, , and 13, is close to realization values. This observation can be
attributed to the low degree of correlation, though positive, between seed variables assessed by most
experts. Hence, even though, only one expert contributes to the pooling of assessments in the global
weighing is acceptable.

The influence of ignoring the minimum threshold is also studied. It is observed that when the as-
sessment of expert 4 is combined with that of expert 1, who has the second highest d-calibration score
( and also just misses the minimum threshold value ), the d-calibration score of the decision maker is
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Table 3.6: d-calibration score and weight of experts

d-calibration score  weights

Expert 1 0.6943 0
Expert 2 0.6328 0
Expert 3 0.0864 0
Expert 4 0.7925 1
Expert 5 0.4277 0
Expert 6 0.4599 0
Expert 7 0.5414 0

0.72. This is an interesting point of analysis, whether to choose a decision maker with only one expert,
or a decision maker with combination of two experts’ assessment with a slightly lower d-calibration

score.
1.00 0.09 023 012
0.09 100 053 05
ZEwC _< 023 053 1.00 0.51 ) (3.27)
012 05 051 1.00

1 031 025 024

031 1 081 077

ZewC=| 025 081 1 095 (3.28)
024 077 095 1

1 0.54 0.34 0.32
0.54 1 0.62 0.59
LrealisationC = ( (3.29)

0.34 0.62 1 0.96
0.32 0.59 0.96 1

Resulting correlation matrix

To estimate the combined target dependencies based on a combination of expert assessment, linear
pooling of expert assessment of specific dependencies is performed. In this research, global weighing
is chosen. Only expert 4 contributes to the target correlation matrix since no other expert carries weight
(see Table 3.6). The resulting target correlation matrix is shown in Equation 3.30. In the elicitation of
dependencies in seed variables (built on WiM for highway vehicles), it is assumed that that 7, ;)5 3 = 0,
hence exceedance probabilities are not elicited between axle 4 and axle 1. However for target variables
(loads in train axles), it is assumed that every n = 1...N car has j = 1...4 axles, and distribution of
every jt" axle of all N cars is the same. Therefore, according to the EJ analyst, load in axle 4 of
car n is not independent of load in axle 1 of car n+1, which mathematically means r,; # 0. This is
represented in the Bayesian network shown in Figure 3.10. In the resulting matrix, post combination of
expert assessment, the resulting correlation between load in axle 1 and 4, 1, ,=0.0 that is load in axle
4 and axle 1 are unconditionally independent according to the assessment by the experts.

1 0.31 0.19 0
0.31 1 0.59 0.35
ZresultC = (3.30)

0.19 0.59 1 0.59
0 0.35 0.59 1

14,1 13,4 r2,3 r,2 4,1
e AXle 11— | Axle 4 Axle 3| ,|Axle 2 Axle 1 Axle 4
L . J L . J B -+ J
Car n-1 Carn Car n+1

Figure 3.10: Bayesian Network with unconditional rank correlations between target variables
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3.5. Measured Data vs Expert Judgment elicitation

In the Netherlands, railway weight-in motion data is measured at 45 sites on Dutch Railway network.
More details about the technology and the type of data collected is provided in Appendix D. A compar-
ative study is performed between the results of the expert judgment elicitation and the measured data.
In Figure 3.11 and Figure 3.12, the comparison of the cumulative distribution function of axle loads is
shown. It can be seen that the experts have a lower estimation for the lower bound of the axle loads
distribution and a higher estimation of the higher bound of the axle load distribution. Further, since
the comparison is done between two different countries, therefore, there may be difference in loading
conditions and track conditions. On comparing the correlation matrix, it can be observed that the expert
assessment of dependency between axle loads is significantly different from the measured data. On
further analysis, it was inferred that the calibration questions and target questions for Expert Judgment
elicitation did not implicitly state that dependency between axle 4 of car n + 1 and axle 1 of carn is
asked. Further, the calibration questions for the dependency elicitation was based on data from WiM
on highway vehicles. Therefore, the difference in the dependence between axle loads, other than due
to the difference in locations, may be because of the data used for calibration questions.
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Figure 3.11: Cummulative distribution function of axle loads in tons measured with Rail WiM in Netherlands
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Figure 3.12: Cummulative distribution function of axle loads in tons elicited from experts
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Axlel Axle? Axle3 Axled
Axlel 1,00 0,84 0,88 0,79
Axle2 0,84 1,00 0,82 0,91
Axle3 0,88 0,82 1,00 0,83
Axled 0,79 0,91 0,83 1,00

(a) Correlation matrix between axle loads for measured data
Axlel Axle2 Axle3 Axled
Axlel| 100 031 019 000
Axle2 0,31 1,00 0,59 0,35
Axle3| 019/ 059 1,00 059
Axled 0,00 0,35 0,59 1,00

(b) Correlation matrix between axle loads for elicited
dependency

Figure 3.13: Comparison of correlation matrix between elicited dependency and measured data

3.6. Conclusions

The expert judgment elicitation is carried out for both uncertainty and dependence since there is no
historical data available on axle load distribution in trains. The elicitation of uncertainty and dependence
is carried out independently. This is because expert calibration may not be the same for uncertainty
and dependence. In this research, equal weighting is chosen for combining expert assessment for
uncertainty, however, for dependence, global weights are used.

For elicitation of uncertainty, seven experts are assessed. It can be observed, that the response to
seed variables based on railway WiM is more accurate than highway WiM. However, if seed variables
only based on railway WiM are chosen, then there are too few variables to assess on. Therefore, equal
weights are chosen based on the overall high calibration score with all seed variables. The calibration
could be improved if the seed variables are based on railway WiM since it is more reflective of the
expert’s field of expertise.

For elicitation of dependence, three seeds variables are used. The seeds are only based on the
highway WiM, since highway WiM data was the only reliable data available. Also, this research majorly
highlights the application of the technique in structural engineering; hence further improvement can be
made in selecting seed variables for dependence. It is observed that of the experts is very accurate in
assessing dependencies and hence is given a weight of 1 in a global weighing system.



The Case Study

In this research, a railway concrete girder is assessed for failure under bending. The loads that are
applied on the bridge are the self weight and the live loads in the form of railway axle loads. The
bridge assessment is performed under uncertainties in load and material strength. As stated before,
the load uncertainties are elicited from the Expert Judgment (chapter 3) and material uncertainties are
modelled from experimental tests performed in past research [53]. In order to assess the influence
of these uncertainties on the bridge response, a finite element analysis of the bridge is performed.
For every finite element analysis (FEA), the load and material properties are deterministic, which are
sampled through Monte Carlo simulations (see section A.4). This chapter discusses the geometry of
the model, and finite element techniques adopted in this research. Further, the application of ABAQUS
CAE in performing FEA are discussed.

4.1. Simply supported model with plain concrete

According to the recommendations available in the literature (section 2.2), the modelling methodol-
ogy in finite element depends on the level of assessment to be performed for the analysis. In order
to perform the analysis at the level of assessment Il, a linear finite element model is an acceptable
approximation for determining shear stress distribution. In this research, the same assumption is ex-
tended to determine the bending stress distribution as well. Hence, in this study, a LoA Il analysis is
performed using a simply supported plain concrete beam.

As a reference, the geometry of the concrete girder and deck modelled is similar to that of the new
interurban bridge between the Mexico and Toluca which has a total span of 57.7km. The train which is
proposed to be running on this bridge has a 300,000 passenger capacity and will be running at a speed
of 160km/h. The bridge girder which has clear span of 33m and is simply supported over the columns
of the bridge is chosen for the analysis in the research. In Figure 4.1, the section of the bridge girder
is presented. The longitudinal beams of the bridge are double box girders. The height of the girder is
2.2 m and depth of the girder varies across the span due to non-prismatic sections used.

In this study, the bridge is modelled as a simply supported concrete beam. First, an equivalent
rectangular beam section is considered. The equivalent section is derived by equating the area of
cross section and moment about major axis. Figure 4.2 shows the actual cross section profile of real
bridge and derived equivalent rectangular section of bridge.
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Figure 4.2: Simply supported beam model

The finite element analysis is performed using 2-noded beam element, B21 in x and y plane. As
guided by past researchers (see chapter 2), for the initial assessment of the bridge, a linear elastic
analysis is performed on the simply supported beam. The sketch of the beam is shown in Figure 4.3.

33m

7Y A

Figure 4.3: Simply supported model sketch
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Table 4.1: FEM input of simply supported model

1D Model
Analysis Type Linear Elastic
Element Type B21
Degree of Freedom/element 6
Interpolation scheme Linear
Integration scheme Implicit
Non-Linear Geometry Effects No
Total Number of Elements 66
Total number of nodes 67
Element size 0.5m

Table 4.2: Characteristics of the FEM Model

Span Height Width Material Material
Length of section of section Type Model
2D . 33m 29m 1.03m Plain Linear Elgst|c
Analysis Concrete Isotropic

In the following section, brief description on the FE environment of ABAQUS CAE is discussed
which is used in this research to model the bridge.

4.2. ABAQUS FE System

To create and analyze the bridge, Finite Element Analysis is performed using ABAQUS finite element
software. There are two ways to perform pre-processing of the model. First, ABAQUS/CAE, which is
a graphical and interactive interface, where the individual components can be modelled as parts. The
second way is to write the input file manually using ABAQUS keywords. The input file gives higher
flexibility to the user however, one has to learn the exact syntax. Model geometry, material properties,
connections and boundary conditions are defined in the input file. For this research, first the model
is defined in ABAQUS/CAE. The input file is generated by CAE environment. For further analysis,
changes are made to the already generated input file directly.

In this research, a moving load analysis has been performed to analyze the bridge behaviour under
moving train load. To model the moving load, different force time amplitude curves are defined for each
node in the script file. A matlab code is written to generate different amplitude curves and calculate
the time steps such that at each time step, the load is exactly at a particular node. To perform, a
probabilistic assessment of the bridge, different samples of load combination is generated using data
elicited from experts (refer chapter 3). To run the script for each sample of the load combination, a
python script is written, which generates a different input file for each sample. For example, if 500
samples of load combinations (Axle load 1, Axle Load 2, Axle Load 3, Axle Load 4) are created, the
python script generates 500 input files for each load combination.

Since the analysis performed in this study is linear elastic, a fixed time increment can be used.
ABAQUS/Viewer, is a post processing system where the user can see the results in a graphical user
interface.

4.3. Modeling of moving Load

As stated in chapter 2, train loads have a static and a dynamic component when acting on the bridge.
The dynamic component (m - d) which takes into account the dynamic amplification factor due to train
bridge interaction is ignored in this study. Uncertainty in the static component (m - g) is elicited using
expert judgment studies as described in chapter 3. The next step is to model the loads on the bridge
such that at t = 0Os, the train is one time increment behind entering the bridge and at t = t;,,;, the train
crosses the bridge completely. To perform the finite element analysis with the modelling the moving load
(at a speed of 160km/h), it is assumed that the train loads being applied exactly at nodal position at each
time increment will give approximately accurate results. Equation 4.1, Equation 4.2 and Equation 4.3
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give the equations to calculate the total time,time increment and number of increments for the train
passage. In Equation 4.2, it is assumed that the nodal distance is equal between all nodes on beam,
and the nodal distance is smaller than the smallest inter-axle spacing.

(lengthbridge + diStanceaxll—axleend)

Time = 4.1
total velocityirqin (4.1)
Ti nodaldistance (4.2)
ime; =— .
increment velOCitytrain
. Timetotal
numberofincrements = (4.3)

Tlmeincrement

4.4. Results and Discussion
This section discusses the results of one of the simulations performed. The values of Youngs modulus(Ec),
mass density (wc), and axle loads, axle1, axle2, axle3, axle4 are sampled using Monte Carlo simula-

tions, which is discussed in the next chapter. The variables are treated as deterministic in simulation 1
and the values are listed in Table 4.3.

Table 4.3: Deterministic values for random variables for simulation 1

Property Deterministic Value for simulation 1
Youngs Modulus (Ec) (MPa) 31926
Mass density (kg/m*3) 2345
Axle Load 1(kN) 61.64
Axle Load 2(kN) 211.40
Axle Load 3(kN) 132.20
Axle Load 4(kN) 191.88

All the results in the following sections are based on simulation 1 using values listed in Table 4.3.
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4.4.1. Concentrated force

In Figure 4.4, the rendered beam profile is shown at different time steps representing the concentrated
force distribution as the axle load moves on the bridge. At Step 0 it can be seen that there is not
concentrated force on the bridge and hence the train has not entered the bridge. At time step 1, the
first axle of the train is at the first node of the beam. The maginitude of vertical force in axle 1 for this
simulation is 61.64kN. The time increment is given such that the axle forces are always acting on nodal
position. At time step 27, all four axles of the first car are acting on the bridge. Further, at time step 64,
first two cars of the five car train is on the bridge. After this time step, the first axle of the first car leaves
the bridge. It can also be observed, that the concentrated force of axle 1 of first car is equal to that of
axle 1 of second car and similarly for axle2, axle 3 and axle4. This is because of the assumption for
this simulation that the load in every j = 1-4 axle of n = 1 - 5 car of the train is equal. The results of
this simulation are presented as BN-I in the next chapter.

CF.CF2 CF.CF2
0.000e+00 +0.000e+00
+0.000e+00 -1.023e+04
+0.000e+00 -2.046e+04
+0.000e+00 -3.069e+04
+0.000e+00 -4.091e+04
+0.000e+00 -5.114e+04
+0.000e+00 -6.137e+04
i
T .
Y Y
1—» X Step: load L X Step: load
Increment  0: Step Time = 0.000 Increment  1: Step Time = 1.1300E-02
Primary Var: CF, CF2 Primary Var: CF, CF2
(a) Step0 (b) Step1
CF, CF2 CF, CF2

+0.000e+00 +0.000e+00
-3.101e+04 -2.521e+04
-6.201e+04 -5.042e+04
-9.302e+04 -7.563e+04
-1.240e+05 -1.008e+05

-1.550e+05 -1.261e+05
-1.860e+05 -1.513e+05

' | I |1 I N I ]

Y Y
L X Step: load L X Step: load
Increment  27: Step Time = 0.3051 Increment  64: Step Time = 0.7232
Primary Var: CF, CF2 Primary Var: CF, CF2
(c) Step27 (d) Step64

Figure 4.4: Concentrated force for simulation1 in undeformed rendered beam profile
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4.4.2. Shear Force

In Figure 4.5, the shear force distribution in the rendered beam profile is shown. At time step 0, since
there is no axle load and only self weight is acting on the bridge, the shear force distribution is maximum
and equal in magnitude at the supports. However at time step1, as the train axle is over bridge node1
Figure 4.5(b), the shear force is higher at node 1. As the train moves over the bridge, the shear force
changes and increases at both supports, though it remains unequal at both ends. When all four axles
of the first two cars are on the bridge, the shear force at element 66 ( which connects node 66 and 67)
is higher than element 1.

