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A B S T R A C T

This paper attempts to optimize the flow patterns in a perishable food supply chain network for a
high-speed rail catering service. The proposed variational inequality models describe the un-
certain demand on trains using the Newsvendor model and impose time deadline constraints on
paths considering flow-dependent lead time. The constraints are then reformulated based on the
Dirac delta function so that they can be directly dualized. An Euler algorithm with an Augmented
Lagrangian Dual algorithm is developed to solve the model. A case study using 246 trains in the
Beijing-Shanghai high-speed corridor is applied to demonstrate the applicability of the method.

1. Introduction

Timely delivery is becoming a critical strategy that is as important as lean manufacturing and innovation strategy in modern
supply chain management, particularly in perishable food supply chains (PFSCs) (Nagurney et al., 2013; Yu and Nagurney, 2013).
Timely delivery imposes a time-critical mode on PFSCs in which each task is executed within a tight time frame (Federgruen et al.,
1986; Zhang et al., 2003).

This research is motivated by catering services for high-speed railways (CSHRs). This paper focuses on developing a PFSC for
CSHRs (PFSC-CSHRs) in China. It is estimated that China Railway must provide food products for more than 1000 high-speed trains
per day across the rail network. With the development of high-speed passenger service, it is important for China Railway to develop
profitable catering services for high-quality cold chain meals while guaranteeing time-sensitive quality and food safety (Wu et al.,
2015, 2017a,b).

A PFSC-CSHRs network is composed of pathways from food suppliers (FSs), involves distribution centers (DCs) and rail stations
(RSs), and ends at high-speed trains (HTs) throughout a given rail network. The food products demanded by HTs within a planning
horizon are outsourced from cooperative FSs. DCs operated by rail companies order food products from the FSs and then deliver the
meals to RSs. Each train is labeled with a train number (i.e. a trip line) in a train timetable. HTs are served as the end user of the
distribution network (see Fig. 1). The PFSC-CSHRs problem is a product flow-assignment problem that aims to assign product flows in
each distribution network. On HTs, services provided to different travel classes are quite different. However, either high level or
economy class passengers can buy cold chain or ambient food products on the trains. This paper focuses on the on-demand catering
retail services for cold chain food products provided in the dinning compartments of HTs for all travel classes.

https://doi.org/10.1016/j.tre.2018.01.002
Received 4 February 2017; Received in revised form 22 October 2017; Accepted 3 January 2018

⁎ Corresponding author at: School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, PR China.
E-mail addresses: xinwu@bjtu.edu.cn (X. Wu), lnie@bjtu.edu.cn (L. Nie), mengxu@bjtu.edu.cn (M. Xu), f.yan@tudelft.nl (F. Yan).

Transportation Research Part E 111 (2018) 186–209

Available online 04 February 2018
1366-5545/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13665545
https://www.elsevier.com/locate/tre
https://doi.org/10.1016/j.tre.2018.01.002
https://doi.org/10.1016/j.tre.2018.01.002
mailto:xinwu@bjtu.edu.cn
mailto:lnie@bjtu.edu.cn
mailto:mengxu@bjtu.edu.cn
mailto:f.yan@tudelft.nl
https://doi.org/10.1016/j.tre.2018.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tre.2018.01.002&domain=pdf


1.1. Characteristics of the PFSC-CSHRs problem and literature review

The PFSC-CSHRs problem shares common features with other supply chain problems (Sloof et al., 1996; Miller, 2012; Trienekens
and Zuurbier, 2008). However, particular characteristics merit further discussions.

(1) Influence by rail transport plan
First, all possible station-to-train assignments in the PFSC-CSHRs network are characterized by the HTs’ operating line plan and

timetable (Bussieck, 1997; Goossens et al., 2006; Peeters, 2003; Zhang and Nie, 2016).The paper’s first task is to incorporate the
information from line plans and train timetables into PFSC-CSHRs networks.
(2) Deterioration of food products

Second, the quality of cold chain meals deteriorates throughout the distribution process (Zhang et al., 2003; Yu and Nagurney,
2013; van der Vorst, 2000; Akkerman et al., 2010). Zhang et al. (2003) considered the perishability of chilled and frozen meals by
limiting the total network degradation within a permitted range. However, that study did not investigate the degradation from the
perspective of path-based models. In supply chain analytics for perishable products,path-based supply chain models are widely used
to describe the degradation that occurs over the relevant links (Masoumi et al., 2012; Nagurney and Nagurney, 2012; Yu and
Nagurney, 2013). The paper’s second task is to introduce the framework to describe the deterioration of cold chain rail catering
meals.
(3) Flow-dependent lead time and time deadline constraints

Third, the delivery process of cold chain meals must be restricted by time deadline constraints that restrict the pathways’lead time
within a lifespan. In this paper, a pathway’s lead time is different from a pathway’s time impedance. Here, we define a pathway’s time
impedance as the total time impedance of the pathway from a food supplier to a high-speed train (as shown in Fig. 1). Differently, we
define a pathway’s lead time as the time impedance from a food supplier to its served trains’ destination, which is the sum of the
pathway’s time impedance and the travel time of the train from its catered station to its destination.

Liu and Nagurney (2012) formulated a path-based model to impose that a path whose lead time is longer than a given time
deadline would not be assigned any flows. However, the model does not describe the flow-dependent property of the lead time.
Congestion effects usually occur in real-world situations because of the limited availability of skilled workers, redundant trimming
and equipment turnover. As the amount of shipping on a path increases, the pathways’ lead time increases. As a result, it is important
to restrict the flow-dependent lead time within a given time deadline. In traffic equilibrium problems, Larsson and Patriksson (1999)
proposed a strategy to price generalized side constraints (Lasdon, 1970, chap.8). Patriksson (1994) developed the Augmented La-
grangian Dual (ALD) algorithm to efficiently price capacity constraints. Nagurney and Nagurney (2012) introduced the same idea
into a medical nuclear supply chain problem to achieve the dualization of capacity constraints. However, the flow-dependent lead-
time property and time deadline constraints have not been addressed simultaneously. The time deadline constraint is described by
conditional statements as follows:

If the amount of the flow on a path is greater than zero, then the pathway’s flow-dependent lead time should be limited within a
given time deadline.A free-flow pathway might have an arbitrarily long lead time, where a free-flow path is defined as a pathway
without flows on it.

The third task of this paper is to formulate the time deadline constraints and limit the flow-dependent lead time of any pathway
within a given deadline.
(4) Uncertainty of food demand

Fourth, the number of meals required by HTs is uncertain. For one thing, train tickets usually do not include meals. For another
thing, numerous passengers purchase their tickets on the day of departure or even a few minutes prior to departure. The final number
of passengers is unknown until minutes before departure. Thus, it is difficult to estimate demand based on the number of booked
passengers. The literature has discussed the uncertainty of airline food products (Ho and Leung, 2010). Goto et al. (2004) indicated
that the final number of passengers on a flight varies from the booked number of passengers on a flight by as much as 10% even one
hour prior to the departure.

The literature usually exploits the uncertain demands of supply chain networks from the perspective of spatial pricing equilibrium
problems (Nagurney and Aronson, 1989, 1999, chap.4). In spatial pricing equilibrium problems, market demand is associated with
the price using demand functions (Nagurney, 1999, chap.2,3). In supply chain network equilibrium problems, the spatial pricing
equilibrium condition is then used to account for consumer behaviors (Nagurney et al., 2002) in the long term. Nagurney et al. (2002)
proposed a supply chain network equilibrium problem consisting of manufacturers, retailers and consumers in which competition
occurs in a non-cooperative manner (Nash, 1950, 1951; Dafermos and Nagurney, 1987). The problem corresponds to the analogs of

Fig. 1. The catering service process in the CSHR supply chain (Wu et al., 2017a).
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“user-optimized” traffic-network equilibrium problems in previous studies (Dafermos and Nagurney, 1985; Sheffi, 1985; Patriksson,
1994; Nagurney, 1999). However, the problem cannot describe PFSC-CSHRs directly, because the selling and disposal prices in
CSHRs are fixed and independent from market demand in the short term (e.g. one day). Dong et al. (2004) developed a supply chain
model considering random demand whose probability follows a uniform distribution. Random variables that represent excess supply
(inventory) and excess demand (shortage) are proposed. A penalty is imposed on surpluses and shortages. The model is appropriate
for describing the supply chains used for expensive necessities, such as a blood bank network system (Nagurney et al., 2013, chap.2).
However, this formulation cannot apply to PFSC-CSHRs because cold chain meals are substitutable products. In CSHRs, although
there might be a surplus penalty cost, each unit of demand above the inventory level only leads to a loss of potential sales without any
penalty. Accordingly, the paper’s fourth task is to introduce a proper model to describe the uncertain food demand on each high-
speed train.

1.2. Contributions and objectives

In this paper, CSHRs is conducted in a regionalized manner. In each city, a DC is in charge of purchasing from FSs and providing
food products for local RSs. The PFSC-CSHRs problem is formulated as two system-optimized (arc flow-based/path flow-based)
optimization models to coordinate FSs, DCs and other stakeholders to maximize profit. We reformulate the optimization models as
variational inequality(VI) models since they provide a rigorous theoretical framework to explore the related mathematical properties
and economic marginal changes.This research can be regarded as an extension of supply chain analytics for perishable products
(Nagurney et al., 2013),which is founded on network economics (Nagurney et al., 1994; Nagurney, 1999).

The PFSC-CSHRs model developed in this paper is distinct from other studies on perishable food products in several ways. First,
time deadline constraints are considered in the VI models to ensure food security. Time deadline constraints with the flow-dependent
lead time are described as conditional statements that cannot be dualized directly. Therefore we propose a reformulation approach
based on the Dirac delta function to bring them into the VI models. Second, the on-demand sale mode on trains is formulated using
the Newsvendor model (Gallego and Moon, 1993) to describe uncertain food demand with fixed selling, purchase and disposal prices.
Third, the VI formulations result in an elegant computational procedure (Nagurney and Nagurney, 2012). In this paper,the ALD
algorithm is combined with the Euler algorithm to solve the proposed VI model.We compare the proposed models with other supply
chain models in A. To the best of our knowledge, we provide the first food supply chain models to include the deterioration, limited
lifespan, time-dependent lead time, and uncertain demand aspects of rail catering food products.

