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Abstract

An application-specific instruction set processor (ASIP) can provide for higher power and computational
efficiency compared to general-purpose processors. These attributes are essential for implantable medical
devices which often run computationally intensive tasks on a strict power budget. This thesis compiles
a collection of benchmarks by porting the existing benchmark suites ImpBench and CoreMark, and by
implementing a novel benchmark for artificial neural networks. Four architectures are selected in the
comparison; RISC, DSP, VLIW, and TTA. Implementations of these architectures are produced by the
ASIP Designer and OpenASIP toolsets. The benchmarks are simulated on these implementations and
the power consumption is measured on an FPGA. The thesis concludes that the implementations of the
DSP and VLIW architectures do not deliver enough performance for their heavier use of resources, and
recommends a follow-up research by extending the TTA PeLoTTA and RISC-V Tzscale processors with
application-specific instructions and running simulations for ASIC power and area numbers.
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Chapter 1

Introduction

Ever since the success of the first MOSFET-based computers in the late 1950’s, they reduced in both size
and power following the famous Moore’s Law. This development has enabled computers to transition
from the initially massive, immovable machines to the portable devices we now use in our daily lives.
One branch of computing has flourished exceptionally due these developments; embedded systems.

Embedded systems have started out simple control systems like in the Apollo project. As their
performance increased and their size and power consumption diminished, embedded systems have become
less constrained and are now closer resembling traditional computers. Application fields which at first
were exclusive to application-specific integrated circuits (ASICs) or specialised digital signal processors
(DSPs) are now largely dominated by general-purpose processors (GPPs) running Linux or Android. One
field which is not as quickly to adapt modern advancements is medical implants. This is not necessarily
because the medical sector is slower to adapt new technologies compared to other sectors, but more due
to the fact that implantable devices have exceptionally strict constraints. The factor that constrains
implantable devices the most is power usage. As the implant must be small in size, there is limited
volume available for the battery to store energy in, and charging or replacing batteries is an activity
that is desired to be infrequent. Although current solutions in implantable devices do employ the use of
general-purpose microcontroller units (MCUs), there is much to gain with a more specialised approach.

1.1 Context
In 1991 the department of Electrical Engineering of the TU Delft used transport-triggered architectures
(TTAs) to design application-specific processors as part of the MOVE framework [1]. In contrast to
common architectures like RISC, TTA processors expose the data path of the processor to the pro-
grammer. This enables TTA processors to minimise the amount of data transfers and thus improve the
energy efficiency of the processor. This property makes TTAs interesting for implantable medical devices
(IMDs). The MOVE framework was the inspiration for TCE [2, 3], developed by the Customized Parallel
Computing group of Tampere University. TCE is a toolset which both the hardware and software for
specialised TTA processors can be developed. The instruction set, data path, and functional units (FUs)
of the processors can be designed with the toolset, which makes TCE a toolset for application-specific
instruction set processor (ASIP) design [4].

Meanwhile, Erasmus Medical Centre investigates low-power processor architectures for deployment
in medical devices. They are looking for new processor architectures that fulfill their computational and
power requirements, which creates an opportunity for an application of ASIPs. To assess performance
of implantable processors, ImpBench [5, 6] was developed. ImpBench is a benchmark suite designed
specifically to assess a processor’s ability to handle implant-type workloads.

This thesis will assess the performance of computer architectures for ASIPs for use in IMDs. One of
the architectures assessed is TTA. The aim of this research is to provide insight on the choice of base
architecture for ASIPs in IMDs.

1.2 Challenges
The problem in IMDs is the constant need for processors cores with higher power efficiency, in order to
decrease the frequency of surgical operations. The use of ASIPs may provide a solution to this problem.

7



1.3. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

In order to assess the performance of ASIP architectures for medical implantable processors, a proper
experimental setup needs to be created which can accommodate for the different ASIP architectures. The
implementations for the selected ASIP architectures should be suitable for small ultra-low power (ULP)
processors. With the implementations selected, the performance of the processors can be compared using
benchmarks to resemble the workload of IMDs. A comparison such as this is highly prone to pitfalls that
may heavily influence the results of the research. The choice of architectures, their implementations, the
simulated workloads running on these implementations, and the extraction of power and performance
figures is non-trivial and requires insight in multiple levels of computer architecture.

1.3 Problem statement
The core question that arises is: How do different ASIP computer architectures compare for medical
implantable devices? The following sub-questions arise from the problem statement:

• Which benchmarks need to be run to represent the workloads of IMDs?
The workloads of IMDs need to be identified, and suitable benchmarks that represent these work-
loads need to be selected.

• Which processor architectures are currently prevalent in IMDs?
The state of the art in processor architectures of processor-based IMDs will be reviewed in to
provide insight in the selection of ASIP architectures.

• Which low-power implementations of computer architectures are suitable for ASIPs?
A selection of ASIP implementations of the relevant architectures will be made. The benchmarks
that represent the IMD workloads will run on these implementations, of which the performance
can be measured.

In order to answer the question that lies at the core of the problem, the sub-questions listed above
will first be answered in the next chapter.

1.4 Thesis outline
To start off, some background information and related work (Chapter 2) will be provided about IMDs, the
competing processor architectures, and design and development of these architectures. The state of the
art of IMDs will be assessed, which will provide insight on the architectures used and the workloads which
they run. This background knowledge will provide the reasoning behind the selection of architectures,
their implementations, and benchmarks used to simulate the workloads in Chapter 3. The selected
processor implementations and benchmarks will be implemented in Chapter 4, providing insight in the
design choices made in this process.

In the Results chapter (Chapter 5) the setup will be explained for simulations and power measure-
ments, the resulting figures will be presented and discussed. The thesis will conclude in Chapter 6,
which will summarise the findings in this thesis, formulate a concise answer on the research question,
and provide recommendations for future work.
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Chapter 2

Background

To get a better understanding of the problem, relevant topics for this thesis will be discussed first.
The application domain of IMDs will be described, as well as their characterising workloads. Some
required background for the implementation regarding ASIPs, ASIP development, and TTAs will follow,
concluding with information about benchmarks and related work.

2.1 Processor-based implantable medical devices
An IMD is an active medical device used on humans or other animals for diagnostic, drug administration,
stimulation, actuation, or other medical purposes. In the past, the majority of IMDs have been based
on ASICs to comply with strict reliability and power requirements. Advancements in silicon process
technology have relaxed the power and size constraints and enabled the use of a more generalised,
structured design approach [5] using off-the-shelf microcontrollers.

IMDs come in many shapes and applications. Implantable devices which are or could be equipped
with an embedded processor can be grouped into two categories [7]:

1. Monitoring of physiological data, for example:

• Blood monitoring [8]
• Tissue bio-impedance [9]
• Neuron recording [10]
• Brain imaging [11]
• Brain interfacing [12]
• Seizure detection [13]

2. Stimulation or actuation of tissue, for example:

• Neurostimulation [14]
• Neuromodulation [15]
• Vestibular prosthesis [16]
• Cortical control [17, 18]
• Pacemakers [19]
• Implantable defibrillators [20]
• Corneal stimulation [21]
• Bladder control [22]
• Cochlear implants [23, 24]

These IMDs typically acquire data in some form, and have an optional signal-processing task for actua-
tion.

The batteries for the IMD are usually limited to 1-3Ah [25]. For IMDs without actuators, the battery
capacity in combination with a minimal lifetime of the IMD of 5 years forces the average working current
of the device down to 23 − 65µA [26]. Thus generally all IMDs are optimised for low power. Many of
these devices could be based on the same low power processor core, with the only variable being the
actuator or sensor. For devices which do sink large currents in actuators like neurostimulators, the power
consumption is less important as the battery has to be charged frequently.

9



2.2. RELEVANT PROCESSOR ARCHITECTURES CHAPTER 2. BACKGROUND

2.2 Relevant processor architectures
In order to provide a better understanding for processor architectures prevalent in IMDs and their
alternatives, relevant processor architectures will be discussed in this section.

2.2.1 RISC
In contrast to a complex instruction set computer (CISC), where the focus lies on reducing instruction
count, a reduced instruction set computer (RISC) is focused on reducing the complexity of the instruction
set. Reducing complexity in the instruction set is not only about reducing the number of instructions in
the set, but also reducing the complexity of the hardware required to decode and execute the instruc-
tions. Although this does automatically lead to more instructions being executed, the reduced hardware
complexity allows for higher clock frequencies and less area usage than a CISC.

RISC architectures are often load-store architectures, where the load and store instructions copy data
between memory and general-purpose registers, and all arithmetic is executed on the registers. Another
trait to achieve simplicity is fixing the length of the instructions and the locations of the operators and
data in the instructions.

Because of the small area, RISC is popular amongst microcontrollers, and thus is also prevalent
in IMDs. Popular modern implementations of RISC instruction set architectures (ISAs) are ARMv6,
ARMv7, and RISC-V.

2.2.2 DSP
DSPs are microprocessors with specialised architectures for signal-processing workloads, like filters. A
typical DSP instruction is the multiply-accumulate instruction, which can perform a multiplication and
addition in one instruction. This operation is heavily used in typical DSP workloads, like Fourier trans-
forms. As signal-processing workloads often require processing large amounts of data, a DSP typically
allows for loading multiple data from memory in one instruction. Some implantable devices that focus
on a heavy signal-processing task, like hearing aids or neurological analysis, feature a DSP [27, 28].

2.2.3 VLIW
VLIW processors are characterised by their long instruction word which can issue instructions to multiple
FUs in the processor at once. The instruction word contains multiple issue slots in which RISC-like
instructions are placed, which allows a VLIW core to exploit instruction-level parallelism (ILP) by
design. This makes them also suitable for DSP applications. An example of a VLIW DSP is the C6000
series of Texas Instruments [29].

2.2.4 Transport-triggered architectures
A TTA is a one-instruction set VLIW architecture. As opposed to traditional architectures where the
instruction specifies the operation, a TTA instruction defines the movement of data over the transport
buses in the processor. The FUs do not have direct access to the register file, as it is also only accessed
via the buses. This reduces the complexity of the register file, and reduces the traffic through the register
file [30].

Operations are executed as a consequence of the movement of data over the buses, and are triggered
by writing to a specific port for each FU. As opposed to DSP, VLIW, and RISC architectures, the result
of a FU is not written to the register file, but instead remains in the register at the output of that FU
until it is moved. The exposed internal data path allows for explicitly bypassing the register file, but
may also require more instructions per operation. For example, r3 = r0 + (r1 << r2) in a RISC ISA
could be:

slli r1, r1, r2
add r3, r0, r1

Whereas for a TTA (with a shifter and adder) it would become:

10
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Figure 2.1: A visualisation of the trade-off of ASIPs in terms of flexibility and performance (Source [39]).

move r1, sll.in0
move r2, sll.in1t
move r0, add.in0
move sll.out, add.in1t
move add.out, r3

Here sll is the shifter and add is the adder, and the -t postfix indicates the port that triggers the
operation.

A TTA can contain multiple buses, each of which can be connected to a subset of all FUs. Each bus
is then typically controlled by their own slot in the instruction word. This also implies that multiple
moves can be executed in a single instruction, thus providing instruction-level parallelism. Because the
data path is so exposed and every movement of data is specified by the instructions, the compiler has
more control over the processor and is able to optimise more compared to compilers for traditional
architectures at the cost of added complexity.

The downside of a TTA is that context switching (and thus interrupts) are very hard to implement.
This is because the state of the processor is not only described by the register file but also by the
current state of each FU. The lack of context switching renders the TTA unsuitable for multithreaded
or interrupt-driven applications, but it remains suited for always-on applications [31].

TTAs have mostly been implemented as solutions for low-power systems with accelerators for neural
networks [32], Fourier transforms [33], audio processing [34], but also for low-power signal-processing [33]
and always-on [35] applications.

2.3 ASIP
An ASIP is the trade-off between ASICs and general-purpose processors [36]. ASIPs are usually small
processors with a tailored instruction set for the application and are usually deployed in an environment
that forces such requirements [37]. This tailored ISA provides greater computational efficiency and
requires less power for the specified workload.

ASIPs may be implemented by means of extending an existing/basic ISA with specialised instructions,
or by adding reconfigurable hardware in the processor [38].

ASIPs can be deployed as standalone application-specific processors like DSPs, but are also prevalent
in system-on-chips (SoCs), where they fulfill roles as programmable accelerators.

ASIP development
Because the compiler for the ASIP is dependent on the ISA and hardware design of the ASIP, ASIPs are
developed in a so-called co-design environment in which both the hardware and software for the ASIPs
are developed. This is the most significant difference in development for ASIPs compared to GPPs, as
the ISA and its implementation are not part of the designs space when developing for a GPP.

The “leading tool solution” [40] in the industry is Synopsys ASIP Designer, and provides a highly

11



2.3. ASIP CHAPTER 2. BACKGROUND

automated workflow. An open-source alternative is the TTA-based co-design environment (TCE), de-
veloped by the customized parallel computing research group of Tampere University.

ASIP Designer

ASIP Designer is a tool suite developed by Synopsys [40]. ASIP Designer focusses on a wide range of
ASIPs, from extendible processors to programmable data path ASIPs.

Processors are described using ASIP Designer’s proprietary language nML. nML is a C++ style
language in which both the structure (storages, FUs, connections) of the processor and the instruction
set are described. An example of nML is shown in Listing 2.2. Another proprietary language PDG,
which is based on C, then describes the behaviour of the FUs, IO interfaces, and processor control unit.
An example of PDG is shown in Listing 2.1.

With nML and PDG, the entire ASIP is described, and ASIP Designer can generate an SDK including
C/C++ compiler (called Chess), and debugger/simulator (Checkers) based on that model. The hardware
description language (HDL) description of the hardware can also be directly generated from the processor
model using Go in both Verilog and VHDL. The Chess compiler supports the LLVM front-end Clang,
which can provide more aggressive optimisation. Along with the program written in C or C++, the
generated simulator can produce the memory contents for all defined memories in the processor.

As shown in Figure 2.2, the development cycle in ASIP Designer is first focused on designing the al-
gorithm and the processor model. The processor model, which includes the description of the instruction
set, is used to generate a semi-custom SDK for the processor. The SDK is then used to implement and
test the algorithm, and the simulations in the SDK provide insight for refinement for the processor model.
To assist in this process, Checkers provides an overview of all registers and memories in the processor
and allows for stepping through the source code and single instructions. The placement of breakpoints
and watchpoints in both the assembly and C is also supported. After simulation is successful and the
hardware/software co-design is completed, the HDL can be generated and exported to other Synopsys
tools for ASIC or field programmable gate array (FPGA) synthesis. Finally, automatically generated
test programs can verify the integrity of the processor.

For further understanding of the workings of the tools of ASIP Designer, it is recommended to
reference the online training program [40] and the ASIP Designer manuals, which come with the software.

Figure 2.2: Workflow in Synopsys ASIP Designer (source [40])
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word add(word a, word b) {
return a + b;

}

Listing 2.1: An example of the behaviour add instruction as described with PDG.

enum stage_names {IF, // Instruction Fetch
DE, // Instruction Decode and Execute
WB}; // Writeback

mem PMb[2**14] <uint8,addr> access {};

enum eR { x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15};
reg R[16]<w32,uint4> syntax (eR) read(r1 r2) write(w1 wd);

Listing 2.2: A modified excerpt of an nML processor model of a Z-scale RISC-V processor. The pipeline
stage names, program memory, and register file is described.

TCE

TCE [4] provides an open-source ASIP development toolset for developing ASIPs with transport triggered
architectures. TCE is the successor of the MOVE project [41].

Figure 2.4 shows the workflow for designing an ASIP with TCE. The designer creates the processor
model in the TTA Processor Designer (ProDe), in which FUs are created and connected by transport
buses. The operations of the FUs are selected from the operation set abstraction layer database, which
contains the static properties and behaviours of the operations. The behavioural models of the FUs are
then described by a hardware database (HDB) file, which contains HDL descriptions of the blocks. The
links between the architecture definition file (ADF) and HDB file are described in the implementation
definition file (IDF) file. Figure 2.3 shows ProDe with a minimal TTA using one bus connected to some
FUs. ProDe describes the processor model in an XML file called the ADF.

Figure 2.3: A minimal TTA architecture (provided by TCE) as shown in ProDe.

The compiler, tcecc, uses the generated ADF to compile programs written in a high-level language
(C, C++, or OpenCL) for the specified architecture using the LLVM front-end Clang. The designer
can then use ttasim (CLI) or proxim (GUI) to simulate the program on the processor and generate
profiling information. This information will provide insight for new design iterations on the hardware
and software.

Finally, the Processor Generator (ProGe) will be used to generate the hardware description of the
processor in Verilog or VHDL. The ADF, IDF, and compiled binary, provide all necessary information
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Figure 2.4: Workflow in TCE (source [4])

for ProGe to generate the HDL.
ProGe also supports generating HDL directly for specific platforms like the Altera Stratix II device

family. To generate the memory contents of the processor, the command-line utility generatebits can
be used, which supports multiple output formats.

For more information on TCE it is recommended to refer to the TCE homepage [4] and the book
Computing Platforms for Software-Defined Radio [2].
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Figure 2.5: A simple recurrent neural network architecture for predictions of words, and its time layered
representation (Source: [42]). Wxh, Why, and Whh are the weight matrices. x̄, h̄, and ȳ are the input,
hidden state, and output vectors.

2.4 Benchmarks
The performance1 of a single-threaded processor can be evaluated by using the Iron Law of Performance
[43]:

T = N · CPI · 1
f

(2.1)

Here T is the execution time, N is the number of total instructions for the program, CPI is the average
clocks per instruction, and f is the clock frequency.

The maximum clock frequency is only dependent on the processor architecture and its implementa-
tion, but the CPI and number of instructions is dependent on both the architecture and the program.
Simulations of programs on processors in ASIP Designer and TCE can provide these figures, but the
results may vary wildly per supplied program.

Benchmarks are programs designed for assessing the performance of a processor for a specific workload
by running algorithms typical for that workload. Benchmarks typically consist of multiple algorithms
that characterise the workload. Many general-purpose benchmarks exist to compare general-purpose
processors, even for embedded systems. However, when designing a system for a single application

1Performance is defined here as total execution time of a defined program on the processor.
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(which is the case for IMDs and embedded systems in general), such general-purpose benchmarks may
provide a distorted view of the performance for the application the system is designed for. It follows that
the characterisation of the workload and the identification of benchmarks that represent that workload
is important in comparing performance of processors in IMDs.

2.4.1 EEMBC
The embedded microprocessor benchmark consortium (EEMBC) is a consortium led by many market
leaders in the field of embedded processors, like Arm, Texas Instruments, ST Microelectronics, and Silicon
Labs. The EEMBC aims to develop “industry-standard benchmarks for the hardware and software
used in autonomous driving, mobile imaging, the Internet of Things, mobile devices, and many other
applications” []. Their most famous benchmark CoreMark is indeed the industry standard benchmark
for embedded microcontrollers, and thereby the successor of Dhrystone. As ULP SoCs with integrated
wireless radios are becoming more relevant for IoT applications, EEMBC has also released benchmarks
for those application fields, such as IoTMark and ULPMark.

2.4.2 ImpBench
ImpBench is a benchmark suite developed specifically to benchmark biomedical implantable processors.
It is the only benchmark specifically developed for IMDs. ImpBench was proposed in 2008 [5], with a
revision in 2010 [6]. The benchmark suite contains eight benchmarks for four workloads; compression,
error detection, encryption, and synthetic benchmarks which simulate real-life applications. The following
benchmarks are included:

• MiniLZO, a light-weight variant of the LZO high-performance lossless compression library. LZO is
in itself a variant of the LZ77 data compression algorithm. It implements zlib (RFC 1950 [44]) and
Deflate (RFC 1951 [45]) for compression and decompression. In the benchmark, only compression
is used.

• Finnish, the Finnish submission for the Dr. Dobbs compression contest in 1991 [46]. Also based
on the LZ77 algorithm.

• MISTY1, a block cipher developed in 1995 (RFC 2994 [47]) which was recommended by CRYP-
TREC in 2003. The cipher has been broken in 2015 using integral cryptanalysis.

• RC6, a block cipher developed in 1998 with a small code size.
• CRC32, a 32-bit cyclic redundancy check algorithm for error detection.
• Checksum, a simple checksum algorithm with 32-bit summation and inversion. The algorithm folds

the 32-bit sum over into a resulting 16-bit checksum.
• Motion, a synthetic benchmark which simulates a motion sensor. The benchmark simulates the

functionality of a motion sensor by generating a sensor sample, comparing it against a threshold,
and then sleeping the CPU by running a while-loop.

• DMU, a synthetic benchmark which simulates a drug delivery and monitoring unit based on the
work of Cross et al [48].

2.5 Artificial neural networks
Artificial neural networks (ANNs) are a form of machine learning based on the learning mechanism
of biological nervous systems. The similarities lie in the fact that the connections between biological
neurons can be strengthened by external stimuli, which causes the system to learn [42]. Two types of
ANNs will be reviewed; convolutional neural networks (CNNs) and recurrent neural networks (RNNs).

2.5.1 Convolutional neural networks
CNNs are layered feed-forward networks used frequently in computer vision for image classification and
object detection. CNNs have been the most successful of all types of neural networks and outperform
humans in image classification [42]. As the name implies, a CNN makes use of convolution layers to
map the outputs of the previous layer onto the input of the next layer. The output of every node in the
layer is then given by convolution of the connected outputs of the previous layer and the weights of these
connections. The convolution layers are interleaved with pooling and activation layers. The activation
layer maps each output of the convolution layer on its activation function. The purpose of the activation
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function is to map the values from the convolution layer into a binary class label. The aim of the pooling
layer is to reduce the size of the network by sub-sampling the outputs of the previous layer.

A simple CNN architecture can be seen in Figure 2.6, which is designed to classify handwritten digits
in images.
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Figure 2.6: A simple convolutional neural network with one convolution layer for classification of hand-
written images in the MNIST dataset (Source: [49]).

2.5.2 Recurrent neural networks
RNNs are used on sequential data like time series and text. To act on the temporal dimension, an RNN
stores previously received samples in a hidden state in its network. New samples are then processed
using the current state, and the current state is updated with the latest sample. This way the nodes in
the network have two variables; the new sample and the internal state of the node. When the RNN acts
on a fixed time window, the RNN can be unfolded in time. This representation is shown in Figure 2.5.

2.6 Related work
This section presents references to existing background work related to processor-based IMDs, their
workloads, and ASIPs.

2.6.1 Processor-based IMDs
Many IMDs using processor cores have been described in academic work, of which some will be high-
lighted. [50] and [51] describe implantable devices for stimulation of denervated muscles, both controlled
by a 16-bit PIC with a RISC architecture [52, 53]. The muscles are periodically stimulated with short
electrical pulses. An intravaginal drug delivery unit is described in [48], which is controlled by a 16-bit
Mitsubishi2 M16C series microcontroller with a CISC architecture [54]. It features wireless communica-
tion and a gascell for actuation of the pump. A system for biological signal recording is described in [55]
which features bi-directional wireless data transmission. The module is implanted on a rabbit to measure
electroneurogram signals from the sciatic nerve and uses a PIC18F452 (16-bit RISC) as controller. The

2Now called Renesas
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work in [19] describes software-related energy estimation of a pacemaker controlled by a Texas Instru-
ments MSP430F1611. The MSP430F16 is a microcontroller with a 16-bit RISC architecture featuring
analog-to-digital and digital-to-analog converters [56].

An electrocardiograph monitoring SoC is described in [27], which contains hardware signal process-
ing blocks and a 32-bit ARM Cortex-M0+ (RISC) core for the arrhythmia detection algorithm. [57]
implements a Texas Instruments MSP430FR5949 (16-bit RISC [58]) for data logging of temperature
measurements in animal brains. A wireless bladder pressure monitor IMD is described in [59], which
uses a Texas Instruments MSP430FR5994 (16-bit RISC [60]) and a MicroSemi ZL70123 transceiver
module. Another MSP430FR5994 is used to run a seizure detection algorithm on electroencephalograph
(EEG) signals based on a CNN in [61, 62]. [63] uses two ARM Cortex-M0+ cores for brain-machine
interfacing; one to run the brain-machine interface algorithms and one to execute firmware updates. [28]
implements a custom 16-bit DSP for speech comprehension in a cochlear implant.

Table 2.1 shows the referenced publications above with their categories, processors, and power con-
sumption.

Table 2.1: An overview of publications of processor-based IMDs showing their application, processor,
and power consumption. Note that the lifetime contains a safety margin for most listed IMDs.

Paper Year Application Category Processor Avg. power
consumption

Battery
lifetime

[50] 2002
Electrical
stimulation of
denervated muscles

Neurostimulation 8-bit Microchip
PIC16C54C-04 0.92mW 5 weeks

[48] 2004 Intravaginal drug
delivery Drug administration 16-bit Mitsubishi

M16C 0.24mW 1 month

[51] 2005
Electrical
stimulation of
denervated muscles

Neurostimulation 8-bit Microchip
PIC16F874 1.0mW 12 weeks

[55] 2005 Electroneurogram
signal recording Neuron recording 16-bit Microchip

PIC18F452 90mW -

[28] 2006 Speech comprehension
enhancement Cochlear implants Custom

16-bit DSP 1.8mW -

[19] 2008 Pacemaker Neurostimulation 16-bit TI
MSP430F1611 12µW 24 years

[27] 2014 Arrhythmia
diagnosis Neuron recording 32-bit ARM

Cortex-M0+ 64nW 5 days

[59] 2016 Wireless bladder
pressure monitoring Bladder control 16-bit TI

MSP430F1611 3.8mW 25 days

[61, 62] 2018 Seizure detection Neuron recording 16-bit TI
MSP430FR5994 850µW -

[63] 2019 Brain machine
interface Brain interfacing 2x 32-bit ARM

Cortex-M0+ 150mW 2 days

Regarding power consumption and battery life, it is heavily dependent on the frequency of use of
wireless transmitters and actuators. When the ratio of the time either of these functions are on is very
low, the average power consumption is dominated by the power consumption of the microcontroller [59].
If this is not the case, the use of an ASIP would not significantly benefit the battery life of the IMD.

