
Algorithm Selection with Continuous Feature
Optimal Decision Trees

An adaption of ConTree’s algorithm for instance cost-sensitive

classification

Saunaq Chakrabarty
Supervisor: Koos van der Linden, Emir Demirović
1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Saunaq Chakrabarty
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirovic, Koos van de Linden, Jasmijn Baaijens

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Algorithm Selection is a problem that involves finding a way to select the best
algorithm out of a portfolio of candidate algorithms, depending on a set of instances
for a problem. It has been shown that optimal decision trees that work on binary
features are as accurate as state of the art models like random forest, while being more
interpretable and smaller, motivating research into alternative, more scalable methods
to generate such trees. In this paper we present an optimal decision tree algorithm that
operates directly on continuous features and measure its suitability for the algorithm
selection problem. We show that our algorithm performs over three orders of magnitude
better than other algorithms that build similar decision trees, and that it achieves
similar out of sample model selection quality as state of the art methods while being at
least 2x faster than similar methods for binary features for higher binarization values.

1 Introduction
Although NP-Complete problems are believed to be intractable in the worst-case, it is
often possible to solve even very large instances of such problems that arise in practice
[5]. However, this may depend strongly on choosing the right algorithm which can make or
break the performance of an intractable problem. In many domains, the best choice varies
greatly between problem instances, with no algorithm strictly dominating over all problem
instances. This is the crux of the Algorithm Selection Problem(ASP). As defined by Rice
[18] in 1976, the ASP involves automatically selecting the most suitable algorithm for a given
input problem represented by a set of features, from a portfolio of solvers as in 1b. This
is typically approached in terms of minimizing(or maximizing) the total metric(or cost).
The Algorithm Selection Problem has been studied widely, and many different approaches
have been suggested, with several results indicating that random forests, offer the best out
of sample performance [5] [14]. However, results also show that they are also not very
interpretable [17].

Decision trees are a popular machine learning algorithm for explainable AI because they
can capture non-linearities in training data and are also interpretable. A large part of their
interpretability is the fact that shallow trees can be easily visualized such as in 1a.

f₁₇ ≤ 0.826

Leaf: 5

Yes

f₁₂ ≤ 0.060

No

Leaf: 1

Yes

Leaf: 2

No

(a) A simple depth two classification
tree for arbitrary features

(b) A graph showing the algorithm se-
lection problem

Figure 1

The most commonly used algorithm used to train decision trees is the Classification
and Regression Trees algorithm(CART) [8]. This algorithm makes use of a local objective

1

function that is optimized at each internal node of the tree, and can thus quickly construct
the tree. These algorithms have achieved state-of-the-art performance in several machine
learning tasks [12], and are implemented in many popular machine learning libraries like
scikit-learn [16].

Despite their popularity, decision trees that are created via methods such as CART come
with several drawbacks. Primarily, their use of a local objective function comes at the cost of
a tree that provably minimizes the training error. Hence, heuristic trees might not represent
the data accurately, implying that they do not generalize well to out-of-sample data [6].

This motivated investigation into methods pertaining to the creation of Optimal Decision
Trees(ODT), i.e trees that provably maximize a certain evaluation metric, such as accuracy.
One issue with this approach is that the problem of finding ODTs is NP-complete [13], with
the number of possible trees being upto 9.4 × 108 even when limiting ourselves to a max
depth of three for 20 binary features [19].

Nevertheless, a lot of research has been done into this area such as by Demirović et al.
[11] and van der Linden et al. [23] that exploit the recursive nature of the tree to train it
using dynamic programming, thereby drastically increase scalability. There has also been
research into applying these efficient, optimal decision trees in the ASP, showing that such
trees are capable of selecting models at a similar quality to state-of-the-art methods such as
random forest, while providing significantly more interpretability [17].

A longstanding limitation of ODT algorithms has been their reliance on pre-binarized
data. Therefore, these algorithms either use a coarse binarization resulting in loss of opti-
mality; or require a binary feature for every possible threshold on the numeric data, which
drastically hurts scalability, because their runtime scales exponentially with the number of
such features [9]. This barrier has recently been overcome with the introduction of Con-
Tree [9], marking a key advancement in enabling truly optimal decision trees to natively
handle continuous features. For classification problems, we also observe that ConTree was
found to have a 0.7% higher test accuracy on out-of-sample data as compared to trees
trained with binarization, suggesting an advantage to directly using continuous features [9].
Additionally, ConTree’s avoidance of binarization means that it is far more scalable than
binary feature ODT methods, as for high binarization values they require far more features.

This naturally motivates us to ask whether we can use the key ideas from ConTree’s
algorithm to create an algorithm for making optimal decision trees for the ASP, in order to
take advantage from the increase in out-of-sample accuracy that comes from using continuous
features, as well as the increase in scalability.

Thus we consider the following research question: How can we create an algorithm that
can scalably generate a decision tree that provably minimizes the expected total cost for the
ASP while not relying on pre-binarized data?

The main contribution made by this paper is ConTree++, a novel algorithm that is an
adaption of the algorithm presented in ConTree to work with an evaluation metric compat-
ible with the ASP. We introduce a novel lower bound for our metric, as well as different
pruning strategies to aid in scalability, in addition to a regularization term to prevent over-
fitting. We also provide extensive experimentation on 8 datasets comparing our algorithm
to state-of-the-art ASP portfolio solvers in terms of out of sample PAR10 score, as well as
other optimal decision tree methods in terms of runtime.

