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A B S T R A C T

eHUBS are physical locations that integrate two or more electric shared mobility modes. As they 
provide transport users easier access to a wide range of transport modes, multimodal behaviour is 
expected to be more common. However, this issue has not been addressed in previous stated 
preference studies on mode choices involving innovative transport modes. In this study, multi
modal behaviour is explicitly addressed both in measurement and in modelling by adopting the 
multiple discrete–continuous (MDC) modelling framework in contrast to discrete choice models. 
Instead of asking transport users to indicate the most preferred alternative, they were allowed to 
choose more than one alternative by allocating trips between several modes. This study aims to 
answer two questions: 1) whether there is complementarity between the multiple shared modes 
offered in eHUBS and 2) how would transport users adapt when one of the shared modes that they 
plan to use becomes unavailable. Using stated mode choice data of non-commuting trips from 
transport users whose current mode is driving a private car in Manchester, UK, several models 
under the MDC framework were estimated including Multiple Discrete-Continuous Extreme Value 
(MDCEV) model, mixed MDCEV model, and the extended Multiple Discrete Continuous (eMDC) 
model. The results show that there is complementarity between shared electric vehicle (EV) and 
electric bike (e-bike) offered in the eHUBS. In addition, the research show that the flexibility 
between those two shared modes is stronger than assumed in the MDCEV model, and common 
preference heterogeneity cannot fully account for this phenomenon.

1. Introduction

Recent years have witnessed a rapid growth of emerging transport modes and services such as car sharing, ridesharing, and shared 
micromobility including bikes, e-bikes, and e-scooters (Liao and Correia, 2022). However, each of these emerging services is unlikely 
to compete with the functionality of a private car, which severely limits their potential in reducing the negative externalities of road 
transport (Christensen et al., 2022; Kent, 2014; Moody et al., 2021). To further enhance the ability of these transport innovations in 
reducing private car ownership and use, there have been some efforts in integrating mobility services from different providers both in 
terms of online and offline access. For example, Mobility-as-a-Service (MaaS) offers a unified gateway for accessing and paying for 
different public or private transport services via a smartphone app (Caiati et al., 2020; Ho et al., 2021). Mobility hub is another type of 

* Corresponding author.
E-mail address: fanchao.liao@ru.nl (F. Liao). 

Contents lists available at ScienceDirect

Transportation Research Part A

journal homepage: www.elsevier.com/locate/tra

https://doi.org/10.1016/j.tra.2024.104279
Received 8 February 2023; Received in revised form 29 August 2024; Accepted 25 September 2024  

Transportation Research Part A 190 (2024) 104279 

Available online 5 October 2024 
0965-8564/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:fanchao.liao@ru.nl
www.sciencedirect.com/science/journal/09658564
https://www.elsevier.com/locate/tra
https://doi.org/10.1016/j.tra.2024.104279
https://doi.org/10.1016/j.tra.2024.104279
http://creativecommons.org/licenses/by/4.0/


mobility integration that has recently gained attention in many cities and regions: they bring together multiple shared mobility ser
vices in a single physical location with due attention to public transport services in the vicinity to increase their uptake and provide 
transport users with better connectivity. eHUBS is one of the pioneering projects in Europe for deploying mobility hubs integrating 
multiple shared electric modes including electric cars, e-bikes, and e-cargo bikes (Bösehans et al., 2022).

These integration efforts allow easier transfer between modes and facilitate intermodal trips (Kuijk et al., 2022), but this is defi
nitely not the only purpose of these services and systems and many users would still use these services for short and uni-modal trips. 
Although for each trip only a single mode is used, multiple modes can be chosen at a tactical level when a person is taking a planning 
perspective for mobility arrangements. For example, instead of committing to a specific shared service, someone may prefer to use 
shared e-bikes for half of her commuting trips in the entire week and shared electric cars for the other half, which gives an ideal 
combination of convenience and level of activity. On each trip, transport users will randomly choose a mode to use according to their 
choice probability regardless of day-specific conditions. Since mobility hubs and MaaS can potentially reduce the cognitive and 
practical burden to use multiple modes, more people will have easier access to a variety of transport modes which can lead to more 
multimodal travel behaviour. However, this type of behaviour has not been accommodated and analysed in most stated preference 
studies on mode choice to date, as people were assumed to always choose the same mode under a certain circumstance and different 
modes are mutually exclusive. This will be the exclusive focus of our paper and intermodal trips are not considered.

Regarding the demand for the mobility services provided via eHUBS or mobility hubs in general, there are two sets of outstanding 
questions that can bring valuable insights into the design and operation of the hubs: in the first set, the questions concern the com
plementary/substitution relationships between the multiple mobility services offered in the hubs. Will people use multiple modes in 
these hubs? Are there synergies between different mobility services, or are they strong substitutes for each other? Is there an added 
value in providing multiple modes in a hub? The second set mostly concerns people’s flexibility between different modes. Are people 
flexible when making choices among these new mobility services? When one of the mobility services in the hub becomes unavailable, 
would people use other modes and services in the hub as a replacement, or would they fall back to their traditional modes? Since 
mobility hubs are still in their introduction period, there is hardly any previous study shedding light on these questions.

Given these research gaps, this study aims to contribute to the existing literature in the following ways. Firstly, we model people’s 
mode choice as a multiple discrete variable and capture their multimodal behaviour via a stated choice experiment. This allows to 
more accurately depict people’s real behaviour when eHUBS become available. Secondly, we investigate whether there exists 
complementarity between the modes offered in the eHUBS. We use two different approaches and models to capture the comple
mentarity/substitution between modes: via correlations between alternatives in the mixed MDCEV model, and via explicit extra terms 
for the interaction between alternatives in the eMDC model. Thirdly, we explore people’s flexibility between the eHUBS modes by 
investigating their adaptation when an eHUBS mode becomes unavailable. We compare the prediction performance of three models 
(MDCEV, mixed MDCEV and emergent value model) under different mode availability scenarios to evaluate their capability in 
capturing people’s modal flexibility.

A brief overview of previous literature that is relevant to the topic of our study is provided in section 2. Section 3 presents the design 
of the stated choice experiment and the details for data collection. Section 4 elaborates upon the modelling approach that is used to 
answer the research questions. Section 5 discusses our modelling results and their implications. Section 6 is to present the conclusions 
from research and to give recommendations for future research.

2. Literature review

2.1. Accommodating multimodal behaviour in stated choice experiments

Multimodality refers to the phenomenon that travellers use multiple transport modes for their trips. Most studies on multimodality 
examine how they use different modes across different circumstances, such as different trip purposes, origins and/or destinations, day 
of the week, and departure time. However, even for trips that share the same characteristics, multimodality is still detected. For 
example, a survey in 2008 found that 19 % of MIT employees use multiple modes for their commute trips in a given week . Kuhnimhof 
(2009) used a one-week travel diary from Germany Mobility Panel and found the percentage of people using different modes for 
commute and non-commute routines are respectively 28 % and 22 %. Based on data collected from commuters in Bristol and Beijing, 
Chatterjee et al. (2016) and Mao et al. (2016) both found around 30 % of people were using multiple travel modes for their commuting 
trips. Heinen et al. (2011) obtained the commute mode choice from 633 cyclists in two Dutch cities for a year (once every two weeks) 
and found that 49 % of them used modes other than the bike for at least one-third of the trips. Thomas et al. (2019) conducted a 
smartphone-based survey that automatically registered the trip information of 432 respondents in the Netherlands for four weeks and 
detected mode choice variation even for repeatedly visited locations. Although it is impossible to know whether these variations in 
mode choice can be explained by day-specific conditions such as mode availability, weather for example, the previous findings 
demonstrate that multimodality is a robust behaviour for a significant group of people even for trips under similar or identical 
circumstances.

As mentioned above, multimodal behaviour may be due to change of circumstances: for example, certain modes may be un
available at the time of a specific trip; utility of modes can also vary depending on trip contexts (weather conditions, trip purpose) and 
day-specific considerations such as different needs and activities on different days (Cherchi and Cirillo, 2014; Levinson and Zhu, 2013; 
Sfeir et al., 2020). This can be addressed by adding context variables in the models. However, we would like to stress that individuals 
may also have a preference for multimodality even when trip circumstances do not vary. Travellers may be balancing different goals: 
apart from only exploiting the mode with the highest utility, they also gain from exploration and diversifying (Swait et al., 2013). 
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Another possible motive is that when travellers encounter repeated choice scenarios and make decisions at a tactical planning level, 
choosing a combination of different alternatives may provide a bundle/portfolio effect: it allows decision-makers to achieve an optimal 
mix of level of service, flexibility, and average costs compared to always choosing a single alternative (Tapia et al., 2021).

