
Finding most used software application
by using a time-dependency graph

Alexandru Dumitru
Supervisor(s): Georgios Gousios, Diomidis Spinellis

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
22-6-2022

Abstract

Using open-source packages when developing soft-
ware applications is the general practice among a
vast amount of software developers. However, im-
porting open-source code which may depend on
other existing technologies may lead to the appear-
ance of a transitive dependency chain. As a result,
failure of packages with a high amount of transitive
dependants may have an impact on the performance
of all dependant applications. This work focuses on
designing a graph data structure which maps the de-
pendency relationship between packages as edges,
with nodes representing a single version of a cer-
tain package. Moreover, the data structure may per-
form queries based on time intervals, being able to
resolve versions in the same manner as a package
distributor would. By constructing such data struc-
ture, an analysis of the most critical packages for
an ecosystem can be conducted. This paper looks
mainly into the Debian ecosystem, and searches for
applications which are most critical. Based on this
paper criticality evaluation, the package dpkg was
found to be both most critical and most used in
whole Debian’s package main repository.

I INTRODUCTION

A vast majority of open-source code can be imported effort-
lessly into software through different package managers such
as npm1, pip2 or Maven3. As a result, software engineers are
greatly encouraged to use already existing tools in their code.
However, depending on existing packages may not be as risk-
free as one may consider it to be. Recent studies have re-
vealed that there is a high increase in the number of transitive
dependencies between packages in programming languages
such as Java or Javascript, which may lead to programmers
adding vulnerabilities or conflicting software unintentionally
[14].

Consequently, the rise in the number of transitive depen-
dencies leads to the appearance of so-called ”fragile” pack-
ages, which may result in high vulnerability issues [10]. In
the past few years, multiple renowned cases of dependency-
network failures have emerged, such as:

• The Equifax Data Breach incident, in which the data of
over 100.000 credit cards was leaked due to an outdated
dependency. Their system of handling credit credentials
was based on the Apache Struts framework. After a key
vulnerability patch was released by Apache Struts, the
developers highly encouraged the users to update their
dependency as swiftly as possible. However, the devel-
opers from Equifax failed to change the dependency in
time, thus leading to the data breach event [12].

1https://www.npmjs.com/
2https://pip.pypa.io/en/stable/
3https://maven.apache.org/

• The case of the Log4j library. In December 2021, the
Log4Shell vulnerability was discovered, which is esti-
mated to have affected around 4% of the Maven Central,
either through direct or transitive dependencies. The
vulnerability allowed the attackers to execute code re-
motely by injecting a string directly into the Log4j li-
brary [13].

In addition, these issues may affect and disrupt software
at build or run time. Research has shown that, in C++ and
Java ecosystems, the most common reason why application
fail at run time is dependency related, making up for around
52.68%(C++) or 64.71% (Java) of total cases [20].

As it can be seen, identifying critical packages and soft-
ware dependencies is imperative for assuring that future de-
veloped software works as intended when using imported
code. Figure 1 generalises the main problem of transitive de-
pendencies. Suppose at timestamp T1 the package A1.1 is re-
leased. Then, at timestamp T2 the package B1.1 is deployed,
depending on A1.x, which will always select the highest de-
pendency of A. As there is only one version of A at T2, B1.1

will depend on A1.1. However, at T3, as a new version of A
is released, B will change its dependency from A1.1 to A1.2.
Subsequently, a new package C1.1 is deployed at T4, which
depends on B. As it was established before that B depends
on A, C depending on B means that C will also depend on
A. Presumably, at T5 the new version A1.3 is deployed. The
release will force both B and C to update their dependency.
As progressively more versions are deployed, tracking each
constraint becomes a convoluted task.

Figure 1: Graph displaying the transitive dependency problem. The
edges represent the dependency relationship between packages.

The scope of this research is to build a time dependency
graph in which the dependency relationship between soft-
ware packages is being displayed. By doing so, critical ap-
plications can be easily identified and analysed. In order to
reach this goal, 3 main research questions have been pro-
posed, which are going to be addressed in this paper. The
main questions are:

• RQ1: What would a graph data structure for pack-
age dependency look like?

• RQ2: Does the introduction of time increase the pre-
cision of the data structure?

• RQ3: What are the most critical software applica-
tions?

The first 2 questions deal with the actual implementation of
the data structure, while the third one will use the data struc-
ture to analyze the criticality of software applications. Ques-
tion 1 will answer and provide the implementation details of
the data structure, whereas Question 2 will analyze the im-
pact of time with regard to the precision of the transitive de-
pendencies.

