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Abstract

Secure multi-party computation (MPC) allows par-
ties to compute on their secret inputs, without re-
vealing them to each other. As an area of theoretical
interest, many MPC protocol have been developed
in the last four decades. They each present different
characteristics and are classified under distinct cat-
egories depending on their generality, security as-
sumptions, and functionality. More recently, MPC
has also become an area of practical interest due to
optimizations in performance of the protocols. In
this paper, we compare MPC protocols and other
techniques for computing on encrypted data, con-
sidering how their properties affect security, effi-
ciency, usability, and functionality. We show that
there is a trade-off between security and efficiency
when different adversarial models are used, as well
as a trade-off between efficiency and flexibility in
specialized protocols.

1 Introduction

Consider a hospital that wants to discover if their patients
have a high risk of having cancer by comparing their DNA
with those of cancer patients [36]. With such sensitive infor-
mation in hand, an ethical and legal problem arises of how
these data can be used in a way that guarantees both privacy
of the patients and the desired functionality. An ideal solu-
tion would be to perform computations on the data in a pri-
vate manner, revealing only whether a certain patient has high
risk of cancer or not, while revealing nothing else about the
patient.

This scenario illustrates the idea of secure multi-party com-
putation (MPC), in which parties want to compute a public
function using each of their inputs, while preserving these in-
puts private to other parties [21; 36]. A classical example of
MPC is known as Yao’s Millionaires’ Problem [54], which
can be formulated thus: Two millionaires want to know who
is richer. However, they do not want to reveal any additional
information about their wealth. In this case, the function to
be computed could be as follows:

0 z<y
1 otherwise

f(fmy):{

Where x and y represent the wealth of each millionaire.
More generally, the problem to be solved is computing the
function f(x1,xso,...,x,) while ensuring both correctness
(the output is according to the defined function) and privacy
(nothing is revealed beyond the output) [37].

To perform secure computations, multiple protocols have
been developed, which can be classified in different cate-
gories. Two-party (2PC) and multi-party (MPC) protocols
differ in how many parties they support: two or multiple.
Generic protocols can be used to compute any function, while
specialized ones can only (efficiently) be applied to compute
specific functions [21]. Protocols also differ in the adversar-
ial model they follow: a semi-honest adversary, also called

passive, or honest-but-curious [21] is an adversary control-
ling parties who follow the protocol faithfully, but attempt to
gather information about another party’s secret [11], which
poses a threat to the privacy constraint. On the other hand, a
malicious (or active) adversary controls parties who do not
follow the protocol, but can execute malicious code [11],
which compromises correctness as well as privacy. Some
protocols offer resistance to a semi-honest adversary alone,
while others apply techniques to also protect against a mali-
cious adversary; furthermore, protocols differ in how many
parties can be corrupted by an adversary.

In this paper, we provide a systematic comparison of dif-
ferent MPC protocols and, in addition, between MPC and
other techniques. The comparison is in terms of security, ef-
ficiency, usability, and functionality. Sub-questions are an-
swered according to each category of protocols described
above. Generic and specialized protocols are compared, in-
vestigating how much performance improvement a special-
ized protocol can give compared to a generic one and in what
circumstances. The impact of different adversarial models
(semi-honest or active) in terms of security and efficiency
is also treated. In addition, there is an exploration of how
a semi-honest protocol can be converted into a malicious-
secure one. Possible optimizations to the protocols and the
extent to which they improve their efficiency are investi-
gated. Lastly, MPC is compared with four other techniques
for computation with encrypted data, namely: (fully) homo-
morphic encryption, oblivious RAM, structured encryption,
and trusted execution environments.

The following structure is followed in this paper: Sec-
tion 2 covers the methodology followed to conduct the liter-
ature survey. Section 3 gives the background knowledge re-
quired to understand the protocols, which are described later
in Section 4. Section 5 considers these protocols in terms
of security, efficiency, usability, and functionality. Section 6
compares MPC with other techniques for secure computation.
Issues of ethics and research integrity are considered in Sec-
tion 7. Finally, Section 8 summarizes the findings of the paper
with tables and presents unanswered questions.

1.1 Related Work

Various papers have been written in the field of MPC. Lindell
[36] gives an overview of MPC, along with the techniques
most used to perform it, and mentions state-of-the-art solu-
tions. As a more extensive and detailed view of the field,
Evans et al. [21] wrote a book, from the fundamental tech-
niques to the most recent developments. In another paper,
Orsini [46] gives a survey focused on MPC techniques for
active security with an honest majority of parties. Hastings et
al. [27] present a SoK on MPC compilers, which can trans-
late code to MPC protocols. A technical review on MPC tools
in the context of IoT and data analytics is presented in a pa-
per by Raeini and Nojoumian [22]: these tools build on the
fundamental protocols that will be discussed in this paper. Fi-
nally, and more related to the goal of this paper, Perry et al.
[47] present a tool that compares MPC protocols based on
environmental features, assumptions, security, and efficiency.
However, their paper does not present the comparison, but
only the framework.



Compared to these previous works, our paper focuses on
the fundamental MPC protocols and compares them at a the-
oretical level, without benchmarks. Practical applications and
frameworks are considered in terms of which protocols they
use and for which reason. This direction of research aims to
fill a literature gap of a systematic comparison of MPC pro-
tocols.

2 Methodology

In this literature survey, three approaches were used to se-
lect papers: snowball sampling, sharing papers in the research
group, and using a search database.

Snowball sampling was used to gather papers in all rele-
vant topics of this research. From a first introductory paper
[36] and a book [21], a backward referencing search was per-
formed for each of the protocols and other relevant topics that
are part of the research sub-questions. The protocols were se-
lected for research based on a chapter in the books from Evans
etal. [21].

Within our research team, we shared papers on each one
of the four techniques mentioned in Section 1. Hence, all the
papers on these techniques were suggested by peers, except a
paper from Gordon et al. [26] which was gathered from the
book from Evans et al. [53]. This approach was reasonable
because each member of the team is more acquainted with his
own technique and can thus provide more insightful material
to the others.

