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ABSTRACT 
 
In this study the frictional force between a pig and the pipe wall is studied by 
investigating the properties of the sealing disk of the pig. This is done by subjecting the 
sealing disk to a wall normal force and a frictional force in a lab facility. The 
experimental results are compared with values obtained by Finite Element Analysis and 
by a simplified mechanistic model. The obtained results are important for estimating the 
steady state pig velocity in a pipeline, and thus for the arrival time of the pig. In addition, 
the results can be used to improve 1D transient pig modelling in a pipeline, where the 
frictional force is an input parameter. 
 
 
1 INTRODUCTION 
 
The use of a pig (Pipeline Inspection Gauge) is often part of the operation or maintenance 
of pipelines in the oil and gas industry: a cylindrical or sometimes spherical object is 
launched into the pipeline and runs through the pipeline while being propelled by the 
production fluids [6]. Such pipelines can transport oil/water, dry gas, or multiphases 
(such as gas/condensate/water). While a conventional pig seals the pipeline completely 
and will travel with the mixture velocity, a by-pass pig allows part of the production 
fluids to by-pass the pig, resulting in a lower pig velocity [1]. Figure 1a shows an 
example of a by-pass pig. The reduction in pig velocity has proven to be beneficial for 
both inspection and cleaning purposes [3,8,9,10,13]. As the velocity of the by-pass pig is 
not dictated by the mixture velocity anymore, detailed understanding of the force balance 
on the pig is needed in order to predict its velocity. In steady state this implies that the 
driving pressure force of the production fluids balances with the frictional force of the 
pig with the pipe wall, see Figure 1b. Applying the steady state force balance results in 
the following equation for the pig velocity [1]: 
 

ܷ௣௜௚ = ܷ௠௜௫ − ݀ଶܦଶ ඩቌ ܥ௙௥௜௖,௧௢௧ܨ 8ߨ  (1)																																																																																									ଶቍܦ௠௜௫ߩ
 
Here ܷ௣௜௚ is the pig velocity, ܷ௠௜௫ is the mixture velocity, ߩ௠௜௫ is the mixture density, ܦ 
is the pipe diameter, and ݀ is the diameter of the by-pass opening. ܥ = Δߩ0.5)/݌௠௜௫ܷ௕௣ଶ ) 
is the pressure loss coefficient representing the scaled pressure drop Δ݌ over the pig in 
dimensionless form. Here ܷ௕௣ is fluid velocity in the by-pass. The total friction force 
balancing the driving pressure force is denoted by ܨ௙௥௜௖,௧௢௧.  
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Figure 1: (a) Example of a by-pass pig. Reproduced from [12]. (b) Schematic 
representation of the force balance on a by-pass pig. 

 
In the past the pressure loss coefficient ܥ of various by-pass pig geometries has been 
modeled [1,2] to account for the driving pressure force, but so far little attention has been 
devoted to the quantification and modelling of the frictional force between the pig and 
the pipe wall [5, 7].  
 
The present study is focused on studying the frictional force during pigging by 
investigating the properties of the sealing disk of the pig. This is a flexible disk attached 
to the pig with an oversized diameter relative to the pipe diameter and it is used to fit the 
pig in the pipeline, see Figure 1b. Since the pig is in contact with the pipe wall via the 
sealing disk, the properties of this sealing disk have a large influence on the friction 
force. We define ܨ௙௥௜௖ = ܨ௙௥௜௖,௧௢௧/(ܦߨ) as the friction force per meter length of the pipe 
circumference. An industry rule of thumb is to model ܨ௙௥௜௖ as a constant which depends 
on the type of pig that is being used [4]. For example, a foam pig has a lower ܨ௙௥௜௖ than 
an inspection pig. The constant value of ܨ௙௥௜௖ is purely empirical and properties of the 
sealing disk are not taken into account explicitly in that engineering rule.  
 