Despite abundant empirical evidence for this phenomenon, previous mode choice studies involving innovative mobility modes and 
services hardly accounted for this type of behaviour. That opens up an important research gap in this area of research. The vast 
majority of studies using stated choice experiments adopt the discrete choice paradigm, which presents mutually exclusive alternatives 
and the respondent has to choose a single alternative that he/she prefers the most. This implicitly assumes that an individual will 
always use the same mode under a certain condition described by each choice task. There were only a few stated preference studies that 
attempted to accommodate choices that involve the use of multiple modes. Sfeir et al. (2020) studied the commute trip mode choice of 
university students and workers when shared taxi and shuttle services are implemented: respondents were able to choose how many 
days per week they would be using each offered service. Tapia et al. (2021, 2020) modelled grain consolidators’ port and mode choice 
in the freight transport context: in this experiment respondents can allocate their goods between different transport modes.

2.2. Complementarity and substitution between shared modes

Complementarity and substitution concern the relations between different transport modes. If the demand for a mode increases, the 
demand for the other mode would increase (or decrease) if there exists complementarity (or substitution) between the two modes. 
Previous studies examining mode complementarity and substitution mostly focused on the relationship between mobility innovations 
and existing traditional modes. For example, many studies investigated the relationship between carsharing and existing modes, 
especially public transit: the findings are mixed as some studies reported carsharing users to have increased their public transport 
usage while others found a reduction (Becker et al., 2017; Kopp et al., 2015; Le Vine et al., 2014; Papu Carrone et al., 2020). A possible 
reason is that there are many other factors influencing the net change in public transport use since it depends on individual charac
teristics, car ownership, and specific features of the carsharing system and public transport services. Many of these results were based 
on simple descriptive statistics of carsharing users’ self-report, while more detailed data and advanced statistical analysis are needed to 
conclude (Martin and Shaheen, 2016).

Ceccato and Diana (2021) investigated the complementary and substitution pattern between carsharing and other modes on a trip 
level: for a specific trip in their diary, the respondents indicated their intention to use carsharing to complete the same trip in the future 
and regression analysis was conducted to explain this intention, including variables such as the modes they used in the past for this trip 
and their intention to use other modes for this trip in the future. Based on the regression model they made several conclusions, for 
example, they state that there is a strong complementarity between carsharing and bikesharing because the frequency of bikesharing 
current usage has a negative effect on the intended future use of carsharing for the specific trip, while the intended future use of 
bikesharing for the specific trip has a positive impact. They also found evidence for the substitution effect between carsharing and 
private cars. However, there are two limitations to their approach: first, they only elicited the general intention of usage without 
considering the performance attributes of different modes; second, the intention of future use of different modes cannot be directly 
translated into the amount of use.

2.3. Flexibility between modes

There are rather few papers that looked at the topic of modal flexibility. These studies typically consider it as an individual 
characteristic that denotes the possibility for a person to vary her travel mode. This construct was operationalized as the self-reported 
number of modes a respondent considers feasible to use (Lavery et al., 2013) or their perceived ability to vary transport modes (Mao 
et al., 2016). However, flexibility can also represent a type of relationship between two modes beyond complementarity/substitution: 
when one mode becomes unavailable, to what extent would the remaining available modes serve as replacements? Multiple-Discrete 
choice models have implicit assumptions regarding the patterns of replacement: for example, the consumption of remaining alter
natives will increase proportionately in the case of the MDCEV model, but this may not be true and can result in bias in mode use 
prediction when some modes become unavailable. To the best of the authors’ knowledge, there is no previous research studying how 
people adapt their choices when the availability of mobility services changes, especially in a multimodal context. This topic is of 
extreme importance under a scenario of greater usage of shared modes (on-demand intermittent supply) in which they are integrated 
into the same physical space as it happens with the eHUBS.

3. Survey design and data collection

3.1. Stated choice experiment design

A survey that includes a stated choice experiment was designed to capture transport users’ mode choice behaviour when eHUBS 
become available. These eHUBS offer one-way shared mobility services where shared vehicles are assumed to be always available. An 
introduction to eHUBS is provided before the experiment to ensure that all respondents were familiar with the basic operation of 
eHUBS (see details in Appendix 1).

Both commuting and non-commuting experiments were carried out in this survey. Since we focus on the topic of complementarity 
and flexibility in this paper, a single dataset is considered to be sufficient to do the analyses. With that in mind we selected the data 
from the non-commuting experiment since all respondents participated in this experiment while the commuting experiment was only 

F. Liao et al.                                                                                                                                                                                                            Transportation Research Part A 190 (2024) 104279 

3 



completed by people who commute at least two times a week. Six trip contexts are included to cover different combinations of dis
tances (1,3,6 miles) and purposes (leisure and shopping).

Instead of having all viable transport modes as alternatives in each choice task, only three alternatives were included: the current 
mode used by the respondent for the specific trip context, shared EV and shared e-bike (or shared e-cargo bike in case of a shopping 
trip) in an eHUB. For the current mode, the respondents can choose from ten options, including driving a private car, being a passenger 
on a private car, public transport, walking, private bike, private e-bike, carsharing, bikesharing, taxi, and motorbike. The e-cargo bike 
is only available for the shopping purpose, whilst the e-bike is available for the leisure purpose. Therefore the “current mode” 
alternative is respondent- and trip-specific (a respondent may use different modes for trips of varying distances and purposes). This 
approach is similar to stated adaptation experiments designed before (Langbroek et al., 2017; Pan et al., 2019). Here the focus is to 
explore to what extent people would use eHUBS to replace the mode they are currently using. Since stated choice experiments require 
respondents to state their behaviour under hypothetical scenarios, this may lead to bias in responses compared to their behaviour in 
reality (Fifer et al., 2014). In our case although the two shared modes may not yet be available for many respondents, the vehicles 
involved – cars and e-bikes – are both quite common and shall not cause strong deviation from real preference; we also carefully 
explained the procedure of using a shared vehicle in detail before the experiment.

The attributes in the experiment include the most common ones in mode choices such as travel time, travel cost, and access time. 
We also investigated congestion level as this was found in previous studies to be influential in mode choice (Krueger et al., 2019). As 
potential policy levers, parking time and cost were included to explore their impact on diverting people away from using private car. 
All attributes are varied by three levels: their value and range are based on other currently available services and what can be plausible 
in the near future. Table 1 presents the levels of each attribute. When specifying attribute levels, we aimed at reducing hypothetical 
bias to the extent possible by ensuring that all attribute values fall within realistic ranges: we referred to similar stated preference 
studies on mode choice (Arentze and Molin, 2013; Li and Kamargianni, 2020, 2018; Papu Carrone et al., 2020), checked current and 
possible future regulations (for example, the e-bike speed limit in UK is currently around 15 mph and there was petition to raise it to 20 
mph) and also information of shared mobility services currently in operation in Europe. This ensures that all alternatives can be easily 
imagined by the respondents.

Efficient designs can be used to increase the statistical efficiency of estimates; however, Walker et al. (2018) found that efficient 
design is less robust than orthogonal design, in the sense that it becomes less efficient when the true coefficient value is very different 
from the prior used in design generation. Since our experiment involves innovative modes and we cannot easily obtain reliable priors 
for its attribute coefficients, we decided to use an orthogonal design. An orthogonal design with 27 choice tasks was generated. Each 
respondent received six choice tasks in total: they were presented with all six trip contexts and one choice task per context. The six 
choice tasks per respondent were randomly drawn without replacement from the orthogonal design and then randomly paired with the 
six contexts. Fig. 1 shows an example of a choice task (with the paired context).

The questions in each choice task are different from the standard choice question. Instead of asking respondents to indicate only 
their most preferred alternative and assuming they will always use this alternative, their multimodal behaviour was accommodated by 
allowing respondents to choose multiple alternatives:

Q1: How many times would you use each option if you need to conduct this trip 10 times?
Our aim is to elicit the percentage of trips allocated to each mode. We could have directly elicited the percentage of each alternative 

(Blass et al., 2010; Tapia et al., 2021) such as “I use private car 50 % of the time and shared e-bike 50 % of the time”, but the concept of 
probability may be less straightforward to understand for some respondents. The reason why we ask respondents to answer assuming a 
total of 10 trips is because 1) it is a sufficiently large number and we can obtain percentages/probabilities that are of sufficient 
precision and 2) it is easier to calculate compared to asking people to answer based on their actual total number of trips per month or 
year. This type of question has already been applied in previous mode choice studies (Sfeir et al., 2020). In model estimation, we scaled 

Table 1 
Attribute values of the non-commuting experiment.

Attributes Private car eHUB

Access and egress 
time

Access: elicited from respondent 
Egress: 
1 mile: 1,3,5 min 
3 mile: 1,5,9 min 
6 mile: 1,5,9 min

1 mile: 2,6,10 min 
3 mile: 2,10,18 min 
6 mile: 2,10,18 min

​ ​ EV E-bike (E-cargo bike for the shopping 
purpose)

Travel time Same as shared EV 1 mile: 3, 5, 7 min 
3 mile: 7, 10, 13 min 
6 mile: 15, 20, 25 min 

1 mile: 4, 6, 8 min 
3 mile: 10, 12, 14 min 
6 mile: 20, 25, 30 min

Travel cost £0.1, 0.2, 0.3/km (1,3,6 mile as 2, 5, 10 
km)

£0.15, 0.25, 0.35/min £0.5, 1.0, 1.5 (regardless of distance)

Congestion level Same as shared EV Chance of delay: 0 %, 20 %, 40 % 
Possible delay: 25 %, 50 %, 75 % of travel 
time

​

Parking search time 0, 5, 10 min ​ ​
Parking fee £0, 3, 6 ​ ​
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all responses into probabilities (e.g. “using private car for 7 out of 10 trips” equals to “using private car 70 % of the time”): this implies 
that the outcome of our model is the probability or fraction assigned to each mode and it does not pose a restriction on the total number 
of trips.