The IMDs that have space for a battery and PCB can use a commercial off-the-shelf (COTS) processor
in a standard package. Most works listed use a processor with a RISC architecture, which is common
for COTS microcontrollers. The IMD ([27]) that can not accommodate a PCB uses wireless charging of
a tiny battery and a fabricated SoC with all functionality, using a Cortex-M0+ core. This IMD uses a
fixed hardware signal-processing front-end, which is not programmable, and thus makes the device less
flexible. An implementation with an ASIP with DSP functionalities would improve the programmability
of the device.

The benchmarks in ImpBench cover most of the workloads for the IMDs listed in Table 2.1, except
for the neural network used in [61, 62].
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2.6.2 ASIP
ASIPs can be developed by developing an application-specific instruction set from the ground up, or
by extending an existing instruction set with application-specific instructions. For the latter method,
extending available RISC instruction sets like RISC-V and MIPS are popular choices, and improvements
can be measured compared to the original instruction set. Depending on the application, the ASIPs
can achieve significant improvements in computational and energy efficiency. [64] and [65] show that
algorithms in IMDs can also benefit significantly from specialised instructions.

Table 2.2 shows an overview of implementations of ASIPs, their architecture, and the performance
gained.

Table 2.2: An overview of ASIP based on existing architectures, showing the computational and/or
energy efficiency improvements of the extensions.

Paper Year Application ISA Exe. cycles
improvement

Energy efficiency
improvement

[64] 2005 Motion estimation
in video VLIW - 2-2.5x

[66] 2005 Networking
applications MIPS extension 2x 2x

[65] 2009 Cardiac beat detection 16-bit RISC 5.3x 2.2x

[67] 2012 Compression of
sparse signals (ECG) 16-bit RISC 62x 11.6x

[68] 2018 H.265/HEVC
deblocking filter RISC-V extension 1.07-1.11x -

[69] 2020 RNN-based 5G radio
resource management RISC-V extension 10x 15x

[34] 2016 Binaural speaker
localisation TTA 151x3 -

2.6.3 Neural networks in IMDs
ANNs can be used to extract patterns or trends with less computational complexity than traditional
algorithms [70]. Table 2.3 shows an overview of publications that employ ANNs in IMDs. The table
shows that ANNs are mostly used in IMDs for detection or prediction of events. Most applications use
either a CNN or an RNN.

Table 2.3: An overview of neural networks employed in IMDs. The number of layers includes the input
and output layers.

Paper Year Application NN type Layers Activation function
[71, 72] 2006 Seizure prediction RNN 4 Sigmoid
[73] 2010 Prediction of tremors RBFNN 3 Gaussian
[74] 2012 Brain-machine interfacing RNN ESN Unknown Unknown
[75] 2013 Brain-machine interfacing SNN - -
[76] 2016 Speech enhancement CNN 4 ReLU
[61, 62] 2018 Seizure detection CNN 10 Dropout, sigmoid
[77] 2018 Security of an insulin pump RNN Unknown Tanh, softmax
[78] 2019 Detection of attack patterns RNN 4 Linear
[79] 2020 Abnormal ECG beat detection CNN 8 ReLU
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Chapter 3

Alternative solutions

There are many viable solutions for implementing the functionality of an IMD. This chapter aims to
provide an overview of these solutions and compare them. The comparison will form the basis for
selecting the most promising solutions, which will be implemented in the next chapter.

To acquire performance metrics of the implemented cores, benchmarks will have to be run on the
selected cores. Suitable benchmark suites will be presented, of which some will be selected to run on the
cores. Finally, techniques will be discussed to obtain area and power numbers.

3.1 IMD platforms
An classification of solutions that will be reviewed can be found in Figure 3.1.

Platforms

Hardwired
datapath

Finite-state
machine

Combinational
logic

ASIP

RISC
based DSP TTA

General-purpose
processor

RISC VLIW CISC

Figure 3.1: A tree representing a subset of possible solutions to use as compute platform in implantable
devices.

3.1.1 Requirements
The background in Chapter 2 produces the following requirements for IMDs:

• High reliability
• Real-time performance (no deadline misses)
• Low peak and average power consumption
• Low area use
• Low design effort

For IMDs the most important metric is reliability. The requirement of reliability in combination with
real-time performance implies that he IMD can not miss any deadlines. Context switching degrades the
reliability of processors, as it is harder to provide guarantees on meeting deadlines and thus is something
to avoid in IMDs.

The increasing efficiency of silicon technology benefits most of the solutions in terms of area and
power consumption, thus there are multiple viable options that will be discussed.
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3.1.2 Hardwired datapaths
The entire system could be described in a finite state machine (FSM) or combinational logic with a
HDL such as Verilog or VHDL. The hardware description could be synthesized directly on an ASIC,
complex programmable logic device (CPLD), or on an FPGA . This approach scores very high in terms
of reliability, real-time performance and power consumption, but the design process can be very tedious
compared to traditional programming of general-purpose processors. Due to the system being designed
for one specific purpose, the solution is very inflexible.

When combinational logic or an FSM is implemented in an ASICs, it usually outperforms any other
solution. However, updates or changes to the design requires new expensive research and development,
and old implementations can not be updated as the ASIC is not programmable.

Although CPLDs and FPGAs can be reprogrammed, they still lack flexibility in terms of design
effort. A small change to a complex algorithm in software is likely to cost less time than it would in a
hardwired datapath.

3.1.3 General-purpose processors
GPPs are useful for their quick time-to-market compared to custom solutions. Especially well-known
architectures like x86 or MIPS are supported by multiple compilers and debuggers that support high-
level object-oriented languages, and reduce the design effort for the programmer. The inherent downside
of the GPP is the higher power consumption compared to application-specific solutions.

GPP are available in MCUs, which is a popular choice for IMDs. For commercial MCUs, development
boards and example programs are readily available and they are usually well documented. On top of
that they are often in stock at large distributors or the manufacturer themselves, which enables large
production volumes at short notice.

3.1.4 ASIP
The middle ground between hardwired datapaths and GPPs is owned by programmable application-
specific processors; the ASIPs. ASIPs have the benefits and drawbacks of both worlds; development is
lengthy and costly, but only has to be done once for a range of solutions, and they can be reprogrammed.
ASIPs are defined by their unique instruction set, which usually contains instructions developed for the
application. The tailored instruction set makes ASIPs more power efficient than GPPs, while maintaining
programmability.

3.1.5 Platform comparison
The assessed platforms are qualitatively analysed for each requirement in Table 3.1. The design effort for
implementations with hardwired datapaths is too high, which is the primary reason for the prevalence
of GPPs in IMD. The ASIP do perform better in both power consumption and real-time performance
than GPPs, but sacrifice design effort. Especially the increased power efficiency makes the ASIP an
interesting choice for IMDs.

Table 3.1: Qualitative comparison of the different solution categories.

Solution Reliability Real-time performance Power consumption Area Design effort
Hardwired datapath ++ ++ ++ ++ −−
ASIP + ++ + − +
GPP + − − − ++

3.2 ASIP architectures and implementations
The following architectures will be compared in this thesis:

• RISC
As seen in Section 2.6.1, GPP in ASIPs are mostly RISC. RISC is not only popular amongst
processor architectures in MCUs in IMDs, but also as a base for ASIPs. For this reason, a RISC
architecture will be selected.
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• DSP
Some IMDs employ DSPs for audio processing in cochlear implants or signal processing of ECGs,
thus it would be interesting to see how a DSP would fare in this comparison.

• TTA
TTAs show promise as low-power ASIPs due to their inherent ILP and reduced complexity com-
pared to a VLIW.

• VLIW
To bridge the architectural gap between RISC and TTA, a VLIWs architecture will also be selected.

Although there are also some cases of CISC architectures to be found in IMDs [48], a CISC typically
uses a lot of area and is already extended with complex instructions, so it does not form a good base
architecture for an ASIP.

Popular design tools for ASIPs are Synopsys ASIP Designer and the open-source toolset TCE for
TTA. From these toolsets some implementations will be presented.

3.2.1 ASIP Designer
ASIP Designer provides some example projects that implement some popular architectures that could
be used to compare the TTA core against. Noteworthy examples are:

• Tmcu, 32-bit microcontroller with a Harvard architecture and 3-stage pipeline (IF/DE/EX). Sup-
ports variable length and parallel instructions. The Tmcu has 16 32-bit registers and byte address-
able data memory.

• Tzscale, implementation of the RISC-V ISA with a 3-stage pipeline (IF/DE/EX). Also supports
variable length instructions, and has 16 or 32 32-bit registers and byte addressable data memory.

• Tvliw, implementation of a 4-slot VLIW (2 arithmetic logic units (ALUs), 2 load-store units
(LSUs)). Optional variable length instructions, predicated execution, and two stage program mem-
ory fetch.

• Tdsp, 16/32-bit DSP with three-way ILP (1 ALU, 2 LSUs). The ALU supports 16/32-bit MAC of
integers and fractional numbers1.

The Tmcu and Tzscale both feature RISC architectures, and achieve similar scores in CoreMark.
However, the Tzscale consumes less area and uses a popular open-source instruction set, so the Tzscale
is preferred to the Tmcu.

Tzscale

The Tzscale is an implementation of the RV32I base integer instruction set. As the RISC-V ISA does
not define the pipeline architecture, Synopsys modelled the processor with a three-stage pipeline similar
to the Z-scale [80]:

• IF, instruction fetch stage. Instruction is fetched from the instruction memory.
• DE, instruction decode and execution stage. Operands are loaded from the register file, the ALU,

shifter, and multiplier execute their operations. Addresses and data are sent to the data memory
for load/store operations. Control flow operations are also executed in this stage.

• WB, write back stage. Results from FUs from the DE stage and data from load instructions are
written back to the register file.

The results from the operations in the DE stage are written back one stage later, which introduces data
hazards. To prevent this data dependency hazard, the operands for the operations in the DE stage can
bypass the register and fetch directly from the WB stage. One hazard that can not be circumvented by
bypasses is introduced by the load instruction, of which the data is only available in the WB stage. For
this hazard stalls will need to be used.

The only register file used in the Tzscale is the general-purpose register (R in Figure 3.2), which
is 32x32-bits, with the first register hardwired to 0. The other user-visible register holds the program
counter.

The data path of the Tzscale is shown in Figure 3.2. The registers and memories related to instruction
fetching/decoding and control are not shown.

1For fractional numbers one additional left shift of one bit is necessary.
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Figure 3.2: The data path of the Tzscale core (source [81]).

As can be seen in Figure 3.3, the RV32I instruction set defines four instruction types (R, I, S, and
U), which are all 32-bits wide. The source (rs1 and rs2) and destination (rd) are always in the same
place in each instruction type to simplify decoding. The encoding of immediate values has the same
consistency, as they are always sign-extended and packed to the leftmost bit in the field. The design
focus of the ISA is hardware simplicity, as is typical for RISC.

The Tzscale also supports the use of the “C” extension for instruction compression, which can reduce
a RV32I instruction to 16-bits under certain conditions.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[31:12] rd opcode U-type

Figure 3.3: The instruction types in the RV32I RISC-V instruction set (source [80]).

Tvliw

The Tvliw is a VLIW processor with two ALUs and a three stage pipeline, with the following stages:

• IF, instruction fetch stage. The instruction is fetched from the instruction memory.
• ID, instruction decode stage. The instruction is decoded and any addresses for load or store

operations are sent to the data memory.
• EX, execution stage. All arithmetic and move operations are executed.

The FUs in the VLIW are:

• DU0 and DU1, two ALUs for arithmetic on data
• AU0 and AU1, two units to execute operations on addresses

The ALUs, DU0 and DU1, support addition, substraction, multiplication, bitwise AND, OR, and exclusive-
OR, shift operations, and compare operations.

Next to the program counter, stack pointer, link register, and single bit condition register, the Tvliw
contains three register files:
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• R, general-purpose data register which can be accessed by both ALUs and both ports on the data
memory.

• P, which holds addresses
• M, which holds register address modifiers

All registers and FUs have a data width of 32-bit.
The Tvliw has a 64-bit wide instruction memory (PM) with a 32-bit address bus and a separate 32-bit

data memory (DM) with two read and write ports.
The data path of the Tvliw is shown in Figure 3.4. The registers and memories related to instruction

fetching/decoding and control are not shown.

Figure 3.4: The data path of the Tvliw core (source [82]).

The Tvliw has two instruction formats, where it issues either two or four instructions. The first bit
of the instruction indicates the format. For the four-slot VLIW instruction, two arithmetic operations
on the DU0 and DU1 ALUs can be executed, and two load, store, or register moves can be executed at
the same time. For the load and store instructions the addresses will be calculated by AU0 and AU1.

Tdsp

The Tdsp is a DSP with a three stage pipeline, with the following stages:

• IF, instruction fetch
• ID, instruction decode
• EX, execution

The FUs of the Tdsp consist of:

• alu, a 32-bit general-purpose ALU
• mpy, a 16x16 multiplier
• sh, a 32-bit shift unit
• norm, a 32-bit norm unit, which is used to compute the shift factor for the shift unit to normalise

the input
• agu1, agu2, address generation units
• xa, xr, xs, xt, sign extension or half-word extraction units
• cnd, the implementation of the calculation of the conditional jump bit
• lp_incr, the hardware loop control index update unit

The Tdsp uses the following registers:
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• R, 8x16-bit general purpose register file
• L, 4x32-bit long word storage
• A, 8x20-bit for holding addresses
• M, 4x16-bit for holding address modifiers
• SP, stack pointer register, to store the address of the top of the stack
• LR, link register to store the return address of the caller function
• BS, BL, registers for holding the start address and loop count for circular buffers
• LS, LE, LC, LP, registers for loop control
• PC, program counter
• SR, status register which holds the CND conditional bit, IE interrupt enable bit, and IMSK interrupt

mask
• ISR, ILR, interrupt registers

Finally, the memories Tdsp uses are DM and PM, the data and instruction (program) memory. DM can be
accessed for words and long words (aliases DMw and DMl).

The data path of the Tdsp processor is shown in Figure 3.5. The registers and memories related to
instruction fetching/decoding and control are not shown.
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Figure 3.5: The data path of the Tdsp core (source [83]).

The Tdsp’s unique data path is accompanied by its unique instruction set. The Tdsp supports 16
and 32-bit variable-length instructions. The 16-bit instructions can be one of the following:

• Arithmetic on the R or L register, or multiply-accumulate arithmetic
• Load/store instructions
• Move instructions
• Control instructions

32-bit instructions consist of the following categories:
• A combination of a 16-bit arithmetic and a control instruction
• A combination of a 16-bit arithmetic and a move instruction
• A combination of a control and a move instruction
• Long control or load/store instructions, which use direct addressing
• Long immediate instructions
• A DSP instruction combining a multiply-accumulate instruction with a load/store instruction and

a second load instruction
The combination of the hardware loop control, circular buffer registers, dedicated shifter, and multiply-

accumulate functionality is advantageous for signal-processing applications and makes the Tdsp a good
example of a DSP.

3.2.2 TCE
With TCE, there are unlimited possibilities in designing a suitable TTA core for IMDs. However,
designing a new TTA processor would be out of scope for this thesis. Therefore, existing implementations
will be assessed.
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Modern TTA cores designed in TCE are the LoTTA [35] and its derivatives the PeLoTTA and
Super LoTTA, which are designed for always-on applications. Where the PeLoTTA still maintains
the fast branching functionality and the energy-efficient operation, the Super LoTTA was designed for
maximum clock frequency. The PeLoTTA also has the overall smallest code size and features an improved
instruction register file (IRF). Because of the energy efficient design target of the PeLoTTA, this will be
the only evaluated core for TCE.

The architecture of the PeLoTTA core can be seen in Figure 3.6. The PeLoTTA contains three
transport buses which connect the following FUs:

• an LSU for moving data between the buses and the memory
• an ALU for basic arithmetic, binary operations, shifting, min/max operations, and conditional

operations
• a 32x32-bit register file
• an immediate unit, for loading and storing immediates
• a control unit for executing jumps and branches
• a dedicated IO unit for standard output

FU:

LSU

{ AS: data Ops:ldw, ldq, ldh, stw...

FU:

IO

{ stdout }

FU:

mul

{ mul }

FU:

ALU

{ abs, add, and, eq, gt, gtu, ior, ...

RF:

RF

32x32

IMM:

IU_1x32

1x32

GCU:

gcu

{ jump, call, bz1, bnz1 }

0

1

2

Figure 3.6: The PeLoTTA core as shown in ProDe with its buses and FUs.

Implementation comparison

The selection of ASIP implementations is dependent on the available models from the used toolsets
and the architectures of interest. From the available TTA cores only the PeLoTTA is selected, provid-
ing improvements over the LoTTA and retaining energy-efficient operation. Representing conventional
general-purpose RISC processors, ASIP Designer provides both the Tmcu and the Tzscale. Because of
the prevalence of signal-processing tasks in IMDs and the relatively low effort of implementing another
core in ASIP Designer, the Tdsp will also be implemented. To bridge the architectural gap between
TTAs and the MCUs, a VLIW core will also be selected. The only VLIW core available from ASIP
Designer is the Tvliw. An overview of all selected ASIPs with their properties can be found in Table 3.2.

Table 3.2: An overview of the selected cores and their properties

Type/ISA Instr. word size Synthesis tool Compiler CoreMark/MHz
PeLoTTA TTA 43 bit OpenASIP TCE Unknown
Tdsp DSP 16/32 bit ASIP Designer Chess + LLVM Unknown
Tvliw 4-slot VLIW 64 bit ASIP Designer Chess Unknown
Tzscale RISC-V RV32I 16/32 bit ASIP Designer Chess + LLVM 2.38

For the PeLoTTA, Tzscale, and Tdsp synthesis results are also available, and are listed in Table 3.3.
Table 3.3 shows that the PeLoTTA and Tzscale are comparable in terms of core area and clock frequency.
The Tdsp reaches only half of the maximum clock frequency of the Tzscale and PeLoTTA and uses
20 − 32% more area. The Tvliw likely uses the most area due to its high issue width, but no synthesis
results are available for that core.
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Table 3.3: Comparison of area and performance numbers of relevant ASIP Designer example projects
that have it available, and the PeLoTTA core. Note that the Tvliw is not listed, as no synthesis results
are available.

Core Process Max fclk [MHz] Gates Core area [µm2]
PeLoTTA (64 IRF) FD-SOI 28nm 1351 Unknown 22036
Tzscale TSMC 28nm 1370 36.6k ∼24000
Tdsp TSMC 28nm 650 42k 29087

3.3 Benchmarks
Multiple benchmarks exist for evaluating the performance of an embedded system. Some benchmark
suites will be presented in order to select the benchmarks that will represent the workloads of IMDs.

3.3.1 Requirements
The benchmarks should be representative of typical workloads for IMDs. Typical workloads can be
broken down into six categories:

• Control systems; state machines, signal processing.
• Encryption; communication should be encrypted
• Data compression; if the IMD uses wireless communication to transfer data, every bit that can be

compressed reduces the energy necessary for that transfer.
• Error detection/correction; transferred data should be able to be verified .
• ANN; a modern solution to pattern recognition and signal processing.

Next to a representative collection of benchmarks, there are some requirements related to the implemen-
tation of these benchmarks:

• Free and open-source license
• Able to run without any OS (bare bones)
• Architecture-agnostic
• Small memory footprint

3.3.2 EEMBC benchmarks
• CoreMark [84]: The industry-standard benchmark for microcontrollers is EEMBC’s CoreMark. It

focusses on list processing, matrix manipulation, state machines, and error detection (CRC16).
The source code for CoreMark can be found on GitHub [85].

• ULPMark [86]: ULPMark is also developed by EEMBC, based on CoreMark, with a focus on ULP
devices. ULPMark comes in three flavours:
– ULPMark-CoreProfile [87], which sleeps after executing a workload, combining power mea-

surements for sleep and active modes.
– ULPMark-PeripheralProfile [88], which assesses the performance of peripherals.
– ULPMark-CoreMark [89], which uses CoreMark as the active workload and an external power

measurement board to determine the CoreMark executions per Joule.
ULPMark-PeripheralProfile and ULPMark-CoreProfile will not be discussed because of the require-
ment of external modules (either peripherals or power measurement boards).

• SecureMark-TLS [90]: SecureMark-TLS implements TLS using ECDSA, SHA256, and SHA128.

EEMBC also provides benchmarks for machine learning; MLMark [91] and ULPMark-ML [92]. However,
MLMark only runs on architectures with a GPU, and ULPMark-ML is still in development at the time
of writing.

Another honourable mention is IoTMark, which focusses on wireless communication and reading out
sensors. This benchmark is not listed because it requires a SoC with a Bluetooth radio.
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3.3.3 MiBench
MiBench [93] is a large collection of 35 benchmarks. MiBench mainly focusses on consumer PC workloads
and provides benchmarks chosen for six categories:

• Automotive/industrial control systems
• Consumer
• Office
• Network
• Security
• Telecommunications

MiBench was presented in 2001 as a free, open-source alternative to EEMBC’s benchmarks (although
CoreMark and other EEMBC benchmarks are now open-source as well).

3.3.4 SPEC2017
The Standard Performance Evaluation Corporation released their first benchmark in 1999, the SPEC2000.
SPEC2017 is the third and latest release of the SPEC CPU benchmark suite, and contains 43 bench-
marks. SPEC2017 is designed for heavy integer and floating point workloads such as benchmarks for
fluid dynamics and weather forecasts, and thus is unsuited for embedded systems.

3.3.5 ImpBench
ImpBench [5] is a benchmark suite specifically designed for IMDs. The original release of ImpBench
provides eight benchmarks for four categories:

• Compression
• Encryption
• Data integrity
• Real applications

In the revised version of ImpBench [6] introduces “stressmark” versions of the two benchmarks for real
applications in order to improve simulation time.

3.3.6 Solutions comparison
Table 3.4 shows which benchmarks from the benchmark suites are suited for the required categories.
Table 3.5 shows the licence and architectural requirements. Some notes about the tables:

• In Table 3.5 the requirement for machine learning is missing, as none of the benchmarks listed in
that table have a focus on machine learning.

• The compression algorithm that MiBench possesses (jpeg) is lossy and designed for images, and
thus is not representative for a compression algorithm for IMDs. Thus it is not listed in Table 3.4.

Table 3.4: Benchmark suites broken down in categories with workloads for IMDs.

Control Encryption Compression Error detection

CoreMark State machines, find, sort,
matrix manipulation CRC16

ULPMark-CP Bit permutation,
bubble-sort, filters

MiBench qsort, bitcount, basicmath Rijndael, PGP,
blowfish CRC32

ImpBench DMU RC6, MISTY1 Finnish, MiniLZO CRC32, CSUM
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Table 3.5: Analysis of licensing and architecture requirements for selected benchmarks.

Free, open-source Bare bones Architecture independent Small memory footprint
CoreMark Yes Yes Yes Yes
ULPMark-CP No Yes Yes Yes
MiBench Yes No No No
ImpBench Yes No No No

It comes as no surprise that the benchmark suite designed for IMDs has the best match for the
requirements, although some work will be required to make the benchmarks run on the different archi-
tectures. ImpBench lacks a good benchmark for assessing typical control systems, other than the DMU
benchmark. ULPMark-CoreMark is not an option; even though it can be used with a university licence,
the benchmark relies heavily on letting the processor sleep, which is not possible for any of the selected
implementations. Therefore, CoreMark will also be selected to run on the ASIP implementations.

As for a benchmark to assess performance for ANNs, no portable, lightweight benchmarks are avail-
able. Therefore, a custom benchmark will be designed and implemented in the next chapter.

Section 2.6.3 shows that most ANNs in IMDs are either CNNs or RNNs. The main difference between
these networks is that a CNN is a feed-forward network (output of a neuron is only dependent on the
input), whereas a neuron in an RNN has local memory to which data can be fed back from the outputs
of other neurons.

For a benchmark, a CNN for digit classification of the MNIST dataset [94] will be implemented. Even
though the data does not represent biological signals, the dataset is very well-known and CNNs have
been used extensively to classify the digits in the set [94].
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Chapter 4

Implementation

4.1 Development platform
The processor cores will be synthesized on an FPGA for power measurements. The FPGA selected is
the Cyclone IV EP4CE15F23C8N from Altera. This FPGA was chosen simply because it is cheap and
readily available. As the target is an Intel/Altera FPGA, the synthesis and fitting is done by Quartus
Prime.

The FPGA provides 15k logic elements (LEs) and 504kbit memory, and thus can provide for 32kB of
data memory, and 16kB of instruction memory [95]. The EP4CE15F also boasts 56 18x18 multipliers, 4
PLLs, and 20 global clock networks (GCNs). The units primarily used by the processor cores are LEs,
M9K memory, and the multipliers.

4.2 Processor core implementation
The top-level entity of each core contains only a few components:

• The processor core
• Program memory
• Data memory
• PLL
• Standard output

For each core it will be explained how the HDL for the core is generated, how the program and data
memory are attached to the core, how the PLL is implemented, and how the standard output module is
implemented.

4.2.1 Top-level
The top-level entities of the Tzscale, Tvliw, and PeLoTTA are very much alike. Figure 4.1 shows a
diagram of the layout of the top-level entity of the Tzscale. The top-level entity of the Tvliw and
PeLoTTA are the same, but only have one DM bank, and the PeLoTTA has a standard output module
as FU in the processor core.
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Figure 4.1: A diagram of the top-level entity of the Tzscale. The diagram for the Tvliw is the same, but
with only one data memory bank, and for the PeLoTTA the standard output module is integrated in
the core.

PLL

For all cores, the Quartus PLL IP is used to generate the clock at the required frequency. To generate
the bitstream for cores running at a range of different frequencies, the adjustments to the PLL will have
to be automated. The period of the generated clock from the PLL is determined by a division and
multiplication factor (Equation 4.2.1), which are defined in the pll.vhd IP file. These factors can then
be calculated and replaced in the IP file to attain the desired frequency.