The present study is focused on studying the frictional force during pigging in more 
detail, in which the effect of oversize, thickness of the sealing disk, and material 
properties of the sealing disk are taken into account. We make use of a simplified model 
described in [5], which includes properties of the sealing disk, such as the oversize and 
elastic modulus of the material. We will compare the results of the model with new 
experimental results obtained in our laboratory. In addition to the simplified model, we 
perform finite element modelling which is expected to contain more physics, but which 
also takes more computer time than the simplified model. The results of this study can be 
used to improve existing correlations [4] for the frictional force on a pig as applied in 1D 
transient tools (such as OLGA or LedaFlow), which can monitor the propagation of a by-
pass pig in a pipeline.  

(a) 

(b) 
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The structure of this paper is as follows. In Section 2 the simplified model for ܨ௙௥௜௖	from 
[5] is explained. This model is compared with experiments carried out in our laboratory, 
which are discussed in Section 3, and the measurement procedure is given in Section 4. 
In addition to the experiments, a Finite Element study of the sealing disk is performed, 
which is explained in Section 5. In Section 6 the results from the simplified model, 
experiments, and the finite element study will be compared. We conclude and discuss 
possibilities for future research in Section 7.  
 
 
2 SIMPLIFIED MODEL 
 
In this section the simplified model from [5] for  ܨ௙௥௜௖ is explained. The model considers 
the force balance in a single axisymmetric sealing disk which moves through a pipeline, 
see Figure 2. The thickness of the disk is denoted by ݐ, the pipe radius is denoted by ݎ, 
and the radius of the undeformed sealing disk is denoted by ݎ௦. The radius of the spacer 
disks, which connect the sealing disk to the pig body, is denoted by ݎ௣. Although ݎ௣ is not 
a property of the sealing disk itself, it is an important parameter determining ܨ௙௥௜௖ as it 
defines the part of the sealing disk that is available for bending. As can be noticed from 
Figure 2a the radius of the sealing disk is larger than the pipe radius. The oversize ߜ of 
the sealing disk with respect to the pipe radius is defined as:  
ߜ  = ௦ݎ − ݎݎ 																																																																																																																																								(2) 
  

 
                                          (a)                                                           (b) 

Figure 2: (a) Sketch of an undeformed sealing disk at rest. (b) Sketch of a sealing 
disk moving inside a pipe. 

 
The simplified model [5] takes a two-step approach. First, the geometry of the moving 
sealing disk is described. Second, a force balance is applied to this geometry.  
 
It is assumed that the centre line of the sealing disk can be described by an arc with 
radius ܴ	and angle ߚ,	see Figure 2b. By assuming that there is no radial compression, the 
length of the centre line ݈ can be taken constant, i.e.	݈ = ௦ݎ −  ௣. The projected height isݎ
denoted as  ݈′, which can be related to ߚ: 
 ݈ᇱ = ܴ sin ߚ = ௟ఉ 	sin ߚ = ൫௥ೞି௥೛൯ఉ 	sin  (3)                                                                             ߚ

© BHR Group 2016 Multiphase 10 105



Taking into account the constraint of the pipe geometry, we can also express ݈′ as: 
 ݈ᇱ = ݎ − ௣ݎ − ௧ଶ sin  (4)                                                                                                         ߚ

 
By combining Eq. 3 and Eq. 4 we can solve for	ߚ. Since no exact solution exists, ߚ has to 
be approximated numerically. Note that in this approach we did not take into account the 
existence of a possible chamfer, which is the worn edge along the sealing disk. For more 
details, the reader is referred to [5].  
 
With the geometry in place we now consider a moment balance in point A as indicated in 
Figure 2b. We assume a steady state motion of the pig, which implies that the positive 
contribution to the moment (red arrows) must be balanced by the negative contribution 
(yellow arrows). We will now address the different contributions.  
 