In order to investigate transport users’ flexibility to choose between the two shared modes when one of them becomes unavailable, 
choice adaption behaviour was elicited by asking the following questions:

Q2: If only one type of vehicle (instead of two) will be available in the eHUB, how many times would you use each mode if you needed to 
conduct this trip 10 times?

• Q2.1 Please indicate your choice when only a shared EV is available.
• Q2.2 Please indicate your choice when only a shared e-bike is available.

Fig. 1. Example of a choice task.

F. Liao et al.                                                                                                                                                                                                            Transportation Research Part A 190 (2024) 104279 

5 



3.2. Data collection and sample characteristics

The questionnaire was distributed online among adults who hold a driver’s license and live in Manchester, United Kingdom. Survey 
distribution was conducted by collaborating with a panel set by a market research company in March 2021 with an aim of 1000 
respondents. After excluding respondents with a completion time shorter than 5 min (given our survey length it is not possible to finish 
within 5 min), the final sample has 973 valid respondents. In this paper, only choice tasks in which the current mode is driving a private 
car were analysed because they take the largest share (60.8 %) in the sample; a specific interest is also taken to this group since one of 
the main goals of eHUBS is to take transport users away from private car, both their use and ownership. Therefore, 154 respondents 
who do not currently use a private car for any non-commuting trips were excluded. In total 819 respondents and 3551 choice responses 
(not everyone uses the car for all non-commuting trips and the number of choice responses from each respondent differs) were used in 
the analysis. Table 2 presents an overview of the socio-demographic variables distribution of the sample in this study. Since we cannot 
find the statistics for the specific population, we list the statistics for Manchester’s general population instead. Although it is hard to 
evaluate the level of representativeness, we can see that the sample achieved a good combination from all demographic groups. For a 
summary of choice responses such as number of respondents choosing each mode (or their combinations) and the average days 
allocated to each alternative, readers can refer to the first column of Table 5 and 6.

4. Modelling approach

4.1. MDCEV model

Given the multiple-discreteness of the choice data in this study, it is a natural choice to adopt the state-of-the-art modelling 
framework – Multiple Discrete-Continuous Extreme Value (MDCEV) model (Bhat, 2008, 2005). Given a fixed budget, the model de
scribes both the discrete choices (which alternatives are chosen) and the continuous consumption amount (how much of each 
alternative is consumed). The model assumes that an individual chooses a certain amount of each alternative to maximize the utility 
function as follows: 

U(x) =
∑K

k=1

γk

αk
ψk{(

xk

γk
+1)αk − 1}

s.t.
∑K

k=1
xk = B (1) 

In which ψk = eβkzk+εk , zk is the vector of attribute values associated with mode k (and socio-demographic variables), xk is the amount 
allocated to each chosen alternative, K is the total number of available alternatives, M is the number of chosen alternatives, B is the 
budget, βk is the vector of attribute coefficients, and αk and γk are satiation parameters. The value of γk has to be larger than zero. In our 
case, xk is scaled to the probability or fraction allocated to each mode and the budget of all choice situations is 1.

It has a closed-form likelihood function as follows, which is convenient for estimation: 

LL =
1

σM− 1*

[
∏M

i=1
ci

]

*

[
∏M

i=1

1
ci

]

*

[ ∏M
i=1e

Vi
σ

( ∑K
k=1e

Vk
σ
)M

]

*(M − 1)! (2) 

In which Vk = βkzk +(αk − 1)ln
(

xk
γk
+1

)

, ci =
1− αi
xi+γi 

and σ is the scale parameter of the error term.

The MDCEV model was originally proposed under the “horizontal” principle, meaning that the choice of selecting multiple al
ternatives is done simultaneously (Bhat, 2005). Mode choices can be argued as violating the “horizontal” principle since only a single 
mode (or mode chain) can be used in each trip and the multiple-discreteness can only be manifested over repeated discrete choices 
correlated through a budget constraint (Tapia et al., 2021). However, there have been many empirical applications of the MDCEV 
model under similar contexts such as time use, frequency of mode use, and car mileage, which are strictly speaking all repeated discrete 
choices (Bhaduri et al., 2020; Calastri et al., 2017; Jäggi et al., 2013). The model can thus be considered agnostic toward the specific 
decision-making process. Moreover, as it was mentioned earlier, it is also plausible that people would take a tactical planning view 
regarding their mobility arrangements for a long period, which would be satisfying the horizontal condition.

Since no alternative was chosen in all choice tasks, the basic MDCEV model and the two mixed MDCEV models introduced in the 
next section are all estimated using the structure without an outside good. Since α and γ in MDCEV are confounded and cannot be 
simultaneously identified, the γ − profile was adopted by fixing alpha (α) to zero and only estimating gamma (γ) for each alternative. 
Although the γ − profile theoretically allows the identification of the scale parameter, in this study it showed a high correlation with 
several β and γ parameters. Therefore the scale parameter was fixed to 1 as has been done in some previous studies (e.g. Pudāne et al., 
2021).

4.2. Complementarity: Mixed MDCEV and eMDC

The meaning of complementarity is first clarified here. The traditional Hicksian complementarity means that when the demand for 
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one item increases, the demand for the other item also increases (Hicks and Allen, 1934). In the context of multiple discrete–continuous 
choices with a fixed budget, there are two things worth mentioning when discussing complementarity/substitution:

First, the budget constraint already indirectly induces substitution between alternatives; therefore, even if two alternatives are 
complementary, increasing demand for one of them would not necessarily lead to an increased demand for the other, since the net 
change in demand also depends on the indirect substitution imposed by the budget. The complementarity can also be identified for 
products with negatively correlated demand as described in Palma and Hess (2022).

Second, “complementarity” in discrete choices does not necessarily imply complementarity in terms of the continuous amount of 
consumption. Intuitively complementary products are products that “go together” (Manzini et al., 2019); when illustrating the concept 
of complementarity, examples such as “products that are usually bought together” (Palma and Hess, 2022). However, “two products 
being chosen together” is only a phenomenon in the aspect of discrete choices, it does not necessarily mean that the two products are 
also complementary in terms of continuous consumption. Consider the MDCNEV model (Pinjari and Bhat, 2010): when two alter
natives belong to the same nest, they will also “go together” and be chosen simultaneously more often (Hernandez et al., 2023); but 
instead of being complements, the rate of substitution in terms of continuous consumption is even higher between the alternatives 
within the same nest (Pinjari and Bhat, 2010).

There are two approaches for incorporating complementarities and substitutions in multiple-discrete continuous models. The first 
is to allow correlations between different alternatives, for example estimating a mixed MDCEV model incorporating a common random 
error component for the alternatives which are supposedly related (Calastri et al., 2020). The utility of shared modes can thus be 
written as follows: 

ψk = eβkzk+ϑk+ϑShared+εk (3) 

Vk = βkzk +(αk − 1)ln
(

xk

γk
+1

)

+ ϑk +ϑShared (4) 

In which ϑShared is a common error component in all shared modes (in our case both shared EV and shared e-bike) and captures the 
correlation between these alternatives, and ϑk is an alternative-specific error term. All error components are independently and 
identically distributed (with zero mean normal distribution) across respondents, with their standard deviation to be estimated.

The log-likelihood function would then become: 

LL(mixed) =
∫ ∏T

t=1
Likelihood(ϑ)f(ϑ)dϑ (5) 

Table 2 
Sample characteristics.