Our results show that our method outperform existing methods [7] for constructing
optimal decision trees on continuous feature by a factor of over 3 orders of magnitude for
trees of depth two, and that trees created by our algorithm have an out of sample algorithm
selection quality on par with that of state-of-the-art methods for Algorithm Selection, such as

2

random forests, while being significantly more interpretable following the results of Poolman
et al. [17]. Additionally, we show that our method outperforms ODT algorithms on binary
features, by a factor of two, for high binarization numbers, while also obtaining a slightly
higher out of sample model selection quality.

2 Related Works
Algorithm Selection: Rice’s original framework conceptualized the problem as a mapping
from a feature space of problem instances to an algorithm space, where the goal is to
optimize a performance metric (e.g., runtime, accuracy, or memory usage) [18]. This abstract
formulation emphasized the importance of understanding the relationship between problem
instance features and algorithm performance.

In the early days, research primarily focused on single domain applications such as finding
the best SAT solver. Portfolio-based methods such as SATzilla [25] performed incredibly
well at this, and won several gold medals in SAT competitions [17], thereby motivating
research into portfolio based algorithm selection in other domains.

Subsequent research expanded ASP techniques to other domains, including Constraint
Satisfaction Problems (CSP), Planning, and Answer Set Programming. Notable systems
include SUNNY [2], which solves the ASP for CSP and is based on k-NN, and Claspfolio,
which solves the ASP for Answer Set Programming and uses several mechanisms such as
k-NN, random forests, and regression [17].

The advent of ASlib [5] in 2016 marked a significant advancement by providing a stan-
dardized benchmark library for cross-domain evaluation of algorithm selection techniques.

Recent approaches to the algorithm selection problem involve the use of graph-convolutional
network-based genetic adversarial networks, and graph neural networks, which have been
applied to the TSP [21]. Cross-domain studies on the ASP still seem to show that smaller,
simpler models such as random forest tend to outperform more complex models [14] [5].
Nevertheless, the shift in interest towards more complex, black-box models in solving this
problem is noteworthy, and it further motivates the need to develop lightweight, simple and
interpretable models for algorithm selection.

Optimal Decision Trees: The construction of Optimal Decision Trees was shown
to be NP Hard by Hyafil et al. [13], establishing that finding the smallest decision tree
consistent with a given dataset is computationally intractable in the general case.

Some initial approaches on finding ODTs include the use of Extreme Point Tabu Search [3],
which involves fixing the structure of the tree and then solving a system of linear inequalities
using existing optimizers. Additionally there were many approaches done through the use of
Mixed-Integer-Programming(MIP) and constraint programming(CP) such as by Bertisimas
et al. [4] and Verwer et al [24].

In more recent times, there have been several approaches involving dynamic program-
ming and Branch and Bound search, that exploit the recursive nature of the tree. These
approaches sacrifice generalizability to gain better runtime performance [20]. Some exam-
ples of these include DL 8.5 by Aglin et al. [1] and MurTree by Demirović et al. [11]. Of
the works stated above MurTree can obtain optimal classification trees and has been further
generalized to any optimization task in STreeD [22]. These methods find optimal trees,
while achieving orders of magnitude better scalability than the prior MIP methods.

The previous approaches discussed do not directly handle continuous features. Instead
they require a course binarization of the feature space, which affects optimality, or a binary
variable at each threshold which hurts scalability. ConTree [9] and QuantBnB [15] are two

3

very recent examples of algorithms that are capable of handling continuous features directly,
and are treated as the starting point of this work, which is aimed at extending ConTree to
handle instance-cost sensitive classification.

Optimal Decision Trees for Algorithm Selection: Optimal decision trees as a
method for Algorithm Selection, have been visited before by Vilas et al. who built a MIP
model to train optimal decision trees [7]. They were shown to provide results similar to that
of random forest regressors, and the authors provided ample evidence against overfitting.

Unfortunately, they were limited in that they only had 1000 problem instances for their
whole dataset, and they had significant difficulties with scalability. They found that optimal
or near optimal solutions were only found for a subset of upto 200 instances. For larger
datasets the solution timed out, or returned suboptimal values.

Another approach to applying Optimal Decision Trees was presented by Segalini et al.
[20], who adapted the STreeD framework for per instance cost sensitive applications [11]
and found that optimal decision trees can be computed much more scalably. Unfortunately
this study was only limited to MaxSAT data and lacked analysis on out-of-sample accuracy,
as the main focus was in improving scalability.

Poolman et al. [17] presented a comprehensive evaluation on the performance vs in-
terpretability tradeoff for optimal decision trees. They found that the instance cost sensi-
tive(ICSC) STreeD algorithm provided a similar performance to the state-of-the-art random
forest regressor, [5], while providing substantially more interpretability. This makes research
into such decision trees that work on continuous features promising, due the performance
increase that such trees are known to have [9].

3 Preliminaries
In this section we introduce notation, formally describe the ASP, introduce our evaluation
metric and briefly describe the notation we use for our algorithm, that has been taken from
ConTree.

3.1 Algorithm Selection
The Algorithm Selection problem can be formalized as follows [18]:

• The Problem Instance Space (P): The set of problem instances where p ∈ P that
we consider.

• The Algorithm space (A): The set of algorithms which can be used to solve the
problems in P.

• Performance metric (M): a function m : P×A → R that measures the performance
of algorithm a on problem x. This is the metric that needs to be minimized (or
maximized).

• Feature Space (F): The set of all features that describes all instances of the consid-
ered problem.

The goal of the problem is to find a mapping s such that:

n∑
p∈P
M(p, s(p))

4

is minimized. There are many approaches to find such a mapping. One such interpretation
is that of a regression problem, by considering the runtime data of each individual algorithm
as a training data for a regression algorithm. In this approach we take the algorithm with
the lowest predicted runtime as the prediction. This approach is used by random forest
regressors, discussed later. In this paper we interpret the ASP as an instance cost-sensitive
classification problem. This type of problem is similar to classification but considers different
misclassification costs for each label and each instance. This is especially relevant for a
problem like the ASP where runtimes can differ wildly between algorithms and problem
instances.