To simplify the calculation of the factors, the division factor is set at 400. The multiplication factor
is then the only missing factor determining the frequency, and can be set to bring the clock frequency
closest to the desired frequency (see Equation 4.2.1).

fclk = fin ·
cmul

cdiv
(4.1)

cmul = ftgt ·
cdiv

fin
= ftgt ·

400
50MHz

(4.2)

This approach is implemented in a bash script (pll_adj), and the replacement is done using sed. After
the adjustment of the PLL, Quartus recommends the memory IPs are regenerated. This is done using
the quartus_sh –ip_upgrade -mode all <project> command.

Configuration

Most configuration options of Quartus are left as-is, except for auto-recognition of DSP modules. Using
the built-in multiplication and division module is inevitable however, as the alternative is designing and
implementing one. Also the strategy is set to aggressive optimization for power. These options are set
via the command line with
quartus_sh –set OPTIMIZATION_MODE="AGGRESSIVE POWER" <project>
and
quartus_sh –set AUTO_DSP_RECOGNITION="OFF" <project>.
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After successful configuration and setting of the desired clock frequency, quartus_sh –flow compile
<project> can be run to synthesize and fit the project, and generate the bitstream.

4.2.2 PeLoTTA
The Quartus project for the synthesis of the PeLoTTA core can easily be generated using ProGe from
TCE. ProGe does not support targeting the Cyclone IV directly, but does support the Altera Stratix 2
platform. The generated processor for Stratix 2 uses Quartus IP components that are also available for
the Cyclone IV, so re-targeting the project is done by just specifying a different target in Quartus Prime.

Memory

The memory size used by the PeLoTTA is set in the ADF file. The ADF file defines the memory size
by setting the address range. Listing 4.1 shows the instruction and data memory definitions of the
PeLoTTA.

839 <address-space name="data">
840 <width>8</width>
841 <min-address>0</min-address>
842 <max-address>32767</max-address>
843 </address-space>
844

845 <address-space name="instructions">
846 <width>8</width>
847 <min-address>0</min-address>
848 <max-address>4095</max-address>
849 </address-space>

Listing 4.1: The definition of the instruction and data memory in the ADF file for the PeLoTTA.

Standard output

One significant change to the generated RTL is in the standard output module. The standard output
implementation uses UART over the Altera JTAG interface (which is connected to the USB Blaster).
The module has a lock_req output (see Listing 4.2) which is connected to the lock_req input of the
pelotta_decoder entity (the instruction fetcher/decoder). When the lock_req input of the pelotta_decoder
is asserted, the decoder stalls until it is deasserted again when the buffer is cleared. This effectively stalls
the entire processor. The standard output module requests the lock while the write buffer is not empty,
and the buffer will not be emptied when there is no terminal (nios2-terminal) running on the PC host
that acknowledges the data.

Although this feature makes sure the data is successfully transferred, the module can stall for tens of
milliseconds while writing strings via standard output. During the lock, the processors energy consump-
tion is very low, and thus the power measurements are lower as well.

To circumvent this error, the lock_req input of the pelotta_decoder is simply set to 0. To make
sure that the write buffer doesn’t overflow, care is taken in the ImpBench source code to minimise the
amount of data transferred.
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5 entity altera_jtag_uart_stdout_always_1 is
6 generic (
7 dataw : integer := 8);
8 port (
9 t1data : in std_logic_vector(dataw-1 downto 0);

10 t1load : in std_logic;
11 clk : in std_logic;
12 rstx : in std_logic;
13 glock : in std_logic;
14 lock_req : out std_logic
15 );
16 end altera_jtag_uart_stdout_always_1;

Listing 4.2: The definition of the altera_jtag_uart_stdout_always_1 entity in
altera_jtag_uart_stdout_always_1.vhd, which is used as the standard output module for PeLoTTA.

4.2.3 ASIP Designer processors
There are a few steps in the process of generating the RTL description for the target from the nML
processor description.

HDL generation

To generate the HDL from the processor model, Go1 is used. The tzscale_vhdl.prx HDL generator
project file contains the options to specify the language (VHDL) and the Go configuration file. The
configuration file contains options for on-chip debugging, simulation options, controller/decoder, low
power, timing, and transformation of the data-path, among others. Some important options are explained
below.

• These are the recommended options for optimising for low power [96]:
– extra_enable_bit;

This option adds an extra enable bit from the decoder, which controls if a FU is in an active
state or not (NOP).

– split_opcode_registers;
Opcode registers in the decoder are split into smaller registers, combined with extra_enable_bit
it makes the registers (which are split for each FU) update only when the enable bit is set,
saving unnecessary bit toggles.

– default_primitive_operations : 1;
default_register_reads : 1;
default_memory_operations : 1;
The default_* options cause the affected units to always execute an operation, even when the
control signals are all zero. This might save an extra bit in the control signals if the number
of operations is a power of two, and saves some logic because the decoder doesn’t need to
generate a non-zero opcode for that operation. In combination with extra_enable_bit and
split_opcode_registers this also saves power because the reduced bit toggling is propagated
to these units.

– register_vector_write_enable;
pipe_write_enable;
Generates a write enable signal for each (pipeline) register, allowing the synthesis tool to use
clock gating for the registers.

– operand_isolation_functional_units;
operand_isolation_multiplexers;
The operand_isolation_* options ensure that the control signals of the affected unit remain
constant when it is in a passive state, again reducing unnecessary bit toggling.

– register_addresses_from_decoder;
Enabled by default. Ensures register addresses are kept constant, reducing power. Also
reduces critical path by only fetching the necessary register addresses the stage before they
are needed.

1The tool from ASIP Designer, not to be confused with the programming language.
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• Data-path transformation:
– remove_false_paths;

Removes false paths between memories and false loops.
– print_false_paths;

Writes all false paths to a TCL script for the synthesis tool, so that no timing analysis will
be done for those paths.

• Reducing critical path:
– direct_write_disable_on_stall : 2;

In addition to zeroing the opcodes when stalling, register writes and memory accesses in the
modules that are stalled are also disabled.

• VHDL generation:
– merge_identical_entities;

merge_package_body_files : 1;
merge_entity_architecture_files : 1;
configuration_files : 0;
These options reduce the number of files and also increase compatibility with ModelSim.

Memory

To modify the memory size of a processor in ASIP Designer, the processor nML model has to be modified
so that the compiler and simulator know what memory is available. At the beginning of the processor
model in tzscale.n the memories are defined (see Listing 4.3). Likewise, for the Tdsp and Tvliw the
memory size is adjusted in tdsp.n and tvliw.n. The memory sizes are easily adjusted by changing the
pm_size and dm_size, which specify their respective memory sizes in bytes. At the definition of the
data memory, it can also be seen that the Tzscale has byte-aligned data memory (DMb), with aliases for
half-words (DMh) and words (DMw).

33



4.2. PROCESSOR CORE IMPLEMENTATION CHAPTER 4. IMPLEMENTATION

22 // Program memory
23

24 def pm_size=2**14;
25

26 mem PMb[pm_size] <uint8,addr> access {};
27

28 mem PM[0..pm_size-4,2] <iword,addr> alias PMb align 2 access {
29 ifetch : pm_rd '1' = PM[pm_addr]'1';
30 #ifdef HAS_OCD
31 istore : PM[pm_addr] = pm_wr;
32 #endif
33 };
34

35 properties {
36 program_memory: PMb;
37 unconnected : PM; // accessed in PCU
38 }
39

40 // Data memory
41

42 def dm_size=2**DM_SIZE_NBIT;
43

44 trn dmh_wr_hi<w08>;
45 trn dmw_wr_hi<w16>;
46

47 trn dmb_wr<w08>;
48 trn dmh_wr<w16> { dmb_wr; dmh_wr_hi; };
49 trn dmw_wr<w32> { dmh_wr; dmw_wr_hi; };
50

51 mem DMb [dm_size,1]<w08,addr> access {
52 ld_dmb: dmb_rd '1' = DMb[dm_addr '0' ] '1';
53 st_dmb: DMb[dm_addr] = dmb_wr;
54 };
55

56 mem DMh [dm_size-1,1]<w16,addr> alias DMb align 1 access {
57 ld_dmh: dmh_rd '1' = DMh[dm_addr '0'] '1';
58 st_dmh: DMh[dm_addr] = dmh_wr;
59 };
60

61 mem DMw [dm_size-3,1]<w32,addr> alias DMb align 1 access {
62 ld_dmw: dmw_rd '1' = DMw[dm_addr '0'] '1';
63 st_dmw: DMw[dm_addr] = dmw_wr;
64 };

Listing 4.3: The memory definitions for the Tzscale in tzscale.n

The data memory is divided in two equally sized interleaved banks; DM0 and DM1. This way, both
banks of data memory can be accessed in the same cycle with word-aligned addresses. The 64-bit result
can then be reduced to 32-bit with a byte-aligned offset. This is convenient for the implementation of
the data memory, which is done using M9K memory blocks. The DM0 and DM1 memory entities, which
are generated using the Quartus Megawizard Plug-in Manager and the 1-port RAM IP, plugs in directly
to the interface of the Tzscale core.

The program memory for the Tzscale is also byte-aligned, but only has one bank. The memory
implemented is actually half-word aligned, because the Tzscale only supports 32 and 16-bit instructions.
This leads to an implementation where there are actually two interleaved memory banks (pm0 and pm1)
with a width of 16 bits. The last bit of the requested address remains unused, and the second-to-last bit
determines the order and the actual read addresses of the memories. The calculation of the addresses
and data order can be found in Table 4.1.
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Table 4.1: The translation of the address and data to handle half-word aligned memory accesses.
pm_addr_in is the requested addres from the Tzscale. The positions indicate if the resulting 16-bit
value from pmX is placed at the lower 16 bits or the higher 16 bits of the 32-bit result. PM_SZ equals
14 for a program memory of 16kB.

Alignment word aligned half-word aligned
pm_addr_in XXXXXXXXXXXX0X XXXXXXXXXXXX1X
pm0 address pm_addr_in(PM_SZ - 1 downto 2) pm_addr_in(PM_SZ - 1 downto 2)
pm1 address pm_addr_in(PM_SZ - 1 downto 2) + 1 pm_addr_in(PM_SZ - 1 downto 2)
pm0 position Low High
pm1 position High Low

The Tvliw uses 32-bit data memory and 64-bit program memory, and is only word-addressable for
both memories. This makes the connection of the memory for the Tvliw very straightforward as no
translation on the data and address are required.

The Tdsp uses two 16-bit data memory banks with two read ports and one write port. For the program
memory it uses one 16-bit bank with two read ports, in order to load the 32-bit long instructions. The
Quartus 2-port RAM and ROM IP is used to implement the memories for the Tdsp, with one write port
disabled for the data memory. These memories plug in directly to the Tdsp processor core.

Standard output

The same standard output module as used in the PeLoTTA is implemented on the Tdsp, Tvliw, and
Tzscale (altera_jtag_uart_stdout_always_1). Using the same standard output module ensures the
same area and power consumption for debugging. To attach this module to the ASIP Designer processor
cores, a word in memory is mapped to the input of the module. When the reserved memory is written,
the value is forwarded to the standard output module and the t1load flag is set (which indicates new
valid data is available).

The memory region is reserved in the default linker configuration file (tzscale.bcf for Tzscale, see
Listing 4.5). The syntax for the directive is _reserved <memory> <offset> <width>.

145 process(clock)
146 constant data_addr : t_addr := x"00000000";
147 begin
148 if(rising_edge(clock)) then
149 if(nareset = '0') then
150 if(st_dm1 = x"F" and dm1_addr = x"0000") then
151 uart_data_new <= '1';
152 uart_data <= std_logic_vector(dm1_wr(7 downto 0));
153 else
154 uart_data_new <= '0';
155 end if;
156 else
157 uart_data_new <= '0';
158 uart_data <= (others => '0');
159 end if;
160 end if;
161 end process;
162

163 inst_uart : altera_jtag_uart_stdout_always_1
164 port map (
165 t1data => uart_data,
166 t1load => uart_data_new,
167 clk => clock,
168 rstx => areset,
169 glock => '0');

Listing 4.4: The implementation of the TCE altera_jtag_uart_stdout_always_1 standard output
module in the Tzscale top-level entity in top.vhd
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16 _reserved DMb 0 4 // reserve location used by debug client (see debug_client/pdc_data_address.h)
17 _reserved DMb 4 4 // reserve location used by stdout
18

19 _stack DMb 0x4000 0x04000

Listing 4.5: The reservation of memory for the standard out module in the Tzscale linker tzscale.bcf

Compiler options

The Tzscale and Tdsp support the LLVM compiler front-end Clang for the ASIP Designer Chess compiler.
The LLVM front-end provides a significant performance increase compared to the Chess front-end. Using
LLVM, the Tzscale achieves a CoreMark score of 2.38/MHz, whereas the Chess front-end only achieves
1.94/MHz [81]. Thus, to get the best performance out of the Tdsp and Tzscale, the LLVM compiler
front-end is used. The only compiler option used for LLVM is the optimization level, which is set to
aggressive (-O3).

The Tvliw does not support this front-end, and as the Chess compiler has no options for optimization,
there is no configuration to be discussed.

4.3 ImpBench adaptations
ImpBench is not able to run on the selected processor implementations out-of-the-box because of un-
supported OS calls, floating point instructions, and a high memory footprint. This section will cover all
changes made to ImpBench in order to run it on the cores.

Developing for four (excluding x86 for testing) different architectures can create unforeseen bugs.
Two major issues during debugging were found that caused bugs:

• Tvliw has word-aligned data memory, and thus uses an unsigned char and uint8_t size of 4
bytes.

• PeLoTTA has big endian memory, as opposed to the little endian memories of the Tdsp, Tvliw,
and Tzscale

4.3.1 File I/O
ImpBench uses file I/O to load datasets and verify and store results. However, none of the processors run
an OS with a file system, so this functionality will have to be edited to use only supported operations.

The only reason to use a pre-determined dataset is to be able to verify the outputs of the program
and thus verify the correct functioning of the core it’s running on. In order to obtain correct results, it
is important to verify the execution of the benchmarks on the core, so the verification part can not just
be removed. This also means that the file I/O can not be replaced by function calls to rand(). This
leaves only one option, placing the data in the data region in RAM.

As only one input file used for all benchmarks (i.e. AEP_10.ascii), it would be efficient to include
the contents from this file only once in memory. However, in ImpBench the data from that input file is
read in a number of different ways:

• FIN: Reading the file one character at a time and casting it to an int (using fgetc())
• CRC32, CSUM: Interpreting the ASCII bytes from the file directly as a different datatype (such

as double and short int, using fread())
• Motion, DMU: Reading one line at a time and converting the ASCII to a float (using fgets() and

atof())
• MLZO, MISTY1, RC6: Using the raw bytes from the file as raw data to compress or encrypt

Although the binary representation of the entire file could be loaded in RAM, it would be inefficient to
translate it to all different data types and interpretations.

Compression

The only available form of memory implemented in the cores (aside from registers) is the instruction and
data memory, so all data needs to be placed in those memories. The memories are severely limited by
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the FPGA they are synthesized on. The FPGA (an Altera Cyclone IV E EP4CE15F23C8) has 504Kb
of M9K memory blocks. The memory needs a fully addressable space of a power of 2 (restriction by
Quartus), the maximum size for the data memory is 32KB. This leaves 16KB for the instruction memory.

Although the input data file (AEP_10.ascii) that is used by the benchmarks is 12KB and can fit
inside the data memory, it takes up more than 35% of the RAM. As some benchmarks require more than
20KB RAM, it is beneficial to reduce the memory footprint of the input data. Fortunately, the data
inside AEP_10.ascii is very repetitive (see Listing 4.6).

1 90.3014
2 90.3014
3 90.3014
4 90.3014
5 90.3014
6 90.3014
7 90.3014
8 90.3014
9 90.3014

10 90.3014

Listing 4.6: An exerpt from AEP_10.ascii showing the repetition of data.

In fact, AEP_10.ascii only has 80 unique lines, of which every line starts with “90.”, followed by
three or four numbers, and ends with a tab, line feed, and carriage return (\t \r \n ) A very simple
and specific compression algorithm can be used in which for every unique line it is specified how many
times it is repeated, saving only the unique decimal numbers in RAM. The function only has to store
the position in the line and at what line in AEP_10.ascii data is requested through function calls. The
total data memory footprint in is 625 bytes, consisting of:

• 412 bytes for the storage of the decimal numbers of each different line
• 206 bytes for the line numbers at which these data transitions occur
• 7 bytes for counters and storage of endianness

This reduces the memory footprint of AEP_10.ascii by 95% (not counting the batch size when decom-
pressing). The function implementing this routine can be found in Listing 4.7.

As all benchmarks read AEP_10.ascii from the beginning (no calls to fseek() to jump at a specific
part in the file), there can be one simple function to implement the reset of the counters that store the
line and the position within the line. This function is data_gen_reset() and is called at the start of
every benchmark to ensure the data generation starts at the beginning.
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174 static uint8_t data_gen_get8(void) {
175 // all lines start with "90."
176 uint8_t common_start[] = {0x39, 0x30, 0x2E};
177 // all lines end with "\t\r\n"
178 uint8_t common_end[] = {0x09, 0x0D, 0x0A};
179 uint8_t res;
180 // if we reached the last line of occurrence of the last line, go to the
181 // next
182 if (line_idx == data_lines[data_lines_idx]) {
183 data_mid_idx++;
184 data_lines_idx++;
185 }
186 // if this line only has 3 decimal characters, go to the common_end (by
187 // increasing the column_idx by one)
188 if (column_idx == 6 && data_mid[data_mid_idx][3] == 0x09)
189 column_idx++;
190 // now get the data
191 if (column_idx <= 2)
192 // common 3 start bytes (i.e. "90.")
193 res = common_start[column_idx];
194 else if (column_idx >= 7)
195 // common 3 end bytes (i.e. \t\r\n)
196 res = common_end[column_idx - 7];
197 else
198 // unique 3-4 mid bytes
199 res = data_mid[data_mid_idx][column_idx - 3];
200 if (data_mid_idx < sizeof(data_lines) / sizeof(uint16_t))
201 column_idx++;
202 if (column_idx > 9) {
203 column_idx = 0;
204 line_idx++;
205 }
206 return res;
207 }

Listing 4.7: data_gen_get8() from data_gen.c, which restores the compressed data in RAM. The
function is delcared static as it is only used by data_gen_buf(), which fills arrays.

Batches

Although the data from AEP_10.ascii is now compressed in the RAM, the complete decompression of
the data would again require the full 12KB (plus the 612 bytes for the compressed data). However, now
that data from can be generated on the fly, the benchmarks can be executed on smaller portions of the
data at a time. I.e., a single call to data_gen_buf() can be replaced by multiple calls until all the data
is processed. The batch size should be increased as much as possible for each benchmark to keep the
overhead of the decompression as small as possible. This routine can be seen in Listing 4.8 for the CSUM
benchmark.

An incidental benefit of using batches is that the batch size is known beforehand and thus no dynamic
memory allocation is necessary. This is beneficial because dynamic memory allocation in embedded
systems may be unsafe when the memory can not be allocated (which is more prevalent in systems with
extremely limited memory).

54 data_gen_reset();
55 for (i = 0; i < CSUM_DATA_SIZE - CSUM_BLK_SIZE + 1; i += CSUM_BLK_SIZE) {
56 data_gen_buf((uint32_t*)data, CSUM_BLK_SIZE);
57 sum = checksum(sum, (uint32_t*)data, CSUM_BLK_SIZE);
58 }
59 if (CSUM_DATA_SIZE - i > 0) {
60 data_gen_buf((uint32_t*)data, CSUM_DATA_SIZE - i);
61 sum = checksum(sum, (uint32_t*)data, CSUM_DATA_SIZE - i);
62 }

Listing 4.8: An exerpt from csum.c showing the use of data generation and handling in batches.
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Endianness

The endianness of a processor defines the byte order in memory. The Tdsp, Tvliw, and Tzscale use little
endian memory (least-significant byte at byte 0) and the PeLoTTA uses big endian (most-significant
byte at byte 0). This can cause data that consists of multiple bytes to be wrongly interpreted when
it is hard-coded into the memory. This only forms a problem at two points in the ImpBench code; in
data_gen.c and somewhere in the MISTY1 benchmark (which will be discussed in Section 4.3.5).

For the data decompression/generation, the data is generated byte by byte. In some benchmarks (like
in CSUM) the data is re-interpreted as data types with sizes larger than one byte. The data_gen_buf()
solves this by taking three arguments; a pointer to some allocated memory buf of size len bytes, to be
filled with data of size datasize. The function then reverses the order of every datasize bytes if the
processor is big endian.

Endianness can be detected at run-time without hard coding by writing to a data type that consists
of multiple bytes, casting it to a smaller data type, and reading it back out. This function is implemented
in endian.c can be seen in Listing 4.9.

15 int endian_is_little(void) {
16 // set lower byte of a 16-bit int to 1
17 uint16_t i = 1;
18 // read out lower byte of i
19 uint8_t* j = (uint8_t*)&i;
20 // if the lower byte is 1, it is little endian
21 return *j == 1;
22 }

Listing 4.9: endian_is_little() from endian.c, which returns the endianness of the processor.

4.3.2 Random data
It is necessary to verify that the core is working before doing measurements. However, verification is
unnecessary during the measurement assuming the measurement setup is a time-invariant system. This
way, a new program can be loaded in the core which doesn’t generate ImpBench-like data but just
generates random data to use for the benchmarks.

Pseudo-random number generation

The easiest way to get random data is a call to rand(), which returns a random integer. Because
the numbers are randomly generated in software whithout any seed from hardware, they are not truly
random. I.e.; after compilation, every time the program runs it uses the exact same data in the same
order. For benchmarking, this is favourable, as the benchmark would produce the same results every
time it is called. Although there is one caveat; each compiler may use their own implementation of
rand(). If different cores use different data, and benchmarks can branch based on that data, it may
cause a difference in performance. To fix this, the implementation from ASIP Designer is copied to the
modified ImpBench source to make sure every compiled version uses the exact same data. The ASIP
Designer implementation is changed slightly to provide 32-bit random numbers instead of 16-bit. The
resulting function is shown in Listing 4.10.

109 uint32_t rand(void) {
110 next = next * 1103515245 + 12345;
111 return next;
112 }

Listing 4.10: The rand() implementation from ASIP Designer used in data_gen.c in the modified
version of ImpBench. next is a static volatile variable declared in the same file.
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Compression benchmarks

Unlike most benchmarks from ImpBench, the compression benchmarks (FIN and MLZO) suffer greatly
from using random data. This is the case because compression benchmarks are not designed to be used
with truly random data (as that is impossible [97]). The unpredictability of the pseudo-random numbers
cause the dictionary of FIN to fill up, and use large amounts of RAM.

To make the pseudo-random data more predictable, the set of possible random data to return can be
reduced. This is implemented by just masking only the lower four bits of the random data, so there are
only 16 possible outcomes instead of 256. The implementation can be found in Listing 4.11.

222 void data_gen_buf(uint32_t* buf, size_t len) {
223 size_t i;
224 #if DATA_GEN_RANDOM
225 uint32_t r;
226 uint32_t mask = 0;
227 // fill up buf 8 bytes at a time
228 for (i = 0; i < len / 8; i++) {
229 r = rand();
230 // only take last 4 bits per byte, so there are only 16 possible
231 // outcomes. this reduces memory footprint for compression benchmarks
232 buf[i] = r & 0x0F0F0F0F;
233 i++;
234 buf[i] = (r >> 4) & 0x0F0F0F0F;
235 }
236 // fill-up left-over bytes
237 r = rand();
238 if(len % 8 >= 4) {
239 buf[i] = r & 0x0F0F0F0F;
240 i++;
241 r >>= 4;

Listing 4.11: The usage of rand() in data_gen_buf() in data_gen.c, which uses only the lower 4 bits.
The DATA_GEN_RANDOM macro determines if data_gen_buf() fills buf with pseudo-random data or with
data from AEP_10.ascii.

4.3.3 Standard output
The functioning of the processor can be verified by using a debugger, GPIOs, and writing to standard
output. Simulation is not enough as timing issues and other external factors can not be seen in simulation.
A debugger would be interfacing via JTAG over the test access port (TAP). This requires the core to
also implement a TAP controller. Although ASIP Designer does have the option to implement the
TAP controller and interface to the processor, the attempt to implement is was unsuccessful. The JTAG
debugger (a J-Link EDU) complained about not being able to access the TAP controller and analysis with
a logic analyzer showed that the TAP controller was not responding. At that point further development
for the JTAG interface was stopped, and the focus shifted to standard output.

Writing to standard output is an easy way of debugging and verifying the correct execution of the
program. This is usually done using calls to printf(), like in ImpBench, but the printf() implemen-
tation is quite large and most functions are unused by ImpBench. TCE actually provides an alternative
to printf() with a smaller memory footprint for this purpose, but as this is not availabe for ASIP
Designer, an implementation is added to ImpBench.

All that would be necessary to provide a notification of successful execution is the printing of a single
byte. For conveniency however, it is also nice to print strings and integers in both hexadecimal and
decimal representation. These features require little code and little time to implement, and thus are
implemented in print_int() and print_str() in print.c.

4.3.4 Verification
To verify that the benchmarks are executed successfully during measurement, the cores log the successful
execution of the benchmark via standard output. The correct execution can be determined by two factors:

• The benchmark which is executed
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• The benchmark produced the expected result

These two variables are printed over standard output. First the number corresponding to the benchmark
is printed, then after the benchmark is finished, the check is printed. The resulting character printed
that represents the success of the function can be found in Table 4.2. By minimising the characters
printed over standard output, the overhead in power consumption is minimised while maintaining the
knowledge of the validity of the measurements.

Table 4.2: Possible log results when running a benchmark.

ImpBench data Random data
Benchmark returns 0 V v
Benchmark returns other than 0 X x

For CSUM and CRC32, verifying correct execution can easily be done by comparing the resulting
checksum to the correct checksum. For the other benchmarks however, this is not so trivial. For the
compression and encryption benchmarks, the first byte of each compressed block is added to a resulting
checksum. For the motion benchmark, the amount of active measurements is used as a checksum.

