
Ultra low latency deep neural network
inference for gravitational waves
interferometer

M.C.B. de Rooij





Ultra low latency deep neural network
inference for gravitational waves

interferometer

by

Martijn Cornelis Bernardus de Rooij

A THESIS

submitted in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

at the Delft University of Technology,

To be defended publicly on Friday March 5, 2021

Student number: 4731743
Project duration: March 2, 2020 – March 5, 2021
Company Supervisor: Roel Aaij Nikhef
Thesis committee:
Chair: Dr. ir. Z. Al-Ars, TU Delft, supervisor
Members: Dr. R. Aaij Nikhef

J. Petri-König TU Delft, PhD Student, CE Group
Dr. J.S. Rellermeyer TU Delft, Distributed Systems group

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Delft University of Technology
Mekelweg 4
2600 GA Delft, The Netherlands

Nikhef (National Institute for Subatomic Physics)
Science Park 105
1098 XG Amsterdam, The Netherlands





Abstract

Low latency Convolutional Neural Network (CNN) inference research is gaining more and more
momentum for tasks such as speech and image classifications. This is because CNNs have the
ability to surpass human accuracy in classification of images. For improving the measurement
setup of gravitational waves, low latency CNNs inference are researched. The CNN needs to
process data from images to enable certain automatic controls for the control system. The data
of these images need to be processed within 0.1 ms from the moment of taking the image to the
control system obtaining the result of a deep neural network.

Hardware acceleration is needed to reduce the execution latency of the network and reach the
0.1 ms requirement. Field-Programmable Gate Arrays (FPGAs) in particular have the ability
to provide the needed acceleration. This is because FPGAs have the ability to create highly
customised layers of the network and obtain the lowest possible latency. To reduce the design
effort and complexity of the machine learning design, Xilinx introduced the FINN (Fast, Scalable
Quantized Neural Network Inference on FPGAs) framework. FINN is an end-to-end deep learning
framework that generates dataflow-style architectures customised for each network. To establish if
FINN can create the required ultra low latency CNN, some of FINN pretrained networks are used.
The first neural network investigated is the Tiny Fully Connected (TFC) network. The TFC
network is a multilayer perceptron (MLP) for MNIST classification with three fully connected
layers. The other network investigated is the convolutional neural network named CNV. CNV
is a derivative of the VGG16 topology. The VGG16 topology is used for deep learning image
classification problems with multiple convolutional layers.

By using the analysis tools included with FINN, it can be determined if FINN is able to
create the required ultra low latency CNN. The TFC network can be parallelised to a total of
5 expected cycles, with 1 expected cycle per layer. One cycle for the input quantization to
standalone thresholding, one for the output layer and finally three for the fully connected layers.
For the CNV network on the other hand, the initial convolution layer is unable to go below
8196 expected cycles, because of certain bottlenecks with FINN. These bottlenecks occur because
of how FINN implements certain layers, moreover because certain layers can simply no longer
be parallelised to lower the latency of that layer. To see if the CNV could achieve the latency
requirements, a software emulation of the execution of the network has been done. This emulation
showcased that by continuously increasing the parallelisation parameters, together with increasing
clock frequencies, it is possible to create an ultra low latency pipeline of a CNN. This configuration
has 45866 expected total cycles for the network, its expected cycles for the slowest layer is 8196
and needs a minimum frequency of 200 MHz. With those configuration it is possible to create a
pipeline that has a latency of lower than 0.1 ms. From the resource analysis of this configuration
it has been made clear that currently only the supported Alveo boards of FINN are able to fit this
design on the board. This is because of the amount of Lookup Tables (LUTs) this configuration
needs.

i





Preface

This thesis has been my longest project to date. Which already made it a challenge in it by itself.
After just one month of working on this project another challenge had hit me and many others
with the outbreak of the COVID-19 virus and the measures against the coronavirus. This forced
me to work from home which was a bigger challenge than I originally expected and providing
me with the lowest motivation of all time. This experience helped me appreciate the people that
helped me complete this thesis even more. Luckily with the help of many people I got through
this period.

I am writing my master thesis with the Accelerated Big Data Systems (ABS) group at TU
Delft. The collaboration partner for this project is the National Institute for Subatomic Physics
in Amsterdam, also called Nikhef. The department I did the collaboration with is working on
gravitational wave detection. Almost all communication during this project needed to be online,
which showed me how difficult it becomes to get everyone involved on the same page. I did learn
a lot of how to approach these problems in the future and should be better at them now.

Now after all these months of work on this thesis project, I can finally show what I have
accomplished and learned with this thesis. As this project would not have been doable without
all the help I have received, I wish to thank all the people whose assistance was a milestone in the
completion of this project.

First of all I wish to thank my TU Delft supervisor Zaid Al-Ars for supporting me in doing
my master thesis in a company and all the knowledge I have learned from him. Next to him I
would like to thank all the other people at the Accelerated Big Data Systems group for helping
me further in my thesis and with all the questions I had. Especially Jakoba Petri-König, for her
advice and tips throughout the project.

From the Nikhef side I would like to thank first of all Ruud Kluit for making this project for me
possible. After which Roel Aaij was my supervisor from Nikhef, pushing me in the right direction.
In addition, I also would like to thank Rob Walet for helping me with the project.

Lastly I would like to thank my mother for her continuous support when I was doing my
master. Without her and many of my close friends such as Titus and their every day support, this
project would not have been possible to complete.

M.C.B. de Rooij
Delft, March 5, 2021

iii





Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Objectives and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Project context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background research 7
2.1 Gravitational waves detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Michelson laser interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Fabry-Pérot resonance cavities . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Introduction to convolutional neural networks . . . . . . . . . . . . . . . . . 12
2.2.3 CNNs complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 CNNs complexity reduction techniques . . . . . . . . . . . . . . . . . . . . . 14

2.3 Potential hardware platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Graphics processing units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Field-programmable gate arrays . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Application-specific integrated circuits . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Comparison and combination of different platforms . . . . . . . . . . . . . . 20

3 Use case requirements 23
3.1 Design methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Hardware constraints for pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 dSPACE MicroLabBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 The neural network input and output . . . . . . . . . . . . . . . . . . . . . 26

3.3 Design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 FPGA choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Framework neural network inference . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Tiny fully connected network . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



vi CONTENTS

3.4.2 CNV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Exploration pipeline designs 33
4.1 Considerations and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Parallelisation parameters FINN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Neural network analysis tools TFC/CNV . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Timing analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Resource Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Hardware options FINN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Evaluation 39
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Timing analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 Resource analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusions and recommendations 49
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

Appendices 63

A Measurement setup Nikhef 65



List of Figures

1.1 Experimental setup suspended mirrors. . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Experimental test setup for alignment of mirrors using machine learning. . . . . . . 3

2.1 Gravitational waves measurement and its first detection. . . . . . . . . . . . . . . . 8
2.2 Michelson laser interferometer [18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Michelson laser interferometer with Fabry-Pérot cavities on its arms used in the

LIGO experiment [18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Single neuron mathematical model [35]. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 2-layer neural network (one hidden layer of 4 neurons and one output layer with 2

neurons), and three inputs [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 GPU memory model [91]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 FPGAs programmable datapath memory hierarchy example [89]. . . . . . . . . . . 17
2.8 Main approaches to accelerate CNN inference on FPGAs [26,54] . . . . . . . . . . 18

3.1 Pipeline to optimise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Neural network I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 TFC architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 CNV architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 FC calculated latency compared to parallelisation parameters, for TFC, SFC, LFC
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 FC throughput calculated for TFC, SFC, LFC networks fully pipelined and non-
pipelined compared to parallelisation parameters. . . . . . . . . . . . . . . . . . . . 41

5.3 TFC software emulated latency compared to the amount of parallelisation parameters. 42
5.4 TFC software emulated throughput compared to calculated fully pipelined and non-

pipelined throughput for different parallelisation parameters. . . . . . . . . . . . . 42
5.5 CNV software emulated latency compared to the amount of parallelisation parameters. 43
5.6 CNV software emulated throughput compared to calculated fully pipelined and

non-pipelined throughput for different parallelisation parameters. . . . . . . . . . . 44
5.7 CNV layer bottlenecks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Hardware generated examples and differences batch sizes. . . . . . . . . . . . . . . 45
5.9 CNV1W1A LUT resource estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 46

A1 Detailed experimental setup suspended mirrors. . . . . . . . . . . . . . . . . . . . . 65

vii





List of Tables

2.1 CNN to FPGA inference frameworks. . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Communication transfer speeds of different protocols in the dSPACE MicroLabBox. 24
3.2 The different camera constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Output neural network abbreviation meaning . . . . . . . . . . . . . . . . . . . . . 26
3.4 Comparison between FPGA, GPU and CPU for neural networks. . . . . . . . . . 28
3.5 Neural network input and output layer information. . . . . . . . . . . . . . . . . . 29

4.1 Low latency strategy FINN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Resources different boards FINN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Resources used different CNV weight sizes and activation sizes. . . . . . . . . . . 46
5.2 Resources utilisation percentage on different board for first passing CNV1W1A

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix





Chapter 1

Introduction

1.1 Objectives and motivation

1.1.1 Project context

For a long time people have been aware of gravity. This is where most people will reference
Newton’s law of universal gravitation from 1687 with its famous story about the apple falling from
the tree [1]. Only centuries later Einstein challenged this law with the theory of general relativity
in 1916 [2]. In this law Einstein predicted the existence of gravitational waves. Gravitational waves
are caused by the movement of mass, which propagate at the speed of light. On September 2015,
gravitational waves were detected for the first time, which proved their existence. This was done
by the LIGO-VIRGO (Variability of Solar Irradiance and Gravity Oscillations) collaboration with
two advanced LIGO detectors [3]. The observatory VIRGO [4] is currently the only gravitational
waves detector in Europe which is a collaboration between 6 countries (including the Netherlands).
In the Netherlands, Nikhef (National Institute for Subatomic Physics) is part of this collaboration.
The VIRGO department at Nikhef works on improving the gravitational wave detector.

The basic technology behind the detectors in the observatories is a Michelson laser interferom-
eter, where the effective arm lengths are increased by Fabry-Pérot resonance cavities. In order for
the interferometer to work, free-falling test masses (suspended mirrors) are needed. These mirrors
then need to be kept at the correct orientation and position. The mirrors have a longitudinal
degree of freedom and an angular degree of freedom. These degrees of freedom need to be fixed in
order to conduct measurements. The process of fixing these degrees of freedom is called ”locking”
and is currently conducted manually.

The error signals in the system are strongly non-linear functions of the mirror positions and
can only be linearised in a very small fraction of phase space. To solve this issue many complex
tricks and manual actions are involved to enable classical controls of the mirror and keep the
system working. This makes having the observatories into working condition a continuous chal-
lenge, relying on well trained, highly experienced people. Which indicates, if these people are not
available no measurements can be done and no measurements can be done for very long periods
of time. Attempts have been made in the past to completely automate the locking of the mirrors,
however the experimental results of these attempts proved to be unsuccessful [5].

To solve this problem Nikhef has created an experimental setup for the improvement of the
gravitational waves detector. With this setup, they try to reduce the challenge of continuously
needing highly experienced people for angular alignment of optical cavities by using machine
learning. In Figure 1.1 the experimental setup of the mirrors is displayed. In the upper left part of
this figure you see the suspended mirrors that represent the Fabry-Pérot resonance cavities of the
experimental setup and beneath it is a more detailed drawing on how the test setup works. The
first part of the setup is in regard to the suspended mirrors. A laser will go through these mirrors.
Then by having the laser go through a specific setup of mirrors, the near and far field distribution
of the laser can be detected by special cameras. From the near and far field distribution the

1



2 CHAPTER 1. INTRODUCTION

control system will be able to determine if there is misalignment of the mirrors and adjust them
accordingly.

Figure 1.1: Experimental setup suspended mirrors.

The dSPACE MicroLabBox [6] is the control system for this experimental setup which adjusts
the mirrors according to the information of the near and far field distributions. This is done to keep
the mirrors in the free falling position and not let external factors influence the measurements.
The complete experimental setup from Nikhef can be seen in Figure 1.2. The input for this
experimental setup are the gravitational waves that can be seen on the left side of the figure.
Figure 1.1 shows that within in the setup two images of the near and far field distribution are
created. These images go through a CNN and determine the misalignment of the mirrors of the
Fabry-Pérot resonance cavities. From there on the control system will readjust the mirrors in
the correct position. For a more detailed visualisation of this setup and what kind of devices are
involved can be seen in Appendix A.

The moment from taking the images, to determining the misalignment is a tight latency bound
part of the control loop of the test setup. These latency requirements are there to ensure that the
control system of the suspended mirrors is done with enough speed such that any measurement
in this test setup can actually be done. With the current setup, the control loop needs to run at
10 kHz. This is because, in the experimental setup, the longitudinal cavity control of the mirrors
is done at this speed by the seismic attenuation control system. In case the control of this part is
slower, the experiments for detecting gravitational waves will not work. For this thesis the part
to be researched is in regards to the tight latency bound part of this control loop, which is from
taking the image to the result of the machine learning neural network.

The exploration of this research is in regards to what hardware platform can run the machine
learning algorithm with a low enough latency and high enough throughput. For this multiple hard-
ware fabrics are available such as field-programmable gate arrays (FPGAs), graphical processing
units (GPUs) or central processing units (CPUs). This thesis will look at different hardware
configurations with their respective frameworks to determine which one is able to meet the low
latency requirements.



1.1. OBJECTIVES AND MOTIVATION 3

10

Low-latency pipeline:
For detection of gravitational waves

Gravitational
waves

Nikhef
measurement setup

Output of measurement:
detection of gravitational

waves

Input for CCN:
2 CCD images of

near/far field 
distribution

Convolutional neural
network

Seismic attenuation control
system

Output of CNN
misalignment

mirrors Fabry–Pérot
cavity

Control path

Figure 1.2: Experimental test setup for alignment of mirrors using machine learning.

1.1.2 Research questions

For completing this thesis and exploring the design space of low latency pipelines the following
research question needs to be answered.

• How to use the appropriate hardware fabrics to achieve a low latency pipeline of a neural
network for a future gravitational waves interferometer control system?

Answering this question requires first an investigation of the current pipeline of the gravita-
tional waves interferometer control system. During the design, development and testing of this
system the following questions need to be answered:

1. What is the type of machine learning algorithm running in the pipeline that has to be
optimised?

2. How does using different hardware fabrics such as CPU, GPU or FPGAs affect the perfor-
mance of the pipeline?

3. How effective are available machine learning design tools in reducing design effort and com-
plexity?

1.1.3 Contributions

The main contribution of this thesis is the exploration of ultra low latency deep neural network in-
ference on diverse hardware fabrics, for a future gravitational waves interferometer control system.
In order to achieve this contribution, multiple smaller contributions have been made to explore
the low latency pipeline. These smaller contributions are the following:

1. Frameworks. As the neural network for this pipeline is still changing, multiple frameworks
for optimising this network are discussed. For each hardware fabric there are different tools
available that have different advantages and disadvantages compared to low latency machine
learning networks. The contribution of this thesis is, exploring the different frameworks and
by selecting one of the frameworks to evaluate the possible achievable performance.



4 CHAPTER 1. INTRODUCTION

2. Low latency. The second contribution from this thesis is, investigating different configu-
rations the framework can do and how they affect the latency of the neural network. To
demonstrate if the low latency is achieved, different performance benchmarks are created.
These benchmarks show the difference in latency between the different configurations and
possible bottlenecks of the framework.

