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A B S T R A C T   

Biological age uses biophysiological information to capture a person’s age-related risk of adverse outcomes. 
MetaboAge and MetaboHealth are metabolomics-based biomarkers of biological age trained on chronological 
age and mortality risk, respectively. Lifestyle factors contribute to the extent chronological and biological age 
differ. The association of lifestyle factors with MetaboAge and MetaboHealth, potential sex differences in these 
associations, and MetaboAge’s and MetaboHealth’s sensitivity to lifestyle changes have not been studied yet. 

Linear regression analyses and mixed-effect models were used to examine the cross-sectional and longitudinal 
associations of scaled lifestyle factors with scaled MetaboAge and MetaboHealth in 24,332 middle-aged par-
ticipants from the Doetinchem Cohort Study, Rotterdam Study, and UK Biobank. Random-effect meta-analyses 
were performed across cohorts. Repeated metabolomics measurements had a ten-year interval in the Doetinchem 
Cohort Study and a five-year interval in the UK Biobank. 
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In the first study incorporating longitudinal information on MetaboAge and MetaboHealth, we demonstrate 
associations between current smoking, sleeping ≥8 hours/day, higher BMI, and larger waist circumference were 
associated with higher MetaboHealth, the latter two also with higher MetaboAge. Furthermore, adhering to the 
dietary and physical activity guidelines were inversely associated with MetaboHealth. Lastly, we observed sex 
differences in the associations between alcohol use and MetaboHealth.   

1. Introduction 

With advancing age, human susceptibility to functional decline and 
disease increases (Rutledge et al., 2022). Yet, the onset and pace of in-
dividual susceptibility vary beyond chronological age (Rutledge et al., 
2022). Multiple omics-based biomarkers of biological age, such as 
telomere length or epigenetic biomarkers (Vyas et al., 2021; Horvath 
and Raj, 2018; Jylhävä et al., 2017), were identified in the past decade. 
Recently, biomarkers of biological age utilizing metabolomics data 
trained on either chronological age (MetaboAge) (Van Den Akker et al., 
2020) or mortality (MetaboHealth) (Deelen et al., 2019) were intro-
duced. These omics-based aging biomarkers are suggested to be sensi-
tive to individual health status and be predictive of adverse health 
outcomes (Rutledge et al., 2022; Van Den Akker et al., 2020; Deelen 
et al., 2019). Furthermore, metabolomics-based aging biomarkers are 
intended to serve as dynamic measures, responding to physiological, 
environmental, and lifestyle changes while distinguishing between 
“fast” and “slow” agers. 

Individual health status, risk of adverse health outcomes, and the 
inter-individual disparity in chronological and biological age are influ-
enced by lifestyle factors (Jylhävä et al., 2017). Lifestyle intervention 
studies aim to improve the individual aging trajectory, and dynamic 
aging biomarkers are used as early-response outcome measures in such 
interventions (Fitzgerald et al., 2021; Johnson et al., 2022; Fiorito et al., 
2021; Gensous et al., 2020). In past studies, lifestyle factors have shown 
varying associations with biomarkers of biological age from different 
origins, i.e., epigenetic markers and telomere length (Vyas et al., 2021; 

Quach et al., 2017; García-Calzón et al., 2014). 
Limited attention has been given to the relationship between lifestyle 

factors and metabolomics-based aging biomarkers (Van Den Akker et al., 
2020; Smit et al., 2023). In particular longitudinal studies on 
metabolomics-based aging biomarkers are currently lacking. Conse-
quently, it remains unclear which lifestyle changes are picked up by 
metabolomics-based biomarkers, pivotal information when using these 
biomarkers as early-response outcomes in lifestyle intervention studies. 
Moreover, lifestyle effects on aging biomarkers can vary by sex (Vyas 
et al., 2021; Smit et al., 2023; Hägg and Jylhävä, 2021). However, no 
previous study has determined sex-specific associations between life-
style factors and metabolomics-based aging biomarkers. This study in-
vestigates the cross-sectional and longitudinal associations between 
lifestyle factors and metabolomics-based aging biomarkers and exam-
ines variation by sex. 

2. Methods 

2.1. Study design and population 

The study population consisted of participants from three prospec-
tive cohorts: the Doetinchem Cohort Study (DCS) (Verschuren et al., 
2008) (n=4,644), the Rotterdam Study (RS) (Ikram et al., 2024) (n=4, 
719), and the UK Biobank (UKBB) (Sudlow et al., 2015) (n=14,969). In 
DCS, we included participants with metabolomics information on the 
fourth (2003–2007) and/or the sixth (2013–2017) examination rounds. 
Metabolomics data were measured only once per participant in RS from 

Fig. 1. Schematic outline of data availability per cohort.  
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the fourth visit of the first sub-cohort (2002–2004), the third visit of the 
second sub-cohort (2011–2012), or the second visit of the third 
sub-cohort (2012–2014) (Fig. 1). We included UKBB participants with 
information on metabolomics-based aging biomarkers at both the 
baseline and follow-up visits with an interval of roughly five years. A 
more detailed description is available in Appendix A. 

Grey icons indicate that a lifestyle factor is not available at that time 
point. Ovals with metabolomics indicate metabolomics data availability. 
The years above the line indicate the years between measurements. 

2.2. Metabolomic age 

Metabolomic biomarkers from EDTA plasma were determined using 
the Nightingale platform. In DCS and UKBB, the Nightingale 2020 assay 
was used, while in RS, we used the 2016 assay, which was subsequently 
re-quantified to match the Nightingale 2020 assay. In RS, we calculated 
56-metabolites-based MetaboAge on the 2016 data using the dedicated 
website (Van Den Akker et al., 2020). MetaboHealth (14-metabo-
lites-based) (Deelen et al., 2019) and 2020-data-MetaboAge 
(63-metabolites-based) (Bizzarri et al., 2023a) were calculated in all 
cohorts using the MiMIR R-package. The metabolites comprised in 
MetaboAge and MetaboHealth are detailed in Appendix A. In DCS and 
UKBB, we calibrated the metabolomic measures of the second blood 
draw to minimize inter-visit bias, assuming that participants of the same 
age, sex, and BMI would have similar metabolomic profiles (Mäkinen 
et al., 2022; Bizzarri et al., 2023b). Calibration involved matching 
samples between visits by these factors and normalizing the metabolites 
from the second measurement to the first measurement (Appendix A). 