SF, SF2 SF, SF2

(Avg: 75%) (Avg: 75%)
+8.472e+05 +8.481e+05
+5.648e+05 +5.554e+05
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-6.250e-02 -2.988e+04
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Figure 4.5: Shear force distribution for simulation1 in undeformed rendered beam profile
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4.4.3. Bending moment

In Figure 4.6, the bending moment distribution in the rendered beam profile is shown. Bending moment
is always maximum at the mid span or the region near the mid span in the beam. The bending stresses
in a prestressed beam are mainly carried by the longitudinal reinforcement or prestressed tendon.
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Figure 4.6: Bending moment distribution for simulation1 in undeformed rendered beam profile

4.4.4. Beam stress

The beam behavaiour is as according to expectations, that is compressive at the top and tensile at the
bottom. The bending stresses are equal in compression and tension as seen from Figure 4.7. The
shear stress observed in Figure 4.8, is critical at the end supports. It can also be observed that the
shear stress increases as the more train axle get introduced on the beam
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Figure 4.7: Horizontal Stress (S11) distribution for simulation1 in undeformed rendered beam profile
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Figure 4.8: Shear stress(S12) distribution simulation1 in undeformed rendered beam profile



Probabilistic Analysis

This chapter provides the details of the probabilistic assessment of the bridge. In the first part of
the chapter, sampling using Monte-Carlo simulation is discussed. The second section of the chapter
discusses the methodology to model moving load on the bridge. This is followed by determining the
time steps at which maximum bending moment or shear force at critical sections is observed. The next
section discusses the Non-Parametric Bayesian Network (NPBN) for the concrete simply supported
beam, which described in chapter 4. Finally, the probability of failure under shear is discussed.

_Sampllng of axle loads from ?ngn Moving load analysis on FEM Model
judgement assessment combination

Determine the time-step which max
B.M., max S.F. is observed at either
middle span or end span

Build NPBN with variables - axle load,
BM & SF

|

} Bayesian Copula Testing ‘

Does the
No bivariate
distribution test for
Gaussian
distribution?

Remove nodes or

remove arcs

Yes

Determine probability Inference from | | Conditionalize Inference from Validation of Non parametric Bayesian
of shear failure conditionalising on axle loads NPBN network

Figure 5.1: Representation of steps followed for probabilistic analysis of simply supported concrete beam

5.1. Theoretical background of Bayesian Network and Conditional
Probability

Bayesian Networks, which are popularly also known as Bayesian Belief Networks, Causal nets, graph-
ical probability networks or simply BN is an approach for graphical modeling of problems relating to
uncertainty and probabilistic assessments. More formally, they can be defined as directed acyclic
graphs (DAGs) comprising of nodes and arcs. The nodes in a BN represent univariate random vari-
ables and the dependency relations between these nodes are represented by arcs. BNs, because of
their property to represent probabilistic distributions and dependence between variables is a useful tool
to represent multi-dimensional probabilistic analysis. Furthermore,Bayesian network helps the analyst
to draw statistical conclusions which can be made based on probability calculus and Bayes theorem.
The graphical interface offered by Bayesian network is considered as its qualitative advantage, and the
numerical analysis aspect can be treated as its quantitative advantage. More details about Bayesian
Networks are explained in the following sections.

43
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5.2. Probability and Statistics

As stated before, the Bayesian networks represent univariate distribution and dependencies between
variables. These two concepts mainly represent the probability and statistical background of the BNs.
Dependence
Two quantities A and B are independent if beliefs about A do not change when given information
about B.In statistical sense,

P(ANB)

P(AIB) = —5 s

(5.1)

where
P(A|B) = probability of occurrence of A given occurrence of B. If A and B are independent,
then P(A|B) = P(4)
P(A n B) = probability of occurrence of both A and B
P(B) = probability of occurrence of B

The same definition can be extended to two jointly distributed continuous random variables X and Y
( continuous because only continuous variables are dealt with in this research). The conditional density
of X in presence of Y can be defines as the probability distribution of X when Y is equal to a particular
value, or in mathematical expression can be given by £, (X|Y = y).

fXY) = EXINDE) = fTIX)fx(X) (5.2)

The equation Equation 5.2 is based on the Bayes’ Theorem according to which if fy(X) # 0 and
fy(Y) # 0 then:

XY = fy (VIX)fx (X)/ fr (V) (5.3)

K YIX) = fx XN fy (V) / f (X) (5.4)

Bayes’ Rule is central to the understanding of the probability calculus perfomed in Bayesian Net-
works. The theorem in the context of distributions is explained further. Assuming we have two vari-
ables X and Y. These two variables are continuous and their joint distribution is given by f(X,Y) =
fxXIV)fy(Y). Now, we have an observation for X = x, post which we would like to calculate f, (Y]|X = x)
that is understand how would our belief change about Y when given information of X = x. In order to
understand this, the terms prior distribution and posterior distribution are explained. The former term
refers to the initial distribution obtained before any extra information is added. The latter term refers
to the revised distribution using the additional information later obtained. Therefore, f; (V) is the prior
distribution for Y and f,(Y|X = x) is the posterior distribution for Y. According tp the Bayes’ rule,
fy (Y]X = x) can be obtained by multiplying f, () withfy (X = x|Y)/fx(X). Here fyx(X = x|Y) can be
written as the likelihood for Y given X = x thatis L(Y|X = x). Hence, the posterior distribution can
be expressed in terms of prior distribution and likelihood. This principle is used to conditionalise the
Bayesian Network that is to derive posterior distribution after getting additional information regarding a
variable or a set of variables.

The concept explained above can be extended to a set of n variables (X, X, X5 - X;,) based on the
chain rule given by:

fX1, X3, X3 Xy) = f(Xn| X1, Xp, X3 o X 1) f (-1 | X1, X3, X3 - Xy p) -+ £ (K1) (5.5)
As mentioned before, the arcs in a BN represent dependence between variables. To quantify this
dependence, there are few statistical measures available which are discussed below:
» Pearson’s Product-moment correlation coefficient
It can be defined between two variables X and Y in terms of covariance and standard deviation.
_cov(X,Y) EX-Y)—EX)E()

Py = Ox Oy Jvar(X) -var(Y)

(5.6)
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where
E(X) = Expectation of variable X
E(Y) = Expectation of variable Y
oy = standard deviation of X
oy = standard deviation of Y

The Pearson’s product-moment correlation coefficient hereafter referred to as product-moment
correlation coefficient is defined in the interval [-1,1]. For p > 0, the variables X and Y are
positively correlated, for p < 0, the variables X and Y are negatively correlated and for p = 0,
the variables X and Y are independent. Positive correlation can be simply understood as a linear
relation between X and Y with positive slope and similarly negative correlation can be understood
as a linear relation with negative slope.

Though relatively straight-forward to compute, the product-moment correlation coefficient has
certain drawbacks in uncertainty analysis. First, it is mainly defined for finite expectations and
variance values of X and Y. Second, it is not invariant under non linear increasing transforma-
tions.

Spearman rank correlation
To overcome the difficulties in modelling dependencies using product-moment correlation coeffi-
cient, Spearman (1904) introduced the Spearman rank correlation.

r(X,Y) = p(Fx (%), K () 6.7)

where

r(X,Y) = Rank correlation
Fy = cumulative distribution functions for X
F, = cumulative distribution functions for Y

To compute the rank correlation, we simply substitute the values with their ranks. For example,
we have K samples of vectors X and Y, then the distribution (x,x;, - xx) and (y1, ¥y, *** yx) can
be converted to ranks (x;,x; x,’{) and (yl',yz' ---y,’() respectively. The sample rank correlation is
computed Equation 5.8

o L& -00 -
\/zi(xg ~x20; ~)*(5.8)

where
X = mean of (xq,x; - xg)

x = mean of (y;, ¥, - yx)

Alternatively, the rank correlation can also be defined in terms of product moment correlation as
given in Equation 5.17 for a normal copula ( which will be elaborated upon later).

Partial Correlation
The partial correlation can be defined in terms of partial regression coefficients and can be com-
puted similarly to partial regression coefficients.

P12;3,-n-1 — Pin;3,- n—-1P2n;3,-- n-1
= (5.9)

P12;3,-m =
_ 2 _ 2
\/1 p 1n;3,~~~,n—1J1 P on3, m—1
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5.3. Basics of Bayesian Network

A Bayesian Network as stated before consists of a set of variables X = {X;, -, X,,} and dependencies
between them. The directed acylic graphs (DAGs) represented a dependence structure of variables.
Discrete BNs, continuous BNs and hybrid BNs are the three types of BNs for discrete variables, con-
tinuous variables and both types of variables respectively. Complete description of the approach can
be found in [70]. A directed un-acylic graph of variables X;, X, and X5 is shown in Figure 5.2. The
concept of parent and child in a Bayesian network is explained though this figure. variable X, is a child
of variable X; and X; is a child of X5 and similarly X; is a child of X;. Further, X; is a parent to variables
X, and X5 and X, are parents to X; and X5 respectively.

Figure 5.2: directed un-acyclic graph of X1,X2,X3

In Figure 5.3(a), it is seen that X; influences X, and X, influences X5, however X; does not directly
influence X;. Therefore, if value of X, is known, X; and X; are completely separated. This concept is
known as d-separation in which X; has not influence on X5. In Figure 5.3(b), the children X,, X;andX,
are d-separated if X; is known. The third case is interesting, where the child node X, has three parents
X,,X3 and X,. If information about X; is known, X,, X;andX, are dependent.

Thus a BN is constructed first by identifying the relevant variables which are non-deterministic in
nature. The model builder then arranges them as nodes and arcs and the arcs representing depen-
dencies must be quantified by the model builder. Given the parents of a particular node, the child node
variables is conditionally independent of its ancestors. Hence mathematically expressing, let each vari-
ables be associated with a conditional probability function of the variable given its parents f, pq(x,) then
the joint probability can be written as:

fxi e xn = iz frpacx) (il Xpagxy)) (5.10)

if
Pa(X;) = 0 then fy, pax)) = fx;

In Equation 5.10, if variable X; has no parents, then the variable is independent at all times.
In order to explain Non Parametric Bayesian Network (NPBN), first the concept of Copulas will be
introduced since the NPBNs are based on bivariate copulas.

5.4. Copulas
In simple terms, copula can be understood as a distribution on the unit square such that its marginal
distributions are uniform. The dependence structure of associated random variables are included in a
copula. According to R.B. Nelson, a copula is a function C from [0, 1] to [0, 1].

In two dimensions, joint distribution of two variables X and Y defined in terms of the function C as :

Fyy(x,y) = C(Fx (%), (¥)) (5.11)

where
Fxy = joint distribution of (X,Y)
Fx(x) = marginal density of X
Fy(y) = marginal density of Y

In this research, only Gaussian or normal copula is used.The terms normal and Gaussian in the
content of copulas and joint distributions are interchangeable.
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Figure 5.3: Different types of directed acyclic graphs (a)Serial Connection (b)Diverging Connection (c)converging
Connection

Gaussian Copula
A multivariate normal distribution is used to build a Gaussian copula using the probability integral trans-
form.

Cy (W) = Py (P~ 1(uy), -~ , D~ 1(ug));u € [0,1]¢ (5.12)

where
@~ 1 = inverse commutative distribution function of standard normal
&y = joint commutative distribution function of multivariate normal distribution with mean
vector zero and covariance matrix equal to the correlation matrix ),

For a bivariate copula, the Gaussian copula is expressed as:
Co(u,v) = @, (7 1(w), @~ 1(v)) (5.13)

where
u,v € [0,1]¢
p = product moment correlation between X and Y

A covariance matrix for a bivariate copula is given by :

Z:( ,1) p > (5.14)

Further, the conditional product moment correlation is equal to partial correlation for joint normal
variables [33] (refer Equation 5.15 and Equation 5.16).

Pxy;z = Pxv|z (5.15)
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For a normal copula,

_ P12 — P1,3P23
P1,213 =
Jl - p21‘3\/1 — P

p=2x*sin(r*m/6) (5.17)

(5.16)

where
p = product moment correlation
r = Spearman’s Rank correlation

For a normal copula, a relation between product moment correlation and Spearman’s rank correla-
tion can be established according to Equation 5.17.

5.5. Non Parametric Bayesian Network

In a continuous NPBN, the nodes are linked with a continuous invertible distribution function. The
influence of a parent on a child node is given by a (conditional) one parameter copula. This parameter
characterises association between variables and can be for example Spearman’s rank correlation r
or Kendall’s tau. The arcs of the NPBN is assigned conditional copulas/rank correlations. For each
variable X; with m parents X, = Pa,(X;), "+, X; = Pap,(X;) associate the arc Pa;(X;)— > X;,j =1, ,m
with rank correlation:

r(Xi,paj(Xy),j =1 (5.18)

r(X;,pa;(X)|pa(X;), - ,pa;—1(X;)),j =2, ,m (5.19)

The order in Equation 5.19 is not unique and there can be a different order of the labelled variables.

According to Hanea et al. given a continuous NPBN on n variables, the joint distribution of the variables

is uniquely determined. Furthermore, the arcs of a NPBN can be assigned any number € [-1,1]. The
rank correlations will be realized using bivariate (conditional) copulas.

5.6. Monte Carlo simulation

In simple terms, computational algorithms that rely on repeated random sampling to obtain numerical
results can be broadly termed as Monte Carlo methods'. The main concept is to use randomness to
solve problems that are uncertain. There are majorly three problem types where Monte Carlo methods
can be applied: numerical integration, optimisation,and producing random samples from a probability
distribution. In this research, in order to generate samples from the probability distribution of axle loads,
which is elicited using expert judgment studies ( see chapter 3), Monte Carlo simulation is performed.
For more details on this methodology see Appendix A.

In order to perform Monte Carlo simulations, MATLAB functions are used in this research. At first,
the command copularnd is used to generate 1000 random samples from Gaussian copula of variables
whose correlation matrix is given by R. In Equation 5.20, pg; denotes the rank correlation matrix be-
tween the four variables (axle1, axle2, axle3, axle4) as elicited from the expert judgment studies. After
the Monte Carlo simulations, the rank correlation between the same variables is given in Equation 5.21
where psampiing denotes the rank correlation matrix of the samples generated.