A common evaluation metric for a portfolio selection algorithm in the context of the
ASP is the PAR10 score which is defined as follows:

PAR10(s) =

∑n
p∈PM

′
(p, s(p))

|P|

where

M
′
(p, s) =

{
M(p, s) ifM(p, s) ≤ T

10T else
(1)

Where T refers to the value at which the algorithms in the dataset time out.
In order to effectively compare PAR10 scores across different datasets, which may have

different timeouts and different average runtimes, we need to normalize the PAR10 score [17].
We do this by comparing it to the Virtual Best Solver(VBS) and the Single Best Solver(SBS).
The VBS is the best solver for a particular instance and the SBS is the best solver on average
across the whole dataset.

NormalizedPAR10(s) = 1− PAR10(s)− V BS

SBS − V BS
(2)

We want to maximize this score, which involved minimizing the raw PAR10 score.

3.2 ConTree
The algorithm introduced in this paper is an adaption of the ConTree algorithm [9]. Hence,
the notation used is the same and is summarized in brief below.

Notation: The input to our algorithm is a dataset D with n = |D| observations. Each
observation can be represented by (x, a) where x ∈ Rp where p is the number of features(|F|)
and a ∈ Rq, where q is the number of algorithms(|A|). F = {f1, f2, f3...fp} is the set of
all features in our problem and is the first p columns in the dataset. Df represents one of
these such columns, and includes every instance (x, a) in D, sorted by their values in the
column f . Uf represents all the unique sorted values in Df , with the instances having a

duplicate value in f being removed. Similarly we define Sf = {U
f
1 +Uf

2

2 ,
Uf

2 +Uf
3

2 ...,
Uf

k−1+Uf
k

2 }
where k = |Uf |. Sf is the set of thresholds to be considered on the feature f for that
dataset. z(τ) refers to the index of the largest element in Df where the feature value
xf ≤ τ . Similarly, u(τ) refers to the index of the largest element in Uf where the feature
value xf ≤ τ . We use D(f ≥ τ) to describe the subset of all observations (x, a) such that
xf ≥ τ and vice-versa for D(f ≤ τ). We also define the quantity w(τ) which is defined as:
w(τ) =

∑
(x,a)∈D(f≤τ)(max(a)). Finally, we also work with the new objective function J

that is the total cost incurred by using our decision tree on a dataset of problems. JD refers
to the total metric incurred, when building a classifier for the dataset D, and Jτ refers to

5

the total metric incurred when building a decision tree that splits at the threshold τ , with
JτR and JτL being the left and right total metric of splitting on τ respectively.

ConTree used 3 novel pruning techniques., namely Neighbourhood Pruning(NB), Inter-
val Shrinking(IS) and SubInterval Pruning(SP). Each of these 3 techniques as well as the
Depth Two solver, are specific to the objective function used in ConTree, which is the mis-
classification score. Each of these techniques, are re-implemented and proven in order to
transfer them over to this implementation of ConTree.

4 ConTree++
Problem Definition: The problem statement of this algorithm is essentially the same as
the ASP, with some caveats. If T (D, d) represents the set of all decision trees of max-depth
d on the dataset D, then we need to find the tree topt such that:

topt = argmin
t

∑
(x,a)∈D

M(x, t(x)) + λ(SBS − V BS)Nl

where Nl represents the number of leaf nodes in t. This algorithm, like ConTree and STreeD
is limited to binary axis-aligned trees: every branching node splits on precisely one feature
f ∈ F based on a threshold τ such that every observation with xf ≤ τ goes left in the tree
while the rest goes to the right.

We prevent overfitting by adding a regularization term to penalize the size of the tree,
which is represented by the number of leaf nodes. This regularization score is scaled up
by the normalization factor SBS − V BS as the leaves contain only the raw PAR10 score,
however it is useful to have our regularization parameter λ normalized as our ultimate
evaluation metric is normalized for effective cross-domain evaluation.

4.1 Main Algorithm
Much like ConTree, this algorithm constructs an ODT by recursively performing splits on
every branching node within a full tree of pre-defined depth. Subproblems are identified by
the dataset D and the remaining depth limit d. This results in the following recursive DP
formulation.

CT++(D, d) =

{
argmina

∑
(x,a)∈DM(x, a) + λ(SBS − V BS) if d = 0

minf∈F,τ∈Sf (CT++(D(f ≤ τ), d− 1) + CT++(D(f > τ), d− 1)) else

Given a splitting feature f , computing the total cost Jτ for all possible split points τ ∈ Sf is
computationally expensive since each split point considered requires solving two (potentially
large) subproblems. ConTree fixes this problem by proposing three novel runtime pruning
techniques [9]. We adapt these and prove their validity for the new objective function.
Additionally, the Depth Two solver is also adapted for the new objective function and
provides a significant speedup to the algorithm.

