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Abstract
Electrical load forecasting, namely short-term load
forecasting, is essential to power grids’ safe and ef-
ficient operations. The need for accurate short-term
load forecasting becomes increasingly pressing
with increased renewable energy sources, which
are stochastic in their power supply. Most forecast-
ing models are focused on the temporal information
for predictions, ignoring the spatial information
of neighbouring houses. However, as neighbour-
ing houses are often under similar circumstances,
such as weather and holiday conditions, predictions
could benefit from this information. Moreover, ag-
gregating electric loads could further improve the
accuracy of predictions, as the loads become less
stochastic when aggregated. This paper looks at
Graph WaveNet, which can capture the hidden spa-
tial dependencies of different houses without need-
ing any prior knowledge about the houses, such as
geographic information. The framework is com-
pared against a baseline on different aggregation
levels. The results show that the framework can
benefit from aggregating the residential electrical
loads and improves over the baseline on all aggre-
gation levels.

1 Introduction
One of the challenges modern power grids face is an increase
in renewable energy sources, which are stochastic in their
power supply. This calls for accurate demand predictions to
provide an optimised supply. Due to the hierarchical nature
of power grids, high demand prediction performance at lower
demand aggregations allows for optimal performance. When
load forecasting is inaccurate, it can cause a vast financial
burden to a utility operating in time-ahead power markets.
An accuracy improvement of 1% is estimated to save a cost
of £ 10 million per year for the United Kingdom (UK) power
system [1].

When talking about the problem of load forecasting, there
are three different categories, depending on the forecasting
horizon: long-term (years ahead), mid-term (weeks to
months ahead), and short-term (minutes to hours ahead).
Short-term load forecasting (STLF) is often used to help real-
time energy dispatching [2]. However, accurate STLF can
be very challenging. Demand and supply uncertainties are
significantly impacting modern power grids, with renewable
energy sources providing a stochastic energy supply. These
sources rely on unpredictable factors like weather conditions.
At the same time, there is a sharp increase in the number
of electrical appliances demanding energy, such as electric
vehicles, making the power system increasingly complex [3].

Different types of methods have been proposed for
the STLF problem. These methods can be categorised
into statistical methods and machine learning methods.
Statistical methods such as autoregressive moving aver-
age (ARMA), autoregressive integrated moving average

(ARIMA), and exponential smoothing have been ap-
plied to short-term load forecasting (STLF) [4; 5; 6; 7;
8]. These statistical methods are low-cost and easily appli-
cable techniques to capture the mathematical relationships
between time series. However, these methods fail to re-
main accurate when a longer prediction horizon is needed
[9]. Machine learning algorithms can capture complex
non-linear relationships. Support vector regression (SVR),
kernel-based methods and feed-forward neural networks
(FNN) have shown successful application for STLF [10; 11;
12].

Furthermore, these machine learning methods are based
on capturing the temporal relationships between time series,
i.e. the historical data. They are thus unable to capture the
spatial relationships between different houses. There are
low-dimensional, sparse relationships between houses [13].
For example, houses in the same neighbourhood might have
similar loads as they experience the same weather conditions
and holidays. Houses can also have similar loads that are not
based on their geographical similarity, but they might have
the same electrical appliances and number of residents. For
this reason, non-Euclidean pairwise correlations might better
capture the similarities between houses, than Euclidean
pairwise correlations, such as geographic locations.

Research into capturing the latent spatial relationships
between houses is lacking. A data mining technique based
on knowledge discovery in databases (KDD) has been used
by Wu and Lu to capture the association between spatial
data and load changes [14]. The procedure automatically
determines the preferential ’scores’ of land use changes.
However, this technique uses additional information, such as
land use, to capture the spatial relationships between houses.