Variable Value Percentage among sample (people using car for non- 
commuting trips, N ¼ 819)

Percentage among Manchester 
population

Gender Female 60.4 % 50.7 % a

​ Male 39.6 % 49.3 % a

Age 18–24 8.7 % 19.9 %a

​ 25–34 28.3 % 23.6 % a

​ 35–44 26.0 % 25.6 % a

​ 45 or older 37.0 % 30.9 % a

Education No higher education 36.5 % 62.4 %b

​ With higher education 63.5 % 37.6 %b

Household 
Income

Low (<=£40 k) 46.5 % /c

​ Middle (>£40 k and 
<=£80 k)

44.3 % /c

​ High (>£80 k) 9.2 % /c

​ Missing value 4.3 % /c

Occupation Employed 75.0 % 50.2 %b

​ Student 5.6 % 18.1 %b

​ Others 19.4 % 27.7 %b

Number of 
children

0 56.3 % 69.8 %d

​ 1 18.8 % 30.2 %d

​ More than 1 24.9 %
Cars in 

household
0 / /

​ 1 43.3 % 70.5 %e

​ More than 1 56.7 % 29.5 %e

Note: a. among adult population. b. among people aged 16 years and over. c. Cannot find corresponding categories. d. among all households. e. among 
households with cars.
Source of population statistics: Office for National Statistics (ONS).
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In which T denotes the number of choice tasks of each individual: error terms are individual specific which capture the correlation in 
panel data.1

The caveat of this approach is that the source of the correlation is unclear: it can be due to common heterogeneity, complemen
tarity, or substitution (Calastri et al., 2020). To disentangle the source of correlation and identify genuine complementarity/substi
tution, a second approach can be applied by using non-additive utility formulations to incorporate explicit interactions between 
different alternatives. The additive utility function (1) can be taken forward as the basis and then add multiplicative terms to it to 
incorporate interactions between pairs of alternatives. There have been multiple models incorporating complementarity/substitution 
via non-additive separable utility functions (Bhat et al., 2015; Pellegrini et al., 2021); However, a drawback of these formulations is 
that they are only valid for some values of the complementarity/substitution parameters, which can lead to both difficulties in esti
mation and forecasting (Calastri et al. 2020; Palma and Hess 2022). To be more specific, the marginal utility of any good at any 
consumption point for each good ∂U

∂xk 
should always be positive. However, in these model formulations, ∂U

∂xk 
depends on the level of 

consumption of each individual, indicating that a model’s correctness can only be evaluated for each specific dataset which hinders 
model transferability and forecasting. Moreover, extra effort is needed during model estimation to prevent the algorithm from testing 
parameter combinations violating ∂U

∂xk
> 0. The readers can refer to Palma and Hess (2022) for more details regarding the potential 

drawbacks of Bhat et al. (2015) and other MDC models.
A recently proposed model is used here – the extended Multiple Discrete Continuous (eMDC) model (Palma and Hess, 2022) − to 

explicitly incorporate complementarity and substitution between alternatives. This model does not impose constraints on parameters 
and is computationally tractable. The utility function is as follows: 

U(x) = u0(x0)+
∑K

k=1
uk(xk)+

∑K− 1

k=1

∑K

l=k+1
ukl(xk, xl)s.t.

∑K

k=0
xk = B (6) 

In which 

u0(x0) = ψ0log(x0) (7) 

uk(xk) = ψkγklog(
xk

γk
+ 1) (8) 

ukl(xk, xl) = δkl(1 − e− xk )(1 − e− xl ) (9) 

ψ0 = 1 (10) 

ψk = eβkzk+εk (11) 

Most notations in equation (6) are identical to MDCEV. The main noticeable differences include: 1) it explicitly includes multiplicative 
terms ukl(xk, xl) which represent the interaction between different alternatives with a set of δkl coefficients to be estimated. If δkl > 0 
(δkl < 0), there is complementarity (substitution) between alternatives k and l since ukl(xk, xl) will increase (decrease) when the 
consumption of xk and xl increases; 2) uk(xk) takes the functional form of the γ-profile of MDCEV by assuming α → 0; 3) it assumes an 
outside good x0 which is always chosen; 4) the marginal utility of the outside good ψ0 does not contain a stochastic error term (and is 
fixed to 1 in this study).

Although using stochastic errors following the Gumbel distribution can result in a closed-form likelihood, it was found to generate a 
high number of outliers in prediction due to its thick tail; eMDC is therefore implemented with normally distributed errors. Moreover, 
unlike MDCEV, the determinant of the Jacobian term in the likelihood function for eMDC does not have a compact form. Due to these 
reasons, the likelihood function will not be reproduced here. Forecasts based on eMDC can be done by applying algorithms capable of 
handling nonlinear objective functions and both equality and inequality constraints, which are incorporated in off-the-shelf packages 
such as Rsolnp (Ghalanos A, 2015). More details on the model are available in a recent publication by Palma and Hess (2022).

From equation 9) we can see that the size of δ parameters depends on the scale of consumption: since the value of (1 − e− xk )(1 −

e− xl ) is rather sensitive to the values of xk and xl when they vary from 0 to 1 (compared to when they are between 0 and 10), we 
encountered optimization difficulties when we estimate the model with responses scaled to probability. Therefore, we used the original 
response data (number of trips using each mode out of 10 trips) in the estimation of the eMDC model.

The eMDC modelling framework also requires an outside good that is always chosen/consumed; however, none of the three al
ternatives in our stated choice experiment was chosen in all choice tasks at least for one day. To still apply the model, the strategy in 
Palma and Hess (2022) is followed by setting the budget to be 10.1 and assuming an outside alternative which is always assigned 0. 1. 
Although this assumption is rather arbitrary and would inevitably hamper its prediction performance compared to the models which 
do not require an outside alternative, it shall not affect the relations between the “inside” alternatives and our objective of diagnosing 
complementarity and substitution relations between the shared modes. We also tested this by estimating the model with a wide range 

1 Note that this formulation only allows for a positive correlation between these two alternatives. A mixed MDCEV model was also estimated that 
allows for negative correlation and the correlation turned out to be positive. The error structure in the final mixed MDCEV model is adopted since 
the coefficients can be interpreted in a straightforward manner.
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of values for the amount of outside good: the sign and statistical significance of δ parameters remain robust, which empirically shows 
that this imposed assumption does not affect our conclusion regarding the complementarity and substitution between alternatives.

Compared to the MDCEV models, the utility functions for all three modes were modified due to the imposed outside good. We have 
three trip distances (1, 3 and 6 mile) in our dataset and the travel time of all modes is roughly proportionate to the distance: for 
example, the travel time of a 6 mile trip is around two times the travel time of a 3 mile trip. Therefore, if the travel time-related utility is 
formulated as βtraveltime*traveltime, the utility of all three alternatives would decrease when the trip distance is longer. Given that the 
utility of the outside good is fixed to 0, this implies that the consumption of the outside good would increase in longer trips; but this 
value is fixed to 0.1 in all choice observations and it can lead to confounded travel time parameter estimates. To mitigate this impact, 
the trip distance shall not have such a “scaling” effect on utilities via attributes. Instead of directly using the absolute value of travel 
time in the utility function, we recode it as the value difference from the middle level of travel time: for example, the travel time of 
shared e-bike can take 20, 25 or 30 min for a 6 mile trip; in our scheme, they would be recoded to − 5, 0, and 5. We also allow ASCs to be 
different for each distance.

Regarding the scale parameter (standard deviation of the stochastic error term), it was estimated simultaneously with other pa
rameters in the eMDC model at first but we encountered difficulties in the estimation. Then we attempted estimation by fixing the scale 
parameter to different values: when it took a smaller value the RMSE of the aggregate prediction would be slightly better, while all 
coefficient estimates were generally scaled accordingly and there was no significant change in terms of their statistical significance. 
This indicates that its value hardly has any influence on our purpose with estimating the eMDC model, which is identifying the ex
istence of complementarity and substitution. The final model was estimated with this parameter fixed to 1.

4.3. Flexibility: Mixed MDCEV and emergent value model

By contrasting the responses between Q1 and Q2 and observing how people adapt when a shared mode they would like to use 
becomes unavailable, insights regarding transport users’ flexibility between the two shared modes can be obtained.

According to the IIA assumption in MDCEV, when an alternative becomes unavailable, the continuous consumption of the 
remaining alternatives will increase proportionately. However, as it is seen later in the results section when one of the shared modes 
becomes unavailable, the usage of the remaining shared modes will increase more than the MDCEV predicts, suggesting that the 
flexibility between the two modes is stronger than the model assumes.

The first possible reason for this phenomenon is similarity and common preference heterogeneity: since two shared modes are more 
similar, when one of the shared modes becomes unavailable, the remaining shared mode will serve as a better replacement, hence its 
consumption will increase by a greater proportion compared to the private car. This will be explored with mixed MDCEV which can 
accommodate correlation between alternatives due to common preference heterogeneity.

A second possibility is an ad-hoc approach called emergent value (Guevara and Fukushi, 2016): it assumes that the utility of al
ternatives can change when the choice context (e.g. available alternatives) changes. In this study, the emergent value of shared EVs and 
e-bikes when the other shared mode is unavailable will be examined. The marginal utility function for this study is proposed as follows: 

ψk = eβkzk+EVk*1(AVl=0)+ε (6) 

In which EVk is the emergent value of alternative k when the alternative l is unavailable, 1(AVl = 0) is an indicator variable that takes 
the value 1 when l is unavailable and 0 otherwise. Its functional form can accommodate any level of flexibility between shared modes, 
but it is agnostic towards the underlying behavioural mechanism and runs the risk of overfitting. Its prediction performance compared 
to the mixed MDCEV model will be examined.

Our focus is evaluating the prediction performance of different models, especially in terms of how they predict people’s adaptation 
under different mode availability. A base forecast which predicts using the original sample is considered first and see how well it can 
recover the original sample statistics. The root mean squared error (RMSE) of the aggregate predictions is used as the indicator of 
forecast error (Palma et al., 2021; Palma and Hess, 2022); this metric is calculated separately for each mode availability context (Q1, 
Q2.1 and Q2.2). We first check whether the model estimated only using responses for Q1 can generate accurate prediction when one of 
the eHUBS modes becomes unavailable. We will test both MDCEV and mixed MDCEV model. The next step is to explore whether 
models estimated with all data (Q1 and Q2) perform better: in this step we examine three models, namely MDCEV, mixed MDCEV and 
emergent value model.