4.2 Similarity Lower Bound:
ConTree makes use of the Similarity Lower Bound proposed in MurTree by Demirović et al.
[11], which is based on the misclassification score. We adapt it for our new metric to make

6

it the following:
JDnew

≥ JDold
−

∑
(x,a)∈Dout

max(a)

where Dout = Dold\Dnew.
Proof: The proof follows in a similar fashion to the proof of the original Similarity Lower
Bound in Demirović et al. [11]. Consider Din = Dnew\Dold, Dout = Dold\Dnew and
Dsame = Dout ∩ Din. We observe that removing Dout from Dold may reduce the total
cost by at most A =

∑
(x,a)∈Dout

max(a). This is under the assumption that the classifier
predicts the worst possible algorithm on every instance in Dout and its predictions on Dsame

remain unchanged. Therefore:

JDold
− JDold\Dout

≤ A

=⇒ JDold
−A ≤ JDsame

Another key observation is that adding more observations to Dsame cannot reduce the total
cost in the worst case, as in this case, all new observations are misclassified so they add
something to the cost, and the instances in Dsame remain the same. Hence:

JDnew ≥ JDsame

=⇒ JDold
−

∑
(x,a)∈Dout

max(a) ≤ JDnew
(3)

4.3 Pruning Techniques
Based on this new similarity lower bound, 3 separate pruning techniques are proposed sim-
ilar to ConTree. Like ConTree, the key idea of the algorithm is that the solution when
splitting on a feature f on a threshold τ provides a lower bound for future calls on the same
feature, with a different threshold. Unlike ConTree, the new objective function makes it so
that the indices that can be pruned, cannot be removed in constant time like in ConTree,
as every individual instance contributes a different amount to the lower bound, depending
on what the maximum runtime of each instance is. To this end, this paper presents a novel
method of finding the correct index to split on, in logarithmic time.

Theorem A: If UB is the best existing score needed, and if Jτ is an already computed
solution to the total metric of an optimal decision tree on a threshold τ , then no threshold
τ

′
with

∑
(x,a)∈D(τ ′≥f>τ) max(a) < Jτ − UB or

∑
(x,a)∈D(τ≥f>τ ′) max(a) < Jτ − UB can

provide an improving solution
Proof: This follows directly from the similarity lower bound. Consider the case where
τ

′
> τ . In this case, D(f ≤ τ) ⊂ D(f ≤ τ

′
). Therefore,

JτL ≤ Jτ ′L

as here Dold\Dnew = ∅. Additionally for the right side, we have

JτR −
∑

(x,a)∈D(τ ′≥f>τ)

max(a) ≤ Jτ ′R

7

Because D(f > τ)\D(f > τ
′
) = D(τ ′ ≥ f > τ) Adding these two together we get

Jτ ′ ≥ Jτ −
∑

(x,a)∈D(τ ′≥f>τ)

max(a)

In order for Jτ ′ to be an improving solution it has to be less than UB. Meaning:

UB ≥ Jτ −
∑

(x,a)∈D(τ ′≥f>τ)

max(a)

=⇒
∑

(x,a)∈D(τ ′≥f>τ)

max(a) ≥ Jτ − UB (4)

(4) must hold in order to be an improving solution. Contrapositively, any value of τ
′

for
which the following holds: ∑

(x,a)∈D(τ ′≥f>τ)

max(a) < Jτ − UB

cannot be an improving solution. The proof follows similarly for values of τ
′
< τ

Corollary A: Consider ∆ = Jτ − UB. If τ1 is the smallest threshold such that∑
(x,a)∈D(τ1≥f>τ) max(a) ≥ ∆ and if τ2 is the largest threshold such that

∑
(x,a)∈D(τ≥f>τ2)

max(a) ≥
∆ then the only indices that need to be checked are those indices τ

′
such that either z(τ

′
) ≤

z(τ2) or z(τ
′
) ≥ z(τ1)

Like ConTree, we keep track of a set of intervals of indices with possible candidates for an
improving solution. After each pruning strategy, we reduce the total size of the intervals
considered, until we eventually settle on one optimal solution.
Neighbourhood Pruning: After a split point Ju is computed on a split index u with
threshold value τ , we can make use of Corollary A to prune away suboptimal solutions. To
this end, we need to compute the values τ1 and τ2. This may be naively done by going
over the array in one pass. However, we can precompute the prefix sum(or cumulative sum)
of the worst case algorithm across the dataset sorted by each feature(w(τ)) and store it as
a field in each problem instance. With this value precomputed, we can compute τ1 and
τ2 in logarithmic time by using a binary search to find the smallest value that is greater
than w(τ)+∆ and the largest value that is smaller than w(τ)−∆ respectively. Afterwards
we can proceed with the same procedure as in ConTree, by implementing the functions
A(u,∆) = {u′ ∈ [m]|Uf

u′ < Df
τ1} and A(u,∆) = {u′ ∈ [m]|Uf

u′+1
> Df

τ2} which also work in
logarithmic time. These are used to convert from the datapoint index in Df to the unique
value index, as these are the indices that we can split upon. These metrics can be used to
create a new set of intervals to check, with the following function

PNB([i, j], u,∆) = {[i, A(u,∆)], [A(u,∆), j]}

Interval Shrinking: Interval Shrinking is simply a lazy evaluation of neighbourhood prun-
ing, and makes use of Theorem B

Theorem B: If w is a split point with a precomputed total metric of Jw such that the left
total metric JwL = 0 then any split point u < w will have a total metric Ju ≥ Jw. Similarly,
if we have a point with JwR = 0 then any split point v > w will have a total metric Jv > Jw.

8

Proof: First we consider only the left side. suppose u < w and JwL = 0. Then D(f ≤
Sf
u) ⊂ D(f ≤ Sf

w) and D(f > Sf
w) ⊂ D(f > Sf

u). Note also that Jw = JwR. Following the
similarity lower bound, JuR ≥ JwR as Dout = D(f > Sf

w)\D(f > Sf
u) is empty. Additionally,

we also know that JuL ≥ 0 as the total metric is assumed to be non-negative. Therefore,
combining these two statements we get, JuR + JuL = Ju ≥ JwR = Jw =⇒ Ju ≥ Jw.