2.3. Lifestyle factors 

Data on smoking status (current; not), the number of cigarettes 
smoked per day (smoking quantity) [per 10 cigarettes], regular alcohol 
consumption (at least once a week; not), daily alcohol consumption 
[alcoholic units/day], diet, physical activity [METhours/week], and 
sleep duration were collected using interviews or questionnaires (Ap-
pendix A). The Dutch cohorts also assessed adherence to the Dutch 
physical activity guideline, requiring at least 30 minutes of moderate to 
vigorous physical activity per day ≥5 days per week (Kemper et al., 
2000). The UK Biobank assessed adherence to the UK Biobank physical 
activity guidelines requiring 150 minutes of moderate or 75 minutes of 
vigorous activity per week. Average sleep duration per 24 hours was 
categorized into short (<7 hours), reference (7-8 hours), and long 
(>8 hours). Dietary guideline adherence was categorized as high, me-
dium, or low per cohort based on tertiles. To get more insight into the 
associations between diet and metabolomic aging, we also included 
individual components of the dietary indices, i.e., food group intakes 
(Appendix A) as determinants. Waist circumference [cm], height [m], 
and weight [kg] were measured, and body mass index (BMI) [kg/m2] 
was calculated. 

2.4. Covariates 

Sex was based on self-reported sex. Chronological age was defined as 
the time between birth and the blood collection. Access to precise 
birthdates in the UKB was limited to the month and year only. Therefore, 
we set the birth dates of all participants to the 15th of each month. 
Socioeconomic status was defined as the highest attained education 
level and assessed by questionnaires. Cell counts were measured as the 
percentage of lymphocytes and monocytes; cell count information was 
unavailable in DCS. The season of blood collection was based on the 
meteorological seasons. Observation time was defined as the time 
elapsed since the first metabolomics measurement, with a value of 0 for 
the initial measurement and the actual time for subsequent measure-
ment. Only RS data were sent to Nightingale in three batches; therefore, 
we adjusted analyses in RS for these batches. 

2.5. Cross-sectional analysis (DCS, RS, UKBB) 

Mixed-effect models lmer and lmerTest R-functions in DCS and UKBB 
and linear regression analyses in RS were used to study the association 
between lifestyle factors and metabolomic aging. Our choice of analysis 
in the RS dataset differed because metabolomics data was available for 
only one time point, while we aimed to consider all available informa-
tion from the two visits in the DCS and UKBB datasets. We performed a 
sensitivity analysis using linear regression across all cohorts to assess the 
potential impact of using different models. 

In all analyses, we used the raw residuals of a linear regression be-
tween chronological age and MetaboAge and MetaboHealth as outcome 
measures. These residuals provide the chronological age-independent 
part of the aging biomarkers and indicate whether an individual is 
biologically “older” or “younger” than their chronological age’s popu-
lation average. We standardized both the continuous lifestyle factors 
and age-independent metabolomic aging biomarkers using Z-scores to 
improve the comparability of effect estimates across the lifestyle factors 
and biomarkers. In the first model, the associations between lifestyle 
factors and metabolomics-based aging biomarkers were adjusted for sex, 
socioeconomic status, and season of blood collection, -in the RS- batch, 
and -in the case of the mixed-effect models- observation time, as the time 
between visits differed up to three years between participants from the 
same cohort. In the second model, we additionally adjusted for potential 
confounding effects of other lifestyle factors (Appendix A) to determine 
the independent impact of individual lifestyle factors. In RS and UKBB, 
we performed sensitivity analyses, additionally adjusting for cell counts 
to improve the comparability of our results with other omics-based 
aging biomarkers. We additionally performed a sensitivity analysis 
using linear regression in all cohorts to determine whether using a 
different statistical approach impacted the results. 

Analyses were corrected for multiple testing by Benjamini-Hochberg 
false discovery rates (FDR) correction. Spearman’s ρ was used to 
determine the correlation between chronological age and the different 
aging biomarkers. 

2.6. Retrospective: Ten-year lifestyle changes and metabolomics-based 
aging biomarkers (RS, DCS) 

To assess ten-year lifestyle changes, we subtracted the lifestyle in-
formation recorded ten years before blood collection from the data 
recorded at the time of blood collection. In the DCS analysis, information 
from round 6 served as the reference point for blood collection. This 
lifestyle change was used to determine whether lifestyle change was 
associated with metabolomics-based biomarkers of biological age 
beyond cross-sectional lifestyle measurements. The analyses followed 
the same procedure as the cross-sectional analyses in RS, incorporating 
the 10-year-prior lifestyle factor and the observation time into all 
models. 

2.7. Prospective: Five/ten-year-changes in lifestyle and five/ten-year- 
change in aging biomarker (DCS, UKBB) 

Linear mixed-effect models were used for the longitudinal analyses. 
To examine the dynamics of the crude metabolomic-based biomarkers of 
biological age at individual and population levels, we calculated the 
within-change-to-total-change ratio and minimal detectable change 
(Appendix A). In short, the within-change-to-total-change was the 
complement of the intra-class correlation between the biomarker at two 
visits divided by the total variance. The minimal detectable change 
represents the minimal difference between measurements that can be 
attributed to actual change instead of measurement error (Appendix A). 