In the following sections, the Background of the problem
will be firstly presented and established. Subsequently, the
main Methodology will be presented, including the work be-
hind gathering data and implementing the temporal graph
data structure. Afterwards, in the Results section, the out-
come of the data structure results will be included and re-
flected upon. Finally, there will be a section regarding the
Responsible research conducted during this study, followed
by a Discussion section and concluding with the general Con-
clusion of the paper.

II BACKGROUND

A Terminology

Before going further, certain terms must be defined in order
ensure the clarity of the paper. Therefore, this section will
clearly explain the most relevant terms for this work.

A package represents a piece of distributable software,
which may contain either executable code or source code.
Packages that contain source code are called libraries. The
code inside libraries needs to be compiled first in order to
be executed. Their main objective is to allow developers to
share modular code, meant for code reusability. Contrast-
ingly, packages which contain executable code are defined as
software applications, and can be executed without the pro-
cess of compilation.

When a software imports and uses a package, a direct de-
pendency between those 2 emerges. However, if the parent
(the package that is depended upon) has other dependencies
on its own, then the relationship between the child (the de-
pendent package) and those dependencies is called transitive
dependency.

A network of packages and dependencies may be called
a package dependency network(PDN). When the element of
time is inserted into this system, it may be called temporal
package dependency network(TPDN). The advantage of us-
ing TPDN’s instead of PDN’s is that, given a timestamp, the
structure may represent the latest dependency graph structure
available for that time interval.

B Related Work

In this section, related work relevant to the subject will be
presented and discussed. Similar efforts have already been
achieved in this field, thus analysing them may present an-
other perspective of the problem.

The website Libraries.io [4] collects package data con-
taining dependencies, dependents and version from multiple

package distributors such as npm, Maven and pip. Never-
theless, due to how the dependencies between different pack-
ages are stored and distributed, it is difficult to track how dif-
ferent dependencies change through time (recall the problem
described in Fig 1). Therefore, while the data provided by Li-
braries.io may be useful when inspecting the most used pack-
ages, it does not provide the relevant information to build a
TDPN, which is the scope this work.

Implementing graphs which have a temporal element is a
relative new field. This subject is addressed in [21]. This
work presents different approaches of how one could imple-
ment a temporal graph. The approach that will be considered
and presented in this work is similar to the snapshot graph
model described in the paper previously mentioned. The
snapshot graph model considers a temporal graph to be a sub-
set of static graphs that have different edges drawn, depending
on the time variable. Given time t, the snapshot will select the
tth static graph. Nonetheless, this model faces drawbacks as
well. The main disadvantage described is the vast amount of
space needed to store each version of the static graph that is to
be used. As mentioned previously, a similar approach based
on time intervals will be described in this paper, which can be
found under section III.

A similar implementation of a TDPN structure can be seen
in [8]. The paper looks on how to create a snapshot of the
Maven Repository represented by a dependency graph. The
snapshot of the repository is taken on the 6th of September,
2018. The JVM repository around that date was estimated to
include around 2.8 million artifacts. Currently, the size of the
JVM is around 9 million artifacts, and can be tracked here4.
The main limitation of this work however, is that querying
dependencies may return conflicting ones. Therefore, the pa-
per claims that ”some metrics like libraries usage and depen-
dencies may not reflect the reality”. The structure of a TDPN
should always resolve to the right dependencies given a time
interval. As a result, the paper described does not solve the
main issue presented here. Nevertheless, the paper provides a
custom Neo4j Docker image with the whole data set mapped,
containing example queries, which may be used as guidance
for this work.

Finally, the Ultimate Debian Database (UDD) should be
mentioned [15]. The project aims to deal with the ’data hell’,
by providing a SQL warehouse database which aggregates
debian packaging data. By its nature, it cannot be used to
solve the problem describe in this paper, however data from
their service may prove to be useful for our case.

III METHODOLOGY

As previously described, the base approach to solve the prob-
lem previously considered in this paper is to create a TPDN
based on a graph data structure, in which the nodes would
represent the actual package, and the edges would depict the
dependencies between them. This section will delve into the
main steps taken during the research to implement a TPDN.
The process of developing the data structure can be split upon

4https://search.maven.org/stats

https://search.maven.org/stats

two main phases: gathering relevant data to populate and test
the structure and developing the actual time dependency net-
work.

A Research clarification

Before presenting the phases of the methodology, a succinct
description of each Research question will be given, to clarify
their role in this work.
RQ1: As seen in Section II, there are only scarce infor-
mation regarding the implementation of TPDN’s, especially
when dealing with the dependency hell [11]. Therefore, the
paper will provide details regarding how the data structure is
implemented, and how the element of time is being consid-
ered in its ecosystem.
RQ2: As this research questions argues that the introduction
of time will increase the precision of the structure, there needs
to be a certain procedure to check for the precision of the re-
sults. Firstly, by precision it is meant that the data structure
reflects the ground truths assuredly. Thus, a way to measure
the precision of the data structure would be to compare the
results with other existing verified sources.
RQ3: The final scope of this paper is to find the most crit-
ical software application. In order to measure the criticality
of one package, the PageRank5 algorithm will be used, in ad-
dition to other main factors, such as popularity(measured by
download count) and known vulnerabilities/bugs.