This paper will analyse the performance of a graph neural
network (GNN) based on the Graph WaveNet (GWN) model
at different aggregation levels [15]. Specifically, this paper
will focus on the following question: ’What is the aggre-
gation level at which a Graph Neural Network performs
optimally?’ Unlike other machine learning methods that
were previously used for electric load forecasting, the GWN
model does not need additional information besides the
historical loads. As this is often difficult to obtain in real-life,
GWN is easier to implement in real-life situations.

In section 4.4, we will compare GWN against an ARIMA
model. To compare the performances at different aggregation
levels, we will use the mean absolute error (MAE), the mean
absolute percentage error (MAPE) and the root mean squared
error (RMSE), as done in previous studies [16]. Then we will
also look at a detailed prediction of the model at different
aggregation levels. Finally, we will analyse the training times
of Graph WaveNet, compared to an ARIMA model.

2 Research background
In section 2.1, we will describe the ARIMA model. Then
section 2.2 will describe the GNN. Finally, in section 2.3 we



will talk about adjacency matrix determination.

2.1 ARIMA
In time series analysis, the autoregressive integrated moving
average (ARIMA) model is a powerful tool for STLF.
ARIMA is a versatile model that combines autoregressive
(AR), differencing (I), and moving average (MA) compo-
nents. The AR component captures the linear relationship
between the current value of the variable and its lagged
(i.e. prior) values. The MA component represents the linear
dependence between the variable and the residual error from
a moving average model applied to its lagged values. The
I component indicates the order of differencing applied
to the time series, which removes trends and seasonality.
Combining these components allows the ARIMA model to
capture complex dependencies within the temporal data.

Mathematically, the ARIMA model of order (p, d, q) can
be defined by the following equations:

φ(L)(1− L)dyt = θ(L)εt (1)

(1−
p∑

i=0

φiL
i)(1− L)d = (1 +

q∑
j=1

θjL
j)εt (2)

Yt = ϕ0 + ϕiyt−1 + ϕiyt−2 + · · ·+ ϕpyt−p

+εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (3)

Here, yt and εt and the real value and random error at the
tth time step, respectively. φi, i ∈ {1, 2, . . . , p} and θj , j ∈
{1, 2, . . . , q} are model parameters. p, d and q are positive
integers, referring to the model’s AR, I and MA components,
respectively.

2.2 Graph Neural Networks
Scarselli introduced the GNN [17]. The main intuition
behind the GNN is to model the data in a graph structure,
which allows the GNN to capture non-Euclidean relations.

A graph G = (V,E) is a set of nodes V , and a set of
edges E, where vi ∈ V represents a node and ei,j ∈ E
describes and edge from node vi to vj . The adjacency matrix
A describes the edges. A is an N ×N matrix, where N is the
number of nodes, with Ai,j = 1 if ei,j ∈ E and Ai,j = 0 if
ei,j /∈ E. A graph can also have node features X ∈ RN×D.
Here Xvi ∈ R1×D represents the feature vector of node vi,
and D is the total number of features.

Graph convolution is often used to extract information
in graph data due to its efficiency. Graph convolution
methods fall into two categories: spectral-based methods
and spatial-based methods. Spectral-based methods are
based on filtering graph Fourier modes or graph frequencies.
Spatial-based methods use the graph’s structure to update
each node’s representation. At each convolution, a central
node’s representation will be updated with the values of its
neighbouring nodes.

The diffusion convolutional neural network, introduced by
J. Atwood, is an example of a spatial-based graph convolution
[18]. Here, graph convolution is treated as a diffusion pro-
cess. Information is passed between neighbouring nodes by
certain transition probabilities, and after a certain number of
diffusion steps, an equilibrium in information diffusion is as-
sumed to be reached. The diffusion convolution, as described
by J. Atwood, is defined by:

Hk = Wk ⊙ P kX (4)

Here, P k = A/rowsum(A) ∈ RN×N is the probability
transition matrix, ⊙ is the element-wise product, X is the in-
put feature matrix, Hk is the hidden output of the kth diffusion
step and Wk ∈ RN×D is the learnable parameter of the kth

diffusion step. The final graph convolution is then given by:

Z =

K∑
k=0

P kXWk (5)

where Z ∈ RN×M is the output signal [19].