Lastly, Scopus was used to collect more up-to-date liter-
ature and to obtain a clearer picture of state-of-the-art tech-
nologies. Forward referencing was also occasionally per-
formed to reach more recent papers. More details on the
queries used for literature selection on Scopus are found in
Appendix A.l1. For each paper gathered with these three ap-
proaches, the relevant sections were read and annotated for
future usage.

3 Background

In this section, we explain two important techniques that are
used by MPC protocols: oblivious transfer and Shamir’s se-
cret sharing.

3.1 Oblivious Transfer

Oblivious transfer (OT) was originally introduced by Rabin
[50] as a way of transmitting information between two par-
ties, where the sender does not know what the recipient re-
ceived. This idea was generalized into a 1-out-of-2 OT [43],
where the sender has two values, say ag and a1, and the re-
ceiver has a bit b € {0,1}, and wants to learn a; from the
sender. Then, this primitive allows the receiver to learn ay
but have no knowledge of a;_;, while the sender does not
learn b. More generally, one can consider a 1-out-of-n OT, or
k-out-of-n OT, which typically build upon the 1-out-of-2 OT.

This protocol is significant in the context of MPC because,
as shown by Killian [30], it is sufficient to construct a secure
function evaluation for any computable function. Moreover,
as shown in Section 4, some protocols make use of OT as a
cryptographic primitive.

3.2 Shamir’s Secret Sharing

Sharmir’s secret sharing was introduced by Shamir [52] as a
way to divide a value D into n shares, so that with at least
k < n shares it is possible to retrieve the value of D, but with
k — 1 or less shares, one cannot learn any information about
D. With the parameters defined above, this is referred to as a
(k,n) or k-out-of-n [36] threshold scheme.

In order to achieve this, the secret sharing scheme makes
use of polynomials and the fact that given k points in a two-
dimensional plane, there only exists a single polynomial of
degree k — 1 that passes through all the points. For a k-out-
of-n threshold scheme, the idea is to generate a polynomial
g(z) of degree k—1, along with n points (1, Y1), ..., (Tn, Yn)
such that g(z;) = y; for each ¢ € {1, ...,n}. These points are
then distributed to n parties, and the secret that they share
is g(0). This value can only be found if the polynomial is
known, which can only be achieved with at least k£ points.
With knowledge of k£ — 1 or fewer points, it is impossible to
know what the secret is, since every polynomial is equally
likely [36]. This provides information-theoretic security to
the scheme, a concept which is later discussed in Section 5.1.

4 Protocols

In this section, four fundamental MPC protocols are ex-
plained, following the structure presented by Evans et al.
[21]: Yao’s GC, GMW, BGW, and BMR. A description of
each protocol follows, along with possible optimizations.

4.1 Yao’s GC

Protocol Description

Yao’s garbled circuits (GC) protocol was introduced by An-
drew Yao [55] in 1986. A detailed explanation of Yao’s GC
(in addition to a rigorous proof of its security) is provided by
Lindell and Pinkas [37]. Here, we also provide an explanation
of the protocol based on their paper.

There are two parties involved: the constructor (also called
sender or garbler) P; and the evaluator (receiver) P». The
protocol follows these steps: garbling, encrypting, permuting,
running, and decoding the output.

Garbling: The first step is to represent the functionality to
be computed as a Boolean circuit, which is done by P;. This
circuit is garbled, which means that the values of the gate
wires are hidden from both parties. Concretely, each wire @
has wire labels k! corresponding to bit 0 and &} correspond-
ing to bit 1. These labels will be used instead of values, so
that the semantics of the circuit are unknown. For example,
consider the truth table of an AND gate (Table 1). There are
two input wires ¢ and j, and the output wire k. Each 0 in
column i is replaced by kY, and each 1 by k! (and likewise
for the other wires j and k). The resulting table is shown
(Table 2).



Table 1: Truth table of the AND gate.

Wirei Wire] Output wire k
0 0 0
0 1 0
1 0 0
1 1 1

Table 2: Garbled truth table of the AND gate, based on [37].

Wirei Wire] Outputwirek Garbled table
R A By (B (RD))
R Rk By (B (KY))
KRR By (B (k)
Bk H By (B (kL)

Encrypting: The next step is to encrypt the output wire
labels using the input wire labels as symmetric keys. For a
certain output of the table, the labels of the corresponding
two inputs are used. This is done so that, with two input keys,
only a single output label can be decrypted. The result is
shown in Table 2.

Permuting: Importantly, the rows of the garbled table
must be permuted; otherwise, the evaluator, upon receiving it,
would know that the output label of the first row corresponds
to the labels 00, the second row to 01, etc. This process of
garbling and permuting is repeated for each gate in the cir-
cuit. When this is finished, P; sends the garbled circuit to P,
which includes the garbled tables of all gates.

Running: The evaluation of the circuit follows a topologi-
cal ordering. For each gate, one wire is owned by each player.
P, can simply send the wire label corresponding to his input
to P». The other wire label, corresponding to P»’s input, is
selected through 1-out-of-2 OT, where P; is the sender and
P, the receiver. Here, P, selects one label out of two, with-
out discovering the other one, and P; does not learn which
option P» selected. With the two input wire labels, P> can
evaluate the output label by decrypting the correct row of the
garbled table received from P;. Depending on the circuit, the
output label may be the input label of another gate, in which
case the process is repeated.

Decoding the output: Finally, once the final gates with no
successor are evaluated, P, should find the real wire values
corresponding to the output labels of the output gates. For
this purpose, P; also sends a table that maps these final output
labels with the real values. Hence, P, will be able to retrieve
the output values and share them with P;.

Optimizations
Here, we describe four optimizations: point-and-permute,
FreeXOR, garbled row reduction, and half-gates.