The same models were used for the longitudinal association of life-
style factors with metabolomics-based aging biomarkers as in the cross- 
sectional analyses with the incorporation of an interaction term between 
observation time and the lifestyle factor of interest to capture the 
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longitudinal effect of the lifestyle factor on the metabolomics-based 
aging biomarkers. We again used Z-transformed continuous lifestyle 
factors and biomarkers to improve the comparability of effect estimates. 
As BMI was used in the metabolite calibration, we used the uncalibrated 
metabolite biomarkers for the association with BMI. In UKBB, we per-
formed sensitivity analyses adjusting for cell counts to improve the 
comparability of the results to other biomarkers of biological age. 

2.8. Meta-analyses 

We random-effect meta-analyzed the results from both the linear 
regression analysis and the linear mixed model analysis using the met-
afor R-package. We opted for random-effect meta-analysis as both the 
Doetinchem Cohort Study and Rotterdam Study are population-based 
cohort studies (Verschuren et al., 2008; Ikram et al., 2024), whereas 
the UK Biobank is based on active participation (Sudlow et al., 2015; Fry 
et al., 2017). For the cross-sectional sensitivity analysis using linear 
regression in all cohorts, we used the results from the sixth examination 

round of DCS and round 1 of the UKBB, as the age distribution of this 
visit was closest to the age distribution in RS. Dietary information was 
not available in DCS round 6 and physical activity information was not 
available in UKBB round 1. Therefore, we excluded those cohorts for 
those specific variables in this sensitivity analysis. 

2.9. Sex-specific analyses 

To investigate the association between lifestyle and metabolomic 
aging biomarkers by sex, we conducted sex-stratified analyses across all 
cohorts. We then performed a random-effects meta-analysis on the sex- 
specific results, following the previously described method. Subse-
quently, we used the metafor R-package to conduct fixed-effects meta- 
analyses for men and women separately. We assessed heterogeneity 
between sexes using the Wald test. 

Table 1 
Baseline characteristics of the study population.   

Doetinchem Cohort Study Rotterdam Study UK Biobank  

First moment of blood 
collection 

Second moment of 
blood collection 

First moment of blood 
collection 

Second moment of blood 
collection  

N  N  N  N  N  
Chronological age (years) 4446 55.6 ± 9.9 3236 64.0 ± 9.2 4695 71.0 ± 8.1 14968 57.7 ± 7.4 14969 61.9 ± 7.4 
Women 4446 2344 (52.7 %) 3238 1722 (53.2 %) 4695 2726 (58.1 %) 14968 7527 (50.3 %) 14969 7528 (50.3 %) 
Highest attained education           
Primary education 4435 357 (8.1 %) 3081 153 (5.0 %) 4669 536 (11.5 %) 14906 1292 (8.7 %) 14924 1252 (8.4 %) 
Lower vocational or intermediate 

general education 
4435 1792 (40.4 %) 3081 1186 (38.5 %) 4669 1882 (40.3 %) 14906 3444 (23.1 %) 14924 3488 (23.4 %) 

Intermediate vocational or secondary 
education 

4435 1267 (28.6 %) 3081 949 (30.8 %) 4669 1385 (29.7 %) 14906 3606 (24.2 %) 14924 3513 (23.5 %) 

Higher vocational education 4435 1019 (23.0 %) 3081 793 (25.7 %) 4669 866 (18.6 %) 14906 6564 (44.0 %) 14924 6671 (44.7 %) 
Season of blood collection           
Winter 4446 1007 (22.6 %) 3236 937 (29.0 %) 4695 1262 (26.9 %) 14968 3220 (21.5 %) 14969 4195 (28.0 %) 
Spring 4446 1176 (26.4 %) 3236 886 (27.4 %) 4695 1298 (27.6 %) 14968 3861 (25.8 %) 14969 5724 (38.2 %) 
Summer 4446 1086 (24.4 %) 3236 570 (17.6 %) 4695 724 (15.4 %) 14968 4367 (29.2 %) 14969 761 (5.1 %) 
Fall 4446 1177 (26.5 %) 3236 843 (26.1 %) 4695 1411 (30.1 %) 14968 3520 (23.5 %) 14969 4289 (28.6 %) 
Lymphocytes (%)     4683 33.2 ± 8.4 14624 29.0 ± 7.2 14547 28.5 ± 7.7 
Monocytes (%)     4683 6.5 ± 2.1 14624 7.2 ± 2.5 14547 6.7 ± 3.0 
Adhering to physical activity guidelines 4494 2617 (58.2 %) 3421 1990 (58.2 %) 1718 1535 (89.3 %) 12637 6783 (53.7 %)   
Total METhours/week 4445 7.1 ± 9.9 3235 6.6 ± 8.5 1718 56.7 ± 44.5 12637 25.3 ± 31.2   
Body mass index (kg/m2) 4435 26.5 ± 4.1 3232 26.8 ± 4.2 4602 27.4 ± 4.2 14932 26.9 ± 4.5 14943 26.9 ± 4.5 
Waist circumference 4443 94.9 ± 11.8 3233 96.6 ± 12.3 4675 93.5 ± 12.1 14946 88.9 ± 13.1 14958 90.6 ± 13.2 
Current smoking 4472 949 (21.2 %) 3389 410 (12.1 %) 4627 562 (12.1 %) 14964 932 (6.2 %) 14962 669 (4.5 %) 
Smoking quantity (per 10 cigarettes a 

day) 
4422 0.8 ± 1.6 3200 0.4 ± 1.2 4621 0.3 ± 1.0 14772 0.1 ± 0.5 14836 0.1 ± 0.4 

Adherence to dietary guidelines 4435 67.1 ± 13.9   1611 7.0 ± 1.8 13860 3.5 ± 1.2 13910 3.5 ± 1.2 
Drinking alcohol at least once a week 4490 3000 (66.8 %) 3414 2147 (62.9 %) 4624 3250 (70.3 %) 14959 11269 