B Data Collection

Meta-data regarding packages was collected by my peers
from 4 main package distributors: npm, Maven, Pypi and De-
bian package manager.6The meta-data contains information
regarding the dependencies, release dates and release versions
of each package. The structure of the aggregated data can be
seen in Fig 2. However, the scope of this research is to iden-
tify critical applications, which means that a way to filter out
libraries from the gathered data must be determined. In or-
der to check whether or not the package contained a library
or an actual application, the approach chosen was to identify
the packages that install binary files, by checking the /bin
directory.

For the Debian package manager, the command
apt-file -l search /usr/bin was used to find all
binary packages which contain files under the /usr/bin
directory. Furthermore, in order to remove remaining
libraries that may have auxiliary binaries, a filter based on
the tag of the package was executed. The filtering checks
if the package is tagged as a shared library, and removes
the packages that satisfy this condition. As a result, the
remaining packages are classified as a software application.

For the other package distributors, the Debian data col-
lected was used as a superset to find applications in specific
languages. The main Debian repository hosts the data regard-
ing packages per language. As example, for Python, the list

5https://neo4j.com/docs/graph-data-
science/2.1/algorithms/page-rank/

6https://www.debian.org/distrib/packages

of all Python related packages can be found here7. Therefore,
in order to find applications related to another programming
language, it is sufficient to perform a difference set operation
between the set of applications found antecedently in Debian,
and the set of packages which are grouped under the program-
ming language inside Debian’s main repository.

However, in order to find past applications, older versions
of Debian must be checked. For the scope of this research, the
stable, oldstable and oldoldstable were used to gather data for
each programming language mentioned above.

Figure 2: Structure of the aggregated data

C Graph Structure

In order to model the dependency relationship’s between
packages, a directed graph-like data structure was chosen,
where each node represents a version of the package and each
edge denotes that there exists a dependency between 2 pack-
ages. The main reason behind choosing to represent a node
as a package version instead of an actual package is that mul-
tiple versions of the same package may be needed at a certain
timestamp. When querying the structure, a time interval will
be given, which will be used to select the edges that corre-
sponds to the latest correct version of the parent node. An
example can be seen in Figure 3, where 3 versions of the
package A exists. Package B depends on the latest version
of A1.x, thus there are 3 edges from node B to node A. At
query time, depending on what time interval is given, the edge
analogous to the latest version respecting the interval will be
selected as the corresponding dependency.

The data structure was implemented in Golang8. This pro-
gramming language was firstly recommended by the supervi-
sor to be suitable for the task. Some of its main benefits can
also be found in [9]. For the implementation of the nodes, the
package gonum9 was used, which provided an interface for
creating simple directed graphs with unique ids. For the pur-
pose of reducing the amount of information stored inside the
data structure, a map was used to associate the id of the node
with the actual object that meta-data. The object structure can
be seen in Figure 4. As it can be observed, the object holds 5

7https://packages.debian.org/bullseye/python/
8https://go.dev/
9https://pkg.go.dev/gonum.org/v1/gonum/graph

https://packages.debian.org/bullseye/python/

Figure 3: Graph displaying multiple versions of package A and how
the dependency between B and A is represented

fields. The id field is the node id generated by the gonum li-
brary, which creates an unique number identifier to each new
node. The name and version field equate to the name and ver-
sion of the package which is represented by the node. The
timestamp field holds information regarding the release date
when the package was deployed. Finally, the isApplication
field holds a boolean value, which is used to mark applica-
tions apart from other existing packages.

Figure 4: The information of a node

Now that the node structure has been presented, the edge
construction will be discussed next. Edges are created based
on each package dependency. The dependencies can be found
in the aggregated data seen in Figure 2. One challenge that
comes with parsing the dependency is reading the semantic
versioning of each package. Different package managers may
have different semantic versioning syntax. As mentioned in
Section B, the data gathered for this research comes from 4
main package distributors, namely npm, Maven, Pypi and De-
bian package manager. Therefore, in order to parse the depen-
dencies of each package, the semantic version rules of each
package manager are needed to be checked. Python packages
adhere to the semantic versioning described by semver[17].
The version number of a package is formatted in the structure
of MAJOR.MINOR.PATCH, and the constraints are written with
comparison signs: <, >, =(Ex: "<= 1.0.0").