The checks are performed at the end of each function, comparing the sum to the expected result (see
Listing 4.12 for the implementation in the CRC32 benchmark).

187 // check against correct answer
188 return res != 0x8201357A;
189 }

Listing 4.12: The calculation of the return value for the crc() benchmark, which is used to verify the
result and determine if the execution was successful.

4.3.5 Benchmark specific changes
This section covers the changes made to individual benchmarks to port them to the selected processors.

CRC32

In the original CRC32 benchmark, the CRC32 table is generated at the start of the program. This is
not very representative for the workload, as this is only done once after reset. Given that the table
generation is done within a few milliseconds, and the processor runs for days or months, the effect is
negligible in a normal application, but significant in the benchmark which only runs briefly. Therefore,
the CRC32 table is instead hard coded in the source file.

CSUM

The original implementation of CSUM in ImpBench doesn’t negate the left-over byte (if it exists, which
it does in the used dataset). Although this seems like a small bug that was overlooked, it has no real
implications in the performance or the results in the measurements, as it is only one operation.

In the original source the 32-bit checksum is folded over to a 16-bit checksum at the end of the
checksum() function. This operation is now moved to the end of the csum() function, so that it is only
done once and not after every block of data.

FIN

FIN works with a large prediction table to compress the data. This table has a size of 32kB in the
original source. This is too large for 32kB of data memory and has been reduced to 4kB.

The compress() and decompress() functions have also undergone some slight changes. The functions
now take pointers to arrays as arguments instead of file pointers. It also checks for buffer overflows when
using those arrays.
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MISTY1

In the initialization of the MISTY1 benchmark, the encryption key is initialized. The key is originally read
from the arguments passed from the command line, and should represent the string 0123456789abcdef.
The key is then copied using memcpy() to a buffer of type u4[] (which is defined as a long int). This
again is a problem for cores using big endian; it will reverse every group of four characters.

Next to fixing the bug caused by endianness, dynamic memory allocation calls for the key have been
substituted by fixed size declarations.

MLZO

The MLZO benchmark uses 64-bit integer types (long long), which are not supported by the PeLoTTA,
Tdsp, and Tvliw. It also uses more than 32kB memory, which can not be reduced without understanding
and rewriting large portions of the tightly-coupled code. Thus it has been decided not to port the MZLO
benchmark and rely solely on the FIN benchmark for compression performance metrics.

RC6

Other than the common changes for all benchmarks and hard coding the encryption key, the RC6
benchmark works out of the box and is left untouched.

Motion

The MOTION benchmark boils down to only counting the amount of ‘samples’ exceeding a certain
threshold. The ‘samples’ from the input file used in the MOTION benchmark are ASCII representations
of floats, and are interpreted as such. The issue here is that none of the selected cores have an floating
point unit (FPU). This could be circumvented by using fixed point representations of the floating point
numbers or software floating point libraries, but as the only operation here is a simple comparison, it
was chosen to just use the pseudo-random number generator.

DMU

The DMU benchmark relies very heavily on floating point numbers and is very tightly coupled. An
attempt was made to replace the floating point operations with a fixed-point arithmetic library, but
the original execution of the benchmark could not be replicated. Therefore, this benchmark is also not
ported.

4.3.6 Managing optimisation
The LLVM front-end of TCE uses aggressive optimization. ASIP Designer can also use the LLVM front-
end, if the processor supports it. This optimization level is so aggressive that it will optimize functions
away if their output values are fixed. To counter this, TCE implements the -k <var> flag, which keeps
the compiler from optimising the indicated global variable away. For Chess, functions are available to
instruct the Chess compiler to protect certain variables, functions, or operations from optimisations.

The benchmarks can also be protected against optimization by making the standard output depend
on the input (pseudo-random data). This can be implemented by just declaring the next variable (which
determines the next pseudo-random variable) as volatile. The volatile declaration forces the compiler
to read the variable from memory each time and thus prevents optimizations.

The compiler-specific approach is chosen to provide the compilers with more flexibility and room for
optimisations.

4.4 CoreMark
CoreMark is designed as a highly portable benchmark and thus requires less effort to implement than
ImpBench. Porting CoreMark to a new platform can be done by modifying the core_portme.c and
ee_printf.c files, which contain functions for standard output and calculating the elapsed time. The
elapsed time is used to check if the benchmark has been running for long enough for the result to
be validated. This feature is disabled in the code, as the execution time can be extracted from the
simulations.
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Although CoreMark is a benchmark on its own, it is called from impbench.c, so it integrates nicely
with all scripts for ImpBench. This also implies that the standard output functions from CoreMark are
not used, and it only returns the amount of errors it encountered. This way the same output is expected
from CoreMark as from individual benchmarks from ImpBench, which can be parsed automatically.

Even though CoreMark is designed as a portable benchmark, it does not function correctly with
all processor implementations. The Tdsp and Tvliw do not have byte-addressable memory, and their
implementation of the sizeof() function returns the size of the datatype in words instead of bytes. This
is a violation of the ANSI C standard [98], and makes the CoreMark validation fail for these cores.

Modifications to the CoreMark benchmark would make the scores lose their meaning in comparison to
processors that are not evaluated in this thesis, so CoreMark is left untouched. Modifying the sizeof()
implementation is also not an option, as the underlying problem of differences in expected data type size
would still exist. The only solution therefore would be implementing byte-addressable memory in these
cores, but that is outside of the scope of this thesis. Thus CoreMark is not to be run on the Tdsp and
Tvliw.

4.5 Artificial neural network benchmark
The benchmark is based on a 3-layer CNN by Matt Lind [49, 99] to recognise digits in the MNIST dataset
[94]. The CNN is built up as follows:

1. An input layer containing the values of the pixels of the image, with the same amount of nodes as
pixels in the image.

2. A hidden layer, which executes the convolution. This layer has 20 nodes.

3. An output layer of 10 nodes, which classifies the digit in the image.

All layers in the network are fully connected, and all connections have weights. The activation function
used is the Sigmoid function, which delivers the best results in this CNN [49].

Although CNNs used in IMDs often consist of more layers, the workload that the algorithm imposes
is comparable because the difference would only reside in the amount of nodes the algorithm has to
loop over and possibly the use of a different activation function. See Figure 4.2 for the overview of the
network.
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Figure 4.2: The architecture of the 3-layer CNN by Matt Lind (Source: [49]).
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4.5.1 Data representation
The original source [99] uses double-precision floating point numbers to represent the weights and the
input and output values of the nodes. As this is not supported by the selected ASIP implementations,
this data type has been converted to fixed-point arithmetic. To facilitate this, a minimalistic library is
constructed from scratch that supports addition, subtraction, multiplication, division, and the Sigmoid
function.

Because the multiplication operation produces a integer twice the size of the input operands and the
largest data type available on all platforms is a 32-bit integer, the fixed-point number can only be 16
bits long. Excluding the sign bit, this leaves only 15 bits for both the magnitude and the fraction. The
best results were achieved by using Q3.12, which can represent numbers in the interval [−8; 8) with a
step size of 0.000244.

The Sigmoid function is implemented using a lookup table (LUT). Even though [62] states that the
frequent memory accesses would be slower than a linear approximation, the combination of the use of
single-cycle data memory in the ASIP implementations and fewer branches makes a solid case for a LUT.
[62] also states that the size of the LUT would be too large. As a LUT for each possible value of the
16-bit Q3.12 number would require 128kB, the last eight bits of the input are discarded to reduce the size
of the LUT to 512 bytes. This results in both a fast and small implementation of the Sigmoid function.

Another advantage of the LUT is the fact that other complex activation functions like tanh would
impose the same workload on the ASIPs, as no changes are introduced in the lookup process.

4.5.2 Reduction of memory footprint
The original MNIST dataset has an image size of 28 by 28 pixels of 1 byte each, with 10000 images in
the test set. Each image is accompanied by a label of one byte that identifies the digit in the image.
Besides the images and the labels themselves, the weights from the input layer to the hidden layer also
contribute significantly to the memory used, as each node in the hidden layer is fully connected and thus
there are initially 15680 weights.

To reduce the size of the images, labels, and number of weights in memory the following changes were
made to the dataset:

• Only the first 50 images in the test set are used
• The images are scaled down to 7x7 pixels
• The 8-bit greyscale pixels are converted to 1-bit black and white and grouped into 32-bit integers
• The labels are squashed into one byte in pairs of two

Furthermore, the memory organisation of the layers, nodes, and weights is changed so no memory has
to be dynamically allocated for the creation of the network.

4.5.3 Training
The weights and biases of the nodes in the network are generated on a desktop PC, using the full MNIST
training data set of 60000 images and three epochs. The training program also uses the smaller images,
Q3.12 number representation, and the reduced Sigmoid LUT. After training, the program writes the
structs describing the network to a header file, which can be directly included in the benchmark.

4.5.4 Performance
Even though the images only use 0.78% of the data, and the precision of the calculation of the convolution
has been reduced from a 64-bit double to a 16-bit fixed-point number, the CNN is able to classify 62%
of the supplied images correctly.

44



Chapter 5

Experimental results

5.1 Simulations
Most architectural differences can be found by compiling and simulating the benchmarks for the selected
processor cores. The compilations and simulations can be done completely by tools provided by the
toolsets.

5.1.1 Simulation setup
Both ASIP Designer and TCE provide cycle-accurate simulators. From these simulators profiling infor-
mation will be extracted that will provide insight on the performance and bottlenecks for the benchmarks.

Profiling

The cycle count and instruction count can be retrieved from both simulators. Both simulators also
support scripting in TCL to automate the simulations. For ASIP Designer, the simulators are gener-
ated based on the processor description, and profiling information can be generated with the script in
Listing 5.1.

For TCE, the simulator is fixed and loads the processor description in runtime. The commands passed
to ttasim can be found in Listing 5.2.

Both compilers can be instructed to use maximum optimization and still produce profiling output.
There is one caveat for TCE however. As TCE inlines most functions at the optimization level of 1 and
higher, inlining has to be explicitly disabled. The generally has a negative impact on the cycle count,
which can be observed in Table 5.2 in Section 5.1.2.
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1 iss::create %PROCESSORNAME% iss
2 set n [incr argc -1]
3 set proc [lindex $argv $n]
4 # Enable profiling
5 iss profile set_active 1
6 iss profile storages_set_active 1
7 iss profile reset
8 iss profile storages_reset
9 # Load program

10 iss program load ./Release/impbench -disassemble -dwarf -nmlpath
/home/jrhrsmit/impbench_tce/thesis-asip-projects/$proc/lib -extradisassembleopts +Mdec
-do_not_set_entry_pc 1 -do_not_load_sp 1 -pm_check first -load_offsets {}
-software_breakpoints_allowed on -hardware_breakpoints_allowed on

↪→

↪→

↪→

11 # Execute until finished
12 iss step -1
13 # Save profiling info
14 iss profile save profile_inst -type instruction_level
15 iss profile save profile_func -type function_level
16 iss profile storage_access_save -file profile_stor
17 iss close
18 exit

Listing 5.1: The TCL script used to simulate TCL cores and extract profiling information. First all
profiling is enabled, after which the machine (i.e. processor) and program are loaded and executed.
Finally, the cycle count and bus statistics are printed before exiting.

1 # Enable profiling
2 setting bus-trace 1
3 setting execution_trace 1
4 setting history_filename profile_hist
5 setting rf_tracking 1
6 setting utilization_data_saving 1
7 setting profile_data_saving 1
8 setting procedure_transfer_tracking 1
9 setting profile_data_saving 1

10 # Set machine and program
11 mach MACHINE
12 prog PROGRAM
13 run
14 info proc cycles
15 info proc stats
16 exit

Listing 5.2: The TCL script used to simulate TCE cores and extract profiling information. First all
profiling is enabled in line 5-8, after which the program is loaded and executed. The program is then
executed with iss step -1.

Grabbing standard output

Because the cores designed in ASIP Designer use memory-mapped standard output, a watchpoint will
need to be configured in the simulator. This configuration of the watchpoint and the grabbing of the
written data can be found in Listing 5.3.

As the PeLoTTA core has a standard output module which is supported by the simulator (ttasim),
no special instructions to the simulator are necessary.
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14 puts "Project: $prj DM: $dm hits: $hits"
15 iss program load ./Release/impbench -disassemble -dwarf -nmlpath

/home/jrhrsmit/impbench_tce/thesis-asip-projects/$prj/lib -extradisassembleopts +Mdec
-do_not_set_entry_pc 1 -do_not_load_sp 1 -pm_check first -load_offsets {}
-software_breakpoints_allowed on -hardware_breakpoints_allowed on

↪→

↪→

↪→

16 iss watchpoint add $dm 4 -write true
17 set fp [open "sim_output" w]
18 for {set i 0} {$i < $hits} {incr i} {
19 iss step -1
20 set x [iss get $dm 4]
21 set x [format %c $x]
22 puts -nonewline $fp $x
23 }
24 iss close

Listing 5.3: A snippet from the TCL script used to simulate ASIP Designer cores and grab the standard
output. The program is loaded on line 15, after which the watchpoint on address 0x04 can be configured.
The program then runs until the watchpoint is hit with iss step -1, after which the data memory can
be read out on address 4. The simulator will run until it has reached the specified amount of hits on the
configured watchpoint.

5.1.2 Profiling
In order to get a better understanding of the simulation and measurement results, the assembly and
instruction trace of the processors can be analysed. This will provide insight in the cause for differences
in program sizes and execution cycle count.

The profiling information has been parsed and can be found in the appendix (chapter 7.1). The
listings in the appendix show the program counter, assembly, execution count, and cycle count or inserted
NOPs. For the PeLoTTA, the cycles used for an instruction is always the same as the execution count,
and number of NOPs are shown instead. The profiling information has been parsed to show only the
most executed part of the algorithms, without the functions used for data generation. Some listings are
cut-off before the end when the loop of the algorithm is heavily unrolled.

Overhead

The percentage of cycles used for data generation can be found in Table 5.1. These percentages represent
the percentage of clock cycles spent running instructions for data generation (i.e. data_gen_buf(),
data_gen_buf_low_entropy(), or rand()). The Tdsp requires the most time for data generation, even
though it has two load-store units. All cores spend a lot of time for data generation in CSUM and
Motion, to the point where it dominates the total cycle count. Other benchmarks are performing better
with most having a share for data generation of under 10%. The CNN benchmark does not use data
generation, and thus has no overhead in Table 5.1.

The cycle counts listed in the rest of this chapter subtract the amount of cycles dedicated to data
generation.

Table 5.1: Percentage of cycles used for data generation, which consist of calls to data_gen_buf() or
rand() (for Motion). Note that PeLoTTA has 0% on Motion because it has inlined the data_gen_buf()
function in that benchmark, even though ––disable-inlining was specified. Also note that the Tdsp
and Tvliw did not pass validation for CoreMark, thus no profiling is done for those cores.

Core CRC32 CSUM Finnish MISTY1 RC6 Motion CoreMark CNN
PeLoTTA 13.64% 44.28% 3.37% 8.63% 8.03% 0% 0.12% 0%
Tdsp 10.56% 56.99% 3.53% 9.62% 7.10% 72.07% - 0%
Tvliw 6.51% 32.32% 3.15% 4.10% 10.10% 32.41% - 0%
Tzscale 6.53% 46.11% 3.27% 7.29% 6.36% 67.53% 0.06% 0%

Cycles used for the main function, writing to standard output, checking the endianness, and resetting
the seed for data generation have virtually no impact on the cycle count, with a share of < 0.01% of the
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total execution cycles for all benchmarks.
The difference in disabling inlining for TCE for the PeLoTTA core is shown in Table 5.2. For

CSUM and Motion the overhead is very large, up to 313.6%. For Finnish however, it actually improves
performance by about 3.6%.

Table 5.2: Difference in execution cycle count with inlining implicitly enabled and explicitly disabled for
the PeLoTTA core.

Benchmark Exe. cycles -02 Exe. cycles -O2 ––disable-inlining Overhead
CRC32 105487 114485 8.5%
CSUM 13643 56434 313.6%
MISTY1 574044 604819 5.3%
Motion 602147 1161275 92.8%
RC6 312409 325836 4.2%
Finnish 478903 462523 -3.5%
CoreMark 50743586 51072092 0.6%

CRC32

Most cycles in the CRC32 benchmark consist primarily (89%-94%) of the for-loop in update_crc(),
where the CRC is calculated. This loop is executed 11648 times. This for-loop is shown in Listing 5.4.
Most instructions in this loop are either shifts, and-operations, xor-operations, and loading words from
the CRC table. Note that although the source code contains integer divisions, these are either replaced
by right-shifts or optimised away by the compiler.

164 for (i = 0; i < len; i++) {
165 b = buf[i / 4] & 0xFF;
166 buf[i / 4] >>= 8;
167 pos = (c >> 24) ^ b;
168 c = crc_table[pos] ^ (c << 8);
169 }

Listing 5.4: The most executed part of the CRC32 benchmark, the for-loop in update_crc().

As can be seen by looking at the execution count for the instructions in the loop for PeLoTTA in
Listing 7.1, the TCE compiler partially unrolls the loop. One iteration of the loop in the PeLoTTA is
equivalent to eight iterations in the C source code. Although this does effect the code size, the PeLoTTA
is able to complete one iteration of the original for-loop in 8.25 cycles on average. The instructions
consist mostly of moves to and from the ALU. The PeLoTTA maintains a bus usage of 80% in this loop.

The left-shift that can be seen at PC=40 is for calculating the address for reading the CRC table.
Finally, at PC=98, the conditional jump is calculated, and the following two instructions consist of
increasing the loop iterator by 8.

As can be seen in Listing 7.2, the Tdsp completes one iteration in only 12 cycles, issuing 21 operations.
As the Tdsp has four register files, many move operations are necessary to get the data to the registers
accessed by the relevant FUs. Due to the high amount of shifting operations in the loop (lsl) and the
dedicated shifter, the Tdsp is able to execute an add-operation in parallel with shift-operation twice.
The Tdsp also uses two load-instructions (ll for loading 32-bit data) and one save-instruction (sl). As
the Tdsp has hardware loop control, it does not require any use of branching instructions. Note that the
execution count differs from Tzscale by 88 cycles, because the last call to update_crc() makes the for-
loop iterate less. This, in combination with the hardware loop control, causes the compiler to separate
the last iteration.

Listing 7.3 shows the profiling and assembly of the loop for the Tvliw. The four-slot VLIW core
completes an iteration in 14 cycles, where it issues 37 NOP-instructions. Only four times in the loop it
exploits its instruction-level parallelism and issues more than one operation in the same cycle.

Listing 7.4 shows the profiling information of the loop in update_crc() for the Tzscale. The Tzscale
can perform one iteration of this loop in 16 cycles, executing 15 instructions. The only instruction using
two cycles is the bne instruction to leave the for-loop. The loop only contains two load-word instructions,
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and one save-word instruction, used for the read-modify-write on buf[i / 4] and the lookup in the CRC
table. This leaves all other instructions for the ALU.

Table 5.3 summarises the profiling results for the for-loop in the CRC32 benchmark.

Table 5.3: Analysis of the for-loop in update_checksum(), in the CRC32 benchmark. The data is
averaged for one loop iteration.

Core Cycle count Operations Avg. ops/cycle Unroll factor
PeLoTTA 8.12 19.62 2.42 8
Tdsp 12.00 21.00 1.75 1
Tvliw 15.90 16.88 1.06 1
Tzscale 15.99 15.00 0.94 1

CSUM

The CSUM benchmark workload can also be summarised in a short for-loop. Listing 5.5 shows the loop,
which contains two additions, two negations, an AND-operation, and a shift operation.

33 for(i = 0; i < len / 4; i++) {
34 sum += ~(data[i] & 0xFFFF);
35 sum += ~(data[i] >> 16);
36 }

Listing 5.5: The most executed part of the CSUM benchmark, the for-loop in update_checksum().

Listings 7.5, 7.6, 7.7, and 7.8 show the profiling information for the PeLoTTA, Tdsp, Tvliw, and
Tzscale, respectively.

The PeLoTTA unrolls this loop completely for the batch-size of 8 iterations, and even combines the
next function call with it, resulting in 16 unrolled loop iterations. Because there are so few operations
done in this loop, the PeLoTTA uses 171 instructions for 16 iterations. The Tdsp and Tzscale also
completely unroll the loop for the batch-size of 8 iterations. The Tvliw, lacking the LLVM front-end,
does not unroll the loop and executes it in 7 cycles. The Tvliw issues 17 NOPs and achieves an instructions
per cycle (IPC) in this loop of 1.43. The average amount of cycles and operations for one loop iteration
can be seen in Table 5.4.

Table 5.4: Analysis of the for-loop in checksum(), in the CSUM benchmark. The data is averaged for
one loop iteration.

Core Cycle count Operations Avg. ops/cycle Unroll factor
PeLoTTA 10.62 24.12 2.27 16
Tdsp 7.65 10.62 1.39 8
Tvliw 8.34 9.11 1.09 1
Tzscale 8.77 8.50 0.97 8

MISTY1

The function to encrypt the data in the MISTY1 benchmark is misty1_encrypt_block(). misty1_encrypt_block()
mostly consists of calling two other functions; fl() is called ten times, and fo() is called eight times.
Inside fo() another function fi() is used and is called three times. fl(), fo(), and fi() are heavy on
arithmetic with many data dependencies, as can be seen in Listing 5.6.
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111 static u4 fi(u4 fi_in, u4 fi_key) {
112 u4 d9, d7;
113

114 d9 = (fi_in >> 7) & 0x1ff;
115 d7 = fi_in & 0x7f;
116 d9 = s9[d9] ^ d7;
117 d7 = (s7[d7] ^ d9) & 0x7f;
118

119 d7 = d7 ^ ((fi_key >> 9) & 0x7f);
120 d9 = d9 ^ (fi_key & 0x1ff);
121 d9 = s9[d9] ^ d7;
122 return ((d7 << 9) | d9);
123 }
124

125 static u4 fo(u4* ek, u4 fo_in, byte k) {
126 u4 t0, t1;
127 t0 = (fo_in >> 16);
128 t1 = fo_in & 0xFFFF;
129 t0 ^= ek[k];
130 t0 = fi(t0, ek[((k + 5) % 8) + 8]);
131 t0 ^= t1;
132 t1 ^= ek[(k + 2) % 8];
133 t1 = fi(t1, ek[((k + 1) % 8) + 8]);
134 t1 ^= t0;
135 t0 ^= ek[(k + 7) % 8];
136 t0 = fi(t0, ek[((k + 3) % 8) + 8]);
137 t0 ^= t1;
138 t1 ^= ek[(k + 4) % 8];
139 return ((t1 << 16) | t0);
140 }
141

142 static u4 fl(u4* ek, u4 fl_in, byte k) {
143 u4 d0, d1;
144 byte t;
145

146 d0 = (fl_in >> 16);
147 d1 = fl_in & 0xffff;
148 if (k % 2) {
149 t = (k - 1) / 2;
150 d1 = d1 ^ (d0 & ek[((t + 2) % 8) + 8]);
151 d0 = d0 ^ (d1 | ek[(t + 4) % 8]);
152 } else {
153 t = k / 2;
154 d1 = d1 ^ (d0 & ek[t]);
155 d0 = d0 ^ (d1 | ek[((t + 6) % 8) + 8]);
156 }
157 return ((d0 << 16) | d1);
158 }

Listing 5.6: fl() and fo() in misty1.c, which are the functions in which most CPU cycles are spent.

Listings 7.9, 7.10, 7.11, and 7.12 show the profiling information for the PeLoTTA, Tdsp, Tvliw, and
Tzscale, respectively.

The LLVM front-end inlines the fi(), fo() and fl() functions inside the Compress() function
for optimisation. For the Tvliw this is not the case, and the instruction execution count gives away
which instructions belong to the fi() function, with 24k executions. The other processors execute the
instructions 1025 times (1024 calls to Compress() to encrypt the data plus one execution for the key
generation). The impact of function inlining can also be seen in the amount of cycles necessary for one
call to Compress() in Table 5.5.
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Table 5.5: Analysis of the fl() and fo() functions called from misty1_encrypt_block() in the MISTY1
benchmark. The data is averaged for one call.

Core Cycle count Operations Avg. ops/cycle
PeLoTTA 538.00 1245.00 2.31
Tdsp 601.59 940.00 1.56
Tvliw 1043.17 1707.23 1.64
Tzscale 585.57 581.00 0.99

Motion

In the Motion benchmark the generated pseudo-random data is compared to a threshold, as seen in
Listing 5.7.

65 for (sample =0; sample < MONITORING_SAMPLE_PERIODS; sample++) {
66 // enter new monitoring mode
67 while (active_counter < MONITORING_SAMPLES) {
68 // read new sensory data
69 readout = rand();
70 // check if new readout is above the threshold value
71 if (readout >= threshold)
72 motion_counter++;
73 active_counter++;
74 }
75 // add "active measurements" to result
76 res += motion_counter;
77 // reset counters for next monitoring session
78 active_counter = 0;
79 motion_counter = 0;
80 // idle mode is removed
81 }

Listing 5.7: The for-loop in motion.c, which simulates the readout of a sensor and detecting motion by
means of a threshold. MONITORING_SAMPLES is set to 20, and MONITORING_SAMPLE_PERIOD to 4096. The
generation of the pseudo-random sensor data costs most processors more cycles than the operations in
this loop.

Each time the threshold is exceeded, the motion_counter is incremented. This comes down to one or
two operations per random word; a combined comparison/branch instruction and an optional addition.
The nested while-loop in the for-loop can be seen as a for-loop with MONITORING_SAMPLES iterations,
which is defined as 20. Combined with the first for-loop which iterates MONITORING_SAMPLE_PERIOD =
4096 times, the threshold is evaluated 81920 times. Note that Listing 5.7 could be rewritten to:

for (int i = 0; i < 81920; i++) {
if (rand() >= threshold)

res++;
}

Listings 7.13, 7.14, 7.15, and 7.16 show the profiling information for the PeLoTTA, Tdsp, Tvliw, and
Tzscale, respectively.

The Tdsp and Tzscale unroll the inner while-loop with 20 iterations completely. The PeLoTTA also
unrolls the outer for-loop once, resulting in only 2048 executions of the unfolded instructions. The
resulting average cycles per iteration can be found in Table 5.6.