One minor issue in the protocol described above is that P
has to potentially decrypt each one of the four rows from the
garbled table with the two input label keys, and check if the
resulting plaintext is gibberish, or a meaningful value. In
the latter case, P, knows that this is the correct row to de-
crypt, and uses that output label. To solve this inconvenience,
Beaver et al. [4] introduced point-and-permute. Its idea is

that P; indicates to P, which row of the garbled table should
be decrypted, by using the first bits of the keys as pointers to
the garbled table [21].

FreeXOR is a technique developed by Kolesnikov and
Schneider [32], where XOR gates are evaluated “for free”,
that is, in their own words, “without the use of the associated
garbled tables and the corresponding hashing or symmetric
key operations” [32, 2]. The technique adapts a construction
from [31] to garbled circuits. The idea is to make the wire
labels dependent on each other, so that the output label can
be determined by XORing the input labels.

Another technique used in GCs is garbled row reduction
(GRR), introduced by Naor et al. [44]. Here, the aim is to
reduce the size of the garbled table, hence sending only three
rows (GRR3) instead of four for each table. This is done by
P, choosing an output label such that encrypting the row re-
turns a null string. Then, P; only needs to send three non-null
rows to P, since the latter can assume that there will always
be a null row. Further developments in GRR were made by
Pinkas et al. [48], who, using polynomial interpolation, con-
structed a row reduction that only required two ciphertexts
(GRR2) sent per AND gate. However, this technique was not
compatible with FreeXOR.

To solve this incompatibility, Zahur et al. [56] introduced
half-gates, as a way to combine FreeXOR with GRR2. Their
insight was to write AND gates as a combination of XOR
gates, and half-gates, which are AND gates where one of the
wire values is known by one party. By doing this, AND gates
use only two ciphertexts, while XOR gates use none. The
authors showed that for all circuits, the technique leads to a
smaller circuit size than all previous methods.

42 GMW

Protocol Description

GMW is a protocol named after Goldreich, Micali, and
Wigderson [24], who introduced it in 1987 as a way to solve
the secure multi-party problem given a majority of honest par-
ties.

The protocol has some differences compared to Yao’s GC.
First, it can naturally handle more than two players. More-
over, despite still converting the function to a circuit, it does
not garble the circuit, but instead does secret sharing of the
wire values. A third difference is that GMW can evaluate
both Boolean and arithmetic circuits, since there is a cor-
respondence between addition and XOR, and multiplication
and AND [25].

An explanation of the protocol is given by Evans et al. [21]
and Goldreich [25], which we partially follow in our presenta-
tion. We consider the protocol as a Boolean circuit evaluation
between two parties for simplicity without loss of generality.
The protocol has the following steps: sharing the inputs, eval-
uating the circuit, and recovering the output.

Sharing the inputs: Each party has a bit string x €
{0,1}", where n is the length of the input. Each party gen-
erates a random bit string » € {0, 1}™ that serves as a mask
to his input. Then, for each bit 7 of the input, the party sends
r; to the other party as a share of x;, and keeps z; & r; as
his own share. Note than XORing the shares gives the secret:



Evaluating the circuit: The two parties evaluate the cir-
cuit gate by gate, in topological order. For a gate with two
input wires, each party p € {1, 2} holds a share s of each
input wire 7. An additive sharing scheme is used, where the
wire value w; = s} @ s?. We consider three types of gates:
NOT, XOR, and AND, which are functionally complete.

* NOT: can be evaluated locally by having one party p flip
his share s of the single input wire i.

* XOR: Both parties can locally XOR their shares, and
this will result in shares of the output, since (sj @ s}) &
(s7 @ 87) = (s ® 57) D (5] D 57) = wi @ w; = w,
which is the desired output value.

* AND: Here, the parties have to interact and cannot com-
pute the gate locally. What we desire are two output
shares s}, and s such that s} @ s7 = wy, = w; Aw; =
(si ®57) A(s] @s3). Toretrieve this, the parties engage
in a 1-out-of-4 OT where P is the sender and P; the re-
ceiver. The idea is that P; considers all four possibilities
of the two shares sf and s2 of Py, which can be 00, 01,
10, or 11. Then, P; generates all four possible outputs
(si @ s7) A (sj @ s3), and computes the XOR of each
output with a random bit mask r € {0,1}, and these
four results become his input in the OT. P, chooses one
of them according to his two shares, so that P; does not
discover which one P; selected. Then, this selection will
be P»’s share of the output, while r will be P;’s share.

Recovering the output: To retrieve the output, each party
sends to the other the shares of the output wires of the circuit.

Optimizations

Here, we describe one possible optimization to GMW: offline
and online phases. An offline phase, or pre-processing phase,
refers to the protocol execution when the parties’ inputs are
not yet known, whereas in the online phase the inputs are
known [21]. As also noted by Evans et al. [21], the purpose
of this separation is to move as much processing to the of-
fline phase, so that the online phase can run efficiently. In the
pre-processing phase of GMW, it is possible to pre-compute
OTs for evaluating AND gates or using Beaver’s multiplica-
tion triples for the same purpose: Schneider and Zohner [51]
show that the latter approach leads to better results. The idea
of this technique is to generate a triple of secret shared values,
where one value is the product of the other two, which allows
for evaluating AND gates only with local computations in the
online phase [21].

43 BGW

Protocol Description
BGW is a protocol published by Ben-Or, Goldwasser, and
Wigderson [6] in 1988. It was developed simultaneously with
a similar protocol by Chaum, Crépau, and Damgérd (CCD)
[15]. The protocol is designed in such a way that it is secure
against a semi-honest adversary with an honest majority, and
secure against a malicious adversary with ¢ < n/3 corrupted
parties.

The protocol has some similarities with GMW, namely that
it can handle more than two parties, and uses secret sharing

on the wire values. The main differences with GMW are that
it uses Shamir’s secret sharing instead of an additive sharing,
and that it can only be used to evaluate arithmetic circuits.

We provide an explanation based on the work from Evans
et al. [21]. The protocol has the same steps as GMW, which
are the following: sharing the inputs, evaluating the circuit,
and retrieving the outputs.