The proof follows similarly for the right side.
We use this theorem for pruning the search space in a similar fashion to ConTree by

using the following expression:

PIS([i, j], u, v,∆u,∆v,ML,MR) = {max(i,ML + 1, A(u,∆u)),min(j,MR − 1, A(v,∆v))}

Here u, v are the previously computed split indices, ∆u = Ju − UB, ∆v = Jv − UB and
ML,MR are the indices of the leftmost and rightmost index at which a tree of total metric
zero has been found.
Sub-interval Pruning: Subinterval Pruning makes use of the following theorem to prune
away suboptimal solutions.
Theorem C: If [i,j] is our current interval, and u < i and v > j are two split indices for
which the quantities JuL, JuR, JvL, JvR have already been computed, then if JuL+JvR > UB,
then no w ∈ [i, j] can provide a better total metric on UB.
Proof: We know that w ≥ i > u and w ≤ j < v. Following the similarity lower bound,
JwL ≥ JuL and JwR ≥ JvR. Combining these two we get: Jw = JwL + JwR ≥ JuL + JvR.
This means that if JuL + JvR > UB, then Jw > UB, meaning w cannot be an improving
solution.
Hence we can define the pruning function for Sub-interval Pruning as:

PSP ([i, j],UB, JuL, JvR) =

{
∅ if JuL + JvR ≥ UB
[i, j] else

4.4 General Case Solver
The main loop of the algorithm proceeds identically to ConTree. The pseudo code for this
algorithm is presented in appendix A as algorithm 2.
The main loop of our algorithm and ConTree involves going over every feature f and running
Algorithm A to find the optimal decision tree if we decide to split on that feature. Algorithm
A tries to find the optimal threshold to split on for each feature.
It does so by maintaining a queue of intervals. At each step an interval is popped out
and subjected to sub-interval pruning and interval shrinking, which reduce the size of the
interval, or possibly avoid having to consider it all together. After this, the point at the
middle is considered and an optimal decision tree of depth d − 1 is computed by splitting
on this threshold. Depending on the result of this computation, neighbourhood pruning is
then applied to the resulting interval which is split into two smaller intervals.
If the depth of the next tree to be computed is two, the algorithm will call the specialized
solver method that implements another procedure adapted from ConTree, which computes
optimal decision trees of depth two very efficiently. This procedure is described in more
detail in the section below. Otherwise, it will first compute the left subtree of the dataset if
we split at w on the current feature, and then use the result of the left subtree as a tighter
upper bound for the right subtree. The right subtree is only computed if the upper bound
indicates that it may be an improving solution. We also use ConTree’s adaptive procedure
for a tighter upper bound on the right subtree.

9

Finally the algorithm terminates once all of the intervals have been searched and the
queue is empty. Additionally if a tree with a perfect total metric of zero is found, then the
search will terminate earlier.

4.5 Depth Two Solver
The Depth Two Solver is a very important subroutine for DP based ODT algorithms, with
its use in ConTree being responsible for reducing runtimes by a factor of 320 [9].
In this paper, we present an adaptation of ConTree’s Depth Two solver that is capable of
computing Optimal Decision Trees that operate on the new objective function of the total
metric and also does not run into memory errors or issues.

Algorithm 1 D2(D, f, w)
1: JL ← |D|, JR ← |D|
2: for (x, a) ∈ D do
3: FQa

L ← FQa
L + a

4: FQa
R ← (

∑
(x,a)∈D a)− FQa

L

5: for f2 ∈ F do
6: Ca

L ← 0, Ca
R ← 0

7: for (x, a) ∈ D sorted by f2 do
8: if xf1 ≤ Sf1

w then
9: JLL ← minâ C

a
L

10: JLR ← minâ(FQa
L − Ca

L)
11: if JLL + JLR ≤ JL then
12: JL ← JLL + JLR

13: Ca
L ← Ca

L + a
14: else
15: same procedure for the other side
16: if JL + JR = 0 then
17: break
18: Output: (JL, JR)

Algorithm B shows the procedure used to compute an optimal decision tree of depth two
if we split at the point w. As mentioned above this algorithm is only called as a subroutine
in the main loop of the algorithm discussed above, where f and w have already been decided.
The main point of the algorithm is that at the beginning, we first precompute the variables
FQa

L and FQa
R which counts up the contribution of algorithm a for each datapoint that is

put into the left and right subtree respectively, if we split on w for feature f1. Then in order
to select the second feature f2, we loop over all of them and on each of them, go over each
threshold and keep track of the variables Ca

L and Ca
R which count the contribution of each

algorithm to the total metric, for all the datapoints on the left subtree of f2 on the left or
right subtree of f1 respectively. Then the values of the total metric of the right subtree on
f2 for both branches of f1 can be easily computed with the following formulae:

Ca
LL = Ca

L Ca
LR = FQa

L − Ca
L

Ca
RL = Ca

R Ca
RR = FQa

R − Ca
R

10

The optimal total metrics can then easily be calculated by simply finding the label that
is minimizes the value of the total metric for each subtree. This algorithm operates in
O(|D||F|.

5 Experimental Setup and Results
Our experiments and results aim to answer the folowing questions:

• What is the effect of the pruning techniques on runtime?

• How does our algorithm compare to other algorithm for the ASP using ODTs in terms
of runtime?

• How does our algorithm compare to state-of-the-art methods for the ASP in terms of
algorithm selection quality?

• How do ODTs made on continuous features compare to those made on binary features,
in terms of both tree quality and scalability/runtime?

To this end we proposed and performed the following experiments: Experiment 1 compares
the runtimes of our algorithm with a max depth of three with different combinations of prun-
ing active, showing the combination of NB and SP is optimal. Experiment 2 will compare
the runtime of our algorithm to the MIP model by Boas et al.[7], confirming our method’s
superiority in terms of scalability and runtime on trees of depth 2, as the MIP model times
out on all of these datasets. Experiment 3 will compare the out-of-sample normalized PAR10
score of the optimal decision trees generated by our algorithm with random forest regressors
showing that we have comparable performance, and finally experiment 4 will compare our
algorithm to the STreeD instance cost sensitive classifier(ICSC), which acts on binarized
features, in terms of out-of-sample PAR10 score, as well as training time depending on the
number of binarizations, where we find that our methods severely outperforms binarizations
of high value.