The remainder of this paper is organized as follows. Section 2 describes the network and other basic notations for the PFSC-CSHRs
problem. Section 3 introduces the decision variables, constraints and objective function. In Section 4, we develop the novel opti-
mization models for PFSC-CSHRs and derive corresponding VI formulations.We also provide qualitative properties of the VI models in
the section. Section 5 proposes an Euler algorithm combined with the ALD algorithm to solve the proposed VI models. In Section 6, a
sensitivity analysis is implemented to help rail companies develop reasonable food product pricing strategy. Median scale numerical
examples are provided to assess the proposed model and solution algorithm. A large scale numerical case study using 246 trains in the
Beijing-Shanghai high-speed corridor is applied to demonstrate the applicability of the proposed approach. Conclusions are drawn in
Section 7.

2. Network representation and basic notations

Rail catering operations are conducted in a regionalized manner. In each city that contains service RSs, DCs purchase requested
meals from cooperative FSs, pack those meals into refrigerated cars, and deliver them to the local RSs. Here, we consider an existing
distribution network, consisting of the set of FSs denoted by …FS FS FS, , , n1 2 FS and the set of DCs denoted by …DC DC DC, , , n1 2 DC, where nFS
is the number of FSs and nDC is the number of DCs. Meals are prepared in food supplier kitchens, and DCs operated by the rail
company order the meals from them. Next, we define a directed graph for the distribution network of PFSC-CSHRs. Let a directed
graphG G= N A( , ) be a collection of basic elements of the distribution network for PFSC-CSHRs, where = ∪ ∪ ∪N N N N NFS DC RS HT

is the set of nodes. Trains in NHT are presented by nodes of customers in the graph. = ∪ ∪ ∪A A A A APD DD DR RT is the set of links
expressing railway company’s activities between the nodes.

2.1. Definition of nodes

First, we let the first and second tiers of nodes as follows:

= …N FS FS FS{ , , , },nFS 1 2 FS

= …N DC DC DC{ , , , }.nDC 1 2 DC

At the DCs, the food products are stored and then packed into refrigerated cars. Meals are typically placed in the cars only a few
hours before the scheduled departure time of the catered train. To maintain microbial safety, freshly prepared meals must be kept at a
certain temperature and cannot be left unrefrigerated for longer than a certain period. Thus, the third tier of the networks is con-
sidered to be the following fictitious nodes of DCs.

′ = ′ ′ … ′N DC DC DC{ , , , }.nDC 1 2 DC
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The fourth tier of the network consists of the RSs. The number of RSs is assumed to be nRS, with the component RSs denoted by
…RS RS RS, , , n1 2 RS. We define

= …N RS RS RS{ , , , }.nRS 1 2 RS

RSs corresponding to DCd include …RS d RS d RS d( ), ( ), , ( )n d1 2 ( )RS (e.g. RS d( )2 is the second RS served by DCd). We define the set of
regional RSs corresponding to DCd as follows:

= …N d RS d RS d RS d( ) { ( ), ( ), , ( )}.n dRS 1 2 ( )RS

In railway management, a line is a possible traveling path of trains in a railway network, and a line plan is given by a set of lines
corresponding to their frequencies and halting patterns. A timetable is represented by a space-time graph for describing the arrival
and departure time of train ∈ NHTt HT at station ∈ NRSs RS. In this paper, we define a high-speed train pool NHT as a set of trains in a
timetable, where

= …N HT HT HT{ , , , }.nHT 1 2 HT

2.2. Definition of links

The links shown in graphG are four activities implemented by a railway company in CSHRs. The costs of the activities constitute
the total cost of the rail catering service.

At the first echelon, the meals are shipped from FSs to DCs via refrigerated cars operated by the rail company. We define the set of
links connecting the first and second tiers as

= = … = …A FS DC i n d n{( , )| 1,2, , , 1,2, , }.i d FSFD DC

The next set of links connects node DCd to corresponding node ′DCd, for = …d n1,2, , DC, which represents the storage links.

= ′ = …A DC DC d n{( , )| 1,2, , }.d dDD DC

We then define the set of links connecting the third and fourth tiers as follows. The definition implies that there is at most one DC
in a city (thus, “DC” is synonymous with “a city”, and each DC can only provide meals to its corresponding RSs in the city (e.g., the DC
in Beijing can serve Beijing south, Beijing north, Beijing west and Beijing station).

= ⋃ ′ ∈
= …

A NDC RS d RS d d{( , ( ))| ( ) ( )}.
d n

d s sDR
1,2, ,

RS
DC

A station-to-trip possible assignment matrix ψ s t( , ) is generated, where ∈ NRSs RS and ∈ NHTt HT:

= ⎧
⎨⎩

∀ = … = …ψ s t HT RS s n t n( , ) 1 if can be catered at station
0 otherwise

1,2, , , 1,2, ,t s
RS HT

(1)

where ψ s t( , ) can be generated based on the operating line plan and timetable (Peeters, 2003; Wu et al., 2017a):

(1) Only the trains whose travel times overlap the given mealtimes must be catered, and at least one-time catering for the trains is
provided before the mealtime.

(2) A train can be catered only at the stations at which it stops according to the line plan.
(3) If the trip overlaps with only the lunch mealtime, then the train will be catered before the lunch mealtime.
(4) If the trains trip overlaps with only the dinner mealtime, then the train will be catered before the dinner mealtime.
(5) If the journal time of the trip overlaps both the lunch mealtime and the dinner mealtime, the meal will be catered before the lunch

mealtime.
(6) If the train departs from its origin station during the lunch mealtime or the dinner mealtime, the train must be catered at its origin

station.

It is noted that, these principles may not be the case for overnight HTs that serve dinner and breakfast to passengers. In this paper,
we assume that overnight trains are not considered. The following framework can easily be extended when overnight trains are
involved.

Finally, the set of links representing possible station-to-trip assignments is as follows:

= ∈ × =A N NRS HT ψ s t{( , ) | ( , ) 1}.s tRT RS HT

2.3. Definition of pathways

Finally, we define a set of paths as ∈ Pp . For =t n1,2, HT, a set of associated paths is denoted Pt, where

⋃ =
= …

P P.
t n

t
1,2, , HT

For an original/destination pair, i.e., FTi and HTt , we define a set of path Pit between pair FT HT( , )i t , where
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⋃ = ∀ = …
= …

P P t n1,2, , .t
t n

it
1,2, ,

HT
FS

2.4. Illustrative example

Throughout this paper, we assume that the lunch mealtime is 11:00–13:00 and that the dinner mealtime is 16:00–20:00. Given a
timetable with four HTs and five RSs in Table 1, we have that (i) HT1 can be catered at RT2 and RT3; (ii) HT2 can be served at RT RT,1 3

and RT4; (iii) HT3 can be served at RT2 and RT3; and (iv) HT4 can be catered at RT1.
Fig. 2 displays a simple network consisting of nFS FSs, nDC DCs, nRS RSs and nHT HTs. The relationship among two FSs FS FS( , )1 2 ,

four DCs DC DC DC DC( , , , )1 2 3 4 , five RSs RS RS RS RS RS( , , , , )1 2 3 4 5 and the four HTs HT HT HT HT( , , , )1 2 3 4 is shown in Table 1. For example, P1

contains paths → → ′ → → → → ′ → → → → ′ → → → →FS DC DC RS HT FS DC DC RS HT FS DC DC RS HT FS DC, , ,1 1 1 2 1 2 1 1 2 1 1 2 2 3 1 2 2
′ → →DC RS HT2 3 1 and so forth. P11 contains paths →FS1 → ′ → →DC DC RS HT1 1 2 1 and →FS1 → ′ → →DC DC RS HT2 2 3 1. The four

activities implemented by a rail company are also shown in the figure:

(1) AFD: The railway company transports the food products from food suppliers to operating distribution centers.
(2) ADD: The railway company stores the food products in operating distribution centers.
(3) ADR: The railway company delivers the food products to service rail stations.
(4) ART: The railway company caters high-speed trains dwelling at the station.

2.5. Basic notations

Table 2 lists all indexes, sets and parameters used in the rest of this article.

3. Problem statement

The PFSC-CSHRs problem aims to provide the optimal levels of procurement, consolidation, transportation and retail under the
flow-balance and time deadline constraints, given the demand distribution at the various trains. Decision variables are listed in
Section 3.1. Flow balance constraints will be introduced in Section 3.2. The essential time deadline constraints will be addressed in

Table 1
Illustrative example of a train timetable.

RT1 RT2 RT3 RT4 RT5

HT1 – 8:20 10:00 11:40 13:20
HT2 7:30 – 9:10 10:50 12:30
HT3 – 13:20 15:30 16:40 17:30
HT4 12:20 – 14:00 15:40 17:40

Note: 11:00–13:00 is the time interval for lunch; 16:00–20:00 is the time interval for supper. Boldtypes indicate possible time and stations of catering service for trains
in the timetable.

Fig. 2. Illustrative network of PFSC-CSHRs and input data.
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Section 3.3. The Newsvendor-based objective function to express the cost and revenue under uncertain demand will be proposed in
Section 3.4.

3.1. Decision variables

To assign product flows on a given network for PFSC-CSHRs, a rail company’s managers must make the decisions shown in
Table 3.

Table 2
Sets, indexes and parameters used to express PFSC-CSHRs problem.