Sharing the inputs: Each party holding an input wire
value s generates a polynomial p(z) of degree ¢, such that
p(0) = s, where t < n/2 is the number of corrupted parties in
the semi-honest model. The player then distributes shares of s
to all other parties, where each share is a point in a polynomial
p(x).

Evaluating the circuit: Three types of arithmetic gates
are considered: multiplication of polynomial by constant, ad-
dition of two polynomials, and multiplication of two polyno-
mials.

e Multiplication by constant: Each party can locally com-
pute a share of the output by simply multiplying the
share of the input with the known constant. This holds
because multiplying each y-value of the points of f(x)
by c results in points of the polynomial h(z) = cf(z).
Hence, the points of this polynomial are valid shares of
the secret A(0) = ¢f(0).

* Addition: Likewise, given that each party has a share
of each of the two polynomials, the player can locally
add the two shares, and will have a share of the output.
Adding the points of the two polynomials f(z) and g(z)
will give points of the addition h(z) = f(x) + g(x),
which constitute valid shares of the secret h(0) = f(0)+
9(0).

* Multiplication of polynomials: The product of the poly-
nomials h(z) = f(x)g(x) has degree 2¢, which means
that multiplying the points will result in shares of a 2¢-
out-of-n threshold scheme. This presents a problem, be-
cause subsequent multiplications can raise the degree to
be above n, which will result in insufficient points to re-
construct the polynomial, and hence to find the secret.
Thus, a degree reduction procedure is necessary, which
involves interaction between the parties.

Retrieving the outputs: Finally, after all gates are eval-
uated, the parties will each have a share of the output. The
parties can all broadcast their shares, so that they can recon-
struct the output value.

Optimizations

In BGW, it is also possible to user Beaver’s multiplication
triples, which leads to evaluation of one multiplicative gate
with two openings (of the triples) and a local computation
[21].

44 BMR

Protocol Description

BMR is a protocol developed by Beaver, Micali, and Rog-
away [4], which was published in 1990. Their original paper
and the book from Evans et al. [21] provide a detailed expla-
nation of the protocol. Here, we follow a more simplified and



abstract overview, in line with a paper from Lindell et al. [39]
and one from Ben-David et al. [5].

Compared to other protocols, BMR is an extension of
Yao’s GC to the multi-party case, and hence it distances it-
self from secret sharing protocols such as GMW and BGW.
A further difference is that it only handles Boolean circuits.
On the other hand, like BGW, it is also secure against a semi-
honest adversary with an honest majority of parties.

The idea behind the protocol is to perform a distributed
computation, where all parties are involved in both garbling
and evaluating, contrary to Yao’s GC where each party has
one role. The protocol has two phases: an offline phase where
the parties create the garbled circuit and the garbled inputs,
and an online phase where each party evaluates the garbled
circuit individually.

Offline phase: Each party p, for each wire 7 of the circuit,
will generate two so called seeds: 7, for value 0, and s},
for value 1. The concatenation of all the seeds of the players
gives the superseed sj = s ,1|...||s,, for n parties (likewise
for s}). In the terminology of Evan et al, the superseed is the
wire label (as in Yao’s GC), and the seeds are the sublabels
of which the label is composed. These superseeds must be
randomized, so that the player cannot know that the first su-
perseed received corresponds to 0 and the second to 1. This
randomization is done using a flip bit, which is XORed to the
real value (0 or 1), to produce and external value. Hence, a
party may know that a superseed is associated with a certain
external value, but cannot gain any information on the real
value.

For each gate, the garbled table is built by encrypting the
output superseed using the two corresponding input super-
seeds, as described for Yao’s GC. This results in the essen-
tially the same table as Table 2.

Online phase: Each player who is assigned a input wire
broadcasts the corresponding superseed to all players. All
players, knowing the garbled tables, can evaluate each gate
with the superseeds and retrieve the output superseed. Again,
as in Yao’s GC, this final superseed can be translated to the
real value.

Optimizations

Built-in BMR is the division between offline and online
phases. The online phase can be made particularly fast by
using pre-processing with techniques derived from other pro-
tocols, as shown by Lindell et al. [39].

5 Characteristics

In this section, we consider the MPC protocols of Section 4
in terms of security, efficiency, usability, and functionality.

5.1 Security

In this section, we give a comparison of protocols in terms of
active security, number of colluding parties, and information-
theoretical security.

What distinguishes the semi-honest from the malicious ad-
versarial model is the capabilities of the corrupt parties. In the
semi-honest model, corrupt parties must follow the protocol,

but they keep track of all data they receive and can run com-
putations on these data, in order to discover more informa-
tion about the other parties’ inputs, whereas in the malicious
model, corrupt parties can arbitrarily deviate from the proto-
col [37; 38]. To give a concrete example of this difference,
consider Yao’s GC [55]. If followed faithfully, the protocol
reveals no information on the wire values, except the output;
hence, it provides semi-honest security (a rigorous proof of
this fact was presented by Lindell and Pinkas [37]). How-
ever, a malicious party P, can garble a circuit that computes
a function different from the one P, agreed to compute. For
example, in the Yao’s Millionaire’s Problem, P; could con-
struct a circuit that computes f(z,y) = y, meaning that the
output of the circuit is the input (in this case, the wealth) of
Ps.

To protect against such a threat, some techniques exist
for adapting a protocol to be secure against malicious adver-
saries: we consider cut-and-choose and the GMW compiler.
Cut-and-choose is a technique that has been applied in Yao’s
GC for two parties by Lindell and Pinkas [38]. It aims to de-
fend against a corrupt circuit sent by P; from being evaluated.
The basic idea is that P; sends copies of the garbled circuit to
P5, who selects some of them to be “opened” by P, and P
then verifies that these have been constructed correctly. Later,
P, evaluates the unchecked GCs and considers the majority
value as the final output. This is done to prevent an incorrect
circuit from being evaluated: it is very unlikely that most of
the unverified circuits will be corrupt. The GMW compiler is
a technique where parties produce so-called zero knowledge
(ZK) proofs to show their honesty [38]. The compiler takes
a semi-honest protocol p and returns an actively secure one
with the same functionality, by proving in zero-knowledge
that every message is a result of running p honestly, where
zero-knowledge refers to the lack of knowledge of the private
inputs [21]. As noted by Ben-David et al. [5] and Lindell and
Pinkas [38], this approach is costly, since it adds ZK proofs
for every step of the protocol. However, the GMW compiler
is a generic way to make any protocol actively secure, not
only those based on GC.