The second scenario investigated is unconditional prediction where the models forecast the behaviour of new individuals without 
any information about their choices in the estimation set: a 10-fold cross-validation for the three models was carried out to examine 
their prediction performance for new data. Each model was estimated using 90 % of the full sample and use the estimated parameters 
to examine its prediction performance on the remaining 10 % of the sample. All choices made by an individual are in the same subset, 
which prevents choices of the same individual from appearing in both the training and validation data (Hillel, 2020). This ensures that 
the prediction is done unconditionally without any information about other choices made by the individuals in the validation set. Apart 
from the root mean squared error (RMSE) of the aggregate continuous consumption and discrete choice predictions, the RMSE of each 
choice observation which reflects the average performance for each choice occurrence was also examined: the average RMSE for each 
alternative (when there are only two alternatives, the RMSE of the two alternatives are identical) was calculated. All values are the 
average of the 10 repetitions.
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5. Results

5.1. Complementarity

The analysis of complementarity between eHUBS modes focused on the responses for Q1, because these choices are made when 
both eHUBS modes are available. 24 % of the choice observations included more than a single alternative and 47 % of the respondents 
chose more than one alternative in at least one of the choice tasks, showing that multimodality is a common behaviour. All models 
were estimated using the Apollo package.

A MDCEV was estimated as the base model. The result is presented in Table 3: The analysis shows that most attribute coefficients 
are statistically significant; their relative size and the implied value of time also lie within a plausible range. For example, the value of 
travel time of shared e-bike has a value of around 5 lb per hour, and the access time is valued slightly higher. For comparison, a recent 
study conducted in Great Britain recommend using 5.12 lb per hour as the value of time for non-work trips (Batley et al., 2019). Results 
and implications concerning attribute coefficients will not be interpreted in detail in our paper, because our main goal is identifying 
complementarity and substitution between alternatives instead of obtaining accurate estimates of value of time.

We also incorporated socio-demographic variables to investigate observable heterogeneity. All variables with t-values above 1.2 
were retained in the final model. We found that people with higher education are more likely to choose shared EV, while people who 
are male, younger than 35 years old, or with children are more likely to choose shared e-bike. These findings in general fit the typical 
image of early adopters of transport innovations.

As for the satiation parameters γ, we can see that the values of shared EV and e-bike are of similar magnitude (the difference is 
statistically non-significant). The satiation parameter of the private car has a larger value which denotes a lower level of satiation, 

Table 3 
Parameter estimates of MDCEV models.

MDCEV Mixed MDCEV

Estimate t-ratio Estimate t-ratio

Car ​ ​ ​ ​
ASC 0 / 0 /
Access time − 0.016 − 1.609 ¡0.042 ¡3.068
Travel time − 0.020 − 1.637 − 0.014 − 0.901
Travel cost ¡0.129 ¡2.375 ¡0.319 ¡4.634
Parking time − 0.011 − 1.260 ¡0.023 ¡2.046
Parking cost ¡0.148 ¡9.593 ¡0.276 ¡12.717
Congestion probability * time − 0.418 − 0.932 − 0.625 − 1.032
Shared EV ​ ​ ​ ​
ASC** ¡0.914 ¡4.224 ¡2.380 ¡7.423
Young / / 0.385 1.868
High education 0.262 1.984 0.453 2.090
High income / / 0.545 1.561
Shopping trip − 0.038 − 0.493 ¡0.218 ¡2.093
Access time ¡0.042 ¡5.418 ¡0.068 ¡7.255
Travel time ¡0.065 ¡5.032 ¡0.104 ¡6.337
Unit travel cost per minute ¡3.049 ¡6.276 ¡3.842 ¡6.350
Congestion probability * time − 0.223 − 0.424 − 0.207 − 0.313
Shared e-bike ​ ​ ​ ​
ASC** ¡1.968 ¡8.444 ¡4.034 ¡9.271
Male 0.338 2.638 0.567 2.776
Young 0.251 1.988 0.557 2.320
High education / / 0.383 1.514
High income / / 0.775 1.950
Low income / / 0.306 1.434
Have children 0.359 2.860 0.635 3.141
Shopping trip ¡0.523 ¡6.701 ¡0.984 ¡8.677
Access time ¡0.029 ¡3.780 ¡0.054 ¡5.560
Travel time ¡0.024 ¡2.419 ¡0.053 ¡4.103
Travel cost ¡0.275 ¡2.625 ¡0.530 ¡3.844
γ: Car 1.808 5.369 0.524 7.808
γ: Shared EV 0.582 12.140 0.431 10.137
γ: Shared e-bike 0.660 10.495 0.403 9.198
σ: Shared EV ​ ​ 0.651 3.437
σ: Shared e-bike ​ ​ 1.741 12.123
σ: eHUBS modes ​ ​ 2.169 19.240
Number of individuals ​ 819 ​ 819
Number of observations ​ 3551 ​ 3551
LL ​ − 4103.4 ​ − 3504.0

** Estimate of mean in mixed MDCEV.
Bold: statistically significant at 0.05 level. Italic: statistically significant at 0.1 level.

F. Liao et al.                                                                                                                                                                                                            Transportation Research Part A 190 (2024) 104279 

10 



meaning that it will be used proportionately more than eHUBS alternatives if it is chosen.
As mentioned earlier in the methodology section, in order to accommodate possible complementarity between the two shared 

modes in eHUBS, we estimated a mixed MDCEV model which allows for both unobserved heterogeneity and correlation between 
alternatives. It was estimated with 500 MLHS draws: we tested with 1000 draws but ended up with similar results, indicating that 500 
draws is sufficient. As per Table 3, the standard deviation of both alternative-specific error components (σ: Shared EV and σ: Shared e- 
bike) is statistically significant, demonstrating that there is unobserved heterogeneity in the preferences for these two modes of shared 
EV and shared e-bike. Most importantly, the standard deviation for the common error component shared by the two eHUBS modes (σ: 
eHUBS modes) is also statistically significant, indicating that there is correlation between these two modes. However, the study cannot 
conclude that there exists complementarity between the two eHUBS modes based on the results of mixed MDCEV only, since this 
correlation can also be a result of common heterogeneity in preferences.

In order to disentangle the source of correlation and identify whether it is due to complementarity, we estimated an eMDC model 
and the results are presented in Table 4. As discussed earlier, the δ parameter estimates denote the complementarity/substitution 
relations between alternatives. The δ parameter between shared EV and e-bike is positive and statistically significant; this indicates 
that these two alternatives are complementary. The results also show that there is substitution between private car and the two eHUBS 
modes. Given the 66 % share of respondents who chose to completely stick to the car, this is not surprising. As for attribute coefficients, 
all significant coefficients have the expected sign; we will not interpret them in detail as they are not our focus. Table 4 also rpesented a 

Table 4 
Parameter estimates of eMDC models.

eMDC Mixed eMDC

Estimate t-ratio Estimate t-ratio
Car ​ ​ ​ ​
ASC* 3.396 57.497 3.302 54.474
+ ASC_3mile** 0.020 0.879 0.020 0.910
+ ASC_6mile 0.062 2.681 0.060 2.715
Access time − 0.003 − 1.113 − 0.003 − 1.134
Travel time 0.002 0.615 0.002 0.636
Unit travel cost ¡0.322 ¡3.248 ¡0.308 ¡3.228
Parking time ¡0.007 ¡3.029 ¡0.006 ¡3.022
Parking cost ¡0.041 ¡10.758 ¡0.040 ¡10.600
Congestion probability * time − 0.160 − 1.852 − 0.154 − 1.847
Shared EV ​ ​ ​ ​
ASC 1.988 20.522 1.978 18.909
Higher education 0.155 2.436 0.185 2.527
+ ASC_3mile − 0.085 − 1.811 ¡0.150 ¡2.912
+ ASC_6mile ¡0.228 ¡4.440 ¡0.322 ¡5.681
Shopping trip 0.042 1.155 0.007 0.177
Access time ¡0.017 ¡4.644 ¡0.021 ¡5.241
Travel time ¡0.030 ¡4.436 ¡0.036 ¡4.797
Unit travel cost per minute ¡1.535 ¡6.311 ¡1.652 ¡6.245
Congestion probability * time 0.014 0.072 0.042 0.191
Shared e-bike ​ ​ ​ ​
ASC 1.497 15.292 1.343 10.850
Male 0.159 2.596 0.197 2.718
Young 0.126 2.078 0.137 1.904
Higher education / / 0.206 2.477
Have children 0.177 2.928 0.229 3.187
+ ASC_3mile 0.176 3.355 0.141 2.450
+ ASC_6mile 0.145 2.551 0.089 1.419
Shopping trip ¡0.240 ¡6.599 ¡0.311 ¡7.712
Access time ¡0.009 ¡2.690 ¡0.013 ¡3.618
Travel time − 0.003 − 0.353 − 0.007 − 0.948
Travel cost ¡0.149 ¡3.038 ¡0.186 ¡3.564
γ: Car 4.681 14.076 5.418 12.665
γ: Shared EV 13.117 9.827 10.128 9.769
γ: Shared e-bike 14.313 8.567 20.888 4.078
Higher education ​ ​ ¡13.040 ¡2.574
δ: Car – EV ¡2.761 ¡10.269 ¡2.297 ¡7.743
δ: Car – e-bike ¡2.529 ¡10.025 ¡2.279 ¡8.218
δ: EV – e-bike 3.472 14.211 2.284 8.456
σ: eHUBS modes ​ ​ 0.527 15.041
Number of individuals ​ 819 ​ 819
Number of observations ​ 3551 ​ 3551
LL ​ − 680.1 ​ − 582.8