Debian, npm and Maven have different conventions, but
share similar formatting rules. The rules for Maven are
described in [16], whereas npm’s versioning rules can be
found in [1]. The main difference of Maven is that

it may use intervals to express dependency constraints.
For example, the constraint "<= 1.0.0" would be rep-
resented as "(,1.0]" in Maven. Regarding npm, the
main distinction is that the dependency constraints may
use the ˜(tilde) and ˆ(caret) characters. Concerning De-
bian, the rules for version naming can be found in [2].
Its main dissimilarity from the rest consists in the name
structure. The format which Debian packages adhere
is [epoch:]upstream_version[-debian_revision], as
oposed to the MAJOR.MINOR.PATCH, which is used by the
other package distributors.

In order to parse the semantic versioning of the dependency
constraints, the library semver10 by Masterminds was used.
The library provides an interface to parse semantic versions
and constraints which adhere to the rules described in [17].
In addition, it is also able to recognise and correctly interpret
npm’s specific characters, ˜ and ˆ. For Maven specific con-
straints, a translator was implemented which transforms the
Maven-specific syntax into syntax which can be parsed by the
semver library. Regarding Debian packages and constraints,
the same approach could not be repeated. As Debian pack-
ages follow different semantic rules, a separate interpreter
was implemented, which could parse Debian package names,
in addition to the constraint semantic. The implementation
was based on the one found in [19].

As the structure and functionality of TPDN was pre-
sented, an answer to RQ1 can now be formulated:
A TPDN is defined as a directed graph G = (V,E), where
V represents the set of all package versions and E represents
the set of all time-dependent edges. An edge e = (av1 , bv2)
represents that there exists a direct dependency between ver-
sion v1 of package a and version v2 of package b. Given a
time interval [ti, tj], e(av1 , bv2) ∈ E[ti,tj] if and only if:

1. v1 and v2 are the latest released versions of a and b, with
regards to [ti, tj]

2. e is the only edge which maps a to b

As a result, given a time interval [ti, tj], a TPDN will return a
static graph which reflects the dependency network through-
out the period given.

IV RESULTS

In this section, the main results of the research conducted will
be presented and discussed. Consequently, a validation of the
results will be shown, in order to ensure the integrity of the
work done.

A Graph Construction

A total of 86376 packages were collected from the Debian
repositories. From those, 15807 packages were marked as ap-
plications, by using the criteria described before in the Data
Collection section. Due to the fact that, as of now, packages
which were published before 2015 are archived, it is impos-
sible to perform the same check to find applications, as the

10https://pkg.go.dev/github.com/Masterminds/semver/v3

file-paths of the packages are unavailable . Therefore, all data
presented here will have the earliest timestamp set in 2015.

When building the Debian graph, around 250k nodes were
created, each of them representing a certain version of a cer-
tain package. The edge count linking the nodes was reported
to be around 5.5million. Figure 5 shows a picture of the whole
Debian environment, generated by Graphia11. The image was
generated by a .dot file, created from the graph constructed.

Figure 5: Visual representation of Debian’s graph

B Precision & Validation

In order to check the precision of the described data struc-
ture, multiple queries were performed, and compared to the
results returned by the apt repositories. One may check
the dependencies of a package in a Debian system by call-
ing apt depends ’pkgname’. Therefore, a first check will
be to see if the dependency requirements are parsed as ex-
pected. The package curl - 7.74.0-1.3+deb11u1 was
used as a benchmark. Table I shows the direct dependencies
requirement of the package curl, and how the graph structure
resolves its prerequisites. As it can be observed, all versions
returned by the TPDN actually adhere to the rules implied by
the dependency requirement. The results were generated by
performing a Breath-First Search, starting at a node provided
by input(curl in this case), and returning a list of all nodes
found, which corresponds to the list of direct and transitive
dependencies of the package.

However, the results show in Table I do not take time into
account. As a TPDN allows to query the structure given a
time interval, more precise results can be obtained. In order
to find the actual versions which the Debian package manager
chooses, a query based on the latest dependencies available
must be done. This can be achieved by performing a Breath-
First Search, in addition to executing a filtering and selecting
only the latest version which satisfies the time constraint. The
marked versions in Table I shows which versions will be se-
lected based on the given requirement. In addition, it only
selects the most recent version which satisfies the time con-
straint. Thus, this results genuinely reflect the versions which
are chosen by the Debian package manager.

The number of transitive dependencies returned by the data
structure must also be compared to the results returned by De-
bian’s package manager. Therefore, the accuracy of the data

11https://graphia.app/

Table I: Curl dependency requirements and the resolved versions
returned by the TPDN.