In both the semi-honest and malicious models, protocols
often present a limit on the number ¢ of colluding corrupted
parties, which are in control of the adversary. This number is
commonly considered as either an honest majority (¢ < n/2)
or dishonest majority (n/2 < t < n). Protocols that use
secret sharing, such as GMW [25], BGW [6], and CCD [15],
as previously mentioned in Section 4, base their security on
an honest majority of parties. This is necessary, because if a
dishonest majority has shares to the secret in a (¢, n) threshold
scheme, it will be able to discover the secret. On the other
hand, garbling protocols such as Yao’s GC [55] and BMR [4]
achieve security against a dishonest majority. In the case of
Yao’s GC, this is the only meaningful adversarial scenario,
because an honest majority in 2PC implies that both parties
are honest, which is a trivial case.

Information-theoretical security differs from computa-
tional security in that the latter relies on computational in-
feasibility of breaking a problem, while the former is impos-
sible to break even by an adversary with unlimited computa-
tional power [42]. A protocol that assumes an honest major-



ity of parties achieves information-theoretical security [39],
whereas a dishonest majority implies a computational setting
[17]. However, with a dishonest majority it is still possible to
have an information-theoretically secure online phase, which
is the case of SPDZ [19; 46]. Passively secure linear secret
sharing (LSS) protocols typically offer information-theoretic
security, whereas 2PC schemes only offer computational se-
curity [3]: two examples of the former are BGW and CCD
[36; 27]. In particular, BGW uses Shamir’s secret sharing (cf.
Section 3.2), which, given a number of shares lower than the
threshold, provides no information on the secret.

5.2 Efficiency

In this section, we consider the efficiency of the protocols un-
der two aspects: round complexity and circuit representation.

Round complexity refers to how many rounds of communi-
cations are necessary between the parties to complete the se-
cure computation. A major difference exists between GC and
LSS based protocols, namely, that GC has a constant number
of communication rounds, whereas LSS has a number that
is linear in the (multiplicative [27]) depth of the circuit [3].
However, GC has a larger bandwidth of communication (the
entire circuit must be sent) [3], whereas LSS has low band-
width [46]. Hence, there exists a trade-off between bandwidth
and latency [21], where GC can perform better under high
latency [31], while LSS strongly depends on low-depth cir-
cuits and low latency to perform well [10]. Due to their low
bandwidth, protocols based on secret sharing achieve high
throughput [33]. A concrete comparison of Yao’s GC and
GMW was performed by Schneider and Zohner [51]. They
mention how Yao’s GC was believed to be more efficient
than GMW precisely because of its constant communication
rounds, besides fewer OT operations. The authors show that,
with optimizations, GMW is practical in semi-honest 2PC,
with some advantages over Yao against an active adversary.

Another area of comparison is between arithmetic and
Boolean circuits. The former are better to perform addition
and multiplication operations, whereas the latter are more
suited for comparison and Boolean operations and less ef-
ficient for arithmetic operations [48]. A more recent ap-
proach is to combine both types in so-called hybrid protocols
to achieve optimal efficiency [27]: three concrete examples
of this approach are Tetrad [33], Silph [16], and HyCC [10].
Nevertheless, switching between circuit representations is not
without costs: conversion protocols are used to translate be-
tween circuit representations, which, though under continu-
ous optimization, still contribute to the overall runtime. In
the case of Silph [16], the authors investigated the number of
conversions as an optimization problem.

5.3 Usability

In this section, we consider MPC protocols used in the con-
text of frameworks and real-world applications.

The first MPC framework created was Fairplay [41]. Itis a
system designed for two-party computation, which compiles
high-level code defined in a secure function definition lan-
guage (SFDL) into a Yao’s GC to be evaluated. The aim of
the authors was to translate theoretical secure function evalu-
ation (SFE) into a practical application. Fairplay can handle

both semi-honest and malicious adversarial models, but with
a difference in performance. FairplayMP [5] is an extension
of Fairplay supporting more than two parties. The authors
chose BMR as the base protocol, because it supports multi-
ple parties and has constant communication rounds indepen-
dently of the function, given that the communication rounds
were a major bottleneck. These two frameworks, along with
the above mentioned HyCC and Silph, consist of compilers,
designed to aid with the creation of circuits, which can be a
cumbersome and error-prone process [10]. They target users
without technical knowledge on cryptography and circuits, so
that secure computation becomes more accessible [10].