Recently, the GNN has shown impressive results in captur-
ing non-Euclidean pairwise correlations. Models combining
GNN and Recurrent Neural Network (RNN) techniques have
been applied to wind forecasting problems [9], and traffic
forecasting [20]. W. Lin has shown that a spatial-temporal
GNN, based on the graph WaveNet model, shows great
improvement over other forecasting algorithms, such as
FNN, RNNs such as long short-term memory (LSTM) or
gated recurrent unit (GRU) [15].

However, Lin looked at a limited number of aggregation
levels, 1 or 15. It has been shown that deep learning
(DL) techniques, including deep neural networks (DNN),
convolutional neural networks (CNN), LSTM GRU and
bidirectional LSTM/GRU perform differently at different
aggregation levels [21]. There has not been an investigation
into the performance of a GNN at different aggregation levels.

2.3 Adjacency Matrix Determination
Creating the adjacency matrix is essential for a GNN model
to perform optimally. The adjacency matrix can be created
using prior knowledge about the nodes. For example, the
pairwise geographical distance between the houses can be
used to create the adjacency matrix. However, as described
in section 1, pairwise non-Euclidean correlations might
better capture the relations between houses. A self-learnable
adjacency matrix would be preferable as it is difficult to
describe the non-Euclidean, low-dimensional relations
between houses.

The Graph WaveNet model, proposed by Wu, contains a
self-adaptive adjacency matrix to learn latent spatial depen-
dencies between nodes [20]. The self-adaptive adjacency ma-
trix is described as follows:

Aadp = Q2(Q1(E1E
T
2 )) (6)



Here, Q1 is the Rectified Linear Unit (ReLU) activation
function and Q2 is the SoftMax activation function, and E1

and E2 are the source and target nodes, respectively. ReLU
is used to eliminate weak connections. SoftMax is used
to normalize the self-adaptive adjacency matrix. The node
embeddings are learnable and are initialized randomly.

In the context of the GNN, the Aadp can be used to repre-
sent the transition matrix in equation 5. This means that our
graph convolution is now self-adaptive.

3 Methodology
First, section 3.1 will describe the step-wise algorithm used
to determine the ARIMA model parameters. Then, in sec-
tion 3.2 we will describe how the house-based graph structure
was represented. After that, we will talk about the two main
components of Graph WaveNet, the graph convolution layer
(GCL) and the gated temporal convolution network (GTCN),
in section 3.3 and section 3.4, respectively. Finally, in section
3.5 we will present the Graph WaveNet model.

3.1 Step-wise algorithm
In their paper, R. Hyndman and Y. Khandakar proposed a
step-wise algorithm for forecasting with ARIMA models
[22]. The algorithm provides an efficient way to traverse the
space of potential models to fit, arriving at the model with
the lowest Akaike Information Criteria (AIC) value.

The algorithm first considers four possible models and
selects the model with the lowest AIC value. Then, up to
thirteen variations of the ’current’ model are considered. If
a model with a lower AIC value than the ’current’ model is
found, this model becomes the new ’current’ model, and the
procedure is repeated. When we cannot find a better model,
the process finishes.

3.2 House Based Graph Structure
Usually, STLF problems look at houses separately to predict
the electrical load. Spatial-temporal load forecasting models
are trained with information on all houses to improve the
overall prediction of the model. Therefore, the spatial-
temporal electrical load forecasting problem can be seen as a
multivariate time-series forecasting problem.

Let Xt
i = [xt

i xt
i · · ·xt

N ] represent all historical val-
ues of features at the tth timestep for N houses. Here
xt
i = [xt,1

i xt,2
i · · ·xt,D

i ] are D features of the ith house at
the tth timestep. Thus the spatial-temporal electrical load
data of N houses with D features can be represented as a
three-dimensional array: [X1 X2 · · ·XT ] ∈ RN×T×D.