Sets Description

NFS Set of outsourcing food suppliers
NDC Set of distribution centers
′NDC Set of fictitious distribution centers

NRS Set of rail stations
NHT Set of high-speed trains in timetable
N Set of nodes on the supply chain network, where = ∪ ∪ ∪N N N N NFS DC RS HT
AFD Set of links connecting food suppliers to distribution centers
ADD Set of links connecting distribution centers to fictitious distribution centers
ADR Set of links connecting distribution centers to rail stations
ART Set of links connecting RSs to high-speed trains
A Set of links on the supply chain network, where = ∪ ∪ ∪A A A A APD DD DR RT
P Set of paths of the network
Pt Set of paths associated with train HTt , where = …t n1,2, , HT
Pit Set of paths between supplier/train pair FT HT( , )i t , where = … = …i n t n1,2, , , 1,2, ,FS HT

̂P Restricted set of paths on the network

̂Pt Restricted set of paths associated with train HTt , where = …t n1,2, , HT

̂Pit Restricted set of paths between food supplier/train pair FT HT( , )i t , where = … = …i n t n1,2, , , 1,2, ,FS HT

Indexes Description

= …i n1,2, , FS Indexes of an outsourcing food supplier
= …d n1,2, , DC Indexes of a distribution center
= …s n1,2, , RS Indexes of a rail station
= …t n1,2, , HR Indexes of a high-speed train

i t( , ) Abbr. FT HT( , )i t . Indexes of a food supplier/train pair
∈ Aa Indexes of a link/arc
∈ Pp Indexes of a path, and we use =δ 1ap to indicate link/arc a on path p

t p( ) The index of the train served by path p
s p( ) The index of the rail station through which path p passes

Parameters Description

αa Probability of each unit not being contaminated through link ∈ Aa
μp The multiplier of the throughput on path ∈ Pp

δap =δ 1ap indicates link/arc a is contained in path =p δ; 0ap otherwise, where ∈ ∈A Pa p,
αap An auxiliary multiplier, where ∈ ∈A Pa p,

t t f, ( )a a a
0 Free-flow and flow-dependent time impendence associated with link ∈ Aa

θ β,a a Two parameters to be calibrated in flow-dependent time impendence function t f( )a a , where ∈ Aa
Capa Capacity of vehicles (Refrigerated cars ∈ ∪A Aa FD DS, forklift ∈ Aa DD, battery truck ∈ Aa RT)
FCapa Capacity of the distribution center, when ∈ Aa DD; Capacity of the rail station when ∈ Aa RT

T T x, ( )p p
0 Free-flow and flow-dependent time impedance of path p (from a food supplier to a train), where ∈ Pp

FCa Fixed cost associated with link a, where ∈ Aa
VCa Variable cost associated with link a, where ∈ Aa
τ Lifespan of food products
κs Unit selling price for one food product fixed by the railway administrator
κp Unit purchase price for one food product fixed by the railway administrator

κd Unit distress price for one food product fixed by the railway administrator

P w( )t Probability density function of demand on train t, where = …t n1,2, , HT

P w( )t Cumulative distribution function of demand on train t, where = …t n1,2, , HT

L s t( , ) Traveling time of train HTt from RSs to its destination, where = … = …s n t n1,2, , , 1,2, ,RS HT

DR κ( )t s Dining rate of train HTt when the sale price of a single food product is κs, where = …t n1,2, , HT
Dt The number of passengers on train HTt during the lunch or dinner mealtime, where = …t n1,2, , HT
Ω The upper bound of the order quantities for each passenger
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3.2. Flow balance constraints in supply chain analytics for perishable products

In this section, we recall the general flow balance constraints used in supply chain analytics for perishable products. Food
products are a type of perishable product that deteriorates over time. Because of the perishability of the food products, a quality test is
usually implemented after each activity. If a meal unit turns out to be contaminated, that unit will be discarded at the corresponding
successor node. In a fresh food chain, the expected quantity surviving at the end of an activity is time-dependent, and the temperature
and other environmental conditions associated with each link are given and fixed (Yu and Nagurney, 2013) because of the continuous
change in the quality of fresh food.

However, PFSC-CSHRs focus on the finished cold chain meals, whose quality safety is guaranteed by their lifespans. Thus, the
deterioration of finished food products is not caused by quality degradation but by incidental changes in environmental conditions,
equipment failures or staff mishandling. Thus, we assume that each unit on link ∈ Aa has a statistical probability of >α ( 0)a of
surviving after finishing the corresponding activities. We define fa as the initial flow of product on link a, and ′fa denotes the final flow
on link a, i.e., the flow that reaches the successor node of the link after deterioration has occurred. Therefore, following Yu and
Nagurney (2013), we have

− ′ = − ∀ ∈ Af f α f a(1 )a a a a (2)

Furthermore, let μp be the multiplier of the throughput on path p, which is defined as the product of all αa on the links that
comprise that path:

∏= ∀ ∈ ∀ = … = …
∈

Pμ α p i n t n, 1,2, , , 1,2, ,p
a p

a it FS HT
(3)

where we assume that >μ 0p . The demand for train = …HR t n, 1,2, ,t HT, is equal to the sum of all perishable flows on paths in Pt .
Because of ∪ == … P Pi n it t1,2, , FS , we have

∑ ∑ = ∀ = …
= … ∈

x μ v t n1,2, ,
Pi n p

p p t
1,2, ,

HT
itFS (4)

We define the multiplier αap, which is the product of the multipliers of the links on path p that precede link a in the path, as
follows:

∏
=
⎧

⎨
⎩

′ ≺ ≠ ∅

′ ≺ = ∅
∀ ∈ ∈′≺ A Pα

δ α a a

δ a a
a p

if { }

if { }
,ap

ap
a a

a p

ap p

{ }p

(5)

where ′ ≺a a{ }p indicates the set of the links preceding link a in path p and∅ denotes the null set. Moreover, δap is defined as equal to 1
if link a is contained in path p, and 0 otherwise. The link flow, fa, and the path flows, xp, are connected by the following equations:

∑ ∑ ∑= ∀ ∈
= … = … ∈

Af x α a
P

a
i n t n p

p ap
1,2, , 1,2, , itFS HT (6)

For additional details about Eqs. (2)–(6), see Nagurney et al. (2013).

3.3. Flow-dependent lead time and time deadline constraints

The PFSC-CSHRs problem is formulated in a one-day cyclic manner, in which the planning horizon (i.e., one day) spans the
activities of procurement, storage, distribution and station-to-train assignment.

3.3.1. Free-flow lead time
Associated with each link (activity) ∈ Aa , there is a free-flow time impedance ta

0. The free-flow lead time of a path from an FS to
an accessible train’s destination can then be calculated by

∑+ = + ∀ ∈
∈

PT L s p t p t δ L s p t p p( ( ), ( )) ( ( ), ( ))
A

p
a

a ap
0 0

(7)

where Tp
0 the free-flow time impedance of path p. Furthermore, RSs p( ) is the unique station associated with path p, and HTt p( ) is the

unique train associated with path p. Then, L s p t p( ( ), ( )) implies the travel time of train HTt p( ) from RSs p( ) to HTt p( )’s destination. It

Table 3
Decision variables.

Variables Descriptions

vt Projected inventory level for meals for train HTt , where = …t n1,2, , HT and = … …v v( , , )t
xp Product flows on path = … …p x x, ( , , )p , where ∈ Pp
fa Product flows on link/arc = … …a f f, ( , , )a , where ∈ Aa
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should be noted that the time impedance of path p is different from the lead time of path p in this paper.
Next,we introduce notations to express the restricted set ̂P of paths whose free-flow lead time is less than a given time deadline.
Notation: Restricted set ̂P is used to define appropriate path definitions. That is,

̂+ ⩽ ⇒ ∈ ∀ ∈ ∀ = … = …P PT L s p t p τ p p i n t n( ( ), ( )) , , 1,2, , , 1,2, ,p it
0

FS HT

where ̂ ̂∪ == … P Pi n it t1,2, , FS and ̂ ̂∪ == … P Pt n t1,2, , HT .
The total number of passengers served by train = …HT t n, 1,2, ,t HT, is denoted by Dt . Then, xp is assumed bounded, because the

number of food products required by each passenger is also finite. Then, we can define

̂
̂

⎧
⎨
⎩

⩽ ⩽ × ∀ ∈

= ∀ ∉

P

P

x D p

x p

0 Ω

0
p t

p (8)

where Ω is the upper bound of the order quantities of a passenger.

3.3.2. Time-dependent lead time
Furthermore, we allow t f( )a a to denote the flow-dependent time impedance function incurred on link a. One should calibrate the

functional forms of t f( )a a with historical data. The function developed by the US Bureau of Public Roads (BPR) has been employed in
many freight transportation studies because it reflects the congestion effect in an oversaturated transportation system by involving
the volume/capacity ratio (Federgruen et al., 1986; Yamada et al., 2009; Meng and Wang, 2011). In this paper, we assume that the
transportation, storage and handling time function in PFSC-CSHRs has a BPR form

⎜ ⎟= ⎡

⎣
⎢ + ⎛

⎝
⎞
⎠

⎤

⎦
⎥ ∀ ∈ At f t θ

f
FCap

a( ) 1a a a a
a

a

β
0

a

(9)

The equations indicate that we should consider the congestion effect of transportation links. If more food products are loaded to a
refrigerated truck, the time of loading will be extended, and loading time is a part of the transportation time. The equations also
indicate we consider the congestion effect in facilities, i.e., DCs and RSs (storage and assignment links) because of limited availability
of skilled workers, redundant trimming and equipment turnover.

Then, we define the flow-dependent lead time for each path

∑+ = + ∀ ∈
∈

PT x L s p t p t f δ L s p t p p( ) ( ( ), ( )) ( ) ( ( ), ( ))
A

p
a

a a ap
(10)

where T x( )p is the flow-dependent time impedance of path p.

3.3.3. Failure of generalized side constraints to express time deadline constraints
The time deadline constraints considering the time-dependent lead time of pathways cannot be described directly as generalized

side constraints discussed in Larsson and Patriksson (1995, 1999), such as

̂+ ⩽ ∀ ∈ PT x L s p t p τ p( ) ( ( ), ( ))p (11)

Fig. 3 illustrates two paths p1 (A-B-C) and p2 (A-B-D) on a simple network. We assume the following flow-dependent time
impedance functions = = + =t f f t f f t f f( ) , ( ) 9 , ( )a a a a a a a a a1 1 1 2 2 2 3 3 3 and =τ 10. We also assume that the market price in node C is 0.5 Yuan
per unit and that the market price in node D is 1 Yuan per unit. We do not consider other costs and let

= =L s p t p L s p t p( ( ), ( )) ( ( ), ( )) 01 1 2 2 . The side constraints (11) leads to =x 0p1 and =x 1p2 because T x( )p1 is bounded. That is,

= + + = + + = =T x f f τ( ) 9 1 9 1 10p a a1 1 2

The total income is only 1 Yuan, which is unreasonable.