1 0.31 0.19 0
0.31 1 0.59 0.35
PET=| 019 059 1 059 (5.20)
0 0.35 0.59 1
1 0.34 0.15 -0.03
0.34 1 0.57 0.30
Psampling1000 = 015 057 1 0.53 (5.21)

—-0.03 0.30 0.53 1

source : Wikipedia
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For the purpose of comparison, a samples of 10000 values is extracted using Monte Carlo simula-
tions. The obtained correlation matrix is given in Equation 5.22.

1 030 020 0.01
Psampling10000 =< 06_320 0_159 0.159 g:;g ) (5.22)
001 034 059 1

When performing Monte Carlo simulations, it is to be noted that a large number of samples should be
generated so that the sample distribution mirrors the probabilistic distribution from which it is generated.
In this research, due to the constraints in computational resources, the number of samples is restricted
to 1000 even though we observe a slight deviation between pg;andpsampiing1000- However, a higher

number of samples, e.g. to the order of 10* is recommended for future analysis.

5.7. Concrete uncertainty

As introduced before in chapter 2, uncertainty in the concrete properties is incorporated in the mass
density(w,), the characteristic strength (f.,) and the Young’s modulus(E.). These properties of con-
crete, are modelled as stochastic variables. Poisson’s ratio of concrete is however considered as a
deterministic variable. In order to derive the uncertainty in the material properties, experimental tests
are performed. In the absence of experimental tests, one of the ways to derive the stochastic properties
of concrete is from Probabilistic Model Code developed by Joint Committee on Structural Safety (JCSS)
[44]. In this research, the concrete uncertainty is modelled based on the experimental research per-
formed in Mexico by past researchers [53] (see Table 5.2). A comparison is drawn between the model
parameters derived from experimental research and those derived from JCSS code (see Table 5.3).

5.7.1. Experimental Results
In this research, based on the based experimental tests the mean values and standard deviation of
characteristic strength of concrete is computed. To calculate the mean value of concrete Young’s mod-
ulus, formulae suggested by fib Model Code for Concrete Structures 2010[8] are used. The prescribed
formulae are repeated in this section.

The mean value of Young’s modulus of concrete, E_,, after 28 days is given in

fe
Eem = Eco - (350" (5.23)

where
E.q = 2.2E+04 Mpa
fem = mean concrete compressive strength in MPa

5.7.2. Calculation from Probabilistic Design code

The Probabilsitic Model Code (PMC) Part 3: Resistance models (JCSS 2001) provide formuale and
guidelines for the calculation of concrete properties. Similar to the Eurocode, in PMC, the properties of
concrete are based on the basic concrete compression strength, f., which is the compressive strength
of a standard test specimen (cylinder).

The in-situ compressive strength, f. can be determined from f, factoring in concrete age at load-
ing time, duration of loading and spatial variability. Further, the other properties of concrete can be
calculated from f.. For probabilistic analysis, further variability is also incorporated.

To calculate the elastic properties of concrete, first step is to compute the concrete compressive
strength. In general, the distribution of concrete compressive strength is log normal, given that the
parameters are derived from an ideal infinite sample. For practical purposes, a sufficiently high number
of samples are also acceptable for log normal distribution. According to the model proposed in PMC
[44], reference concrete strength distribution can be expressed as :

feoij = exp(m’ +t,s" * (1 +1/n")%%) (5.24)
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where
m”,n”,s”, v’ = Parameters,depend on the amount of specific information [44]
feoij = distribution of concrete compressive strength in MPa
t, = Student’s t-variate with v degrees of freedom

The distribution of f,;; is expressed in terms of coefficients m”,n",s",v" which are derived post
testing (posterior information)

The coefficient n is interpreted as a “hypothetical number of observations” from which the mean
value m was estimated.Further, v is denotes “degrees of freedom” and refers to the number of tests,
which can either real or hypothetical, based on which the standard deviation s was determined (number
of tests — 1). Usually, to analyse the test results v =n — 1.

If no prior information (that is tests) is available, then based on past research,[44],Table 5.1 gives
the specific values.

Table 5.1: Prior parameters for concrete strength distribution (f,, in MPa) [44] [73]

Concrete Type Concrete Grade . Patameto;ers
m n S v
Ready Mix C15 340 3.0 0.14 10
C25 365 3.0 012 10
C35 3.85 3.0 0.09 10
C45 398 3.0 0.07 10
Pre-cast element C25 380 3.0 0.09 10
C35 395 3.0 0.08 10
C45 408 4.0 0.07 10
C55 415 4.0 0.05 10

The coefficients m’,n’, v', s' denote the information prior to the test ( prior information).

According to [44], if n”,v" > 10, a log-normal distribution for concrete strength probabilistic distri-
”U"

(nll _ 1)(1]" _ 2) "

Other than the characteristic for determining the mean value of compressive strength, according to
PMC, variability due to 'additional factors’ like variation in curing, the concrete age, loading time and
the duration of loading should also be incorporated.

In general, when no experimental measurements are available and the concrete type is known,
stochastic values of concrete compressive strength can be derived as:

bution is a good fit with mean m” and standard deviation s”

Identify the concrete class, and select the coefficients m’,n’,s’, v’ from Table 5.1

Using MATLAB, generate many samples, that is 100000 samples of lognormal distribution of

n'v'
mean m' and standard deviation ¢ = s’m
* Using the log normal distribution compute the mean and variance of the associated normal dis-

tribution

» Compute the characteristic value on the 5th percentile of the cummulative distribution

The derived values for C25, C30, and C35 are listed in Table 5.3. It is to be noted here that in
these calculation spatial variability is not considered. When compared the results with those obtained
from experimental results, we can observe that the obtained distribution of characteristic strength is
different.

Table 5.2 lists the material properties that are used in this research. These properties are taken
from the experiments performed in Mexico by past researchers [53].
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Table 5.2: Properties of concrete properties (C25) for random variables and deterministic variables based on

past experiments [53]

Distribution Type k u o 0 others
Characteristic
strength(£.,.) (Mpa) Lognormal 3.4782 0.1098
Youngs
modulus (E,)(Mpa) Lognormal 10.3697 0.0025
Density of Generalized
concrete (kN /m?) pareto -1.3015 1.5359 21.959
Poisson’s Ratio Deterministic 0.15

Note:*this is calculated based on the formulae given in Table 2.1

Table 5.3: Properties of concrete properties (C25, C30 and C35) for random variables and deterministic variables

based Probabilistic Model Code [44]

\ C25 C30(interpolated) C35
Mean (lognormal) 3.65 3.75 3.85
Standard deviation (lognormal) 0.1643 0.14375 0.1232
Mean (Mpa) 39 429  47.35
Standard deviation (Mpa) 6.45 6.20 5.86
Coefficient of variation 0.165 0.145 0.124
Characteristic value(Mpa) (fck)  29.36 33.61 38.37

5.7.3. Dependence between material properties

Based on Table 5.2, the marginal distribution of the material properties is obtained. However, to model
the wc, fc, and Ec in NPBN, information about their partial dependence is required. Based on the
experimental test, the Pearson’s product moment correlation is known for the pairs (fc,Ec) and (wc,Ec).
Hence to derive the correlation matrix, an assumption is taken in this research that is Ec and wc are
conditionally independent which mathematically implies pg¢wcrc = 0. The assumption is illustrated in

Figure 5.4.

pr.EC; Pwec e,

fc

Ec

wcC

‘ Pwc.Eclfc =0

Main Assumption

Figure 5.4: Model assumption for dependence between material properties

Further, using the Equation 5.9, the pg,,,. can be estimated by Equation 5.26.

PEcwc = PEc,fc " Pfcwe

where
PEc,fc = 0.87101
Prewe = 0.22144

(5.25)
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Hence,
Pecwe = 0.1929 (5.26)

The derived correlation matrix obtained is given in Equation 5.27.

Ec fc wC
1 0.87 0.19\ Ec
Tcorr = (0.87 1 o.zz) fc (5.27)

0.19 0.22 1 wc

5.8. Maximum Bending Moment and Shear Force

For each sample of axle load generated using Monte-Carlo simulation, finite element analysis is per-
formed. That is, for each sample of the axle load, the load is treated as deterministic for the finite
element analysis. As the time crosses the bridge, the bending moment and shear force at different
nodes change for each sample distribution of axle loads. In order to estimate the probability of failure
under shear, it is important to first determine the position of the train at which maximum shear force or
maximum bending moment is observed. Itis observed, that the maximum bending moment is observed
at the midspan of the simply supported beam and maximum shear force is observed at the supports.
This is similar to the case when the beam is loaded under uniformly distributed load. Hence the axle
load behaves as distributed load on the beam with each axle carrying different load for each simulation.

It is observed that for almost simulations, the maximum shear force at support is observed at time =
1.822s for the train moving at 160km/h (given that the train enters the bridge at time=0s). Since the ob-
served bending moment is also nearly maximum at the obtained position, the probabilistic assessment
is carried out for the train position at time=1.822s.

0y — -

Figure 5.5: Axle load position on the beam at t=1.822s

5.9. Non-Parametric Bayesian Network

To derive meaningful information from a database with a large number of variables is a complex pro-
cedure. Further, numerical ordering of variables in a multivariate set is important. In this research,
marginal distributions of axle loads, properties of concrete, bending moment, shear force and displace-
ment and their numerical ordering is used to obtain relevant information to compute probability of failure
of the bridge. However, such an information is meaningless if the data is not represented adequately.
One of the methods to model such a multivariate set is using a NPBN with Gaussian copula. An al-
gorithm was introduced by Hanea [34] to learn the structure of a continuous NPBN with the Gaussian
copula from multivariate dataset, containing a large number of variables and having no assumptions
about the marginal distributions of these variables. The proposed algorithm is incorporated in the
software UNINET [42] which is a standalone software for uncertainty analysis. It has a friendly user
interface and performs fast simulations. In this research, all BN’s are developed using UNINET.

Prior to the development of a NPBN with Gaussian copula, a diagnostic test is performed to verify
that the joint normal copula is an adequate assumption for the given data. In order to do so, there are
two tests that are applied in this research. The first is the semi-correlations approach. In the second
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test, a model validation is performed by comparing the determinant of normal rank correlation with
determinant of Bayesian belief network. These two tests are described in the following sections:

5.9.1. Semi-correlations approach

The semi-correlations approach is an approach suggested by Joe [47]. To compute the semi-correlations,
the original variables are first transformed to standard normal distribution followed by computation of
Pearson’s product moment correlation in the upper half and lower half quadrants of the obtained normal
distribution. Practically, given two variables (X,Y) and their standard normal transforms (Z,, Z,), the
semi-correlation in the upper and lower quadrants can be expressed according to Equation 5.28 and
Equation 5.29.

Pne = P(Z1,Z2|Z, > 0,2, > 0) (5.28)

Psw = P(Z1,2,|Z, < 0,Z, < 0) (5.29)

where
Pne = Semi-correlations in the upper right quadrant (NE)
Psw = Semi-correlations in the lower right quadrant (SW)

A positive correlation maybe expressed by p,,. and p,,. For a negative correlation, semi-correlations in
the upper left (NW) quadrant, p,,,, and lower right quadrant (SE), p,. can be expressed by Equation 5.30
and Equation 5.31.

Prw = P(Z1,Z,|Z1 > 0,Z, < 0) (5.30)

pse = P(Z1,22|Z, <0,Z; > 0) (5.31)

where
Pnw = Semi-correlations in the upper left quadrant (NW)
pse = semi-correlations in the lower left quadrant (SE)

To describe the test using the semi-correlation, first the concept of tail dependence is introduced.
Tail dependence is an important aspect of joint distributions. The upper tail dependence coefficient 4
for two random variables X and Y is defined according to the equation Equation 5.32.

Ay = lim P(X > Fe 'Y > E () = lim P(U > ulV > w) (5.32)
u— u—

Ay > 0 indicates that it is likely (more than normal) to observe values of U greater than u given
that V is greater than u for u almost close to 1. lower tail dependence is defined similar to upper tail
dependence but for lower quadrant as expressed in Equation 5.33.

Ay = lim P(X < Fe Wl < B w) = lim P(U < u|V <u) (5.33)

For a Gaussian copula, no tail dependence is observed, that is, A; = 0. As a rule of thumb, tail de-
pendence may be suggested if the larger absolute values of semi-correlations ( |pnel, |2sw |, |Pnw s |Psel
) than the overall correlation are observed. As stated in earlier sections, Gaussian copula presents no
tail dependence. Therefore, to verify that the Gaussian copula is an adequate assumption for the given
data set, semi-correlation approach can be used.
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5.9.2. Validation of the model

Model validation approach is used to verify the validity of joint normal copula for the given multivariate
data. It is also used to validate the Bayesian network in terms of the accuracy of the results. In this
method, the rank correlation matrices are used a tool to perform model validation. The determinant of a
rank correlation matrix is 1 if all the variables are independent and, 0 if there exists a linear dependence
between the variables transformed to standard normals [33]. In this approach, determinant of empirical
rank correlation matrix (DER) and determinant of empirical normal rank correlation matrix (DNR) are
computed. It is verified that the DER lies within the 90% confidence interval of the DNR. The detailed
methodology on the statistical method is given as follows:

» Compute DER which is the determinant of the empirical rank correlation matrix. It is obtained by
transforming the distribution of each variable to uniform distribution and then calculating the prod-
uct moment correlation of the obtained transformed variables. The product moment correlation
is further converted to rank correlation using Equation 5.17.

» Compute DNR which is the determinant of the empirical normal rank correlation matrix. This
matrix is obtained by transforming the distribution of each variable to standard normal and then
transforming the product moment correlation to rank correlation using Equation 5.17.

* Re-sample the data obtained from normal distribution to obtain the empirical distribution of DNR
and obtain the 5" and 95" quantiles of this distribution

* Check if the DER obtained falls in the quantile obtained in the previous step. If yes, then the joint
copula is valid else rejected.

In the past research [33], it is observed that for large data sets the above described statistical tests
often fails. Hence, often the validation step is relaxed to favour better quantification of the model.

In this approach, a second step for validation entails constructing a skeletal NPBN and computing
the determinant of rank correlation matrix of an NPBN (DBN) using the normal copula. The second
step is described as follows:

* A skeletal NPBN is constructed
» Generate samples from the constructed BN to obtain the DBN

* Find the pairs of variables which don’t have an arc between them in the DAG. From these pairs,
choose the pair with the highest rank correlation. Add an arc between the obtained pair and
recompute the DBN and its 90% confidence band.

» Check if the DNR is within the obtain 90% confidence band of DBN. If yes then the NPBN is
validated else rejected and procedure from step 3 is repeated.