Due to the lack of optimisation and the jump instruction that requires three cycles to complete, the
Tvliw requires the most cycles per iteration. The Tdsp inserts a NOP when jumping, which happens
every 5 cycles when calling the rand() function. The PeLoTTA only requires three instructions to
execute threshold comparison and the call to rand(). The Tzscale only requires 5 instructions (plus one
cycle for the jump) for the iteration.

Note that because the threshold is defined as 0x80000000, the comparison is simply compiled as a
right-shift of 31 bits of the random number. The result is 1 if the number is equal to or greater than the
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threshold, and 0 otherwise. The result can then directly be used in the addition, preventing the use of
a branch instruction. The Tvliw is the only processor that does not use this optimisation.

Table 5.6: Analysis of the for-loop in the Motion benchmark. The data is averaged for one loop iteration.

Core Cycle count Operations Avg. ops/cycle Unroll factor
PeLoTTA 3.15 6.25 1.98 40
Tdsp 6.20 6.30 1.02 20
Tvliw 13.95 12.49 0.90 1
Tzscale 6.25 5.20 0.83 20

RC6

The RC6 benchmark’s encryption algorithm is mostly contained in one for-loop in RC6_32_encrypt(),
where it calls the ROTATE_l32() preprocessor macro to operate on the data. The RC6_32_encrypt()
function itself is called 513 times. The loop runs for 20 iterations (key->rounds = 20), and the . The
loop can be seen in Listing 5.8. The macro is defined as follows:

#define ROTATE_l32(a, n) \
(((a) << (n & 0x1f)) | (((a)&0xffffffff) >> (32 - (n & 0x1f))))

261 for (i = 1; i <= key->rounds; i++) {
262 t = ROTATE_l32((((B * B) << 1) + B), LOGW);
263 u = ROTATE_l32((((D * D) << 1) + D), LOGW);
264 A = ROTATE_l32((A ^ t), u) + key->S[i << 1];
265 C = ROTATE_l32((C ^ u), t) + key->S[(i << 1) + 1];
266

267 t = A;
268 A = B;
269 B = C;
270 C = D;
271 D = t; // permute
272 }

Listing 5.8: The for-loop in RC6_32_encrypt() in rc6.c, in which four words of data are encrypted.
LOGW is set to 5.

The 32-bit mask (the a & 0xffffffff) in the macro is actually useless as all variables in the loop are
declared as 32-bit unsigned integers. The 5-bit mask in ROTATE_l32 in lines 262 and 263 also contribute
nothing to the result as the operand n is set to 5 (LOGW is set to 5). The first two uses for the macro can
therefore be reduced to:

#define ROTATE_l32(a, n) \
((a << 5) | (a >> 27))

Listings 7.17, 7.18, 7.19, and 7.20 show the profiling information for the PeLoTTA, Tdsp, Tvliw, and
Tzscale, respectively.

The resulting average cycles per iteration can be found in Table 5.7.
The LLVM front-end indeed reduces the ROTATE_l32 macro for the Tzscale, as can be seen at PC=790

and PC=798. Apparently, the masking of the n operand is also unnecessary for the later two uses of
the macro, as the loop does not contain any and-operations. Note that the loop also contains two
multiplication instructions to calculate the square of B and D (line 262-263 in Listing 5.8).

tcecc partially unrolls the loop in order to skip the explicit permutation step at the end of the loop,
resulting in 2565 loop executions. The other processors execute the loop 10260 times. Because of the
few data dependencies in the loop, the Tvliw, Tdsp, and PeLoTTA are able to schedule more operations
per cycle than other benchmarks. Especially the ALUs of the Tvliw are highly occupied, scheduling two
arithmetic operations for 14 of the 17 instructions.
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Table 5.7: Analysis of the for-loop in RC6_32_encrypt() in the RC6 benchmark. The data is averaged
for one loop iteration.

Core Cycle count Operations Avg. ops/cycle Unroll factor
PeLoTTA 26.50 66.75 2.52 4
Tdsp 40.00 55.00 1.37 1
Tvliw 18.24 32.48 1.78 1
Tzscale 31.95 31.00 0.97 1

Finnish

Using the Compress() function in fin.c, 11740 bytes of data in blocks of 128 bytes is compressed. The
Compress() function iterates over each byte of the block of data, and creates a prediction table for
compression. The loop is shown in Listing 5.9. The loop contains two if-statements where the prediction
is evaluated and where the mask (which indicates the correctness of the prediction) and characters are
written to the output on every eighth character.

51 for (j = 0; j < a_len; j++) {
52 c = a[j / 4] & 0xFF;
53 a[j / 4] >>= 8;
54 // try to predict the next character
55 if (pcTable[INDEX(p1, p2)] == (char)c) {
56 // correct prediction, mark bit for correct prediction
57 mask = mask ^ (1 << ctr);
58 } else {
59 // wrong prediction, but next time ...
60 pcTable[INDEX(p1, p2)] = (char)c;
61 // buf keeps character temporarily in buffer
62 buf[bctr++] = (char)c;
63 }
64 // test if mask is full (8 characters read)
65 if (++ctr == 8) {
66 // write mask
67 b[k++] = mask;
68 // write kept characters
69 for (i = 0; i < bctr; i++) {
70 if (k > b_len) {
71 print_str("out of bounds write on b\n");
72 break;
73 }
74 b[k++] = buf[i];
75 }
76 // reset variables
77 ctr = 0;
78 bctr = 0;
79 mask = 0;
80 }
81 // shift characters
82 p1 = p2;
83 p2 = (char)c;
84 }

Listing 5.9: The for-loop in the Compress() function in fin.c.

Listings 7.17, 7.18, 7.19, and 7.20 show the profiling information for the PeLoTTA, Tdsp, Tvliw, and
Tzscale, respectively.

The profiling information reveals that the correct prediction in the if-statement on line 55 is made at
5963 of 11740 characters.

In contrast to the other benchmarks, the LLVM compiler chooses not to unroll the loop, even for the
PeLoTTA. The Tdsp and Tzscale do separate the calls to Compress() with 128 bytes and the last call
with the 92 remaining bytes.

The resulting average cycles per iteration can be found in Table 5.7.
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Table 5.8: Analysis of the for-loop in Compress(), in the Finnish benchmark. The data is averaged for
one loop iteration.

Core Cycle count Operations Avg. ops/cycle Unroll factor
PeLoTTA 35.40 71.32 2.01 1
Tdsp 36.43 44.43 1.22 1
Tvliw 30.45 29.45 0.97 1
Tzscale 30.21 26.43 0.87 1

CoreMark

CoreMark consists of four functions which contribute to > 95% of the total execution cycle count.
These functions represent the three benchmarks CoreMark consists of, and the CRC for validation of
the results. Table 5.9 shows the amount of clock cycles used for each function and the percentage of the
total amount of execution cycles. The Tdsp and Tvliw are not listed because their validation fails, and
thus the profiling information is irrelevant.

The CRC is relatively heavy for the PeLoTTA, using twice the amount of cycles the Tzscale needs.
At the list processing benchmark the PeLoTTA is almost as fast as the Tzscale, but it falls behind with
10% and 20% extra cycles for the state machine and matrix benchmarks.

Table 5.9: Share of cycles used for functions in CoreMark for the cores that passed validation.

Core State machine List processing Matrix CRC Others
PeLoTTA 170128 (33.3%) 122991 (24.1%) 128904 (25.2%) 64093 (12.6%) 24605 (4.8%)
Tzscale 155794 (36.8%) 118377 (25.9%) 102940 (28.0%) 26082 (6.3%) 8214 (3.0%)

CNN

The calcNodeOutput() function is used to calculate the outputs of each node in a layer of the CNN. The
function is called 1500 times in total, and about 70% of all execution cycles are spent on this function.
The function is called 20 times for each of the 50 images for the nodes in the hidden layer, and 10 times
for the nodes in the output layer. The loops iterate over the outputs of the nodes of the previous layer,
so the loop iterating over the hidden layer costs more cycles as the input layer has 49 outputs, and the
hidden layer has 20 outputs. This loop can be seen in Listing 5.10.

The activation function (q_sigmoid()) is only responsible for >1% of the total cycle count.

242 for (int i = 0; i < nn->input_size; i++) {
243 // get the pixel value, i.e. the previous layer (input layer)'s
244 // output.
245 uint32_t out = nn->input_img[it0] & ((uint32_t)1 << it1);
246 it1++;
247 if (it1 > mnist_data_width) {
248 it1 = 0;
249 it0++;
250 }
251 // we reduced the value to 1 bit, so the entire addition to weights
252 // is discarded if the value is 0. Also we don't have to multiply
253 // with the value anymore as 1*weight = weight.
254 if (out) {
255 calcNode->output =
256 q_add(calcNode->output, calcNode->weights[i]);
257 }
258 }

Listing 5.10: The for-loop for the hidden layer in the calcNodeOutput() function in cnn.c.

Listings 7.25, 7.26, 7.27, and 7.28 show the profiling information for the PeLoTTA, Tdsp, Tvliw, and
Tzscale, respectively.
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For all processors except the Tvliw, the calcNodeOutput() function and the calcLayer() function
that calls it are inlined, but the loops are not unrolled. The PeLoTTA contains two instructions for
the loop where it inserts no move operations on the buses. This is necessary for the branch and load
instructions on line 254 and 256 in Listing 5.10. Despite the inserted NOPs, the PeLoTTA completes
the loop in about the same cycles as the other processors. The resulting average IPC and cycles per
iteration for the loop can be found in Table 5.7.

Table 5.10: Analysis of the for-loops in calcNodeOutput(), in the CNN benchmark. The data is averaged
for one loop iteration.

Core Cycle count Operations Avg. ops/cycle Unroll factor
PeLoTTA 19.00 39.00 2.05 1
Tdsp 19.00 26.00 1.37 1
Tvliw 22.55 17.44 0.77 1
Tzscale 19.88 17.96 0.90 1

5.1.3 Simulation results
Besides profiling, the simulations of the cycle-accurate simulators can provide insight on the following
subjects, which will be presented in this section:

• Correct execution of the benchmark
• Program size in instruction memory
• Execution cycle count
• IPC

Validation

All processor implementations running benchmarks in ImpBench pass the validation checks for both
ImpBench-like data and pseudo-random data, at all evaluated clock frequencies.

For CoreMark however, only the PeLoTTA and Tzscale pass validation. Tvliw and Tdsp do not pass
the validation as CoreMark fails when the size of an integer does not equal 4. For Tvliw and Tdsp, this
both equals 1, as their data memory is only addressable in words. The Tzscale and PeLoTTA do pass
all checks, and their results are verified with a CRC.

Program size

The instruction set, compiler, and compiler configuration have impact on the compiled program size. A
larger program size will require more program memory, and thus more area for an implementation on
an ASIC. Figure 5.1 shows the occupied memory for each benchmark in ImpBench and for CoreMark.

The PeLoTTA is the least economical with the program memory, using the most space in every
benchmark except for CSUM. The other VLIW processor with 64-bit instruction words, Tvliw, comes in
at third place. The Tdsp and Tzscale occupy the least amount of program memory, using half the space
for CoreMark.

Note that the memory size is often a power of two so that it is fully addressable with the size of the
program counter. This is not the case for the PeLoTTA however, as the instruction word itself is 45 bits
and thus not a power of 2. The memory sizes for fully-addressable program memory are displayed on
the right axis of Figure 5.1. This implies that the PeLoTTA would require 2880B of program memory
for the CRC32 benchmark, where the Tzscale only needs 512B.
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Figure 5.1: Program sizes in the instruction memories for the benchmarks in ImpBench and CoreMark
for each core. The labels on the left axis indicates program memory sizes for fully addressable memory
on the Tdsp, Tvliw, and Tzscale. The labels on the right axis indicate the program memory sizes for
fully addressable memory for the PeLoTTA. Note that the program size is plotted logarithmically.

Execution cycles

The amount of execution cycles for the benchmarks can be found in Figure 5.2 and Figure 5.3 for the
cycle count relative to the median. The cycle counts have been adjusted to exclude the cycles related to
data generation (see Table 5.1).

The results vary greatly with each benchmark, with no single processor being the fastest or slowest
for all benchmarks.

PeLoTTA requires the fewest amount of cycles in CRC32, MISTY1, and CNN. The Tzscale takes
the cake in Finnish and CoreMark. The Tzscale and PeLoTTA require on average the fewest cycles
to execute the benchmarks. The Tvliw is the slowest in CRC32, CSUM, MISTY1, and Motion, where
in MISTY1 it needs more than twice the cycle count as the other processors. Remarkably the Tvliw
outperforms the other cores by more than 20% in RC6. The Tdsp the fastest in both CSUM and Motion,
but needs the most cycles for Finnish and RC6.
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Figure 5.2: Execution cycle count for all benchmarks. Cycles dedicated to data generation are excluded.
Note that the execution cycles for the CoreMark benchmark for the Tvliw and Tdsp are not displayed
as they failed the validation.
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Figure 5.3: Execution cycle count for all benchmarks, relative to the median. Cycles dedicated to data
generation are excluded. Note that the execution cycles for the CoreMark benchmark for the Tvliw and
Tdsp are not displayed as they failed the validation.

With the execution cycle count the CoreMark score per MHz can be calculated. The CoreMark score
is defined as number of CoreMark iterations per second, but as this is dependent on the clock frequency,
only the CoreMark score per MHz is used. The execution cycle count, CoreMark scores per MHz, and
validation results can be found in Table 5.11. The Tvliw and Tdsp are included for completeness, but
do not pass validation. Note that the CoreMark cycles in Table 5.11 is for 100 iterations to ensure the
benchmark is running for more than 10 seconds, as EEMBC requires.

The calculated CoreMark score for the Tzscale is just slightly higher than the CoreMark score provided
by ASIP Designer, which is 2.39/MHz.
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Table 5.11: CoreMark scores for the selected cores. These scores are unofficial and remain unsubmitted
to the EEMBC. Note that the Tvliw and Tdsp did not pass the validation check, and thus their scores
are unusable.

Core CoreMark cycles (100 it.) CoreMark score/MHz Validation check
PeLoTTA 51072092 1.96 Pass
Tzscale 41430350 2.43 Pass
Tvliw 67176721 1.49 Fail
Tdsp 213530479 0.47 Fail

Instructions per cycle

The IPC for each processor for the benchmarks in ImpBench and CoreMark can be found in Figure 5.4.
Even though PeLoTTA has a relatively low IPC for the Motion benchmark, it requires the least

amount of cycles. The Tdsp core always maintains an IPC of 1, as it only stalls the pipeline when
jumping to an unaligned address. The Tzscale also maintains a very high IPC, with the lowest IPC
for Finnish, even though it uses the least amount of execution cycles for that benchmark. The same
disassociation goes for Tvliw, which has low IPC for CSUM and Finnish, but performs well in Finnish
and substandard in CSUM.
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Figure 5.4: Instructions per cycle for the benchmarks in ImpBench and CoreMark. Cycles dedicated to
data generation are excluded. Note that the IPC for the CoreMark benchmark for the Tvliw and Tdsp
are not displayed as they failed the validation.

5.2 Power measurements
In order to get an indication of the power consumption of the cores for the different workloads, the power
of the processors is measured after synthesis on an FPGA.

5.2.1 Fitting results
Table 5.12 shows the resource usage of the Cyclone IV FPGA, extracted from the fitting report produced
by Quartus. The Tvliw core requires the most area, which comes as no surprises as it boasts two ALUs
and two LSUs. The PeLoTTA is functioning with roughly one third of the logic elements used by the
Tvliw.

The result of two 32-bit integer multiplication is 64-bits long, and thus requires eight 9-bit multipliers.
The Tzscale is the only processor where the top 32-bits of the result can be used, the other processors
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only generate the bottom 32-bits. Note how the Tvliw has two ALUs with each their own multiplier,
and thus uses many multiplier elements.

Table 5.12: Reported resource usage by Quartus after fitting the design on the target.

Logic
elements

Combinational
functions

Dedicated
logic registers

Total
Registers Memory bits 9-bit

multipliers
PeLoTTA 3262 3139 1555 1555 438784 6
Tdsp 7261 6019 1477 1242 393728 4
Tvliw 9223 9057 1564 1564 393728 12
Tzscale 4718 4648 1477 1477 393728 8

5.2.2 Timing results
Quartus Prime can do multi-corner timing analysis on the design. The corner which constrains the
clock frequency the most is the Slow 0C 1200mV model, which estimates the timing for a process with
slow silicon, a core voltage of 1200mV, and a core temperature of 0°C. These estimations are shown in
Table 5.13.

Table 5.13: Maximum clock frequencies reported by the timing analysis for the Slow 0C model.

Core Fmax [MHz] for the Slow 0C model Critical path
PeLoTTA 45.9 Inside the IRF
Tdsp 37.5 Decoder to register file (reg R)
Tvliw 49.5 Decoder to register file (reg R)
Tzscale 32.9 Decoder to instruction memory address

5.2.3 Development board
The development board used for the FPGA is the QMTech “ep4ce15f23-sdram-v2” [100]. The board is
very basic, and only contains:

• 3 Buck converters (5V to 3.3V, and 3.3 to 2.5V and 1.2V)
• 50MHz Crystal
• 64Mbit EEPROM
• 256Mbit SDRAM
• Three buttons (one of which is wired to the nCONFIG input)
• Two LEDs

The EEPROM and SDRAM are not be used. The EEPROM is not necessary for evaluating power
consumption as it is not necessary to retain the FPGA configuration through power cycles, and the
SDRAM would unnecessarily complicate the design for extra memory. The LEDs and buttons also
remain unused, as all necessary interfacing with the implemented processors is done with standard
output over the debugger.

5.2.4 Power measurement setup
The measurement setup for the FPGA consists of six items:

• The FPGA development board (QMTech ep4ce15f23-sdram-v2)
• A USB programmer/debugger (Altera USB blaster II)
• A linear triple-output power supply (ITECH IT6322A)
• A bench-top 5.5 digit digital multimeter (Keysight 34450A)
• A logic analyzer for debugging purposes (DSLogic Plus)
• A server running Linux

The triple-output power supply is not only used to power the board, but also control the reset input
of the synthesized processor on the FPGA. The power supply is directly connected to the 3.3V rail on
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the board, as 5V is not required. Because only one multimeter is available, the 1.2V rail is powered by
the on-board buck converter from 3.3V. Although the power supply can measure the supplied current to
the FPGA, the digital multimeter can provide more accurate measurement of 1µA at a range of 100mA.
The power supply supports external sensing of the regulated output voltage, so the voltage drop over
the multimeter does not influence the results. An overview of the test and measurement setup is shown
in Figure 5.5. The logic analyzer is used for extracting instruction traces to debug incorrect executions.

The devices are controlled over USB by a Python script using PyVISA. This enables the use of more
Python scripts which automate the measurement flow of synthesis, programming, measurements, and
validation. The validation is performed by reading the standard output over the debugger, the instruction
trace is not automatically verified. All scripts can be found on Gitlab [101].

All measurements are done with the full range of 5.5 digits on 100mA, after the multimeter has been
powered on for 90 minutes. This provides a maximum error of about 57µA. As the measurements are
just an indication of the power consumption of the circuit implemented on an ASIC, this setup provides
enough accuracy.

The total power consumption can be divided in two categories; static and dynamic power consumption
(Equation 5.1). For each core and benchmark combination, a null measurement is done to determine the
static power consumption by asserting the reset of the core. The dynamic power scales with capacitance,
clock frequency, switching activity, and voltage squared (Equation 5.2), so when the voltage and frequency
are kept constant the measured dynamic power consumption directly correlates to the capacitance of
the traces and transistor gates. Note that this is a very simple model, which does not include switching
activities.

Ptotal = Pstatic + Pdynamic (5.1)

Pdynamic = α · C · f · V 2 (5.2)

Figure 5.5: The test and measurement setup for acquiring power measurement results for the processor
cores.

5.2.5 Power measurement results
Table 5.14 shows the measured static power consumption. It can be seen that the static power consump-
tion is very similar, and that larger cores use slightly more power. The dynamic power consumption is
then calculated by subtracting the static power, and is shown in Figure 5.6. Standard deviations in the
graphs are not shown, as they are too insignificant.
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Table 5.14: Static power consumption measurements with standard deviations for 210 measurements per
core.

Core Static power consumption [mW] Std. dev. [mW]
PeLoTTA 154.2 0.027
Tdsp 154.4 0.045
Tvliw 154.6 0.041
Tzscale 154.1 0.060
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Figure 5.6: Average instantaneous dynamic power consumption of the processors for each benchmark.

In Figure 5.7 the relationship between power consumption and clock frequency can be seen for the
CRC32 benchmark and CoreMark. The other benchmarks follow a similar pattern. Figure 5.9 shows
the energy consumed, and Figure 5.10 shows the energy-delay product (EDP) relative to the median for
the benchmarks. Figure 5.8 shows the CoreMark scores per MHz for the PeLoTTA and the Tzscale, and
the CoreMark scores per MHz per Watt. Figure
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Figure 5.7: Dynamic power consumption for the CRC32 benchmark in ImpBench (left) and CoreMark
(right), measured from 1 to 32MHz with intervals in powers of 2.
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Figure 5.8: CoreMark scores per MHz and CoreMark score per MHz per Watt. Note that the results for
the Tvliw and Tdsp are not shown as they failed the validation.
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Figure 5.9: Energy consumption of the execution of the benchmarks. Note that the results for the Tvliw
and Tdsp are not shown as they failed the validation.
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Figure 5.10: Energy-delay product of the processor implementations relative to the median for each
benchmark. Note that the results for the Tvliw and Tdsp are not shown as they failed the validation.

5.3 Discussion
This section focusses on the interpretation and validity of the results from sections 5.1 and 5.2.

5.3.1 Benchmarks
Some of the benchmarks in ImpBench were left unimplemented, as they either contained too many
floating point instructions (DMU) or required to much memory (MLZO). This makes Motion the only
benchmark for real applications, and Finnish the only benchmark representing compression workloads.

Looking at the percentage of cycles spent for data generation in Table 5.1, it appears total execution
cycles for both Motion and CSUM are dominated by data generation. This is because there are very
few operations performed on the generated data in these benchmarks. Although the cycles dedicated
to data generation are ignored in Figure 5.2 and 5.3, they do have impact on the power measurements.
This shifts the representation of these benchmarks from the relevant workload to generation of pseudo-
random data which makes the power results of these benchmarks inaccurate. The disqualification of
these benchmarks leads to the lack of any benchmarks in ImpBench representing real workloads, and
leaving CRC32 and Finnish the only benchmarks for their workload.

CoreMark could be seen as a partial substitution for Motion and DMU, as it contains classical
workloads such as traversing state machines and data verification. Although CoreMark also uses a CRC,
it is a different implementation of the algorithm (16-bit vs 32-bit). The other benchmarks in CoreMark,
list processing and matrix manipulation, are not representative of IMD workloads.

Overall the targeted workloads are represented by the combination of ImpBench and CoreMark, and
the performance of the processors for these benchmarks should provide an indication of the performance
in an IMD.

5.3.2 Compiler optimisation
The profiling of the benchmarks in ImpBench reveals that the tcecc uses more aggressive optimisation
than Chess, even with inlining disabled. tcecc is keen to unroll any loop to optimise some instructions
away, and this gives the PeLoTTA an edge in some benchmarks. The optimisation is also visible in the
IPC of the PeLoTTA, which shows that it maintains a high bus utilisation (except in CSUM and Motion)
of 60-80%.

The profiling also reveals the lack of optimisation for the Tvliw, which is the only processor that
does not support the LLVM front end. The Tvliw appears to schedule on average 1.3 instructions per
cycle, which is low considering the Tvliw can issue up to four instructions per cycle. As the four possible
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instructions of the Tvliw consist of two ALUs and two LSUs instructions, the low IPC could be explained
by the fact that most benchmarks are focused on many operations per loaded data (except for Motion
and CSUM). This reduces the effective issue width to two, which in combination with a lot of data
dependencies even further reduces the IPC. It also seems that Chess without LLVM, does not reschedule
instructions aggressive enough to optimise for ILP. The Tvliw is also the only processor for which no
loops are unrolled.

For the Tdsp, the profiling shows that it is not able to really exploit the hardware loop control, as
many benchmarks in ImpBench contain too many instructions in one iteration to see the effect. Although
it is able to exploit the use of achieving a high IPC, most of the operations that are executed in parallel
consist (partly) of move instructions to move data between its many registers.

The Tzscale is the only processor that does not support some form of ILP, but Chess is able to
compile the benchmarks requiring very few execution cycles. This shows the efficiency of the RISC-V
instruction set.

5.3.3 Program size
As seen by the profiling analysis in section 5.1.1, tcecc is very keen to unroll the loops for the PeLoTTA.
ASIP Designer’s compiler only does this when used with the LLVM front-end, and unrolls less than tcecc.
Although the aggressive loop unrolling benefits the execution time of the PeLoTTA, it also increases the
program size.

The large code size for the Tvliw is mostly caused due to the large amount of NOPs issued in the
instructions, effectively increasing the instruction word size per useful instruction.

The Tdsp and Tzscale achieve the smallest program sizes, which is likely caused by their use of both
16 and 32-bit instructions.

Solutions for reducing the code size of the PeLoTTA could be adding instruction compression, or
instructing the compiler to optimise for code size. Although tcecc does support features for specifying
thresholds for function inlining and loop unrolling, it seems to ignore those options. tcecc does have
a specific option for reducing instruction memory, ––lowmem-mode-threshold, but this also had little
effect. A compiler flag which instructs the compiler to optimise for size (like GCC’s -Os), is not available.

5.3.4 Execution cycles
The execution cycle count for the benchmarks in Figure 5.3 mirrors the conclusions from the profiling.
The high cycle count for the PeLoTTA in CSUM is explained by the inlined data generation (see Ta-
ble 5.1). The bad compiler optimisation for the Tvliw are reflected in the amount of cycles for CSUM and
MISTY1. Only RC6, where the LLVM front-end was not required to exploit the Tvliw’s ILP, the Tvliw
is able to execute the benchmark in the fewest amount of cycles. This is supported by the relatively high
IPC of the Tvliw in RC6 which can be seen in Figure 5.4.