= + = + = <T x f f τ( ) 1 1 2p a a2 1 3

However, decision makers can make =x 5p2

= + = + = =T x f f τ( ) 5 5 10p a a2 1 3

Now, the lead time of p1 is calculated as follows

Fig. 3. Illustrative example to indicate the inapplicability of conventional generalized side constraints.
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= + + = >T x f f τ( ) 9 14p a a1 1 2

Because =x 0p1 , which implies a free-flow path, it is not restricted by the given time deadline =τ 10.

3.3.4. Reformulation of time deadline constraints based on the Dirac delta function
Time deadline constraints in PFSC-CSHRs should be defined as the following conditional statements.

⎧
⎨⎩

+ ⩽ >
+ ⩽ =

∀ ∈ P
T x L s p t p τ x
T x L s p t p M x

p
( ) ( ( ), ( )) if 0
( ) ( ( ), ( )) if 0

p p

p p (12)

where M is a large enough positive number.
The conditional statement requires that if path flow =x 0p , we will not consider the deadline. Otherwise, we should restrict the

time-dependent lead time within τ , which is described as a piecewise function. In the field of mathematical optimization, the con-
ditional statements can be reformulated as a constraint with binary 0–1 variables. However, the feasible set of an optimization model
with binary variables becomes non-convex. Then the proposed model becomes a non-linear integer programming model which is
hard to be solved and cannot be described using VI formulations (Nagurney, 1999).To avoid the discontinuity, this paper approx-
imates the constraints (12) using an expression based on the Dirac delta function.

The Dirac delta function is thought of as an approximation of the “infinitely high/thin” impulse function and is usually con-
structed by Gaussian distributions centered at the origin with variance tending to zero. Let be a sufficiently small number; then, we
define a function as follows:

̂= ∀ ∈ →− Pδ x
σ π

e p σ( ) 1 where 0p

x

σ
p
2

2

When the input data of our problem are well defined, we use following approximate time deadline constraints:

̂+ ⩽ + ∀ ∈ PT x L s p t p τ δ x p( ) ( ( ), ( )) ( )p p (13)

The time deadline constraints now become generalized side constraints that can be addressed by Lagrangian dualization. To
illustrate the effectiveness of the Dirac delta function,we use MATLAB 2015b to test how δ x( )p changes with xp, see Table 4.

(1) When we assume = × −σ 1 10 3, then =δ (0) 399 and =δ (1) 0, which implies the following conditional statement:

⎧
⎨⎩

+ ⩽ >
+ ⩽ + =

∀ ∈ P
T x L s p t p τ x
T x L s p t p τ x

p
( ) ( ( ), ( )) if 1
( ) ( ( ), ( )) 399 if 0

p p

p p

(2) When we assume = × −σ 1 10 4, then =δ (0) 3989 and =δ (1) 0, which implies the following conditional statement:

⎧
⎨⎩

+ ⩽ ⩾
+ ⩽ + =

∀ ∈ P
T x L s p t p τ x
T x L s p t p τ x

p
( ) ( ( ), ( )) if 1
( ) ( ( ), ( )) 3989 if 0

p p

p p

(3) When we assume = × −σ 1 10 5, then =δ (0) 39894 and =δ (1) 0, which implies the following conditional statement:

⎧
⎨⎩

+ ⩽ ⩾
+ ⩽ + =

∀ ∈ P
T x L s p t p τ x
T x L s p t p τ x

p
( ) ( ( ), ( )) if 0.001
( ) ( ( ), ( )) 39894 if 0

p p

p p

The above trials show that if = × −σ 1 10 5 and our time deadline is 1440min (one day), for all paths with =x 0p , the time
deadline constraints is + ⩽ + =T x L s p t p( ) ( ( ), ( )) 1440 39894 41334p ; for all paths with ⩾x 1p , the time deadline constraints is

+ ≤T x L s p t p( ) ( ( ), ( )) 1440p . The penalty 39894min (approximately 28 days) is large enough for the relaxation. Empirically,
= × −σ 1 10 5 is small enough to express the time deadline constraints.
The advantage of the above Dirac delta function-based reformulation is that constraint (12) is continuous and derivative. Fur-

thermore, it even can even simplify our proposed VI formulation. When →σ 0, we propose the following assumption.

Table 4
Dirac delta function value varying with path flows and the parameter.

σ =x 0p =x 0.001p =x 0.002p =x 0.003p =x 0.004p =x 0.005p ⩾x 0.01p

= × −σ 1 10 3 399 242 54 4 0.13 0.0015 0

= × −σ 1 10 4 3989 × −7 10 19 × −6 10 84 × −1.5 10 192 0 0 0

= × −σ 1 10 5 39894 0 0 0 0 0 0
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Assumption 3.1.

≈ ∀ ∈ P
dδ x

dx
p

( )
0p

p (14)

The assumption is empirically reasonable from the perspective of logistics engineering. Assume that = × −σ 1 10 5, then we have

⎧

⎨

⎪
⎪

⎩
⎪
⎪

≡ ⩾ ×

⩾ ∈ ×

= =

∀ ∈

−

− P

x

x

x

p

0 if 1 10

0 if (0,1 10 )

0 if 0

.

dδ x
dx p

dδ x
dx p

dδ x
dx p

( ) 3

( ) 3

( )

p

p

p

p

p

p

This implies that if the unit variation of the path flows is greater than × −1 10 3, the assumption is never violated.

3.4. Objective function

The objective function of PSFC-CSHRs is to maximize the rail company’s profit, which considers sales revenue, purchasing cost,
storage cost, handling cost, transportation cost, discarding cost and disposal cost.

3.4.1. Operational cost function
Associated with each link of the proposed network is a unit operational cost function c f( )a a . Table 5 displays the implications of

c f( )a a that represent the cost of operation for the four activities in graph G (see Fig. 2).
In this paper, the strictly increasing function ≈ +c f V f( ) ( )a a

FC
Cap a

a

a
is used as the approximate unit operational cost on link ∈ Aa .

Next, the total operational cost on link a is denoted by

̂ = × ≈ × + × ∀ ∈ Ac f c f f FC
f

Cap
V f f a( ) ( ) ( )a a a a a a

a

a
a a (15)

where = ×V f VC f( )a a a is the flow-dependent variable cost function.
Also associated with each link of the network is a unit discarding cost function z f( )a a , which represents the cost of products

damaged in transit. The total discarding cost on link a is denoted by

̂ = × ∀ ∈ Az f z f a( )a a a a (16)

where = − × −z κ κ α( ) (1 )a
p d

a implies the cost of discarding −α(1 )a meals, and −κ κp d is the amount of loss attributable to the low-price
treatment.

3.4.2. Sale revenue function
Because meals are sold in a train’s dining compartment on trains, we are interested in measuring how many times a selling event

occurs in the mealtime interval of lunch/dinner at a counter. In this paper, the demand on each train = …t n1,2, , HT is assumed to be a
random variable following any known continuous probability distribution satisfying:

1. P >x( ) 0t , for all ⩾x 0.
2. The expectation value of the probability distribution is defined as

= × ∀ = …λ D DR κ t n( ) 1,2, ,t t t
s

HT (17)

where ⩽DR κ( ) Ωt
s is a price-dependent dining rate on each train acquired from our questionnaire investigation. If >DR κ( ) 1t

s , it
implies that on average each person buys more than one food products on the train. Conversely, if <DR κ( ) 1t

s , it implies that on
average each person buys less than one food products on the train.

The cumulative distribution function of dt is denoted by

P∫= ∀ = …P W w dw t n( ) ( ) 1,2, ,t
W

t0 HT (18)

Based on the conventional Newsvendor model (Gallego and Moon, 1993), when the projected inventory level at train HTt is vt , the

Table 5
Meaning of c f( )a a on links of different echelons.

c f( )a a ∈ Aa FD Transportation cost from food suppliers to distribution centers
∈ Aa DD Inventory cost in distribution centers
∈ Aa DR Transportation cost from distribution centers to rail stations
∈ Aa RT Handling cost to deliver the food products onto trains
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expected sales revenues of the shortage −E v( ( ))t and the surplus +E v( ( ))t (overstock wastes) are given by

P∫= − ∀ = …− ∞
E v κ κ v w dw t n( ) ( ) ( ) 1,2, ,t v

s p
t t HT

t (19)

P∫= − + − − ∀ = …+E v κ κ w κ κ v w w dw t n( ) [( ) ( )( )] ( ) 1,2, ,t
v s p d p

t t0 HT
t

(20)

4. Model formulation

In this section, we introduce the models for PFSC-CSHRs from the perspectives of the mathematical optimization model as well as
VI models. We propose the path flow-based and arc flow-based optimization models and reformulate them as two VI models. The VI
formulations provide a framework to enable the exploration of the qualitative properties. The path flow-based VI formulations are
important for rail catering management because they express marginal contribution of an additional path flow.

4.1. Optimization models for PFSC-CSHRs

The total profit maximization objective faced by the rail company includes the total cost of operating the various activities
(purchasing, storage and distribution), the total discarding cost of waste/loss over the links, and the expected sales revenue con-
sidering the overstock waste. This optimization problem can be expressed as.

(Model 1)

∑ ∑+ − +
= …

+ −

∈

E v E v Z x C xmaximize [ ( ) ( )] [ ( ) ( )]
Pt n

t t
p

p p
1,2, , HT

subject to Eqs. (4), (8) and (13).
The operational cost C x( )p and the discarding cost Z x( )p are derived from C x( )p and Z x( )p :

 = × = × ∀ ∈ PC x C x x Z x Z x x p( ) ( ) , ( ) ( )p p p p p p (21)

C x( )p and C x( )p are in turn expressed as follows:

∑ ∑≡ ≡ ∀ ∈
∈ ∈

PC x c f α Z x z α p( ) ( ) , ( )
A A

p
a

a a ap p
a

a ap
(22)

Model 1 is then equivalent to the following model in terms of arc flows.
(Model 2)

̂ ̂∑ ∑+ − +
= …

+ −

∈

E v E v z f c fmaximize [ ( ) ( )] [ ( ) ( )]
At n

t t
a

a a a a
1,2, , HT

subject to Eqs. (4), (6), (8) and (13).