To embed this data into a graph G, each house is repre-
sented as a node, and each edge represents the connectedness
between two houses. Thus, G = (V,E), where V is the set
of all houses and E is the set of all edges. To efficiently
represent E, the adjacency matrix Aadp ∈ RN×N is used, as

Figure 1: The framework of the Graph WaveNet model [20].

described in section 2.3.

Given the definitions above, we can now formulate the
H-step look-back spatial-temporal electric load forecasting
problem as learning a function f :
RN×H×D → RN that maps historical electrical load data
{Xt−H+1, Xt−H+2, · · · , Xt} to the (t+ 1)th timestep. So:

f : {Xt−H+1, Xt−H+2, · · · , Xt, G} → Xt+1,d (7)

Here Xt+1,d is the dth feature for all houses at the (t+1)th

timestep.

3.3 Graph Convolution Layer
Graph WaveNet proposes a self-adaptive adjacency matrix
to learn the latent spatial dependency between nodes with or
without prior information [20]. The self-adaptive adjacency
matrix Aadp is learned end-to-end, using stochastic gradient
descent.

By replacing the transition matrix from equation 5 with the
Aadp as described in section 2.3, the graph convolution can
use the diffusion convolution method. This becomes:

Z =

K∑
k=0

Ak
adpXWk (8)

3.4 Gated Temporal Convolution Network
We used a GTCN-based model, a dilated causal convolution,
to extract temporal features of nodes [23]. We mainly used
the dilated causal convolution network because it uses a
non-recursive way to handle long-range sequences. This
allows for parallel computation. Additionally, this means
there will be no gradient explosion.

A gated TCN is used, as controlling the information flow
between layers has shown outstanding performance in the
past [24]. It allows the model to learn complex temporal fea-
tures.



3.5 Graph WaveNet
The framework of the Graph WaveNet model can be seen
in Figure 1. First, spatial-temporal information is extracted
by the GCL and TCN layers. Then, a graph WaveNet
framework is used to stack multiple spatial-temporal layers.
The framework uses a skip-connection mechanism to handle
spatial dependencies at different temporal levels.

The input data is first sent to a gated TCN, followed by a
GCL. The layer’s output is sent to an external module using
skip connections. This module then combines the final output
and integrates the individual outputs of the spatial-temporal
layers by ReLU activation functions and linear layers. This
results in the skip connection mechanism combining the
spatial dependencies at different time levels.

Our goal is hour-ahead load forecasting, using only his-
torical hourly electrical load data. So for an output X̂ ∈
RTout×N×D, the parameters are Tout = 1, N is the num-
ber of nodes at that aggregation level, and D = 1. We will
use the mean absolute error (MAE) as the training target of
the model.

4 Experimental Setup and Results
This section discusses the experimental setup and result.
Firstly, we will go into how the electrical data will be ag-
gregated. Then, we will describe the experimental setup and
model parameters. After that, we will go over the evaluation
metrics used. Finally, we will present the results.

4.1 Electrical Consumption Aggregation
A dataset that contains the half-hourly energy consumption
readings of 5,567 London households that took part in the
Low Carbon London project, led by the UK Power Networks
between November 2011 and February 2014, was used.
[25]. After selecting only the houses with complete readings
between 01-01-2013 and 31-12-2013, we were left with 2070
houses. As per previous studies, the hourly readings were
used, resulting in a dataset with 8760 entries for all houses
[21].

We then created the aggregated data using the hourly data
of the original houses oh = {1, 2, . . . , 2070}. The
oh were randomly selected to create six different aggrega-
tion levels al ∈ {3, 10, 30, 100, 300, 2070}. Here, the
value of al represents the number of oh elements. After
that, we generated six groups of average aggregated data
(G3, G10, G30, G100, G300, G2070), with a sample size
of gs ∈ {690, 207, 69, 20, 6, 1}, respectively. The formula
used to generate the groups of average aggregated data is:

xal
m =

∑al
n=1 xm,n

al
(9)

Here, m ∈ {1, 2, ..., gs} is the mth unique subset for ag-
gregation level al, n is the number of aggregated houses and
xm,n is the demand of each house in watt-hour per hour
(Wh/h).