In its beginning, MPC was an area of theoretical interest to
researchers, but as protocols were improved and optimized,
MPC became an area of practical interest, with deployment
in real-world cases [45]. The first large-scale practical appli-
cation of MPC was a Danish sugar beet auction [9]. Previ-
ously, the importance of secure computation for auctions had
been explained by Naor et al. [44]. The authors of [9] used a
generic protocol based on Shamir’s secret sharing, with three
parties (servers) that computed on the encrypted data, along
with a large number of input parties (clients). The proto-
col is semi-honest secure for servers, and actively secure for
clients. The first use of MPC over a WAN (namely, the in-
ternet) was performed by Bogdanov et al. [8] in the context
of financial data analysis . A similar approach was used with
three servers, called data miners, and many clients. The au-
thors deemed a generic MPC framework (namely, Sharemind
1) beneficial, since new reports (inputs from clients) can be
added with relative ease. In another application, Damgard
et al. [20] used MPC to benchmark private data that were
shared between a bank and a consultancy house. These two
parties performed the computation, whereas the clients only
sent and received data. A specialized protocol (a linear pro-
gram solver) based on SPDZ was used for higher efficiency.
Due to the high round-complexity of SPDZ, the authors rec-
ommend having the two servers in the same data center to
minimize the communication overhead; however, doing so
facilitates a malicious cloud service (holding both servers) to
reconstruct the private data. Lastly, Lapets et al. [34] report
on a usage of MPC in investigation of wage inequality. The
collection of sensitive information (wages) raises ethical, le-
gal, and institutional concerns; hence, MPC was deemed an
appropriate solution to the problem. The authors desired a
protocol with low resource consumption, usability and ac-
cessibility. In particular, participants lacking computational
resources and technical cryptographic knowledge should be
able to participate. To satisfy these requirements, they used
an asymmetric client-server model where the servers alone
perform computations, but not clients, who have more lim-
ited computational power. Moreover, the tool was deployed
on the web for increased accessibility. They concluded that a
framework for secure data analysis using MPC is promising
for public research studies.

'https://sharemind.cyber.ee/



5.4 Functionality

Under this section, we consider the functionality of protocols,
first defining generic and specialized protocols, and then com-
paring the two types in the case of private set intersection.

Generic and specialized protocols differ in the functions
that they can compute: while generic protocols can compute
any function, specialized ones are built in such a way that they
achieve secure computation of a particular function or in a
particular problem [21]. The protocols presented in Section 4
are all generic: they achieve this generality by converting an
arbitrary function into a circuit, and evaluating that circuit
privately. On the other hand, specialized or custom protocols
can only solve a particular problem, and are often built on
the assumption that generic protocols are less efficient, an as-
sumption which was questioned in the work of Huang et al.
[28].

One particular problem that MPC protocols can solve is
computing the private set intersection (PSI). In this problem,
two parties want to discover the intersection of private sets
that they own, without disclosing any value that is not in
the intersection [36]. While generic protocols can be used
to solve this problem, specialized protocols have also been
developed to solve this problem in particular. One such pro-
tocol is explained by Lindell [36]: the idea is that the two
parties hash their values and compare their hashes, outputting
the values whose hashes are present in both sets. In another
instance, Ion et al. [29] present a specialized protocol to com-
pute the private intersection-sum-with-cardinality, which is
a PSI where one set has integer values associated with ele-
ments, and one wants to obtain the sum of these values of el-
ements in the intersection, besides the cardinality (size) of the
intersection. As noted by Pinkas et al. [49], while the most
efficient specialized PSI protocols are faster than generic pro-
tocol computing PSI by two orders of magnitude, the for-
mer present the downside that computing another function re-
quires changing the entire protocol, which might be difficult
or even impossible; likewise, hardening the protocol against
malicious adversaries may not be practically possible [21].
On the other hand, changing a circuit of a generic protocol is
easier. Hence, there can be a trade-off between efficiency and
flexibility depending on how much functionality a protocol is
able to compute.

6 Other Techniques

In this section, we describe four other techniques for comput-
ing on encrypted data and how they compare to MPC: fully
homomorphic encryption, oblivious RAM, structured encryp-
tion and trusted execution environments. In each subsection,
the description of the technique is followed by a comparison
with MPC in terms of its context, security, efficiency, usabil-
ity, and functionality.

6.1 Fully Homomorphic Encryption

A homomorphic encryption (HE) scheme is a cryptographic
primitive in which evaluating a certain circuit on plaintexts
gives the same result as decrypting the outcome of evaluat-
ing the same circuit with the corresponding ciphertexts [23].
In other words, considering a function f instead of a circuit,

f(z1,..2n) = Dec(f(Enc(zxy),..., Enc(xs)), where Enc
and Dec indicate encryption and decryption, respectively.
Encrypting both sides of the equation, Enc(f(z1,...,25)) =
f(Enc(zxy), ..., Enc(x,)), which is an alternative definition:
the encryption of the function taking plaintexts is equal to the
function taking the corresponding ciphertexts. As an exam-
ple, in an additive HE scheme, we have Enc(xy +...+x,) =
Enc(zy) + ... + Enc(zy,).

Compared to MPC, FHE presents a similar context: par-
ties computing arbitrarily on encrypted data [23]. FHE can be
used as a primitive for MPC: given a FHE encryption scheme
on the shares of the inputs, the parties can perform MPC by
locally computing on the shares [19]. The security models
of FHE are different than those of MPC: the former pro-
vides indistinguishability under chosen plaintext attack (IND-
CPA), with some schemes providing indistinguishability un-
der non-adaptive chosen ciphertext attack (IND-CCA1) [12].
Moreover, due to the public-key cryptography involved, FHE
cannot provide information-theoretical security, which some
MPC protocols can provide. In terms of efficiency, as ob-
served by Archer et al. [3], HE is very communicationally
efficient, only requiring communication to send inputs and to
retrieve outputs. Compared to MPC, FHE requires less in-
teraction, but this comes at the expense of computational ef-
ficiency, which is worse in FHE [16]. In the comparison of
Archer et al. [3], this inefficiency is also visible in the fact
that FHE solutions are not marked as market-ready (like GC
and LSS), but as an academic prototype. In terms of usabil-
ity, FHE, albeit theoretically appealing, is not competitive
in practice with more traditional MPC approaches [19]. Its
usage within MPC, HE comes with limitation, for example:
partly HE (such as BGW [6] with additive homomorphism of
Shamir’s secret sharing), semi-homomorphism with relaxed
requirements (as in BDOZ [7]), or somewhat HE with small
circuits (as in SPDZ [19]). Finally, the functionality of FHE
is the most generic, since, as already mentioned, it can be
used to arbitrarily compute on encrypted data, which entails
any possible function.