4.2. Preliminary proofs

To reformulate above two optimization models as VI models, we present some preliminaries that enable us to express the partial
derivatives of the expected sale revenue and the total costs in terms of path flow variables.

4.2.1. Derivatives of sale revenue function
First, we demonstrate some preliminary proofs that enable us to use the partial derivatives of the expected sale revenue in terms of

path flow variables

∂ +
∂

= ⎡
⎣⎢
∂
∂

+ ∂
∂

⎤
⎦⎥
× ∂
∂

∀ ∈ ∀ = …
− + − +

PE v E v
x

E v
v

E v
v

v
x

p t n[ ( ) ( )] ( ) ( ) , 1,2, ,t t

p

t

t

t

t

t

p
t HT

Then, for the case of shortage, for all = …t n1,2, , HT, we have

P

P

P

P∫

=

= − +

= − − − −

∫

∫

∂
∂

∂ −

∂

∞ ∂ − −

∂

−
∞

κ κ w dw v

κ κ P v κ κ v v

( ) ( )

( )(1 ( )) ( ) ( )

E v
v

κ κ v w dw

v

v
s p

t t
κ κ w dw

v
s p

t t
s p

t t t

( ) ( ) ( )

(1 ( ) ( ) )

t
t

vt
s p t t

t

t

vt s p t

t
0

Similarly, for the case of surplus, for all = …t n1,2, , HT, we have
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P

P P

P P P

P

∫

∫ ∫
∫

= − − − −

= − + − − −

= − + − − − − −

= − − −

∂
∂

∂
∂

∂
∂

+
κ κ w κ κ v w w dw

κ κ κ κ w w dw v κ κ w dw

κ κ κ κ v v κ κ w dw κ κ v v

κ κ v v κ κ P v

[( ) ( )( )] ( )

[ [( ) ( )] ( ) ( ) ( ) ]

[( ) ( )] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

E v
v v

v s p p d
t t

v
v s p p d

t t
v p d

t

s p p d
t t t

v p d
t

p d
t t t

s p
t t t

p d
t t

( )
0

0 0

0

t
t t

t

t
t t

t

Then, for all = …t n1,2, , HT we have

+ = − − − −

= − − − + −
= − − −

∂
∂

∂
∂

− +
κ κ P v κ κ P v

κ κ κ κ κ κ P v
κ κ κ κ P v

( )(1 ( )) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

E v
v

E v
v

s p
t t

p d
t t

s p p d s p
t t

s p s d
t t

( ) ( )t
t

t
t

Furthermore, we have

∑ ∑∂
∂

= ∂
∂

= ∀ ∈ ∀ = …
= … ∈

Pv
x x

x μ μ p t n, 1,2, ,
P

t

p p i n q
q q p t

1,2, ,
HT

itFS

By combining the above two equations, we can easily prove the concavity of the function +− +E v E v( ) ( )t t .

Lemma 4.1. If >κ κs d (realistic assumption), then sales revenue function +− +E v E v( ) ( )t t is concave.

Proof. We already know

∑∂ +
∂

= − − −
⎛

⎝
⎜

⎞

⎠
⎟

− +

∈

E v E v
x

κ κ μ κ κ P x μ μ[ ( ) ( )] ( ) ( )
P

t t

p

s p
p

s d
t

p
p p p

t

If > >κ κ μ, 0s d
p and P ∑ >∈ x μ( ) 0Pt p p pt

P ∑∂ +
∂

= − −
⎛

⎝
⎜

⎞

⎠
⎟ <

− +

∈

E v E v
x

κ κ μ x μ[ ( ) ( )] ( ) 0
P

t t

p

s d
p t

p
p p

2

2
2

t

Thus, the function +− +E v E v( ) ( )t t is concave. □

4.2.2. Derivatives of operational cost function
Second, we introduce a lemma to connect the partial derivatives of the path operational cost, and the path discarding cost to their

related path/link flows.

Lemma 4.2. The partial derivatives of the total operational cost and the total discarding cost with respect to the corresponding path flow are
given, respectively, by


̂∑

∑ ∑ ⎜ ⎟

∂

∂
= = ⎛

⎝
+
∂
∂

⎞
⎠

∀ ∈∈

∈ ∈

P

C x

x
c f

f
α c f

c f
f

f α p

( )
( )

( )
( )P

A A

q
q

p a

a a

a
ap

a
a a

a a

a
a ap

(23)


̂∑

∑ ∑
∂

∂
= = ∀ ∈∈

∈ ∈

P

Z x

x
z f

f
α z α p

( )
( )P

A A

q
q

p a

a a

a
ap

a
a ap

(24)

Proof. Eqs. (23) and (24) parallels the case of a blood supply chain system; see (Nagurney et al., 2013, chap.2). □

4.2.3. Derivatives of time deadline constraints
Third, we prove a theorem to connect the partial derivatives of the time deadline constraints.

Theorem 4.1. The partial derivatives of the time deadline constraints with respect to the corresponding path flow are given by

∑∂ + − −
∂

=
∂
∂

∀ ∈
∈

P
T x L s q t q τ δ x

x
t f

f
α δ p q

{ ( ) ( ( ), ( )) ( )} ( )
,

A

q q

p a

a a

a
ap ap

(25)

Proof. Because τ and L s q t q( ( ), ( )) are constant, and Assumption 3.1:

̂≈ ∀ ∈ P
dδ x

dx
p

( )
0p

p

We know that
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∂ + − −
∂

=
∂
∂

T x L s q t q τ δ x
x

T x
x

{ ( ) ( ( ), ( )) ( )} ( )q q

p

q

p

Then, we have

∑ ∑∂
∂

=
∂∑

∂
=

∂
∂

=
∂
∂

∂
∂

∀ ∈∈

∈ ∈

P
T x

x
t f δ
x

t f
x

δ
t f

f
f
x

δ p q
( ) ( ) ( ) ( )

,A

A A

q

p

a a a aq

p a

a a

p
aq

a

a a

a

a

p
aq

∂
∂

=
∂∑

∂
= ∀ ∈ ∈∈ A P

f
x

x α

x
α a p,Pa

p

p p ap

p
ap

Finally, we have

∑∂
∂

=
∂
∂

∀ ∈
∈

P
T x

x
t f

f
α δ p q

( ) ( )
,

A

q

p a

a a

a
ap aq

Eq. (25) is proved. □

4.3. Variational inequality models for PFSC-CSHRs

In this subsection, we attempt to transform the optimization models into VI formulations. A path flow-based VI-Model is used to
prove the existence property and an arc flow-based VI model is used to prove uniqueness property of optimal link flows under given
Lagrangian multipliers. Here,the Lagrange multiplier γq is associated with a time deadline constraint (13) for each link path q. We
group these Lagrange multipliers into the vector γ .

Next,we derive the VI models in terms of path flows and link flows. For simplicity, we assume that each passenger buys at most Ω
food products during his/her journey. Let K denote the feasible set

̂= ⩽ ⩽ × ∀ ∈ ⩾K Px x D p γ{ |0 Ω ; 0}p p t (26)

Then, we have the following theorem.

Theorem 4.2.Model 1, subject to its constraints, is equivalent to the VI to determine the vector of optimal path flows and the vector of optimal
Lagrange multipliers for the time deadline constraints: ∈∗ ∗ Kx γ( , ) .

(VI-Model 1)

 

̂ ̂

̂

∑ ∑ ∑

∑

⎧
⎨
⎩

+ − − + −
⎛

⎝
⎜

⎞

⎠
⎟ +

⎫
⎬
⎭
× −

+ + − − × − ⩾ ∀ ∈

∈

∂∑

∂

∂∑

∂
∈

∗

∈

∗ ∂
∂

∗

∈

∗ ∗ ∗

∈
∗

∈
∗ ∗

K

κ κ μ κ κ P x μ μ γ x x

δ x τ T x L s q t q γ γ x γ

( ) ( ) [ ]

[ ( ) ( ) ( ( ), ( ))] [ ] 0 ( , )

P P P

P

p

C x

x

Z x

x
s p

p
s d

t
p

p p p
q

q
T x

x p p

q
q q q q

( ) ( ) ( )P Pq q

p

q P

p
t

q

p

(27)

VI-Model 1 can be rewritten in terms of link flows to determine the vector of optimal link flows, the vector of inventory levels for trains and the
vector of the Lagrange multipliers for the time deadline constraints.

(VI-Model 2)
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Proof. The convexity of C x Z x( ), ( )p p and T x( )q holds for all paths since c f z f( ), ( )a a a a and t f( )a a are assumed to be convex for all link
∈ Aa . Based on Lemma 4.1, −∑ += …

+ −E v E v[ ( ) ( )]t n t t1,2, , HT
is also convex.

Since the objective function of VI-Model 1/Model 1 is convex and the feasible set K is convex and closed (because Lagrangian
multipliers are also bounded), then VI-Model 1 follows from the theory of variational inequalities (see Nagurney, 1999). It implies
that a solution of VI-Model 1 is the solution of the optimization Model 1.

As for the proof of VI-Model 2, now that VI-Model 1 is established, we can use the equivalence between partial derivatives of the
cost/lead time on paths and partial derivatives of cost/time impendence on links from Lemma 4.2 and Theorem 4.1. We also can use
the equivalence between partial derivatives of the revenue function on paths and partial derivatives of revenue on order quantities of
trains from Lemma 4.1. Based on Eqs. (4) and (6), Lemmas 4.1 and 4.2, as well as Theorem 4.1, we can rewrite the formulation of VI-
Model 1 in terms of VI-Model 2. Thus, the second part of Theorem 4.2 are proved. □
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4.3.1. Existence under continuous and compact
VI-Model 1 can be put into a standard form of VI (see Nagurney, 1999) as follows: determine K∈∗X , such that

K〈 − 〉 ⩾ ∀ ∈∗X X X xF( ), 0 (29)

where 〈 〉·,· denotes the inner product in n-dimensional Euclidean space. We define the feasible set asK = K , the vector =X x γ( , ) and
the vector ≡X F X F XF( ) ( ( ), ( ))1 2 , where

̂= ∀ ∈ PF X F X p( ) ( ( ) | )p1 1 (30)

̂= ∀ ∈ PF X F X q( ) ( ( ) | )q2 2 (31)
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∈

F X δ x τ t f δ L s q t q( ) ( ) ( ) ( ( ), ( ))
A

q q
a

a a aq2
(33)

Theorem 4.3 (Existence under continuous and compact). There exists at least one solution to VI-Model 1 (also to Model 1).