3. Neural network. The neural network for the future gravitational waves interferometer
control system is still under development at the moment of writing. For the exploration of
the low latency pipeline, different example neural networks with the chosen framework will
be investigated. The contribution of this thesis is, determining the possible bottlenecks in
the neural network of the pipeline, together with the chosen framework.

4. Resources. The final contribution will be some rough resource estimations of the neural
network to show if it is possible to create the neural network on actual available hardware.

The behaviour of the framework is studied through testing and benchmarks of different possible
configurations. To determine if it would be possible to create a low latency pipeline of a neural
network for the future gravitational waves interferometer control system, an extensive evaluation
and discussion will be done on the results of these tests. The contributions of this research
should make it possible for upcoming researchers to have educated design choices to meet the
low latency requirements and the hardware constraints of the gravitational waves interferometer
control system.

1.2 Report structure

The thesis is structured in three main parts. The first part includes Chapters 2 and 3 and gives
a theoretical background on gravitational waves, machine learning networks, differences between
hardware platforms and the design methodology of this thesis. The second part includes Chapter 4
and presents how the different configurations of the pipeline are implemented and what kind of
choices where made for them. The final part includes Chapters 5 and 6 and evaluates how the
different hardware platforms performed and what conclusions can be drawn from them. To discuss
the structure of the thesis in more detail, the information within each chapter will be shortly
discussed.

Chapter 2 provides the necessary background for understanding the thesis and the design
choices made to meet the performance requirements of this pipeline. To start, the theoretical
background of gravitational waves, the Michelson laser interferometer and Fabry-Pérot resonance
cavities are investigated and why machine learning is used in the experimental setup of Nikhef.
After this concepts and techniques used for running low latency machine learning networks are
introduced. For this the Convolutional Neural Network (CNN) is used as this is the neural network
to optimize for the low latency pipeline. Finally some potential hardware platforms are discussed
such as CPUs, GPUs, FPGAs and ASICs with their respective development tools for low latency
machine learning networks.

Chapter 3 discusses the design methodology used in the thesis. It discusses the different
hardware constraints the pipeline has and what limitations exists for the pipeline. From these
constraints and background research, certain design choices will be made for this thesis and it
will be explained why these choices have been made. With finally a discussion about the different
neural networks that will be investigated and how they correspond to the possible future neural
network for the gravitational waves interferometer control system.

Chapter 4 further explains the considerations and the motivation for the chosen framework to
implement the pipeline design. This chapter explains what different design configuration will look
like and will discuss how they are implemented. It will further explore how different configurations
of the framework will be analysed and how the configurations possibly affect the performance of
a complete pipeline design. Finally, this chapter determines the available hardware options of the
framework.



1.2. REPORT STRUCTURE 5

Chapter 5 discusses the experimental setup used for the different configurations and what the
measurements results are of the designs explored in Chapter 4. For the different configurations it
will have a timing and resource analysis to discover possible bottlenecks of the framework and to
detect if it is possible to create the low latency pipeline.

Finally, Chapter 6 will give a conclusion to this report and will reflect back on the original
research question asked in this chapter. Concluding with a discussion about possible recommenda-
tions and possible avenues of future development of the pipeline of the future gravitational waves
interferometer control system.





Chapter 2

Background research

2.1 Gravitational waves detection

2.1.1 Gravitational waves

As discussed in Section 1.1.1, Einstein predicted the existence of gravitational waves with the
theory of general relativity in 1916 [2]. The gravitational waves are caused by the movement of
mass, which propagate at the speed of light. In this section the basic properties of gravitational
waves will be discussed as well as the detectable sources of gravitational waves [7]. For a more
detailed explanation of gravitational waves refer to the literature [2, 8, 9].

All objects with a mass produce contractions and expansions of space-time along the spacial
dimensions perpendicular to the propagation of the mass. The stretching and squeezing of space-
time in transverse directions are called gravitational waves. The effect of gravitational waves on
matter can be seen in seen in three dimensions [10]. An example of how this works can be seen
in Figure 2.1a. This figure shows that for the detection of gravitational waves, a Michelson laser
interferometer is being used.

The gravitational waves only create very small disturbances that can be measured. Only some
of the strongest sources of gravitational waves can create a big enough disturbance in order to
be measured. For example the first measurement in September 2015 a measurement accuracy of
gravitational-wave strain 10−21 was needed to measure the gravitational waves from two merging
black holes [3]. This means that currently it is not possible to measure the gravitational wave of a
car driving down the street. Other sources that are detectable originate from supermassive objects
millions of light years away. The strongest gravitational waves are produced by binary black holes,
supernovae, colliding neutron stars and possibly even the gravitational radiation created by the
Big Bang [10, 11]. An example of how the first detection of the binary black holes looks like is
shown in Figure 2.1b.

2.1.2 Michelson laser interferometer

From Section 2.1.1 it has been made clear that the Michelson laser interferometers is being used
to detect the gravitational waves. The basic technology behind the gravitational waves detectors
LIGO and VIRGO is a Michelson laser interferometer [14,15], where the effective arm lengths are
increased by Fabry-Pérot resonance cavities [3, 16]. The current detector is based on the original
interferometer concept designed by Michelson and Morley (1887) [17]. The Fabry-Pérot resonance
cavities will be further explained in Section 2.1.3.

In order to understand why the machine learning network is necessary and why the pipeline for
this neural network needs to be created, a basic understanding of the Michelson laser interferometer
is required. The Michelson detector needs free-falling masses to measure gravitational waves. To
obtain the free-falling masses, the detector uses mirrors that are suspended by a control system.
An example of the Michelson interferometer can be seen in Figure 2.2.

7



8 CHAPTER 2. BACKGROUND RESEARCH

(a) Effect of gravitational waves for polarisation.
With respective Michelson interferometer mea-
surement setup below it [12].

(b) Example detection of first black holes by
LIGO-VIRGO: GW1509014 [13].

Figure 2.1: Gravitational waves measurement and its first detection.

Figure 2.2: Michelson laser interferometer [18].



2.1. GRAVITATIONAL WAVES DETECTION 9

The Michelson interferometer consists of source of light which is often a laser, which can be seen
on the left side in Figure 2.2. This laser beam is split in two using a partially reflecting mirror
called a beam splitter. Each of the beams then travel a distance towards two mirrors. These
two suspended mirrors are located at a distance from the beam splitter along two orthogonal
directions. The distance between the mirrors and the beam splitter are called arms [5]. Once the
laser beams reach the mirrors they reflect back to the beam splitter where they interfere. The
interference depends on the phase difference between the beams due to the different distance of
the arms traversed. At the output of the interferometer a photodiode is placed which converts the
interfered light into a current signal.

Considering that the Michelson interferometer on its own does not have a high enough accu-
racy to measure gravitational waves, Fabry-Pérot cavities are implemented in the interferometer
to increase its accuracy. The Michelson interferometer is able to detect gravitational waves by
measuring the phase difference between the two laser beams created by the passage of a gravita-
tional wave. This is because gravitational waves change the distance travelled by the laser beam
considering the strain created by these waves [19].

2.1.3 Fabry-Pérot resonance cavities

As was mentioned in the Section 2.1.2 Fabry-Pérot resonance cavities are needed to achieve the
accuracy required to measure gravitational waves. The cavity is a linear optical resonator which
is formed by two partially-transparent mirrors, arranged parallel to each other. From there the
Fabry-Pérot cavity is in simple configuration, a standing-wave resonator for the laser beam. If it
is on resonance the laser beam will be reflected back and forth inside the cavity increasing the
distance travelled of the beam, which enables the accuracy to be high enough for the experiments
to work [5, 20]. This is the circulating laser light between the two suspended mirrors as shown in
Figure 1.1. With an example of Michelson interferometer with Fabry-Pérot cavities on its arms
shown in Figure 2.3.

Figure 2.3: Michelson laser interferometer with Fabry-Pérot cavities on its arms used in the LIGO
experiment [18].

In a Fabry-Perot cavity it is important that the mirrors are free to move. By allowing the



10 CHAPTER 2. BACKGROUND RESEARCH

mirrors to freely move, the mirrors are able to be kept in the necessary free falling position. To
show how a Fabry-Pérot cavity is kept at resonance, only a single arm will be looked at as shown in
Figure 1.1. The input laser beam and the optical axis need to be aligned to prevent the occurrence
of higher order modes (HOMs). The HOMs depend in turn on the shift and tilt of the optical axis
as well as the length of the cavity [5]. In case there is a misalignment of the mirrors, error signals
will be created. This can occur because of the movement of the suspended mirrors that change
the length of the cavity. For that reason longitudinal control and angular control of the cavity is
needed to keep the cavity in resonance.

To have longitudinal control of a Fabry-Pérot cavity an error signal is needed. In case of
the Fabry-Pérot cavity this is the Pound-Drever-Hall error signal [21, 22]. In gravitational waves
detectors the Pound-Drever-Hall error signal is used to control the cavity length of the arm, which
has been previously stabilized [5]. The Pound-Drever-Hall technique uses a carrier frequency that
is resonant inside the cavity, while the sidebands are anti-resonant, therefore they are reflected.
The Pound-Drever-Hall error signal is the beating between the carrier and the sidebands. This is
used as phase reference and carries the cavity length information of the Fabry-Pérot cavity.

For the angular control of the cavity, dithering line (mechanical modulation) will be used. This
technique provides additional information about the misalignment of the Fabry-Pérot cavities. The
Ward technique (Phase modulation) will be used for the global alignment of the suspended mirrors.
This technique separates the information about the cavity angular degrees of freedom, tilt and
shift. The spatial beam phase distribution is measured here. In other words the near field and
far field intensity distributions that can be seen in Figure 1.1. Behind these positions cameras are
placed to see if there is a misalignment. Currently as mentioned in Section 1.1.1 highly experienced
people are needed to enable classical controls of the mirror and keep the system working. For that
reason instead of using people, machine learning will be used to find the misalignment of the
mirrors and control the system.

2.2 Convolutional neural network

An important part of the pipeline is the machine learning neural network to be used in it. This is
also not the first time a neural network is being used or investigated to be used for the gravitational
waves detectors. One application where the use of a neural network was being investigated was
to filter noise to increase the accuracy of the detector [23–25]. To understand the choices made
regarding the network in the pipeline, first some background knowledge will be presented regarding
neural networks.

A majority of neural networks take their inspiration from the brain [26]. This is because just
like any brain, a neural network consists of elements that are called artificial neurons, nodes,
synapses or edges. A neural network can be split up into two parts. The first part of the neural
network is the training or learning part. During this part the neural network uses data to train its
network to create a trained model. This model then can be used in the second part, the inference
of the neural network. During the inference part, the neural network applies the data from the
trained neural network model on the input and then uses it to infer a result. This research will
mostly focus on the second part of the neural network, the inference part. The design target
of the neural network is to achieve low latency with an high enough throughput to meet the
control constraints of the entire system. For a neural network the most important attributes are
accuracy/ robustness, power/energy consumption, throughput/latency and cost [27]. All these
metrics together show the trade-offs made in the design of a machine learning network and will
be further discussed in Section 3.1.

Machine learning networks have applications in various fields from computer vision [28] towards
natural language processing [29,30]. The most promising approach for image based neural networks
are Convolutional Neural Networks (CNNs). Some state-of-the-art CNNs can already rival or
even surpass the accuracy of humans when it comes to the classification of images [31]. The
following subsections will give an overview of neural networks and in particular convolutional
neural networks, but a full introduction to machine learning, neural networks and deep learning



2.2. CONVOLUTIONAL NEURAL NETWORK 11

is beyond the scope of this thesis. The reader can refer to the following references: [26,27,32–34].

2.2.1 Neural networks

For a neural network the basic element is an artificial neuron or node. The neuron consists of
units that sums all its input signals xi, which all are separately weighted wi. The input signals
come from other neurons. The weighted input signals are all summed up. These are then biased
with a fixed constant wb and fed into a non-linear activation function. This will then produce the
neurons output signal as can be seen in Equation (2.1) [35]. Examples of non-linear activation
functions are the sigmoid or the ReLU function, which can be seen in Equations (2.2) and (2.3).

y = wb +

N∑
i=1

wi ∗ xi (2.1)

sigmoid(x) =
1

1− e−x
(2.2)

ReLU(x) = max(0, x) (2.3)

The mathematical model of a single neuron can be seen in Figure 2.4. The weights in the
neuron model can be adjusted such that the neural network gives the desired output. Each of
these neurons can be arranged into different layers. A neural network is created by connecting the
neurons between the different layers.

Figure 2.4: Single neuron mathematical model [35].

The neural networks are called N-layer neural networks, which do not count the input layer.
Depending how large N is they are sometimes called deep neural networks. An example of a
neural network is visible in Figure 2.5. This is a 2-layer neural network. Here one layer is the
hidden layer, which are the layers between the input layer and the output layer. The last layer is
the output layer which determines the outcomes of the neural network. These networks are then
trained to determine the weights, which are needed to achieve an as high as possible accuracy of
the network.

For neural network training the parameters or weights are not manually chosen but they are
learned during the training phase of the neural network. For the training of the neural network
there are many frameworks available that enable to train a custom network with little engineering
effort. These frameworks depend on which hardware platform is being used for the training. Some
examples of these frameworks are the Deep Learning Toolbox from MATLAB [36], Caffe [37],
Tensorflow [38], Theano [39], Keras [40] and PyTorch [41]. The framework used for training the
network needs to be compatible with the framework used for the neural network. The different
hardware platforms together with the different frameworks will be further discussed in Section 2.3.

The training method often used is called supervised learning. This requires labeled training
examples that the network can learn from. The training of the network starts with small, random
initialised weights. Then one by one all training examples are given to the network. The results
of the network are compared to a ground truth label using a loss function. This measures how



12 CHAPTER 2. BACKGROUND RESEARCH

Figure 2.5: 2-layer neural network (one hidden layer of 4 neurons and one output layer with 2
neurons), and three inputs [35].

much the output deviates from the expected result. The training process then tries to minimise
the loss function (error) on the training by changing the weights in the network.

Each weight in the network has a certain influence on the network. The stochastic gradient
descent is an iterative method that describes each weights influence on the network. By using a
backward pass the gradients of the network can be calculated by using the output error of the
network. Then by continuously looping over the training examples the current loss function is
determined and from that the gradient vector adjusts all the weights in the opposite direction
of their respective gradient. One such loop is called an epoch and the change per update is the
learning rate. This learning rate is typically large at the start and made smaller over time [35].

Network validation needs to be done before the network inference can be used. The network
validation is done during the training of the network. This is done every few epochs with validation
examples that are not used in the training examples. Once the accuracy is deemed good enough
compared to the validation of the network, it can be used for neural network inference.

2.2.2 Introduction to convolutional neural networks

Convolutional neural networks is one of the most promising approaches for image based neural
networks. From Section 1.1.1 it is made clear that the neural network of this system uses images
from special cameras to determine the controls the system needs to take. A typical CNN is a
feed-forward network that consists of a number of layers that run in sequence. The input and
output of each layer consists of so called ”feature maps”. Within a layer the neural network can
run in parallel to apply the weights determined in training of the neural network [26]. The first
layer (input layer) of the neural network takes the dimensions of the image as input and produces
the output feature map for the next layer of the CNN. With a CNN there is no need for a fully
connected layers for each layer, because of the locality of information in images. In a typical
CNN a single pixel cannot determine the output but the local neighbouring relations of pixels
can. These layers that replace the fully connected layers are so called convolutional layers. Next
to the convolutional layer (CONV layer), a typical CNN consists of multiple other layers such as
non-linearity, pooling, input and fully connected layers [27,42–46]. In the case of a sequential fully
connected neural network, billions of extra weights need to be stored.