(75.3 %) 
14963 10742 

(71.8 %) 
Alcoholic beverages per day 4445 1.1 ± 1.4 3180 0.9 ± 1.1 4624 1.0 ± 1.2 14927 2.6 ± 3.0 14945 2.2 ± 2.8 
Sleeping more than 8 hours 3592 283 (7.9 %) 2619 215 (8.2 %) 3162 362 (11.4 %) 11713 1083 (9.2 %) 11716 1264 (10.8 %) 
Sleeping less than 7 hours 4463 871 (19.5 %) 3396 777 (22.9 %) 4204 1404 (33.4 %) 13829 3199 (23.1 %) 13665 3213 (23.5 %) 
MetaboAge2020 4446 -0.1 [-5.4; 

5.3] 
3236 -0.3 [-6.3; 

6.1] 
4695 -0.2 [-5.0; 

4.8] 
14968 -0.1 [-4.8; 

4.7] 
14969 -0.2 [-5.6; 

5.2] 
Crude MetaboAge2020 (years) 4446 58.4 [52.1; 

64.6] 
3238 61.7 [54.9; 

68.5] 
4695 63.2 [57.5; 

68.9] 
14968 54.2 [49.1; 

59.5] 
14969 54.4 [48.5; 

60.1] 
MetaboHealth2020 4446 -0.0 [-0.3; 

0.2] 
3236 -0.0 [-0.3; 

0.2] 
4695 -0.0 [-0.3; 

0.3] 
14968 -0.0 [-0.3; 

0.3] 
14969 -0.0 [-0.3; 

0.2] 
Crude MetaboHealth2020 (arbitrary 

units) 
4446 -0.0 [-0.3; 

0.2] 
3238 -0.0 [-0.3; 

0.2] 
4695 0.0 [-0.3; 0.3] 14969 -0.0 [-0.3; 

0.3] 
14969 -0.0 [-0.3; 

0.2] 
MetaboAge2016     4695 -0.1 [-4.5; 

4.4]     
Crude MetaboAge2016 (years)     4695 64.5 [59.9; 

69.3]     
MetaboHealth2016     4695 -0.0 [-0.3; 

0.2]     
Crude MetaboHealth2016 (arbitrary 

units)     
4695 -0.0 [-0.3; 

0.3]     

N indicates the number of participants with information on the factor present. 
Presented values in the middle columns are n (%) binary or categorical variables; mean ± standard deviation for continuous variables; and median [Q1;Q3] for 
metabolomics-based aging biomarkers 
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2.10. Software 

All analyses were performed in R. Session information is available in 
Supplement A. Fig. 1 was created using Biorender. 

2.11. Role of the funding source 

The funders of the study had no role in study design, data collection, 
data analysis, data interpretation, report writing, or the decision to 
submit the paper. 

3. Results 

3.1. Baseline characteristics 

Table 1 shows the descriptive statistics of the study participants from 
the three cohorts. RS participants were, on average, older than partici-
pants from DCS and UKBB. DCS participants were at the baseline blood 
collection more often current smokers than participants from other co-
horts. Sex-stratified baseline characteristics can be found in Appendix B. 

3.2. Comparison across Nightingale platforms 

In the RS, MetaboHealth showed a Spearman correlation of 0.82 and 
MetaboAge a correlation of 0.63 between Nightingale assays (Appendix 
C). The moderate correlation of MetaboAge across assays raised con-
cerns about the robustness of the results across them. Nonetheless, 
consistent results in RS were observed across Nightingale assays, only 
reporting stronger associations of BMI (MetaboAge2020:adjusted β per 
standard deviation increase 0.23[95 %-confidence interval 0.21;0.26], 
MetaboAge2016:0.12[0.09;0.15]) and waist circumference (Metabo-
Age2020:0.26[0.23;0.29], MetaboAge2016:0.15[0.12;0.18]) with 
MetaboAge2020 compared to the MetaboAge2016(Appendix D). As results 
were consistent across platforms and the correlation between Metabo-
Age and MetaboHealth was consistent across cohorts, we used the 2020 
re-quantified data in RS.  

The figure represents a. the adjusted betas and 95 %-confidence in-
tervals of the meta-analyses of the cross-sectional results; b. the adjusted 
betas and 95 %-confidence intervals of the meta-analyses of the retro-
spective results; c. the adjusted interaction terms between lifestyle and 
observation time and 95 %-confidence intervals of the meta-analyses of 
the longitudinal results. An asterisk indicates that the result was statis-
tically significant after false discovery rate adjustment, a hashtag in-
dicates that only one cohort was used to obtain the result. Legends and 

labels apply to all three graphs. 

3.3. Cross-sectional associations between lifestyle and metabolomic age 

Fig. 2a and Appendix D show the results of the cross-sectional ana-
lyses between lifestyle factors and age-independent metabolomics-based 
aging biomarkers. Given the overall consistency of findings across the 
three cohorts, we report results from the meta-analysis. However, an 
exception emerges for the association between waist circumference and 
MetaboAge, as larger waist circumference was linked to higher 
MetaboAge in DCS and RS (DCS:0.12[0.09;0.15], RS:0.26[0.23;0.29]), 
but not in UKBB (0.00[-0.02;0.01]). Study-specific results can be found 
in Appendix D. In all three cohorts, we observed associations between 
higher BMI with higher MetaboAge (0.14[0.03;0.24]) and Metab-
oHealth (0.16[0.14;0.17]). Additionally, larger waist circumference, 
current smoking, smoking quantity, sleeping long, and sleeping short 
were related to higher MetaboHealth, 0.19[0.15;0.22], 0.31[0.25;0.38], 
0.11[0.06;0.15], 0.14[0.09;0.19], 0.05[0.02;0.09] respectively. Regular 
alcohol consumption was observed to correspond with lower MetaboAge 
(-0.04[-0.06;-0.02]) and MetaboHealth (-0.14[-0.19;-0.09]). Inverse 
associations with MetaboHealth were observed for adhering to the 
guidelines for physical activity (-0.15[-0.18;-0.13]), total physical ac-
tivity (-0.05[-0.06;-0.04]), and per tertile of dietary guideline adherence 
(-0.07[-0.10;-0.04]). Information on the associations with the different 
elements of the dietary indexes can be found in Appendix D. All 
observed cross-sectional associations relationships but the association 
link between BMI and MetaboAge remained statistically significant after 
FDR-correction, and all but the association between regular alcohol 
intake and MetaboAge were independent of other lifestyle factors (Ap-
pendix D). A sensitivity analysis using linear regression in all cohorts did 
not notably change the results (Appendix E). 