Complete automation of the procedure to build a NPBN is not there currently. This is because it is
impossible to infer all directionality of influence from a multivariate data. Thus, it is possible that there
are different NPBN structures which maybe equivalent or non-equivalent and may represent statistically
acceptable models of a given multivariate data set. Generally, there is no definition of a ’best’ model’.
As far as the model represents the data to certain extent, provided it satisfies the above described tests,
it can be an acceptable model for practice. Also, non-statistical reasoning may be used to build the
arcs between nodes to represent directionality. In some cases, certain influences even though small
may be included because the user wants to observe such influences.
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5.9.3. Bayesian Network -l

This section describes the algorithm for learning a Bayesian network from data using a multivariate data
set. The data set consists of the axle load obtained from Expert judgment studies and further sampled
from Monte-Carlo simulations. Further, variables for concrete uncertainty are also included in the data
set. Finally, the response of the bridge in the form of four variables- shear force at end supports, bending
moment at mid span and displacement at mid span are incorporated in the multivariate data set. The
data set contains 1000 samples forming the joint-distribution obtained from Monte-Carlo simulations.
In the constructed Bayesian Network -l (BNI), the multivariate set is taken such that all cars of the train
have the same distribution. It is assumed thateveryn =1 ..N car has j = 1 ...4 axles, and distribution
of every jt" axle of all N cars is exactly the same. The definition of the variables are listed in Table 5.4.
The frequency histograms of the selected variable are plotted which is shown in Figure 5.6, Figure 5.7
and Figure 5.8 with values on the x axis and number of samples on y axis.

Table 5.4: Names and definitions of variables of BNI

Name of Variable Units  Description

Axle 1 kN Load in the first axle of each car
Axle 2 kN Load in the second axle of each car
Axle 3 kN Load in third axle of each car
Axle 4 kN Load in fourth axle of each car
Ec MPa  Young’s modulus of concrete
wc kg/m3  Density of concrete
fc Mpa Characteristic strength of concrete
u mm Vertical displacement at mid span
BMn2 kN-m  Bending moment at mid span
SFn1 kN Shear force at left support
SFn2 kN Shear force at right support
400 Axle1(kN) 200 Axle2(kN)
300
200
200
100 100
o = o
0 100 200 300 400 0 200 400 600
200 Axle3(kN) 400 Axle4d(kN)
200 300
200
100
100
0 0
0 200 400 600 0 100 200 300 400

Figure 5.6: Histogram of Axle1, Axle2, Axle3 , Axle4
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Figure 5.7: Histogram of Ec, wc, fc
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Figure 5.8: Histogram of u, BMn2, SFn1, SFn2

From Figure 5.6, it can be seen that the frequency of high magnitude of axle load is lower for all four
axles and no value greater than 400kN is observed in the data set. In Figure 5.7, it can be observed
that the Ec and fc behave consistently which may be because the value of mean Ec is derived from fc.
In Figure 5.8, the response of the bridge in displacement, bending moment at mid span and shear force
at end support are consistent with each other and also with the axle loads. It is observed that there is
difference in the maximum observed shear force at the two supports, however most of the shear force

in both supports is around 1200kN.

First the hypothesis that the dependence structure in the data is that of a joint normal copula can
be tested by using semi-correlation approach, the theory of which is described above. The results of
the semi-correlation test are listed in Table 5.5 and selected plots are shown in Figure 5.9,Figure 5.10,

Figure 5.11, Figure 5.12 and Figure 5.13.
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Table 5.5: Semi-correlations test for all pairs of variables (X,Y) used in the Bayesian network for bridge response

X Y p Pne Psw Paw  Pse
Axlel Axle2 035 0.15 -0.01 0.08 0.12

Axle1  Sfn1 0.60 036 021 0.30 0.50
Axlel BMn2 052 026 015 0.26 048
Axlel SFn2 046 023 010 0.20 0.49
Axlel u 0.55 030 018 0.29 0.51
Axle2 Axle3 059 032 035 0.12 0.07
Axle2  Sfn1 0.83 0.70 051 0.08 0.36
Axle2 BMn2 0.78 061 046 0.08 0.38
Axle2 SFn2 0.74 052 043 0.12 0.35
Axle2 u 0.79 062 047 011 042
Axle3 Axle4 055 028 033 0.11 0.10
Axle3  Sfn1 0.71 054 045 0.13 044
Axle3 BMn2 079 066 049 0.16 0.38
Axle3 SFn2 083 0.73 052 0.12 0.30
Axle3 u 0.77 061 048 0.17 0.34
Axle4  Sfn1 054 033 026 0.09 0.46
Axle4 BMn2 063 046 031 0.12 043
Axle4 SFn2 068 052 034 011 042

Axle4 u 0.61 043 029 0.08 0.45
Ec fc 0.87 074 070 0.26 0.33
Ec u -0.04 -0.04 0.07 0.02 -0.06
wc fc 0.23 0.04 0.09 0.00 0.17

wc Sfn1 0.05 011 014 0.02 0.17
wc BMn2 0.06 0.09 0.13 0.04 0.16
wc u 0.05 009 011 0.02 0.16
SFn1 BMn2 099 095 098 046 0.65
SFn1 SFn2 096 087 093 036 0.58

SFn1 u 099 097 099 057 0.64
BMn2 SFn2 099 098 099 044 049
BMn2 u 1.00 099 1.00 0.61 043
SFn2 u 099 095 097 055 0.35

From Table 5.5, it is observed that 26 out of 31 pairs of variables verify the semi-correlation test.
The absolute value of the correlation (p) of the whole model is greater than the absolute value of the
semi-correlations for these pairs. For the correlation between Axle1 and SFn2, very slight lower tail
dependence is indicated hence Gaussian copula is a valid assumption. This is also valid for the pair
of Ec and u where a slight lower dependence is observed. For the pair of variables with one variable
as wc, a high lower tail dependence is observed. However, to study the influence of the density on
the bridge response, wc is included in the NPBN. It can be summarized that the Gaussian copula is a
suitable assumption for most of the bivariate distribution in the Bayesian network developed for bridge
response.

From Figure 5.9,Figure 5.10, Figure 5.11 and Figure 5.12, it is observed that the response of the
bridge is positively correlated to the axle loads on the bridge. This observation follows the intuitive
conclusion. It can be also observed that axle 2 and axle3 loads have a higher correlation with the shear
force, bending moment and vertical displacement of the the bridge. In Figure 5.13, itis observed that the
variables representing the bridge response that is, shear force, bending moment, and displacements
have a very high positive correlation. This may be observed considering the linear elastic analysis
performed in the model. Therefore in the model, either of these variables can be incorporated and the
others can be removed since they provide almost the same information. However, in this research, all
the variables are incorporated in the Bayesian network to study the influence on the bridge response
in terms of individual components.
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Figure 5.9: Graphs of Bending moment paired with axle loads in the Bayesian network. The values of the
semi-correlation are indicated for each quadrant and for sample in the title
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Figure 5.10: Graphs of SFn1 paired with axle loads in the Bayesian network. The values of the semi-correlation
are indicated for each quadrant and for sample in the title
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Figure 5.11: Graphs of SFn2 paired with axle loads in the Bayesian network. The values of the semi-correlation
are indicated for each quadrant and for sample in the title
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Figure 5.12: Graphs of u paired with axle loads in the Bayesian network. The values of the semi-correlation are
indicated for each quadrant and for sample in the title
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Figure 5.13: Graphs of selected pairs of responses in the Bayesian network. The values of the semi-correlation
are indicated for each quadrant and for sample in the title

BN construction is done by first importing all the variables in UNINET as nodes. The BN with no arcs
is shown in Figure 5.14. The corresponding empirical rank correlation matrix is shown in Figure 5.15.

OO O

@O

Figure 5.14: BN with no arcs
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orrelation Matrices

[B8N | Emprical Normal | Empirical [p

Empirical rank correlation matrix
SFni BMn2 SFn2 u AXLE1 AXLE2 AXLE3 AXLE4 Ec we fc
SFn1 0.991 0.6 0.824 0.695 0.507 -0.0189  0.0407 -0.00377
BMn2 0.998 0.51 0.775 0.78 0.605 -0.00795 0.05 0.0124
SFn2 0.985 0.446 0.731 0.825 0.662 -0.00528 0.0365  0.0173
u 1 0.542 0.783 0.754 0.584 -0.029 0.0435 -0.00742
AXLEL 0.542 1 0.345 0.149 -0.0303 -0.0267 -0.0273 -0.0477
AXLE2 0.783 0.345 1 0.569 0.297 -0.0386 0.00612 -0.0176
AXLE3 0.754 0.149 0.569 1 0.53 0.00122 0.00189 0.0127
AXLE4 0.584  -0.0303 0.297 0.53 1 0.0235 -0.0139 0.0533
Ec -0.029 -0.0267 -0.0386 0.00122 0.0235 1 0.184 0.855
we . 0.0435 -0.0273 0.00612 0.00189 -0.0139 0.184 1 0.225
fc -0.00377 0.0124 0.0173 -0.00742 -0.0477 -0.0176 0.0127 0.0533 0.855 0.225 1
Less << Determinant
Highlight parent-child correlations Export
Highlight the k" highest non
O parent-child correlations El Update

Figure 5.15: Empirical correlation matrix of the BN with no arcs

As stated before, the correlation of bridge response is almost close to 1 and is also seen from
the empirical rank correlation matrix. However, as stated before, all the bridge response variables
are included in the NPBN to study the influence on them individually. First the arcs between the axle
loads are constructed which are based on the dependence elicitation performed in expert judgment
studies. Then, arcs between the material properties are constructed as explained in section 5.7. Then
arcs between axle load variables, material variables and bridge response are constructed. Based on
prior knowledge, it is known that the load values are independent of the material properties. Also, The
bridge response is independent of the concrete strength however the displacement is dependent on
the Young’s modulus of concrete. UNINET calculates from the data the conditional (rank) correlations
that are assigned to the arcs of the BN. The directionality of influence between the variables and the
order of assigning arcs is important when constructing the NPBN. It can be seen in Figure 5.16, that
model-1 and model-2 have different conditional (rank) correlation defined on the arcs given the order
of the variables defined.
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SFnl AXLE4 | AXLE3

Model 2

Figure 5.16: Example of difference in BN obtained by changing the order of the arcs
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Following the BN model construction, the arcs are removed whose corresponding absolute condi-
tional (rank) correlation is lower than a minimum threshold which is 0.1 in this research. The determinant
of the DBN is calculated at each step to perform model validation test described in the earlier section.

The result of the model validation test for 100 and 1000 simulations in UNINET is shown in Fig-
ure 5.17. The determinant of the rank correlation matrix in the constructed BN has the 90% confidence
interval [0.599E-10 1.889E-10] for 1000 iterations of sampling. The DNR is 6.931E-11 which lies in the
0.05 to 0.1 quantile of this distribution. For verification of Gaussian copula test, the DER does not lie
in the 90% confidence interval of the DNR. However, for this research, the semi-correlation approach,
explained above is relied upon.

|MI.|..|.|.. . ..

The determinant of the normal rank correlation matrix, 6.931e-11, falls between the 0.05 The determinant of the normal rank correlation matrix, 6.931e-11, falls between the 0.05
and 0.1 quantiles of this distribution. and 0.1 quantiles of this distribution.
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Cumulative Distribution Standard Deviation 4.093-11 Cumulative Distribution Standard Deviation 3.875e-11

Percenties 5%  5.99e-11| 50%  1.03%-10| 95%  1.889-10 Percentiles 5% 6.182%e-11 50%| 1.101e-10| 95%  1.884e-10
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2 401 2 401
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Figure 5.17: Validation result of constructed BN of BN-I

The validated model is shown in Figure 5.18. It is to be noted that the BN structure, as shown in
Figure 5.18, learned from the multivariate data set is not unique. By changing the order of the arcs,
or by adding and deleting existing arcs from the BN, a different BN may be obtained. The correlation
matrices of learned BN-I is given in Appendix E.
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Figure 5.18: Continuous Non-Parametric Bayesian Network for BN-I




62 5. Probabilistic Analysis

Conditional NPBN
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Figure 5.19: Conditional BN-1 with condition on the distribution at a point

One of the main advantages of the BNs is that once the BN is constructed and quantified, it can
be updated when the evidence about the variables becomes known. In case of NPBN, application
of normal copula assumption makes computing of influence between variables less complex. This
procedure of updating the BN on knowing the values of certain variables is referred to as con-
ditionalization. In this thesis, four example cases of conditionalization are described which are called
conditionalizing-I, conditionalizing-Il, conditionalizing-lll and conditionalizing-IV. The former two exam-
ples consider the case when the variables are updated at a certain point in the distribution, as shown
in Figure 5.19. The original baseline case histograms are shown in grey, whereas the updated belief
(conditional distribution) is shown in black. The histogram of the bridge response prior to the condition-
alising is shown outside the box in Figure 5.19. In conditionalizing-I, the values of the axle loads(Axle1,
Axle2, Axle3 and Axle4) are updated at the 50th percentile that is the median value. The concrete
density (wc) is also updated at a point close to the median, that is 2300kg/m3. The Young’s modulus
is updated at 32000MPa. It can be observed that the mean of the variables SFn1, SFn2, BMn2 and u
have slightly decreased, and the standard deviation is reduced significantly. In case of SFn1, SFn2,
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and BMn2, the updated standard deviation is nearly 1/4th of the standard deviation prior to updating.
In conditionalizing-Il, the axle loads are updated at a high value that is 300kN, and the other variables
wc and Ec are conditionalised at same point as in conditionalizing-I. It can be observed that the mean
of SFn1, SFn2, BMn2 and u have increased significantly. Therefore, it can be seen that when the axle
load increases from nearly 100kN to 300kN, the mean values of the maximum shear force, bending
moment and vertical displacement all increase by nearly 40-50%.