The input layer will obtain the raw input data of the image. This is the width and height of
the images and the amount of channels for each image. For example for a RGB image which has
3 channels with a width of 32 and a height of 32 the input feature map would be [32× 32× 3].

The CONV layer consists of learnable filters of size (k × k). Commonly used filters are 1× 1,
3 × 3, 5 × 5, 7 × 7. These are often called convolution kernels. The amount of kernels or filters
used determines the depth of the output volume. For example if the input layer uses 64 filters
with kernel sizes of 3 × 3, the output feature map would be [30 × 30 × 64]. This is the first



2.2. CONVOLUTIONAL NEURAL NETWORK 13

hyperparameter that can be tuned in a CONV layer of a CNN. An hyperparameter is a value that
is set before training begins and a value that controls the learning process of the network.

For kernels larger than 1 × 1 the output feature map dimensions will be reduced. To avoid
reducing the output dimensions, sometimes the input feature maps will be padded with zeros to
preserve the spatial size of the input volume [43]. The zero-padding is the second hyperparameter.

The final parameter of the CONV layer is the stride used. If the stride is 1 then the filters are
used for one pixel at a time, but when the stride is 2 or larger then the filters jump 2 or more
pixels at a time. This will result in a smaller output feature map.

The non-linearity function applies the activation such as Equations (2.2) and (2.3) to the
output of a layer. This function leaves the size of the feature maps unchanged. This function is
sometimes called the activation in some literature [26]

The pooling layer reduces the spatial dimensions of the input feature map. It does this by
summarising multiple input pixels into a single output pixel. The two most used pooling methods
are max-pooling and avg-pooling. With max-pooling the output is determined by the taking the
maximum of value of the pixels and for avg-pooling the average is taken. An example of max-
pooling is where the filter of size [2 × 2] is applied with a stride of 2. This would mean that
for 4 input pixels only a single pixel would remain making the output feature map of this layer
[15×15×64] as the depth once again does not change. An extreme case of pooling would be global
pooling to the whole input image. This would reduce the spatial information to 1× 1 pixels.

The Fully-Connected (FC) layer is often used as the last layer in a CNN. These layers
usually have the most weights in CNNs, because they try to reduce the spatial information of the
network to a single output. This means that each input of this layer needs a weight to know how
it matches to each output. The FC layer is often the most memory intensive layer of the network.

2.2.3 CNNs complexity

CNNs have the ability to surpass human accuracy in classification of images [31]. This excellent
performance of CNNs comes from the cost of a large computational complexity and storage capac-
ity is high [26, 45–56]. The inference of a CNN may need up to billions or trillions of operations
per second to achieve the required latency of the network. An example CNN model that uses
this many operations uses 224×224 images. This model requires up to 39 billion floating point
operations (FLOPs) and more than 500 MB of model parameters [57]. Another example is for a
VGG-19 network. This network needs over 15 billion FLOPs to classify only a single image [58].
A final example is AlexNet, this contains 60 million parameters and storage size of 240 MB when
the weights are stored as 32-bit numbers [59]. These large storage sizes and computational com-
plexity can lead to problems in the deployment of CNN inference for low latency systems [60].
To achieve the lowest possible latency, several methods have been proposed to reduce the com-
putational complexity and storage capacity of CNNs. Important to notice is that to achieve low
latency is different from achieving high throughput in CNNs. Latency refers to the time taken
to process a single input for the neural network, while throughput of a neural network is defined
as the maximum number of inputs the network can process in a given timeframe. This means to
achieve low latency pipelines the batch size is often small, while for high throughput the batch
size is larger [61].

The methods to achieve the low latency include algorithmic optimizations for CNNs, accel-
eration or compression techniques which reduce the size of the weights used and the computa-
tional complexity. Researches then use these techniques to design more efficient networks mod-
els [26,45,52]. Examples of such networks are ShuffleNet [62,63], ShuffleNet V2 [64], Shift-Net [65],
MobileNetV2 [66], AddressNet [67]. MobileNet is for example created by using depthwise separable
convolutions [55].



14 CHAPTER 2. BACKGROUND RESEARCH

2.2.4 CNNs complexity reduction techniques

Several methods have been proposed to reduce computational complexity and storage capacity
of CNNs. Methods that are going to be discussed include pruning, reduced precision CNNs
(quantization) and binary CNNs which are often called BNNs or BCNNs [47,68–70].

Pruning is a technique used in neural networks where all small or unimportant weights are
set to zero. This removes the unimportant connections, computational complexity and storage
capacity [45,49,71,72].

Quantization is being used to convert the usual 32-bit floating point precision numbers of
weights and activations to low-precision numbers to reduce the computational complexity [52,54,
72]. This also reduces the storage space needed for all the weights. Quantization can be split
up into two different methods. Linear quantization and non-linear quantization. Where linear
quantization tries to find the nearest fixed-point representation for each weight and activation.
Non-linear quantization independently assigns values to different weights and activation’s. The
problem with using quantization is that it can lead to significant accuracy loss of the neural
network. This is because, once the quantization converts the 32-bit floating point numbers to
8-bit fixed point numbers, the dynamic range of the weights and activations will be lower. Which
in turn means less information can be shared between each layer in the network [49]. In quantized
neural networks sometimes a thresholding layer is introduced at the input of the network. This
layer converts the input quantization to standalone thresholding to ensure the neural network can
use the input in the rest of the neural network. In this layer the output is set at one of two
levels, depending on whether the total input is greater than or less than some threshold value.
For more extensive introduction of quantized neural networks the reader can refer to the paper of
Umuroglu [73] or Choukroun [74]. To further optimize the storage reduction techniques, networks
such as AddNet have been develepod. AddNet is special in that it only uses adders, subtractors,
bit shifts, and multiplexers. These are components that can be highly optimized for FPGA designs
to ensure efficient utilisation [69].

BNNs or Binarised neural networks are a special kind of CNN. With a BNN instead of using
32-bit floating point precision for each layer for the weights and activation’s, they are binarized to
either +1 and -1 or 1 and 0 and stored in a single bit [45, 48, 75–78]. The BNNs that use the +1
and -1 are often called bipolar neural networks instead of binarized. BNNs have been proposed
to challenge the two disadvantages of CNNs. First like quantization the storage for the weights
and activations is reduced by using only a single bit instead of 32 bits. Secondly the BNNs also
change multiply-accumulates (MACs) CNNs use to XNORs. The XNORs further reduce necessary
compute sources [51]. A BNN does not always do this for every layer of a CNN. For the first and
last layer a BNN sometimes still uses 32-bit floating point precision in order to achieve acceptable
accuracy [79]. BNN type networks also introduce a new layer type. This is the batch normalization
layer. This layer can be used instead of the non-linearity layer of the CNN. This layer reduces the
information that is lost during binarization of the 32-bit floating integers by shifting and scaling
the input distribution to have zero mean and unit variance [45,48,80].

2.3 Potential hardware platforms

The system that has to be developed has certain constraints such as the low latency that has to
be met for the control system to work. These constraints can be met by many different means.
This section will explore a number of different options that are available for the implementation of
the neural network. Several different hardware platforms will be investigated such as CPU, GPU,
FPGA and ASICs. For each of these platforms, it will be determined what their most common
use is, while also looking at the development time on these platforms. This development time can



2.3. POTENTIAL HARDWARE PLATFORMS 15

increase and decrease depending on which tools are available for these platforms which will all be
discussed.

2.3.1 Central processing unit

Central Processing Units (CPUs) are general purpose processors used in a very large range of
devices such as desktop computers and smartphones. CPUs have a high flexibility and can be used
for comparisons of different complex processes in a program. With many CPUs having optimised
prediction optimisation to increase speed in processes. There are many types of CPUs available
where they are designed with different trade-offs such as power and speed in consideration.

The reason why CPUs are often not used for low latency CNNs, is because they often compute
the results sequentially, while a CNN is highly parallel in each layer. However CPUs can have
multiple cores available with as example AMDs latest Ryzen Threadripper 3990X Processor which
has up to 64 cores [81] making it possible for a certain level of parallelism. Nevertheless the NVIDIA
GeForce RTX 2080 TI (GPU) has up to 4350 floating-point processing cores running. CPUs are
highly flexible and can be used for many different use cases in a design. They have the ability to
support for large storage capacities and sizeable amount of memory compared to GPUs or FPGAs.
They do fail to match them on the raw compute capabilities. For that reason CPUs are often used
in heterogeneous systems together with GPU or FPGAs for the inference of the system [63, 82].
The CPU has many tools available for creating a neural network inference. Each of these tools
use some form of high-level programming such as C, C++ or Python. These frameworks are for
example the Deep Learning Toolbox from MATLAB [36], Caffe [37], Tensorflow [38], Theano [39],
Keras [40] and PyTorch [41]. The availability of all these different tools make the development of
the neural network inference on a CPU one of the easiest of all hardware platforms.

2.3.2 Graphics processing units

The Graphics Processing Unit (GPU) has the ability to outperform the CPU for the inference
of a neural network by using their raw compute capabilities. By using the GPU as accelerator
for training a CNN model it can reduce the computational time needed compared to just using a
CPU [26,83,84]. GPUs are being more and more used for general purpose computing tasks that are
highly parallel [85–87]. For that reason these GPUs are referred as General-Purpose Computing
on GPUs (GPGPUs) [45]. These computing task can then be used for neural network training and
inference. High end GPUs such as the NVIDIA GeForce RTX 2080 TI [88] can have up to 4350
floating-point processing cores running at the same time with a clock of 1350 MHz. This GPU has
616 GB/s memory bandwidth, which lead to that the GPU can compute up to 11750 GFLOP/s.
The costs of this performance of GPUs usually comes from power usage as the NVIDIA GeForce
RTX 2080 TI uses up to 250W. State of the art GPUs have the ability to process the necessary
billions or trillions operations per second, which may be necessary for a low inference CNN. GPUs
are designed to be well suited for parallel workloads. Which means that the they are a good fit for
the highly parallel workloads presented by CNNs. Some CNNs are even structured to be optimal
for GPU efficiency [52]. The GPU constitutes one of the primary platforms for research in the
area of CNNs because of how they are being structured and because GPUs are fully supported by
most deep learning frameworks. Many GPU vendors also aggressively position the GPU as the
compute platform of choice for machine learning by modifying their architecture [89].

The GPU consists of large arrays of arithmetic logic units (ALUs) or cores. There can be up
to hundreds or thousands smaller cores [88] in a GPU while a CPU for example only has 8 cores.
With an outlier being the Ryzen Threadripper 3990X Processor which has up to 64 cores [81].
By having this many cores the GPUs are generally suited for high-throughput computations that
can exploit the singe instruction multiple data (SIMD) architecture of a GPU [54]. For the GPU
the workloads would be broken up into thousands of parallel threads. Preferably as many as the
GPU has available. This is because each thread needs to perform the same instruction at the same
time. This means that for certain instructions many threads will be idle, resulting in a reduced



16 CHAPTER 2. BACKGROUND RESEARCH

compute efficiency and making the top performance of a GPU dependent on how many threads
can efficiently be used at the same time.

The GPU typically uses single-precision floating-points for each thread and, on occasion,
double-precision floating-points. This double-precision floating-point often comes with a signifi-
cant performance penalty compared to single precision floating-point calculations. For example
for the NVIDIA GeForce RTX 2080 TI the single-precision floating-point has processing power
up to 11750 GFLOP/s, while the double precision only has processing power of 367 GFLOP/s.
The GPU does not always support the reduced-data-type precision techniques mentioned in Sec-
tion 2.2.4. These techniques can however be used with FPGAs where it is easier to provide a lower
precision data type [89].

The GPU system architecture has its own memory architecture which affects how the inference
of the machine learning network will be on a GPU. An example of the GPUs memory hierarchy is
visible in Figure 2.6. Each of the threads in the GPU has their own local memory and registers.
Then a certain amount of threads will fit into a block. In this block the threads can communicate
by using the shared memory. This memory is slower than the registers but faster than the local
memory each thread has. Finally in a grid there is the global, constant and texture memory.
Each of these memory spaces are optimised for different memory usages. The local memory of a
thread is as slow as the use of global memory and will only be used if the register cannot fit all
the necessary data. These differences in memory means that depending on which memory in the
GPU is used, the latency can increase up to 100 times [90].

Figure 2.6: GPU memory model [91].

For a GPU, a CPU or host is still required to allocate workloads to the GPU [92]. This
introduces one of the biggest bottlenecks of the GPU as the transfer of data to the GPU is
dependent typically on the speed of the PCIe lanes [82]. For example the NVIDIA GeForce
RTX 2080 TI supports PCIe 3.0 x16 limiting the GPU performance by only having 15.75GB/s of
bandwidth. This bandwidth is 39.11 times slower than the memory bandwidth on the GPU card
itself, making it one of the biggest bottlenecks for low latency driven systems. Considering the
bottlenecks the GPU has it is more used for training than inference. As it delivers high performance
compared to other hardware for batch computations but cannot meet the tight latency constraints
for frame by frame processing [46,84,93,94].

Just like the tools available for neural network inference on CPU there are several tools available



2.3. POTENTIAL HARDWARE PLATFORMS 17

for the GPU. For this many of the same frameworks can be used such as Caffe [37] and Tensorflow
[38]. For the general computing on graphical processing units (GPUs) the frameworks such as
OpenCL and CUDA [91] have been developed to dramatically speed up computing applications
[89]. By using these frameworks together with for example Caffe, the GPU can be utilised better
for inference of the neural network.

2.3.3 Field-programmable gate arrays

The Field-Programmable Gate Array (FPGA) is another promising option as hardware platform
for the inference of the CNN [53,72,95]. As accelerators FPGAs are commonly used to stream data
from input devices and immediately perform computations on the streamed data. Examples of
these computations are decompression [96], image processing [97], scientific computation [98] and
simulation [99]. FPGAs have the ability to provide thousands of programmable logic blocks and
configurable interconnect. This enables the possibility of a custom-tailored accelerator architecture
in hardware that can achieve the necessary low latency [89]. For this FPGAs can use on-chip
SRAM (Block RAM), USB, PCIe and Ethernet Transceivers, Digital Signal Processor (DSP)
Slices, PLLs, Memory Interfaces and sometimes even full ARM processor cores [42,46]. The logic
blocks, functions units and interconnects created for this device are programmed electronically
by writing a configuration bitstream into the device. For that reason FPGAs are thought of
as hardware devices where they are programmed in Hardware Description Languages (HDLs)
such as VHDL or Verilog. This configuration that is typically held in the SRAM of the FPGA
however can be be reprogrammed many times, giving it a advantage over dedicated circuitry [100].
The designs of the FPGAs are then described at Register Transfer Level (RTL). This is where
the parallel processes which operate all the binary signals and simple data types are described.
All these processes combined describe the basic arithmetic operations, logic blocks and registers.
These processes are then driven by the rising and falling edges of a clock signal. For this FPGAs
can have clock speeds up to 500 MHz [100]. This slow clock speed is an inherent disadvantage
of FPGAs compared to GPUs which can have almost up to three times its clock speed [49]. For
example the NVIDIA GeForce RTX 2080 TI can have a clock speed of 1350 MHz [88].