5.1 Setup and Data Preparation
Data Source: We chose to perform our experiments on 8 data sets from the ASLib dataset
for algorithm selection. ASLib is a repository of data collected, specifically for the purposes
of the Algorithm Selection problem. It covers a variety of different problem domains includ-
ing SAT, QBF(quantified boolean formulas), CSP(constraint programming), ASP(Answer
set programming) and many more.

ASLib removes the need for us to precompute the features and runtimes for the algo-
rithms ourselves. It additionally makes it much easier for other reseachers to compare their
work against our results in the future.

We only choose the datasets wherein the metric being measured is runtime or directly a
PAR10 score, so as to ensure the problem remains a minimization problem. Additionally, we
also tried to choose datasets from a wide range of problems, so as to confirm the cross-domain
applicability of our method.

Data Preprocessing: We remove feature columns that have the same value across
all instances. Additionally, we also subtract the metric of the best performing algorithm
from the metrics of all of the other ones. This ensures that the best runtime of a decision
tree has a tight lower bound of zero, which greatly speeds up performance, as mentioned

11

Table 1: Summary of Scenarios

Scenario
Name

#
Feat.

#
Algo.

#
Inst.

ASP-
POTASSCO

134 11 1077

CSP-2010 69 2 1695
BNSL-2016 86 8 1179
CPMP-2015 22 4 527
GLUHACK-
2018

48 8 353

MAXSAT-
2012PMS

30 6 747

PROTEUS-2014 193 22 678
QBF2016 46 24 813

Table 2: Hyperparameter Ranges for Models

Model Hyperparameters
STreed Instance Cost
Sensitive

max depth
∈ {2, 3, 4, 5}
max num nodes ∈
{3, 5, 10, 15, 20, 25, 31}
bins ∈ {2, 3, 5}

ConTree++ max depth ∈ {2, 3, 4}
reg. score(λ) ∈
{0.01, 0.05, 0.1, 0.005, 0}

Random Forest
Regressor

num estimators
∈ {100, 200, 300}
max depth ∈
{None, 3, 4, 5, 10, 20, 50}
min split ∈ {2, 5}
min leaf ∈ {1, 2}

earlier. Additionally when using STreeD for this problem, we require feature binarization,
which requires some extra steps. For each feature in the dataset, the following precedure is
followed:

• Sort the feature column ascendingly.

• Divide these sorted features into a number of equally spaced bins. The number of bins
is provided as a hyperparameter.

• Identify the thresholds that identify these bins by looking at the position of feature
elements in the sorted list.

• For each threshold, set all of the elements lesser than it to 1 and set all of the elements
greater than it to 0.

This procedure has the number of bins as a hyperparameter, hereafter referred to as the
binarization value.

Model Selection and Tuning: In order to adequately assess the strength of our
algorithm, we compare it to algorithms along different evaluation metrics. For experiment
2, the only existing models for building instance cost sensitive ODTs for the ASP directly on
continuous features that we know of is the MIP model by Boas et al. [7], so we only include
this model as a point of comparison. For experiment 3 we made our selection from the
limited set of algorithms and models that are equipped to handle cross-domain algorithm
selection.

We chose to focus on tree based models such as random forests, as they have been shown
to have the highest out of sample PAR10 score for the ASP [17] [14]. The implementation of
these models were the same as in the original ASLib paper by Bischl et al. [5], which made
use of the implementations provided in scikit-learn. There are also other methods for the
algorithm selection problem that use complicated, black box models such as transformers.
However, results show that their performance does not differ all that much from random
forests, despite being much less interpretable [14]. Hence we chose to omit them from this
comparison, as the random forest is a more interesting comparison to optimal decision trees.

We chose to train the models by tuning the hyperparameters of all six models, using the
provided parameter ranges, with grid search and a nested cross-validation setup (with ten
internal folds as specified by ASlib) for each scenario. A further specification of these ranges

12

can be found in Table 2. This is done to ensure both unbiased performance results and to
select the best model within the parameter ranges for each scenario.

Experiments 1 and 3 are run on the DelftBlue supercomputer [10], which is equipped
with Intel XEON E5-6448Y 32C 2.1GHz CPUs. Each experiment is configured with 64 CPU
cores and 2GB of RAM per core. Experiments 2 and 4, and the results in Figure 1, are run
on an Alienware M15R5 with an Intel i7 2.1 GHz processor, 22 cores and 16GB of RAM
total.

5.2 Results and Discussion:
The results of the MIP model are ommitted as the MIP model times out on all of the
datasets, where as our algorithm does not. For the comparison with MIP and the pruning
analysis, we set a time out of 1500 seconds. The results in Table 3 clearly shows that the

Table 3: Runtime(seconds) for trees of depth
three with different pruning setups, - denotes a
timeout.

