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SUMMARY

This Paper gives a description of a method to calculate the -
covariance matrix, as a function of time, of a linear system
perturbed by a number of random noise signals. Using basic-
principles of modern system theory it allows the computation
of variances or r.m.s. values of aircraft variables in the
case where system dynamics and statistical properties of the

disturbing noise signals are a function of time.

Results are shown of a numerical example of the symmetric
motions of a present day jet transport in a coupled -approach -
followed by an automatic landing, the random disturbing signals

being gaussian atmospheric turbulence and ILS electronig noise.

The problem of wind shear is briefly touchedupon and an.. . .. -
analytical approach to "worst case" wind time histories is

presented.
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1. INTRODUCTION

One of the aims of the control of flight, be it manual or automatic,
can be considered to be the reduction of the effects of external
and internal disturbances acting on the c¢ontrolled system i.e.

the aeroplane.

These disturbances can be devided into two distinct categories, one
being caused by malfunctions of any part of the controlled system,
the other category being caused by signals of a random nature,
resulting-in errors relative 'to a desired state or trajectory while

all parts of the system are functioning within spec1f1catlons.

The first category of obvious malfunctions is left out of consideration

here. The present Paper is only concerned with the class of random

~-disturbances such as -atmospheric turbulence, electronic and’ mechanlcal

noise. S

When :designing or evaluating control systems it is important to be
able to make estimates of the effects of these random signals on
the performance of systems. Considering the disturbing signals as
so called random processes and making a number of assumptions on
these processes make them accessable to practical statistical

calculations. -

Assuming that the random processes under consideration:aré'normal
or gaussian and that the dynamic behaviour of the'systems can be
described by linear differential equations (system linearity)
opens the road to a number of straightforward mathematical
methods.

It should be mentioned that atmospheric turbulence, for example,
can only approximately be' described as a normal  (gaussian) process.
Attempts have been made by others to tackle the phenomenon of non-
gaussian turbulence which is especially important in the field of

flight simulation (Refs. 1 and 2).



When designing control systems for the purpose of reducing system
sensitivity to disturbing signals it can often be assumed that noise
processes are gaussian. The calculation method described in this

Paper 1s based on such an assumption and on the one of system linearity.
For the sake of completeness, it should be mentioned that it is,

in prlnc1ple, possible to treat non-linearities in a quasi~linear

manner, see Ref. 3.

Statistical ehsemble properties such as variances or r.m.s. levels

of output signals of a system driven by a . pumber of random noise
signels cen‘be devided in two classes. Steady, state properties are
namely clearly to be distinguished from transient properties. This

is illustrated by Fig. 1 showing a systen, initially at rest,

perturbed by a random noise input signal from t'= 0 onwards.

The varlance of the output signal, being zero at t = 0, grows

through a tran51ent response to its final or steady state if the system

is stable

Suppose for instance that one is interested to know r.m.s. levels or
exceedance_probabilities of normal accelerations, load factors,
altitude or course deviations of an aircraft due to atmospheric
turbulence in cruising flight. Here the statistical characteristics -
of turbulence as well as the dynamic properties of the aircraft can
assumed to be constant and the r.m.s. levels and exceedance -
probabilities of interest can be considered as steady state properties.
A number of well—established methods are available for such steady -

state‘problems (Refs. 4 and 5).

A quite different problem is best illustrated by .the example of an
alrcraft in a coupled approach to land. Due to the decreasing
altitude during the approach and the altitude dependent statistical
properties of atmospheric turbulence, the aircraft experiences time-
varying random turbulence. Moreover ILS glide path.beam geometry may
cause changes in effective gains of the glide slope coupler.
Finally, if an automatic landing_is carried out, the .autopilot mode

changes drastically while in this phase also the aerodynamic



characteristics change due to ground effects. Still one would
like to calculate r.m.s. value: of motion variables during the
approach and landing, especially at certain instants in time such

as at decision height and touch down.

Such a calculation could be carried out by a Monte Carlo simulation.
Another method is the one using impulse responses in an analogue

computation (Ref. 6). A much more accurate, straightforward and

faster method using transient statistical properties is the one
reviewed in the present Paper. Basicly it is an application of known
elements of modern .system theory and the concept as such can of
course not be claimed to be entirely novel. A similar method,
described.in less detail, was apparently used in a‘plublicaffon

by Holley and Bryson (Ref., 7).

The purpose of this Paper is to give a practical example of some
capabilities of modern system theory and it is to be hbped that
it gives some guidance to control engineers faced with problems

of a stochastic nature.

The main advantage of the method presented is perhaps that it permits
statistical calculations on any lineaxr system perturbed by gaussian
random noise signals when either the statistical properties of the
noise signals or the dynamics of the system, or both, are changing

with time.