A design that can be made parallel by building custom processing engines using the pro-
grammable logic blocks is the best option for the FPGA. While workloads and algorithms that
require complex data-dependent branching and decisions are more suited for the CPU instead of
FPGAs. The FPGA can unlike the GPU increase performance by using the techniques mentioned
in Section 2.2.3. This is because FPGAs have more flexibility in which data type precision will be
used [89].

Like the GPU and CPU, the FPGA has its own unique memory which can be used. An example
in Figure 2.7 from [89] tries to show how the memory hierarchy looks like for a Xilinx FPGA. This
shows that kernels or programmable logic blocks can interface directly to the memory such as the
LUTRAM, BRAM, UltraRAM or even external memory.

Figure 2.7: FPGAs programmable datapath memory hierarchy example [89].

This memory is an important factor to store the model parameters of the CNNs. As mentioned
in Section 2.2.3 this can go up to 500 MB. For this the FPGA can use the UltraRAM that some



18 CHAPTER 2. BACKGROUND RESEARCH

FPGAs have available. This memory can contain up to hundreds of megabits on-chip storage,
storing all the model parameters for faster latency of a system [50,89].

There have been many optimisations made to accelerate CNNs on FPGAs. To show some of
the approaches to CNNs on FPGAs see Figure 2.8. This figure is based on figure 2 of the paper
from Abdelouahab [54].

FPGA inference Acceleration of CNNs

Hardware Generation

RTLDSL BasedHLS Based

Vivado HLSOpenCL

CNN model Optimization

StochasticQuantization

Non-LinearLinear

Sparsity

Datapath Optimization

DSE/RooflineVon-NeumannDataflow

Figure 2.8: Main approaches to accelerate CNN inference on FPGAs [26,54]

One important factor as to why FPGAs are not widely used for machine learning networks is
because of their development time compared to GPUs or CPUs. As mentioned before the designs
of the FPGAs are described at RTL. While RTL descriptions are very close to the logic gates
and RTL synthesis can be closely controlled, the process of creating the necessary processes in
logic blocks is a very tedious and error-prone process. Making the engineering effort of a CNN on
FPGAs higher than for example a CPU or a GPU [26,52,101].

In order to solve this problem multiple vendors have created frameworks and libraries that
target to lower the development time of neural networks on FPGAs. The paper by Shawahna, [46]
discusses many cases of FPGA implementations of CNNs. Here the paper discusses different
frameworks and techniques used for development of the CNNs on FPGAs. As there have been
many efforts by the academic community for the development on FPGA-based CNN accelerators
[56, 102, 103]. One of these developments is the use of low precision CNNs like BNNs mentioned
in Section 2.2.4.

There are many CNNs to FPGA frameworks used for reducing design effort and complexity.
One of them is for example the Merlin Compiler of Falcom computing [104]. This framework
requires the rewriting of the algorithms in OpenCL or lower level hardware description languages.
Additionally generic frameworks such as Intel OpenCL [105] and Xilinx SDAccel [106] allow com-
putational kernel to be offloaded from host processor onto FPGA-based accelerators. OpenCL is
a higher-level programming language that can be used between different hardware platforms while
hiding which hardware is going to be used [82].

Both Xilinx and Intel mention that these frameworks have acceleration for deep learning algo-
rithms such as CNNs as major use case, but both do not directly accelerate CNNs. Vivado HLS
is a framework that can be used to implement accelerators. For example the paper by Liu, [63]
uses Vivado HLS (v2016.4) to implement the neural network in C++ and convert it to RTL as
a Vivado Intellectual Property (IP) core. There have been many more automated frameworks in
development that map CNNs to FPGAs. Table 2.1 lists some of the CNN-to-FPGA frameworks.
The table also mentions some of the supported FPGAs that can be used with the framework.
Depending on the framework used, an optimised FPGA-based CNN accelerator can be generated.
Most of these frameworks are discussed in papers such as: [46,56,107]. The majority of the frame-
works mentioned in the table use a high-level description of the network in Caffe or Tensorflow
and generate an accelerator for an FPGA. The architectures of these frameworks can for the most
part be categorised into streaming architectures and single computation engines [56].

The streaming architecture generates feed-forward dataflow-style architectures that will be op-
timised for each network. In this architecture each layer of the neural network will be implemented
separately to exploit the parallelism of these layers. These layers together will create a pipeline
that enables the data to be streamed through the architecture. The advantage of this architecture
is that it exploits the parallelism between layers by means of pipelining, which lowers the latency
by reducing the communication time between layers. Its disadvantage is the long compilation
times that are needed. This comes from that for each configuration of the CNN a new bitstream



2.3. POTENTIAL HARDWARE PLATFORMS 19

needs to be created. Some of the frameworks that use the streaming architecture are fpgaConvNet,
DeepBurning, FINN and Haddoc2 [56].

The single computation engines consists of a matrix of processing engines. This architecture is
made up of a single computation engine, that is often in the form of a systolic array of processing
elements or a matrix multiplication unit [56]. This unit will then execute each of the layers of the
neural network sequentially, increasing the latency of network compared to streaming architectures.
The advantage of this architecture is that is often more flexible reducing the time to create multiple
neural networks. The frameworks that use this architecture are Angel-Eye, ALAMO, DnnWeaver,
Caffeine, FP-DNN, Snowflake, SysArrayAccel and FFTCodeGen [56].

Framework Interface Supported FPGAs
ALAMO [95,108–111] Caffe Intels: Stratix V GXA7 and

the Arria 10 GX115 SoC
Angel-Eye [103,112,113] Caffe Xilinx SoCs: Zynq XC7Z045

Zynq XC7Z020
AutoCodeGen [114] Proprietary Input Format Xilinx: -
Caffeine [44] Caffe Xilinx: KU060 FPGA board

Xilinx: Virtex 7 VX690T
DeepBurning [115] Caffe Xilinx SoCs: Zynq XC7Z045

Zynq XC7Z020
DNNWEAVER [116,117] Caffe Intels: Stratix V GSD5 and

the Arria 10 GX115 SoC
Xilinx Zynq XC7Z020 SoC

FFTCodeGen [118–121] Proprietary Input Format Intel: Stratix V GXA7, With
Intel Xeon E5-2600 v2 CPU

FINN [80,122–125] (Theano past), Brevitas Xilinx SoCs: Zynq XC7Z045
Zynq XC7Z020
Pynq-Z1, Pynq-Z2,
Ultra96, ZCU104
Alveo Boards

fpgaConvNet [61,126–128] Caffe & Torch Xilinx SoCs: Zynq XC7Z045
Zynq XC7Z020

FP-DNN [101] Tensorflow Intel: Stratix-V GSMD5
Haddoc2 [129] Caffe Intel Cyclone V FPGA

Xilinx Kintex 7 FPGA
Snowflake [130,131] Torch Xilinx SoCs: Zynq XC7Z045
SysArrayAccel [132] C program Intel Arria 10 GT115
TABLA [133] Template-Based a Xilinx Zynq FPGA
Vitis AI [134,135] TensorFlow and Caffe Xilinx: ZCU102

ZCU102
Alveo: U50
Alveo: U200
Alveo: U250
Ultra96

Table 2.1: CNN to FPGA inference frameworks.

From the frameworks mentioned in Table 2.1 some will be shortly further discussed that have
an open-source version. These frameworks to be discussed include DNNWEAVER [116], Haddoc2
[129], FINN [125] and Vitis AI [135]. Only the open-source version will be discussed, considering
the neural network has yet to be created for the pipeline. Meaning that in the future maybe some
specific adjustments must be made to the tool in order for the framework to work.



20 CHAPTER 2. BACKGROUND RESEARCH

DNNWEAVER is a framework for accelerating Deep Neural Networks (DNNs) on FPGAs.
The programmer that uses DNNWEAVER specifies the DNN using Caffe. From the Caffe format
of the DNN the framework automatically generates the accelerator Verilog code. It does this by
using special hand-optimized Verilog templates.

Haddoc2 is an framework for accelerating Convolutional Neural Networks (CNNs) on FPGAs.
Just as with DNNWEAVER, Haddoc2 uses a Caffe model to generate a hardware description
of the network. This hardware description is in VHDL-2008 and the framework claims that the
generated code is constructor and device independent. Haddoc2 implements the target CNN by
directly mapping all the actors involved in CNN processing are physically mapped on the FPGA.

FINN is a framework developed by Xilinx. The FINN framework explores deep neural networks
inference on FPGAs. For this FINN specifically targets quantized neural networks (QNN). By
focusing on QNNs it is able to trade-off between very high throughput and low latency networks.
For this the developer needs to use Brevitas trained nework. Brevitas is a Pytorch library made
by Xilinx for quantization-aware training

Vitis AI is another framework that is being developed by Xilinx. For further accelerating
productivity for hardware designers Xilinx released the Vitis Unified Software Platform [134,135].
Vitis AI is an integral part of Vitis. This platform enables the development environment of
accelerating neural network inference on Xilinx embedded platforms. The Vitis libraries enable
the accelerating with minimal changes to existing code written in C, C++ or Python by using
frameworks such as Tensorflow and Caffe. It further consists of tools to optimise networks. Tools
that supports model quantization, calibration, and fine tuning.

Vitis AI and FINN are currently the most promising frameworks to look further into. For
example a network build with FINN was able to reach a latency off 0.31 µs and 12.3 million
images per second [80]. Another reason is that both Vitis AI and FINN are both frameworks that
at the moment of writing are still actively being developed.

2.3.4 Application-specific integrated circuits

Application-Specific Integrated Circuits (ASICs) are custom-tailored semiconductor devices. Gen-
erally ASICs do not suffer from any area or timing overhead compared to the other hardware
platforms discussed. This results in that ASICs typically are the smallest and fastest systems for
inference of neural networks [53,93].

However next to the advantages of ASICs designs they also have several disadvantages com-
pared to other hardware platforms. The most important reason is that the development of an
ASIC design is a long and complex one [53, 93]. This is due to the fact that ASIC designs do
not use any form of high-level languages. The ASIC design also would have the most difficult
time communicating with the other components of the system as those parts also needs to be
specifically designed for this project, making the design time even longer.

An example of an ASIC design to accelerate deep neural network inference tasks is the Google’s
Tensor Processing Unit (TPU) [94]. The TPU of Google has the ability to support various deep
neural networks by having a integration with the Tensorflow framework. However the development
of this ASIC is still a long one and cannot be easily reconfigured. Another example of the ASIC
design flow could go for a CNN on an ASIC is discussed in the paper [93] by Boutros. This paper
uses Synopsys Design Compiler 2013.03 to synthesize computing architectures for CNNs using
28nm STMicroelectronics standard-cell libraries.

2.3.5 Comparison and combination of different platforms

In order to find out which hardware platform will have the highest change to meet the system
requirements certain metrics of each platform will need to be compared to one another. These



2.3. POTENTIAL HARDWARE PLATFORMS 21

metrics will be further discussed in Section 3.1. An important thing to note is when different
platforms such as GPU and CPU are being combined in a heterogeneous system. An heterogeneous
system mainly aims to optimise throughput of a neural network and often has communication
between platforms as bottleneck for latency. On the other hand an homogeneous system target
the optimisation of the latency [50]. In order to tackle this problem Xuechao describes in the
paper [50] a tile-grained pipeline architecture (TGPA) for low latency inference of CNN models.

The paper from Nurvitadhi [76] looks for example to compare BNNs on CPU, GPU, FPGA and
ASIC. In this paper each hardware platforms acceleration is compared to the CPU implementation
of the BNN. Another paper where CPU, GPUs and FPGAs are compared with each other is in
the paper from Yu [136]. In this paper the hardware platforms are implemented in data-centers.
This paper concludes that the FPGA has the lowest latency on the different networks tested. The
GPU on the other hand achieved the highest throughput. The GPU reached this performance at
a batch size of 128, while until the batch size reaches 64, the FPGA implementation has an higher
throughput.

It can be seen from the paper of T. Wang [53], that the FPGA has the highest change as
hardware platform to succeed. This paper did a survey on FPGA based neural networks. The
general conclusion from this was that the ASIC has the highest theoretical performance but has
too large of an development time and is too complex. The CPU and GPU both had an easier
development time than the FPGA but have general less performance. This meant that an FPGA
inference of a CNN has the highest change to succeed the reach the required low latency, while
having a low enough development time to be made in this thesis. This general thought was
shared when comparing RNNs (Recurrent Neural Networks) and BNNs for FPGA, CPU, GPU
and ASICs [76,137].

Another paper that compares FPGA and ASIC hardware accelerators is written by Shawahna
[46]. This paper also mentions that ASIC designs have in theory an higher performance however
the development time and flexibility of ASIC designs are not adequate enough for this thesis. While
an FPGA does have enough flexibility and a low enough development time. Many more papers
believe that an FPGA design will be the best design for a CNN accelerator such as [56,61,82].

Some disadvantages from FPGA acceleration come from how it is implemented. This comes
from that most FPGA accelerators only implement the convolution layer or the Fully-Connected
layer [44]. However only accelerating certain layers and not all of them brings certain limitations
to the acceleration. The biggest limitation is the data communication overhead. This overhead
comes from that the unaccelerated layers are executed on the CPU and need to communicate back
and forth with the FPGA on for example the PCIe connection [44]. An example of an FGPA
network which can meet the requirements of this project is discussed in the paper by Zhou [78].
There the BNN has an accuracy of 86.06 % on CIFAR-10 dataset while reaching 332,158 images
per second with a constant latency of 4.9µs. Or another example where the latency of the network
is only 75ns is in the paper of Duarte [68].

The paper written by Abdelouahab [26], does another analysis when comparing available hard-
ware to accelerate a CNN workload. This paper shows that for different networks, different hard-
ware platforms will work better for low inference times. As in this paper in table 2.5 the GPU
platform has the lowest inference time, while as mentioned before FPGA platforms have the
highest change to succeed.

The paper written by Rush [82] compares CPU, FPGA and GPU hardware platforms exten-
sively and gives a good analysis about which metrics for different platforms will perform better.
Figure 3 of this paper shows why for different features FPGA such as timing latency is better but
for DNN training a GPU is better.





Chapter 3

Use case requirements

This chapter will explain the most important choices for this thesis and how they have been made.
It will start with discussing the design methodology that is going to be used for the rest of the
thesis. In this section it will explain how the different metrics of the pipeline will be measured
and show on which metrics a performance analysis will be done. Once the metrics are determined
together with the performance requirements of the pipeline, the different hardware constraints of
the pipeline will discussed. The hardware constraints determine what the input and output need
to be for be for the eventual neural network of the system. From the hardware constraints together
with the background research, certain design choices will be made for the rest of this thesis. Finally
the design choices of this thesis will determine which neural networks will be investigated. These
neural networks will be investigated to show how they correspond to the possible future neural
network for the gravitational waves interferometer control system.

3.1 Design methodology

In order to properly design the pipeline and see if it can meet the performance requirements, some
evaluation metrics will need to be determined. Together with how these metrics will be measured.
From Section 2.2 it has been made clear some important metrics to look at with network inference
are accuracy/ robustness, power/energy consumption, throughput/latency and cost (resources)
[138]. Considering the neural network is still under development, another important metric is the
development time of the accelerated neural network.

The first metric to discuss is the latency of the network. For the network that is going to
be developed it is important that the inference is low latency. Within this project low latency is
defined as that from the input of the camera till the output of the neural network the latency is
equal or lower than 0.1 ms.