3.4. Cross-sectional: effects of sex 

We observed heterogeneity by sex with higher effect sizes in the 
association between current smoking with MetaboHealth in men (0.38 
[0.33;0.43]) compared to women:0.25 [0.16;0.34]). Furthermore, het-
erogeneity by sex was observed for the associations of adhering to the 
dietary guidelines with MetaboHealth with stronger inverse associations 
in men (-0.10[-0.16;-0.05] versus − 0.04[-0.06;-0.01] in women). Lastly, 
we observed heterogeneity by sex for the association of daily alcohol 
consumption with MetaboHealth with only inverse associations in 
women (-0.03[-0.06;-0.01]) versus 0.01[-0.01;0.03] in men) (Appendix 
F). 

Table 2 
Meta-analyzed results from the cross-sectional analyses between scaled lifestyle factors and scaled metabolomics-based aging biomarkers.   

MetaboAge MetaboHealth 

B (CI) pFDR Q Qp I2 B(CI) pFDR Q Qp I2 

Adhering to physical activity 
guidelines 

-0.03 (-0.07;0.00) 0.14  3.93  0.14  32.69 -0.15 (-0.18;- 
0.13) 

<0.0001  4.46 0.11  0.20 

Total METhours/week -0.01 (-0.05;0.02) 0.63  7.39  0.02  84.98 -0.05 (-0.06;- 
0.04) 

<0.0001  3.75 0.15  0.04 

BMI 0.14 (0.03;0.24) 0.04  155.77  <0.0001  98.65 0.16 (0.14;0.17) <0.0001  3.30 0.19  31.66 
Waist circumference 0.13 (-0.02;0.27) 0.24  259.02  <0.0001  99.18 0.19 (0.15;0.22) <0.0001  10.60 4.99×10− 3  82.48 
Current smoking 0.00 (-0.08;0.08) 0.99  8.60  0.01  77.46 0.31 (0.25;0.38) <0.0001  5.17 0.08  64.88 
Smoking quantity 0.00 (-0.01;0.02) 0.77  5.26  0.07  60.93 0.11 (0.06;0.15) <0.0001  37.08 <0.0001  93.37 
Adherence to dietary guidelines -0.01 (-0.08;0.07) 0.91  22.03  <0.0001  94.33 -0.07 (-0.10;- 

0.04) 
5.02×10− 4  7.64 0.02  73.49 

Drinking alcohol at least once a week -0.04 (-0.06;- 
0.02) 

3.50×10− 3  0.76  0.68  0.00 -0.14 (-0.19;- 
0.09) 

<0.0001  7.08 0.03  71.97 

Alcoholic beverages per day 0.00 (-0.05;0.05) 0.97  34.81  <0.0001  92.84 -0.01 (-0.02;0.00) 0.40  2.12 0.35  0.79 
Sleeping more than 8 hours 0.00 (-0.04;0.03) 0.97  2.10  0.35  0.13 0.14 (0.09;0.19) <0.0001  2.27 0.32  25.16 
Sleeping less than 7 hours 0.01 (-0.02;0.04) 0.53  2.87  0.24  22.38 0.05 (0.02;0.09) 5.98×10− 3  2.94 0.23  35.35 

B indicates beta coefficient; CI, 95 %-confidence interval; pFDR, p-value after false discovery rate correction; Q, Cochran’s Q; Qp, Cochran’s Q p-value. 
Analyses were adjusted for sex, socioeconomic status, and season of blood collection, time between baseline and follow-up, and -in the RS- metabolomics measurement 
batch. 
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3.5. Retrospective: ten-year lifestyle changes and metabolomics-based 
aging biomarkers 

In DCS and RS, but not in UKBB, information on lifestyle factors ten 
years prior to blood sampling was available (Fig. 1). We assessed the 
influence of lifestyle changes in the decade preceding blood collection 
on MetaboAge and MetaboHealth (Fig. 2b, Table 3, Appendix G). As 
results were similar across cohorts, we report the results of the meta- 
analysis. Results per cohort are detailed in Appendix G. Increases in 
BMI over a ten-year period were linked to higher MetaboAge and 
MetaboHealth, with effect sizes of 0.06[0.04;0.09] and 0.08[0.06;0.11], 
respectively. Similarly, increases in waist circumference over the same 

duration corresponded with higher MetaboAge (0.06[0.04;0.09]) and 
higher MetaboHealth (0.12[0.09;0.14]). Additionally, increase in 
smoking quantity (0.06[0.03;0.09]), smoking initiation (0.07 
[0.04;0.10]), and starting to sleep long (0.05[0.02;0.08]) were related to 
higher MetaboHealth. Furthermore, initiation of regular alcohol con-
sumption (-0.10[-0.13;-0.08]) or increase in alcohol consumption (-0.06 
[-0.09;-0.03]) were associated with lower MetaboHealth. Starting to 
adhere to physical activity guidelines was linked to lower MetaboHealth 
(-0.10[-0.15;-0.06]) (DCS only, no data available in RS). All aforemen-
tioned associations remained significant after FDR-correction and all 
after adjustment for other lifestyle factors. We did not observe assay- 
differences nor notable alteration of the effect sizes after cell count 
adjustment (Appendix G). 