The moment in point A caused by ܨ௙௥௜௖ is expressed as: 
௙ܯ  = ݎ௙௥௜௖൫ܨ −  	(5)																																																																																																																ߠ݀ݎ௣൯ݎ
 
Here ߠ is the circumferential coordinate. Recall that the unit of ܨ௙௥௜௖ is [N/m], which is 
the friction force per meter length of the circumference. The wall friction ܨ௙௥௜௖ and the 
wall normal force ܨ௪௔௟௟ are related through a coefficient of friction ߤ as: 
ߤ  = ௪௔௟௟ܨ௙௥௜௖ܨ 																																																																																																																																									(6) 
 
We can then write the moment in point A caused by ܨ௪௔௟௟ as: 
௪ܯ  = ௪௔௟௟ܨ ൬ܴ(1 − cos (ߚ − 2ݐ cos ൰ߚ ߠ݀ݎ = ߤ௙௥௜௖ܨ ൬ܴ(1 − cos (ߚ − 2ݐ cos ൰ߚ  (7)						ߠ݀ݎ
 
To describe the stress-strain relationship we introduce the E-modulus and the Poisson 
ratio ߥ, which are material properties of the sealing disk. In this analysis we assume ܧ to 
be constant. The moment in point A induced by the compression and tension bending 
stress ߪ௖,௧	can then be expressed as [5]:  
௖ܯ  = ௧ܯ = ௣24ܴݎܧଷݐ  	(8)																																																																																																																				ߠ݀
 
In addition to the compression and tension bending stress, a hoop stress will have a 
negative contribution to the moment at point A. The hoop stress is caused by the 
circumferential compression of the sealing disk. It can be expressed as [5]:       
ఏܯ  = ܧ ܴଶݐ	1ߠ݀ − ଶߥ 	න ߙ − sin ߙߙ + ௣ܴఉݎ

଴ 	(1 − cos  	(9)																																																																							ߙ݀(ߙ
 
Here ߙ is the angle defined on the interval [0,  The integral can be evaluated .[ߚ
numerically. We can now write for the total moment balance around point A: 
௙ܯ)  (௪ܯ	+ ௖ܯ)	− + ௧ܯ (ఏܯ+ = 0																																																																																				(10)	               
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We can solve this equation explicitly for ܨ௙௥௜௖: 
௙௥௜௖ܨ  = 					 ௖ܯ) + ௧ܯ ݎఏ)൫ܯ+ − ߠ݀ݎ௣൯ݎ ߤ1	+ ቀܴ(1 − cos (ߚ − 2ݐ cos ቁߚ                	 (11)																																											ߠ݀ݎ
We will test this simplified model against experiments, as explained in the next section.      
 
 
3 EXPERIMENTAL SETUP 
 
In the previous section it was shown that the deformation of the sealing disk is caused by ܨ௪௔௟௟ and ܨ௙௥௜௖, which are balanced by the forces associated with the elastic deformation 
of the sealing disk. ܨ௪௔௟௟ and ܨ௙௥௜௖ are related through the coefficient of friction ߤ, see 
Eq. 6. The coefficient of friction is a difficult parameter to predict and is not only 
dependent on the properties of the sealing disk, but also on the properties of the pipe, 
such as the wall roughness. Also the fluids that are transported in the pipe during the 
pigging operation can influence the effective coefficient of friction, as the fluids may act 
as a lubricant. In this study we do not attempt to predict ߤ, but rather take it as an input 
parameter to account for the variety in friction coefficients that can be encountered in the 
field.   
 
To this purpose the following experiment has been designed, see Figure 3. In the 
experimental setup a sealing disk is subjected to a circumferential force ܨଵ by reducing 
the diameter of a hull that is wrapped around the sealing disk, as shown in Figure 2. By 
applying an energy balance, this force can be linked to the normal force ܨ௪௔௟௟  that is 
exerted by the hull onto the sealing disk as: 
ݎΔݎߨ௪௔௟௟2ܨ  =  (12)																																																																																																															ݎΔߨଵ2ܨ
 
which results into: 
௪௔௟௟ܨ  = ݎଵܨ 																																																																																																																																					(13) 
 
By varying the diameter of the hull, which resembles the confining geometry of a pipe, 
the effective oversize of the sealing disk can be systematically adjusted. In addition, a 
second force ܨଶ can be applied perpendicular to the disk. This force can be linked to the 
friction force per meter length of the circumference,	ܨ௙௥௜௖, as:  
௙௥௜௖ܨ  =  (14)																																																																																																																																			ݎߨଶ2ܨ
 
By changing the ratio ܨଶ/ܨଵ	the friction coefficient can be varied in the experiment:  
ߤ  = ௪௔௟௟ܨ௙௥௜௖ܨ = ଵܨߨଶ2ܨ 																																																																																																																							(15) 
 can be varied from 0 up to a maximum value at which the disk starts to ,ߤ ଶ, and thusܨ 
slide. In principal, even higher values of ߤ could have been obtained by fixating the disk 
to the hull to prevent sliding. This was, however, not done in the current experiment.  
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                               (a)                                                                      (b) 

Figure 3: (a) Schematic of the setup. (b) Photograph of the experimental setup with 
a sealing disk. 