The next metric to consider is the throughput. Often in other literature throughput of a system
is usually expressed by the number of Multiply Accumulates (MACs) an accelerator can perform
per second [26]. Now because this pipeline is about using cameras the throughput is measured
using frames per second (fps). The two different metrics can be directly related, but MACs are in
the case of this thesis not of interest. For this system there are two different cameras measuring
each respectively the near and far field. These two cameras each correspond to the same output
of the neural network. This means that within the 0.1 ms two different images need to go through
the network. By using Equation (3.1) the amount of fps or throughput can be determined for this
project.

Frames per seconds =
Frames

Inference time
=

2

0.0001 s
= 20000 fps (3.1)

The final metric this project will discuss, is the cost or in other words the amount resources to
be used by the network. This metric will be explored, to ensure that eventual system is realistic

23



24 CHAPTER 3. USE CASE REQUIREMENTS

and if it can fit on available hardware. For the sake of this project there is no limitation on the
cost.

As the neural network is still under development, the accuracy/ robustness of the network will
not be investigated. However as is discussed in Section 2.2.4, if complexity reduction techniques
will be applied, then this needs to be accounted for in the conclusion in case a certain accuracy
target needs to be met for this network in the future.

Finally the metric of power/energy consumption will not be discussed in this thesis as it is not
of interested in regards to the research question.

3.2 Hardware constraints for pipeline

The pipeline that must be created for the neural network for a future gravitational waves inter-
ferometer control system has certain constraints to reach the required latency of 0.1 ms. These
constraints do not only come from the pipeline itself, but also from the input and output of the
pipeline. The pipeline to be optimised can be seen in Figure 3.1.

Figure 3.1: Pipeline to optimise.

This pipeline consist of 2 cameras which measure the error signals that are created from the
misalignment of the Fabry-Pérot cavities. Next to the cameras the pipeline consists of hardware
fabrics that runs the machine learning network and obtains the results. These results must be
communicated with the dSPACE MicroLabBox which does the control of the system for the
mirrors.

3.2.1 dSPACE MicroLabBox

The first constraint of the pipeline comes from the dSPACE MicroLabBox. The dSPACE Micro-
LabBox needs to receive data every 0.1 ms. This is because the control loop of the longitudinal
control of a Fabry-Pérot cavity is 10 kHz. In case the loop is made slower the longitudinal control
will fail and the experiments cannot be conducted. The datasheet of the dSPACE MicroLabBox
informs the user which interfaces can be used to communicate with the possible hardware fab-
rics [6]. Depending on the hardware fabrics chosen to run the machine learning network on, one
of these interface will be used to send the necessary control data every 0.1 ms. This data exist out
of 5 numbers for the mirror misalignment, which is the result of the machine learning network.
The interfaces and their speeds can be seen in Table 3.1.

Communication Integrated USB 2.0 CAN LVDS
Protocols Gigabit Ethernet channels interface
Transfer speed: 1Gbit/s [139] 480Mbit/s [140] 1Mbit/s [141] 655Mbit/s [142]

Table 3.1: Communication transfer speeds of different protocols in the dSPACE MicroLabBox.

The transfer speeds in table 3.1 are needed to calculate how much time is being used to send
the result of the neural network to the dSPACE MicroLabBox. This time is then substracted
from the 0.1 ms to determine how much time is left for the actual running of the neural network.



3.2. HARDWARE CONSTRAINTS FOR PIPELINE 25

These performance requirements of the pipeline will be discussed in Section 3.3. For the dSPACE
MicroLabBox together with its fastest protocol in Equation (3.2) it is determined that it needs

Data Trasfer T ime =
bits to Transfer

interface speed
×1000 =

8 bit

1000× 106 bit/s
×1000 = 0.000008 ms (3.2)

3.2.2 Cameras

The second part that constraints the pipeline is the input. The input comes from two different
cameras that take images from the near and far field distribution. Considering that the dSPACE
MicroLabBox needs a result every 0.1 ms for the control system, the cameras also influence the
final latency. From this can be concluded, that first the cameras need a result within 0.1 ms and
then the remaining time is used to run the neural network and transfer the result to the dSPACE
MicroLabBox. The longitudinal control needs a control loop of 10 kHz. This would mean in turn
that the frames per second (fps) of the cameras at minimum needs to be 10000 fps. By having
10000 fps, every frame can then run through the neural network giving a new result. For obtaining
the correct data from the setup, special cameras are needed that are able to obtain the data from
the far field and near field intensity distributions. Currently for this experimental test setup the
available cameras and their constraints can be seen in Table 3.2.

Cameras specs Budget Moderate Professional
Supplier Basler Mikroton Optronics
Resolution 64x64 90x90 192x192

32x32 60x60 192x120
Frames/second (fps) 4081 fps 22900 fps 20000 fps
Max@res 4830 fps 33900 fps 30366 fps
Communication USB 3.0 Cameralink CXP-6

5 Gbit/s [143] interface 850 MB/s 6.25 Gbit/s
Pixel sizes (in bits) 8, 10, 16 8, 10 8, 12
Total Cost 1000,- 11.000,- 15455,-
(two cameras)

Table 3.2: The different camera constraints.

Each of these cameras in Table 3.2 have different specifications which provide different con-
straints for the hardware fabrics that run the machine learning network. The constraints are first
the resolution of the cameras together with the pixel size. This determines how much information
the neural network has, to create a correct solution for the control system. On top of that the
resolution and the pixel size determine the amount of data the camera needs to transfer over a
specific communication protocol. The time needed to transfer all this data with the time needed
to take the frame is then again subtracted from the time the neural network has to operate.

Lastly from Table 3.2 it already has been made clear that the Basler camera is not able to be
used in the experimental setup. This is because this camera is not able to reach the required fps of
10000. For this research the Miktron camera with a resolution of 90x90 can be used to determine if
the low latency pipeline can be created. Now because both cameras of the network will be running
concurrently it can be determined how much time is needed from taking the image to the input
of the pipeline. Each image is RGB with each channel having 8 bits. Then from Equation (3.3)
it is noticed that the pipeline will need to transfer 24300 bytes per frame. The camera has an
interface of 850 MB/s, meaning from Equation (3.4) it can be determined the pipeline has 0.0714
ms for obtaining the necessary output. This calculation has been done for how much time one
frame takes to be transferred to the pipeline.

Total bytes to transfer =
Resolution× Channels× bits

8
=

90× 90× 3× 8

8
= 24300 (3.3)



26 CHAPTER 3. USE CASE REQUIREMENTS

Frame transfer time =
Bytes to Transfer

interface speed
× 1000 =

24300

850× 106
× 1000 = 0.0286 ms (3.4)

However for this project the neural network is currently under development and for that reason
also no camera has been fully decided on. This means that for this project the investigation will
be done in getting the neural network to have a result within 0.1 ms, while for follow up research
this time lost in communication needs to be taken into account.

3.2.3 The neural network input and output

From the previously discussed constraints the input and output of the pipeline or in other words
neural network can be discussed. This part will be briefly discussed in order to show what limita-
tions the pipeline needs to deal with and what possible bottlenecks can be for the pipeline when
trying to reach the necessary latency. The neural network I/O can be seen in Figure 3.2.

Figure 3.2: Neural network I/O.

As can be see in the image the input of the neural network are two different images of near
field and far field each of size 90*90*3. The variables Imy, Imx, Emy, Emx and Lz of the mirror
can be derived from the images. These abbreviations can be seen in Table 3.3. Each of these
outputs are 8 bits in size. With this information the dSPACE MicroLabBox should know what
to do to keep the mirrors in the correct position and keep the influence of external factors on the
measurements to a minimal.

Abbreviation Equivalents
Imy Input mirror Ty rotation
Imx Input mirror Tx rotation
Emy End mirror Ty rotation
Emx End mirror Tx rotation
Lz Longitudinal length change

Table 3.3: Output neural network abbreviation meaning



3.3. DESIGN CHOICES 27

3.3 Design choices

From the design methodology and the performance requirements of the pipeline already some
design choices can be made in order to reach those requirements. The first design choice is that
the chosen hardware platform is the FPGA. For a neural network the best structure of each layer
is highly dependent on the hardware platform used. Consequently being able to optimise every
layer of the neural network would be a great advantage in reaching a low enough latency. For
that reason a framework that uses a streaming architecture as discussed in Section 2.3.3 will be
the best choice. From these frameworks, FINN was able to reach a latency of 0.31 µs [80] for
a neural network. Henceforward FINN will be used to investigate different configurations of the
framework and how they affect the latency of the neural network. To obtain the best possible
structure of the neural network on the FPGA however, involves exploring to large of a design space
and is to time consuming [47]. This means that when investigating FINN, which uses streaming
architectures, not the entire design space can be investigated because of the long compilation times
that are needed for each configuration. Consequently educated design choices need to be made for
investigating different configurations.

3.3.1 FPGA choice

At the moment of evaluating different hardware platforms to accelerate a neural network a trade
off between the metrics mentioned in Section 3.1 is always considered. For this thesis the FPGA
is chosen as hardware platform to be further investigated. On the subject of implementation a
neural network on the FPGA, there are numerous choices with different FPGAs each of which can
run different implementation alternatives and different deployment parameters including batch
sizes and power modes. All of the implementation alternatives will deliver different performance
characteristics.

The paper from Blott, [138] compares different implementation alternatives and determines
that pruning and quantization are orthogonal, and yield optimal design points when combined for
the pipeline. As mentioned before in Section 2.3.2 the FPGA benefits the most of the reduced-
data-type precision techniques. On the grounds of that an FPGA where it is easier to provide a
lower precision data types [89] will be a better hardware platform.

Neural networks on FPGAs as hardware platform has multiple examples of reaching the re-
quired latency of this project as has been show in Section 2.3.5. From the research question it was
asked what the appropriate hardware fabrics are in order to reach the low latency pipeline. While
from Section 2.3.5 it has been made clear that ASICs have the highest theoretical performance of
reaching the required latency the current neural network is still under development. Considering
that FPGAs will be a better option as they are more focused on reconfigurability than ASICs
(which are for low latency) and more low latency than throughput which is for GPUs. The final
comparison between all different hardware fabrics on the metrics can be seen in Table 3.4. This
table is based on the background research and the papers from Rush and Abdelouahab [26,82].

3.3.2 Framework neural network inference

The chosen framework to be used together with the FPGA is the experimental framework from
Xilinx Research Labs FINN. FINN specifically targets quantized neural networks, with emphasis
on generating dataflow-style architectures customized for each network. Each of the network are
trained and created using Brevitas. Brevitas is a Pytorch library made by Xilinx for quantization-
aware training. Next to that FINN includes the FINN compiler and the finn-hlslib Vivado HLS
library of FPGA components for QNNs.

With the generating of dataflow-style architectures in FINN every layer will be implemented
separately on the FPGA as discussed in Section 2.3.3. This means that when running a neural
network on the FPGA, the network will have a fixed latency which only is determined by the
length of the pipeline. This also means that no piece of hardware will be used for two separate
layers and there will be no overhead in reloading weights and intermediate results going between



28 CHAPTER 3. USE CASE REQUIREMENTS

Metric/ Feature Analysis Hardware
Neural network training GPUs can be highly parallelised and GPU

are supported by many frameworks for training
[26,83,84]

Neural network inference FPGAs can be highly customised per layer FPGA
(batch size small) to obtain the lowest latency
Neural network inference GPUs have large parallelisation capabilities GPU
(batch size large)
Interfaces As FPGAs are close to hardware it can FPGA

connect to many interfaces
Resources/Size FPGAs can be highly customised with FPGA

minimal overhead
Customization FPGAs enable the possibility of a custom-tailored

accelerator architecture in hardware
FPGA

Development/ Ease of use CPUs are easier to program than GPUs with frame-
works and both are easier than FPGAs

CPU

Table 3.4: Comparison between FPGA, GPU and CPU for neural networks.

layers [80]. Consequently the latency and overhead of the neural network will be lower. Next
to dataflow-style architectures, there are layer-by-layer style architecture. However these types
of architectures result in much higher latency and latency variation because of the reloading of
the weights and reusing hardware. The FINN dataflow-style architecture does however has a
limitation, because everything of the neural network needs to be implemented using the on chip
resources. As a consequence it is not possible for arbitrarily large CNNs to run on most FPGAs
and must be taken into account when developing low latency accelerators [124].

FINN targets quantized neural networks. With a special variant of quantized neural networks
being the BNN as discussed in Section 2.2.4. For FINN this is a quantized network with 1-bit
bipolar (-1, +1 values) precision. Now the higher the quantized bits the higher network accuracy
can be expected as more information is being processed per layer. However this can lead to more
resources to be used to store these weights and can include more latency as more information
need to be processed. To investigate if the required latency can be obtained, some of FINNs
pretrained BNNs will be investigated. This is because these networks have the highest chance to
succeed [138].

To conclude FINN was chosen for the following reasons. Firstly each layer will be implemented
separately. Meaning every layers latency can be optimised separately to a certain extend. Sec-
ondly, FINN has multiple analysis tools, together with some pretrained example networks from
Brevitas to find out any bottlenecks FINN may have. Some of these analysis tools include resource
estimation or simulation of the networks for runtime with different batch sizes. Thirdly, FINN is
an open-source project that is still under development during the time of the thesis. This means
that when having to implement a specific layer that is not implemented in FINN, then it is possible
to implement the layer yourself into FINN and contribute to the FINN project. Finally FINN has
already proven in past research that it can reach the required latency as can be seen in table 8 of
the paper discussed by Blott [138] or in another paper discussed by Blott [124].

The other framework that was a possibility was Vitis AI as mentioned in Section 2.3.3. This
was the other framework that is open-source and being actively being developed by Xilinx. Vitis AI
uses the Xilinx Deep Learning Processor Unit (DPU). This is a programmable engine dedicated to
convolutional neural networks. While Vitis AI is a framework that has many analysis tools and can
use quantized neural networks it does not give any indication that it can reach the required latency
of 0.1 ms. This can be seen from all the performance numbers on many different networks, on
different boards where none of them reach the 0.1 ms requirement [144]. This could be happening
because of how Vitis AI is implemented. It appears as Vitis AI uses an overlay architecture for
implementing the neural networks. This architecture is flexible as it enables many types of CNNs



3.4. NEURAL NETWORK ARCHITECTURE 29

to be executed on an FPGA but is not efficient as it uses off-chip weights and activations. Which
means that there is a need to transfer the weights and activations on chip making the real-time
low latency inference difficult [145].

FINN however does have some limitations as discussed before and in the papers [80,124]. The
first limitation is in the accuracy the neural networks can achieve. As FINN is based on quantized
networks. By having limited precision available for the weights and the activations, the amount
of information that can go between layers is also limited. Meaning as more information is lost
between layers in general the lower the accuracy will be. The second limitation is that FINN based
neural networks are limited by the resources on the FPGA board. As the board is required to
implement compute units for each of the CNN layers on the board itself. However by having all
information close by there will be less communication overhead then when needing to use off-chip
resources. Finally as FINN is a framework for FPGAs it is limited by the frequency the FPGAs
can run on, which are in general lower than a CPU or GPU.