4.2 Experimental Setup and Model Parameters
As described in section 4.1, the hourly data between 01-
01-2013 and 31-12-2013 of 2070 houses in London is
used. To create the train, test and validation set, the data
is chronologically divided, using a ratio of 0.7 : 0.2 : 0.1,
respectively.

Name Value
Batch size 64

Sequence of dilation factors (1, 2, 1, 2, 1, 2, 1, 2)
Drop-out rate 0.3

Epoch size 150
Layers of GWN 8

Learning rate 0.001

Table 1: Model parameters

Two variants of the Graph WaveNet model will be tested,
self-adaptive Graph WaveNet (Ada-GWN) and non-adaptive
Graph WaveNet (nonAda-GWN). Ada-GWN uses the learn-
able adjacency matrix described in equation 6. The adjacency
matrix of nonAda-GWN is the identity matrix. Thus it is not
learnable. NonAda-GWN only learns the temporal features
without using the graph convolution layer (GCL).

The parameters used to train Ada-GWN can be seen in
Table 1. We use eight layers of Graph WaveNet, with a
sequence of dilation factors (1, 2, 1, 2, 1, 2, 1, 2). We use
equation 8 with a dilation factor K = 2. The node embed-
dings are randomly initialized with a uniform distribution
between 0 and 10. We train our model with Adam optimiza-
tion and a learning rate of 0.001. Eight spatial-temporal
layers are used. A drop-out rate of 0.3 is applied to the output
of the graph convolution layer. The batch size is 64, and the
number of epochs is 150.

We implemented the GWN models using the PyTorch1 li-
brary on a desktop with an NVIDIA Quadro P1000 graphics
card, an Intel i7-8750H CPU and 16 GB memory.

4.3 Evaluation metrics
To evaluate the performance of our models, we will use the
mean absolute error (MAE), mean percentage error (MAPE)
and the root mean squared error (RMSE). The formulas for
these metrics are given in equations 10, 11 and 12.

MAE =
1

H

H∑
j=1

|ŷj − yj | (10)

MAPE =
1

H

H∑
j=1

| ŷj − yj
yi

| × 100% (11)

1https://pytorch.org/

https://pytorch.org/


(a) The MAPE errors

(b) The RMSE errors

Figure 2: The MAPE and RMSE errors of the models trained on all
aggregation levels.

RMSE =

√∑H
j=1(yj − ŷj)2

H
(12)

Here, ŷj is the predicted value at time j, yj is the corre-
sponding actual value, and H is the number of time steps.

4.4 Results
In this section, we will go over the results of our experiments.
We will first compare the performances of the models on all
aggregation levels. Then, the detailed prediction results will
be analysed. After that, we will give a comparison of the pre-
diction results of ada-GWN on different aggregation levels.
Finally, the training times of the models will be discussed.

4.4.1 Individual load forecasting
The performances of the different models trained on all
aggregation levels depicted by the MAPE and RMSE errors
on the test data can be seen in Figure 2. The detailed results,
including the models’ MAE, MAPE and RMSE, can be
seen in Table 2. This table shows the models’ average
performance over all groups at an aggregation level.

We can see that both Ada-GWN and nonAda-GWN
perform significantly better than ARIMA at all aggregation
levels on all metrics. Furthermore, Ada-GWN slightly

outperforms nonAda-GWN at almost every aggregation
level. Only at the highest aggregation level, G2070, does
nonAda-GWN perform slightly better than Ada-GWN. As
there is only one node at this aggregation level, no spatial
relationships can be learned, and only temporal information
can be used to make predictions. For this reason, nonAda-
GWN performs better, as the prediction of Ada-GWN is
weakened by its spatial component.