In the example mentioned earlier of an aircraft in the approach to
land, the influence of altitude dependent properties of atmospheric
turbulence can then be determined. Changes in electronic noise in the
ILS signal during such an approach, gradual changes in autopilot
gains and also the effect of a sudden decoupling of the autopilot

are also easily studied in this way.

The present Paper gives an overview of the underlying theory and
some results, A detailed description of the pertaining computer

program is to be published shortly (Ref. 8). The second Chapter



illustrates, by some simple examples, the principle of using transient
responses to.obtain statistical properties of a time-varying system.
Chapter 3 deals with the particular manner in which noise processes

are to be modelled, followed by a:survey in Chapter 4 of the numerical

B oo &

simulation of the aircraft, the autopilot, the atmospheric turbulence
and the ILS noise process. Results-of a number of calculations are

given in Chaptexr 5.

Although the nature of the phenomenon usually denoted by the term-

"wind shear" is such that a statistical treatment appears hardly

possible, this subject is briefly touched upon in Chapter 6. It is
shown that deviations from a desired trajectory caused by certain,
analytically derived, deterministic "worst case" wind time histories
are proportional to statistical properties in a special case of
stochastic wind signals. Some insight into the effects of worst

case wind time histories (or windshears) might thus be gained using

the calculation method that forms the main subject of this Paper.




2. THE TRANSIENT RESPONSE OF THE COVARIANCE MATRIX. SOME EXAMPLES,

This chapter gives a number of simple examples of the calculation

of the transient response cf statistical characteristics of output
signals of a sys*tem driven by a white noise ihput signal. It will

be shown how this calculation can be done in the case of time-varying
properties of either the driving noise signal, the drivthSYStem

itself or both. The Appendix contains a more detailed description,

Consider a dynamic system, initially at rest and driven by a random
noise input signal v (t) from t = O onwards, see Fig. 1. The variance
0X2 of the output signal x (or the r.m.s. value Oy of x), being zero

at t = 0, w1ll reach a steady state level in a flnlte time if the systenm
is stable, Fig. la. The steady state value can be calculated by a number
of methods, for instance by a frequency domain technique. The transient
response can only be calculated by time domain techniques such as the
one described in this Paper or by a time consuming MOnte>Carlo
simulation in which a large number of replications is taken, the system

being at rest 1n1t1ally for each replication.

If the random input signal is switched off after the steady state
has been reached, the variance of x returns to zerd after another
transient, Fig. 1b. This transient is identical with the one that
would be obtained if v (t) were zero for all t, the initial condltlon

being equal to the steady state value of ¢ 2.

In modern system theory the more important statistiéal'quanfitiesr
are expressed by the covariance matrix Cxx(t) of the state vector
x(t) of thevsystem under consideration. In the case of an aircraft’
the state vector_z(t) is the vector of the motion variables, and
the covariance matrixbthen contains the variances of the motion
variables as the diagonal elements and the covariances as the off-

diagonal elements.

Next, by way of example, a simple second order system such as the

mass-spring-dashpot combination of Fig. 2 is considered. The state



vector_f(t) is

| xl(t)
xe =1
x2(t)

where x, (t) = d(t) and x,(t) = d(t).
The cévariance matrix of the state vector Eﬁt) is then:
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 Now accordihg to the Appendix ng(t) consists of two terms:
= +
Cope (1) Dxx{Cxx(Q),t}‘ E_ w(t),t} (2)

The two terms in eq. (2) reﬁresent the two different responses just
mentioned. The first term DxxAgives the response to the initial
conditions CXX(O), the second term Exx is an expression for the

reSpbnse to a white noise input éignal w(t)'acting on the system.

Fig; 3 shows the response.of each element of_Cxx(t) caused by‘a 3; 
white noise signal acting on the second order system of Fig. 2 ‘

from t = 0 onwards, initial conditions CXX(O) being zero. The resébnses
are shown for different values of the damping ratio ¢. It can be seen
that the covariances of x, and X, become zero in the steaay stateLJ

. o 1
a peculiarity of this example, where X, is the time-derivative of x

1
In Fig. 4 the response to uhit initial conditions is given_(first__
right hand term of eq. (2)). Fig. 5 shows the response caused by

a white noise signal of limited duration (5 secs). The responses
from t = 5 onwards are given by the term D in eq. (2) by setting the

initial conditions of CXx at the values at t = 5.

-




Calculating the transient response to a noise signal of limited
duration opens the possibility of determining the response to an
input noise signal with time-varying statistical properties. If it
is known how thesde properties are changing with time, the response"
can be determined as illustrated in Fig. 6, where the intensity

of the input signal is increased at t = 5.