Proof. We can assume the shadow prices of time deadline constraints to be bounded (although it might be large). Thus,

K ̂≡ = ⩽ ⩽ × ⩽ ⩽ ∀ ∈ ∀ = …K Px x D γ M p t n{ |0 Ω ,0 , , 1,2, , }p p t p t HT (34)

is a compact set. Further, F x( ) is continuous onK . Based on Brouwers fixed-point theorem, VI-Model 1 admits at least one solution
(Nagurney, 1999). □

4.3.2. Uniqueness given Lagrangian multipliers
Given Lagrangian multipliers, the problem becomes similar to the general food supply chain problems. Then, it is reasonable that

we have uniqueness of link flows rather than path flows (Nagurney et al., 2013, chap.4) as shown in the following theorem.

Theorem 4.4 (Uniqueness given Lagrangian multipliers). Given Lagrangian multipliers ∗γ , the link flow pattern ∗f and the optimal
demand pattern ∗v in VI-Model 2 are unique.

Proof. Given Lagrangian multipliers ⩾∗γ 0 for all time deadline constraints, then we have following standard VI model based on VI-
Model 2 with unique solution: determine K∈∗X 1, such that

F K〈 − 〉 ⩾ ∀ ∈∗X X X x( ), 0 1 (35)

We define the feasible set as K = f v{ , |satisfy1 Eqs. (4) and (6)}, the vector =X f v( , ) and the vector F F F≡X X X( ) ( ( ), ( ))1 2 , where

F F= ∀ ∈ AX X a( ) ( ( ) | )a1 1 (36)

F F= ∀ = …X X t n( ) ( ( ) | 1,2, , )t2 2 HT (37)
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(38)

F = − − + −X κ κ κ κ P v( ) ( ) ( ) ( )t
s p s d

t t2 (39)

If function F X( ) is strictly monotone on K1, then the solution to variational inequality F K〈 − 〉 ⩾ ∀ ∈∗X X X x( ), 0 1 is unique;
that is, given Lagrangian multipliers, the link flow pattern and the optimal demand pattern are uniqueness. □

However, just like side constrained traffic equilibrium problems (Larsson and Patriksson, 1999), the values of the Lagrangian
multipliers are not necessarily uniquely determined without further assumptions. The values of the Lagrangian multipliers is
meaningful to imply the shadow prices for time deadline constraints. These prices can be interpreted as the marginal profit of relaxing
the per unit minute of the time deadline.

5. Solution algorithm

In this section, we introduce an iterative scheme to solve the VI models. The VI formulations result in an elegant computational
procedure (iterative scheme) based on the Euler algorithm (Nagurney et al., 2013). In this section, we provide an implementable
version of the improved Euler algorithm combined with an augmented Lagrangian dual (ALD) algorithm (Larsson and Patriksson,
1995).
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5.1. Euler algorithm with normal pricing strategy

The Euler algorithm is generally induced as a general iterative scheme for solving VI models. Dupuis and Nagurney (1993) applied
the Euler algorithm to solve a projected dynamic system that is equivalent to the VI model. Based on Everett’s Theorem, it is natural
to exploit a price-directive solution strategy based on the basic Euler iterative scheme (Larsson and Patriksson, 1999).

5.1.1. Explicit formulae for the Euler algorithm applied to VI-Model 1
In iterations of the Euler algorithm for solving VI-Model 1, we should compute the following closed-form expressions for the food

product path flows at iteration n of the Euler algorithm:

(1) For paths whose free-flow lead time satisfies time deadline constraints, we have

̂= − × ∀ ∈+ Px x a F x pmax{0, ( ) }p
n

p
n

p
n n

p
1

1 (40)

where ap
n is the step size used in the nth iterations.

(2) For other paths, we have

̂= = ∀ ∉+ Px x p0p
τ

p
τ1

(41)

Let us define N N N| |,| |,| |FS DC RS and N| |HT as the number of FSs, DCs, RSs, and HTs, respectively. Because every DC can only serve its
local RSs, given NFS and NRS, the number of variables xp grows linearly in terms of the number of HTs involved in the CSHRs.
Furthermore, the line plan and train timetable reduce the search set, since a train cannot be catered at every station. The
restricted set ̂P further reduces the search space of the Euler algorithm, since most of the paths have a free-flow lead time that is
larger than the given time deadline τ . Then,

̂ ⩽ ⩽ × ×P P N N N| | | | | | | | | |FS RS HT (42)

For convergence of the iterative scheme, we require that

1. For all ̂∈ Pp when → ∞ →n a, 0p
n .

2. For all ̂∈ >Pp a, 0p
n .

3. ∑ = ∞=
∞ an p

n
0 .

5.1.2. Explicit formulae for time deadline constraints pricing
To determine the correct values of the prices (i.e., Lagrange multipliers), one can solve a Lagrangian dual problem that is typically

solved using iterative gradient search methods at iteration n.

̂= + × − − − ∀ ∈+ Pγ γ η T x L s p t p τ δ x pmax{0, ( ( ) ( ( ), ( )) ( ))}p
n

p
n

n p
n

p
1

(43)

Vector γ indicates the shadow prices for time deadline constraints.

5.2. The Euler algorithm incorporated by the Augmented Lagrangian Dual Algorithm

The ordinary pricing strategy typically takes too much time for convergences. The ALD algorithm combines the exterior penalty
method with Lagrangian dual schemes. This method yields faster convergence than ordinary dual schemes and avoids the numerical
ill-conditioning inherent to penalty methods (Larsson and Patriksson, 1995). We modify the explicit formulae in iteration n as
follows:
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(44)

where sequence η{ }n is positive/non-decreasing penalty parameters (which are also the step lengths used in Eq. (43). Constant c is a
penalty value given properly.

Compared with Eq. (40), the additional term is

× × + − − ×
∂
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η c T x L s p t p τ δ x
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n p
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which is the derivative of the penalty function:

= × × × + − −P x c η T x L s p t p τ δ x( ) 0.5 max[0, ( ) ( ( ), ( )) ( )]n
n p

n
p

2
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5.3. An implementable version of the algorithm

We propose an implementable version of the proposed Euler scheme incorporated by the ALD algorithm. The algorithm is at first
initialized: for all ̂∈ =Pp x, 0p

1 and =γ 0p
1 . Then, some remarks for implementing the proposed Euler algorithm are empirically

proposed.

(1) Avoid violating Assumption 3.1
It should be noted that Assumption 3.1 should not be violated during the iterations. Assume that = × −σ 1 10 5 and we know that
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It implies that, if the marginal change on xp in the Euler iterative scheme Eq. (44) do not equal to zero, we can impose the
marginal changes greater than × −1 10 3 to avoid violating Assumption 3.1. Then the following equation can be adapted from Eq.
(44).
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(2) Set step sizes properly
Usually, if the step sizes are set too large, the correct values of the prices cannot be found. For simplicity, we assume that each
passenger can only order one meal of lunch/dinner on trains. Then, the probability function P v( )t t can be served as a binomial
probability function. Let = =D DR κ1200, ( ) 0.5t t

s , thenP = − −v C( ) (1 0.5) 0.5t t
v v v

1200
1200t t t (see Fig. 4). We find that the interval of vt

from =P v( ) 0.05t t to =P v( ) 0.95t t is small. This implies that if the change of vt on train t at each iteration is larger than the interval,
the iterative scheme might fail because it is “skipping” the optimal solution.
At the nth iteration, for each train = …t n1,2, , HT, we should investigate the relationship between the inventory level vt

n on train
HTt and the cumulative probability function P v( )t t

n . Empirically, we require that if ∈P v( ) [0.05,0.95]t t
n , for all = …t n1,2, , HT, then,

for all ̂∈ Pp t , we let = ×+a a δp
n

p
n1 0 , where < <δ0 1n .

(3) Update parameters related to time deadline constraints
To monitor the state of time deadline constraints, we propose the following indicators

= ⎧
⎨⎩

+ − >
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∀ ∈P p
T x L s p t p τ if x

if x
p P( )

( ) ( ( ), ( )) 0
0 0n

p p
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n
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̂= ∀ ∈ PPP P p p(max{0, ( )}| )n n

Then,the following principles are intuitive. If the path flows violate a time deadline constraint, we increase the penalty

Fig. 4. Cumulative binomial probability function when =D 1200t and =DR κ( ) 0.5t s .
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parameter. Otherwise we decrease the corresponding step sizes. At the nth iteration, we have
1. If ⩽ ∊F X| ( ) |p1 1 and ̂⩽ ∊ ∀ ∈ PPP p‖ ‖ ,n 3 , then we let = ×+a a δp

n
p

n1 0 , where < <δ0 1n .
2. If ⩾ ∊−PP PP‖ ‖/‖ ‖n n 1 2 and ⩾ ∊ ⩾ ∊−PP PP‖ ‖ ,‖ ‖n n3 1 3, then we let = × >+η ρ η ρ, 1n n1 .

(4) Convergence conditions
If ⩽ ∊+PP‖ ‖n 1 3 and − ⩽ ∊+x x‖ ‖n n1

4 are satisfied for S1 or when the iterative number exceeds the maximum number of iteration S2,
the algorithm terminates.

6. Numerical examples

We will perform three experiments to (i) evaluate the effect of selling prices, arc multipliers, and variable costs on a single train
market; (ii) identify the function of time deadline constraints and the benefits of combining the ALD algorithm with the Euler
algorithm; and (iii) demonstrate the applicability of our method in large-scale networks.

Throughout our experiments, =θ 0.001a and =β 2a , for all ∈ ∪A Aa DD RT. Normally, the speed of a refrigerated truck on a
transportation link will not be influenced by the number of food products loaded and the loading time is neglected here for simplicity.
Hence we assume that =θ 0a , for all ∈ ∪A Aa FD DR. =Cap 1000a units, for all ∈ Aa FD. =Cap 8000a units, for all ∈ Aa DD.