When comparing the performances across different ag-
gregation levels, we can see in Figure 2 that all models are
consistent on high aggregation levels. The GWN models are
more consistent and accurate on low aggregation levels than
ARIMA. From this, we can conclude that the GWN models
are better at careful fine-tuning and capturing sensitive data.

The error variance is extremely high at the lowest aggrega-
tion level for all models and quickly drops off at G30, where
the MAPE improves with an average of 12.4% and the RMSE
improves with an average of 54.6 W/group. Table 3 shows
the percentage increase between two adjacent aggregation
levels. The GWN models show a great improvement in
performance on all metrics as the aggregation level increase.
ARIMA also shows a good improvement as the aggregation
levels increase. However, we see that ARIMA does not
benefit as much from the increase in aggregation level as the
GWN models.

4.4.2 Detailed prediction results
To better analyse the predictions made by the models, we can
look at the detailed prediction results of the 25th and 26th of
December in Figure 3. For the analysis, the prediction of the
last group at various aggregation levels was chosen, so (G10
- 207) means the 207th group at aggregation level 10.

We can see that at low aggregation levels, the sudden
changes in energy consumption make it hard for the models
to follow the real demand accurately. Nevertheless, they can
follow the main trend of the demand, with the biggest errors
being in the peaks. At high aggregation levels, the smoother
fluctuations in demand make predicting it easier, resulting in
smaller peak-hour errors.

From this Figure, we can also see the difference in the
models’ abilities to capture complex relations. The GWN
models are much better at accurately following the complex
real demand, depicted by the blue line. In contrast, ARIMA
can only capture the general trend of the demand, resulting
in a much more general, simple prediction.

4.4.3 Training time comparison
Table 4 shows the average training times per model.
Here, the average training time for the GWN models is
the average training time per epoch, whereas the average
training time for ARIMA is the average training time per
dwelling. As these models are trained differently, comparing
their training times is difficult. The GWN models can
go over all the available data much more efficiently than



Metric Model G10 G30 G100 G300 G2070

Test data MAE (%)
Ada GWN 11,36% 7,25% 4,72% 3,92% 3,89%
ARIMA 23,86% 19,56% 17,38% 15,16% 15,86%
nonAda GWN 12,02% 8,38% 5,45% 4,13% 3,25%

Test data MAPE (%)
Ada GWN 24,49% 15,50% 10,08% 8,38% 7,89%
ARIMA 63,26% 43,20% 39,58% 36,25% 31,94%
nonAda GWN 25,68% 17,54% 11,88% 8,62% 6,60%

Test data RMSE (W)
Ada GWN 159,9 96,5 62,0 51,9 52,5
ARIMA 290,2 240,6 211,7 186,8 192,9
nonAda GWN 162,1 111,3 70,6 54,2 44,1

Table 2: Final results of the average performance on all dwellings.

(a) Aggregation level 10

(b) Aggregation level 100

(c) Aggregation level 2070

Figure 3: Detailed prediction results of 25-26 December for differ-
ent aggregation levels

Model MAE MAPE RMSE
Ada-GWN 22,2% 23,6% 22,63%

ARIMA 9,3% 15,1% 9,4%
nonAda-GWN 27,7% 28,71% 28,15%

Table 3: Average percentage increase between adjacent aggregation
levels.

Model Average training time (s/model)
Ada-GWN 21,5

ARIMA 74,2
nonAda-GWN 17,2

Table 4: Average training time comparison

ARIMA, which can only be trained on one dwelling at a time.

Furthermore, we can see that the nonAda-GWN has a
lower training time per epoch than Ada-GWN. This is prob-
ably because Ada-GWN takes time to capture the spatial re-
lationships, whereas nonAda-GWN only look at the temporal
relations. They are much faster than ARIMA, which takes
more than a minute to fit a model into a single dwelling.

5 Responsible Research
This section will first discuss the ethical concepts that were
considered. Then we will discuss five principles of the
Netherlands Code of Conduct for Research Integrity [26].