Fig. 7 shows an example where one of the systems' characteristics,
the damping ratio , changes from 0.7 to 0.2 at t = 8 sec.’ Ad 'in

Fig. 6, the total response after the change is obtained as- thei sum
of ‘the terms D and E of eq. (2), the initial conditions™in’ D béing

set at the values of the elements of Cxx(t) reacheéd up to that moment.

In the examples of Figs. 5, 6 and 7 the instants in time at which the
chafnges 'in input signal and damping ratio occur were, for the
benefit of simplifying the figures chosen such that steady states'

had been: reached. This is of course not necessary.

From the examples of this Chapter it will be evident that the co-"
variance matrix, as a function of time in the case of gradually changing
system or input characteristics, can be calculated by &approximating
these changes by small, stepwise variations. Details of the modelling
and the calculation of responses to coloured noise signals will be

dealt with in the next Chapters.
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3. MODELLING THE AIRCRAFT AND THE NOISE PROCESSES

The examples in the foregoing Chapter were of systems perturbed by
white noise processes. The theory on which the calculation of the
covariance matrix is based indeed assumes a system driven by one or
more white noise signals. These idealized processes do not occur in
reality. The coloured noise processes such as atmospheric turbulence
and electronic noise are therefor usually modelled such that they can
be thought to be obtained by the filtering of white noise. The
technique to mathematically derive the differential equations and
the transfer functions of.these shaping filters is well established.

Details can be found in Ref. 5.

The numerical example, of which details will be given in the next
Chapter, is of the symmetric motions of an aircraft in a coupled
approach, followed by an automatic landing manceuvre. The noise
processes considered are horizontal and vertical turbulence and ILS
glide slope electronic noise. The block diagram of Fig. 8a gives the

arrangement of the shaping .filters and the aircraft plus autopilot.

The box in Fig.8a denoted by "observation process" would represent
a pure summation in classic -control theory if there is no observation
noise. Apart from ILS noise, no observation noise was :assumed to

be present in the example of this Paper. .

If the shaping filters are next joined to the aircraft, as visualized
in Fig. 8b, one system perturbed by a number of white noise signals

is obtained, see Fig. 8c. Mathematically this operation is achieved

by combining the differential equations of the shaping filters with
the aircraft's state equations to obtain the augmented state equations,

see the Appendix.

One remark should be made on the modelling of the atmospheric turbulence.
Generating the coloured noise representing atmospheric turbulence velo-
cities by filtering white noise is only possible if the power spectral

densities have a rotional form. The well known Dryden spectra used
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in the example, indeed fulfill this condition.. .

The Von Karman spectra in contrast, have no rational form and can
only be approximated by linear filters. An alternative, exact

method to calculate the covariance matrix for a given correlation
function of a coloured noise input signal is briefly treated in the
Appenaix.bThis enables carrying out calculations as the ones described
in‘this Paper, using atmospheric turbulence as characterized by the

Von Karman correlation functions or power spectra.

Now that in the second Chapter the principle of statistical calculations
for a time-varying system have been dealt with and the equations have
been arranqed in the proper form it seems worthwhile to summarige the
changes in statistical properties of input signals and changes in

the dynamics of the system itself that can now be studied.

First the level of atmospheric turbulence or the ILS noise can be
altered either by changing the intensity.of the white noise input

signals or by changing the gain in the filter transfer functions.

Further the shape of the power spectrum of the atmospheric turbulence
may be altered by changing the appropriate parameters (integral scale
lengths).

Next changes in the autopilot can be modelled, such as the gradually
changing gain due to glide path beam geometry. When performing an
automatic landing, the effect of the changing operating mode of the
autopilot on the statistics of deviations from an ideal trajectory
can be evaluated. Also in the landing phase changes in aerodynamic
properties due to ground effects can be modelled by changing the

appropriate aerodynamic coefficients.

Another possibility is to study the effect of a sudden decoupling of
autopilot or autothrottle. Finally it will, in principle be possible
to evaluate programmed changes in aircraft configuration for instance
flap settings or power settings as required for decelerated ' or: two-

segment approaches.
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4. DETAILS OF THE NUMERICAL EXAMPLE

g~

To illustrate the capabilities of the calculation method it has been
applied to a numerical example of a present day, four engined, sub-
sonic jet transport in a coupled approach followed by an automatic
landing. Details of the aircraft, the autopilot and autothrottle
gain settings for the coupled approach and for -the automatic lahding
can be found in Refs. 5 and 9. No efforts have been made to optimize
the autopilot according to some criterion. Although the layout and
the gain settings of the autopilot do not represent any existing
installation, they can be considered to represent the present state
of the art.