6.2 Oblivious RAM

Oblivious RAM (ORAM) is a technique designed for secu-
rity in the context of outsourced data storage, where a client
stores data on a remote server [53]. This server is untrusted,
and therefore the client would like to hide the data from it.
One option would be to encrypt the data stored: this is not
sufficient, because an adversary can infer information about
the data by looking at the access patterns, i.e., the blocks ac-
cessed by the client, and in which order they are accessed. To
hide these access patterns, ORAM shuffles and re-encrypts
data as they are accessed by the client. An ORAM scheme is
secure if the requests are performed correctly and if the access
patterns of two sequences of requests are computationally in-
distinguishable by anyone except the client.

Compared to MPC, ORAM presents a more specific con-
text, namely that of outsourced storage between one trusted
client and one untrusted server, whereas MPC considers the
more general case of any number of parties. A further differ-
ence is that ORAM is concerned with storage and use of data
rather than computation, which is the focus of MPC. In terms



of security, Gordon et al. [26] note that ORAM guarantees
only one-sided security, where the client is trusted and the
server is untrusted, with no security guarantees for the server
against the client. They provide a solution by using a 2PC
protocol to compute next ORAM instructions. On a similar
note, ORAM provides security against a semi-honest server,
but some constructions using server-side computation can
also achieve malicious security [2]. In terms of efficiency,
as also noted by Gordon et al. [26], a client performing a
query for an item stored in a server requires at least linear
complexity using a generic MPC approach, whereas ORAM
constructions can achieve sublinear complexity. The authors
provide a secure 2PC protocol in a client-server model using
ORAM in order to achieve sublinear amortized complexity.
Regarding usability, ORAM has been used in the context
of MPC to design secure computation frameworks. For in-
stance, Liu et al. [40] present a tool called ObliVM, which
allows non-specialist users to compile code into secure MPC
protocols, assuming a two-party semi-honest environment. A
requirement of this process is memory-trace obliviousness,
that is, hiding access patterns. One way to achieve this is
by requiring that all data in the code be stored and accessed
via ORAM: this is a generic and simple approach, but not
always the most efficient. Other approaches are specific for
certain algorithms and can outperform ORAM. The creators
of ObliVM present a middle approach, attempting to first use
the specialized solutions and falling back to ORAM when this
fails. Lastly, in terms of functionality, ORAM focuses on
hiding access patterns of read and write requests. As such, it
does not consider computing arbitrary functionality, as MPC
does.

6.3 Structured Encryption

Structured Encryption (StE) is a technique that allows private
queries on encrypted data [14]. The context is of cloud stor-
age, similar to that of ORAM: a client wants to store struc-
tured data on an untrusted server. Using encryption is not
a desired solution, because the data would lose their struc-
ture and would thus not be able to be queried efficiently. StE
presents itself as a solution that encrypts data in such a way
that they can still be queried, but without revealing any in-
formation about the query or data. A more specific notion is
searchable symmetric encryption (SSE), which can be seen
as StE for a private keyword search over encrypted docu-
ment collections, whereas StE can be applied to arbitrarily-
structured data. SSE aims at scalability with large sizes of
data: the techniques indeed achieve asymptotic efficiency, but
the practical performance is doubtful, due to factors such as
/O latency [13].

Compared to MPC, the context of StE is more specific, as
already noted for ORAM. The functionality of StE is there-
fore limited to performing queries on encrypted data, and
does not extend to arbitrary functionality like MPC. In terms
of security and efficiency, compared to other techniques such
as HE and MPC , Cash et al. [13] note that SSE aims at
practical efficiency, whereas the former techniques are highly
secure but not practically efficient. On a similar note, Chase
and Kamara [14] observe that, even though ORAM, 2PC, and
FHE could be used to achieve the functionality of StE, it is

preferable to seek non-interactive solutions, with at worst lin-
ear complexity in the length of the data. One visible example
of such a difference between the techniques is the leakages
that are present in StE schemes, such as of identifiers of doc-
uments that match a query, and the knowledge of repeated
queries, as noted by Cash et al. [13]. Here, the authors also
mention that that information could be hidden with the use of
private information retrieval or ORAM, but it is not clear that
ORAM is a competitive solution. In this trade-off between se-
curity and efficiency, StE focuses on practical efficiency and
allows for some insecurities (even in a semi-honest model) for
this purpose. Regarding usability, an interesting usage of StE
to develop a MPC protocol was shown by Agarwal et al. [1]
in the context of the already familiar PSI problem. Here, the
problem considered was of updatable PSI, where the two sets
grow or shrink over time, which happens for instance in on-
line advertisement applications. The aim of the authors was
to achieve a PSI protocol that supported arbitrary insertions
and deletions in constant round of communications and sub-
linear complexity of computation. A solution was developed
based on dynamic StE, which allows for such updates. A dif-
ficulty encountered by the authors was to limit the leakage of
the underlying StE scheme to a defined minimum, which in
this case they defined as the sizes of the update sets, whereas
nothing else is revealed to any party. For client-side queries,
a variation of ORAM was used, which leaks query equality
(if the same query was performed multiple times), unlike tra-
ditional ORAM.

6.4 Trusted Execution Environments

Trusted execution environments (TEEs) are a technique used
for secure outsourced computation [35]. Here, the context
resembles that of ORAM: a trusted client and an untrusted
provider. However, in this case, the focus is on outsourced
computation rather than storage, and the provider is a cloud
service provider (CSP) which grants computing resources to
the client. Traditional cloud models require full trust in CSPs,
so that they can control execution instances. This is an imped-
iment to the larger usage of outsourced computation with sen-
sitive data. Server-side TEEs present a solution to this prob-
lem by enabling confidential computation to protect sensitive
workloads. However, there is still trust involved: namely,
there is a trusted computing base (TCB) with all hardware
and software components that are in the security foundation.
Moreover, the hardware vendor is trusted by the client, which
means that TEEs only remove the intermediate trust link be-
tween the client and the CSP.