3.6. Retrospective: effects of sex 

The Wald test did not reveal heterogeneity by sex in the retrospective 
analyses (Appendix H). Yet, we observed larger effect estimates in men 
for the association between increases in BMI and MetaboAge (0.11 
[0.08;0.15] versus 0.03[0.00;0.07] in women). Additionally, we 
observed stronger inverse association in women for increase in alcohol 
consumption and initiation of regular alcohol consumption with 
MetaboHealth (daily alcoholic beverages:-0.10[-0.14;-0.05] versus 
− 0.03[-0.07;0.02] in men, regular consumption:-0.14[-0.17;-0.10] 
versus − 0.07[-0.11;-0.04] in men) (Appendix H). 

3.7. Prospective: longitudinal changes in lifestyle and concomitant change 
in metabolomics-based aging biomarkers 

Lifestyle data and metabolomics-based aging biomarkers were 
available at two distinct time points within both DCS and UKBB, 
respectively, ten years and five years apart (Fig. 1). In DCS, within- 
subject change accounted for 59.7 percent of the variation in Metabo-
Age and 54.9 percent of the variation in MetaboHealth. In UKB, these 
percentages were 49.1 for MetaboAge and 49.2 for MetaboHealth. 
MetaboAge changes exceeding the minimal detectable change threshold 
(MDC) were observed in 249 (8.2 %) DCS and 914 (6.1 %) UKBB par-
ticipants. Additionally, in 172 (5.6 %) DCS and 711 (4.7 %) UKBB par-
ticipants, we observed changes in MetaboHealth exceeding the MDC 
(Appendix I). 

Using linear mixed-effect models with an interaction term of the 
lifestyle factors with observation time, we determined the longitudinal 
association between lifestyle factors and metabolomic aging in UKBB 
and DCS. Given the overall consistency of the results, we reported the 
results from the meta-analysis (Fig. 2c, Table 4, Appendix 9). Yet, in the 

Fig. 2. Cross-sectional, retrospective and longitudinal associations of lifestyle with MetaboAge and MetaboHealth.  

Table 3 
Random effect meta-analyzed associations between scaled ten-year-lifestyle- 
change and scaled MetaboAge and MetaboHealth.   

MetaboAge MetaboHealth  

B(CI)* pFDR B(CI)* pFDR 

Adhering to physical 
activity guidelines 
(Only available in 
DCS) 

-0.01 
(-0.05;0.04)  

0.86 -0.10 (-0.15;- 
0.06) 

<0.0001 

Total METhours/week 
(Only available in 
DCS) 

-0.00 
(-0.05;0.04)  

0.98 -0.05 (-0.10;- 
0.01) 

0.07 

BMI 0.06 
(0.04;0.09)  

<0.0001 0.08 
(0.06;0.11) 

<0.0001 

Waist circumference 0.06 
(0.04;0.09)  

<0.0001 0.12 
(0.09;0.14) 

<0.0001 

Current smoking -0.03 
(-0.06;0.00)  

0.10 0.07 
(0.04;0.10) 

<0.0001 

Smoking quantity -0.02 
(-0.05;0.02)  

0.38 0.06 
(0.03;0.09) 

8.66×10− 4 

Drinking alcohol at 
least once a week 

-0.01 
(-0.03;0.02)  

0.74 -0.10 (-0.13;- 
0.08) 

<0.0001 

Alcoholic beverages 
per day 

0.03 
(-0.00;0.06)  

0.12 -0.06 (-0.09;- 
0.03) 

1.06×10− 3 

Sleeping more than 
8 hours 

-0.02 
(-0.05;0.02)  

0.42 0.05 
(0.02;0.08) 

0.01 

Sleeping less than 
7 hours 

-0.00 
(-0.03;0.02)  

0.81 0.02 
(-0.01;0.05) 

0.28 

B indicates beta coefficient; CI, 95 %-confidence interval; pFDR, p-value after 
false discovery rate correction. 
Analyses were adjusted for the baseline level of the lifestyle factor of interest, 
sex, socioeconomic status, season of blood collection, time between baseline and 
follow-up, and -in the RS- metabolomics measurement batch. 

* Cochran’s Q was 0.00 for all meta-analyzed results with a p-value of 1.00 and 
I2 of 1.00 
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UKBB we observed longitudinal associations between current smoking 
and smoking quantity with higher MetaboHealth (current smoking: 
0.027[0.010;0.044], smoking quantity: 0.006[0.002;0.010]) and 
increased waist circumference with lower MetaboAge (-0.033[-0.037;- 
0.029]), which were not observed in DCS (current smoking:0.002 
[-0.008;0.013], smoking quantity: 0.001[-0.003;0.005], waist 
circumference:-0.002[-0.007;0.002]). Additionally, in DCS but not in 
UKBB, we observed a longitudinal link between daily alcohol con-
sumption and higher MetaboAge (DCS:0.007[0.003;0.011], UKBB:- 
0.006[-0.010;0.002]). 

In both cohorts, we observed a relationship between larger waist 
circumference and increased MetaboHealth (0.011[0.001;0.021]). 
Regular alcohol consumption was longitudinally associated with higher 
MetaboAge (0.008[0.002;0.014]). However, both associations lost sta-
tistical significance in the meta-analysis after adjustment for multiple 
testing. Adherence to the physical activity guidelines was longitudinally 
linked to lower MetaboHealth (-0.013[-0.021;-0.005]) (DCS only, no 
data available in UKBB) and adherence to the dietary guidelines was 
longitudinally associated with increased MetaboAge (0.018 
[0.013;0.022]) and decreased MetaboHealth (-0.007[-0.012;-0.003]) 
(UKBB only, no data available in DCS). Information on the associations 
with the different elements of the dietary indexes and cohort-specific 
results can be found in Appendix J. We did not observe heterogeneity 
by sex in the prospective associations (Appendix K). 