3.4 Neural network architecture

In order to see if FINN can reach the required latency of 0.1 ms certain neural network architecture
need to be investigated. As the neural network for the gravitational waves need images one of
the networks to be investigated has convolutional layers. These layers are often used in neural
networks that need to identify images because of the locality of the information. The other
neural network that will be investigated is the one that according to the paper discussed by
Blott [124] was able to pass the 0.1 ms requirement. There are a lot of different neural network
topologies, each of these can be trained with different datasets. These topologies also have different
numerical representations, learning techniques and hyperparameter selection [138] as is discussed in
Section 2.2. All of these topologies can again produce different results in terms of latency, accuracy
and cost. As a means to determine if a neural network can reach certain requirements, FINN has
several pretrained neural networks available for testing and analysing the FINN framework. These
networks are trained with different quantizations. For that reason the pretrained networks TFC
and CNV of the FINN framework will be used to determine if the required latency can be reached.
Both of the network architectures will be shown in Figure 3.3 and Figure 3.41.

From Section 2.2.3 it has been made clear that each neural network has a different computa-
tional complexity and required storage capacity. The number of parameters each network has is
defined by the total number of weight and biases. The higher the number of parameters the more
features are used to determine the result. As more information is passed in each layer, often the
higher accuracy can achieved for the neural network. Table 3.5 shows the number of parameters
and operations used for the example neural networks of FINN. The SFC and LFC networks are
family of the TFC network, where respectfully they use 256 and 1024 instead of 64 neurons per
fully connected layer. In this table these networks are included to show that by just changing
the amount of neurons per layer the total amount of parameters can grow larger than the CNV
network which has more layers, while the amount of operations to be executed is still lower than
the CNV. For all the networks that are investigated a thresholding layer is introduced when cre-
ating the network in FINN to ensure that the input quantization of these networks is converted
to standalone thresholding that the rest of the layers can use. This does introduce some latency,
but from the small precision that is investigated this cost practically disappears.

Topology: TFC SFC LFC CNV
Parameters (Mbits) 0.06 0.3 2.9 1.5
Operations (M) 0.12 0.6 5.8 112.5

Table 3.5: Neural network input and output layer information.

1This figure is generated by adapting the code from https://github.com/gwding/draw_convnet

https://github.com/gwding/draw_convnet


30 CHAPTER 3. USE CASE REQUIREMENTS

3.4.1 Tiny fully connected network

The first neural network to be investigated is the Tiny Fully Connected network (TFC) network.
From the paper discussed by Blott [124], it is known that a likewise neural network was able
to reach the required latency. The TFC network is a multilayer perceptron (MLP) for MNIST
classification with three fully connected layers [138]. In the TFC variant of this MLP network
only 64 neurons are used per fully connected layer. Which means the parallelisation and by that
the acceleration is limited to the amount of neurons per layer. The network architecture can be
seen in Figure 3.3. This architecture does not show the threshold layer that will be implemented
with FINN, because this layer will only be implemented for a small quantization of the weights
and activation.

Figure 3.3: TFC architecture 1.

3.4.2 CNV

The other network that will be investigated in this thesis is the convolutional neural network
named CNV. CNV is a derivate of the VGG16 topology. The VGG16 topology is used for deep
learning image classification problems with multiple convolutional layers [58]. The CNV variant is
in particular trained on the CIFAR-10 dataset as it it classifies 32x32 RGB images. This network
contains a succession of (3x3 convolution, 3x3 convolution, 2x2 maxpool) layers repeated three
times with 64-128-256 channels, with the final time not having the maxpool layer but a fully
connected layer. This is followed by two fully connected layers of 512 neurons each. In the CNV-
w1a1 variant where the weights and activations are quantized to bipolar values (either -1 or +1),
the exception is in the input (which is RGB with 8 bits per channel). To summarise CNV-w1a1
utilizes binary (1-bit) quantization, while CNV-w2a2 utilizes ternary (2-bit) quantization. This
network can be used to determine if a future neural network can reach the 0.1 ms requirement
or determine where possible bottlenecks are in FINN if it cannot reach it. The neural network
architecture can be seen in Figure 3.4. This architecture does not show the threshold layer that will
be implemented with FINN, because this layer will only be implemented for a small quantization
of the weights and activation.



3.4. NEURAL NETWORK ARCHITECTURE 31

Figure 3.4: CNV architecture 1.





Chapter 4

Exploration pipeline designs

In order to explore the design space of the pipeline, analysis tools are necessary that can measure
the metrics mentioned in section 3.1. This chapter further discusses certain consideration that
have to be made with those tools and the motivation behind using them. The design analysis tools
that are build in FINN will be discussed together with how the performance of the metrics can
be improved or changed by using the framework FINN. Finally all the current hardware options
of FINN will be discussed to find out in Chapter 5 which boards will be able to fit a design that
can have a latency of less than 0.1 ms.

4.1 Considerations and motivation

To penetrate the design space of this project certain considerations need to be made. This is
because there are numerous different neural network topologies that can be investigated. The
first consideration to be made includes the large number of parameters that can be set by the
use for the neural network. As mentioned in Section 2.2.2 these are called hyperparameters. The
hyperparameters are values that are set before training begins and are values that control the
learning process of the network. Which in turn influence the metrics mentioned in Section 3.1.
The neural network architectures mentioned in Section 3.4 will help in penetrating the design space
of these parameters and give an idea on how they influence the latency. The second consideration
for exploring the design space of this project is in choosing the hardware platforms that can achieve
the wanted latency. As the available hardware platforms is framework dependend only FPGAs
from Xilinx will be investigated. This is because these are the only ones that are supported by
the framework FINN. Each hardware platform has different advantages and disadvantages when
trying to achieve certain requirements.

To be able to evaluate the performance of the neural networks, the framework-specific resource
allocator needs to be investigated. This allocator in FINN sets the parallelisation parameters for
each layer in the CNN dataflow. By optimising the parallelisation parameters the low latency
needs to be achieved, while remaining in the resource limitations of the hardware platforms.

4.2 Parallelisation parameters FINN

In order to achieve the required low latency the parallelisation parameters of FINN need to be
optimised. In the FINN framework folding describes how much a layer can be parallelised. For
each layer in a neural network there are several folding factors. The vector Processing Elements
(PE) determines the parallelisation over the outputs of the layer (Output Feature Maps), while
the Single Instruction, Multiple Data (SIMD) determines the parallelisation over the inputs of
the layer (Input Feature Maps). The higher the parallelisation that can be achieved per layer the
lower the latency will be. However the more FPGA resources will be used, meaning that there
will be a trade-off between available resources and latency.

33



34 CHAPTER 4. EXPLORATION PIPELINE DESIGNS

To further understand how these parallelisation parameters and folding work, the convolutional
layer will be used to explain them. In FINN a convolution is converted to matrix multiplications,
where one of the matrices is generated by sliding a window over the input image. The key part
of this operation is the sliding window operation. This operation extracts a group of elements
located next to each other from an array, then goes on to the next group of elements. The two
key parameters for this operator are window size, which is how many elements there are in each
window, and stride, which is how many elements the window moves at every step. The matrix
multiplications that need to be calculated are then converted to multiply-accumulate (MAC)
circuitry on the FPGA fabric. To then determine total number of MAC operations, the parallelism
variables: PE, SIMD and the number of pixels processed in parallel are used. The throughput is
the determine by the total of MACs that can be executed in parallel. Equation (4.1) is used to
determine the total number of MACs per layer.

Total MACs = PE × SIMD × pixels in parallel (4.1)

The variables of eq. (4.1) are the key parameters in FINN in determining the latency, through-
put and amount of resources used. From the the number of PEs (P) and the number of SIMD
lanes per PE (S) the total folding factor of a layer can be determined. The total folding is also
the number of cycles required to complete that specific layer. For a X × Y matrix the neuron fold
Fn = X/P and F s = Y/S as the synapse fold [80]. The total folding of a layer is then obtained
as F = Fn × F s. Each layer has a different network dependent constant Fm which will affect
the total folding. Considering that the total folding factor of a layer is also the number of cycles
required to complete that specific layer, the expected throughput and latency can be determined
from this factor. The latency will be the total folding factors of all the layers combined, while the
throughput of the neural network will be determined by the highest total folding factor, because
the network is pipelined.

The amount of PE and SIMD elements the user can assign to a layer is limited by how FINN
has implemented that specific layer. For example for the CNV architecture the first layer is a
convolutional layer. This layer is implemented by a sliding window and has an IFM of 3. The
IFM for the first layer is determine by the amount of input channels and for an RGB image this is
3 channels. As IFM equals to 3 for the first layer the amount of SIMD is ≤ 3. While the amount
of PE that can be assigned to a layer is limited to the OFM. In FINN the eq. (4.2) and eq. (4.3)
need to be true, as otherwise FINN would not be able to create the layer for the network. While
the total amount of PE and SIMD the user can use is limited by the resources available on the
hardware.

OFM % PE == 0 (4.2)

IFM % SIMD == 0 (4.3)

4.3 Neural network analysis tools TFC/CNV

To see if the neural network can achieve the required latency the neural network needs to be
analysed. For this FINN has several analysis tools available that can analyse the metrics mentioned
in section 3.1. Each of the results will then be compared via graphs in section 5.2. To achieve
the lowest latency the strategy in table 4.1 will be used for determining the configurations for the
timing and resource analysis.

4.3.1 Timing analysis

The first analysis is the timing analysis for each neural network. This analysis will tell us if a
specific neural network can achieve the required latency. In case the pipeline is unable to reach the
required latency of 0.1 ms, then it is also unnecessary to do any resource analysis as the pipeline



4.3. NEURAL NETWORK ANALYSIS TOOLS TFC/CNV 35

Current Step Description Step
1. Calculate latency for all layers using the folding factors
2. Pick the slowest layer
3. Try to accelerate the layer by increasing SIMD or PE by factors of two
4. Depending on setup start with SIMD or PE first,

only switch to the other if the first one is maxed out
5. If the layer cannot be accelerated any further;

Choose the following slowest layer and go back to 3.
6. Once the layer is accelerated go back to 1.

If no layer can be accelerated anymore end the exploration

Table 4.1: Low latency strategy FINN.

is unable to reach its requirements. In order to do the analysis certain tools need to be available
that can give the user estimations on when the latency can be reached.

The first step of the timing analysis is to determine how many cycles each layer needs to
execute the neural network. The layer that uses the most amount of cycles will be the slowest
layer and as such will need to be the first layer to be optimised. In order to do this analysis FINN
has a function called: ”exp cycles per layer”. This function estimates the number of cycles per
sample for dataflow layers in the given model by calculating the folding factor of that layer.

Once the cycles per layer are determined it is possible to give a rough estimate of what the
latency would be for the pipeline. The latency would be calculated by using eq. (4.4). This
calculation will be using the frequency of the FPGA and the latency is shown in seconds. The
calculation shows us that the higher the frequency the lower the latency will be. It is important to
notice this analysis is an initial estimation, meaning that the actual latency of the neural network
can be lower.

Latency =
cycles

frequency
(4.4)

The second step of the timing analysis is a software emulation of the execution of the network.
This will tell us more about the latency, while taking less time then fully creating the hardware
and execution that. This software emulation can also be used to verify if the generated network is
working correctly with the framework FINN. For the software emulation FINN uses ”PyVerilator”.
This is a package that makes it possible to simulate verilog files using verilator [146] via a python
interface. This simulation can give an estimation in terms of cycles for the pipeline. Then eq. (4.4)
can be used again to determine the latency.

The final step in the timing analysis is the hardware timing. In this step the actual hardware for
the FPGA will be generated to execute the neural network. FINN also offers the possibility to mea-
sure the network performance directly on the hardware by using the ”finn.core.throughput test”
function. When running this function the metrics of the network are returned as dictionary. Con-
sidering FINN uses software for this test instead of hardware timing with cycles, there can be
some software overhead in the measurements. This should be taken into account when the mea-
surements are done and the results are discussed. One final part to look at before the hardware
timing is done is by looking at the Worst Negative Slack (WNS) of the generated hardware. This
tells us at which frequency the generated hardware can run as it is the slack of the the critical
path of the neural network.

4.3.2 Resource Analysis

Following the timing analysis, a resource analysis will be done to discover, if the generated hard-
ware can fit on real hardware. The resource analysis will identify how many resources the neural
network will need. In case a network does not fit on the board, specific layers can be optimised to



36 CHAPTER 4. EXPLORATION PIPELINE DESIGNS

be balanced between latency and resources used. There are four different steps the resource anal-
ysis can take to determine if it can fit in available boards, that are compatible with FINN. For the
resource analysis, the parallelisation parameters will be used to optimise the network performance
within a given resource budget.

The first step for the resource analysis will be a rough estimation by means of simple calculation
based on the resources given. This is an empirical fit of the LUT model based on the resources
given [124]. It uses the calculation shown in eq. (4.5) and should show an estimate of the post-
synthesis LUT usage. In the calculation, abits is the size of the activation bits used and wbits of
the weights. So depending on how much information the weights have, it is already possible to
see that more resources are needed.

Post− Synth LUT = 1.1× abits × wbits× PE × SIMD + 300 (4.5)

From the calculation the following step of the resource analysis will be a High Level Synthesis
(HLS) estimation. This step is done at the same time as the software timing analysis, as it shows if
a particular configuration fits on an FPGA. The software emulation step generates IP blocks from
the corresponding HLS layers. The IP blocks are then used by Vivado to estimate the amount
of resources used. This estimation is a really generous estimation, because when generating the
actual hardware, Vivado will optimise the resources. From this can be concluded that there is a
design area which will not fit in the HLS estimation of resources, but will fit on actual hardware.

The final resource analysis is the post-synthesis analysis. This step extracts the FPGA resource
results from the Vivado synthesis. In this step FINN will have determined if a design is feasible
to be created for hardware. From there on the hardware can be created for actual hardware. The
post-synthesis results are still overestimation compared to the post implementation step. The
reason for this is that Vivado still optimises the resource usage when creating the configuration
bitstream for the FPGA.

4.4 Hardware options FINN

The FINN project is created by Xilinx Research Labs to explore deep neural network inference on
FPGAs. Considering that FINN is created by Xilinx, only FPGAs created by Xilinx are currently
compatible with the FINN framework. FINN targets boards supported by ”Python Productivity
for Zynq” (PYNQ). PYNQ has been created to make it easier for designers of embedded systems to
exploit the unique benefits of Xilinx devices in their applications. At the moment of writing FINN
supports the Pynq-Z1, Pynq-Z2, Ultra96, ZCU102 and ZCU104 boards, with some preliminary
support for Xilinx Alveo boards. These Alveo boards include the Alveo U25, Alveo U50, Alveo
U200, Alveo U250 and the Alveo U280 [147]. To use FINN generated accelerators, PYNQ is not
a neccasity to use as it is possible to use the Vivado IP integrator to put the design together with
other RTL/IP blocks. In this section the capabilities and available resources of these board will be
investigated, to determine in the evaluation which boards can be used for the low latency pipeline.

Each of the aforementioned boards have different use cases based on their resources. Each
FPGA has multiple resources to report which can be important when comparing different results.
These resources are LUT (LookUp Tables), DSP units, FF (FLip Flops (registers)) and BRAM.
Together with the on-chip memory, the off-chip memory of the boards will also be discussed as it
can be that the implementation needs the extra resources. Finally the max frequency of each of
the FPGAs will be discussed, as from eq. (4.4) it has been made clear the frequency has a direct
correlation between itself and latency. Most of the resources of the boards will be visualised in
table 4.2. In the following subsections the resources of some of the boards will be further explained
to understand what they mean for this thesis.