Dependency Requirement Resolved Versions

libc6 (>= 2.17) 2.19-18+deb8u6
2.31-13+deb11u3
2.28-10
2.24-11+deb9u3
2.31-13+deb11u2
2.24-11+deb9u4
2.24-11+deb9u1
2.19-18+deb8u1
2.19-18

libcurl4 (= 7.74.0-1.3+deb11u1) 7.74.0-1.3+deb11u1
zlib1g (>= 1:1.1.4) 1:1.2.8.dfsg-5

1:1.2.11.dfsg-1
1:1.2.11.dfsg-2
1:1.2.7.dfsg-13
1:1.2.8.dfsg-2+b1

Table II: The final versions of curl dependencies chosen by TPDN
based on the latest timestamp possible.

Package Accuracy score

curl - 7.74.0-1.3+deb11u1 0.91
dpkg - 1.20.9 0.95
apt - 2.2.4 0.84
perl-5.32.1-4+deb11u2 0.87

structure will be computed next. We define accuracy as [18]:
Let:

• A be the set of transitive dependencies resolved by De-
bian package manager

• B be the set of transitive dependencies resolved using
the implemented algorithm

• E be the number of dependencies that have a correct
name but incorrect version

We calculate the accuracy of the algorithm by this formula:

Acc =

{
1− |A|−|(B∩A)|+0.5∗E

|A| , if A ̸= 0

1, otherwise
(1)

To evaluate the overall accuracy of the data structure,
the accuracy of 4 packages which contain applications will
be computed. In order to get the list of transitive dependen-
cies from Debian, the command apt-rdepends ’pkgname’
will be used, which searches recursively for all dependencies
of the package provided as input. In Table II, the results
computed can be observed. The average of the results is
equal to 0.8925. From the Debian dataset, some new package
versions were missing, thus impacting the overall score.
For example, the gcc-12-base was a recurring package
returned by the Debian resolver when querying for transitive
dependencies. However, the latest version in the data set was
gcc-10-base, thus lowering the accuracy score. Neverthe-
less, most versions returned by the TPDN coincided with the
ones solved by the Debian package manager, resulting in a
relatively high accuracy score.

As we have seen that effect of introducing time in a query
on a TPDN structure, a clear answer for RQ2 can now be
given:

By introducing a time interval to a query, a TPDN is able to
resolve the version which a package manager will also choose
at the specific time. Thus, we can say that adding the element
of time does indeed increase the precision of the data illus-
trated, as it correctly reflects the state of the package network
at the given timestamp.

C PageRank

In order to find the most relevant packages which contain ap-
plications, the PageRank algorithm was used to rank them.
Before applying the algorithm, each dependency was re-
solved to only consider the latest version of a package, lead-
ing to the graph being pruned. The top 10 results sorted de-
creasingly by the PageRank Score can be observed in Figure
6. As PageRank is a non-deterministic algorithm, multiple
results may appear when running it on the same data sam-
ple. Thus, the results seen in the plot represent an average
of 5 different PageRank sessions. The same ranking between
packages was always maintained for each result returned by
PageRank.

Figure 6: Pagerank Score of the top 10 packages which contain ap-
plications

In addition, multiple PageRank sessions were applied
to observe how the ranking of the most popular packages
would evolve through time. Figure 7 plots the ranking of
the most popular packages, from 2016 to 2022. For each
year, a PageRank algorithm was applied on the time interval
[2015, 20xy], to find the most popular packages in that frame
of time.

The main trend that can be observed is how the package
nodejs becomes more relevant (according to PageRank val-
ues), as time goes on. An argument for this tendency may be
that Javascript became a prominently used language in the last
few years, ranked as the most used programming language for

the 9th time in 2021 by Stack Overflow users [7]. As nodejs
is a package vital for a vast amount of Javascript application,
it seems natural that its PageRank score increases, as more
Javascript packages are released.

Figure 7: Evolution of the top 5 packages through the years

First and second place are predominantly switched be-
tween the package dpkg and perl. Both represent crucial
packages needed by the Debian ecosystem. The package
dpkg installs the actual package manager for Debian, which
is responsible for installing, updating and deleting packages
from the system. Therefore, it is expected to see this pack-
age ranked the highest by PageRank, due to its role in the
Debian architecture. Regarding perl, some amounts of De-
bian’s core functionality are written using this language, in
addition to many other libraries and applications [6]. As a re-
sult, perl represents a core package for Debian’s ecosystem,
which explains its high PageRank score.

Finally, both binutils and debconf can be seen to have
an almost constant ranking throughout the years. Both pack-
ages contain major programs needed to run and execute other
applications installed. The package binutils contains a
bundle of applications needed to ”assemble, link and manip-
ulate binary and object files” [5], whereas debconf holds
a configuration management system for Debian packages.
Consequently, both have a constant high PageRank score
throughout the whole time interval chosen.