The second type of conditionalization in BN is called interval conditioning. In this type of condi-
tioning, the variables are updated for a range or interval of values in the given distribution. In this
research, two intervals are defined, the low load interval when the axle loads are on [0 50] quantile of
the given distribution. The conditionalization performed for this interval is called conditionalization-IIl.
The high load interval is defined for [50 100] interval and similarly the corresponding conditionalization
for this interval is called conditionalization-IV. The definition of conditional BN is shown in Figure 5.20.
The results of the bridge response are shown as a cumulative distribution function in Figure 5.21 and
Figure 5.22.
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Sample-Based Conditioning

Input Nodes
Name Full Range Conditoning Interval Values In Interval
AXEL (51,493, 385.47] [51.493, 103] 24,951 (49.9%)
AXE2 [51.039, 406.68] [51.039, 107) 24,751 (49.5%)
AXE3 [51.449, 405.74] [51.449, 109] 25,001 (50.0%)
AXLE4 [51.242, 385.37) [51.242, 9] 25,101 (50.2%)
Probabilstc, Continuous
Output Nodes Conditioned Sample
Name L « V Write Report
SFn1 1360.1£212.02 1136 £ 51.605
SFn2 14526 + 251,66 1191.4 £ 61,659 Export Sample
Bvn2 11011 £ 1618.3 9207.9 £ 407.53 oekte |
w2 44,002 £6.5552 37.025 £ 16552 Add Moce Sanples
Total sample size:
50,000
Conditioned sample size:
7,805 (15.6%)
Probabilistc, Continuous

Sample-Based Conditioning

Input Nodes
Name Full Range Conditioning Interval Values In Interval
AXLEL [51.493, 385.47) (103, 385.47) 25,049 (50.1%) l add |
AME2 [51.039, 406.68] [107, 406.68) 25,249 (50.5%)
AXE3 [51.449, 405.74] [109, 405.74) 24,999 (50.0%) [[ea |
AMES [51.242, 385.37) [99, 385.37) 24,899 (49.8%)
Delete
Probabilstic, Continuous
Output Nodes Conditioned Sample
Name. Unconditional C Write Report
sFa1 1360.1 % 212.02 16748 £ 167.55
SFn2 1452.6 £251.66 18219 £201.58 Export Sample.
oz onsns 14132 1506
u2 44,002 £6.5552 53.76145.1927 (Add ore Samples
Total sample size:
50,000
Conditioned sample size:
7,863 (15.7%)
Probabilstic, Continuous

Figure 5.20: Definition of Conditional BN-1 (left: Conditionalising I;right:Conditionalising II) with interval
conditioning
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Figure 5.21: Conditionalizing Ill: response of bridge on conditionalising on axle loads in [0 50] quantile
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Figure 5.22: Conditionalizing IV: response of bridge on conditionalising on axle loads in [50 100] quantile

In conditionalising -1ll, when the axle loads are in low load interval, upper bound of the obtained

cummulative distribution function is near to the median value of the unconditional bridge response for
each of the variables SFn1, SFn2, and BMn2. This is also observed in conditionalising -IV, where the
lower bound of the obtained cummulative distribution is near to the median value of the unconditional
bridge response for each of the variables SFn1, SFn2, and BMn2

A situation is analyzed when higher loads are observed on axle 1 and axle 4 and lower loads are

observed on axle 2 and axle 3, which may arise due to uneven distribution of passengers in the train
car. To obtain the bridge response, the loads in axle 1 and axle are defined for [50 100] quantile and
load in axle 2 and axle are defined for [0 50] quantile. The variable definition is shown in Figure 5.23.
The results are shown in Figure 5.24. It can be seen that the lower bounds of SFn1, SFn2 and BMn2
after the interval conditioning is slightly higher than the unconditionalised BN, whereas the upper bound

of conditional is lower than that of unconditional BN.
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Sample-Based Conditioning
Input Nodes
Name Full Range Conditioning Interval Values In Interval
AXLE1 [51.493, 385.47] [103, 385.47] 25,049 (50.1%)
AXLE4 [51.242, 385.37) [99, 385.37] 24,899 (49.8%) :
AXLE2 [51.039, 406.68] [51.039, 107] 24,751 (49.5%) Edi
AXLE3 [51.448, 405.74] [51.449, 109]

25,001 (50.0%)
*

Probabilistic, Continuous

Output Nodes
Name Unconditional Mean/StdDev ~ Conditional Mean/StdDev
SFn1 1360.1 £ 212,02 1302.4 £96.329
SFn2 1452.6 £ 251.66 1376.8 £ 105.17
BMn2 11011 £ 1618.3 10550 £ 701.16

Probabilistic, Continuous

Conditioned Sample

Write Report

Export Sample
Delete

Add More Samples

Total sample size:
50,000

Conditioned sample size:
1,940 (3.9%)

Figure 5.23: Definition of variable interval conditionition to analyse uneven distibution in axle load
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Figure 5.24: response of bridge on conditionalising on axle 1 and axle 4 in [50 100] and axle 2 and axle 3 in [0

50] quantile

The interval for axle loads are now reversed, that is axle 1 and axle 4 are defined in the interval [0
50] quantile and axle 2 and axle 3 are defined in the interval [50 100] ( see Figure 5.25). The results
are showin in Figure 5.26. It is observed that the lower bound of bridge response after conditionalising
is higher by nearly 20% and the upper bound is nearly equivalent to that of unconditionalised BN. From
Figure 5.24 and Figure 5.26, it can be inferred that the loads in axle 2 and axle 3 have a higher influence
on the bridge response than axle 1 and axle4.
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Input Nodes
Name Full Range Conditioning Interval Values In Interval
AXLE1 [51.493, 385.47] [51.493, 103] 24,951 (49.9%)
AXLE2 [51.039, 406.68] [107, 406.68] 25,249 (50.5%) :
AXLE3 [51.449, 405.74] [109, 405.74] 24,999 (50.0%) Edit
AXLE4 [51.242, 385.37] [99, 385.37] 24,899 (49.8%)

Delete

Probabilistic, Continuous

Output Nodes Conditioned Sample
Name Unconditional Mean/StdDev  Conditional Mean/StdDev Write Report
SFn1 1360.1 £ 212,02 1478.1 £ 145.9
SFn2 14526 + 251,66 1662.8 + 186,61
BMn2 11011 £ 1618.3 12194 £ 1163.4
Add More Samples
Total sample size:
50,000

Conditioned sample size:
4,598 (5.2%)

Probabilistic, Continuous

Figure 5.25: Definition of variable interval conditionition to analyse uneven distibution in axle load
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Figure 5.26: response of bridge on conditionalising on axle 1 and axle 4 in [0 50] and axle 2 and axle 3 in [50
100] quantile
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5.9.4. Bayesian Network -ll

As stated before, in BN-I, the distribution of axle load in each car is exactly the same. However, there
is another approach to define the axle load distribution in each car. The multivariate set of axle load for
each car may be derived from the same Gaussian copula however, for each car, a different sample (
from Monte-Carlo simulations) can be obtained. In Bayesian network-Il (BN-II), the multivariate set of
axle loads obtained forn = 1...5 car is different. The names and definition of the variables incorporated
for BN-Il are listed in Table 5.6.

Table 5.6: Names and definitions of variables of BNII

Name of Variable Units  Description

Axle1_n kN Load in the first axle of nt*car
Axle2_n kN Load in the second axle of nt"car
Axle3 n kN Load in third axle of nt"car
Axle4_n kN Load in fourth axle of nt*car

Ec MPa  Young’s modulus of concrete

wc kg/m3®  Density of concrete

fc Mpa Characteristic strength of concrete
u mm Vertical displacement at mid span
BMn2 kN-m  Bending moment at mid span
SFn1 kN Shear force at left support

SFn2 kN Shear force at right support

Similar to constructing BN-1, first the position of the train is identified when the maximum shear
force is observed on the bridge. The maximum shear force for a simply supported beam is observed at
the end supports. In this study, for BN-II, the maximum shear force is obtained at right support unlike
in BN-I when maximum shear force is obtained at left support. For the particular position, the values
of shear force at end supports, bending moment at mid span and vertical displacement at mid span is
obtained for the 1000 simulations performed. The procedure for constructing the Bayesian network is
similar to that of BN-I. The result of the model validation is shown in Figure 5.27. The learned BN-Il is
shown in Figure 5.30. The axle loads of car1 and car5 of the train are not included in the NPBN. This
is because, the conditional(rank) correlation between the load in axle k for Axlek,, fork = 1---4 of car
n = 1,5 and SFn1, BMn2, SFn2 and u is below the minimum threshold (0.1) defined for this research.
Axle 3 and Axle 4 of car 4 is also removed from the NPBN for the same reasoning.
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The determinant of the normal rank correlation matrix, 2,2009e-8, falls between the 0.05
and 0. 1 quantiles of this distribution.
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(®) Probability Density Mean
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Percentiles 5% 2.1794e8 50% 3.4640e-8 95% 5.2022e-8
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Figure 5.27: Validation result of constructed BN of BN-II
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Figure 5.28: Continuous Non-Parametric Bayesian Network for BN-I|

A comparison between BN-l and BN-Il is drawn to study the influence of obtaining different samples
for each car. It can be seen that the bending moment distribution is nearly the same for BN-I and BN-II.
The observed difference in shear force at left and right support may be due to the maximum shear force
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being observed at left support for BN-I and maximum shear force observed at right support for BN-II.
The correlation matrices of learned BN-Il is given in Appendix E.
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Figure 5.29: Comparison of Bridge response in BN-I vs BN-II

5.10. Probability of failure due to bending failure

With regard to the Ultimate Limite State requirements, its is essential to check that the structural resis-
tance meets the bending moment resistance of the structure. The method for calculating the bending
moment resistance of the section of a prestressed section is the same as for reinforced concrete section
with the following difference:

» The stresses in steel and concrete are zero at the beginning of the loading in a reinforcement
concrete beam. Whereas, for a structure with both reinforcing and prestressing steel, the initial
stresses are not zero because the prestressing steel is pre-tensioned. To calculate the compati-
bility condition with respect to the deformation, the difference in strain between reinforcing steel
and prestressing steel is accounted for.

* The loads due to prestressing are included in the applied loads. Thus, it is not allowed to use the
full capacity of the prestressing steel while determining the moment resistance.

The calculation of bending moment capacity of the concrete girder is given in Appendix F.

The limit state function of bending moment Z,,,,, was assessed by considering the bending moment
strength for the bridge of the mid span My, and the maximum acting bending moment in the bridge,
BMy . (denoted by BMn1 in the Bayesian Network). The limit state function is given by Equation 5.34.

Z = MRd - BMMax (534)

For each simulation, the maximum bending moment of the cross section was calculated and stored
and also the bending moment strength for each simulation was stored to evaluate the limit state function.
To calculate the probability of failure, we evaluate the case when Z,,,,, < 0, that is the probability of Z,,,
being less than 0 given by P(Z,,, < 0). The Figure 5.30 shows the empirical cumulative distribution of
Zpm value the fitted the finite mixture models (for more details see [28]). Based on the obtained fitting,
the probability of failure of the concrete girder due to bending is 1.388E-14. It is to be noted that the
computed probability of failure is considering only the train axle loads and self weight of the concrete.
The probability of failure of the bridge is expected to increase when earthquake loads are included.
However, due to time limitation, such an analysis was not performed.
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Figure 5.30: Probability of failure due to bending failure

To estimate the probability of failure, extreme value analysis could be performed. In order to do
s0, a period of 20 years can be considered, and considering all the trains for each year, the maximum
bending moment of every year is derived. The probability of failure based on the obtained distribution
is then calculated. This methodology is recommended for future research.
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5.11. Conclusions

In this research, the marginal distribution and joint distribution obtained from the expert judgment elici-
tation (explained in the previous chapter) is used to obtain samples from Monte Carlo simulations. The
material properties of the concrete are obtained from the past experimental tests and are compared
with the prescribed values in the Probabilistic Model code. It is seen that the distributions obtained
differ slightly however, experimental values are considered since the tests are conducted in the same
location where the bridge is constructed. Therefore, the results of the experimental tests are closer to
the actual concrete uncertainty.

Further, a probabilistic analysis is performed using Non-Parametric Bayesian Network. The main
assumption in the NPBN is the application of Gaussian copula for joint distribution in a multivariate
set. This assumption is verified with the semi-correlation approach in this chapter. For most of the
pairs of variables, the Gaussian copula assumption is valid. Two Bayesian networks are developed :
BN-I and BN-II. In BN-I, the distribution of axle load in each car is exactly the same, and in BN-II, the
distribution of axle load in each car is different though obtained from same Gaussian copula. In BN-I,
it is observed that loads in axle 2 and axle 3 have a higher influence on the bridge response variables
which are shear force at end supports, bending moment and vertical displacement at mid span. On
conditionalization of BN-I, it is also inferred that when the axle loads increase from nearly 100kN to
300kN, the mean values of the maximum shear force, bending moment and vertical displacement all
increase by nearly 40-50%. Two situations are also analyzed in which the distribution in axle loads in
uneven that is higher load in axle 1 and axle 4 and lower load in axle 2 and axle 3 and vice-verse. It
is observed, that the bridge response is more influenced by the distribution in axle 2 and axle 3 than
in axle 1 and axle 4. In BN-Il it is observed that not all train cars have an influence on the maximum
bridge response, when the train is at a particular position. This may be because of the linear elastic
analysis and can be further commented upon using a non-linear analysis. The response of the bridge,
however is close to that obtained in BN-I.






Conclusions and Recommendations

The objective of this research was to perform a probabilistic analysis of a concrete bridge under railway
loading and uncertain concrete material properties by using expert judgment studies. Due to the un-
availability of the measured data for axle loads in the location of the construction of the bridge, expert
judgment elicitation was performed to derive uncertainty and dependence information on axle loads.
The material uncertainty was quantified on the basis of past experimental work. The results of the ex-
perimental work were compared with the prescribed formulae in Probabilistic Model code. Further, to
implement the load and material uncertainty and determine the bridge response, a finite element model
of the bridge was developed. The bridge was modelled as a simply supported concrete girder and a
moving axle load analysis was performed on the developed model. Finally, a Non-Parametric Bayesian
Network was constructed incorporating the variables representing concrete material uncertainty, axle
load uncertainty and uncertainty in the derived response. The resistance of the bridge was calculated
analytically and then the probability of failure was computed.

6.1. Findings on the methodology
» The selection of experts is an important criteria in order to avoid over-conservatism and under-
conservatism. Moreover, the clarity in calibration questions influences the experts’ assessments
significantly.

» The choice of modelling technique for reliability analysis depends on the level of accuracy desired
by the risk analyst. Past researchers chapter 2, have classified the degree of accuracy into levels
of assessment. For a level of assessment Il (IoA-ll), which is chosen for this research, a linear
finite element analysis is chosen. Furthermore, in loA-Il, the bridge geometry can be modelled
as 2D beam, or as a grillage model.

+ To perform a reliability analysis using finite element modelling, there are two popular ways. The
first is to manually program using a mathematical tool. OpenSees is popular with such an ap-
proach, since it has inbuilt packages to incorporate reliability analysis. The second approach is
to use a FEA software, for example ABAQUS. However, in FE software, there are limited inter-
nal features to incorporate uncertainties and therefore the software has to be combined with a
reliability platform.

* In a moving load analysis, position and magnitude of maximum bending moment and shear stress
varies in time. For a reliability analysis, the maximum bending moment and shear force is a point
of interest to estimate the probability of failure. Hence, it is important to identify the position of
the train at which critical shear and bending stresses are observed.
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6.2. Conclusions
+ Expert Judgment studies

— What are the results of the expert judgment elicitation to estimate the axle load uncertainty
and dependence in a train running at a velocity of 160km/h?