Compared to MPC, TEEs have a more specific context of
outsourced computation, where a trusted client and untrusted
server are involved. On the other hand, the functionality of
TEEs extends to any computation, and in this sense it is closer
to MPC than ORAM and StE. To consider security, efficiency,
and usability, we refer to a paper by Choid and Butler [18]
that presents a survey of MPC and TEEs techniques that could
be combined for increased performance. Related to usability,
they observe that MPC is not yet practical for most appli-
cations where real-time performance is necessary, especially
techniques based on FHE and LSS, whereas TEEs are on the
rise. This is connected to efficiency: TEEs may present an



opportunity to offload costs of MPC, since the former have
much faster execution without being tied to complex cryptog-
raphy. However, they note that combining the two is not triv-
ial: notably, their security assumptions and trust models dif-
fer. TEEs require additional security assumptions and a TCB,
whereas in cryptography (MPC), the assumptions are simpler.
In addition, care must be taken to avoid secret leakage when
communicating between trusted and untrusted components of
TEEs. The authors also point that defeating malicious adver-
saries could be done through remote attestation without cut-
and-choose, but this would give the hardware vendor control
over the attestation, meaning that it could perform a man-in-
the-middle attack. Despite these differences and challenges,
they point to preliminary works showing positive results in
using TEEs for MPC.

7 Responsible Research

In this section, we consider issues related to bias, research
integrity, reproducibility and replicability, and beyond the
project.

Bias is present in every research, albeit slightly, in the way
that researchers select papers and the extent to which they
faithfully describe the information from the papers. In this
literature survey, we attempted to use relevant and trustwor-
thy sources that provide the necessary information to answer
the research question. Hence, not all aspects of the field are
considered. In particular, we focused on a theoretical discus-
sion of the fundamental MPC protocols, rather than a bench-
mark of the newest developments in MPC frameworks. One
noteworthy thing is that many papers used in this review were
authored by the same individuals, who seem to be recurrent
authors in the field of MPC. This might indicate that other re-
searchers were left out of our paper selection, and their work
not sufficiently represented.

The issue of bias also connects to research integrity. The
sources used in this review were acknowledged, including in-
spirations used to explain the protocols. We also attempted to
faithfully transmit the information present in the papers, not
excluding any relevant information. This paper had no usage
of generative Al besides suggestions by Writefull, which is an
Al tool integrated in Overleaf. Licenses were not applicable,
since we did not work with code.

Reproducibility and replicability ensure that other re-
searchers can achieve the same conclusions presented in this
paper, by using the same data (reproducibility) or different
data (replicability). We believe that from the same papers se-
lected for this review, the same conclusions can be reached.
Furthermore, using the information given in Section 2, from
a different set of initial papers, one could likewise reach the
same conclusions, since they are agreed-upon ideas repeated
in many papers. One potential issue of the methodology cho-
sen for this paper is that papers were selected often arbitrar-
ily: the choice of papers was not conducted according to clear
rules, but by considering the relevance of one paper as per-
ceived by us.

Lastly, there are issues to consider beyond the scope of the
project. Namely, how could the conclusions presented here
be used by readers? Having a systematic comparison of MPC

protocols has beneficial aspects, for instance, helping devel-
opers to know which protocol or technique to use in which
circumstances. Nevertheless, it will also benefit malicious
users, who can easily learn which protocols are insecure and
why; for example, which protocols are only semi-honest se-
cure, or which protocols only provide computational security
based on hardness assumptions. These considerations relate
to the more fundamental question of whether public knowl-
edge of vulnerabilities is beneficial or detrimental to security.
While we do not attempt to fully answer this question, we fol-
low Kerckhoff’s principle that security should not be based on
secrecy of cryptographic protocols, but rather of keys.

8 Conclusion

In this paper, we reviewed fundamental MPC protocols and
compared them in terms of security, efficiency, usability and
functionality. Moreover, the differences of the protocols were
evaluated according to their categories. MPC was also com-
pared to four other techniques for computing on encrypted
data, considering their differences, similarities, and how they
can be combined.

A number of conclusions could be gathered from this re-
view. Regarding specialized protocols, they can outperform
generic ones for certain tasks, but they are less flexible to
extend and adapt, for example to compute (even slightly) dif-
ferent functions. Some specialized protocols were used in
real-world applications, while in other cases, generic pro-
tocols were used, but all of the latter with a client-server
model. Regarding adversarial model, a semi-honest model
is weaker, but more efficient than a malicious one. Related to
this fact, semi-honest protocols can be converted into mali-
ciously secure versions of them with techniques such as cut-
and-choose, but these results in extra costs on the complexity
of the protocol. Regarding efficiency, some protocols can be
optimized using protocol-specific techniques, and these have
contributed to making MPC usable in practice. A comparison
between MPC protocols is shown in Table 3.

Lastly, Tables 4 and 5 present a comparison of MPC with
the four other techniques for computing on encrypted data.
MPC stands on the side of generality and guaranteed se-
curity, whereas other techniques are more practically effi-
cient. Moreover, MPC is quite flexible and can involve more
choices than other protocols: the thread model can differ, as
well as the efficiency, the generality of functions to be com-
puted, the number of parties, etc. Part of these choices were
surveyed in this paper.

For future work, further MPC protocols could be included
in the comparison, such as BDOZ [7], SPDZ [19], etc. More-
over, one could consider more fine-grained security models
including protecting against covert adversaries (who lie in be-
tween active and passive), adversarial mobility (static, adap-
tive or mobile), as well as fairness and guaranteed output de-
livery [47]. Efficiency could also be more thoroughly con-
sidered in terms of asymptotic vs. concrete efficiency, and
protocols that focus more on one rather than the other.
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Table 3: Comparison of MPC protocols, inspired by table in [27]. The traits considered fit under the four characteristics discussed in
Section 5. A filled circle (black) indicates affirmative, and an unfilled circle (white) indicates negative. A half-filled circle under maliciously
secure indicates that the protocol can be made malicious-secure with extensions (like Yao’s GC) or in specific cases (like BGW with no
more than one third of corrupted parties). The labels under practical usage were decided based on the practical applications discussed in
Sections 5.3 and 5.4.
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