*: The ASC of the outside good is fixed to 0.
**: The base value of car ASC is for 1 mile trips; the value of car ASC for 3 mile trips is (ASC + ASC_3mile). This also applies to other alternatives and 
distances.
Bold: statistically significant at 0.05 level. Italic: statistically significant at 0.1 level.
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mixed eMDC incorporating correlation between the two eHUBS alternatives and also satiation parameter heterogeneity. We can see 
that the standard deviation for the error component shared by the two eHUBS modes (σ: eHUBS modes) is also statistically significant, 
while the δ parameter between shared EV and e-bike is still statistically significant but smaller in size; this seems to suggest that both 
complementarity and common heterogeneity in preferences are at play. As for the deterministic heterogeneity of the satiation pa
rameters, only one demographic variable turns out to be significant.

The different implications of these model estimates can be more straightforwardly illustrated in terms of prediction. Table 5 shows 
the prediction of the three models above using the original sample data. The results consist of two parts: the first part “continuous 
consumption” reports the average number of trips allocated to each mode when each respondent conducts 10 trips in total across the 
sample; the outcome of MDCEV models is calculated by the predicted probability assigned to each mode multiplied by 10 (the assumed 
total number of trips in this table). the second part shows the prediction of discrete choices, namely the share of people in the sample 
who choose each mode (regardless of the number of trips they allocate to this mode as long as it is more than zero). The column 
“original data” lists the actual values of the original sample. Note that since the eMDC model assumes an artificially outside alternative 
and has a different model structure, it performs significantly worse in terms of prediction as reflected by its higher RMSE values 
compared to the MDCEV models; therefore, the final eMDC model will only be compared with a restricted eMDC in which all δ pa
rameters are fixed to 0. Also, apart from the two MDCEVs in Table 3, the performance of a mixed MDCEV with only alternative-specific 
random errors is presented for illustration purposes. The metric we used for evaluation is the Root Mean Square Error (RMSE) of the 
aggregate prediction in the whole sample.

First, the three MDCEV models are compared. It is noted that incorporating only independent random error components can lead to 
worse prediction performance in terms of continuous consumption. After incorporating correlations, the prediction is much improved 
and closer to the real values. Other research, for instance, Calastri et al. (2020), also made similar observations.

Apart from the percentage of respondents who choose shared EV and shared e-bike, how many people choose both eHUBS modes 
simultaneously was also checked. According to the correlation criterion of complementarity in Manzini et al. (2019), if P(A)*P(B) < P 
(AB), then A and B can be considered as complementary,2 in which P(A) and P(B) are the percentages of respondents choosing A and B 
respectively, while P(AB) is the percentage of respondents who chooses both A and B (independently of the number of allocated days). 
Although this criterion cannot be directly applied to statistics for our full sample because it consists of choices between alternatives 
with different attribute combinations, it is still possible to observe how well each model can recover P(AB) as an indicator of its 
capability in capturing complementarity. Although MDCEV model can reproduce the pattern of time allocation and discrete choice 
shares considerably well, it underpredicts the share of transport users who would choose both eHUBS modes. This underprediction is 
even more severe in the mixed MDCEV without correlation. Although mixed MDCEV model with correlation still slightly underpredicts 
the share who choose both eHUBS modes, the result is already the closest to actual values among all three MDCEV models in terms of 
the share choosing both shared modes, demonstrating its capability in capturing the complementarity between the shared modes.

The prediction of the first two eMDC models (without and with δ parameters) are very similar in terms of time allocation and 
discrete choice proportions, while the significant difference lies in the share of transport users who choose both eHUBS modes. Even 
though both the share of people choosing shared EV and shared e-bike are overpredicted, the eMDC model without complementarity 
and substitution effects still underpredicts the share choosing both eHUBS modes. Due to the strong complementarity effect in the 
eMDC model with interactions, the share that chooses both eHUBS modes is predicted to be much higher than in the eMDC model 
without interactions, although it is an overprediction compared to the actual value. Finally, the mixed eMDC incorporating alternative 
correlation via error component performs significantly better than the first two eMDCs in terms of all prediction performance in
dicators: the prediction for both continuous consumption and share of people choosing an alternative is closer to the actual value, its 
overprediction of the percentage choosing both eHUBS modes is also much less than the eMDC model without alternative correlation, 
implying that the shared error component and the δ parameters (for comeplementarity and substitution) are each capturing a unique 
behavioral mechanism.

Based on the above estimation and analysis, it can be concluded that the complementarity between the two eHUBS modes does exist 
and there is added value in providing multiple shared modes in mobility hubs.

5.2. Flexibility between the eHUBS modes

5.2.1. Pattern of choice adaptation
As it was mentioned in the survey design section, the respondents were asked to indicate how they would change their choices if 

shared EV or e-bike become unavailable. By contrasting their choices under different mode availability conditions (Q1, Q2.1, and 
Q2.2) and analysing their choice adaptation strategies, it is necessary to derive insights regarding transport users’ flexibility between 
the two eHUBS modes.

Table 6 presents the choice adaptation pattern for each current choice response. For example, the first row indicates that for the 168 
choice observations in which only shared EV was chosen to conduct all their trips, 24.4 % of those would use only the shared e-bike to 
replace all trips when shared EV becomes unavailable, 62.5 % would completely switch back to their private car and the remaining 
13.1 % would use both e-bike and private car to replace shared EV. These choices were made under different choice tasks with varied 
attribute combinations, so the table is only supposed to provide an indication. Although the adapted choices were elicited for all tasks, 

2 As discussed in section 2, this condition is necessary but not sufficient in multiple discrete continuous choices with fixed budget.
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only those who are forced to adapt are presented in Table 6. For example, people who choose the private car to conduct all trips in Q1 
are not included because they do not have to adapt when the availability of eHUBS modes changes.

From Table 6 the following observations can be drawn: Firstly, those who choose to replace all trips by using a private car can be 
considered to be completely inflexible since they do not use the remaining shared service in the hub at all; therefore the percentage 
adopting this strategy can be seen as an indicator for different groups’ flexibility between the use of two shared modes. The ranking of 
flexibility between eHUBS modes from the most to least flexible is: those who chose shared EV + e-bike, those who chose all three 
modes, those who chose only shared EV or e-bike, those e who chose car and one of the eHUBS mode. It is plausible that those who 
initially only chose one of the eHUBS modes are more inflexible: they probably did not choose both modes because the unchosen 
shared mode may not meet their needs; Secondly, those who choose to replace the unavailable mode only with the other eHUBS mode 
can be considered as being completely flexible. Among those who chose both eHUBS modes in Q1, a rather high percentage (40 % − 55 
%) adopt this adaptation strategy; this is intuitive since they already chose the other eHUBS mode when all modes were available, 
which implies that both modes are considered suitable. Even among those who initially chose only one eHUBS mode, there is also a 
significant minority who are completely flexible: for example, 24.4 % of people who initially chose shared EV to conduct all their trips 
will switch completely towards shared e-bike when EV becomes unavailable; Thirdly, in general, EV seems to be able to replace e-bike 
to a slightly higher extent. For example, among those who only chose shared EVs to conduct all trips, 24.4 % are willing to completely 
switch toward shared e-bikes as a replacement; while among those who only chose shared e-bikes, the percentage of completely 
flexible people increases to 34.2 %.

5.2.2. Statistical models
Using pooled response data for Q1, Q2.1 and Q2.2, three models, which are respectively MDCEV, mixed MDCEV, and emergent 

value model were estimated. Since our focus in this section is to predict people’s behaviour adaptation when the availability of shared 
mode changes, we will not apply eMDC in this section as we see from section 5.1 that eMDC does not perform better in terms of general 
prediction performance. The estimation results can be found in Table 7. Of all three models, the mixed MDCEV model has the highest 
model fit with the highest log likelihood, but this may mostly be due to.

its incorporation of unobserved random taste heterogeneity and it does not necessarily correspond to better predictive performance 
(Krueger et al., 2021). The impact of socio-demographics on the ASC was examined while only those that are statistically significant 
were retained in the final model: people below 35 years old show a higher preference for both shared EVs and e-bikes, while those who 
are male or with children have a higher preference for shared e-bike. The emergent value model has a higher log-likelihood than the 
base MDCEV model. The emergent values of both shared EV and e-bike are positive and statistically significant: this indicates that 
when the other shared mode is unavailable, the usage of both shared EV and e-bike would increase so much as if their utilities increase. 
We also investigated the impact of socio-demographics on the ASC and the emergent value of both shared modes. The results are 
similar to the case of the mixed MDCEV model: the only difference is that only those with higher education are found to prefer shared 
EV. Not much heterogeneity is observed in emergent values: only those with higher education are found to have a lower emergent 
value for shared EV, implying that they would use shared EV as a replacement to a lesser extent when shared e-bike is unavailable.