Expert judgment studies were performed for uncertainty and dependency separately. Based
on the results obtained, it was reiterated that the same experts do not perform well in both
dependence elicitation and uncertainty elicitation. For uncertainty elicitation, the score of the
decision maker was maximized using equal weighing method, however this is not a general
recommendation for all expert judgment elicitation. A broad range of uncertainty was ob-
served when the expert assessment was combined using equal weighing. For dependence
elicitation, global weight pooling method was used in order to maximize the d-calibration
score. To arrive at the maximum d-calibration score, a minimum calibration threshold was
chosen, on the basis of which only one expert contributed to the assessment pooling.

— What is the level of similarity between expert judgment elicitation performed in Mexico to the
WiM measurements in the Netherlands'?

A comparison was drawn between the measured rail axle loads in Netherlands to the results
from the expert judgment studies. It was observed that the expert assessment was conser-
vative for the axle loads. The order of the values obtained from expert judgment elicitation
was however similar to those of the measurements. Further, given the difference in the two
loading conditions because of two different countries, the types of train, number of passen-
gers at a given moment may be different due to which a difference in the assessment and
measurement is observed.

* Finite Element Modeling of the bridge

— How to model a simply supported bridge in a finite element methodology to perform compu-
tationally efficient large number of simulations for reliability analysis?

A simply supported beam was modelled in ABAQUS CAE for a 2D response. To get compu-
tationally efficient model, a sufficiently accurate mesh size is obtained from mesh sensitivity
analysis. In order to perform a moving axle load analysis, a static concentrated force ap-
proach was used in which the concentrated force was applied exactly at the nodal position.
The position of the force was then varied in time. This approach could be incorporated in
the future research for assessing reliability under moving load.

» Probabilistic Analysis of the bridge

— How to develop a Non-Parametric Bayesian Network(NPBN) for a simply supported bridge
model with load and material uncertainty?

The proposed NPBN included the following variables : loads in train axles, density of con-
crete, characteristic strength of concrete, Young’s modulus of concrete, maximum shear
force at end supports, maximum bending moment at mid span, vertical displacement at
mid span. By means of Expert judgment elicitation, experimental results and finite element
modelling, these variables were quantified and using Monte Carlo simulations, samples rep-
resenting the probability distributions were obtained. A Gaussian copula test and model
validation was performed. Two Bayesian Networks were developed. In the first Bayesian
Network (BN-I), the probabilistic distributions of axle loads in each car is exactly the same. In
the second Bayesian Network (BN-II), different samples of the the probabilistic distribution
of axle loads in each car is incorporated. In both BN-I and BN-II, a positive correlation is
observed between the loading variables and the bridge response variables. Additionally, a
high correlation ( 0.9) is observed between the bridge response variables. This is because
of a linear elastic analysis performed in the research. The probability distribution in vari-
ables representing bridge response in BN-I and BN-II is similar though a slight variation is
observed.

"The data on rail WiM measurement in the Netherlands was only available near the end of the thesis duration
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— What are the effects of conditionalization on the bridge response?
On conditionalisation of BN-I, it is observed that the when the axle loads increase from
nearly 100kN to 300kN, the mean values of the maximum shear force, bending moment and
vertical displacement all increase by nearly 40-50%. Further, it is also observed that the
bridge response (maximum shear force and maximum bending moment) is more influenced
by loads in axle 2 and axle 3.

— What is the probability of failure of the bridge? The probability of failure in flexure is com-
puted in the thesis. Considering a span of 33m, simply supported single bridge girder, the
probability of failure of the concrete girder due to bending failure is computed as 1.388E-14.
Considering the bridge is constructed in a location which is earthquake, it is expected that
the probability of failure will increase when earthquake loading is included in the model.

6.3. Recommendations

In this section, recommendations for future research and development related to the work in this thesis
are discussed.

Non-Linear Analysis

The finite element model incorporated in this research is based on the linear elastic behaviour of
the materials. However, in order to increase the level of accuracy of the risk assessment, a non-linear
finite element model of the bridge is recommended.

Earthquake Loading

Assessment of infrastructure for earthquake loading in earthquake prone areas is important. Since
the bridge is being built in Mexico, which has a history of witnessing high magnitude earthquakes, it is
recommended to perform reliability assessment for earthquake loads. Due to the time limitation for this
research, the given analysis could not be performed.

Copula Assumption

The NPBN is constructed with the assumption of Gaussian copula for the joint distribution the the
given multivariate data set. This assumption however, is questionable for some pairs of variables.
Therefore, it is recommended to explore the validity of other copula, for example, Gumbel, Clayton
copula, etc.

3D Finite Element Model

For the ease of computation, the bridge response was studied in 2-dimensions. However, to study
the influence of torsion, and incorporate the influence of stress distribution on bridge slabs, developing
a 3D finite element model is advised. It may also be challenging computationally to perform the relia-
bility analysis on a 3D non-linear model.

Modelling with measured WiM data

Since, the data measured in Netherlands for rail WiM(referred to as Quo-Vadis), only became avail-
able towards the end of the duration of the thesis, detailed analysis of risk assessment with measured
data was not done. Also, the comparison between the expert judgment elicitation and measured data
may be of interest for further research.






Basic Reliability Theory

In this chapter, general aspects of reliability, of which explanations were deliberately omitted in the
main report, are briefed upon. Within the field of probabilistic calculations, four levels are normally
distinguished:

 Level 0 Formally, this is used to denote a deterministic calculation methodology, where uncer-
tainties and variations are not taken into account.

» Level | Semi-probabilistic calculations: uncertainties are taken into account by means of safety
factors (for example the partial safety factors in the Eurocode).

* Level Il Fully probabilistic, i.e. all uncertainties are quantified or estimated, and taken into ac-
count. The reliability however is obtained by approximation techniques (in this report: FORM,
see section section A.5).

+ Level lll Fully probabilistic, where the reliability is determined using exact methods or methods
which are exact in nature (in this report: Monte Carlo analysis, see section A.4).

A.1. General concepts

Random variable

Random variables are variables, which can, with a certain probability, take on a set of possible values.
They are also denoted as stochastic variables. Random variables can be either continuous or discrete:
the former can take on any number in an interval (can be unbounded), while the latter is limited to only
a finite set of distinct values. In this thesis, all stochastic variables are continuous. Probability density
functions (abbreviated with ‘pdf’) assign a certain chance to each value a random variable can take on.
Because, in the continuous case, the number of possible realizations of a random variable is infinite,
the probability of taking on one single value is zero. Probability distribution functions therefore define
the chance of taking on a value in a relative way. The probability of taking on a value within an interval
however, is determined by integrating the pdf over this interval. Closely related to this, is the cumulative
distribution function (‘cdf’). It expresses the probability of non-exceedance as a function of a ‘dummy
variable’ expressing the range. The cdf can therefore be expressed in terms of the pdf:

FXx)=PX<x)= f_ fx(x)dx (A.1)

where
X = random variable,
x = dummy variable, used for describing the range of possible outcomes
Fy = cumulative distribution function (cdf) of X
fx(x) = probability density function (pdf) of X
P(X < x) = probability of X being smaller than x, i.e. the probability of non-exceedance
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Therefore, the pdf can also be defined as the derivative of the cdf:

dF,
) = S (A2)

Expectation

The expectation of a random variable is the best estimator for it's outcome, and is determined by
weighing possible realizations of this random variable with corresponding probabilities of attainment.
For discrete random variables, this is a summation over all possible outcomes:

E[X] = Z XP(X = x;) (A3)

where

E[] = expected value,
X = random variable, in this case discrete
x; = the i’th possible outcome of X
P(X = x;) = probability of X being equal to x;
Analogously, for continuous distributions the expectation is defined as the first moment (commonly
denoted by uy):

o

BN = | afiCodx = ux (A4)

Variance

The variance of a random variable is a measure of its spread around its expectation. Numerically,
the variance is equal to the expected squared distance between its possible outcomes and its mean,
weighed by the outcome’s probabilities. For discrete random variables:

Var() = EI(X - ix)*] = ) (v = 1)?P(X = x) (A5)
i=1

For continuous random variables:

Var(x) = f O — i) fi () dox = f W fx () dx — p? = 032 (A6)

From these, the coefficient of variation is defined as a measure of variations relative to the mean
value:

Ox
CV,X = ”_X (A7)
Risk
Risk is defined as the product of expected consequences and their associated probability of occurrence:

risk =P *C (A.8)

where
P = probability of event occurring,
C = consequences associated to this event

It is thus closely related to the expectation. In other words, risk may be interpreted as the expected
costs from an adverse event (e.g. structural failure). In case of multiple possible events, risks should
be summed, as is the case with expectations. Risk can be used to objectively weigh the probability
that some adverse event may occur, against e.g. the costs of improving strength.
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Probability of failure

The probability of failure is denoted with P , and quantifies the likelihood of failure occurring. It should
always be related to a time-frame, for example the probability that a bridge will fail during the coming
50 years. The reliability (L) is the complement of the failure probability, i.e.:

L=1-P (A.9)
where
Pz = probability of failure,
L = reliability

Therefore, reliability and probability of failure are completely dependent .

Reliability index
The reliability index, denoted with g, is frequently used to express the reliability of, among others,
structures. It is defined as:

=0 11-P)=d (L) (A.10)

where
B = reliability index,
@ = standard normal distribution cdf (u = 0; 0 = 1),
®~! = inverse standard normal distribution cdf,

and therefore,

Pp = ®(=p) (A.11)

Thus reliability index is fully replaceable by its corresponding probability of failure.

A.2. Probability distributions used in work

Some of the probability distributions which were deemed as ‘generally known’, were not elaborated
in the main text. To provide all the information necessary for the reader, however, these have been
included in this chapter.

Normal distribution
Probability density function (pdf):

1 (x — w)?
fx(x) = s P T (A.12)
Cumulative distribution function (cdf):
x
F(x) = f wfx(x)dx (A.13)
Mean value (expectation):
Uy = [ (A.14)
Variance:
ox? = o? (A.15)

Stochasts which are normally distributed are symbolized by “X (uX, 0X)'.
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Lognormal distribution
Probability density function (pdf):

fe) = — (nx — " (A.16)
X) = exp——m—m—5— .
X xa\2m P 202
Cumulative distribution function (cdf):
X

F(x) = f fx()dx (A.17)

Mean value (expectation):
py = ekto’/2 (A.18)

Variance:

ox? = (7" — 1)e2h+o’ (A.19)

)’

Stochasts which are normally distributed are symbolized by “XLN (uX, 0X)'.

A.3. Solving the reliability integral

This section, along with sections A.4 and A.5, is based on Probabilities in Civil Engineering (CUR-
committee E10, 1997). The ‘reliability equation’ or ‘limit state function’ is written in such a way, that
nega1tive values of the safety margin Z correspond to failure. The reliability equation has the general
form':

Z=R-S (A.20)

where
Z = safety margin,
R = resistance to failure
S =load

The probability of failure can then be expressed in terms of the reliability equation as

Pr=P(Z<0)=P(R<S) (A.21)

where P is the probability of failure. Calculating the failure probability comes down to determining
the probability of Z being smaller than zero. This probability is calculated by integration of the probability
density function of Z over the (hyper)space of variables, for those combinations where Z < 0. This may
seem more clear if ‘integration’ is replaced with ‘summation’. First, imagine a n-dimensional hyperspace
(for n > 3), where n is the number of (random) variables. Assume now that the probability density
functions are known for each variable, and that variables are independent. The probability density at
any point in the hyperspace, can then be determined from the product of probabilities that each variable
attains the value corresponding to this point in the hyperspace. The probability of failure is determined
from the probability density function defined on the hyperspace, only concerning those points where
Z = g(X1,X,, .., Xy) is less than or equal to zero, and is obtained from summation of probabilities related
to all those possible combinations which lead to failure.

Back to the formulation using the integrals: the failure probability is expressed as

P = f f(R,S)dR dS (A.22)
Z<0

with
Z=gX1, X5, 0 Xn) (A.23)

This means that the failure probability can be calculated with the integral

PF = f“'f xl,...,xndxl an (A.24)
Z=<0

"Any form is possible, as long as it is accompanied by a clear definition failure and survival



A.4. Monte Carlo method 81

from which it is clear that integration is performed over all variables, thus representing the aforemen-
tioned hyperspace. The integral in equation Equation A.24 proves quite hard to solve for the failure
probability, even to the extent that analytical solutions are an exception. Therefore, the integration is
generally done using numerical routines (section A.4) or the reliability is determined using approxima-
tion techniques (section A.5).

A.4. Monte Carlo method

The Monte Carlo method is a ‘brute force’ approach to the solution of the reliability integral. Starting
from known distributions for all stochastic variables, a random realization of each variable is drawn.
From this, the safety margin (Z) is determined by substitution in the reliability equation. Then it is
checked whether Z < 0 (failure) or Z > 0 (survival). This process is repeated a large number of times,
from which the failure frequency is calculated. This serves as an estimate for the failure probability, i.e.

p=-L (A.25)

where
ny = number of simulated failures,
n = number of simulations

Equation A.25 converges to the true solution of the integral Equation A.24 for increasing n. The
accuracy of the Monte Carlo is dictated by the number of simulations. Usually, the number of simulations
required for acceptable accuracy is rather high which can make the method computationally expensive.
As a general rule, for crude Monte Carlo, the number of simulations for 95% accuracy is in the order
of 400/P¢ , which shows that it it increasingly difficult to achieve a stable and accurate solution for a
decreasing failure probability.

A.5. First order reliability method

In this section an approximate method for solving the reliability integral using first order linearization
is explained. In case all variables in the reliability equation are normally distributed, and the reliability
equation is some linear function of these variables, then the reliability function itself will also be normally
distributed. If so, the probability that of Z being equal to or smaller than zero can be directly calculated
from

P.=P(Z<0)= cp(—’f) (A.26)

to which the reliability index 8 owes its alternate definition:

_ Mz
O-Z

I (A.27)






Expert Judgment questionnaire

Elicitation of Uncertainty distributions for Passenger loads in the Mexico — Toluca Railway

B.1. Introductionn

This questionnaire focuses on the elicitation of uncertainty distributions over passenger loads in the
soon to be operational Mexico — Toluca railway.This questionnaire is a part of an Expert Judgment
Exercise for the purpose of a Master Thesis Project at TU Delft. This approach has been developed at
TU Delft and has been used in numerous studies. Description of the variables of interest is provided
in the subsequent section. It is followed by a set of questions in order to elicit uncertainty over these
variables of interest. Your personal details will not be used in the open literature to associate individual
answers to individual experts. They are necessary however to warranty the accountability and dupli-
catable of this workshop as a scientific exercise.