D Criticality evaluation

As seen in the previous section, the PageRank algorithm may
provide a fine ranking between packages. However, there ex-
ists other factors which may increase or decrease the critical-
ity of a package. For the scope of this work, two other factors
will be considered to evaluate the criticality of Debian appli-
cations, namely their priority and their popularity count.

Priority can be measured by the tag given to a package.
Each Debian package has a priority tag corresponding to how
vital the package is for the system. There are 4 possible
tags: required, important, standard and optional. The order in
which they are listed corresponds to their importance. Pack-
ages tagged as required or important may, as a result, have a
higher criticality than packages tagged as optional.

Table III: Priority and Install count measurements of the top 5 pack-
ages ranked by PageRank

Package Name PageRank Score Priority Tag Install Count

dpkg 0.004574 required 205719
perl 0.004186 standard 204012
nodejs 0.003851 optional 32892
binutils 0.003759 optional 134730
cpp-10 0.003624 optional 72852
debconf 0.003021 required 205720

For the popularity count, the Debian Popularity Contest
results will be used [3]. The project aims to track statis-
tics regarding the install, usage and upgrade count of Debian
packages. However, Debian users are required to give their
consent by installing the package popularity-contest, in
order to participate in the survey. Thus, the data collected
represents only a subset of the actual figures. Nevertheless,
it can still serve as a benchmark for comparing the criticality
between different applications.

Table III shows the priority tag and install count of the
top 5 packages ranked by PageRank. In order to assess
their criticality, both priority and installation count should
be taken into account, besides the PageRank score. Thus, a
criticality formula which takes into account these 3 variables
must be formulated.

Let:
• PR(p) be the normalized PageRank score of the pack-

age p

• I(p) be the normalized installation count of the pack-
age p

• wpriority(p) be the weight of the priority tag, which
can be a value from the set {1, 0.75, 0.5, 0.25}, de-
pending on p’s priority.

The criticality of a package could be evaluated as:

Cr(p) =

(
1

2
PR(p) +

1

2
I(p)

)
· wpriority(p)

In order to normalize the PageRank and install count val-
ues, the formula

xn =
x− xmin

xmax − xmin

will be used. For both PageRank and install count data sets,
xmin = 0, thus the normalization will only consists of divid-
ing every element by their respective xmax. The maximum
value for the PageRank is equal to 0.004574 and is achieved
by dpkg, whereas the maximum value for installation count
is reported to be 205725.

The results of the criticality formula can be seen in Table
IV. As it can be observed, the packages which have the high-
est criticality score are mainly the ones with high weighted
priority. Due to the fact that packages tagged as required
or important are vital not only for other packages, but also

Table IV: Criticality measurements of the top 5 packages

Package Name PR normalized Weighted Priority I normalized Criticality Score

dpkg 1 1 0.999 0.9995
perl 0.915 0.5 0.991 0.4765
nodejs 0.841 0.25 0.160 0.125
binutils 0.821 0.25 0.655 0.184
cpp-10 0.792 0.25 0.354 0.143
debconf 0.660 1 0.999 0.830

for the Debian’s main functionality, they have a much higher
criticality value, even if their PageRank value may be lower.
Therefore, it can be seen that the package debconf has the
second highest criticality score, even if it has a lower PageR-
ank score. Packages such as nodejs which have a high
PageRank score but a low weighted priority are expected to
have a lower criticality score, due to them not being as needed
for the system’s main functionalities.

By performing this analysis, an answer to RQ3 can now
be given:

By the definition of criticality used in this paper, the most
critical applications found in the Debian ecosystem are dpkg,
debconf and perl. These packages are most critical for
the Debian ecosystem, as multiple core functionalities of the
system are based on them. Moreover, a high amount of op-
tional packages depend on them, as reflected by the PageRank
score.

V RESPONSIBLE RESEARCH

In this section, the reproducibility of this work will be dis-
cussed, next to the ethical aspects involved during the re-
search.

A Reproducibility

All data gathered can be obtained in the same manner as de-
scribed earlier in Data Collection section. The requirements
for obtaining the relevant data is a Debian-based Linux sys-
tem, which can access the Debian repositories through apt or
dkpg commands. Regarding the implementation of the graph,
the Graph Structure section should provide all information
needed, for one to be able to implement a similar TPDN struc-
ture in any other programming language. Finally, for all plots
which illustrated resulting data, the library matplotlib was
used to produce the results shown. All code used in this re-
search is open-source, and can be seen here.

B Ethical Aspects

The research conducted and described in this paper has over-
all presented minimal ethical risks. All information gathered
from outside sources has been rightfully accredited, through
the use of references, footnotes, and adhering to the licences
published by the free software used. Regarding the field of
studies, as no human interaction was required to perform this
research, no human related ethical issues emerged.

https://github.com/AlexDumitru17/SoftwareThatMatters

One final aspect which could have risen the ethical risk
was the data acquisition. In order to avoid legal concerns,
only data regarding the main division of Debian packages was
gathered. Two more divisions exists, namely contrib and non-
free, but the packages inside them do not follow the DFSG
(Debian Free Software Guidelines) or they depend on pack-
ages which do not adhere to those rules.