=Cap 1000a units, for all ∈ Aa DR. Then, =Cap 50a units, for all ∈ Aa RT. =D 1200t units for all = …t n1,2, , HT. FCapa is the capacity of
the facilities; we assume that =FCap 1200a units, when ∈ =Aa FCap; 10,000aRT units, when ∈ Aa DD. For simplicity, throughout our
experiments, for all trains = …t n1,2, , HT, we restricted that each passenger can only order one meal of lunch/dinner on HTs andP v( )t t
follows a binomial distribution system, where =Ω 1.

P = − −v C DR t DR t( ) [1 ( )] ( )t t D
v D v v

t
t t t t

In our experiments, all programs were coded in MATLAB and run under Win7 on a system with an Intel (R) Core (TM) i7-4700 MQ
CPU at 2.4 GHz with 8 GB of RAM.

6.1. Sensitivity analysis of prices, costs and arc multipliers in a single train market

We present an example for illustrative purposes. The rail company caters a single high-speed train HT1, by a single DC, DC1, from a
single FS, FS1 through a single RS, RS1. We assume that the train departs from the RS at time 670min (i.e., 11:10) and arrives at its
destination at 870min (i.e., 14:30) without any other stops. The links are labeled in Fig. 5 as a a a a, , ,1 2 3 4. Fig. 5 also shows the basic
input data of this example.

We assume a linear function = − × +DR κ κ( ) 0.008571 0.8571t
s s on train HT1, which means that if the selling price is 100 Yuan, the

dining rate on the train is 0%. However, when the selling price is 30 Yuan, the dining rate on the train is 60%. Furthermore, we set
= ∊ = ∊ = =c S1 , 0.005 , 0.25, 301 2 1 , and =S 1002 . Because only one path is considered in this case, we assume that τ is a sufficiently

large time and thus ignore other parameters. We then set the convergence tolerance ∊ = × −1 104
5 and the sequence = …δ{ } ( , , )n 5

10
5

11 .

6.1.1. Experiment 1
First, we conduct a series of tests by varying the arc multiplier αa2 with fixed prices = =κ κ50, 15s p and =κ 5d . Table 6 illustrates

the computed optimal path flow, the projected inventory level on train HT1, the corresponding profit, income and costs. Overall, the
value of profit at the optimal solution always continues to increase as αa2 increases. Operational costs increase and then decline as αa2

increases. The reason is that less loss, i.e., −α1 a2, leads to less optimal path flows. For instance, when =α 0.4a2 , we require 1233 units
to satisfy the projected demand of 493 units. When =α 1a2 , only 521 units need be transported. This actually decreases operational
cost C x( )p p . Notably, discarding costs also at first increases and then decreases. For example, when αa2 changes from 0.3 to 0.4, the
dramatically increasing income (from 7980 Yuan to 17246 Yuan) will cause a decision maker to provide more meals even when
discarding costs increase (from 5350.45 to 7396.26 Yuan).

6.1.2. Experiment 2
Second, we conduct a series of tests with varying variable costs VCa2 and prices = =κ κ50, 15s p and =κ 5d . Table 7 illustrates the

optimal path flow, projected inventory level, and corresponding profit, income and costs. Overall, the value of profit at the optimal

Fig. 5. PFSC-CSHRs topology and input data for numerical example.
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solution always continues to decrease as VCa2 increases. +E v( )t declines as vt decreases. However, −E v( )t will decrease only within
some ranges of VCa2. The reduction occurs because decreasing vt will lead to a smaller integrand P−κ κ v w( ) ( )s p

t t over a larger interval
∞v[ , )t in function −E v( )t . Operational costs are directly proportional to VCa2. Table 7 shows that C x( )p p improved when VCa2 changed

from 0.001 to 0.01. However, when VCa2 changes from 0.01 to 0.05, the path flow shrinks remarkably (from 565 units to 287 units),
and the operational costs also decrease.

6.1.3. Experiment 3
Third, we run a series of tests that have different κs, including 30, 40, 50, 60, 70, 80, 90, and 100 Yuan. =κ 15p and =κ 5d are also

given. For the same selling prices, we then vary αa2. The effect of the selling price on objective value (profit) is summarized in
Fig. 6(A). Fig. 6(A) shows that profits increase and then decrease, as when selling prices increase in all testing series with different
multipliers. In all test series with different selling prices, total profit improves when αa2 increases.

6.1.4. Experiment 4
Fourth, we implement a series of tests that have different κs, including 30, 40, 50, 60, 70, 80, 90, and 100 Yuan. =κ 15p and

Table 6
Optimal path flows, inventory levels, corresponding profits, incomes and costs under varying αa2.

αa2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Changing pattern

xp 0 758 1233 1011 852 735 646 577 521 ↗↘
vt 0 227 493 505 511 515 517 519 521 ↗

Profit 0 1322.78 6131.24 9760.56 12091.04 13712.87 14902.56 15800.84 16511.69 ↗

+E v( )t 0 0 2101.47 5604.02 7558.42 9207.27 10435.82 11230.21 11993.03 ↗
−E v( )t 0 7980.00 15144.05 11949.63 10087.26 8493.69 7295.63 6516.45 5764.89 ↗↘

Income 0 7980.00 17245.52 17553.66 17645.68 17700.95 17731.45 17746.66 17757.92 ↗

Z x( )p p 0 5305.45 7396.26 5054.78 3406.40 2206.28 1292.79 577.24 0 ↗↘

C x( )p p 0 1351.77 3718.02 2738.32 2148.24 1781.81 1536.10 1368.58 1246.23 ↗↘

Cost 0 6657.22 11114.28 7793.10 5554.64 3988.09 2828.89 1945.82 1246.23 ↗↘

Note:↗↘ indicates that the values increase and then decline as αa2 varies.↗indicates that the values continue increasing.

Table 7
Optimal path flows, inventory levels, corresponding profits, incomes and costs under varying VCa2.

VCa2 0.001 0.005 0.01 0.05 0.1 0.5 1 Changing pattern

xp 577 571 565 287 147 30 9 ↘
vt 520 514 509 258 133 27 8 ↘

Profit 15800.84 14480.40 12855.60 4358.72 2241.71 487.28 219.62 ↘

+E v( )t 11230.21 9207.27 6754.63 0.00 0.00 0.00 0.00 ↘
−E v( )t 6516.45 8493.69 10857.22 9065.00 4655.00 980.00 315.00 ↗↘

Income 17746.66 17700.95 17611.85 9065.00 4655.00 980.00 315.00 ↘

Z x( )p p 577.24 571.45 565.24 287.14 147.24 30.06 9.14 ↘

C x( )p p 1368.58 2649.10 4191.01 4419.14 2266.06 462.66 86.24 ↗↘

Cost 1945.82 3220.56 4756.25 4706.28 2413.29 492.72 95.38 ↗↘

Note:↗↘ indicates that the values increase and then decline as VCa2 varies.↘ indicates that the values continue to decrease.

Fig. 6. Objective values under different κs and αa2/Objective values under different κs and VCa2.
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=κ 5d are also fixed. For the same selling prices, we then vary VCa2. Fig. 6(B) shows that profits increase and then decrease, as when
the selling prices increase in all testing series with different variable costs. In all series of tests with different selling prices, total profit
improves when VCa2 decreases.

6.2. Benefits of integrating the Euler algorithm and the Augmented Lagrangian Dual algorithm

We now apply our method to compute solutions to the network shown in Fig. 7, which is derived from Fig. 2. Free flow time
impendence, arc multipliers, fixed costs and variable costs on links are also labeled in Fig. 7. The corresponding timetable for trains
HT HT HT, ,1 2 3 and HT4 is shown in Table 1. = − × +DR κ κ( ) 0.008571 0.8571t

s s on trains. We define = =κ κ50, 15s p and =κ 5d .
= × = = ∊ = ∊ = ∊ = =−η c ρ S1 10 , 500, 1.01 , 5 , 0.25 , 1, 501

4
1 2 3 1 and =S 3002 . Let =τ 700 minutes set the convergence tolerance

∊ = 0.054 and the sequence = …δ{ } ( , , )n 9
10

9
11 . For our purposes, we compare three design concepts in Table 8 (i.e., E-RPS, E-NPS and E-

ALD).
E-RPS serves as a reference because it represents the general method of addressing lifespan (Liu and Nagurney, 2012). The design

concept E-RPS easily removes all the paths from the network whose free-flow lead times exceed a given time deadline and generate a
restricted path set ̂P (see, Section 3.3). Table 9 shows all the paths in ̂P . We find that path → → →FS DC RS HT2 3 4 2 is removed from
the network because of its overlong free-flow lead time (748min > 700min= τ). Then, we can update the flows using Euler
algorithm on the paths in the restricted set ̂P . However, we find that, when the flow-dependent lead time of the pathways is
considered, E-RPS results in two pathways with overlong lead times. For example, path → → →FS DC RS HT2 1 1 4 has an 841min lead
time, which exceeds the given lifespan.

Thus, we continue to consider time deadline constraints in the computational procedure using an iterative scheme of E-NPS or E-
ALD. We observe that paths → → →FS DC RS HT1 1 1 4 and → → →FS DC RS HT2 1 1 4 have been bounded within 700min because of E-
NPS or E-ALD. We observe that paths → → →FS DC RS HT1 1 1 4 and → → →FS DC RS HT2 1 1 4 have positive Lagrange multipliers when
we use E-ALD. Lagrange multiplier values are the shadow prices for the time deadline constraints. If we relax the time deadline one
more minute, the manager might make 0.48 Yuan more money than before.

Further we find that E-RPS earns the largest profit because of the relaxation of time deadline constraints. We also find that E-NPS

Fig. 7. Illustrative network of PFSC-CSHRs and input data.

Table 8
Three design concepts implemented in this experiment.

Design concept Abbreviation Description

Euler algorithm+Restricted
Path Set (without flow
dependent time deadline
constraints)

E-RPS E-RPS removes the paths whose free-flow lead time exceeds a fixed lifespan from the network
(see Section 3.3) and implements the Euler iterative scheme directly without considering time-
deadline constraints. The Euler iterative scheme without considering time-deadline constraints
can be easily adapted from Eq. (40).