Name

Current Position

Email

B.2. Data of Interest

A new interurban passenger train system from Toluca to Mexico City is being constructed. It has an
approximate 57.7 kilometer high-speed rail line linking the cities of Toluca and Mexico City. Service will
be provided to six stations: 1) Observatorio in Mexico City; 2) Santa Fe, 3) Lerma, 4) Metepec (near
the Toluca International Airport), the 5) Toluca Bus Station and 6) Zinacantepec. The train will carry
an estimated 300,000 passengers daily and travel at a top speed of 160 kilometers-per-hour, making
the trip from Toluca to Mexico City in about 39 minutes. As expressed before, we are interested in
the weight distribution in a single wagon as measured by a hypothetical WIM system if available. WIM
is a weight in motion measurement done using instruments installed on tracks. It records the moving
vehicular weight which includes the dead weight of the locomotive and the additional load being carried
in the form of passengers/cargo. In other words we will ask estimates of your uncertainty over the
weight observed in each of the 4 axles of a single wagon of the train briefly described above (However
excluding the dead load of the train). These questions are divided into two time segments. The train
that will be running is manufactured by CAF. The distribution of the axles in the wagons is shown in the
Figure B.2. There are four axles in each of the wagons.

B.3. Procedure

The first part of the questionnaire will ask you to provide your estimates for the Variables of Interest
(whose value is unknown to the researcher). The second part asks you to elicit dependence between
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Characteristics of Train

Type Electric :
Motorised Unit

Number of cars 5 (can he
doubled in peak '
hours)

Total Passenger 711

Capacity of train

Maximum Speed 160km/hr

Total train length { 98.97m
For upto 5 cars)

Figure B.1: (left) Plan view of proposed route of Mexico-Toluca Train (right)Characteristics of train)

[OONONS) [OONONS) £ () () C) € () C) ¢ () () C) ()

Figure B.2: Representative drawing of the train for Mexico-Toluca bridge

these variables of interest in the form of conditional probabilities of exceedance. The third, fourth
and fifth part of the questionnaire will ask your estimates for calibration variables. These calibration
variables are used for empirical control of the data collected in this questionnaire. Your contribution
will help us quantify the unknown data. You are asked to quantify 3 percentiles of your subjective
uncertainty distribution per variable:

1. 5% quantile : in 5% of the cases true value will be lower than your estimate

2. 50% quantile : in 50% of the cases the true value will be lower/higher than your estimate

3. 95% quantile: in 95% of the cases the true value will be lower than your estimate.

Toillustrate, one example is given below based on expert judgment on the average monthly temperature
distribution in Mexico from 1991-2015

Table B.1: Expert Judgment question on the average monthly temperature distribution in Mexico from 1991-2015

5% quantile (Degree Celsius) 50% quantile (Degree Celsius) 95% quantile (Degree Celsius)
12 20 24

The above data can be interpreted as : According to the expert, in 95% of the of the cases average
monthly temperature (from 1991-2015) is greater than 12° Celsius, in 50% of the cases higher/lower
than 20° Celsius and 95 of the cases it is lower than 24° Celsius.

B.4. Questionnaire

B.4.1. Variables of Interest (Uncertainty)
Please provide the 5th 50th and 95th percentiles of your uncertainty distribution over the weight in a
single car in tons that would be measured by a WIM system in (see Table B.2):
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Table B.2: For Elicitation of Uncertainty of Variable of Interest

5th quantile  50th quantile

95th quantile

Axle 1
Axle 2
Axle 3
Axle 4

B.4.2. Variables of Interest (Dependence)
Description: This question segment, asks the expert to determine the dependency between the load

distribution in different axles.

ton
ton
ton
ton

Consider Table Table B.2. Consider a sample of 200000 cars with the characteristics listed above.
For each row in Table B.3 there will be 100000 cars for which load in Y1 will be larger than the 50th
quantile value that you provided in Table above. Consider the samples of Y2 corresponding to the
100000 samples of Y1 described above. On how many of them will the value of Y2 will be larger than
the median value of Y2 you provided in Table above? In other words what is P(Y2>its median | Y1>its

median )? ( Refer to the Appendix for relation between correlation and Probability)

Table B.3: For Elicitation of Dependence of Variable of Interest

Y1 Y2 Probability ( %)
Axle 1 Axle 2
Axle 2 Axle 3
Axle 3 Axle 4
Axle 4 Axle 1

B.4.3. Calibration Variables-1 (Uncertainty)
This section refers to data collected by the WIM system of the Netherlands from 1st of April 2008 to
30 of April 2008. We will discuss data concerning vehicles with 4 axles (35,057 vehicles in total). The

total number of 4 axle vehicles are 35,057 on Left Lane of A15 Highway in The Netherlands

Please provide the 5th 50th and 95th percentiles of your uncertainty distribution over the maximum

weight in tons that would be measured by the WIM system in the data described (Table B.4).

Table B.4: Maximum weight in tons that would be measured by the WIM system

5th quantile

50th quantile

95th quantile

Axle 1
Axle 2
Axle 3
Axle 4

ton
ton
ton
ton
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B.4.4. Calibration Variables-1 (Dependence)
Description: This question segment, asks the expert to determine the dependency between the load
distribution in different axles in 5 axle vehicle.

Consider a sample of 35057 vehicles with 4 axles ( See Figure below). For each row in Table B.5
there will be X’ number of vehicles (out of 35057 vehicles) for which load in Y1 will be larger than the
50th quantile value. Consider the samples of Y2 corresponding to the ‘X’ samples of Y1 described
above. On how many of them will the value of Y2 will be larger than the median value of Y2 you
provided in Table above?

In other words what is P(Y2>its median | Y1>its median )?

Table B.5: For Elicitation of Dependence of Calibration variables

Y1 Y2 Probability ( %)
Axle 1 Axle 2
Axle 2 Axle 3
Axle 3 Axle 4

Axle 4 Axle 1
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B.4.5. Calibration Variables - 2 (Uncertainty)
This section refers to data collected by the Rail WIM system of the Netherlands . The measurements
are recorded using the ‘Gotcha / Quo Vadis’ system.

The system classifies as ‘weigh-in-motion’ (WIM), as measurements are obtained from moving
trains. The installations consist of four glass-fiber sensors mounted on the underside of the tracks
(two on each side). Also, an antenna is placed which reads RF-tags on trains, which can be used
for identification. The system produces optic signals, i.e. when a train passes the sensors, the tracks
bend slightly. This causes a disturbance in the optic signal, which is translated to a static weight and
dynamic forces. The system is calibrated frequently (order of magnitude is daily), using vehicles with
known weights (preferably dedicated locomotives).

Information regarding the available data is summarized in table 4-4 and the overview of the corre-
sponding measured sites are given in Figure 4-1, Figure 4-2, Figure 4-, Figure 4-4 and Figure 4-5

DetectorlD km GeoCode  GeoDetailDescription  TrackName Latitude Longtitude

11 51.72 104 Voorschoten I LF 52.12324 4. 42896
12 5172 104 Voorschoten 1 KF 52.12324 442806
18 51.72 104 Voorschoten 11 MF 52.12291 4.42958
19 5172 104 Voorschoten 11 NF 52.12291 442058
111 24.801 513 Tricht GU 5180117 526765
114 24.801 513 Tricht GJ 5180117 526765
163 75.059 112 Schiedam CF HLO5G5G 4.38279
164 75.059 112 Schiedam DF 5195656 4.38279
363 50.759 035 Zeist AF 5206595 5.31602
364 50.759 035 Zeist AT 5206595 5.31602

Figure B.3: (left) Plan view of proposed route of Mexico-Toluca Train (right)Characteristics of train)
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Figure B.4: Map of The Netherlands with marked locations of WiM installations

Voorschoten lies between The Hague and Leiden. Detectors 12 and 19 were subjected to axle
loads of larger magnitudes than detectors 11 and 18 (Refer Figure 4-6)
Tricht The tracks near Tricht are used extensively for freight transports. Interestingly, the most frequent
occurrence of large axle loads is measured at detector 111, i.e. track GU. Figure 4-3 suggests that,
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Figure B.5: Overview of tracks near Voorschoten (Geocode 104)

given the assumption that most of the traffic on the Dutch railways is right-driving, this track is mainly
used for inland transportation of freight, or export eastwards (e.g. Germany).
Schiedam : The station is close to Rotterdam and most trains come from and go to Rotterdam.

Zeist lies close to Utrecht. It is noted that Freight is transported primarily from Utrecht towards the
eastern part of the country.
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-

Figure B.6: Overview of tracks near Tricht (Geocode 513)

Figure B.7: Overview of tracks near Schiedam (Geocode 112)
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Figure B.8: Overview of tracks near Zeist (Geocode 035)

Histograms for axle loads (in kN) are plotted for a pair of detectors at Voorschoten and Tricht below:
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Figure B.9: Histograms for axle loads (in kN) for a pair of detectors at Voorschoten and Tricht
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We are interested in the uncertainty in Axle loads for sites at Schiedam and Zeist. The following
questions are therefore based on these sites

Q1. Please provide the 5th 50th and 95th percentiles of your uncertainty distribution over the mean
weight in tons across all axles that would be measured by the WIM system at Schiedam in the data
described by detector 163

Table B.6: For Elicitation of Uncertainty of mean axle load at Schiedam

5th quantile  50th quantile  95th quantile
Mean Axle Load at Schiedam Ton

Q2. Please provide the 5th 50th and 95th percentiles of your uncertainty distribution over the mean
weight in tons across all axles that would be measured by the WIM system at Zeist in the data described
by detector 363

Table B.7: For Elicitation of Uncertainty of mean axle load at Zeist

5th quantile  50th quantile  95th quantile
Mean Axle Load at Zeist Ton

Q3. Please provide the 5th 50th and 95th percentiles of your uncertainty distribution over the max-
imum weight in tons across all axles that would be measured by the WIM system at Schiedam in the
data described by detector 163

Table B.8: For Elicitation of Uncertainty of maximum axle load at Schiedam

5th quantile 50th quantile 95th quantile
Maximum Axle Load at Schiedam Ton

Q4. Please provide the 5th 50th and 95th percentiles of your uncertainty distribution over the max-
imum weight in tons across all axles that would be measured by the WIM system at Zeist in the data
described by detector 363
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Table B.9: For Elicitation of Uncertainty of maximum axle load at Zeist

5th quantile 50th quantile 95th quantile
Maximum Axle Load at Zeist Ton

B.4.6. APPENDIX

The following graph illustrates the probability vs correlation behaviour. The graph can be utilised to
answer questions in Section Il and Section IV.
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Figure B.10: Probability vs correlation behaviour



Finite Element Modelling

This appendix describes the modelling details used in this thesis. The following section briefs about
the basic concepts of Finite Element Analysis (FEA), element type and analysis types.

C.1. Basic Concepts of FEA

In structural mechanics, a dominant discretization technique is the finite element method (FEM).
The physical interpretation of the FEM is done by subdivision of the mathematical model into non-
overlapping components of simple geometry, which are elements for short or finite elements. A finite
number of degrees of freedom are used to express the response of each element. These are char-
acterized, at a set of nodal points, as the value of an unknown function (or functions). The discrete
model obtained by connecting or assembling the collection of all elements is used to approximate the
response of the mathematical model. The natural occurrence of the disconnection-assembly concept
takes place during the examination of many artificial and natural systems. For example, visualization
of an engine, bridge, building, airplane, or skeleton as made from simpler components is easy .

One of the most useful tools to solve partial differential equations is FEM. The solution to these
equations on complex geometries is particularly easy to find using this model. The ability to automatize
it makes highly suitable for computer implementation, which is efficient. Hence, the result is that we
get matrices, over very large, which are easily solvable using a computer. The basis of finite element
is variational formulations, which differentiates it from the more popular finite difference method. The
concepts of virtual work and energy are taken well into account, while solving problems in solid and
structural mechanics.

An energy functional is minimized to obtain the stresses, temperatures, flows, or other desired
unknown parameters in the finite element model. All energies related to the particular FEM are part of
the energy functional. The finite element energy functional must be zero, as per the law of conservation
of energy. By minimizing the energy functional, the correct solution is obtained for any FEM. The
derivative of the functional with respect to the unknown grid point is set to zero and that helps us find
the minimum of the functional.

Thus, the basic equation for finite element analysis is :

dF
— =0 C.1
% (€1)
where

F = energy functional,

p = In mechanics, the potential is displacement

This is based on the principle of virtual work, which states that if a particle is under equilibrium, under
a set of a system of forces, then for any displacement, the virtual work is zero. Each finite element will
have its own unique energy functional.As an example, in stress analysis, the governing equations for
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a continuous rigid body can be obtained by minimizing the total potential energy of the system. The
total potential energy I can be expressed as:

1
= —f aTedV—f ddeV—dequ (C.2)
2 Jq Q r
where
o = stress,
€ = strain,

d = vector of displacement,

b = vector of body force components per unit volume,

q = vector of applied surface traction components at any surface point,
I' = boundary of the body (,

Q = region of structure

The first term on the right hand side of this equation represents the internal strain energy and the
second and third terms are, respectively, the potential energy contributions of the body force loads and
distributed surface loads.

In the finite element displacement method, the displacement is assumed to have unknown values
only at the nodal points, so that the variation within the element is described in terms of the nodal values
by means of interpolation functions. Thus, within any one element,

d = Nu (C.3)

where
N = matrix of interpolation functions termed shape functions,
u = vector of unknown nodal displacements

The strains within the element can be expressed in terms of the element nodal displacements as

€ =Bu (C.4)

where
B = the strain displacement matrix

The stresses may be related to the strains by use of an elasticity matrix ( e.g. Young’s modulus E)
o=Ee (C.5)

The total potential energy of the discretized structure will be the sum of the energy contributions of
each individual element. Thus,

M= Z m, (C.6)

where
I, = total potential energy of an individual element

1
n, = —f uT(BTEB)Tudv —f

u'NTpdv —f u'NTqdS =0 (C.7)
2 Jq Qe

r
Taking the derivative,

on, 1 S
=5 Le(B EB)TudV fﬂ

NTpdV —f NTqdS =0 (C.8)
r

e
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resulting equation is,

f= N NTudV+fFNquS =0 (C.9)

where
f = force vector

Equation C.10 is of the form ku — f = 0 where
k= f (BTEB)udVv (C.10)
Qe

where
k = element stiffness matrix

C.2. Elements

A finite element model is composed of elements, which generally consist of connected nodes. The
elements mentioned in this report will be briefly discussed in the following sections.