Scenario
Name

All NB SP NB+SP

ASP-
POTASSCO

1095 - - 1067

CSP-2010 44 - 70 46
BNSL-2016 265 - 279 259
CPMP-
2015

2 2 3 2

GLUHACK-
2018

32 - 56 32

MAXSAT-
2012PMS

5 - 6 5

PROTEUS-
2014

1286 - - 1266

QBF2016 421 - 454 421

Table 4: Out of sample PAR10 between Con-
Tree, Random Forest and STreeD, normalized
according to equation (2)

Scenario
Name

ConTree++ Random
Forest

STreeD

ASP-
POTASSCO

0.76 0.84 0.76

CSP-2010 0.88 0.82 0.94
BNSL-2016 0.77 0.86 0.78
CPMP-2015 0.19 0.36 0.29
GLUHACK-
2018

0.28 0.17 0.19

MAXSAT-
2012PMS

0.90 0.89 0.87

PROTEUS-
2014

0.68 0.70 0.70

QBF2016 0.58 0.41 0.5

combination of Neighbourhood Pruning and Subinterval Pruning provides the best average
runtime(387.25s), even compared to applying Interval Shrinking as well(393.76s). This can
be explained by the overhead of computing left and right thresholds in logarithmic time,
exceeding the pruning strength of the method. Hence, in the other experiments of this paper,
only the combination of NB+SP is used. Overall we see that the most important pruning
technique in terms of runtime is Subinterval Pruning. The addition of Neighbourhood
Pruning to SP provides a 25% speedup(geometric mean), whereas the addition of Subinterval
Pruning to Neighbourhood Pruning provides a 8×(geometric mean) speedup.

For depth 2 trees, our method drastically outperforms the Boas et al.’s MIP model on all
datasets. Our method has a maximum runtime of 10 seconds, meaning it provides a runtime
speed up of at least three orders of magnitude. This is consistent with their findings in the
original paper, as they were having issues with scalability on datasets of merely 37 features
and 200 instances, whereas the datasets that we are consider have either far more instances,
or far more features. Additionally, they worked with a much higher timeout (4000s), as
compared to ours(1500s). For higher depth trees, we imagine the a similarly high speedup,
as the search space for optimal decision trees is exponential with the max depth.

In terms of the out of sample PAR10 score, we observe that all three models are evenly
matched. ConTree++ and Random Forest both have slightly higher average scores(0.63)

13

than STreeD(0.62) illustrating as slight advantage to directly using continuous features over
binarizing them. This is consistent with the result from ConTree [9] that found a 0.7%
higher out of sample accuracy than STreeD for classification.

Figures 2a & 2b illustrate the scalability of our method with that of STreeD at differ-
ent binarizations. We observe exponentiality with regards to the number of features, with
QBF2016 being a notable outlier, possibly due to its high number of algorithms. We ob-
serve that our method has a lesser average runtime across datasets than STreeD with a
binarization value greater than 13, outperforming such models by at least a factor of 2 in
runtime, indicating our method’s superiority in scalability in comparison to high binarization
values(>=13).

cp
m

p

m
ax

s

qb
f2

gl
uh

cs
p2 bn
sl

as
p

pr
ot

Dataset (Features, Instances)

100

101

102

103

104

Tr
ai

ni
ng

 T
im

e
+

Bi
na

riz
at

io
n

(s
ec

on
ds

)

Model Performance: Training Time by Dataset Size
contree_reg_0
streed_bin_10
streed_bin_13
streed_bin_17
streed_bin_20

(a) Average training time by dataset(s), aver-
aged over 3 runs, datasets sorted by number
of features

con
tre

e_r
eg

_0

str
ee

d_b
in_

10

str
ee

d_b
in_

13

str
ee

d_b
in_

17

str
ee

d_b
in_

20

Model

0

500

1000

1500

2000

2500

Av
er

ag
e

Tr
ai

ni
ng

 T
im

e
+

Bi
na

riz
at

io
n

(s
ec

on
ds

)

496.641s 413.966s

1017.480s

1410.699s

2407.072s

Average Training Time Across All Datasets

(b) Average training time across all datasets
per model

Figure 2: Scalability comparison between STReeD and ConTree

6 Conclusions and Future Work
We have clearly illustrated that making use of dynamic programming and ConTree’s algo-
rithm it is finally possible to scalably compute ODTs on continuous features, for algorithm
selection, with our method clearly outperforming existing methods for this task. We ac-
complished this by modifying ConTree’s pruning techniques and depth two solver for the
PAR10 score, an evaluation metric commonly used for the ASP.

Additionally, our results show that our method performs similarly to state-of-the-art
methods like Random Forest on out of sample selection quality, while providing a much
greater deal of interpretability and a much smaller, more space efficient model following
Poolman et al.’s experiments[17]. Apart from a small advantage in out of sample selection
quality, our results also show that our method outperforms STreeD in scalability for larger
binarization values, meaning that for datasets in which a high number of bins is required
for binarization, ConTree++ is a considerably faster choice.

Future research into this topic could involve improving the scalability of this method by
introducing tighter lower bounds and additional pruning techniques. Finally, experimenta-
tion into the interpretability from models generated via ConTree++ and Random Forest,
on a larger dataset could be explored.

14

7 Responsible Research
This paper adheres to the FAIR principles to ensure that the data and code used in the
experiments are:

• Findable: Metadata and related content are on a public repository, making it easy
for researchers to locate and access.

• Accesible: The code for the algorithm as well as the scripts involved in the experiment
setup, along with the datasource is public, making it easy to replicate.

• Interoperable: The code is designed to run on Windows and Unix systems, facili-
tating easier use by the research community.

• Reusable: The code contains all the necessary details and instructions on how to
replicate the experiments, thereby promoting code reuse and further research based
on this paper.