The Tdsp is slow in the compression (Finnish) and encryption (MISTY1, RC6) benchmarks, and
therefore has an overall bad performance in ImpBench. For both the data verification and encryption
workloads the PeLoTTA is on average the fastest. The Tzscale the fastest for the compression benchmark,
and a close second in encryption. For error detection however, the Tzscale is almost 1.6 times slower
than the PeLoTTA.

5.3.5 Power consumption
The PeLoTTA consumes more power than expected, this might be because the IRF is not so effective in
an FPGA compared to an ASIC. It also has been found that reducing the program memory by 50% for
the PeLoTTA only reduces the power consumption by 10%.

FPGA versus ASIC power consumption

In general, the FPGA has some functions that are implemented on a near-ASIC performance, such as
dedicated multipliers, adders, and memory blocks. Other functions that do not have a direct implemen-
tation in the FPGA will be compiled from the LUTs and registers in the LEs. These latter functionalities
are not only slower, but also consume more power. This discrepancy provides a skewed image when using
the FPGA power measurements as reference for ASIC power consumption, and thus the resulting power
figures should only be used as indication.
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ImpBench

The results of the CSUM and Motion benchmarks will be disregarded, as the CPU time spent in these
benchmarks consist largely of generating pseudo-random data.

Looking at Figure 5.6, it is apparent that the Tdsp and Tvliw use on average less power than the
PeLoTTA and the Tzscale. This is unexpected when referencing Table 5.12, which shows that the Tdsp
and especially the Tvliw use the most resources on the FPGA. This discrepancy indicates that large parts
of these processors have low switching activity, or are just better suitable for FPGA implementation than
the PeLoTTA and Tzscale. Figure 5.6 also shows that the composition of instructions has a noticeable
impact on the power consumption, which implies that the selection of benchmarks is indeed relevant.

For data verification (the CRC32 benchmark), the PeLoTTA requires by far the least energy of all
processors. This is mostly due to the loop unrolling and high bus utilisation, which results in a low
execution cycle count of the PeLoTTA for this benchmark. The Tzscale scores the worst, using almost
60% more cycles than the PeLoTTA and using twice the energy. The Tvliw, reaching an IPC of only
1.06,

In encryption, the PeLoTTA also consumes the least amount of energy. Even though the Tvliw
needs the least amount of cycles for RC6, the PeLoTTA burns just a little less energy than the Tvliw to
execute the benchmark. The Tzscale here requires 10-20% extra energy compared to the PeLoTTA for
encryption. The Tdsp is surprisingly just as efficient as the PeLoTTA in the MISTY1 benchmark, but
can not reach the same efficiency as the PeLoTTA in RC6.

For the compression benchmark (Finnish) the largest cores, Tvliw and Tdsp, score the best. The
PeLoTTA scores the worst in this benchmark, requiring 33% more energy than the Tvliw.

CoreMark

The CoreMark scores in Figure 5.8 show that for the traditional control systems workload that CoreMark
represents, the Tzscale with the RISC-V RV32I instruction set performs better than the transport-
triggered PeLoTTA. The PeLoTTA does compensate a little in power efficiency, where the Tzscale and
Tvliw perform almost the same, with the Tzscale reaching 5% more CoreMark executions per Watt.

The Tzscale achieves a similar score as the ARM Cortex-M0+, which scores 2.47 [102].

CNN

Figure 5.3 shows that the Tdsp, Tvliw, and Tzscale perform nearly the same in terms of cycle count.
The PeLoTTA completes the benchmark in about 12% fewer cycles, but uses more power than the Tdsp
and Tvliw. This results in the Tvliw and Tdsp scoring the best for energy consumption, as seen in
Figure 5.9. The low power consumption of the Tvliw might be caused by the low IPC, as it achieves
the lowest IPC for CNN compared to the other benchmarks. Figure 5.10 shows that the PeLoTTA does
achieve the lowest EDP, with the Tdsp and Tvliw achieving nearly the same EDP. The Tzscale, despite
not dissipating the most power, has the worst EDP.

5.3.6 Customisation
Even though all implemented processors are ASIPs, none of the processors are adapted for the target
workload. The instruction sets of the processors could have been extended with specific instructions for
the benchmarks. Examples for implementing optimised instructions for ImpBench would be:

• The rotation of a 32-bit integer, which is heavily used in RC6
• The entire execution of a single iteration of the checksum algorithm in CSUM, which only consists

of a few operations
• A hardware accelerator for the 32-bit CRC, which is included in many modern microcontrollers

Such optimisations would benefit the performance and power consumption of the processors at the cost
of area. When designing a platform for IMDs, these optimisations may be implemented to accelerate
those workloads which would be typical for IMDs. Such changes would produce different results than
presented in this thesis, and may also lead to different conclusions.
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Chapter 6

Conclusions and recommendations

This chapter concludes the thesis by providing an overview of the work in this thesis, stating the contri-
butions, reflecting on the problem statement in Chapter 1, and suggesting recommendations.

6.1 Thesis overview
Chapter 1 presents the motivation and context of this thesis, and introduces the problem statement and
its sub-questions. These sub-questions are answered in Chapter 2 as follows:

Chapter 3 reviews alternatives to ASIPs and selects implementations of the desired architectures. To
represent the current state of processors in IMDs the Tzscale with its RISC-V RV32I instruction set and
the Tdsp with its DSP ISA are selected. As a viable alternative the PeLoTTA is selected, which is a
low-power TTA core. The Tvliw is added to the comparison to see the performance of another VLIW
processor and to bridge the architectural gap in the comparison. The chapter concludes with an overview
of benchmark suites and the selection thereof.

In Chapter 4 the selected processor implementations are implemented to run on an FPGA. The
benchmarks in ImpBench are ported to be able to run without OS on a processor with a very small
memory footprint. A benchmark for neural networks is also implemented, using a CNN on the MNIST
dataset. Chapter 5 presents the experimental setup and the simulation and power measurement results,
and are discussed at the end of the chapter.

6.2 Contributions
In this thesis a novel collection of benchmarks is used to assess implementations of a set of different ASIP
architectures. This benchmark collection consists of the benchmarks from ImpBench, CoreMark, and a
custom benchmark for CNNs. Benchmarks from ImpBench were ported to be completely architecture-
agnostic. The new CNN benchmark represents the well-known workload of using a CNN for pattern
recognition. The benchmark uses fixed-point arithmetic and is also developed to be architecture-agnostic
and have a small memory footprint.

This thesis also presents the first use of this collection of benchmarks on implementations of a set of
different ASIPs architectures. Next to simulations, power measurements are also performed by running
the benchmarks on the ASIP implementations on FPGAs This provides insight on the performance of
ASIP architectures for IMDs, which is the goal of this thesis.

6.3 Conclusions
To answer the research question stated in the problem statement, the sub-questions will first be answered:

Which benchmarks need to be run to represent the workloads of IMDs?
Workloads of IMDs are categorised in six categories; control, encryption, data compression, error detec-
tion/correction, and ANNs. The benchmark suites selected that represent these workloads are ImpBench
and CoreMark. A design and implementation of an additional benchmark for ANNs is also presented in
this thesis.
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Which processor architectures are currently prevalent in IMDs?
Most processor-based IMDs use microcontrollers containing processors with RISC architectures. Besides
RISC, there are also few occurrences of CISC and DSP architectures.

Which low-power implementations of computer architectures are available for ASIPs?
ASIP Designer provides many standard processor models for ASIPs based on architectures like VLIW,
RISC, DSP, and has the option to optimise the processor implementation for low-power. OpenASIP
provides TTA ASIP implementations on top of these architectures.

Finally, the core question of the thesis is: How do different ASIP computer architectures compare for
medical implantable devices? For systems running simple control applications or compression workloads,
the RISC-V ISA of the Tzscale processor performs well. It combines low area requirements and good
performance, and delivers this on a low energy budget. The Tzscale also achieves the highest CoreMark
score, with equivalent performance to the ARM Cortex-M0+. The PeLoTTA surpasses the Tzscale in
terms of area numbers with roughly two-thirds of the LEs used, and in terms of power efficiency in the
data validation and encryption benchmarks. For CoreMark, the PeLoTTA achieves comparable power
efficiency compared to the Tzscale. The PeLoTTA does have some downsides, as it is does not support
interrupts and requires more program memory.

The Tvliw and Tdsp would not be recommended for any implementations in IMDs, as they use more
than twice the LEs than the PeLoTTA, but deliver only mediocre performance for the extra resources
in most benchmarks. It must be noted however, that the Tvliw lacks a good compiler front-end, and is
not fully able to exploit its ILP because of this.

This conclusion is largely based on measurements of the implementations on an FPGA. This approach
does have its shortcomings in that it may not provide an accurate representation for implementations
on ASICs, but does provide an indication of the relative area and performance of the implementations.

6.4 Recommendations
The power measurements of the benchmarks in ImpBench running on the implementations on the FPGA
also measure the clock cycles dedicated to data generation. A better approach would be to generate the
data completely and let the benchmark iterate several times over the data, to lower the overhead of data
generation.

During the porting of ImpBench, two benchmarks were left unimplemented: MLZO, which claimed
too much memory, and DMU, which contained too many floating-point operations. Although other
benchmarks are included which cover their targeted workload, it would be good to have multiple bench-
marks cover the same workload. For the same reason, it would be good to run a second ANN benchmark
with a different architecture than the CNN benchmark. The CNN benchmark could also be improved to
better match the true workload of CNNs in IMDs by replicating real applications and using real samples.

For the architectural decision for ASIPs for IMDs, it is recommended to extend the PeLoTTA and
Tzscale with application-specific instructions. The performance of the processors can then be re-evaluated
to see the effect of the extended instruction set and the relative performance gain of the processors.
After this stage, implementation and simulations of ASICs would provide more accurate power and area
numbers, and play a decisive role in the choice of ASIP architecture for IMDs.
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7.1. PROFILING CHAPTER 7. APPENDIX

7.1 Profiling
This section contains automatically parsed profiling information from profiling data generated by ttasim
or ASIP Designer. The profiling information is categorised by benchmark, and listed in the order of
PeLoTTA, Tdsp, Tvliw, Tzscale for each benchmark.

7.1.1 CRC32

PC Assembly Exe-count NOPs
--- ----------------------------------------------------------------------- --------- ----
35 ALU.out1 -> RF.5, ..., ALU.out1 -> LSU.in1t.ldw ; 1456 1
36 255 -> ALU.in1t.and, 0 -> LSU.in2, LSU.out1 -> ALU.in2 ; 1456 1
37 4 -> ALU.in1t.add, RF.5 -> ALU.in2, ALU.out1 -> RF.7 ; 1456 0
38 24 -> ALU.in1t.shru, RF.2 -> ALU.in2, ALU.out1 -> RF.12 ; 1456 0
39 RF.7 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, LSU.out1 -> RF.6 ; 1456 0
40 2 -> ALU.in1t.shl, ALU.out1 -> ALU.in2, ... ; 1456 0
41 RF.11 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 1456 1
42 8 -> ALU.in1t.shl, RF.2 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 1456 1
43 LSU.out1 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 1456 0
44 8 -> ALU.in1t.shru, RF.6 -> ALU.in2, ALU.out1 -> RF.7 ; 1456 1
45 255 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ... ; 1456 0
46 24 -> ALU.in1t.shru, RF.7 -> ALU.in2, ALU.out1 -> RF.8 ; 1456 1
47 RF.8 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 1456 0
48 2 -> ALU.in1t.shl, ALU.out1 -> ALU.in2, ... ; 1456 1
49 RF.11 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 1456 1
50 8 -> ALU.in1t.shl, RF.7 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 1456 1
51 LSU.out1 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, RF.5 -> LSU.in1t.stw ; 1456 0
52 16 -> ALU.in1t.shru, RF.6 -> ALU.in2, ALU.out1 -> RF.5 ; 1456 0
53 255 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ... ; 1456 0
54 24 -> ALU.in1t.shru, RF.5 -> ALU.in2, ALU.out1 -> RF.7 ; 1456 1
55 RF.7 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 1456 0
56 2 -> ALU.in1t.shl, ALU.out1 -> ALU.in2, ... ; 1456 1
57 RF.11 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 1456 1
58 8 -> ALU.in1t.shl, RF.5 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 1456 1
59 LSU.out1 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 1456 0
60 RF.6 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ALU.out1 -> RF.5 ; 1456 1
61 22 -> ALU.in1t.shru, ALU.out1 -> ALU.in2, ... [IU_1x32.0=1020] ; 1456 0
62 IU_1x32.0 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ... ; 1456 1
63 RF.11 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 1456 1
64 8 -> ALU.in1t.shl, RF.5 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 1456 1
65 LSU.out1 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, RF.12 -> LSU.in1t.ldw ; 1456 0
66 255 -> ALU.in1t.and, LSU.out1 -> ALU.in2, ALU.out1 -> RF.5 ; 1456 0
67 24 -> ALU.in1t.shru, RF.5 -> ALU.in2, ALU.out1 -> RF.6 ; 1456 0
68 RF.6 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, LSU.out1 -> RF.9 ; 1456 0
69 2 -> ALU.in1t.shl, ALU.out1 -> ALU.in2, ... ; 1456 0
70 RF.11 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 1456 1
71 8 -> ALU.in1t.shl, RF.5 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 1456 1
72 LSU.out1 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 1456 0
73 8 -> ALU.in1t.shru, RF.9 -> ALU.in2, ALU.out1 -> RF.5 ; 1456 1
74 255 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ... ; 1456 0
75 24 -> ALU.in1t.shru, RF.5 -> ALU.in2, ALU.out1 -> RF.6 ; 1456 1
76 RF.6 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 1456 0
77 2 -> ALU.in1t.shl, ALU.out1 -> ALU.in2, ... ; 1456 1
78 RF.11 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 1456 1
79 8 -> ALU.in1t.shl, RF.5 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 1456 1
80 LSU.out1 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 1456 0
81 16 -> ALU.in1t.shru, RF.9 -> ALU.in2, ALU.out1 -> RF.5 ; 1456 1
82 255 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ... ; 1456 0
83 24 -> ALU.in1t.shru, RF.5 -> ALU.in2, ALU.out1 -> RF.6 ; 1456 1
84 RF.6 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 1456 0

...

Listing 7.1: A modified excerpt from the profiling information generated by tcecc for the CRC32
benchmark running on the PeLoTTA. Only a part of the compiled loop is shown, as the loop is partly
unrolled.
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PC Assembly Exe-count Cycles
--- -------------------------- --------- ------
82 lsl r6,r6, 1 . mv a2 ,a0 11557 11557
84 add r0,r0,r2 . mv m1 ,r6 11557 11557
86 lsl r6,r0, -1 . add a3,m1 11557 11557
88 and r6,r4,r6 . ll l3, (a3) 11557 11557
90 xor l3,l0,l3 . mv m0 ,r6 11557 11557
92 lsl l0,l3,r1 . add a2,m0 11557 11557
94 lsl l1,l3,r3 . ll l2, (a2) 11557 11557
96 li l3,255 11557 11557
98 and l3,l2,l3 11557 11557
99 lsl l2,l2,r5 11557 11557

100 xor l1,l1,l3 . sl l2, (a2) 11557 11557
102 lo r6,l1 . mv a3 ,a1 11557 11557

Listing 7.2: A modified excerpt from the profiling information generated by ASIP Designer for the CRC32
benchmark running on the Tdsp.

PC Assembly Exe-count Cycles
--- ---------------------------------------------- --------- ------
31 lsr r9, r0, r8 : lsr r10, r3, r5 : nop : nop 11736 11736
32 lsl r0, r0, r7 : nop : nop : mv m0, r10 11736 11736
33 nop : add r3, r3, r6 : nop : nop 11736 11736
34 nop : nop : nop : p1=p0+m0 11736 11736
35 nop : nop : nop : ld r10, [p1] 11736 11736
36 and r10, r4, r10 : lsr r11, r10, r7: nop : nop 11736 11736
37 xor r9, r9, r10 : nop : nop : st r11, [p1] 11736 11736
38 nop : add r9, r1, r9 : nop : nop 11736 11736
39 nop : nop : nop : mv p1, r9 11736 11736
40 nop : nop : nop : nop 11736 11736
41 nop : nop : nop : ld r9, [p1] 11736 11736
42 nop : xor r0, r0, r9 : nop : nop 11736 11736
43 nop : ult r3, r2 : nop : nop 11828 11828
44 nop : cjmp 31 11828 35392

Listing 7.3: A modified excerpt from the profiling information generated by ASIP Designer for the CRC32
benchmark running on the Tvliw.

PC Assembly Exe-count Cycles
--- ---------------- --------- ------
124 andi x9,x10,-4 11648 11648
128 c.add x9, x6 11648 11648
130 c.lw x13, 0(x9) 11648 11648
132 srli x14,x12,24 11648 11648
136 and x15,x8,x13 11648 11648
140 c.xor x14, x15 11648 11648
142 slli x7,x14,2 11648 11648
146 add x14,x3,x7 11648 11648
150 c.lw x14, 0(x14) 11648 11648
152 c.slli x12, 8 11648 11648
154 c.srli x13, 8 11648 11648
156 c.addi x10, 1 11648 11648
158 c.sw x13, 0(x9) 11648 11648
160 c.xor x12, x14 11648 11648
162 bne x5,x10,-38 11648 23205

Listing 7.4: A modified excerpt from the profiling information generated by ASIP Designer for the CRC32
benchmark running on the Tzscale.
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7.1.2 CSUM

PC Assembly Exe-count NOPs
--- ----------------------------------------------------------------------- --------- ----
43 ..., RF.6 -> LSU.in2, ALU.out1 -> LSU.in1t.stw ; 183 1
44 76 -> ALU.in1t.add, ..., ... ; 183 1
45 ALU.out1 -> RF.2, ..., ... ; 183 2
46 ALU.out1 -> RF.1, ..., ... [IU_1x32.0=326] ; 183 2
47 4 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ... [IU_1x32.0=32] ; 183 2
48 ..., IU_1x32.0 -> LSU.in2, ALU.out1 -> LSU.in1t.stw ; 183 1
49 72 -> ALU.in1t.add, RF.0 -> ALU.in2, ... ; 183 1
50 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 183 1
51 ..., ..., LSU.out1 -> LSU.in1t.ldw ; 183 2
52 40 -> ALU.in1t.add, LSU.out1 -> LSU.in2, RF.0 -> ALU.in2 ; 183 2
53 60 -> ALU.in1t.add, ..., ALU.out1 -> LSU.in1t.stw ; 183 0
54 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 183 1
55 ..., ..., LSU.out1 -> LSU.in1t.ldw ; 183 2
56 36 -> ALU.in1t.add, LSU.out1 -> LSU.in2, RF.0 -> ALU.in2 ; 183 2
57 68 -> ALU.in1t.add, ..., ALU.out1 -> LSU.in1t.stw ; 183 0
58 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 183 1
59 ..., ..., LSU.out1 -> LSU.in1t.ldw ; 183 2
60 32 -> ALU.in1t.add, LSU.out1 -> LSU.in2, RF.0 -> ALU.in2 ; 183 2
61 64 -> ALU.in1t.add, ..., ALU.out1 -> LSU.in1t.stw ; 183 0
62 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 183 1
63 ..., ..., LSU.out1 -> LSU.in1t.ldw ; 183 2
64 28 -> ALU.in1t.add, LSU.out1 -> LSU.in2, RF.0 -> ALU.in2 ; 183 2
65 48 -> ALU.in1t.add, ..., ALU.out1 -> LSU.in1t.stw ; 183 0
66 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 183 1
67 ..., ..., LSU.out1 -> LSU.in1t.ldw ; 183 2
68 24 -> ALU.in1t.add, LSU.out1 -> LSU.in2, RF.0 -> ALU.in2 ; 183 2
69 56 -> ALU.in1t.add, ..., ALU.out1 -> LSU.in1t.stw ; 183 0
70 12 -> ALU.in1t.add, ..., ALU.out1 -> LSU.in1t.ldw ; 183 1
71 ALU.out1 -> RF.2, ..., LSU.out1 -> LSU.in1t.ldw ; 183 1
72 52 -> ALU.in1t.add, ..., ... ; 183 1
73 LSU.out1 -> RF.4, ..., ALU.out1 -> LSU.in1t.ldw ; 183 2
74 76 -> ALU.in1t.add, ..., LSU.out1 -> LSU.in1t.ldw ; 183 1
75 ALU.out1 -> RF.2, LSU.out1 -> LSU.in2, RF.2 -> LSU.in1t.stw ; 183 1
76 4 -> ALU.in1t.add, ..., ... [IU_1x32.0=32] ; 183 0
77 76 -> ALU.in1t.add, IU_1x32.0 -> LSU.in2, ALU.out1 -> LSU.in1t.stw ; 183 2
78 ALU.out1 -> RF.1, RF.0 -> ALU.in2, ... [IU_1x32.0=326] ; 183 0
79 20 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, RF.2 -> LSU.in1t.ldw ; 183 1
80 LSU.out1 -> RF.2, RF.4 -> LSU.in2, ALU.out1 -> LSU.in1t.stw ; 183 0
81 16 -> ALU.in1t.add, RF.0 -> ALU.in2, ... ; 183 0
82 8 -> ALU.in1t.add, ..., ALU.out1 -> LSU.in1t.ldw ; 183 1
83 ..., ..., LSU.out1 -> RF.5 ; 183 1
84 -1 -> ALU.in1t.xor, RF.2 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 183 2
85 ALU.out1 -> ALU.in1t.ior, LSU.out1 -> ALU.in2, LSU.out1 -> RF.26 ; 183 0
86 RF.5 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 183 0
87 16 -> ALU.in1t.shru, RF.2 -> ALU.in2, ALU.out1 -> RF.4 ; 183 1
88 -1 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 183 0
89 RF.4 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 183 1
90 12 -> ALU.in1t.add, RF.0 -> ALU.in2, ALU.out1 -> RF.4 ; 183 1
91 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 183 0
92 -1 -> ALU.in1t.xor, LSU.out1 -> ALU.in2, LSU.out1 -> RF.6 ; 183 2

...

Listing 7.5: A modified excerpt from the profiling information generated by tcecc for the CSUM bench-
mark running on the PeLoTTA. Only a part of the compiled loop is shown, as the loop is partly unrolled.
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PC Assembly Exe-count Cycles
--- ----------------------------- --------- ------
44 cl 238 366 366
46 li r0,32 366 366
48 ll l1, (sp-6) 366 366
49 li l0,32 366 366
51 add l0,l0,l1 . ll a0, (sp-8) 366 366
53 li l1,11708 366 366
55 sltu l0,l1 . sl l0, (sp-6) 366 366
57 li m0,2 366 366
58 ll l1, (a0+m0) 366 366
59 li l0,-1 366 366
60 xor l2,l0,l1 . ll l3, (sp-4) 366 366
62 ll l0, (2) 366 366
64 or l2,l0,l2 . li r0,-16 366 366
66 add l3,l2,l3 . li l2,-1 366 366
68 lsl l1,l1,r0 366 366
69 xor l1,l1,l2 366 366
70 add l3,l1,l3 . ll l1, (a0+m0) 366 366
72 xor l2,l1,l2 366 366
73 or l2,l0,l2 366 366
74 add l3,l2,l3 . li l2,-1 366 366
76 lsl l1,l1,r0 366 366
77 xor l1,l1,l2 366 366
78 add l3,l1,l3 . ll l1, (a0+m0) 366 366
80 xor l2,l1,l2 366 366
81 or l2,l0,l2 366 366
82 add l3,l2,l3 . li l2,-1 366 366
84 lsl l1,l1,r0 366 366
85 xor l1,l1,l2 366 366
86 add l3,l1,l3 . ll l1, (a0+m0) 366 366
88 xor l2,l1,l2 366 366
89 or l2,l0,l2 366 366
90 add l3,l2,l3 . li l2,-1 366 366
92 lsl l1,l1,r0 366 366
93 xor l1,l1,l2 366 366
94 add l3,l1,l3 . ll l1, (a0+m0) 366 366
96 xor l2,l1,l2 366 366
97 or l2,l0,l2 366 366
98 add l3,l2,l3 . li l2,-1 366 366

100 lsl l1,l1,r0 366 366
101 xor l1,l1,l2 366 366
102 add l3,l1,l3 . ll l1, (a0+m0) 366 366
104 xor l2,l1,l2 366 366
105 or l2,l0,l2 366 366
106 add l2,l2,l3 . li l3,-1 366 366
108 lsl l1,l1,r0 366 366
109 xor l1,l1,l3 366 366
110 add l1,l1,l2 . ll l2, (a0+m0) 366 366
112 xor l2,l2,l3 . sl l2, (sp-4) 366 366
114 or l2,l0,l2 366 366
115 li m0,14 366 366
...