T sy o

Continuum Shell Beam Rigid
{solid and fluid) alements elements elements
elaments
Membrang " Infinite Connector glements Truss
alamants slements such as springs elaments

and dashpots

(a) Different families of element type in ABAQUS Hibbett et al.

s

2 - node element

2
3 2
1 2 1 3 2
1 1

3 - node quadratic element 2- node cubic element
(b) 2 noded beam elements Hibbett et al.

Figure C.1: Element Types in ABAQUS

B21/B31- Beam Elements

B21 beam elements and B31 beam element follow Timoshenko beam theory, thus allowing transverse
shear deformation. Slender, as well as thick(”stout”) beams allow the usage of these elements . There
are beams, that are entirely made of an uniform material. In such cases, useful results can be provided
for cross-sectional dimensions up to the wavelength of the highest natural mode, contributing signifi-
cantly to the response or 1/8th of typical axial distance. The behavior, transverse shear, of Timoshenko
beams is assumed by Abaqus to be linear elastic with a fixed modulus. Hence, it is independent of the
response of the beam section to bending and also axial stretch. B21 is a 2-noded linear beam element
with 3 degrees of freedom ( 2 translational in plane - x,y, and 1 rotational ¢,;,while B31 is a 2-noded
linear beam element with six degrees of freedom (along x,y, z, ¢y, ¢, $,).The beam cross sectional
properties are given in the section properties for the element, from which the area and moment of
inertia are calculated, to compute the beam response to stretching, bending, shear and torsion.
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C.3. Analysis type

In Abaqus, It is possible to use different analysis types when modelling. The analysis types used are
described in this section

Static Analysis

A static structural analysis determines the displacements, stresses, strains, and forces in structures or
components caused by loads that do not induce significant inertia and damping effects. Steady loading
and response conditions are assumed; that is, the loads and the structure’s response are assumed to
vary slowly with respect to time.

Modal Analysis
A modal analysis determines the vibration characteristics (natural frequencies and mode shapes) of a
structure

Dynamic Analysis
A Dynamic analysis accounts for the mass and inertia effect of the system with respect to time. Eu-
rocode 1, elaborates on the criteria to decide whether a dynamic analysis is required or not.

C.4. Time Integration method

To increment the time in discrete steps At, schemes are involved by time stepping algorithms. Given
the values of a,,, a,and d,, attime t,, (and perhaps also at earlier times steps), the values a4, a,,+;and
dn4q at time t,,, = t, + At are needed.A time stepping scheme is essential to perform this. Until the
desired time is reach, time is continuously incremented. There are two types of time stepping schemes:
1. Implicit and 2. Explicit

C.4.1. ImplicittABAQUS Standard

The dependency of implicit schemes is on information at various steps. This can be at time step
n+1, and also information at time step n and steps prior to that. Therefore, a system of equations
must be solved for implicit schemes. Linear and nonlinear response options are both provided by
Abaqus/Standard. Linear analysis, at the time when the procedure is introduced, is considered as
linear perturbation analysis, as the program is truly integrated. General application of linear analysis
is allowed by linear perturbation approach, especially in particular case. This case is when the linear
response is dependent on either of the two factors: 1. Pre-Loading 2. Nonlinear response history of
the model. A convergent solution is needed to be obtained at the lowest possible cost in nonlinear
problems. Two approaches are offered to this by nonlinear procedures in Abaqus/Standard. In one of
the choices, the user specifies the increment scheme. This is the direct user control of increment size.
In the other choice, the user needs to define the step and also specify tolerances or error measures.
Post which, Abaqus/Standard automatically selects the increments as responses develop in the step.
The user cannot foresee the response before time and this makes the entire approach usually more
efficient. In this research study, ABAQUS Standard is used with automatic time stepping.

Explicit

In the explicit form of analysis, the preceding step places a very crucial role. The result in each step
is dependent on the quantities obtained in the previous step. To compute the solution at the time step
n+1, integrators, explicit, rely on information at timestep n or even earlier(such as n-1).



Measurement of WiM Data

The Dutch railway network is equipped with measurement systems for measuring the weights of moving
trains which is referred to as Quo Vadis. The information given in this chapter is obtained from the Quo-
Vadis information guide provided by ProRail unless stated otherwise.

Quo Vadis measures the rail deflection using optical sensors Figure D.1.

_

g 3 |
L

Light source

detector

fibre optic

Figure D.1: Quovadissensor

The following information is derived from the sensors:
» weight of axle
» wheel-load differences

» weight ratio between wheels diagonally opposite each other on the bogie

* uneven load

45 sites throughout Dutch rail network has installed Quo Vadis systems. The reliability of the weight
reading taken with Quo Vadis is +/- 3%. This depends on sufficient calibrations, valid sensors, track
layout and track quality. Quo Vadis measures weight using 12 sensors (6 per rail). The axle load is
reported in tonnes. Measurements from Quo Vadis and HotBox detection are forwarded to ProRail’s
central server (the central Gotcha server). This server controls active signalling. The measurements
are then forwarded to the Quo Vadis application.

For this research, the WiM data is used for trains whose speeds are lesser than 200km/h for the
period of one year from August 2017-September 2018, for 15th day of each month.
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Correlation Matrix

In this chapter, the correlation matrices of the Bayesian Network-l and Bayesian Network-Il are pre-
sented.

E.1. Bayesian Network - |

In Figure E.1, Figure E.2, and Figure E.3, the correlation matrices of Bayesian Network, BN-I explained
in chapter 5 are shown.

{BBN | Empirical Normal | Empirical | Determinants
Bayesian belief net rank correlation matrix
AXLE1 AXLE2 AXLE3 AXLE4 SFnl BMn2 SFn2 we Ec fc
AXLE1 [ 1 0.333 0.196 0.108 0.585 0.501 0.44 0 0
AXLE2 0.333 1 0.571 0.311 0.812 0.765 0.723 0 0
AXLE3 0.186 0.571 1 0.533 0.716 0.791 0.832 0 0
AXLE4 0.108 0.311 0.533 1 0.571 0.655 0.704 0 0
SFn1 0.585 0.812 0.716 0.571 1 0.984 0.958 0.0669 0.0133 0.015]
BMn2 0.501 0.765 0.791 0.655 0.984 1 0.993 0.0721 0.0143 0.016|
SFn2 0.44 0.723 0.832 0.704 0.958 0.993 1 0.0542 0.0107 0.012]
we 0 0 0 0 0.0669 0.0721  0.0542 1 0.19 0.21
Ec 0 0 0 0 0.0133 0.0143  0.0107 0.19 1 0.85
fc 0 0 0 0 0.0153 0.0164 0.0124 0.218 0.859
u2 0.531 0.772 0.769 0.638 0.991 0.998 0.986 0.0654 -0.00741 -0.0025
< >
More >> Determinant 6.9144e-11

Figure E.1: Correlation Matrix of Bayesian belief network of BN-I

BBN || Empirical Normal | Empirical | Determinants

Empirical normal rank correlation matrix
AXLE1 AXLE2 AXLE3 AXLE4 SFnl BMn2 SFn2 we Ec fc u2
AXLEL [ 1 0.333 0,143 -0.0192 0.585 0.501 044 -0.0301 -0.0261 -0.0452 0.531
AXLE2 0.333 1 0.571 0.309 0.812 0.765 0.723 -0.00186 -0.0355 -0.018 0.772
AXLE3 0.143 0.571 1 0.533 0.695 0.774 0.818 -0.00178 -0.0077 0.00485 0.75
AXLE4 -0.0192 0.309 0,533 1 0.518 0.61 0.665 -0,0158 0.00537  0.0397 0.591
SFn1 0.585 0.812 0.695 0.518 1 0.984 0.958  0.0489 -0.0234 -0.0101 0.991
BMn2 0.501 0.765 0.774 0.61 0.984 1 0.993 0.0549 -0.0158 0.00244 0.998
SFn2 0.44 0.723 0.818 0.665 0.958 0.993 1 0.0377 -0.0152 0.00538 0.986
we -0.0301 -0.00186 -0.00178 -0.0158 0.0489 0.0549 0.0377 1 0.167 0.218 0.0485
Ec -0.0261 -0.0355 -0.0077 0.00537 -0.023% -0.0158 -0.0152 0.167 1 0.859 -0.0397
fc -0.0452 -0.018  0.00485 0.0397 -0.0101 0.00244 0.00538 0.218 0.859 1 -0.0198
u2 0.531 0.772 0.75 0.591 0.991 0.998 0.986 0.0485 -0.0397 -0.0198 1
More >> Determinant _

Figure E.2: Correlation Matrix of Empirical Normal distribution of BN-|
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E. Correlation Matrix

BBN _|{ Empirical Normal || Empirical | Determinants
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Figure E.3:

E.2. Bayesian Network - Il

Correlation Matrix of Empirical Normal distribution of BN-I

In Figure E.4, Figure E.5, and Figure E.6, the correlation matrices of Bayesian Network, BN-Il explained

in chapter 5 are shown.
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Empirical normal rank correlation matrix
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Correlation Matrix of Bayesian belief network of BN-II
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Figure E.5: Correlation Matrix of Empirical Normal distribution of BN-II
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Empiical norma rark correlation maiix
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Figure E.6: Correlation Matrix of Empirical Normal distribution -of BN-II






Bending Moment Capacity

The calculation of the bending moment resistance MRd is discussed step by step. This methodology
is taken from TU Delft reader CIE3150/4160, Prestressed concrete unless stated otherwise.
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Figure F.1: (Beam subjected to permanent load, variable load and prestressing load
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104 F. Bending Moment Capacity
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Figure F.2: (Top) Stress-strain relationship of reinforcing steel in ULS ; (Bottom) Stress-strain relationship of
prestressing steel in ULS
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Figure F.3: Stress-strain relationship of concrete in compression in ULS

« First, the height of the compressive zone is estimated. For that purpose the compressive forces
are determined. When the reinforcing steel yields (using the horizontal branch from Figure F.3 in
the calculation), the total force in this steel is Asfyd.When the prestressing steel is in the plastic
state (using the horizontal branch from Figure F.2), its total force is Apfpd. Since equilibrium of
horizontal forces is required, it should hold (see Figure F.4):

Ne = Py + ANy + Ny = ApOmjeo + Ap(fpd — 0p,oo + Asfya (F.1)

N, = abx, f.din case of a rectangular compressive zone cross-section (F.2)

For a rectangular compressive zone cross-section, a concrete strength class < C50/60 , and a
bi-linear stress-strain relationship (EN 1992-1-1 fig. 3.4) = 0.75. From this first approximation
the height xu of the compressive zone is obtained. In case of a rectangular concrete compressive
zone cross-section it reads:

Xy = Asfya + Ap(fpd — 0p o + Bryoo /@b feq (F.3)
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F. Bending Moment Capacity
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Figure F.4: Equilibrium between external and internal forces

» Check whether the height xu of the compressive zone meets the requirement with regard to the
maximum height of the compressive zone according to the Dutch National Annex to EN 1992-1-1

cl. 5.5:

i
5‘500+f

+ %ufor fox < 50N /mm2

(F.4)

and where § is the ratio of the redistributed moment to the elastic bending moment (according to
the linear theory of elasticity).

» With the obtained height xu of the compressive zone, the concrete and prestressing steel strains
can be determined (Figure F.5).

ds

Figure F.5: Determination of the strains in concrete and prestressing steel for a certain height of the compressive

zone x,,
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The strain €, in the reinforcing steel follows from:

ECu ECU. + 65

— U s F.
o @ (F.5)
The increase of the strain in the prestressing steel n be determined in a similar way:
€cu _ €cu + Ae, (E6)

Xy dy
The total strain in the prestressing steel is €, = €, » + A€,

« With these strains €5 and Ae,, the stresses in the reinforcing and prestressing steel o, and g,,,,can
be calculated. From these strains the force in the reinforcing steel and the increase of the force
in the prestressing steel are obtained:

N = N, + AN, (F.7)

» Next it should be checked whether the following condition is satisfied:

N + Py o = N.(= abx, fcd) (F.8)

N

- P
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do --—7- ZA4_
/

|t
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Figure F.6: Graphical representation of the iteration process for the determination of the height of the concrete
compressive zone x,,

Figure F shows a graphical representation of the iteration process. For the first assumed com-
pressive zone height xu, the magnitude of the concrete compressive force Nc and the steel force
N + P, are presented in horizontal direction, using the solid vertical line from the strain diagram
as axis. If N + P, ., is larger than Nc, as is the case in the first iteration step shown in , the
compression zone height is too small and the calculation has to be repeated using a larger xu.
So, with graphical support as shown in the figure, the correct value for xu can be found for which
axial equilibrium is satisfied.

+ With the correct height xu of the concrete compressive zone, the magnitude of the bending mo-
ment resistance MRd can be determined. This follows from (also see Figure F.7

MRd = AsUsu(ds - Y) + Ap(gpu - Up,w)(dp - Y) + Pm,OO(Zc - Y) (F_9)
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Figure F.7: Determination of the bending moment resistance Mg,
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The calculation performed in this thesis is as follows:

Centroid from middie of bottom edge T entroid = 00094m ¥ o= 13149m
Depth of beam Ay enn = 24m

Comernte €33 A.=34m”  f.={MPa

Prestressing steel Y186057 fg=

Ep = 195.10°MPa
api._{ = 1080NPa

X
Area of 1 bar :‘.?1 ‘= 140mm”

Mumber of wires in 1 tendon n'=1

Mumber of tendons in beam Beondon = 50
Area of prestressing steed Al-‘r = *""pl""tnﬂucn

A =00llm’

1860 3
fp = - MPa = 1651 x 10°Pa
AN, = .ap-(o.gs-%ma- upiﬂ] = 5.5895 x 10°N

o — T T

P . = ""'pi.'l.'l'""p =]12x 10N

-

Reinforcing steel Area of 1steel bar A = 200mm"

number of steel bars o= 44

Total area of steel 4, =n A, =88x 10 m’

E, = 200-10°MPa

foa = 435MPa
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F. Bending Moment Capacity

Geometry width of top flange b= 65m

height of top flange by = 0.25m

Total width of web bypeh = 0.4m

Calculating concrete compression zone using rectangular stress block:

f
rk
,*.!_-f}.ﬂ + %-ﬂ.gi ﬁ

a-b-f_4

In.

x, < hy Yes

Hence, on computing moment equilibnum at the bottom of the beam cross cross section:

Mpg = Pminf'{}'mtmid} =X, b":d'[dbﬂm - T“] + .ﬂ--\'p-fﬂ'.ﬂsm] + -‘L\;'fyd-m-ﬂﬁl}

Given, the uncertainty in fc, the distribution of Xu and then Mrd can be computed
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