Euler algorithm+Normal
Pricing Strategy

E-NPS E-NPS is the algorithm implementing the Euler iterative scheme Eq. (40) shown in Section 5.1
and using Eq. (43) to determine the Lagrangian multipliers.

Euler algorithm+Augmented
Lagrangian Dual
algorithm

E-ALD E-ALD is the algorithm implementing the Euler iterative scheme Eq. (45) shown in Section 5.2
and using Eq. (43) to determine the Lagrangian multipliers.
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and E-ALD implement different pricing (0 Yuan vs. 0.48 Yuan). The reason for the prices is that E-NPS actually does not meet the
convergence conditions when the number of iterations exceeds S2. Table 10 shows that there are differences between the path flows
obtained by E-NPS and E-ALD, which results in a gap (approximately 1.4%) between their total profits (The profit obtained by E-ALD
is larger than the profit obtained by E-NPS).

Fig. 8 indicates the changes in profits and −+x x‖ ‖n n1 with respect to the number of generations during the Euler iterative com-
putational procedure of E-NPS, E-ALD and E-RPS. Only the first 120 iterations are displayed in Fig. 8(A) and the first 50 iterations are
displayed in Fig. 8(B). We observe that the E-RPS overestimates the profit of CSHRs by neglecting the oversaturated case, see
Fig. 8(A). Fig. 8(B) shows the change of −+x x‖ ‖n n1 with respect to the number of generations. We find that E-ALD yields a faster
convergence than E-NPS does under the condition of the above parameter settings. E-NPS uses 300 generations with 282 s of CPU
time, but the E-ALD uses only 112 generations to make − ⩽ ∊ =+x x‖ ‖ 0.1n n1

4 with 101 s of CPU time. However, the rate of con-
vergence is quite parameter-dependent. The settings of parameters are also case-dependent. Thus, the efficiency of the E-ALD is not
always ensured.

6.3. Large-scale application of the Beijing-Shanghai high-speed corridor

To demonstrate the applicability of our proposed framework, this section tests our algorithm on a case based on a timetable for
May 2016 with 246 trains on the Beijing-Shanghai high-speed corridor (see Fig. 9). Only HTs that start and end at RSs on the Beijing-
Shanghai high-speed lines are considered in this case. The regional trains on the Beijing-Tianjin intercity line and all over-line trains
are neglected. The trains on the Nanjing-Shanghai intercity line are considered because of their long average traveling time. In this
case, we consider 31 stations on the Beijing-Shanghai corridor, as shown in Fig. 9. The information for 21 DCs with their RSs is also
displayed in Table B.13 in Appendix B. The DCs are labeled using the names of the cities. Four FSs - Beijing FS, Jinan FS, Nanjing FS
and Shanghai FS - are considered. Because FSs in this case are dispersed far from each other on a large railway network, we assume
that a DC orders its required meals only from the nearest FS:

= = ∈ × = ∀ ∈∈A N N Na FS DC t t d{ ( , ) | min }.Ni d a i FS DCFD FS DC
0

,
0

DCi dFS

Here, we assume = = − × +D DR κ κ1200, ( ) 0.008571 0.8571t t
s s on each train, = = =κ κ κ50, 15,s p d

= × = = ∊ = ∊ = ∊ = =−η c ρ S5, 1 10 , 500, 1.1 , 10 , 0.25 , 5, 351
3

1 2 3 1 and = ∊ =S 3000 , 0.12 4 and = …( )δ{ } , ,n 9
10

9
11 .

We conduct two tests with different time deadlines, including =τ 1000 min and 1440min. The rows in Table 11 show the cost
contributions, inventory levels, and other basic information about the PFSC-CSHRs’ systems. Table 11 illustrates the benefits of time

Table 9
Performance measures of each path for the E-RPS, E-NPS and E-ALD algorithm.

HTs RSs DCs FSs Free flow
lead time
(minutes)

Path flow (unit) Lead time (minutes) Lagrangian Multiplier ∗γq (Yuan)

E-NPS E-ALD E-RPS E-NPS E-ALD E-RPS E-NPS -ALD

Route ̂P HT1 RS2 DC1 FS1 665 74 74 77 679.8 680.3 690.5 0 0
HT1 RS2 DC1 FS2 665 74 74 77 679.8 680.3 690.5 0 0
HT1 RS3 DC2 FS1 548 299 298 296 577 577 576 0 0
HT1 RS3 DC2 FS2 648 106 105 105 677 677 676 0 0
HT2 RS1 DC1 FS1 665 36 36 38 672 672 682 0 0
HT2 RS1 DC1 FS2 665 36 36 38 672 672 682 0 0
HT2 RS3 DC2 FS1 548 149 149 148 565 565 565 0 0
HT2 RS3 DC2 FS2 648 53 52 52 665 665 665 0 0
HT2 RS4 DC3 FS1 448 280 279 277 457 457 457 0 0
HT3 RS2 DC1 FS1 615 95 95 101 637 637 649 0 0
HT3 RS2 DC1 FS2 615 95 95 101 637 637 649 0 0
HT3 RS3 DC2 FS1 468 225 222 217 494 493 492 0 0
HT3 RS3 DC2 FS2 568 137 136 133 594 593 592 0 0
HT4 RS1 DC1 FS1 685 62 75 269 697 700 841 0 0.48
HT4 RS1 DC1 FS2 685 62 74 269 697 700 841 0 0.48

Other Routes HT2 RS4 DC3 FS2 748 N/A

Boldtypes indicates the lead time is longer than the given time deadline.

Table 10
Profit obtained under different design concepts.

Design concept Profit obtained

E-RPS 64,121 Yuan
E-NPS 52,371 Yuan
E-ALD 53,085 Yuan
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deadline constraints. If =τ 1000 min is replaced by τ =1440min, more money (14,000 Yuan) can be earned (We assume that the
longer lifespan do not lead to a decline in food quality). To achieve these earnings, an increase in −E v( )t and +E v( )t and a decrease in
operational and discarding cost are needed. This income increase reflects the increase of the average inventory level on trains. It is
noted that although the maximum lead time increases because of the relaxation of the time deadline, the average lead time conversely
declines. Finally, we observe that the CPU times used for our proposed method depend upon number of iterations instead of the
number of variables.

Fig. 10 displays the change in total profit (from ×4 105 to ×6 105) and −+x x‖ ‖n n1 with respect to the number of generations. The
function of time deadline constraints is also illustrated in Fig. 10(A).

7. Conclusions

In this paper, we propose a novel flow-assignment model for a perishable food supply chain (PFSC) network problem in the
context of catering services for high-speed railway (CSHRs). The PFSC-CSHRs is different from traditional food supply chain problems
and has some typical challenging features. PFSC-CSHRs problems are affected by decisions concerning the rail transport plan, i.e., a
line plan and a timetable. The problems further involve the perishability of the food products, uncertainty of food demand and the
flow-dependent lead time which is subject to time deadline constraints.

To formulate the problem, we represented a topological network by introducing the information provided by line plans and
timetables. Next, flow balance constraints used in supply chain analytics were introduced to describe the link/path flows in the PFSC-

Fig. 8. Profit and −+x x‖ ‖n n1 in each generation using the Euler algorithm with NPS, ALD and RPS.

Fig. 9. Map of Beijing-Shanghai high-speed railway corridor.
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CSHRs network. A Dirac delta function was introduced to reflect the transition from a free-flow path to a flow-loaded pathway under
a time deadline constraint. Operational and discarding costs were then described. A revenue function based on the Newsvendor
model was proposed to calculate the income of CSHRs when facing uncertain demand and fixed prices.

This paper contributes to two equivalent VI models (arc flow-based and path flow-based) to determine order quantities for trains
and the flow pattern on a PFSC-CSHRs network, considering uncertain demand and constrained time deadlines. Mathematical
properties of the VI models are proved. We conduct a sensitivity analysis to evaluate the effect of selling prices, arc multipliers, and
variable costs on a single train market.

To solve the VI, this paper provided three design concepts: E-RSP, E-NPS and E-ALD.Using numerical examples, the function of the
time deadline constraints is illustrated in our case study because E-RSP overestimated the total profit, unlike E-NPS and E-ALD. E-ALD
was also found to perform better than E-NPS in terms of computational time and solution quality. E-ALD was also applied to solve a
large-scale PFSC-CSHRs network design problem to assess the applicability of the proposed method. Two large-scale cases with
different time deadlines were implemented to illustrate that a higher lifespan without decline in food quality will lead to higher
profits.

The presented approach has limitations, which might be the subject of future research. For example, the efficiency of the proposed
algorithm is quite parameter-dependent, which occasionally affects the quality of solutions and prolongs computational times.
Furthermore, multiple types of food products (including both ambient meals and “cold chain” meals) with different lifespans for
trains remain beyond the current scope of our research. Emerging dining reservation services are also not considered in this study.

Table 11
Performance measures for three tests with lifespan 1000min and 1440min.

Test 1 Test 2

τ 1000min 1440min
Operational cost 270,240 Yuan 282,940 Yuan
Discarding cost 27,766 Yuan 28,635 Yuan

−E v( )t 861,390 Yuan 887,980 Yuan
+E v( )t 17,732 Yuan 18,708 Yuan

Profit 581,120 Yuan 595,120 Yuan

Average inventory level
∑ = …t n vt

n
1,2, , HT

HT

102 units 105 units

Maximum inventory level = … vmaxt n t1,2, , HT 487 units 487 units

Average lead time
̂

̂
∑ ∈ +P

P
p Tp x L s p t p( ) ( ( ), ( ))

| |

600min 457min

Maximum lead time ̂ +∈ T x L s p t pmax ( ) ( ( ), ( ))Pp p 1004min 1410min

Maximum lead time (only containing all paths with positive flows) 1000min 1410min
Number of paths violating time deadline constraints 2 0

Number of path variables 569 580
Number of iterations 2458 times 2770 times

CPU times 8.2 h 7.2 h

Fig. 10. Profit and −+x x‖ ‖n n( 1) in each generation in different time deadline scenarios.
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