Listing 7.6: A modified excerpt from the profiling information generated by ASIP Designer for the CSUM
benchmark running on the Tdsp. Only a part of the compiled loop is shown, as the loop is partly unrolled.
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PC Assembly Exe-count Cycles
--- ---------------------------------------------- --------- ------
32 nop : add r9, r3, r9 : nop : ld r10, [p0+=m0] 2934 2934
33 and r10, r1, r10 : lsr r11, r10, r7: nop : nop 2934 2934
34 xor r10, r5, r11 : xor r12, r5, r10: nop : nop 2934 2934
35 nop : add r0, r0, r12 : nop : nop 2934 2934
36 nop : add r0, r0, r10 : nop : nop 2934 2934
37 nop : slt r9, r8 : nop : nop 3301 3301
38 nop : cjmp 32 3301 9536

Listing 7.7: A modified excerpt from the profiling information generated by ASIP Designer for the CSUM
benchmark running on the Tvliw.
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PC Assembly Exe-count Cycles
--- -------------------- --------- ------
80 c.swsp x4, 12(x2) 366 366
82 c.addi4spn x10,x2,16 366 366
84 c.jal 384 366 732
86 c.lwsp x8, 16(x2) 366 366
88 c.li x11, -1 366 366
90 xor x12,x8,x11 366 366
94 c.lui x10, -16 366 366
96 c.lwsp x1, 4(x2) 366 366
98 c.or x12, x10 366 366

100 c.lwsp x9, 20(x2) 366 366
102 c.add x1, x12 366 366
104 c.srli x8, 16 366 366
106 xor x13,x8,x11 366 366
110 xor x12,x9,x11 366 366
114 c.add x1, x13 366 366
116 c.or x12, x10 366 366
118 c.lwsp x8, 24(x2) 366 366
120 c.add x1, x12 366 366
122 c.srli x9, 16 366 366
124 xor x13,x9,x11 366 366
128 xor x12,x8,x11 366 366
132 c.add x1, x13 366 366
134 c.or x12, x10 366 366
136 c.lwsp x9, 28(x2) 366 366
138 c.add x1, x12 366 366
140 c.srli x8, 16 366 366
142 xor x13,x8,x11 366 366
146 xor x12,x9,x11 366 366
150 c.add x1, x13 366 366
152 c.lwsp x8, 32(x2) 366 366
154 c.or x12, x10 366 366
156 c.srli x9, 16 366 366
158 c.add x1, x12 366 366
160 xor x13,x9,x11 366 366
164 c.add x1, x13 366 366
166 xor x12,x8,x11 366 366
170 srli x13,x8,16 366 366
174 c.or x12, x10 366 366
176 c.lwsp x9, 36(x2) 366 366
178 c.add x1, x12 366 366
180 c.xor x13, x11 366 366
182 xor x8,x9,x11 366 366
186 c.add x1, x13 366 366
188 or x13,x8,x10 366 366
192 c.lwsp x12, 40(x2) 366 366
194 srli x8,x9,16 366 366
198 c.add x1, x13 366 366
200 xor x9,x12,x11 366 366
204 c.lwsp x13, 44(x2) 366 366
206 c.xor x8, x11 366 366
...

Listing 7.8: A modified excerpt from the profiling information generated by ASIP Designer for the CSUM
benchmark running on the Tzscale. Only a part of the compiled loop is shown, as the loop is partly
unrolled.
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7.1.3 MISTY1

PC Assembly Exe-count NOPs
--- -------------------------------------------------------------------------- --------- ----
50 ALU.out1 -> RF.1, ..., ... [IU_1x32.0=632] ; 1025 0
51 48 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, RF.0 -> ALU.in2 ; 1025 2
52 ..., RF.7 -> LSU.in2, ALU.out1 -> LSU.in1t.stw ; 1025 0
53 36 -> ALU.in1t.add, RF.0 -> ALU.in2, ... ; 1025 1
54 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 1025 1
55 ..., ..., LSU.out1 -> LSU.in1t.ldw ; 1025 2
56 ..., ..., ... [IU_1x32.0=65535] ; 1025 2
57 IU_1x32.0 -> ALU.in1t.and, LSU.out1 -> ALU.in2, LSU.out1 -> RF.4 ; 1025 3
58 ALU.out1 -> RF.5, ..., ... ; 1025 0
59 16 -> ALU.in1t.shru, RF.4 -> ALU.in2, ... [IU_1x32.0=687] ; 1025 2
60 IU_1x32.0 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ALU.out1 -> RF.4 ; 1025 1
61 ALU.out1 -> ALU.in1t.xor, RF.5 -> ALU.in2, ... [IU_1x32.0=25185] ; 1025 0
62 IU_1x32.0 -> ALU.in1t.ior, ALU.out1 -> ALU.in2, ALU.out1 -> RF.5 ; 1025 1
63 56 -> ALU.in1t.add, RF.0 -> ALU.in2, ALU.out1 -> RF.6 ; 1025 0
64 RF.6 -> ALU.in1t.xor, RF.4 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 1025 0
65 ALU.out1 -> RF.4, ..., ... [IU_1x32.0=65535] ; 1025 0
66 IU_1x32.0 -> ALU.in1t.and, LSU.out1 -> ALU.in2, LSU.out1 -> RF.6 ; 1025 2
67 16 -> ALU.in1t.shl, RF.4 -> ALU.in2, ALU.out1 -> RF.7 ; 1025 0
68 ALU.out1 -> ALU.in1t.ior, RF.5 -> ALU.in2, ... ; 1025 0
69 ALU.out1 -> RF.5, ..., ... ; 1025 1
70 16 -> ALU.in1t.shru, RF.6 -> ALU.in2, ... [IU_1x32.0=13106] ; 1025 2
71 IU_1x32.0 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ALU.out1 -> RF.6 ; 1025 1
72 ALU.out1 -> ALU.in1t.xor, RF.7 -> ALU.in2, ... [IU_1x32.0=56447] ; 1025 0
73 IU_1x32.0 -> ALU.in1t.ior, ALU.out1 -> ALU.in2, ALU.out1 -> RF.7 ; 1025 1
74 ALU.out1 -> ALU.in1t.xor, RF.6 -> ALU.in2, ... [IU_1x32.0=14134] ; 1025 0
75 IU_1x32.0 -> ALU.in1t.xor, RF.7 -> ALU.in2, ALU.out1 -> RF.6 ; 1025 1
76 127 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ALU.out1 -> RF.4 ; 1025 0
77 ALU.out1 -> RF.8, ..., ... ; 1025 0
78 5 -> ALU.in1t.shru, RF.4 -> ALU.in2, ... [IU_1x32.0=2044] ; 1025 2
79 IU_1x32.0 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ... ; 1025 1
80 RF.2 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 1025 1
81 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 1025 1
82 LSU.out1 -> ALU.in1t.xor, RF.8 -> ALU.in2, ... [IU_1x32.0=3088] ; 1025 2
83 IU_1x32.0 -> ALU.in1t.add, ..., ALU.out1 -> RF.4 ; 1025 1
84 ..., ..., ALU.out1 -> LSU.in1t.ldq ; 1025 1
85 RF.4 -> ALU.in1t.xor, LSU.out1 -> ALU.in2, ... [IU_1x32.0=287] ; 1025 2
86 IU_1x32.0 -> ALU.in1t.xor, RF.4 -> ALU.in2, ALU.out1 -> RF.8 ; 1025 1
87 2 -> ALU.in1t.shl, ALU.out1 -> ALU.in2, ... ; 1025 0
88 RF.2 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... ; 1025 1
89 90 -> ALU.in1t.xor, RF.8 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 1025 1
90 127 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ... ; 1025 0
91 ALU.out1 -> ALU.in1t.xor, LSU.out1 -> ALU.in2, ALU.out1 -> RF.8 ; 1025 1
92 9 -> ALU.in1t.shl, RF.8 -> ALU.in2, ALU.out1 -> RF.4 ; 1025 0
93 ALU.out1 -> ALU.in1t.ior, RF.4 -> ALU.in2, ... [IU_1x32.0=13106] ; 1025 0
94 IU_1x32.0 -> ALU.in1t.xor, RF.6 -> ALU.in2, ALU.out1 -> RF.8 ; 1025 1
95 ALU.out1 -> RF.4, ..., ... ; 1025 0
96 5 -> ALU.in1t.shru, ALU.out1 -> ALU.in2, ... [IU_1x32.0=2044] ; 1025 2
97 IU_1x32.0 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ... ; 1025 1
98 RF.2 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... [IU_1x32.0=3088] ; 1025 1
99 127 -> ALU.in1t.and, RF.4 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 1025 1

...

Listing 7.9: A modified excerpt from the profiling information generated by tcecc for the MISTY1
benchmark running on the PeLoTTA. Only a part of the compiled loop is shown, as the loop is partly
unrolled.
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PC Assembly Exe-count Cycles
--- ----------------------------- --------- ------
48 sub l3,l0,l1 . sl l2, (sp-10) 1025 1025
50 sle l3,-1 1025 1025
51 jrcn 9 1025 1025
52 sl a0, (sp-6) 1025 1025
53 sl l3, (sp-8) 1025 1025

...
62 cl 1102 1025 1025
64 lo r0,l1 1025 1025
65 ll a0, (sp-6) 1025 1025
66 li m0,2 1025 1025
67 li a1,65535 1025 1025
69 ll l1, (a0+m0) 1025 1025
70 li r1,-16 1025 1025
71 lsl l0,l1,r1 . xz l2 ,a1 1025 1025
73 and l2,l1,l2 . li r2,-6 1025 1025
75 li l1,13106 1025 1025
77 and l3,l0,l1 . li r3,-7 1025 1025
79 li a2,56447 1025 1025
81 xor l2,l2,l3 . xz l3 ,a2 1025 1025
83 or l3,l2,l3 . sl l2, (sp-6) 1025 1025
85 xor l0,l0,l3 . li r6,9 1025 1025
87 xor l3,l0,l1 . sl l0, (sp-12) 1025 1025
89 lo r0,l3 1025 1025
90 lsl r4,r0,r2 1025 1025
91 li r0,1022 1025 1025
93 li l1,14134 1025 1025
95 li a3,9216 1025 1025
97 and r4,r0,r4 . mv a6 ,a3 1025 1025
99 xor l1,l1,l2 . mv m1 ,r4 1025 1025

101 lsl l2,l1,r3 . add a3,m1 1025 1025
103 li l0,127 1025 1025
105 lo r3,l2 . ll l2, (a3) 1025 1025
107 and l3,l0,l3 . mv a7 ,a6 1025 1025
109 lo r4,l3 1025 1025
110 li a3,5 1025 1025
112 xor l2,l2,l3 . mv m1 ,r4 1025 1025
114 lsl r5,r3, 1 . mv a4 ,a3 1025 1025
116 lo r4,l2 . add a3,m1 1025 1025
118 li r7,311 1025 1025
120 xor r5,r4,r7 . mv m1 ,r5 1025 1025
122 lsl r5,r5, 1 . lw r4, (a3) 1025 1025
124 li r3,70 1025 1025
126 xor r3,r3,r4 . add a6,m1 1025 1025
128 xz l3,r3 . mv m1 ,r5 1025 1025
130 xor l2,l2,l3 . mv a3 ,a7 1025 1025
132 and l2,l0,l2 . add a7,m1 1025 1025
134 and l1,l0,l1 . ll l3, (a7) 1025 1025
136 xor l3,l2,l3 . mv a7 ,a4 1025 1025
138 lsl l2,l2,r6 1025 1025
139 or l2,l2,l3 . ll l3, (sp-6) 1025 1025
141 xor l2,l2,l3 1025 1025
...

Listing 7.10: A modified excerpt from the profiling information generated by ASIP Designer for the
MISTY1 benchmark running on the Tdsp. Only a part of the compiled loop is shown, as the loop is
partly unrolled.
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PC Assembly Exe-count Cycles
--- -------------------------------------------------- --------- ------
22 nop : mv r0, 7 24608 24608
23 lsr r0, r1, r0 : mv r3, 511 24608 24608
24 and r0, r0, r3 : mv p0, 2437 24608 24608
25 mv m0, r0 : mv r0, 127 24608 24608
26 and r4, r0, r1 : mv p1, 2309 24608 24608
27 and r1, r2, r3 : nop : mv m0, r4 : p2=p0+m0 24608 24608
28 nop : nop : nop : ld r3, [p2] 24608 24608
29 nop : xor r3, r3, r4 : nop : p1=p1+m0 24608 24608
30 nop : xor r1, r1, r3 : nop : ld r4, [p1] 24608 24608
31 mv m0, r1 : mv r1, 9 24608 24608
32 xor r2, r3, r4 : lsr r5, r2, r1 : nop : nop 24608 24608
33 nop : xor r2, r2, r5 : nop : p0=p0+m0 24608 24608
34 nop : and r2, r0, r2 : nop : ld r0, [p0] 24608 24608
35 xor r2, r0, r2 : lsl r1, r2, r1 : nop : nop 24608 24608
36 or r0, r1, r2 : ijmp lr 24608 49216

...
86 nop : mv r0, 16 10250 10250
87 lsr r3, r1, r0 : mv r6, 65535 10250 10250
88 and r1, r1, r6 : mv r4, 1 10250 10250
89 and r5, r2, r4 : mv r6, 0 10250 10250
90 nop : neq r5, r6 : nop : nop 10250 10250
91 nop : cjmp 103 10250 25625

...
117 nop : lsl r1, r1, r0 : nop : nop 10250 10250
118 or r0, r1, r2 : ijmp lr 10250 20500

Listing 7.11: A modified excerpt from the profiling information generated by ASIP Designer for the
MISTY1 benchmark running on the Tvliw.
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PC Assembly Exe-count Cycles
--- --------------------- --------- ------
256 sub x9,x8,x11 1025 1025
260 c.addi4spn x10,x2,96 1025 1025
262 blt x3,x9,16 1025 2049
...
278 c.swsp x9, 84(x2) 1025 1025
280 c.jal 1744 1025 2050
282 c.lwsp x10, 96(x2) 1025 1025
284 c.lwsp x5, 72(x2) 1025 1025
286 c.lwsp x22, 76(x2) 1025 1025
288 srli x11,x10,16 1025 1025
292 and x10,x10,x22 1025 1025
296 and x8,x5,x11 1025 1025
300 c.lwsp x9, 68(x2) 1025 1025
302 c.xor x10, x8 1025 1025
304 or x8,x10,x9 1025 1025
308 c.xor x8, x11 1025 1025
310 xor x9,x8,x5 1025 1025
314 srli x11,x9,5 1025 1025
318 addi x16,x0,2044 1025 1025
322 c.lwsp x1, 12(x2) 1025 1025
324 and x3,x16,x11 1025 1025
328 add x12,x1,x3 1025 1025
332 addi x11,x0,127 1025 1025
336 c.lw x12, 0(x12) 1025 1025
338 c.lwsp x3, 8(x2) 1025 1025
340 c.and x9, x11 1025 1025
342 c.lwsp x30, 60(x2) 1025 1025
344 c.xor x12, x9 1025 1025
346 add x6,x9,x3 1025 1025
350 lbu x13,0(x6) 1025 1025
354 xor x9,x10,x30 1025 1025
358 addi x29,x0,311 1025 1025
362 srli x14,x9,5 1025 1025
366 c.xor x13, x12 1025 1025
368 xor x4,x12,x29 1025 1025
372 and x6,x16,x14 1025 1025
376 add x12,x6,x1 1025 1025
380 c.lw x14, 0(x12) 1025 1025
382 and x12,x9,x11 1025 1025
386 xor x9,x12,x14 1025 1025
390 c.slli x4, 2 1025 1025
392 add x14,x4,x1 1025 1025
396 add x4,x12,x3 1025 1025
400 lbu x12,0(x4) 1025 1025
404 addi x7,x0,287 1025 1025
408 addi x25,x0,70 1025 1025
412 xor x6,x9,x7 1025 1025
416 xor x13,x25,x13 1025 1025
420 c.lw x14, 0(x14) 1025 1025
422 slli x17,x6,2 1025 1025
426 c.xor x9, x12 1025 1025
...

Listing 7.12: A modified excerpt from the profiling information generated by ASIP Designer for the
MISTY1 benchmark running on the Tzscale. Only a part of the compiled loop is shown, as the loop is
partly unrolled.
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7.1.4 Motion

PC Assembly Exe-count NOPs
--- ---------------------------------------------------------------------- --------- ----
25 ..., IU_1x32.0 -> gcu.pc.call, ... ; 2048 2
26 ..., ..., RF.0 -> LSU.in1t.stw ; 2048 2
27 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
28 ALU.out1 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, RF.2 -> ALU.in2 ; 2048 1
29 ALU.out1 -> RF.2, ..., ... ; 2048 0
30 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
31 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
32 ALU.out1 -> RF.2, ..., ... ; 2048 0
33 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
34 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
35 ALU.out1 -> RF.2, ..., ... ; 2048 0
36 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
37 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
38 ALU.out1 -> RF.2, ..., ... ; 2048 0
39 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
40 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
41 ALU.out1 -> RF.2, ..., ... ; 2048 0
42 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
43 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
44 ALU.out1 -> RF.2, ..., ... ; 2048 0
45 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
46 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
47 ALU.out1 -> RF.2, ..., ... ; 2048 0
48 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
49 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
50 ALU.out1 -> RF.2, ..., ... ; 2048 0
51 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
52 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
53 ALU.out1 -> RF.2, ..., ... ; 2048 0
54 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
55 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
56 ALU.out1 -> RF.2, ..., ... ; 2048 0
57 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
58 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
59 ALU.out1 -> RF.2, ..., ... ; 2048 0
60 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
61 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
62 ALU.out1 -> RF.2, ..., ... ; 2048 0
63 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
64 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
65 ALU.out1 -> RF.2, ..., ... ; 2048 0
66 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
67 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
68 ALU.out1 -> RF.2, ..., ... ; 2048 0
69 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
70 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
71 ALU.out1 -> RF.2, ..., ... ; 2048 0
72 31 -> ALU.in1t.shru, RF.1 -> ALU.in2, ... [IU_1x32.0=186] ; 2048 2
73 RF.2 -> ALU.in1t.add, IU_1x32.0 -> gcu.pc.call, ALU.out1 -> ALU.in2 ; 2048 1
74 ALU.out1 -> RF.2, ..., ... ; 2048 0

...

Listing 7.13: A modified excerpt from the profiling information generated by tcecc for the Motion
benchmark running on the PeLoTTA. Only a part of the compiled loop is shown, as the loop is partly
unrolled.
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PC Assembly Exe-count Cycles
--- ---------------------------- --------- ------
78 cl 36 4096 4096
80 nop 4096 4096
81 li r0,-31 4096 4096
82 lsl l0,l0,r0 4096 4096
83 sl l0, (sp-8) 4096 4096
84 cl 36 4096 4096
86 nop 4096 4096
87 li r0,-31 4096 4096
88 lsl l1,l0,r0 . ll l0, (sp-8) 4096 4096
90 add l0,l0,l1 4096 4096
91 sl l0, (sp-8) 4096 4096
92 cl 36 4096 4096
94 nop 4096 4096
95 li r0,-31 4096 4096
96 lsl l1,l0,r0 . ll l0, (sp-8) 4096 4096
98 add l0,l0,l1 4096 4096
99 sl l0, (sp-8) 4096 4096

100 cl 36 4096 4096
102 nop 4096 4096
103 li r0,-31 4096 4096
104 lsl l1,l0,r0 . ll l0, (sp-8) 4096 4096
106 add l0,l0,l1 4096 4096
107 sl l0, (sp-8) 4096 4096
108 cl 36 4096 4096
110 nop 4096 4096
111 li r0,-31 4096 4096
112 lsl l1,l0,r0 . ll l0, (sp-8) 4096 4096
114 add l0,l0,l1 4096 4096
115 sl l0, (sp-8) 4096 4096
116 cl 36 4096 4096
118 nop 4096 4096
119 li r0,-31 4096 4096
120 lsl l1,l0,r0 . ll l0, (sp-8) 4096 4096
122 add l0,l0,l1 4096 4096
123 sl l0, (sp-8) 4096 4096
124 cl 36 4096 4096
126 nop 4096 4096
127 li r0,-31 4096 4096
128 lsl l1,l0,r0 . ll l0, (sp-8) 4096 4096
130 add l0,l0,l1 4096 4096
131 sl l0, (sp-8) 4096 4096
132 cl 36 4096 4096
134 nop 4096 4096
135 li r0,-31 4096 4096
136 lsl l1,l0,r0 . ll l0, (sp-8) 4096 4096
138 add l0,l0,l1 4096 4096
139 sl l0, (sp-8) 4096 4096
140 cl 36 4096 4096
142 nop 4096 4096
143 li r0,-31 4096 4096
...

Listing 7.14: A modified excerpt from the profiling information generated by ASIP Designer for the
Motion benchmark running on the Tdsp. Only a part of the compiled loop is shown, as the loop is partly
unrolled.
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PC Assembly Exe-count Cycles
--- -------------------------------- --------- ------
51 nop : bsr 24 81920 163840
52 nop : mv r1, -2147483648 81920 81920
53 ult r0, r1 : ld r0, [sp-4] 81920 81920
54 nop : mv r1, 1 81920 81920
55 nop : cjmp 59 81920 204971
56 nop : ld r2, [sp-3] 40789 40789
57 nop : add r2, r1, r2 : nop : nop 40789 40789
58 nop : st r2, [sp-3] 40789 40789
59 add r0, r0, r1 : mv r1, 20 81920 81920
60 ult r0, r1 : st r0, [sp-4] 81920 81920
61 nop : cjmp 51 81920 241664

Listing 7.15: A modified excerpt from the profiling information generated by ASIP Designer for the
Motion benchmark running on the Tvliw.
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PC Assembly Exe-count Cycles
--- ------------------ --------- ------
128 c.swsp x10, 8(x2) 4096 4096
130 c.jal -70 4096 8192
132 c.srli x10, 31 4096 4096
134 c.swsp x10, 12(x2) 4096 4096
136 c.jal -76 4096 8192
138 c.lwsp x1, 12(x2) 4096 4096
140 c.srli x10, 31 4096 4096
142 c.add x1, x10 4096 4096
144 c.swsp x1, 12(x2) 4096 4096
146 c.jal -86 4096 8192
148 c.lwsp x1, 12(x2) 4096 4096
150 c.srli x10, 31 4096 4096
152 c.add x1, x10 4096 4096
154 c.swsp x1, 12(x2) 4096 4096
156 c.jal -96 4096 8192
158 c.lwsp x1, 12(x2) 4096 4096
160 c.srli x10, 31 4096 4096
162 c.add x1, x10 4096 4096
164 c.swsp x1, 12(x2) 4096 4096
166 c.jal -106 4096 8192
168 c.lwsp x1, 12(x2) 4096 4096
170 c.srli x10, 31 4096 4096
172 c.add x1, x10 4096 4096
174 c.swsp x1, 12(x2) 4096 4096
176 c.jal -116 4096 8192
178 c.lwsp x1, 12(x2) 4096 4096
180 c.srli x10, 31 4096 4096
182 c.add x1, x10 4096 4096
184 c.swsp x1, 12(x2) 4096 4096
186 c.jal -126 4096 8192
188 c.lwsp x1, 12(x2) 4096 4096
190 c.srli x10, 31 4096 4096
192 c.add x1, x10 4096 4096
194 c.swsp x1, 12(x2) 4096 4096
196 c.jal -136 4096 8192
198 c.lwsp x1, 12(x2) 4096 4096
200 c.srli x10, 31 4096 4096
202 c.add x1, x10 4096 4096
204 c.swsp x1, 12(x2) 4096 4096
206 c.jal -146 4096 8192
208 c.lwsp x1, 12(x2) 4096 4096
210 c.srli x10, 31 4096 4096
212 c.add x1, x10 4096 4096
214 c.swsp x1, 12(x2) 4096 4096
216 c.jal -156 4096 8192
218 c.lwsp x1, 12(x2) 4096 4096
220 c.srli x10, 31 4096 4096
222 c.add x1, x10 4096 4096
224 c.swsp x1, 12(x2) 4096 4096
226 c.jal -166 4096 8192
...

Listing 7.16: A modified excerpt from the profiling information generated by ASIP Designer for the
Motion benchmark running on the Tzscale. Only a part of the compiled loop is shown, as the loop is
partly unrolled.
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7.1.5 RC6

PC Assembly Exe-count NOPs
--- -------------------------------------------------------------------- --------- ----
400 27 -> ALU.in1t.shru, ALU.out1 -> ALU.in2, ALU.out1 -> RF.5 ; 2565 1
401 ALU.out1 -> RF.10, ..., ... ; 2565 0
402 5 -> ALU.in1t.shl, RF.8 -> mul.in2, RF.8 -> mul.in1t.mul ; 2565 2
403 ALU.out1 -> ALU.in1t.ior, RF.10 -> ALU.in2, ... ; 2565 0
404 ALU.out1 -> ALU.in1t.xor, RF.9 -> ALU.in2, ... ; 2565 1
405 mul.out1 -> ALU.in1t.add, mul.out1 -> ALU.in2, ALU.out1 -> RF.5 ; 2565 1
406 ALU.out1 -> ALU.in1t.add, RF.8 -> ALU.in2, ... ; 2565 0
407 27 -> ALU.in1t.shru, ALU.out1 -> ALU.in2, ALU.out1 -> RF.9 ; 2565 1
408 5 -> ALU.in1t.shl, ..., ALU.out1 -> RF.11 ; 2565 0
409 ALU.out1 -> ALU.in1t.ior, RF.11 -> ALU.in2, ... ; 2565 1
410 ALU.out1 -> ALU.in1t.xor, RF.6 -> ALU.in2, ... ; 2565 1
411 RF.10 -> ALU.in1t.shl, ALU.out1 -> ALU.in2, ALU.out1 -> RF.6 ; 2565 1
412 32 -> ALU.in1t.sub, RF.10 -> ALU.in2, ALU.out1 -> RF.9 ; 2565 0
413 RF.11 -> ALU.in1t.shl, RF.5 -> ALU.in2, ALU.out1 -> RF.10 ; 2565 0
414 32 -> ALU.in1t.sub, RF.11 -> ALU.in2, ALU.out1 -> RF.16 ; 2565 0
415 ALU.out1 -> ALU.in1t.shru, RF.5 -> ALU.in2, ... ; 2565 0
416 RF.2 -> ALU.in1t.add, RF.4 -> ALU.in2, ALU.out1 -> RF.12 ; 2565 1
417 -12 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ALU.out1 -> RF.5 ; 2565 0
418 RF.12 -> ALU.in1t.ior, RF.16 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 2565 0
419 ALU.out1 -> ALU.in1t.add, LSU.out1 -> ALU.in2, ... ; 2565 0
420 ALU.out1 -> RF.12, ALU.out1 -> mul.in2, ALU.out1 -> mul.in1t.mul ; 2565 1
421 RF.10 -> ALU.in1t.shru, RF.6 -> ALU.in2, ... ; 2565 0
422 ALU.out1 -> ALU.in1t.ior, RF.9 -> ALU.in2, ... ; 2565 1
423 mul.out1 -> ALU.in1t.add, mul.out1 -> ALU.in2, ALU.out1 -> RF.6 ; 2565 1
424 ALU.out1 -> ALU.in1t.add, RF.12 -> ALU.in2, ... ; 2565 0
425 27 -> ALU.in1t.shru, ALU.out1 -> ALU.in2, ALU.out1 -> RF.9 ; 2565 1
426 -8 -> ALU.in1t.add, RF.5 -> ALU.in2, ALU.out1 -> RF.10 ; 2565 0
427 5 -> ALU.in1t.shl, RF.9 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 2565 0
428 RF.6 -> ALU.in1t.add, LSU.out1 -> ALU.in2, ALU.out1 -> RF.9 ; 2565 0
429 ALU.out1 -> RF.6, ALU.out1 -> mul.in2, ALU.out1 -> mul.in1t.mul ; 2565 0
430 RF.9 -> ALU.in1t.ior, RF.10 -> ALU.in2, ... ; 2565 0
431 ALU.out1 -> ALU.in1t.xor, RF.8 -> ALU.in2, ... ; 2565 1
432 mul.out1 -> ALU.in1t.add, mul.out1 -> ALU.in2, ALU.out1 -> RF.8 ; 2565 1
433 ALU.out1 -> ALU.in1t.add, RF.6 -> ALU.in2, ... ; 2565 0
434 27 -> ALU.in1t.shru, ALU.out1 -> ALU.in2, ALU.out1 -> RF.9 ; 2565 1
435 5 -> ALU.in1t.shl, ..., ALU.out1 -> RF.11 ; 2565 0
436 ALU.out1 -> ALU.in1t.ior, RF.11 -> ALU.in2, ... ; 2565 1
437 ALU.out1 -> ALU.in1t.xor, RF.7 -> ALU.in2, ... ; 2565 1
438 RF.10 -> ALU.in1t.shl, ALU.out1 -> ALU.in2, ALU.out1 -> RF.7 ; 2565 1
439 32 -> ALU.in1t.sub, RF.10 -> ALU.in2, ALU.out1 -> RF.9 ; 2565 0
440 32 -> ALU.in1t.sub, RF.11 -> ALU.in2, ALU.out1 -> RF.10 ; 2565 0
441 ALU.out1 -> ALU.in1t.shru, RF.8 -> ALU.in2, ... ; 2565 0
442 RF.11 -> ALU.in1t.shl, ..., ALU.out1 -> RF.13 ; 2565 1
443 RF.13 -> ALU.in1t.ior, ALU.out1 -> ALU.in2, RF.5 -> LSU.in1t.ldw ; 2565 1
444 ALU.out1 -> ALU.in1t.add, LSU.out1 -> ALU.in2, ... ; 2565 0
445 ALU.out1 -> RF.8, ALU.out1 -> mul.in2, ALU.out1 -> mul.in1t.mul ; 2565 1
446 RF.10 -> ALU.in1t.shru, RF.7 -> ALU.in2, ... ; 2565 0
447 ALU.out1 -> ALU.in1t.ior, RF.9 -> ALU.in2, ... ; 2565 1
448 mul.out1 -> ALU.in1t.add, mul.out1 -> ALU.in2, ALU.out1 -> RF.7 ; 2565 1
449 ALU.out1 -> ALU.in1t.add, RF.8 -> ALU.in2, ... ; 2565 0
...