In order to calculate, in the landing phase, the variances and co-
variances of deviations relative to an average landing flare, small
perturbation equations of motions relative to an idéal, unper turbed
automatic landing flare have been used. The ground effect during
the flare was also modelled as a small perturbation effect due to

deviations from the (known) ideal landing flare.

The atmospheric turbulence, acting during the approach down to flare

.»initiation, was characterized by the Dryden spectra (Ref. 10). The

integral scale lengths and: turbulence intensity were chosen accotding
to the model of Pritchard (See Ref. 10) for a neutral atmosphere,
see Fig. 9. The wind speed at reference height (9.15 m) was chosen

at 1 m/sec (approx. 2 knots) in most of the examples.

The terrain factor RT was chosen at 1,1 (flat agricultural land)
resulting in turbulence that could be considered "light" (standard
deviation 0,5 m/sec approx. at 200 m altitude). Under the assumption
of system linearity, the results computed can be readily extrapolated

for more severe turbulence intensities.

The ILS noise intensity, see Fig. 1C, and scale length were those

specified for CAT I (Ref. 10).

Two cases of changes in gain due to glide slope beam geometry were
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considered. In one case the gain, expressed by elevator angle

per degree angular deviation from the glide path, was taken to
decrease exponentially in two distinct phases as shown in Fig.
11, representing a‘realistic example of a practically implemented
compensation. The result is a nearly constant effective gain
(elevator angle per foot deviation from the glide path), see
Fig. 1i. : LA o :

In another case, no compensation was assumed, resulting in an

inéféésing effective gain as the aircraft appréacﬁés the threshold.

All ‘these ‘gradually changing gains, coefficients, intensities etc.
weré'appfoximated by stepwise variations in time, the entire white
noise driven system remaining constant during relatively short

time intervals.
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5. SOME RESULTS

In Figs. 13, 14 and 15,sqme results are given of the calculation

of va:ianqgg,,due to atmospheric turbulence only, of deviations

from the glide path and from an ideal flare, see Fig. 12,

Variances of flight speed, altitude deviations and sink rate can

be seen to decrease due to the decreasing intensity of the turbulence

and the decreasing integral scale length.

A decreasing scale iength is to be seen as a shift in the maximum
level of the power spectrum to higher frequencies.

If the aircraft is considered as a low pass filter, a decreasing |
scale length has a tendency to decrease the variance of aircraft

output signals.

Also shown in Figs. 13, 14 and 15 is the effect of a sudden decoupling
of the autopilot at 40 seconds to touchdown.

The subsequent growth in variances shown supposes no corrective

action by a pilot. The periodic nature of the responses of the
variances of flight speed and sink rate is due to the fact that the
natural motions of the unstabilized aircraft are of course much more
lightly damped than those of the tightly controlled aircraft in the
coupled approach. Still the variance of the flight speed and sink

rate can be seen to decrease in the long run as the unstabilized,

free aircraft is stable with respect to flight speed and sink rate,
which is not the case with respect to altitude.

It can be seen from Fig. 14 that the variance of altitude is increasing
after decoupling due to the indifferent or neutral stability of the

free aircraft with respect to altitude.

An interesting result can be observed if atmospheric turbulence is
made to occur during the last 30 secs. only, see Figs. 13, 14 and 15.
It can be concluded that deviations at a certain instant in time (say
at decision height, flare heicht or tcuchdown) can, for a well damped
aircraft, be considered to be mainly caused by the turbulence during

the preceding 20 to 30 seconds.
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In Fig. 16 the variance of the altitude deviations caused by ILS. :
noise only is given. The effect of this at decision height or
touchdown can be seen to be‘roughly equal to the effect of moderate
turbulence. It will be evident théf the variance of altitude deviations
caused by ILS noise will never be less than the variance of the noise
of the ILS reference signal itself if expressed in altitude deviations,

(see also Fig. 10), as no prefiltering of the ILS signal was presumed.

The effect of the (non-ideal) compensation of Fig. 11 turnedout to

be small. To more dramatically illustrate the ability of the computation
method to cope with the effect of changing gains, or more generally
with changing dynamic system properties, another example is glven in

Fig. 17.

A change in effective gain, if not compensated at all, is shown in
the top figure of Fig. 17. For a modern transport aircraft this
change is perhaps less realistic but it can be considereg to be
representative of general aviation autopilots where thé gain with
respect to angular deviation from the glide path, is constanf.‘
Obviously the aircraft is becoming less stable from approxlmately

20 seconds to touchdown onwards.

Apart from deviations in flight speed, altitude and sink rate, -
another important parameter is of course the deviation Ax in distance
along the runway, at a certain fixed altitude, relative to an ideal,
undisturbed approach path and flare trajectory. The along the runway
deviations are related to the deviation relative to the glide path

by the simple relation depicted in Fig. 12, For along the runway
scatter of touchdown point the influence of the changing value of

the flight path arngle y should be taken into account.