Table 8 presents the results of the base forecast for all models. The column “original data” lists the actual values of the original 
sample. The root mean squared error (RMSE) of the aggregate predictions is used as the indicator of forecast error (Palma et al., 2021; 
Palma and Hess, 2022). It is calculated separately for each choice context (Q1, Q2.1 and Q2.2). We first check whether the model 
estimated only using responses for Q1 can generate accurate prediction when one of the eHUBS modes becomes unavailable. Column 2 
shows that the MDCEV model estimated based on Q1 data severely underpredicts (around 20 % less) the number of trips allocated to 
eHUBS under Q2 contexts: this indicates that the flexibility between the two shared modes is stronger than MDCEV model implies. 
Since a possible reason for this phenomenon is common preference heterogeneity, mixed MDCEV model which accommodates cor
relations between alternatives may be able to generate the choice adaptation patterns under Q2 better: as per column 3 its prediction in 
Q2 contexts is indeed much better than MDCEV model (for example, its RMSE for the Q2.1 context is only 657.94, much smaller than 
the RMSE of MDCEV which is 1390.24), although the predicted use of shared mobility is still lower than the actual value.

The next step is to explore whether models estimated with all data (Q1 and Q2) perform better: column 4 shows that the prediction 

Table 5 
Prediction of models based on the collected sample.

Original 
data

MDCEV Mixed MDCEV without 
correlation

Mixed MDCEV with 
correlation

eMDC with all δ 
fixed to 0

eMDC Mixed 
eMDC

Continuous consumption (When total number of trips is 10)
Car 7.76 7.69 7.51 7.65 7.09 7.09 7.37
Shared EV 1.10 1.13 1.17 1.10 1.42 1.43 1.29
Shared e-bike 1.15 1.18 1.32 1.25 1.47 1.45 1.30
RMSE ​ 169.46 646.22 308.58 1660.12 1655.2 949.7
Share of people choosing an alternative
Car 87.6 % 86.3 % 85.3 % 86.0 % 86.1 % 84.2 % 85.5 %
Shared EV 20.2 % 20.5 % 20.4 % 20.1 % 25.2 % 26.1 % 23.4 %
Shared e-bike 20.5 % 20.6 % 21.6 % 21.2 % 25.1 % 26.3 % 23.3 %
Both eHUBS 

modes
6.8 % 4.1 % 2.9 % 5.7 % 4.8 % 11.2 % 8.7 %

F. Liao et al.                                                                                                                                                                                                            Transportation Research Part A 190 (2024) 104279 

13 



of the MDCEV model estimated using all data has smaller RMSE for Q2 choices, but this is at cost of overpredicting the share for eHUBS 
modes in Q1. The result of mixed MDCEV model in column 5 is similar: it performs better than MDCEV model and even overpredicts 
the share of eHUBS modes in Q2, but the percentage increase from the share under Q1 is still less than the actual value. Moreover, we 
can see that it even performs significantly worse than the mixed MDCEV model estimated with only data from Q1 (column 3) both for 
Q1 and Q2.2; this implies that in our case the additional data from Q2.1 and Q2.2 do not lead to a higher overall performance of mixed 

Table 6 
Choice adaptation when an eHUBS mode becomes unavailable (Q2).

Choice when all three modes are 
available (Q1)

Number of choice 
occurrences

Replace only with another 
eHUBS mode

Replace only with 
private car

Replace with both 
modes

Shared EV only 168 (4.7 %) 24.4 % 62.5 % 13.1 %
Shared EV þ car 307 (8.6 %) 14.7 % 72.6 % 12.7 %
Shared e-bike 199 (5.6 %) 34.2 % 52.3 % 13.6 %
Shared e-bike þ car 286 (8.1 %) 11.2 % 75.2 % 13.6 %
Shared EV þ e-bike 74 (2.1 %) ​ ​ ​
Only EV available ​ 55.4 % 27.0 % 17.6 %
Only e-bike available ​ 43.2 % 32.4 % 24.3 %
All three modes 168 (4.7 %) ​ ​ ​
Only EV available ​ 39.3 % 27.4 % 33.3 %
Only e-bike available ​ 42.3 % 35.1 % 22.6 %

Table 7 
Estimation results of models for pooled data.

MDCEV Mixed MDCEV Emergent value

Estimate t-ratio Estimate t-ratio Estimate t-ratio
Car ​ ​ ​ ​ ​ ​
ASC 0.000 ​ 0.000 ​ 0.000 ​
Access time − 0.018 − 1.882 ¡0.038 ¡2.749 − 0.018 − 1.896
Travel time − 0.013 − 1.182 − 0.013 − 0.836 − 0.014 − 1.229
Travel cost − 0.091 − 1.799 ¡0.249 ¡3.768 − 0.090 − 1.792
Parking time − 0.010 − 1.159 ¡0.027 ¡2.385 − 0.010 − 1.145
Parking cost ¡0.146 ¡10.020 ¡0.294 ¡13.161 ¡0.144 ¡10.001
Congestion time * probability − 0.505 − 1.258 − 0.798 − 1.373 − 0.500 − 1.249
Shared EV ​ ​ ​ ​ ​ ​
ASC** ¡0.861 ¡4.660 ¡2.460 ¡8.727 ¡1.141 ¡5.557
Higher education ​ ​ ​ ​ 0.260 2.002
Young ​ ​ 0.370 1.875 ​ ​
Shopping trip − 0.090 − 1.385 ¡0.267 ¡2.769 − 0.088 − 1.349
Access time ¡0.039 ¡5.971 ¡0.067 ¡7.743 ¡0.039 ¡5.962
Travel time ¡0.055 ¡4.738 ¡0.102 ¡6.233 ¡0.056 ¡4.768
Unit travel cost per minute ¡2.463 ¡5.470 ¡3.240 ¡5.362 ¡2.458 ¡5.436
Congestion time * probability − 0.414 − 0.989 − 0.525 − 0.864 − 0.417 − 0.978
Shared e-bike ​ ​ ​ ​ ​ ​
ASC** ¡1.993 ¡9.142 ¡4.067 ¡11.395 ¡2.104 ¡9.697
Male 0.298 2.377 0.591 2.477 0.299 2.369
Young 0.251 2.044 0.592 2.277 0.255 2.055
Have children 0.360 2.941 0.652 3.013 0.361 2.929
Shopping trip ¡0.484 ¡7.064 ¡1.033 ¡9.153 ¡0.485 ¡7.073
Access time ¡0.027 ¡3.927 ¡0.051 ¡5.343 ¡0.027 ¡3.868
Travel time ¡0.020 ¡2.194 ¡0.054 ¡4.181 ¡0.020 ¡2.172
Travel cost ¡0.200 ¡2.092 ¡0.462 ¡3.355 ¡0.200 ¡2.082
γ: Car 1.272 7.087 0.450 8.776 1.335 6.783
γ: Shared EV 0.814 12.568 0.449 10.889 0.793 12.661
γ: Shared e-bike 0.822 11.457 0.362 10.483 0.804 11.590
σ: Shared EV ​ ​ 0.739 6.127 ​ ​
σ: Shared e-bike ​ ​ 2.270 20.021 ​ ​
σ: eHUBS modes ​ ​ 2.867 22.458 ​ ​
Emergent value EV ​ ​ ​ ​ 0.425 5.341
Higher education ​ ​ ​ ​ ¡0.285 ¡3.230
Emergent value 

E-bike
​ ​ ​ ​ 0.208 6.188

Number of individuals 819 ​ 819 819
Number of observations 10,653 ​ 10,653 10,653
LL − 9260.8 ​ − 6781.5 − 9242.58
​ ​ ​

** Estimate of mean in mixed MDCEV.
Bold: statistically significant at 0.05 level. Italic: statistically significant at 0.1 level.
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MDCEV. Finally, it is observed that the emergent value model has the smallest RMSE in all three choice contexts and overall has the 
best ability in recovering the statistics of the estimation sample.

The results of the cross-validation can be found in Table 9. Although mixed MDCEV model has higher model fit, it does not 
outperform MDCEV in terms of its aggregate prediction of both continuous consumption and discrete choices. On the other hand, the 
emergent value model has the smallest RMSE for both the aggregate prediction of continuous consumption and discrete choices. There 
is little difference between all models in terms of the RMSE per alternative.

To summarize, the emergent value model has the best overall prediction performance. Given these results, it is possible to conclude 
that common preference heterogeneity between the two shared modes is not the (only) reason underlying the strong flexibility be
tween eHUBS modes and cannot represent the true data-generating process. The real behavioural mechanism which can generate 
strong flexibility between shared modes will still need to be explored; otherwise, the prediction results will be biased when the model 
estimated under a certain choice context is applied in different choice contexts (alternative availability).