4. Discussion 

This study is the first to measure MetaboAge and MetaboHealth 
multiple times, allowing for a comprehensive assessment of their 
responsiveness to lifestyle factors. Cross-sectionally and longitudinally, 
smoking, sleeping long, higher BMI, and larger waist circumference 
were associated with higher MetaboHealth, with BMI and waist also 
with higher MetaboAge. Higher scores on the metabolomics-based aging 
biomarkers indicate being biologically “older” than the chronological 
age’s population average. Furthermore, we observed inverse links be-
tween alcohol consumption, adhering to dietary guidelines, and physical 
activity with MetaboHealth. The observed relationships among 

anthropometric measures, diet, and physical activity suggest the po-
tential application of MetaboHealth as an early response outcome in 
dietary or physical activity trials. 

Results were generally consistent across cohorts. I2 and Cronchan’s Q 
were larger in analyses including the UK Biobank. This is probably 
caused by the more in-depth phenotyping and distinct nature of DCS and 
RS as population-based cohorts from the UKBB, which suffers from 
healthy volunteer bias (Fry et al., 2017). Yet, the general consistency of 
the results strengthened our confidence in the described associations. 

Fewer lifestyle factors were associated with MetaboAge than 
MetaboHealth, supporting existing evidence that MetaboHealth is a 
better predictor of adverse outcomes (Kuiper et al., 2023). This disparity 
may be due to MetaboAge being trained on chronological age, naturally 
increasing with time, while MetaboHealth is trained on mortality, 
influenced by lifestyle changes, which may better reflect biological age. 
MetaboHealth’s higher responsiveness to longitudinal lifestyle modifi-
cations reinforces its effectiveness in capturing biological age over 
MetaboAge and the effects of lifestyle on biological aging. 

The metabolomics-based aging biomarkers seemed to be relatively 
stable over time. Only a small number of individuals showed changes 
exceeding the MDC. This finding suggests that metabolomics-based 
aging biomarkers are better suited for capturing population-level 
changes than individual-level changes, which aligns with their original 
design as both MetaboAge and MetaboHealth metabolites are scaled per 
biobank (Van Den Akker et al., 2020; Deelen et al., 2019; Bizzarri et al., 
2023a). Lifestyle intervention studies are needed to gain insight into the 
ability of metabolomics-based aging markers to capture individual 
changes in intervention settings, which means changes should prefer-
ably be measurable over a relatively short period of time (months). 

Our results align with previous cross-sectional research linking 
higher BMI with higher MetaboAge and MetaboHealth, as well as larger 
waist circumference and higher MetaboHealth (Van Den Akker et al., 
2020; Smit et al., 2023) Furthermore, we observed cross-sectional, 
retrospective, and prospective inverse associations between adhering 
to the physical activity guidelines and lower MetaboHealth. Addition-
ally, adherence to dietary guidelines, both cross-sectionally and longi-
tudinally, was linked to lower MetaboHealth. Importantly, most 

Table 4 
Meta-analyzed interaction terms of age and lifestyle factors with MetaboAge and MetaboHealth.   

MetaboAge MetaboHealth 

B (CI) pFDR Q Qp I2 B(CI) pFDR Q Qp I2 

Adhering to physical activity 
guidelines (Only available in DCS) 

0.000 
(-0.008;0.008)  

1.00      -0.013 (-0.021;- 
0.005) 

0.01      

Total METhours/week (Only 
available in DCS) 

-0.002 
(-0.007;0.002)  

0.60      -0.001 
(-0.005;0.003) 

0.87      

BMI* -0.001 
(-0.005;0.002)  

0.78 1.61  0.20  38.02 -0.002 
(-0.008;0.005) 

0.80  6.80 9.09×10–3  85.30 

Waist circumference -0.017 
(-0.047;0.012)  

0.58 120.58  <0.0001  99.17 0.011 
(0.001;0.021) 

0.13  14.18 1.66×10–4  92.95 

Current smoking -0.007 
(-0.016;0.003)  

0.49 0.26  0.61  0.00 0.014 
(-0.011;0.038) 

0.58  6.01 0.01  83.36 

Smoking quantity 0.000 
(-0.003;0.003)  

0.91 1.37×10–3  0.97  0.00 0.004 
(-0.001;0.008) 

0.45  2.72 0.10  63.28 

Adherence to dietary guidelines 
(Only available in UKBB) 

0.018 
(0.013;0.022)  

<0.0001      -0.007 (-0.012;- 
0.003) 

3.09×10− 3      

Drinking alcohol at least once a week 0.008 
(0.002;0.014)  

0.08 0.32  0.57  0.00 -0.006 
(-0.013;0.001) 

0.29  1.46 0.23  31.65 

Alcoholic beverages per day 0.001 
(-0.012;0.013)  

0.98 17.39  <0.0001  94.25 0.000 
(-0.005;0.006) 

0.99  4.08 0.04  75.49 

Sleeping more than 8 hours 0.007 
(-0.004;0.019)  

0.56 0.56  0.45  0.00 0.006 
(-0.005;0.017) 

0.58  0.53 0.47  0.00 

Sleeping less than 7 hours -0.004 
(-0.013;0.004)  

0.66 1.49  0.22  32.85 0.002 
(-0.005;0.009) 

0.80  0.18 0.67  0.00 

B indicates beta coefficient; CI, 95 %-confidence interval; DCS, Doetinchem Cohort Study; pFDR, p-value after false discovery rate correction; Q, Cochran’s Q; Qp, 
Cochran’s Q p-value; UKBB, UK Biobank. 
Analyses were adjusted for time to first measurement, sex, socioeconomic status, and season of blood collection. 