 
 
4 MEASUREMENT PROCEDURE 
 
All measurements were performed with two 24-bit GSV-2TSD-DI data acquisition 
devices connected to a 1kN and 2 kN load cell (KD40S, ME-Systeme), for the 
circumferential (ܨଵ) and for the axial direction (ܨଶ), respectively. The measurements 
were performed at 10 Hz and logged onto a computer. The measurement procedure starts 
by placing the sealing disk in the enclosing hull, see Figure 3. Subsequently, the diameter 
of the hull is reduced to the specified oversize at the start of each measurement, which is 
kept constant during the remaining course of the measurement. At this point no axial 
force is applied, so ߤ = 0.	Subsequently, the force in the axial direction (ܨଶ) is increased. 
When ܨଶ increases the circumferential force ܨଵ decreases. The increase in ܨଶ and 
decrease in ܨଵ are shown in Figure 4, where a typical result of a time series is shown as 
an example. The disk for this case is a 12" disk from vendor X subjected to an oversize 
of 2.8%. The properties of this disk (disk A) can be found in Table 1 in Section 6. The 
radius of the spacer disks ݎ௣ is kept constant for all experiments at a value of ݎ௣ =0.086	m. During the entire measurement the disk is pulled through the hull in steps. At 
each step three zones are distinguished: a rapid increase in force (rise), a steady constant 
force (slip) and finally a slow decrease in force (rest), see Figure 4b. These different 
zones are explained below. 
 
In the rise zone the disk is still in static equilibrium. ܨଶ is gradually increased, as is 
showed by the black line in Figure 4b. When the disk starts moving the slip zone is 
entered, which is shown by the magenta line in Figure 4b. At this point ܨଶ does not 
increase anymore, but oscillates, which indicates the transition from static equilibrium to 
slip motion.  Finally, the system is not adjusted anymore and the disk comes at rest which 
is shown by the green line in Figure 4b. During rest it is seen that both the forces ܨଵ	and ܨଶ are restored.  
 
The ratio between ܨଶ and ܨଵ	determines	ߤ, see Eq. 15. As this ratio varies during the 
experiment, we can calculate the corresponding ߤ at all time instances, which is shown in 
Figure 4a. Since we can obtain all values of ߤ between 0 and some maximum value at 
which the disk starts to move, this method gives a way to test the behaviour of the sealing 
disk for different values of ߤ. This is shown in Figure 4c, where ܨଵ and ܨଶ are given as 
function of  ߤ. 
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                                     (a)                                                                          (b) 

 
(c) 

Figure 4: (a) Time series of ࡲ૚ and ࡲ૛	and the corresponding value for ࣆ. (b) A close 
up of ࡲ૚ and ࡲ૛ between 240 and 300 seconds, which is indicated in panel a with the 

dashed box. (c) ࡲ૚ and ࡲ૛ plotted for different values ࣆ, including only the points 
that have been recorded during the rise zone. 

 
Since we are interested in a situation where the disk is in equilibrium, we only select 
points from the rise part of the time series of ܨଵ and ܨଶ. We note that as ߤ is increased, 
the value of ܨଶ rises and consequently the value of ܨଵ	drops. This can be expected as the 
disk is not only supported by a wall normal force (related to ܨଵ) but also by a wall 
friction force (related to ܨଶ) for a certain	ߤ, see Section 2. By increasing ܨଶ, we will thus 
expect a decrease of ܨଵ. 
 