Finally it will be evident that the present method has possible
applications in the field of 4-D navigation. The variance of the
deviation along the flight path can be computed by including this
deviation as an element in the aircraft's state vector. In this way
the variance of the time of arrival at a certain point in space is

easily established.
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6. WORST CASE WINDSHEARS

Statistical calculations of aircraft motions in moving air are based
on the usual mathematical models of atmospheric turbulence such as -

the Von Karman or Dryden power spectra mentioned before.

There are a number of atmospheric phenomena that are not, or not
properly accounted for in these statistical models. For example more
or less stationary mean wind gradients or shears may occur, causing
a descending or climbing aeroplane to experience relatively slowly
changing wind speeds and directions. Deterministic models of mean
wind speed as a function of altitude under certain meteorological :
conditions are available (Ref. 10), but there are still more
atmospheric phenomena that are not properly represented in the

statistical models.

It is well known, especially at low altitudes, where the intensity
of random atmospheric turbulence according to the usual models
should be low, strongly changing winds due to. special terrain
features or buildings may be met with. Thermals in, apart from that,
quiet conditions or more obviously downdraughts in thunderstorms
may induce hard landings or even worse. Some or all of these low
frequency turbulence phenomena at low altitudes are also sometimes

less correctly referred to as "wind shears".

Apart from the deterministic mean wind gradients mentioned above, there

is as yet no means of realistically modelling the statistical
characteristics of the entire class of low altitude, low frequency

turbulence.

One way to gather some understanding of aircraft motions due to low
frequency turbulence is to theoretically study aircraft motions
caused by actually recorded wind time-histories of a notoriously
unfavourable character. Another way is trying to find, according

to some criterion, the particular deterministic wind (or turbulence)

time-history that causes the greatest deviation of one. of the motion
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variables relative to an ideal course.

Corbin (Ref. 11) derived such worst case turbulence time histories
by a search procedure yielding "worst" combinations of a number of

sines and cosines.

It appears, however, that worst case time histories can also be
found by a more analytical approach. The following is a brief
description of attemps made by the authors of this Paper to describe

the worst cases in térms of linear system theory.

. This concept,.of :which a more  formal derivation is to be given in

Ref. 12, can be illustrated by a simple example.

The response of one particular state or motion variable X; of the
state x(t) of a constant linear system on one'single inpuf signal-
v(t) if the system is at rest initially c¢an be written as (See
“Ref, 13):
t
xi(t) = f‘hi(t - 1) .v(1) . dar (3)

o

where hi(t) is the response of X, to a unit impulse & (0) at

t = 0.

The ihtegral according to eq. (3) has been visualized in Fig. 18.
The function hi(t - T), being the time reversed impulse response of
X, from t to T, can be considered as a measure of the contribution

of v at instant 7, to the value of X5 at t.

Without a formal derivation it can easily be seen from eq. (1) and
from Fig. 18 that it is plausible that, for a given fixed value of
t, the absolute value of xi(t) will be maximal if v(t) is exactly

proportional to hi(t - 1) for all T. In other words the worst case
time-history of v(t), to obtain a maximum deviation of xi(t) is

proportional to the time reversed impulse response of X :
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vit) =C . hi(t - 1) : (4)
where C is a constant.:.

Now consider a system with a number of output signals such as an
aircraft, then all output signals (or motion variables) have
different impulse responses. As a consequence there will be ‘one

particular worst case.input signal for each of the output variables.

Fig. 19 gives two such worst case time histories of the horizontal
wind velocity and the resulting largest deviations of altitude and
sink rate. The deviations were calculated by generating the response
of the (unstabilized) example aircraft by solving the governing
differential equations for the given input time histories.

It can be seen that maximum wind excursions of only 1 m/sec (2 knots
approximately) in both cases, induced an altitude loss of 25 m (80 ft)
in one case and an excess sink rate of 2.3 m/sec (450 ft/min) in the
other. As already mentioned the aircraft was not stabilized in this
case and no pilot action was supposed.to be involved. As a vigilant
pilot would of course take immediate corrective action, the example

represents a worst case in more than one sense.

Apart from solving the governing differential equations for the given
worst input time histories there is still another way to obtain '
the values of the maximum deviations, which can be shown as follows.
‘Substituting eq. (4) into eq. (3) yields:
y A .
x.(t) =C | h 2(t’- T) dr ‘ (5)
i i
o}
By considering Fig. 18 it is easily seen that this is equal to:
t
x. (£) =c | vl . at o (6)
i- i , .. .
o : '
Now it has been shown elsewhere, see'Ref. 5, that the integrél in

eg. (6) is equal to the variance at t of the output sigﬁal'ki(t) if

b
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the system under consideration is perturbed by a white noise random

input signal w(t), with intensity equal to C, from t = 0 onwards:
2 2 N
cxi =C [ hi (t) dt

Thus the maximum deviation of Xg at time t, caused by its _
particular deterministic, worst case input signal is seen to be
equal to the wvariance ox (t) in the stochastlc case where the

system is perturbed by a white noise signal with intensity C:
¢ (6) = oy, 2(8)
FiH T Oy M

This result has been visualized in the diagram of Fig. 20.