Pynq-Z1 and Pynq-Z2

Here the capabilities of the PYNQ-Z1 and PYNQ-Z2 that might be interesting for this thesis will
be discussed. For example the type of off-chip memory and other I/O these boards have. Both of



4.4. HARDWARE OPTIONS FINN 37

Board Freq LUT BRAM FF DSP slices
Pynq-Z1/Z2 [148–150] 667 MHz 53200 140 106400 220

766 MHz (4.9Mb)
866 MHz

ZC607 [150] 667 MHz 218600 545 437200 900
800 MHz (19.2Mb)
1000 MHz

Ultra96 [151,152] 600 MHz 70560 216 141120 360
667 MHz (7.6Mb)
1500 MHz

ZCU102 [151,153] 600 MHz 274000 934 548000 2520
667 MHz (32.1Mb)
1500 MHz

ZCU104 [151,154] 667 MHz 230400 320 460800 1728
766 MHz (11.0 Mb)
866 MHz

ALVEO U50 * 872000 * 1743000 5952
(HBM) [155,156]
ALVEO U280 * 1304000 [157] 2016 2607000 9024
(HBM) [156–158] 1079000 [159]
ALVEO U200 * 1182000 * 2364000 6840
[156,157,160]

ALVEO U250 [160] * 1341000 [159] * 3456000 12228
1728000 [156,157]

Table 4.2: Resources different boards FINN.

these boards use the ZYNQ XC7Z020-1CLG400C [148, 149]. This chip belongs to the Zynq-7000
SoC architecture and consists of dual-core Cortex-A9 processor [150]. From the datasheet in [150]
it can be seen the XC7Z020 has three different maximum frequencies and is a reoccurring theme
with the datasheets of Xilinx. The reason for this is that multiple parts of the FPGA board can
define the maximum frequency of the device. Given that information the maximum clock of the
FPGA is dependent on multiple factors and will almost never be reached. As was discussed in
section 4.3.1 the WNS of the eventual design will tell us more of what the maximum frequency of
that design can be.

The boards have furthermore 512MB DDR3 memory with an 16-bit bus @ 1050Mbps. Finally
some intersting I/O both boards have are the 1G Ethernet, USB-JTAG Programming circuitry,
USB-UART bridge and 16 total FPGA I/O. The FPGA I/O can for example be used to be further
connected to the cameras or to the control system.

ZC706, ZCU102 and ZCU104

The following boards to be discussed are the ZC706, ZCU102 and ZCU104. The ZCU706 is used
in the paper of Umuroglu [80] for the experiments and was the first boards that used a version
of the TFC-network that passed the 0.1 ms requirement. The ZC706 uses part number XC7Z045
and just like the PYNQ-Boards belong to the Zynq-7000 SoC architecture [150]. As can be seen in
table 4.2 this board has more BRAM, but less LUT than the ZCU104. This can show us already
that depending on the design the wanted board may change. This change in resources is also
because the ZCU102 and ZCU104 use a different Zynq architecture. The ZCU102 and ZCU104
use the Zynq UltraScale+ MPSoCs [151] architecture instead. The ZCU102 uses the XCZU9EG
part and the ZCU104 uses the ZU7EV part. Each of these boards can be optimised for different
applications and for that reason also have different resources and I/O that can be used. For the
details of the I/O and off-chip memory their respective product pages of ZCU102 and ZCU104



38 CHAPTER 4. EXPLORATION PIPELINE DESIGNS

can be conducted [153,154].

Alveo boards

The final hardware platforms to be discussed are the Alveo boards that at the moment of writing
only has some preliminary support from FINN. The first thing to notice from table 4.2 is that
depending on which reference is considered the amount of resources the board have is different.
For that reason in the experiments only the numbers that come from the datasheet will be used.
The Alveo boards are designed for use in datacenters and as discussed in section 3.3.1, having no
direct connection to the camera can already lead to much of a latency time. For this reason these
cards are not used to determine if the neural network can achieve the wanted latency. What these
cards can be used for is for the resource analysis. As in case neural network will not fit in the
smaller boards then needs to be figured out if there exist FPGAs that can fit these designs. The
Alveo boards can then be used as reference point to see if it can fit in existing boards and from
there a new FPGA can be designed that has these resources.



Chapter 5

Evaluation

This chapter evaluates the performance of the neural networks discussed in Section 3.4 and dis-
cusses how these results can be used to explore the low latency pipeline. First this chapter discusses
the experimental setup that is used to explore the different configurations. After that the mea-
surement results will be further explained. For this first a timing analysis will be done, to find out
if the pipeline is possible. This will be followed up by a resource analysis to find out, what kind of
hardware is necessary to implement the pipeline. Finally this chapter will have a short discussion
about the most important results and what they mean for the low latency neural network of the
future gravitational waves interferometer.

5.1 Experimental setup

To evaluate FINN, for the low latency pipeline multiple example neural networks will be used.
These neural network architectures exists off the TFC network discussed in Section 3.4.1 and the
CNV architecture discussed in Section 3.4.2. Each of these neural networks can exists of different
parallelisation parameter configurations that will result in different folding factors. These factors
will be determined according to the steps in Table 4.1 for the experiments. After that the FINN
design flow will be used to explore the design space of the neural networks.

The version of FINN to be used in the measurements is version v0.4b [161]. In this version
primary support for the Alveo boards have been implemented. At the time of writing version
v5.0b has already been released showing that FINN is still actively being developed on. For
FINN, Vivado version 2020.1 is being used to generated High-Level Synthesis (HLS) files and used
for the bifile synthesis.

Unless otherwise noted the target clock frequency for the measurement is 100 MHz to evaluate
the resulting accelerators. Most of the experiments to be run will be fully done in the FINN
framework to show the capabilities of FINN and to further explore the design space of the networks.
Finally, for all the hardware experiments the previously discussed Pynq-Z1 in Section 4.4 will be
used. This is a small FPGA and gives a general idea of what is possible with FINN.

5.2 Measurements

The experiments were performed to explore the inference of the two neural networks, with their
respective data sets. For the inference tests, a batch size of 1 was used for determining the possible
bottlenecks the networks may have and to discover how to design the neural network for the future
gravitational waves interferometer.

39



40 CHAPTER 5. EVALUATION

5.2.1 Timing analysis

The first conducted experiments are regarding the timing analysis discussed in Section 4.3.1. For
every experiment first the smaller TFC network will be evaluated and afterwards the CNV network
will be evaluated. This will show where possible bottlenecks may occur when developing the future
neural network with FINN.

The first experiment will use the ”exp cycles per layer” together with the parallelisation pa-
rameters discussed in Section 4.2 to determine the total folding factor of each layer. By adding the
total folding factor of each layer, the total amount of expected cycles of the neural network can
be calculated. For the first experiment the calculated latency will be compared to parallelisation
parameters. The Figure 5.1 shows that by increasing the parallelisation parameters for each of the
layers in the neural network the latency will go down. This figure compares the calculated latency
of the TFC,SFC and LFC neural network based on the folding factors with increasing amount of
parallelisation parameters. The figure uses logarithmic scales for both the x and y-axis. On the
x-axis is the latency in ms from low to high and on the y-axis is the amount of parallelisation
parameters from low to high used. This figure shows that depending on how many resources
the FPGA has each of the Fully-Connected (FC) neural networks can be achieve the wanted low
latency of 0.1 ms. Which comes in agreement with the paper of Umuroglu [80]. From Figure 5.1
can be observed that the more operations and parameters a neural networks has, the slower the
network will be for the same configuration of the layers. This is because these layers can be further
parallelised.

101 102 103

Amount of parallelisation parameters

10 4

10 3

10 2

10 1

100

101

La
te

nc
y 

in
 m

s

0.1 ms baseline
TFC calculated
SFC calculated
LFC calculated

Figure 5.1: FC calculated latency compared to parallelisation parameters, for TFC, SFC, LFC
network.

From the previous determined total folding factors of the network the expected throughput
can be calculated for TFC,SFC and LFC neural network. For this the optimal throughput and
the minimum throughput will be determined. The optimal throughput of this neural network
is determined by the slowest layer. This layer will have the highest total folding factor. For a
fully pipelined network this layer will be the bottleneck. The minimum throughput however is
determined by the latency of the neural network. In this case only a single image can go through
the network at a time. By then looking at the difference between the minimum and optimal
throughput the design space of this metric can be observed. Figure 5.2 shows the results of these
calculations for throughput. The figure uses logarithmic scales for both the x and y-axis. On
the x-axis is the throughput in images/s from low to high and on the y-axis is the amount of
parallelisation parameters from low to high used for that configuration.



5.2. MEASUREMENTS 41

101 102 103

Amount of parallelisation parameters

102

103

104

105

106

107

108

Th
ro

ug
hp

ut
 in

 im
ag

es
/s

Pipelined throughput TFC
Non-pipelined throughput TFC
Pipelined throughput SFC
Non-pipelined throughput SFC
Pipelined throughput LFC
Non-pipelined throughput LFC

Figure 5.2: FC throughput calculated for TFC, SFC, LFC networks fully pipelined and non-
pipelined compared to parallelisation parameters.

After looking at calculated latency of the FC-networks, the second step of the timing analysis
will be done. In the second step for both the TFC and CNV networks a software emulation is
done to determine the expected latency of the neural networks together with the throughput. This
will be then be compared to the calculated latency and throughput. For the software emulation
experiment of determining the expected throughput a batch size of 1 is chosen. While this will
not show the maximum expected throughput of the neural networks, it will show what can be
expected of the future neural network. Figure 5.3 shows a comparison between the software
emulated latency and the calculated latency of the TFC network for the same configurations. The
figure uses logarithmic scales for both the x and y-axis. On the x-axis is the latency in ms from
low to high and on the y-axis is the amount of parallelisation parameters from low to high used.
From Figure 5.3 can be observed that once again increasing amount of parallelisation parameters
the latency will go down for the emulated latency. Another thing to notice in this figure on the
bottom right is that while the emulated latency goes down, the calculated latency which is derived
from total amount of expected cycles goes up. At the same time the parallelisation parameters
for this configuration went up. One of the reasons this could be happening is that on this final
configuration, one of the layers has not been fully optimised as indicated from the strategy of
Table 4.1. Another reason as to why this can be happening is that in this final configuration the
resources are more divided over all the layers. In that case the communication that is between
each of the the layers can be better optimised and lead to an overall lower latency. Meaning that
while each individual layer overall is slower, the communication between layers is faster.

Figure 5.4 which is the throughput measurement of the TFC network shows in more detail
what is happening at that configuration of parallelisation parameters. Like previously the optimal
throughput of the TFC will be determined by the highest folding factor of the network which is
the pipelined. The non-pipelined throughput is determined by the calculated latency. The figure
uses logarithmic scales for both the x and y-axis. On the x-axis is the throughput in images/s
from low to high and on the y-axis is the amount of parallelisation parameters from low to high
used for that configuration. From Figure 5.4 can be observed that in the final configuration, while
the calculated throughput goes down as the slowest layer has a higher total folding factor, the
emulated throughput still went up.

Figure 5.5 shows a comparison between the software emulated latency and the calculated
latency of the CNV network for the same configurations with different clock frequencies. The



42 CHAPTER 5. EVALUATION

101 102

Amount of parallelisation parameters

10 3

10 2

10 1

La
te

nc
y 

in
 m

s

0.1 ms baseline
Calculated latency
Software emulated latency

Figure 5.3: TFC software emulated latency compared to the amount of parallelisation parameters.

101 102

Amount of parallelisation parameters

104

105

106

107

Th
ro

ug
hp

ut
 in

 im
ag

es
/s

Pipelined throughput TFC
Non-pipelined throughput TFC
Software measured throughput TFC

Figure 5.4: TFC software emulated throughput compared to calculated fully pipelined and non-
pipelined throughput for different parallelisation parameters.



5.2. MEASUREMENTS 43

figure uses linear scales for both the x and y-axis. On the x-axis is the latency in ms from low to
high and on the y-axis is the amount of parallelisation parameters from low to high used. From
Figure 5.5 can be observed that once again increasing amount of parallelisation parameters the
latency will go down for the emulated latency. Another thing to notice in this figure on the bottom
right is that the software emulated latency with a 200 MHz clock is able to pass the 0.1 ms baseline
requirement.

700 800 900 1000 1100 1200
Amount of parallelisation parameters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

La
te

nc
y 

in
 m

s

0.1 ms baseline
Calculated latency 100MHz clock
Calculated latency 200MHz clock
Software emulated latency 100MHz clock
Software emulated latency 200MHz clock

Figure 5.5: CNV software emulated latency compared to the amount of parallelisation parameters.

Figure 5.6 shows the throughput measurement of the CNV network for different configura-
tions of parallelisation parameters. Like previously the optimal throughput of the CNV will be
determined by the highest folding factor of the network which is the pipelined version. The non-
pipelined throughput is determined by the calculated latency. The figure uses linear scales for
both the x and y-axis. On the x-axis is the throughput in images/s from low to high and on the
y-axis is the amount of parallelisation parameters from low to high used for that configuration.
From Figure 5.6 can be observed that the optimal throughput has already been reached with less
than 700 parallelisation parameters. This is a consequence of the fact that the slowest layer of the
CNV network no longer can be optimised because of certain bottlenecks with FINN and the layer
itself. This layer could no longer be parallelised, because otherwise the Equation (4.3) would no
longer be true.

Figure 5.7 is used to further enhance where this bottleneck comes from. Each of different layers
that has been implemented using the FINN-hls library. The figure is linear for the x-axis and is
logarithmic for the y-axis. On the y-axis the the expected cycles per layer, which is in this case also
the total folding factor of that layer. On the x-axis is the amount of parallelisation parameters used
for all layers combined. As can been seen in this figure from left to right the more layers are being
optimised the lower, the total expected cycles of all the layers will become. However as also can be
seen in the figure the layer ”ConvolutionInputGenerator 0” has for all the different configurations
the same amount of expected cycles. This layer corresponds to the first convolutional layer in the
CNV network and the input of this layer is the CIFAR-10 image. The architecture can be seen in
Figure 3.4. This shows that for the layer ”ConvolutionInputGenerator 0” the input is ”3@32x32”.
In turn this means that input feature maps or IFM for this layer is 3, which consequently means
that Equation (4.3) only a maximum of SIMD = 3 can be assigned to this layer. Resulting in that
this layer no longer can be optimised and is a bottleneck for the entire design. This means that
the input of a CNN network can have a big impact on how low the latency can for the network.
From Figure 3.2 it can be seen the amount of channels for these images is also 3, meaning that this



44 CHAPTER 5. EVALUATION

700 800 900 1000 1100 1200
Amount of parallelisation parameters

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 in

 im
ag

es
/s

Pipelined throughput CNV 100MHz clock
Non-pipelined throughput CNV 100MHz clock
Software measured throughput CNV 100MHz clock
Pipelined throughput CNV 200MHz clock
Non-pipelined throughput CNV 200MHz clock
Software measured throughput CNV 200MHz clock

Figure 5.6: CNV software emulated throughput compared to calculated fully pipelined and non-
pipelined throughput for different parallelisation parameters.

is also a bottlenecks where the researcher needs to design around for the future neural network.