We can now extract values of ܨଵ and ܨଶ for different values of ߤ. In the following 
sections we choose to cast the results in a form which shows ܨଶ, as it is equal to the total 
friction force that the sealing disk is experiencing. This form is therefore directly relevant 
for applications and it can be readily compared to other results available in the literature. 
With ܨଶ in place, ܨଵ can in principle directly be obtained using Eq. 15. As a final remark 
we stress that although the results in this experiment are obtained in a static equilibrium, 
the results are equally valid for a sealing disk moving through a pipeline with a given 
coefficient of sliding friction ߤ. This is because the same forces apply to a sealing disk of 
a pig which moves with a constant velocity.  
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5 FINITE ELEMENT MODEL 
 
The simplified model described in Section 2 assumes a constant value for the E-modulus. 
This implies that the analytical model holds for linear elasticity with a constant ܧ. By 
using finite element software (Femap 11.0.0 64-bit) the assumption of linear elasticity is 
checked by comparing a linear material model against a non-linear Rivlin material 
model. The Rivlin material model is fitted with the help of a least squares algorithm in 
Adina 601 to axial strain experiments of an actual sample of the sealing disk. The axial 
strain experiments have been performed in our laboratory according to ASTM D412.  
 

 
Figure 5: Finite element mesh of a sealing disk in axisymmetric perspective.  

The two forces ࡲ૚ and ࡲ૛	are applied as shown. By fixating the ratio between  ࡲ૛ and ࡲ૚ the coefficient of friction	ࣆ	 is imposed.  
 
The finite element model is shown in Figure 5. The dimensions are based on the 
properties of disk A, which can be found in Table 1.  The fixation is modelled by fixating 
the nodes at the location of the spacer disk in the axial direction. ܨଵ and ܨଶ are applied 
for a range of magnitudes while keeping ߤ constant. The sealing disk will deform 
accordingly and will reach an equilibrium at a new maximum radius ݎ, which 
corresponds to an oversize ߜ, defined by Eq. 2. In this way the forces corresponding to a 
specific oversize ߜ can be obtained from the finite element model.   
 
The geometry is built in Femap 11.0.0 64-bit and solved with the advanced non-linear 
solver Adina 601. Axisymmetric 2nd order quadrature elements are used. The model has 
been checked for grid convergence by refining the mesh by a factor 4 from 108 to 432 
elements. The forces for ܨଶ changed by less than 1% when the iteration process was 
stopped.  
 
Figure 6 shows the result obtained for disk A. In addition to the actual disk thickness of 
15 mm, also simulation results for thickness values of 13 and 17 mm are included. The 
disk in this example has a value of 75 shore hardness, see Table 1. Based on this value 
for the shore hardness an initial estimate of the E-modulus can be obtained from the Gent 
equation [11]. As can be seen in Figure 6, the Gent equation underestimates the results 
predicted by the non-linear material model. Instead of relying on the Gent equation a new 
E-modulus was fitted by choosing a value which is in agreement with the non-linear 
material model. For an assumed Poisson ratio of 0.45 = ߥ an E-modulus of 12.25 MPa is 
found. A comparison of the finite element results with results obtained from the 
simplified model and with the experimental results will be given in the next section.  
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Figure 6: Difference between the linear (solid line) and non-linear (dashed line) 
material model for a range of thicknesses. Results for the linear model correspond 

to ࡱ = ૚૛. ૛૞ MPa. The used mesh is shown in Figure 5. 
 
 
6 RESULTS 
 
In Figure 7 various experimental results are compared with results obtained from the 
simplified analytical model given by Eq. 11. The disks that have been investigated are 
listed in Table 1. The letter assigned to each disk in Table 1 corresponds to the letter of 
the panel in Figure 7. For disk A also finite element results with the non-linear material 
model are available, as explained in the previous section. This non-linear model is not 
available for disk B-D, as there were no material tests performed on samples of these 
sealing disks.   
 