As regards the non-maximum deviation of some other motion variable.
for instance xj(t), due to the particular deterministic input signal
causing the largest'deviation of Xy at t, it can be shown that

xj(t) is equal(to the covariance Ux.x,(t) of x,(t) and xj(t) in the
stochastlc case just mentioned. The problem of finding all deviations
caused by any particular worst case time history is thus.reduced .

to calculatlng the covariance matrix of the state vector of a

linear system perturbed by one white noise input signal.

The tentatlve concept of worst case wind time histories as briefly
summarlzed above, could be used as a tool to evaluate the sensitivity
of given aircraft control systems to the class of low frequency atmospheric

turbulence broadly described as w1nd shears.

In the case of an automatic landing, the analytic concept of
worst case wind time histories should be extended to account for
changing system characteristics. It appears that this could be
achieved by defining worst case initial conditions for the deter-
ministic case and establishing a relation with the response to

initial conditions of the covariance matrix in the stochastic case.
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7. CONCLUDING REMARKS

For the calculation of variances or r.m.é, levels of output

variables of a time-varying noise driven system advantage can be
taken of concepts of modern system theory. Using a computation method
as described in this Paper it is possible to avoid relatively in-

accurate and time comsuming Monte Carlo simulations.

The method described can also be adapted such that input signals,
characterized by given correlation functions, can be used. This
enables an exact representation of the Von Karman turbulence spectra.

Approximating these spectra by linear filtering can thus be avoided.

Finally it may be obvious that the formulation in terms of system
theory concepts is such that it opens possibilities for the design of

control systems by optimization technigues.

As to the worst case windshears discussed in Chapter 5 only some

tentative conclusions appear to be approﬁiiate at the presenﬁ moment.

Of course any so called “worst case” wind time history is only worst

according to the criterion chosen. The concept of interpreting the

time-~reversed impulse response as a measure for the contribution at

a certain altitude to deviations at decision height or touchdown

seems an attractive one and moreover, the computation of maximum

deviations obtained is straightforward. For automatic approaches, followed

by an automatic landing, in which case the system's dynamic properties

change with time, the method should be extended in the way of'aefining e

"worst case" initial conditions.
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APPENDIX

THE COMPUTATION OF THE COVARIANCE MATRIXAS A FUNCTION OF TIME-

The problem of computing variances and covariances of aircraft response
to atmospheric turbulence can be reduced to computation of the
corresponding response statistics of a linear system driven by zero
mean, gaussian, white noise, if:

1. the atmospheric perturbations are assumed zero mean and normally
distributed,

2. the atmospheric perturbations are assumed small enough to justify
linearization of the aircraft's aerodynamics and the aircraft's
equations of motion,

3. Taylor's frozen field hypothesis is assumed valid, i.e. if the
aircraft's mean airspeed is assumed large as compared to the

rate of changes in atmospheric motions.

Prior to embarking on the explanation of the solution of this problem,
it should be remarked that the method applied includes utilization of
the atmospheric turbulence autocovariance functions published by H.L.

Dryden, see Friedlander and Topper (Ref. 14). An alternative and more
general method not depending on the Dryden autocovariance functions is

also presented.

The state equation

Considering the aircraft's symmetric motions and using:

1. the state variables:

q(t) ©

v
]

a(t), a(t), 6(t), , h{t), H(t), Tc(t) and Ax(t),
2. the control variables:

8 (t) and T¢, (t),

3. the gust velocity components and their time derivatives:
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ug(t), @g(t), ug(t) and ag(t),

the follewing set of linearized equations of motion can be formulated

to describe the dynamics of an aircraft in atmospheric turbulence.