5.1 Ethical concepts
Several ethical concepts need to be considered in this paper.
Most importantly, as we worked with sensitive personal
data, the data must always stay anonymous during the
experiments. As the data provided by [25] was anonymous,
this was the case.

Secondly, in section 4.1, we decided to leave out almost
half of the houses in the dataset. Leaving out such a large
amount of data might result in our models not being trained
on an accurate representation of the houses. However,



this was done as all houses had to have complete readings
between 01-01-2013 and 31-12-2013.

Finally, the results of this paper must be reproducible. To
this end, we have published the code used to run the experi-
ments online 2. The data used to run the experiments can also
be found online 3.

5.2 Netherlands Code of Conduct for Research
Integrity

In 2018, the Netherlands Code of Conduct for Research
Integrity was published to provide guidelines to individual
researchers and institutions involved in research [26]. The
code presents five principles which should be adhered
to when conducting research. We will now review these
principles and how they were applied in this paper.

The first principle is honesty. This means the research
process is reported accurately and refrains from making
unfounded claims or fabricating or falsifying data. All of the
claims presented in this paper were found in literature, and
all of the presented results were collected through experi-
ments. Furthermore, all the experiments were conducted as
presented in section 4.2.

Scrupulousness is the second principle, which states that
all methods used are scientific or scholarly. This also applies
to this paper, as we used only scientific methods to conduct
our research and experiments. Moreover, we objectively
presented our results, which means that we did not provide
any personal bias or perspective to the discussion in any way.

The next principle is transparency. To this end, we have
used publicly available data for our research. Furthermore,
we have published the code used to conduct the experiments
online to allow anyone to reproduce our results.

Independence is the fourth principle that was taken into
account in this paper. As stated previously, this research
was presented objectively. There was no influence from
non-scientific considerations, such as commercial or political
motives.

Lastly, responsibility was considered in this paper. This
study was relevant to the problem it is trying to solve. It con-
tributes to a better understanding of the challenges and pos-
sible solutions of the short-term load forecasting of electrical
demands.

6 Discussion
In this paper, we analysed two variants of the Graph WaveNet
(GWN) model, Ada-GWN and nonAda-GWN, for STLF
forecasting aggregated electrical demand. The primary
objective was to determine the optimal aggregation level for

2https://gitlab.tudelft.nl/lcavalcantesie/flexibily aggregation
smart grids

3https://www.kaggle.com/datasets/jeanmidev/
smart-meters-in-london

the GWN models, and we compared their performance with
the ARIMA model, which served as a benchmark.

Compared to Lin’s work, we found that our GWN models
exhibited a higher MAPE [15]. One possible explanation
is that Lin used data with significantly higher demands,
resulting in lower errors.

In the analysis of the ARIMA models, we found that occa-
sionally they were unable to fit a suitable model, resulting in
extremely high errors. For this reason, we decided to exclude
this data from the analysis, as including it would give an
average MAPE of 2.7 × 1016, and this happened only eight
times out of the 303 models fitted in total.

Furthermore, it is important to acknowledge the limita-
tions of this study. Due to time constraints, we used the
hyperparameters from previous works, which may not have
been optimal for our specific dataset. Conducting a more
extensive hyperparameter optimisation process could have
potentially improved the performance of our GWN models.

7 Conclusions and Future Work
In this paper, we looked at the performance of short-term
load forecasting of the Graph WaveNet model on different
aggregation levels by looking at the hour-ahead STLF of
a residential electrical demand dataset of 2070 houses in
London, Great Brittain. The results showed very low MAPE
errors of 6,60% and 7,89% at the highest aggregation level
of 2070, comparable to country-level prediction errors. Also,
we saw that errors close to 10% could be achieved at an
aggregation level of 100.

Besides, although non-adaptive WaveNet outperformed
the baseline, self-adaptive Graph WaveNet was consistently
and significantly better than non-adaptive Graph WaveNet.
This shows that the spatial relationship between houses
needs to be adaptively learned to improve the performance of
spatial-temporal electric load forecasting.