Figure 7a shows a comparison for disk A. To compare the experimental results with the 
analytical model, ܨଶ for a constant ߤ needs to be obtained from the experiment. To obtain 
data points for ߤ = 0.3, the average of all values between ߤ = 0.29 and 0.31 is taken. 
For example, for an oversize of 2.8% Figure 4 shows that ܨଶ ≈ 600ܰ for disk A.  For the 
analytical model two curves are shown. The red dashed line shows the result for the 
equivalent E-modulus of 12.25	MPa suggested in Section 5. The red solid line shows the 
analytical result for an E-modulus that is fitted to the finite element results having a value 
of ܧ௙௜௧ = 17.8 MPa. We thus conclude that for this disk the analytical model with	ܧ =12.25	MPa underpredicts the friction force ܨଶ by a factor of about 1.45. The trend that 
higher values of the oversize result in higher values of ܨଶ is however correctly captured 
by the model.  
 

Table 1: Properties of the four different sealing disks that were used in the 
experiments. 

 Disk A B C D 
Vendor X Y Y Y ݎ௦ [m] 0.162 0.154 0.154 0.154 ݐ	[mm] 15 15 13 15 
Material hardness (Shore A) 75 75 75 65 ܧ௙௜௧    [MPa] 17.8 12.5 12.5 7 0.25 0.25 0.25 0.3 [-] ߤ 
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Next we consider disk B with properties summarized in Table 1. Figure 7b shows the 
result. Since no material tests have been performed disk B, the E-modulus was fitted, and 
a value of ܧ௙௜௧ = 12.5 MPa was obtained. We remark that the values of ܨଶ for disk B are 
smaller than those for disk A shown in Figure 7a, which is also reflected in the lower 
value of ܧ௙௜௧. The shore hardness value of both disks, however, is specified to be 75. This 
indicates that the shore hardness value of a sealing disk does not provide enough 
information on the actual value of the E-modulus, and that more information is needed to 
predict the behaviour of the sealing disk.     
 
With the specified E modulus ܧ௙௜௧ = 12.5 MPa of the 75 shore disk B, we now continue 
with the results of the same disk, but with a thickness of 13 mm instead of 15 mm (disk 
C). We intuitively expect that ܨଶ will be lower, as it is easier to deform a thinner disk 
than a thicker disk. Indeed this is confirmed by the results shown in Figure 7c. The 
overall value of ܨଶ is lower, and the model accurately predicts this with the same ܧ௙௜௧ = 12.5 MPa as has been determined for the 15 mm disk.      
 
Finally, we investigate the behaviour of the same disk B in Table 1, but now with a shore 
hardness of 65 instead of 75 (disk D). As the material properties have changed, we now 
have to use a new value for the E-modulus, which is found to be ܧ௙௜௧ = 7.0 MPa. As the 
disk is softer, we indeed observe lower values for ܨଶ. With the value of ܧ௙௜௧ in place we 
observe that the model follows the experimental results reasonably well.  
 
 
 
 
 
 
 
 
 
 
 
 
(a)                                                                         (b) 
 
 
 
 
 
 
 
 
 
 

 
 
(c)                                                                         (d) 
 

Figure 7: (a-d) Comparison of the analytical model with experimental results. 
Properties of disk are summarized in Table 1. The letter assigned to each disk 

in Table 1 corresponds to the letter of the panels in this figure.
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7 CONCLUSION 
 
In this paper an experiment has been presented which is able to measure the friction force 
and wall normal force which act on a sealing disk of a pig in a confined pipe geometry. 
The coefficient of friction is an input parameter which can be systematically varied. This 
allows the results to be applied to a pig with such a sealing disk that is moving at 
constant velocity with the same coefficient of the sliding friction. The oversize has been 
systematically varied. The experimental results have been compared with predictions 
from a finite element model which uses a non-linear Rivlin material model that was 
calibrated using a sample consisting of the same material as the actual sealing disk 
according to ASTM D412. The results from the finite element model agree reasonably 
well with the experiments with a maximum error of 18%. In addition, a simplified 
mechanistic model from the literature was tested against experiments. This simplified 
model relies on a constant value for the E-modulus. With a fitted equivalent E-modulus, 
the analytical model was found to perform reasonably well. Sealing disks from different 
vendors have been compared. It was shown that the value for the Shore hardness alone is 
not enough to predict the E-modulus that can be used to predict the frictional force of the 
sealing disk. We therefore recommend carrying out more material tests on sealing disks 
which will allow for further investigation of the effect of the material properties on the 
friction force. In that way the range of validity of the analytical model can be further 
assessed.    
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