VI DISCUSSION

This section is dedicated mainly towards the main limitations
faced during the research conducted. Moreover, a few con-
cise remarks will be made about the results gathered in the
previous section.

A Limitation

One of the main technical limitation was not being able
to gather data before the year 2015. As Debian archives
their repository, is becomes harder to perform the applica-
tion check for packages in older repositories, as the filepaths
cannot be obtained as easily. In addition, as mentioned in
the previous section, only the main free division of Debian
packages was used as sample data. Perhaps gathering either
non-free or contrib classified packages would change the re-
sults obtained. Nevertheless, the results collected still reflect
the state of Debian’s application dependency infrastructure.

Another technical limitation faced during the research con-
sisted of the size and performance of the TPDN. When try-
ing to fit higher amount of data which came from popular
package managers, the graph would occupy a large amount of
memory. In addition, querying based on time interval would
take a considerable amount of time and computing power
to return the expected results. The main reason behind this
may be more at a design level. As TPDN creates a node for
each version of a package, and multiple edges per single de-
pendency, it becomes clear that memory becomes a funda-
mental problem, when trying to load a vast amount of inter-
connected packages with numerous versions. Thus, perhaps
this implementation of a TPDN structure may not be suitable
for fitting the entire data for popular package managers, like
npm, Maven or Pypi.

Finally, it should be mentioned that, in Debian, there are re-
lations between packages which are not modeled in the graph
structure. A notable example is the breaks relation, which
is used when 2 packages are not compatible with one an-
other. This relation is not modeled in the graph presented,
and there might be cases when a query returns a set of pack-
ages in which 2 are seen as incompatible.

B Results

The results obtained from this work have been mostly dis-
cussed in section IV. The main remark which can be made
is that the most popular applications in Debian are either
system-related(like dpkg or debconf) or are based on a cer-
tain popular programming language(perl or nodejs).

Regarding the criticality ranking, one final note could be
that the priority weight values may be changed to get differ-
ent rankings. As priority is a discrete value, it may be hard
to find arbitrary fair weights. For the scope of this paper, the
weights were chosen to emphasize the importance of applica-
tions which both have a high PageRank score, and are tagged
as required. In addition, time may also have a high impact of
the overall criticality of a package, by influencing its PageR-
ank score.

VII CONCLUSIONS AND FUTURE WORK

This paper has mainly looked into how to map the dependen-
cies of Debian packages which contain applications in a tem-
poral graph data structure. A general explanation of the struc-
ture of a TPDN has been presented, in addition to showcasing
how querying such a data structure functions. Moreover, the
paper presents how the introduction of time influences the
results returned by the graph data structure, reflecting the be-
haviour which package managers have when resolving depen-
dencies. Finally, the paper’s goal is to find the most impor-
tant software application, which is achieved by analysing the
Debian package ecosystem. The results show that the most
important Debian application is dpkg, followed by perl and
debconf, based on a criticality score which takes into ac-
count the PageRank score, the priority tag and install number
of packages.

There are multiple ways in which this work may be im-
proved. The main bottleneck of the TPDN has proven to be
memory, as larger amount of data would not fit into the struc-
ture. Thus, perhaps a way to reduce the number of edges or
nodes by grouping them would improve the performance of
the data structure. In addition, querying based on a time inter-
val could be improved or changed. The operation performs a
filtering action on the edges, by first disconnecting the edges
which do not respect the time interval. Subsequently, only
the edge which leads to the latest version corresponding to
the time interval is chosen, the rest being eliminated. In a fu-
ture iteration of this work, the process of choosing the right
edge should be rethought, to resolve the edges by not deleting
others. As of now, if an operation based on a time interval is
applied on the data structure, in order to use another query,
the user would need to restart the application and rebuild the
TPDN, which may take a considerable amount of time.

Nevertheless, the work presented in this paper could be
considered valuable for the field of package dependencies, as
it presents a new implementation of a dependency network,
which takes time into account.

REFERENCES

[1] About semantic versioning — npm Docs. https://docs.
npmjs.com/about-semantic-versioning/.

[2] Control files and their fields - debian policy manual
v4.6.1.0. https://www.debian.org/doc/debian-policy/
ch-controlfields.html#version.

https://docs.npmjs.com/about-semantic-versioning/
https://docs.npmjs.com/about-semantic-versioning/
https://www.debian.org/doc/debian-policy/ch-controlfields.html#version
https://www.debian.org/doc/debian-policy/ch-controlfields.html#version

[3] Debian popularity contest. https://popcon.debian.org/
index.html.