2uCDCﬁ(t) = Cxuﬁ(t) + Cxaa(t) + czoe(t) + Acxh(t)h(t) (A.1)
20 D a(t) = Cy G(t) + Cy, a(t) - C e(ﬁ) + (Cy +21 ) g—(-*fl—§-+
cc Zu” Za %5 “2q " e v,
+ Aczh(t)h(t) + CZGzSe(t) + Czugﬁg(t) +

+ czdgoeg(t) ¥ CzﬁgDcug(t) + cz-&gncong(t) . (a.2)
_alr) ¢
Dce (t) = ’-"v_—- (A.3)
o
2. q(t) ¢ _ .
2ucKy DC —V;'—- = Cmuu(t) + Cma(l(t) + CméDca(t) +
qft). PP
+ cmq Fr v_ + ACp, (t)h(t) + Cmé'de(t) +
S 'le']gug(t) + Cmagag(t) + gmﬁgncug(t) +
+ cm&gDcag(t) | B (A.4)
p_ 2 - oty + 6(e) (a.5)
z . . .
Vo 1
Dc :57H(t) = — h(t) o (A.6)
o] c
c c
DCTC(t) e Tc(t) + Vv 1 TCj_'(t) (A.7)
O ‘eng 0 ‘eng
Ax(t
c
Introducing:
1. the state.vector;
A - gc .
X =col (4, a, 6, v h, H, T Ax) , BERE (A.9)

o]
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2. the control vector:
& 1 (8
‘u=col (8, Tc,),
3. the perturbation vector:

V téCOl (ﬁ ’ a‘)',
-g g g9

the equatiors of motion can be combined to formulate a first order

linear vector matrix differential equation:

s

M°D°§(F).= Mchgﬁt) + §2€t2§ﬁﬁ) + M3E}t) +

+ M,V (t) + M

DV (t
4—qg 5 c—g( )

or:
k(t) = A(®X(6) + Bu(t) + cV (6) fpilg(t‘:)»

The matrices Mo’,Ml' 5

..., M. can be specified by cqmparison of
A.1 through A.11 with eq. A.12. ‘

The observation equation

qm(t)vE

v,

The quantities ﬁa:(t), aam(t), Gm(t).
o

¢ hm(t) and Hm(t)

considered as system output signal perturbations. Taking/accoun

eqgs.

can be

t of

noisy ILS observations, these quantities are related to the state

vector x(t), the atmospheric perturbation vector yé(t) and ILS

observation noise, writing:

ﬁam(t) = Gd(t) + ﬁg(t)

# the suffix "a" is used to denote quantities, defined relative to the

surrounding air-mass.
the suffix "m" is used to indicate measured magnitudes of the

corresponding variables.

(A.10)

(A.11)

(A.12)

(A.13)

(a.14)
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g (t) = aft) + a ()

8 _(t) = 6(t)
m
W qw E

v Ty

(] (o]
hm(t) = h(t) +‘hgp(t)
. _ a
Hm(t) H(t) + gp(t)

Introducing the output signal perturbatidﬁ vector:

¢
A ) I
Yy = col (uam, ag s em, —v;—y hm, Hm)
~and the ILS noise vector:

v é col (h , H )
- gp  gp

the observation equations A.14 thrbﬁéh'uA;19

yield the vectof'matrix observation eqﬁation:
(t) = Ex(t) + FV_(t) + Gv(t)
Y 23 Yy v

The outpﬁt equation

The variables of interest when analyzing the effects of atmospheric

‘can be combined to

' turbulence and ILS noise an an aircraft follow1ng the ILS glide

slope are 4(t), 4 (t), h(t), Ax(t) and Ah(t), where

Ah (t) v_ sin y(t)

12

VO(G(t) - aft))
Defining:

z 2 col (g, 8., h, ox, Ah)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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the following vector matrix equation can be formulated:
z(t) = Rx(t) + SV _(t) (A.25)
- - -9

The atmospheric turbulence

The random atmospheric perturbations acting upon the aircraft during
flight in turbulence are often considered normally distributed, zero

~ mean, and sequantially correlated with autocovariance functions:

== |1l
Cg g (1) = o; 2 el g o (A.26)
850y Ug :
VO I
-2 |t
v
Coo (1) =0y % e a (1-2= | o (A.27)
g%g g ng ' : "

see Ref. 14,

Under these assumptions the atmospheric turbulence velocity components
may be modelled as stochastic outputs of linear, low pass filters. .
driven by gaussian, zero mean, white noise. Mathematical expressions
for these filters can be derived using conventional Fourier transform
_ techniques. o :

. Specifying two white noise input processes Wll(t) and w12(t) with
unit intensity, the following mathematical expressions are obtained

for the filtexrs required:

. o VO : i ‘ .l 5 !
i = - ———— ] e PN \ e S .
ug(t{ _ I, (t)_ug(;),+,?ug(t) Y VI (D) W, (8) (A.28)
g J o9
o (t) = a §(t) + 0y (%) Q—-§—————-w (t) (A.29)
9 g %g Vong(t) 12
- 2v_ . V02
a (t) = - ———a_ (t) = —— o _(t) +
g Lug(t) 9 L2 ()
g
i Vo /3
+ oag(t) ng(t) ng(t) (1 - 2/3) w ,(¢) .  (a.30)

or:
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v Ewr) = p(t) v F(r) + o) w,(t) : (A.31)
—-g -g =1

where
v ¥ & col (G4, a , o iE) (a.32)
—-g o g g )

and:
El = col (wll' w12) ‘ ‘ o (AL 33)