* using uncalibrated metabolomics-based aging biomarkers 
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associations between lifestyle factors and MetaboHealth and MetaboAge 
were independent of other lifestyle factors, suggesting that targeting a 
single lifestyle factor could already reduce aging disparities. 

We also observed the earlier described cross-sectional inverse rela-
tionship between alcohol use and MetaboAge (Van Den Akker et al., 
2020) Moreover, we observed cross-sectional associations between 
regular alcohol consumption and increases in alcohol consumption and 
starting regular alcohol consumption with lower MetaboHealth. HDL, 
one of the metabolites used to build the MetaboHealth and MetaboAge 
biomarkers, has a well-established inverse relationship with alcohol 
intake, as well as physical activity (Couillard et al., 2001; Kodama et al., 
2007; De Oliveira e Silva et al., 2000; van de Luitgaarden et al., 2022) 
Conversely, we observed longitudinal associations between regular 
alcohol consumption and higher MetaboAge. Previous research on 
alcohol use and epigenetic aging biomarkers suggests a potential 
non-linear relationship, with both low and high alcohol consumption 
associated with higher epigenetic aging scores (Oblak et al., 2021) 
Studies on alcohol use and telomere length indicate that alcohol abuse 
accelerates aging, while no effect was found with moderate alcohol 
intake (Oblak et al., 2021) Yet, interpreting the effect of moderate 
alcohol intake on metabolomic aging as potentially beneficial is 
cautioned due to adverse outcomes associated with alcohol intake and 
potential biases in observational studies comparing no to low/moderate 
alcohol intake (Naimi et al., 2017; Room et al., 2005) 

Our observations align with research investigating the associations 
of lifestyle factors with epigenetic aging biomarkers and telomere 
length. A meta-analysis of 156 studies examining the epigenetic aging 
biomarkers DNAm Horvath, DNAm Hannum, DNAm GrimAge, and 
DNAm PhenoAge found that BMI was associated with acceleration in all 
four biomarkers (Oblak et al., 2021) Additionally, smoking was linked to 
accelerated aging as measured by DNAm GrimAge, DNAm PhenoAge 
and telomere length, while physical activity was associated with 
deceleration in these three aging biomarkers (Oblak et al., 2021; Buttet 
et al., 2022) Waist circumference associations have been reported with 
accelerated epigenetic aging (Li et al., 2024; Kresovich et al., 2021) 
although contrary to the current study, results attenuated when adjusted 
for physical activity (Kresovich et al., 2021) While lifestyle associations 
with telomere length, epigenetic, and metabolomics-based aging bio-
markers are largely consistent, these biomarkers are known to have a 
poor to moderate correlation (Kuiper et al., 2023; Vetter et al., 2019; 
Hastings et al., 2019; Belsky et al., 2018; Li et al., 2020) Intervention 
studies with combined measurements of these aging biomarkers are 
needed to more precisely identify which aspects of accelerated aging due 
to lifestyle are captured by these different biomarkers. 

The study reveals cross-sectional variation by sex in the associations 
between lifestyle factors and metabolomics-based aging biomarkers. We 
observed stronger inverse associations of increases in and initiation of 
alcohol consumption over a ten-year period, albeit borderline statisti-
cally significant, with MetaboHealth in women compared to men. These 
findings suggest potential sex-related differences in the impact of 
alcohol on metabolomic aging, in line with previous research (Parker 
et al., 1996; Weidner et al., 1991) However, sex differences were 
longitudinally not observed with either MetaboAge or MetaboHealth. 
Yet, the point estimate in women (-0.016[-0.023;-0.008]) compared to 
men (-0.009[-0.020;0.002]) suggests also longitudinally stronger in-
verse effects of alcohol on MetaboHealth. Further research into the 
sex-specific impact of alcohol on metabolomic aging is necessary to gain 
a more comprehensive understanding. 

Furthermore, we observed cross-sectional sex differences in the as-
sociation between smoking and sleeping long with MetaboHealth. 
Additionally, we observed, although not statistically significant, sex 
differences in the association between ten-year BMI increase with 
MetaboAge. Cross-sectionally, modification by sex of the associations 
between sleep and BMI with metabolic syndrome and the association 
between smoking with MetaboHealth have been reported (Smit et al., 
2023; Smiley et al., 2019; Slagter et al., 2017) The absence of observed 

longitudinal sex differences suggests that these differences may not be 
causal. However, our results lack sufficient conclusiveness to defini-
tively support this inference. Further research on the longitudinal 
sex-specific association between smoking, sleep, and BMI with metab-
olomic aging is warranted. 

Strengths of our study include the large study population originating 
from three prospective cohorts, the use of longitudinal lifestyle and 
metabolomics measures, and robustness across Nightingale assays. 
Furthermore, the inclusion of middle-aged participants enabled us to 
identify early determinants of accelerated aging. Limitations were the 
predominantly white study population, limiting our ability to investi-
gate race differences and the generalizability of the results. Additionally, 
the varying time between measurements between DCS (ten years) and 
UKBB (five years) introduces a source of heterogeneity. This heteroge-
neity may potentially pose challenges to the direct comparison of the 
results and could impact the robustness of our findings. 

In conclusion, in the first combined cross-sectional and longitudinal 
study on lifestyle factors associated with MetaboAge and MetaboHealth, 
we discovered robust associations between waist circumference, smok-
ing, and alcohol status with metabolomics-based biomarkers of biolog-
ical age. Dietary or physical activity trials are needed to further establish 
the performance of MetaboHealth in the assessment of accelerated aging 
on an individual level. Moreover, our findings demonstrated variations 
in these associations based on sex. Collectively, these results contribute 
to our understanding of the role of lifestyle in biological aging and offer 
valuable insights for future studies using metabolomics-based aging 
biomarkers as early response outcomes of accelerated aging. 
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