Furthermore, we saw a consistent improvement in perfor-
mance as the aggregation levels increased. This indicates
that to achieve high STLF performances, we need to look at
higher aggregation levels. We also observed a sharp increase
in errors at lower aggregation levels, which were discussed in
detail. This is a challenge for modern power grids, as there is
an increase in decentralized and renewable energy generation
sources, which depend on high STLF accuracies to achieve
optimal operational performances.

There are also limitations to the Graph WaveNet model.
Firstly, the model requires a lot of training data, which
cannot have missing values. This will provide challenges
if the model is trained and applied to real-life forecasting
problems. Secondly, the model needs all the units to have the
same length of historical data, which can also be challenging.

https://gitlab.tudelft.nl/lcavalcantesie/flexibily_aggregation_smart_grids
https://gitlab.tudelft.nl/lcavalcantesie/flexibily_aggregation_smart_grids
https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london
https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london


We recommend seeing if transfer learning can overcome
these problems for future work. We would also like to see
Graph WaveNet’s performance in other forecasting problems,
such as industrial electrical load forecasting or wind forecast-
ing.
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[3] A. Małek, M. Kośko, and T. . Łusiak, “Urban
logistics of small electric vehicle charged from a
photovoltaic carport,” Automobile Archive, vol. 82,
no. 4, p. 63–75, 2018. [Online]. Available: http:
//yadda.icm.edu.pl/baztech/element/bwmeta1.element.
baztech-cc995468-03cf-46b9-89c3-a25e69299451

[4] A. Papalexopoulos and T. Hesterberg, “A regression-
based approach to short-term system load forecasting,”
IEEE Transactions on Power Systems, vol. 5, no. 4, pp.
1535–1547, 1990.

[5] W. R. Christiaanse, “Short-term load forecasting using
general exponential smoothing,” IEEE Transactions on
Power Apparatus and Systems, vol. PAS-90, no. 2, pp.
900–911, 1971.

[6] C. Tarmanini, N. Sarma, C. Gezegin, and O. Ozgonenel,
“Short term load forecasting based on arima and ann
approaches,” Energy Reports, vol. 9, pp. 550–557,
2023, 2022 The 3rd International Conference on Power,
Energy and Electrical Engineering. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S2352484723000653

[7] S.-J. Huang and K.-R. Shih, “Short-term load fore-
casting via arma model identification including non-
gaussian process considerations,” IEEE Transactions on
Power Systems, vol. 18, no. 2, pp. 673–679, 2003.

[8] C.-M. Huang, C.-J. Huang, and M.-L. Wang, “A parti-
cle swarm optimization to identifying the armax model
for short-term load forecasting,” IEEE Transactions on
Power Systems, vol. 20, no. 2, pp. 1126–1133, 2005.

[9] M. Khodayar and J. Wang, “Spatio-temporal graph
deep neural network for short-term wind speed forecast-
ing,” IEEE Transactions on Sustainable Energy, vol. 10,
no. 2, pp. 670–681, 2019.

[10] A. Kavousi-Fard, H. Samet, and F. Marzbani, “A
new hybrid modified firefly algorithm and support
vector regression model for accurate short term
load forecasting,” Expert Systems with Applications,
vol. 41, no. 13, pp. 6047–6056, 2014. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S0957417414001912

[11] D. Wu, B. Wang, D. Precup, and B. Boulet, “Boost-
ing based multiple kernel learning and transfer regres-
sion for electricity load forecasting,” in Machine Learn-
ing and Knowledge Discovery in Databases, Y. Altun,
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Cham: Springer International Publishing, 2017, pp. 39–
51.

[12] H. A. Malki, N. B. Karayiannis, and M. Balasubra-
manian, “Short-term electric power load forecasting
using feedforward neural networks,” Expert Systems,
vol. 21, no. 3, pp. 157–167, 2004. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1468-0394.2004.00272.x
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