"'The vector-valued quantity yg(t) occurring in ‘egs. 'A/13 and A.22 can
be related to the quantity yg*(t), see eq. A.31 writing:

3

V() =TV X ' C ST " (A.34)
—g g

Glide path observation noise

Glide path observation errors may be ‘described in terms of a normally
distributed, zero mean, sequentially correlated random process with

given autocovariance function:
O
L

. ‘ : 2 gp . . . . )
o C (1) =0 e ; : : (A.35)
thth( ) gp

|

see Ref. 10.
In a similar manner as shown for the atmospheric turbulence glide
path observation noise can be considered as a outputsignal of a léw

pass filter, driven by gaussian, zero mean, white noise with unit

“intensity
) v, ' 2vO
h (t) =-——h (t) + o, _(t) — w, (t) (A.36)
L L 2
gp 9o 9P gp 9P
H (t) =h (t A.37
9p ) ap ) ( )

where ng(t) is the integrated glide path observation noise,

specified in eq. A.36 and A.37.
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Using the vector-valued quantity v(t), defined by eq. A.21 this

filter expression can be written:

R

£
v(t) = My(t) + N(t) w,(t) (A.38)
]
The augmented state equation
Relating the control signal u(t) to the system output signal y(t),
. according to the control law
a(t) =-x(t) y(&) - (A.39)
where the gain K(t) is prespecified and combining the eqs. A.13, A.22
and A.34 the following system state ecuation can be obtained:
x(t) = [a - BR(1)E] x(t) + [cT + DTP(t) - BR(L)F) _V:(t)
- BK(t)Gu(t) + DTQ(t) w(t) o A (A.40)
Substitution of eq. A.34, in eq. A.25 yields the following result:
z(t) = Rx(t) + STV ¥(t)  A.41)
z mid —g R
Defining thé augmented system state:
. : .
#¥vé bol (x, V‘#, v) o (A.42)
— — ——g —
-

and the white noise systeﬁ input:
A
w =col (w,, w,) (A.43)

with unit intensity, the egs. A.31, A.38, A.40 and A.41 can be re-

arranged to yield:



- 31 -

) =25 )+ B35 wn (A.44)
z(t) = Dx" (t) (A.45)

Computation of the covariance matrix

The system state covariance matrix Cxx(t) can be found solving the

following equation:
¢ (0 =afme ) +c_@afm’ + FeoveFn” (.46)
XX XX XX

with the initial condition Cxx(to) and where V is the unit matrix.

Solving eq. A.49 yields:

CXX (t)

t
T * ¥, 7T T
@(t,to)cxx(to)Q(t,to) + f d(t,T)B (T)VB (T) &(t,T) At
t

(A.47)
(o]

It

Dxx{cxx(to)'t} + Exx{w(t),t)} (A.48)

where Dxx(t) is the covariance matrix ofthe system response at time t

on the initial condition Cxx(té) and Exx(t) denotes the covariance of
the systemresponse on the white noise input w(t) for tO <1t ¢ t.

For computation of the solution of this equation the problem is
discretized in time. This implies that the systemmatrices Am(t) and

B*(t) are assumed piecewise constant for tk—l <t < tk’ for k=1, 2, ...
The solution obtained can then be formulated as:

. T
Crx (B = 265 y) Crxltr-1) 206 H_ ) *

: T
+ P(tk, tk—l) vk T (tk, tk-l) (A.49)
where:

. *

— ¥ k3 2 '
=1 + Ak-l At + (Ak"l At) /2 + ... (A.50)
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Mg, g ) =8 sc+ 8l aF ac?or
+ B, A]*il A3+ L (A.51)
v, = %E (A.52)
see Ref. (15). Here At is the discretization time interval t - t _

k k-1°
Finally the covariance of the system output E}tk) can be computed

according to:

T

_ .
czz(tk) =D cxx(tk) D (A.53)

Remark

If the atmospheric turbulence velocity components cannot be modelled
as stochastic outputs of linear, low pass filters driven by
gaussian, zero mean, white noise (i.e. the power spectra have a
non-rational form), then an alternative method for computation of
Cxx(tk) can be applied. Defining the variable:

£ 4

x(t) - DV _(t) (a.54)
- -9
and rearranging eq. A.13 yields:

£ = amgw + [c+aw ] v_(o) (A.55)
provided that the perturbation covariance function CVng(t'T) is

given. The computation of ng(t) under the latter assumption will

be explained in Ref. (8).
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