6. Conclusions, policy implications and future work

This paper investigates transport users’ mode choice behaviour when electric mobility hubs become available. As the integration of 
different transport modes provides easier access to a wide range of transport services, many transport users are expected to use 
multiple transport modes to conduct their trips. Therefore, multimodal behaviour both in our measurement and modelling of the mode 
choice behaviour was explicitly accommodated. Instead of asking the respondents to indicate their most preferred mode, the stated 
choice experiment that was designed for the study asks them to allocate the number of trips between different modes which allows 
multiple modes to be chosen. Several models under the Multiple Discrete Continuous framework were then applied to model the choice 
data.

We investigate whether there is complementarity or substitution between the multiple shared modes available in the eHUBS. We 
use two approaches to accommodate complementarity and substitution in the models: first, we estimate a mixed MDCEV model which 
can capture complementarity via correlations between alternatives. Although we find a positive correlation between the two eHUBS 
alternatives shared electric vehicle and shared e-bike, it does not allow us to conclude whether this correlation is due to common 
preference heterogeneity or complementarity. We then estimate an eMDC model which explicitly includes multiplicative terms rep
resenting the interaction between different alternatives and allows the identification of complementarity and substitution. The result 
of the eMDC model shows that there exists complementarity between shared EV and shared e-bike in eHUBS, providing evidence for 
the added value of offering both services at the same physical location.

We also study how travellers adapt when one of the shared modes becomes unavailable. Those who chose both shared modes 
initially are the most flexible to use the remaining shared mode for replacement, while those who chose private car and only one of the 
shared modes are the least flexible. However, even this least flexible group is willing to use the remaining shared mode as (part of the) 
replacement in around 25 % of the cases. it is found that the standard MDCEV model estimated with choice data when all modes are 
available would underpredict the use of shared mobility service in eHUBS when one of the shared modes is unavailable, implying that 

Table 8 
Base forecast results of different models.

Original data Q1 MDCEV Q1 Mixed MDCEV Pooled MDCEV Pooled Mixed MDCEV Emergent value

All three modes available (Q1)
Continuous consumption
Car 7.76 7.69 7.65 7.39 7.45 7.62
Shared EV 1.10 1.13 1.10 1.31 1.20 1.18
Shared e-bike 1.15 1.18 1.25 1.30 1.35 1.20
RMSE ​ 169.46 308.58 941.33 788.31 350.06
Share of discrete choice ​ ​ ​ ​ ​ ​
Car 87.6 % 86.3 % 86.0 % 84.5 % 83.6 % 86.1 %
Shared EV 20.2 % 20.5 % 20.1 % 22.2 % 20.4 % 20.2 %
Shared e-bike 20.5 % 20.6 % 21.2 % 22.0 % 21.8 % 20.4 %
Only Shared EV available (Q2.1)
Continuous consumption ​ ​ ​ ​ ​ ​
Car 8.31 8.70 8.49 8.46 8.29 8.34
Shared EV 1.69 1.30 1.51 1.54 1.71 1.66
RMSE ​ 1390.24 657.94 550.35 78.55 111.55
Share of discrete choice ​ ​ ​ ​ ​ ​
Car 90.9 % 93.0 % 92.1 % 91.7 % 90.1 % 90.8 %
Shared EV 26.7 % 23.0 % 24.8 % 25.5 % 26.1 % 27.3 %
Only Shared e-bike available (Q2.2)
Continuous consumption ​ ​ ​ ​ ​ ​
Car 8.37 8.65 8.43 8.47 8.26 8.36
Shared e-bike 1.63 1.35 1.57 1.53 1.74 1.64
RMSE ​ 991.98 186.22 337.41 406.94 33.31
Share of discrete choice ​ ​ ​ ​ ​ ​
Car 91.2 % 92.6 % 91.0 % 91.7 % 89.2 % 90.9 %
Shared e-bike 26.6 % 23.0 % 24.8 % 25.4 % 25.9 % 26.9 %
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MDCEV model assumes less flexibility between shared modes than in reality. It was then tested whether common preference het
erogeneity is the underlying cause for the choice adaptation pattern by a mixed MDCEV model with correlations between alternatives; 
the results show that it cannot fully represent the real data generating process and the genuine behavioural mechanism is still an open 
question.

Our study and findings have several policy implications. First, the fact that we find a significant group of travellers prefer to use a 
combination of multiple modes demonstrates the relevance of multimodal responses in stated choice experiments on passenger mode 
choices; the data collection protocol and modelling framework in this paper can also be applied in future studies on mode choice and 
multimodal behaviour. Second, many local governments are planning to deploy mobility hubs as one of the means towards sustainable 
mobility but their actual impacts on mobility behaviour is inconclusive; by showing that there is complementarity between shared EV 
and e-bike offered in mobility hubs, our study provides empirical evidence regarding the added value of mobility hubs in promoting 
shared mobility and reducing the use of private cars. Third, when we study how travellers adapt if one of the shared modes becomes 
unavailable, we find that MDCEV and mixed MDCEV models cannot fully account for people’s flexibility between shared modes, we 
also show that mixed MDCEV models perform worse than the ad-hoc emergent value models in terms of out-of-sample prediction. It 
raises precaution for the model transferability of existing MDC models since its prediction of demand can be biased under different 
choice contexts (alternative availability). This can be remedied by collecting choice/demand data under varied mode availability 
conditions or develop better behavioural models with mechanisms that can better accommodate people’s flexibility between shared 
modes.

A drawback of this study is that we assume the respondents only have a single current mode, while they may actually be using 
multiple modes. Since our study only included private car drivers, this may potentially lead to an overestimation of the impact of 
eHUBS modes on replacing private car trips, because the “private car drivers” may be multimodal and are actually already using other 
modes such as biking and public transit for a few trips. Similar studies in the future should better capture respondents’ current mode 
usage to achieve more accurate results. Another limitation of the work is that we fix the total number of trips for all respondents, 
implicitly assuming that the proportion allocated to each mode remains fixed regardless of the total number of trips. This assumption 
may not necessarily be true, for example, if people can work from home for more days and conduct fewer commuting trips per week, 
this may affect their selection of modes. Moreover, the provision of innovative modes such as eHUBS may also lead to induced demand, 
which cannot be investigated under our current study design. Future studies may adopt a response format without an identical fixed 
budget (such as the number of trips conducted during a certain time period) and apply models such as eMDC with an implicit budget 
for the analysis.

There are several avenues for future research. First, more modes (both existing and innovative ones) can be included in the choice 
experiment to achieve a more complete representation of people’s choice behaviour between all available modes. Under the MDC 
framework, one may investigate how driving a private car may be replaced by a combination of public transit and shared mobility 
modes. It also allows the exploration of relations between other shared modes and the relations between shared modes and other 
existing modes (e.g. public transit) using the MDC framework. It would be valuable to investigate other trip contexts as well, such as 
longer trips which can be intermodal in which eHUBS modes serve as a first/last mile mode. Second, future studies can investigate how 
complementarity, substitution, and flexibility between modes vary in different trip contexts, geographical locations, and time periods. 
For example, for commuting trips with more time pressure, people may be more inclined to use a single mode and the level of 
complementarity would be relatively lower. The terrain, culture, and social norms regarding transport modes in different countries and 
regions may also influence the complementarity and flexibility between modes. Third, explore other behavioural mechanisms and 
advanced modelling approaches which can better explain the flexibility between modes.

Table 9 
Cross-validation results of different models.

MDCEV Mixed MDCEV Emergent value

Continuous consumption (When total number of trips is 10)
Aggregate RMSE ​ ​ ​
Total 227 238 192
All three modes available (Q1) 103 94 72
Only Shared EV available (Q2.1) 68 66 57
Only Shared e-bike available (Q2.2) 56 78 63
RMSE per alternative ​ ​ ​
All three modes available (Q1) ​ ​ ​
• Car 3.58 3.53 3.56
• Shared EV 2.55 2.53 2.53
• Shared e-bike 2.70 2.68 2.69
Only Shared EV available (Q2.1) 3.15 3.14 3.15
Only Shared e-bike available (Q2.2) 3.16 3.15 3.16
Discrete choices ​ ​ ​
Aggregate RMSE ​ ​ ​
Total 23.4 25.6 21.2
All three modes available (Q1) 11.2 11.4 9.5
Only Shared EV available (Q2.1) 4.7 4.9 4.0
Only Shared e-bike available (Q2.2) 7.4 9.3 7.7
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Appendix I. . Introduction of eHUBS in the survey

eHUBS are on-street locations in residential neighbourhoods, or at bus or train stations, that offer citizens access to a range of 
publicly shared vehicles including electric (cargo)bikes, e-scooters, or electric cars (see the following figure for an example).

Assume there are eHUBs in your city which are mobility hubs providing both shared electric vehicle and shared e-bikes (including 
e-cargo bikes). The following picture illustrates the process of using and returning an eHUB car/bike:
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