LLMs were used to to aid in writing experiment scripts, as well as in generating the relevant
visuals and tables. It was also used to aid in correctly formatting tables and figures in
LaTeX

15

A Appendix

A.1 Pseudocode for main loop of ConTree++

Algorithm 2 Branch(D, d, f,UB)

Jopt ← minâ∈A

∑
(x,a)∈D M

′
(x,a)

|D|
ML ← 0,MR ← ⇕+ 1
Q← [1,m],V ← ∅
while |Q| > 0 do

[i, j]← Q.pop()
u, v ← B(i, j),V)
∆u ← Ju − UB,∆v ← Jv − UB
[i, j] = PSP ([i, j],UB, JuL, JvR)
[i, j] = PIS([i, j], u, v,∆u,∆v,ML,MR)
if |[i, j]| = 0 then

continue
w ← ⌊ l+r

2 ⌋
if d = 2 then

JwL, Jw,R ← D2(D, f, w)
else
DL ← D(f ≤ Sf

w),DR ← Sf
w

JwL ← CT++(DL, d− 1,UB)
η ← min(z(w)− z(i), z(j)− z(w))
UBR ← max(UB − Jw, η)
if UBR ≤ 0 then

JwR ← Jopt − JwL

else
JwR ← CT++(DR, d− 1,UB)

Jw ← JwL + JwR

if JwL = 0 then
ML ← w + 1

if JwR = 0 then
MR ← w − 1

if Jw ≤ Jopt then
UB ← min(UB, Jw), Jopt ← Jw
if Jw = 0 then

break
Q.push(PNB([i, j], u, Jw − UB))
V = V ∪ {w}

Output: Jopt

References
[1] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using

caching branch-and-bound search. Proceedings of the AAAI Conference on Artificial

16

Intelligence, 2020.

[2] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Sunny: a lazy portfolio
approach for constraint solving. Theory and Practice of Logic Programming, 2014.

[3] Kristin P. Bennett and Jennifer A. Blue. Optimal decision trees. Pattern Recognition,
1996.

[4] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning,
2017.

[5] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexan-
dre Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and
Joaquin Vanschoren. Aslib: A benchmark library for algorithm selection. Artificial
Intelligence, Vol.237, 2016.

[6] Hendrik Blockeel, Laurens Devos, Benoît Frénay, Géraldin Nanfack, and Siegfried Ni-
jssen. Decision trees: from efficient prediction to responsible ai. Frontiers in Artificial
Intelligence, 2023.

[7] Matheus Guedes Vilas Boas, Haroldo Gambini Santos, Luiz Henrique de Campos Mer-
schmann b, and Greet Vanden Berghe. Optimal decision trees for the algorithm se-
lection problem: integer programming based approaches. Internation Transactions in
Operational Research, 2021.

[8] Leo Breiman, Jerome Friedman, R.A. Olshen, and Charles J. Stone. Classification and
Regression Trees. Taylor Francis, 1984.

[9] Catalin E. Brita, Jacobus G. M. van der Linden, and Emir Demirović. Optimal clas-
sification trees for continuous feature data using dynamic programming with branch-
and-bound. Association for the Advancement of Artificial Intelligence, 2025.

[10] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase
2). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2, 2024.

[11] Emir Demirović, Emmanuel Hebrard Anna Lukina, Jeffrey Chan, James Bailey,
Christopher Leckie, Kotagiri Ramamohanarao, and Peter J. Stuckey. Murtree: Opti-
mal decision trees via dynamic programming and search. Journal of Machine Learning
Research, 2022.

[12] Lucas Mentch Giles Hooker. Bridging breiman’s brook: From algorithmic modeling to
statistical learning. Observational Studies, Volume 7, Issue 1, 2021.

[13] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is
np-complete. Elsevier Information Processing Letters, 1976.

[14] Ana Kostovska, Diederick Vermetten Anja Jankovic, Sašo Džeroski, Tome Eftimov, and
Carola Doerr. Comparing algorithm selection approaches on black-box optimization
problems. The Genetic and Evolutionary Computation Conference, 2023.

[15] Rahul Mazumder, Xiang Meng, and Haoyue Wang. Quant-bnb: A scalable branch-
and-bound method for optimal decision trees with continuous features. International
Conference on Machine Learning, 2022.

17

[16] Fabian Pedregosa, Alexandre Gramfort Gaël Varoquaux, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Andreas Müller Mathieu Blondel, Joel Nothman, Peter Pret-
tenhofer Gilles Louppe, Ron Weiss, Vincent Dubourg, Jake Vanderplas, David Courna-
peau Alexandre Passos, Matthieu Brucher, Matthieu Perrot, and Ãdouard Duchesnay.
Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 2011.

[17] Daniël Poolman. Optimal decision trees for the algorithm selection problem. Master’s
thesis, EEMCS, Delft University of Technology, 2024.

[18] John R. Rice. The algorithm selection problem. Advances in Computers Vol. 15, 1976.

[19] Cynthia Rudin. Modern decision tree optimization with generalized optimal sparse
decision trees. Course Notes, 2023. Accessed: 2025-06-20.

[20] Giulio Segalini. Optimal decision trees for the algorithm selection problem a dynamic
programming approach. Master’s thesis, EEMCS, Delft University of Technology, The
Netherlands, 2023.

[21] Ya Song, Laurens Bliek, and Yingqian Zhang. Revisit the algorithm selection problem
for tsp with spatial information enhanced graph neural networks. 17th International
Conference on Agents and Artificial Intelligence, 2025.

[22] Jacobus G. M. van der Linden, Mathijs M. de Weerdt, and Emir DemiroviÄ. Optimal
decision trees for separable objectives: Pushing the limits of dynamic programming.
arXiv:2305.19, 2023.

[23] Jacobus GM van der Linden, Mathijs M de Weerdt, and Emir Demirović. Optimal
decision trees for separable objectives: Pushing the limits of dynamic programming.
NeurIPS, 2023.

[24] Sicco Verwer and Yingqian Zhang. Learning decision trees with flexible constraints
and objectives using integer optimization. Integration of AI and OR Techniques in
Constraint Programming, 2017.

[25] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla: Portfolio-
based algorithm selection for sat. Journal of Artificial Intelligence Research, 2008.

18