Listing 7.17: A modified excerpt from the profiling information generated by tcecc for the RC6 bench-
mark running on the PeLoTTA. Only a part of the compiled loop is shown, as the loop is partly unrolled.
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PC Assembly Exe-count Cycles
--- ----------------------------- --------- ------
302 lo r2,l0 . ll l3, (sp-18) 10260 10260
304 hi r7,l0 . sl l3, (sp-20) 10260 10260
306 mulss l2,r2,r7 . mv r6 ,r2 10260 10260
308 add l3,l2,l2 . sl l0, (sp-18) 10260 10260
310 muluu l2,r2,r6 10260 10260
311 asl l3,l3,r3 10260 10260
312 add l3,l2,l3 . ll l2, (sp-16) 10260 10260
314 lsl l3,l3, 1 . sl l1, (sp-16) 10260 10260
316 add l3,l0,l3 . sl l2, (sp-22) 10260 10260
318 lo r2,l1 10260 10260
319 lsl l0,l3,r0 . mv r6 ,r2 10260 10260
321 hi r7,l1 . xz l1 ,a1 10260 10260
323 sub l1,l1,l0 10260 10260
324 mulss l2,r2,r7 10260 10260
325 lo r5,l1 10260 10260
326 add l2,l2,l2 10260 10260
327 muluu l1,r2,r6 10260 10260
328 asl l2,l2,r3 10260 10260
329 add l2,l1,l2 . ll l1, (sp-22) 10260 10260
331 lo r4,l0 10260 10260
332 lsl l3,l3,r1 10260 10260
333 or l0,l0,l3 . ll l3, (sp-16) 10260 10260
335 lsl l2,l2, 1 10260 10260
336 add l3,l2,l3 10260 10260
337 lsl l2,l3,r1 10260 10260
338 lsl l3,l3,r0 10260 10260
339 or l2,l2,l3 10260 10260
340 xor l1,l1,l2 . xz l2 ,a1 10260 10260
342 sub l2,l2,l3 10260 10260
343 lo r6,l2 . ll l2, (sp-20) 10260 10260
345 xor l2,l0,l2 10260 10260
346 lo r7,l3 10260 10260
347 lsr l3,l2,r6 10260 10260
348 lsl l2,l2,r7 10260 10260
349 or l2,l2,l3 10260 10260
350 lsl l3,l1,r4 10260 10260
351 lsr l0,l1,r5 10260 10260
352 or l0,l0,l3 . ll l3, (a2+m0) 10260 10260
354 add l1,l2,l3 . ll l2, (a2+m0) 10260 10260
356 add l0,l0,l2 10260 10260

Listing 7.18: A modified excerpt from the profiling information generated by ASIP Designer for the RC6
benchmark running on the Tdsp.
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PC Assembly Exe-count Cycles
--- -------------------------------------------------- --------- ------
80 mul r11, r2, r2 : mul r12, r0, r0 : nop : nop 10260 10260
81 lsl r11, r11, r4 : lsl r12, r12, r4: nop : nop 10260 10260
82 add r11, r2, r11 : add r12, r0, r12: nop : nop 10260 10260
83 lsl r13, r11, r6 : lsl r14, r12, r6: nop : nop 10260 10260
84 lsr r11, r11, r9 : lsr r12, r12, r9: nop : nop 10260 10260
85 or r11, r11, r13 : or r14, r12, r14: nop : nop 10260 10260
86 and r13, r8, r14 : and r12, r8, r11: nop : nop 10260 10260
87 xor r11, r1, r11 : xor r3, r3, r14 : nop : ld r1, 10260 10260
88 sub r15, r7, r13 : sub r14, r7, r12: nop : nop 10260 10260
89 lsl r15, r11, r13 : lsr r13, r11, r15: nop : ld r1 10260 10260
90 lsr r3, r3, r14 : lsl r12, r3, r12: nop : nop 10260 10260
91 or r12, r13, r15 : or r3, r3, r12 : nop : nop 10260 10260
92 add r0, r1, r12 : nop : mv r1, r2 : mv r13, r0 10260 10260
93 add r10, r4, r10 : add r2, r3, r11 : nop : nop 10260 10260
94 nop : nop : nop : mv r3, r13 10260 10260
95 nop : sle r10, r5 : nop : nop 10773 10773
96 nop : cjmp 80 10773 31806

Listing 7.19: A modified excerpt from the profiling information generated by ASIP Designer for the RC6
benchmark running on the Tvliw.

PC Assembly Exe-count Cycles
--- --------------- --------- ------
780 mul x6,x10,x10 10260 10260
784 c.slli x6, 1 10260 10260
786 add x12,x10,x6 10260 10260
790 srli x6,x12,27 10260 10260
794 mul x7,x11,x11 10260 10260
798 c.slli x12, 5 10260 10260
800 c.slli x7, 1 10260 10260
802 or x12,x12,x6 10260 10260
806 c.xor x9, x12 10260 10260
808 add x14,x11,x7 10260 10260
812 srli x12,x14,27 10260 10260
816 c.slli x14, 5 10260 10260
818 c.or x14, x12 10260 10260
820 c.xor x13, x14 10260 10260
822 sub x14,x5,x6 10260 10260
826 sub x15,x5,x12 10260 10260
830 srl x14,x13,x14 10260 10260
834 srl x15,x9,x15 10260 10260
838 sll x9,x9,x12 10260 10260
842 sll x13,x13,x6 10260 10260
846 c.or x14, x13 10260 10260
848 lw x12,4(x1) 10260 10260
852 c.or x9, x15 10260 10260
854 c.mv x13, x11 10260 10260
856 add x11,x12,x9 10260 10260
860 lw x12,0(x1) 10260 10260
864 c.mv x9, x10 10260 10260
866 c.addi x8, -1 10260 10260
868 c.addi x1, 8 10260 10260
870 add x10,x12,x14 10260 10260
874 c.bnez x8,-94 10260 20007

Listing 7.20: A modified excerpt from the profiling information generated by ASIP Designer for the RC6
benchmark running on the Tzscale.
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7.1.6 Finnish

PC Assembly Exe-count NOPs
--- ---------------------------------------------------------------------- --------- ----
371 RF.12 -> ALU.in1t.ne, ALU.out1 -> ALU.in2, ... [IU_1x32.0=458] ; 11740 2
372 ALU.out1 -> gcu.cond, IU_1x32.0 -> gcu.pc.bz1, ... ; 11740 1
373 ..., ..., ... ; 11740 1
374 20 -> ALU.in1t.add, RF.0 -> ALU.in2, ... ; 11740 3
375 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 11740 1
376 6 -> ALU.in1t.shl, LSU.out1 -> ALU.in2, RF.18 -> RF.17 ; 11740 2
377 -4 -> ALU.in1t.and, RF.16 -> ALU.in2, ALU.out1 -> RF.6 ; 11740 0
378 RF.11 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... [IU_1x32.0=4032] ; 11740 0
379 ALU.out1 -> RF.19, ..., ALU.out1 -> LSU.in1t.ldw ; 11740 1
380 8 -> ALU.in1t.shru, LSU.out1 -> ALU.in2, LSU.out1 -> RF.18 ; 11740 1
381 IU_1x32.0 -> ALU.in1t.and, ALU.out1 -> LSU.in2, RF.6 -> ALU.in2 ; 11740 0
382 20 -> ALU.in1t.add, RF.0 -> ALU.in2, ALU.out1 -> RF.6 ; 11740 0
383 RF.18 -> ALU.in1t.sxqw, ..., ALU.out1 -> RF.7 ; 11740 0
384 255 -> ALU.in1t.and, RF.17 -> ALU.in2, ALU.out1 -> RF.8 ; 11740 1
385 RF.6 -> ALU.in1t.xor, ALU.out1 -> ALU.in2, ... ; 11740 0
386 RF.13 -> ALU.in1t.add, ALU.out1 -> ALU.in2, RF.19 -> LSU.in1t.stw ; 11740 1
387 ALU.out1 -> RF.6, RF.17 -> LSU.in2, ALU.out1 -> LSU.in1t.ldq ; 11740 0
388 LSU.out1 -> ALU.in1t.ne, RF.8 -> ALU.in2, ... [IU_1x32.0=394] ; 11740 0
389 ALU.out1 -> gcu.cond, IU_1x32.0 -> gcu.pc.bnz1, ... ; 11740 1
390 ..., ..., RF.7 -> LSU.in1t.stw ; 11740 1
391 RF.5 -> ALU.in1t.shl, 1 -> ALU.in2, ... [IU_1x32.0=399] ; 11740 2
392 RF.4 -> ALU.in1t.xor, IU_1x32.0 -> gcu.pc.jump, ALU.out1 -> ALU.in2 ; 5963 1
393 ALU.out1 -> RF.4, ..., ... ; 5963 0
394 ..., RF.18 -> LSU.in2, ... ; 5963 2
395 RF.2 -> ALU.in1t.add, RF.15 -> ALU.in2, ... ; 5777 2
396 ..., ..., RF.6 -> LSU.in1t.stq ; 5777 1
397 1 -> ALU.in1t.add, ..., ALU.out1 -> LSU.in1t.stq ; 5777 2
398 ALU.out1 -> RF.15, ..., ... ; 5777 1
399 1 -> ALU.in1t.add, RF.5 -> ALU.in2, ... ; 5777 2
400 ALU.out1 -> RF.5, ..., ... ; 11740 1
401 8 -> ALU.in1t.ne, ALU.out1 -> ALU.in2, ... [IU_1x32.0=370] ; 11740 2
402 ALU.out1 -> gcu.cond, IU_1x32.0 -> gcu.pc.bnz1, ... ; 11740 1
403 1 -> ALU.in1t.add, RF.16 -> ALU.in2, ... ; 11740 1
404 RF.9 -> ALU.in1t.add, RF.10 -> ALU.in2, ... ; 11740 1
...
416 RF.9 -> ALU.in1t.add, RF.10 -> ALU.in2, ... ; 5777 2
417 1 -> ALU.in1t.add, ..., ALU.out1 -> RF.4 ; 5777 1
418 1 -> ALU.in1t.add, RF.2 -> ALU.in2, ALU.out1 -> RF.10 ; 5777 1
419 -1 -> ALU.in1t.add, RF.15 -> ALU.in2, ALU.out1 -> RF.2 ; 5777 0
420 ALU.out1 -> RF.15, ..., ... ; 5777 0
421 0 -> ALU.in1t.ne, ALU.out1 -> ALU.in2, ... [IU_1x32.0=361] ; 5777 2
422 ALU.out1 -> gcu.cond, IU_1x32.0 -> gcu.pc.bz1, ... ; 5777 1
423 ..., LSU.out1 -> LSU.in2, RF.4 -> LSU.in1t.stq ; 5777 1
424 RF.14 -> ALU.in1t.gtu, RF.10 -> ALU.in2, ... [IU_1x32.0=415] ; 5777 1
425 ALU.out1 -> gcu.cond, IU_1x32.0 -> gcu.pc.bnz1, ... ; 5777 1
426 ..., ..., ... ; 5777 1

Listing 7.21: A modified excerpt from the profiling information generated by tcecc for the Finnish
benchmark running on the PeLoTTA.
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PC Assembly Exe-count Cycles
--- ----------------------------- --------- ------
136 lsl r1,r1, -1 . mv a4 ,a3 11648 11648
138 li r7,32766 11648 11648
140 and r7,r1,r7 . mv m1 ,r0 11648 11648
142 mv m2 ,r7 11648 11648
143 li r7,6 11648 11648
144 lsl r3,r3,r7 . add a4,m2 11648 11648
146 and r3,r2,r3 . ll l0, (a4) 11648 11648
148 xor r3,r3,r5 . li r7,-8 11648 11648
150 lo r3,l0 . mv m2 ,r3 11648 11648
152 li a6,9216 11648 11648
154 lsl l0,l0,r7 . add a6,m2 11648 11648
156 lw r7, (a6) 11648 11648
157 and r5,r3,r6 . mv r3 ,r5 11648 11648
159 seq r5,r7 11648 11648
160 jrc 7 11648 11648
161 li r1,1 11648 11648
162 sl l0, (a4) 11648 11648
163 mv a4 ,a2 5732 5732
164 sw r5, (a6) 5732 5732
165 jr 7 . add a4,m1 5732 5732
167 add r0,r0,r1 . sw r5, (a4) 5732 5732
169 lsl r7,r1,r4 5916 5916
170 lw r1, (sp-8) 5916 5916
171 xor r7,r1,r7 . li r1,1 5916 5916
173 sw r7, (sp-8) 5916 5916
174 add r4,r1,r4 . li r7,8 11648 11648
176 seq r4,r7 11648 11648
177 jrcn 75 11648 11648
178 lw r7, (sp-4) 11648 11648
179 nop 11648 11648
...
192 sltu r2,r3 5732 5732
193 jrc 34 5732 5732
194 nop 5732 5732
195 nop 5732 5732
...
229 add r0,r0,r4 5732 5732
230 seq r0,0 5732 5732
231 jrcn -41 5732 5732
232 lw r5, (a2+m0) 5732 5732
233 add r2,r1,r2 . sw r5, (a0+m0) 5732 5732
...
254 add r1,r1,r7 11648 11648
255 li r7,128 11648 11648
257 seq r1,r7 11648 11648
258 jrcn -124 11648 11648
259 sw r1, (sp-4) 11648 11648
260 nop 11648 11648

Listing 7.22: A modified excerpt from the profiling information generated by ASIP Designer for the
Finnish benchmark running on the Tdsp.
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PC Assembly Exe-count Cycles
--- -------------------------------------------------- --------- ------
79 lsr r13, r7, r6 : lsl r14, r13, r8: nop : nop 11740 11740
80 xor r13, r4, r14 : nop : nop : mv m3, r13 11740 11740
81 nop : and r13, r10, r13: nop : nop 11740 11740
82 nop : nop : mv p1, r13 : p3=p0+m3 11740 11740
83 nop : nop : mv r13, r4 : ld r14, [p3] 11740 11740
84 lsr r14, r14, r5 : and r4, r12, r14: nop : p1=p1+m 11740 11740
85 nop : nop : nop : st r14, [p3] 11740 11740
86 nop : nop : nop : nop 11740 11740
87 nop : nop : nop : ld r14, [p1] 11740 11740
88 nop : eq r4, r14 : nop : nop 11740 11740
89 nop : cjmp 93 11740 29443
90 nop : nop : p2=p2+m0 : p3=p2+m1 5777 5777
91 nop : nop : st r4, [p1] : st r4, [p3] 5777 5777
92 nop : ujmp 95 5777 11554
93 nop : lsl r14, r3, r9 : nop : nop 5963 5963
94 nop : xor r11, r11, r14: nop : nop 5963 5963
95 nop : add r9, r3, r9 : nop : nop 11740 11740
96 nop : neq r5, r9 : nop : nop 11740 11740
97 nop : cjmp 147 11740 33753

...
106 nop : ule r0, r2 : nop : nop 5777 5777
107 nop : cjmp 129 5777 17331
...
129 add r0, r0, r3 : add r4, r3, r4 : nop : ld lr, [p0 5777 5777
130 nop : nop : nop : st lr, [p1+=m0] 5777 5777
131 nop : slt r4, r1 : nop : nop 7244 7244
132 nop : cjmp 106 7244 20265
...
147 nop : add r7, r3, r7 : nop : nop 11740 11740
148 nop : ult r7, r1 : nop : nop 11832 11832
149 nop : cjmp 79 11832 35404

Listing 7.23: A modified excerpt from the profiling information generated by ASIP Designer for the
Finnish benchmark running on the Tvliw.
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PC Assembly Exe-count Cycles
--- ------------------ --------- ------
288 slli x14,x9,6 11648 11648
292 and x9,x12,x11 11648 11648
296 c.and x14, x13 11648 11648
298 c.xor x14, x9 11648 11648
300 andi x8,x10,-4 11648 11648
304 c.add x8, x3 11648 11648
306 c.mv x9, x12 11648 11648
308 c.lw x12, 0(x8) 11648 11648
310 add x21,x14,x1 11648 11648
314 srli x15,x12,8 11648 11648
318 slli x14,x12,24 11648 11648
322 c.sw x15, 0(x8) 11648 11648
324 lb x22,0(x21) 11648 11648
328 srai x8,x14,24 11648 11648
332 bne x22,x8,14 11648 17380
336 sll x21,x16,x20 5916 5916
340 xor x5,x5,x21 5916 5916
344 c.j 16 5916 11832
346 add x22,x4,x31 5732 5732
350 c.addi x31, 1 5732 5732
352 sb x12,0(x22) 5732 5732
356 sb x12,0(x21) 5732 5732
360 c.addi x20, 1 11648 11648
362 bne x17,x20,134 11648 21840
...
390 bltu x7,x18,46 5732 11464
...
436 lbu x3,0(x1) 5732 5732
440 c.addi x11, -1 5732 5732
442 sb x3,0(x6) 5732 5732
446 c.addi x7, 1 5732 5732
448 c.addi x1, 1 5732 5732
450 c.addi x6, 1 5732 5732
452 c.bnez x11,-62 5732 10645
...
496 c.addi x10, 1 11648 11648
498 bne x19,x10,-210 11648 23205

Listing 7.24: A modified excerpt from the profiling information generated by ASIP Designer for the
Finnish benchmark running on the Tzscale.
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7.1.7 CNN

PC Assembly Exe-count NOPs
--- -------------------------------------------------------------------- --------- ----
107 RF.12 -> ALU.in1t.and, RF.10 -> ALU.in2, ALU.out1 -> RF.2 ; 49000 0
108 -1 -> ALU.in1t.add, RF.9 -> ALU.in2, ALU.out1 -> RF.5 ; 49000 0
109 ALU.out1 -> RF.9, ..., ... ; 49000 0
110 0 -> ALU.in1t.ne, ALU.out1 -> ALU.in2, ... [IU_1x32.0=76] ; 49000 2
111 ALU.out1 -> gcu.cond, IU_1x32.0 -> gcu.pc.bz1, ... ; 49000 1
112 ..., ..., ... ; 49000 1
113 32 -> ALU.in1t.add, RF.0 -> ALU.in2, ... ; 49000 3
114 ..., ..., ALU.out1 -> LSU.in1t.ldw ; 49000 1
115 ..., ..., ... ; 49000 2
116 2 -> ALU.in1t.shl, RF.2 -> ALU.in2, ... ; 49000 3
117 LSU.out1 -> ALU.in1t.add, ALU.out1 -> ALU.in2, ... [IU_1x32.0=32] ; 49000 1
118 1 -> ALU.in1t.add, RF.5 -> ALU.in2, ALU.out1 -> LSU.in1t.ldw ; 49000 1
119 ALU.out1 -> ALU.in1t.gtu, IU_1x32.0 -> ALU.in2, ALU.out1 -> RF.10 ; 49000 0
120 ALU.out1 -> ALU.in1t.sub, 1 -> ALU.in2, ALU.out1 -> RF.11 ; 49000 0
121 RF.5 -> ALU.in1t.shru, LSU.out1 -> ALU.in2, ALU.out1 -> RF.12 ; 49000 0
122 1 -> ALU.in1t.and, ALU.out1 -> ALU.in2, ... ; 49000 0
123 0 -> ALU.in1t.eq, ALU.out1 -> ALU.in2, ... [IU_1x32.0=106] ; 49000 1
124 ALU.out1 -> gcu.cond, IU_1x32.0 -> gcu.pc.bnz1, ... ; 49000 1
125 2 -> ALU.in1t.add, RF.8 -> ALU.in2, ... ; 49000 1

Listing 7.25: A modified excerpt from the profiling information generated by tcecc for the CNN bench-
mark running on the PeLoTTA.

PC Assembly Exe-count Cycles
--- -------------------------- --------- ------
78 lo r5,l1 . ll a3, (a1) 49000 49000
80 lsl r5,r5, 1 49000 49000
81 lo r5,l2 . mv m1 ,r5 49000 49000
83 lsl l1,l0,r5 . add a3,m1 49000 49000
85 add l2,l0,l2 . ll l3, (a3) 49000 49000
87 and l1,l1,l3 . xz l3 ,a2 49000 49000
89 sleu l2,l3 . mv l3 ,l2 49000 49000
91 li l2,0 49000 49000
92 mvcn l2,l3 . li r5,1 49000 49000
94 mvcn r5,r0 49000 49000
95 seq l1,0 49000 49000
96 jrc 28 49000 49000
97 xz l1,r5 . ll l3, (sp-16) 49000 49000
99 add l1,l1,l3 49000 49000

...
127 add r4,r3,r4 49000 49000
128 slt r4,r2 49000 49000
129 jrc -53 49000 49000
130 sl l1, (sp-16) 49000 49000
131 nop 49000 49000

Listing 7.26: A modified excerpt from the profiling information generated by ASIP Designer for the CNN
benchmark running on the Tdsp.
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PC Assembly Exe-count Cycles
--- --------------------------------------------------- --------- ------
112 add r4, r0, r4 : lsl r5, r0, r4 : nop : ld m1, [p1 49000 49000
113 nop : ule r4, r1 : nop : nop 49000 49000
114 nop : nop : nop : p4=p2+m1 49000 49000
115 nop : nop : nop : ld r6, [p4] 49000 49000
116 and r5, r5, r6 : cjmp 118 49000 146000
...
118 nop : eq r3, r5 : nop : nop 49000 49000
119 nop : cjmp 135 49000 142340
...
135 nop : add r2, r0, r2 : nop : nop 49000 49000
136 nop : nop : nop : ld r5, [p3] 50000 50000
137 nop : slt r2, r5 : nop : nop 50000 50000
138 nop : cjmp 112 50000 149000
...
236 nop : mv r2, 32768 24660 24660
237 nop : slt r1, r2 : nop : nop 24660 24660
238 nop : cjmp 240 24660 63496
...
240 nop : mv r0, 32767 24660 24660
241 nop : sgt r2, r0 : nop : nop 24660 24660
242 nop : cjmp 244 24660 73980
...
244 nop : ijmp lr 24660 49320

Listing 7.27: A modified excerpt from the profiling information generated by ASIP Designer for the CNN
benchmark running on the Tvliw.

PC Assembly Exe-count Cycles
--- ------------------ --------- ------
134 c.lw x11, 0(x12) 49000 49000
136 slli x18,x5,2 49000 49000
140 c.add x11, x18 49000 49000
142 c.lw x11, 0(x11) 49000 49000
144 sll x8,x1,x17 49000 49000
148 addi x18,x17,1 49000 49000
152 c.and x11, x8 49000 49000
154 c.li x17, 1 49000 49000
156 bltu x6,x18,6 49000 50000
160 c.li x17, 0 48000 48000
162 c.add x5, x17 49000 49000
164 c.li x17, 0 49000 49000
166 bltu x6,x18,6 49000 50000
170 c.mv x17, x18 48000 48000
172 c.beqz x11,56 49000 93340
...
228 c.addi x4, 1 49000 49000
230 c.addi x7, 2 49000 49000
232 blt x4,x3,-98 49000 97000

Listing 7.28: A modified excerpt from the profiling information generated by ASIP Designer for the CNN
benchmark running on the Tzscale.
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