[4] Libraries - the open source discovery service. https://
libraries.io/.

[5] Package: Binutils (2.35.2-2). https://packages.debian.
org/bullseye/binutils.

[6] Perlfaq. https://wiki.debian.org/PerlFAQ.
[7] Stack overflow developer survey 2021. https://insights.

stackoverflow.com/survey/2021.
[8] Amine Benelallam, Nicolas Harrand, César Soto-

Valero, Benoit Baudry, and Olivier Barais. The maven
dependency graph: A temporal graph-based representa-
tion of maven central. In 2019 IEEE/ACM 16th Inter-
national Conference on Mining Software Repositories
(MSR), pages 344–348, 2019.

[9] John Biggs and Ben Popper. What’s so great
about Go? https://stackoverflow.blog/2020/11/
02/go-golang-learn-fast-programming-languages/, 11
2020.

[10] Alexandre Decan, Tom Mens, and Philippe Grosjean.
An empirical comparison of dependency network evolu-
tion in seven software packaging ecosystems. Empirical
Software Engineering, 24(1):381–416, February 2018.

[11] Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao,
Qingkai Shi, and Charles Zhang. Escaping dependency
hell: finding build dependency errors with the unified
dependency graph. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing
and Analysis, pages 463–474, 2020.

[12] Joseph Hejderup, Arie van Deursen, and Georgios
Gousios. Software ecosystem call graph for depen-
dency management. In 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering: New
Ideas and Emerging Technologies Results (ICSE-NIER),
pages 101–104. IEEE, 2018.

[13] Raphael Hiesgen, Marcin Nawrocki, Thomas C
Schmidt, and Matthias Wählisch. The race to the vulner-
able: Measuring the log4j shell incident. arXiv preprint
arXiv:2205.02544, 2022.

[14] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Di-
etmar Pfahl. Structure and evolution of package depen-
dency networks. In Proceedings of the 14th Working
Conference on Mining Software Repositories, MSR ’17,
pages 102–112. IEEE press, May 2017.

[15] Lucas Nussbaum and Stefano Zacchiroli. The ulti-
mate debian database: Consolidating bazaar metadata
for quality assurance and data mining. In 2010 7th IEEE
Working Conference on Mining Software Repositories
(MSR 2010), pages 52–61. IEEE, 2010.

[16] Brett Porter. Dependency Mediation and Conflict Res-
olution - Maven - Apache Software Foundation. https:
//cwiki.apache.org/confluence/display/MAVENOLD/
Dependency+Mediation+and+Conflict+Resolution, 01
2006.

[17] Tom Preston-Werner. Semantic Versioning 2.0.0. https:
//semver.org/.

[18] Andrei Purcaru. Analyzing the effect of introducing
time as a component in python dependency graphs,
2022.

[19] Romlok. Romlok/python-debian: Python modules to
work with debian-related data formats. https://github.
com/romlok/python-debian.

[20] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Ed-
ward Aftandilian, and Robert Bowdidge. Programmers’
build errors: a case study (at google). In Proceedings
of the 36th International Conference on Software Engi-
neering, pages 724–734, 2014.

[21] Yishu Wang, Ye Yuan, Yuliang Ma, and Guoren Wang.
Time-dependent graphs: Definitions, applications, and
algorithms. Data Science and Engineering, 4(4):352–
366, 2019.

https://popcon.debian.org/index.html
https://popcon.debian.org/index.html
https://libraries.io/
https://libraries.io/
https://packages.debian.org/bullseye/binutils
https://packages.debian.org/bullseye/binutils
https://wiki.debian.org/PerlFAQ
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://stackoverflow.blog/2020/11/02/go-golang-learn-fast-programming-languages/
https://stackoverflow.blog/2020/11/02/go-golang-learn-fast-programming-languages/
https://cwiki.apache.org/confluence/display/MAVENOLD/Dependency+Mediation+and+Conflict+Resolution
https://cwiki.apache.org/confluence/display/MAVENOLD/Dependency+Mediation+and+Conflict+Resolution
https://cwiki.apache.org/confluence/display/MAVENOLD/Dependency+Mediation+and+Conflict+Resolution
https://semver.org/
https://semver.org/
https://github.com/romlok/python-debian
https://github.com/romlok/python-debian

	Introduction
	Background
	Terminology
	Related Work

	Methodology
	Research clarification
	Data Collection
	Graph Structure

	Results
	Graph Construction
	Precision & Validation
	PageRank
	Criticality evaluation

	Responsible Research
	Reproducibility
	Ethical Aspects

	Discussion
	Limitation
	Results

	Conclusions and Future Work