As final timing analysis experiment is to discover possible bottlenecks with FINN or the neural
networks for hardware measured latency. For this both neural networks are being compared.
For the TFC network two different configurations have been designed. The basic configuration
of FINN for the parallelisation parameters and a configuration where the minimum amount of
parallelisation parameter is used. Furthermore different weights and activations have been tested
to see how they can affect the latency. Figure 5.8 shows on the logarithmic y-axis the run time
in ms of the different networks and on the linear x-axis the corresponding batch size of that run
time. This experiment has been done on the Pynq-Z1 board with a frequency of 100 MHz. The
figure shows while the TFC network has different weights, it hardly shows an effect on the latency
of the neural network. This could be because of how small the TFC network is or because the
difference in size in weights is not big enough to become a bottleneck in the design.

5.2.2 Resource analysis

Following the timing analysis a small resource analysis is done to find out if the the configuration
that passed the 0.1 ms latency baseline can be implemented using the currently supported boards
of FINN and how much different weight and activation sizes influence the resources used.

First as explained in Section 4.3.2, the amount of LUT used with different parallelisation
parameters will evaluated. In Figure 5.9 this is done in comparison with the corresponding software
emulated LUT resources used. This figure shows on the logarithmic y-axis the amount of LUT
resources needed and on the linear x-axis the amount of parallelisation parameters used for that
configuration. In the upper left of this image which is the zoomed in part of the HLS resources
used, it is visible that there are two small dips in resource usage, while increasing the amount
of parallelisation parameters. This happens when the PE and SIMD, together are less balanced,
resulting in less resources needed. However for these configuration in particular do have a higher
latency, making it a compromise between latency and resources used for different layers. This
means that optimising the future neural network will be a challenging task as more parallelisation
parameters does not always mean more resources used. It also matters on which layer these
parameters are used and how the different parallelisation parameters are balanced.

Table 5.1 provides a further in depth overview of how different weight and activation sizes



5.2. MEASUREMENTS 45

200 400 600 800 1000 1200

Amount of parallelisation parameters

102

103

104

105

106

E
xp

ec
te

d
cy

cl
es

p
er

la
ye

r

Thresholding Batch 0

ConvolutionInputGenerator 0

StreamingFCLayer Batch 0

ConvolutionInputGenerator 1

StreamingFCLayer Batch 1

StreamingMaxPool Batch 0

ConvolutionInputGenerator 2

StreamingFCLayer Batch 2

ConvolutionInputGenerator 3

StreamingFCLayer Batch 3

StreamingMaxPool Batch 1

ConvolutionInputGenerator 4

StreamingFCLayer Batch 4

ConvolutionInputGenerator 5

StreamingFCLayer Batch 5

StreamingFCLayer Batch 6

StreamingFCLayer Batch 7

StreamingFCLayer Batch 8

LabelSelect Batch

Figure 5.7: CNV layer bottlenecks.

110100100010000

Batch Size

10−1

100

101

102

103

R
un

ti
m

e
(m

s)

0.1 ms baseline

CNV1W1A Base

TFC1W1A Base

TFC1W1A Low

TFC1W2A Base

TFC1W2A Low

TFC2W2A Base

TFC2W2A Low

Figure 5.8: Hardware generated examples and differences batch sizes.



46 CHAPTER 5. EVALUATION

200 400 600 800 1000
Amount of parallelisation parameters

104

105

Am
ou

nt
 o

f r
es

ou
rc

es
 in

 L
UT

 u
se

d

Calculated LUT resources
HLS LUT resources

Figure 5.9: CNV1W1A LUT resource estimation.

influence the resources used for a neural network. This table shows that the higher the weight and
activation sizes, the more accuracy these networks will have. However this table also shows that
comes at the cost of needing more resources. The results in Table 5.1 all use the same configuration
for parallelisation parameters and was build for the ZCU104 board. This configuration was the
first configuration that passed the 0.1 ms requirement. From this table can also be seen that
depending on which board is chosen for building the HLS, the amount of resources used by Vivado
can also change as in this table the resources are higher that the ones can be seen in Figure 5.9.

CNV Network LUT BRAM FF URAM DSP Slices Accuracy
CNV1W1A 306717 12 24068 0 0 84.22%
CNV1W2A 353626 0 52287 0 0 87.80%
CNV2W2A 384676 0 68443 0 0 89.03%

Table 5.1: Resources used different CNV weight sizes and activation sizes.

Furthermore from Table 5.1 can be observed, that depending on the available boards, only a
certain accuracy can be reached which can fit the design. A clear view of what this means can
be seen in Table 5.2. This table shows how much of the resources needs to be utilised in order
to be implemented on the board. From this can be concluded that if more than 100% is needed,
then this particular network configuration cannot be implemented on that board. This shows
from the current available boards only the Alveo U280 will be able to fit the entire design of the
configuration that passed the 0.1 ms baseline.

5.3 Discussion

For creating a CNN model that is able to provide an acceptable accuracy level while reaching a
low latency of 0.1 ms is not trivial tasks. This is because of the enormous design space that can be
explored for the neural network and all the different configurations that can be done using FINN
on this network. Figure 5.5 has shown that it is possible to design a CNN accelerator that is able
to obtain results every 0.1 ms with a clock of 200 MHz.

To obtain this result, it was necessary to work around the limitations and bottlenecks of FINN
and how FINN implements CNNs. As the timing analysis has shown that simply adding more



5.3. DISCUSSION 47

CNV Network FPGA Board LUT BRAM FF URAM DSP Slices

CNV1W1A

Pynq-Z1/Z2 576.54% 8.57% 22.62% 0% 0%
Ultra96 434.69% 5.56% 17.05% 0% 0%
ZCU104 133.12% 2.21% 5.22% 0% 0%
ZC706 140.31% 2.20% 5.51% 0% 0%
Alveo U280 23.52% 0.60% 0.92% 0% 0%

CNV1W2A

Pynq-Z1/Z2 664.71% 0% 49.14% 0% 0%
Ultra96 501.17% 0% 37.05% 0% 0%
ZCU104 153.48% 0% 11.35% 0% 0%
ZC706 161.77% 0% 11.96% 0% 0%
Alveo U280 27.12% 0% 2.01% 0% 0%

CNV2W2A

Pynq-Z1/Z2 723.08% 0% 64.33% 0% 0%
Ultra96 545.18% 0% 48.50% 0% 0%
ZCU104 166.96% 0% 14.85% 0% 0%
ZC706 175.97% 0% 15.65% 0% 0%
Alveo U280 29.50% 0% 2.63% 0% 0%

Table 5.2: Resources utilisation percentage on different board for first passing CNV1W1A config-
uration.

parallelisation parameters does not mean the neural network will accelerate more. The analysis
further presented that each layer has a limitation to how much they can be accelerated. This is
partly because of how FINN is implemented and partly because of how much the layer can be
parallelised in the first place. For example the first convolutional layer of the neural network can
have significant impact on the latency as this layer will always be limited by the input of the
neural network, which cannot be changed.

Finally implementing the configuration that can pas the required 0.1 ms baseline on actual
hardware is also no trivial task. As for the CNV-network the configuration that has passed this
baseline is at the current moment only able to fit on the Alveo Boards, because of the amount of
LUT it needs. This is still part of the design space that can be further explored on how much
effect larger weight and activation bits sizes have on the accuracy and resources used. Additionally
FINN is able distribute the resources more than is currently shown in Table 5.2. FINN has for
example the ability to store the weight and activations in BRAM instead of LUT. Making the
ZCU104 a possibility for a design that can fit the 0.1 ms configurations. Figure 5.9 has also shown
that the parallelisation parameters can also be further explored with how they effect the neural
network in terms of latency and resources used.





Chapter 6

Conclusions and recommendations

This final chapter consists of the conclusions of this thesis and reflects back on the original research
question. At the end there is a discussion about possible recommendations and possible avenues of
future development of the pipeline of the future gravitational waves interferometer control system.

6.1 Conclusions

By using the appropriate hardware fabrics together with their respective frameworks, it is possible
to further the development of the low latency pipeline of a neural network for a future gravitational
waves interferometer control system. The control system needs to keep free-falling test masses
(suspended mirrors) of the Fabry-Pérot resonance cavities in the correct alignment. By having a
laser go through a specific setup of mirrors, the near and far field distribution can be detected by
special cameras. From the near and far field distribution images together with a neural network,
the control system will be able to determine if there is misalignment of the mirrors and adjust
them accordingly. For the neural network a Convolutional Neural Network (CNN) will be used,
because the most promising approach for image focused neural networks are CNNs

For creating a CNN model that is able to provide an acceptable accuracy, while reaching a
low latency of 0.1 ms is not a trivial task. This is because of the enormous design space that can
be explored with neural networks and all the different configurations that can be done. To meet
the requirements, an FPGA was chosen as hardware platform. This is because with an FPGA
the neural network can be highly customised per layer to obtain the lowest latency, while having
the reconfigurability for ease of development. Together with an FPGA, FINN is used to develop
the low latency pipeline. FINN generates dataflow-style architectures, to have a fully pipelined
neural networks. FINN uses parallelisation parameters to optimise each layer separately. From
these parallelisation parameters the total folding factor of each layer can be determined, which
are used in the analysis of the neural networks.

To explore the large design space of low latency inference deep learning neural networks, the
pretrained neural networks available for testing and analysing the FINN framework have been
used. From the pretrained neural networks, the TFC and CNV neural networks have been further
investigated. The TFC network because FINN was able to reach a latency off 0.31 µs with a
variant of this network. The CNV network because it is used for deep learning image classification
problems with multiple convolutional layers. These neural networks will help discover possible
bottlenecks for achieving the low latency of 0.1 ms with FINN. Both pretrained neural network
can be optimised in term of accuracy, resources and latency. The most important requirement of
the neural network is to reach a latency of 0.1 ms or lower. For that reason, the first analysis on
the neural networks is a timing analysis. This is followed up by the resource analysis to see if this
design is feasible on available boards.

The timing analysis starts with determining the total folding factors per layer for different
configurations and from that the total amount of expected cycles used in the whole neural network.

49



50 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

For the TFC network, it became clear that the lowest total amount of expected cycles, would not
necessary provide the lowest possible latency of the network. This can be observed that for
one specific configuration the emulated latency goes down, while the calculated latency which
is derived from total amount of expected cycles goes up. There are two reasons as to why this
development can occur. The first reason is that this configuration is not been fully optimised as
indicated from the strategy of achieving the lowest latency based on the folding factors. Another
reason is that in this final configuration the resources are more divided over all the layers. In
that case the communication that is between each of the the layers can be better optimised and
lead to an overall lower latency. Meaning that while each individual layer overall is slower, the
communication between layers is faster, lowering the total latency of the network. In case the
TFC network could not reach the required latency, it would be deemed impossible to develop
the required low latency pipeline using FINN. For the TFC network, it was possible to design a
pipeline that could achieve the 0.1 ms requirement.

Subsequently, a timing analysis has been done on the CNV network to discover if a CNN
could reach the 0.1 ms requirement with FINN. By optimising the parallelisation parameters and
increasing the clock frequency, it was possible to create a configuration that was able to pass the 0.1
ms requirement for a CNN. This was reached by further optimising all layers, because the highest
total folding factor of a specific layer could not go lower. For this reason, the bottlenecks of the
CNV have been investigated to see where the latency possibly could be limited. The bottlenecks
for the latency come from how much the layer can be parallelised in the first place to accelerate
the pipeline. Every layer of the neural network is limited in its parallelisation by the input and
output of the layer. For the CNV network and for the future gravitational waves interferometer
control system neural network, this limitation will come from the input of the neural network.
This is because the input cannot be changed in such a way to make the layer more parallel and
accelerate the entire pipeline.

For the CNV network configuration that was able to pass the 0.1 ms requirements, a resource
analysis was done to see if this design could fit on available hardware. The analysis shows that the
more accuracy is required from the neural network, more resources would be needed to generate
this network. Currently only the Alveo boards are able to fit the design that can pass the 0.1 ms
requirement. In case different hardware options want to be used, the configuration needs to be
developed more using the available resources in mind.

6.2 Recommendations

There are multiple avenues that can be taken for the future development of the low latency neural
network using FINN. The first recommendation is further development on how different weights
and activation bits for quantized neural networks affect the accuracy. This can be done together
with a resources analysis and investigate if the increase in size of the weight and activation bits
increase the latency of the network.

Currently in the FINN framework, Vivado decides if the weights and activation bits of the
layers would be stored in LUT or BRAM. As was discovered in the resource analysis the LUT
resource utilisation for different boards exceeds the available resources for almost every board.
Meanwhile the BRAM utilisation is almost always close to zero percent. Follow up research can
look at how the LUT and BRAM utilisation can be balanced more, by changing where FINN and
Vivado will store the weights and activation bits of the layers

The third recommendation for follow up research is in regards to power measurements. Once a
neural network has been developed that can achieve an acceptable accuracy with FINN, different
hardware configurations of the neural network can be generated and see how they affect the power
on different FPGAs.

The final recommendation is the further development of the interface from camera to neural
network, together with the control system. This thesis has made some initial analysis on this
subject, but as the development on the neural network is still ongoing, the research on this topic
is not finished.



Bibliography

[1] I. Newton, Philosophiae naturalis principia mathematica. William Dawson & Sons Ltd.,
London, 1687.

[2] A. Einstein, “Die grundlage der allgemeinen relativitätstheorie,” Annalen der Physik, vol.
354, no. 7, pp. 769–822, 1916.

[3] B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams,
T. Adams, P. Addesso, R. Adhikari et al., “Observation of gravitational waves from a binary
black hole merger,” Physical review letters, vol. 116, no. 6, p. 061102, 2016.

[4] “Virgo website.” [Online]. Available: http://www.virgo-gw.eu/

[5] J. C. Diaz, Control of the gravitational wave interferometric detector Advanced Virgo.
Springer, 2018.

[6] MicroLabBox Hardware, [Online], Available: http://www.dspace.com/en/ltd/home/
products/hw/microlabbox.cfm#145 23644, Accessed: 05 March 2020.

[7] J. D. Creighton and W. G. Anderson, Gravitational-wave physics and astronomy: An intro-
duction to theory, experiment and data analysis. John Wiley & Sons, 2012.

[8] R. M. Wald, General relativity. University of Chicago press, 2010.

[9] J. Weber, General Relativity and gravitational waves. Courier Corporation, 2004.

[10] B. F. Schutz and F. Ricci, “Gravitational waves, sources, and detectors,” arXiv preprint
arXiv:1005.4735, 2010.

[11] K. Riles, “Gravitational waves: Sources, detectors and searches,” Progress in Particle and
Nuclear Physics, vol. 68, pp. 1–54, 2013.

[12] B. C. Barish, “The Science and Detection of Gravitational Waves,” Brazilian
Journal of Physics, vol. 32, pp. 831 – 837, 12 2002. [Online]. Available: http:
//www.scielo.br/scielo.php?script=sci arttext&pid=S0103-97332002000500003&nrm=iso

[13] Two Black Holes Merge into One, [Online], Available: https://www.ligo.caltech.edu/image/
ligo20160211d, Accessed: 04 March 2020.

[14] A. Abramovici, W. E. Althouse, R. W. Drever, Y. Gürsel, S. Kawamura, F. J. Raab,
D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne et al., “Ligo: The laser interferometer
gravitational-wave observatory,” science, vol. 256, no. 5055, pp. 325–333, 1992.

[15] C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici,
D. Passuello, A. Brillet, O. Cregut, P. Hello et al., “The virgo project: a wide band antenna
for gravitational wave detection,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 289, no. 3,
pp. 518–525, 1990.

51

http://www.virgo-gw.eu/
http://www.dspace.com/en/ltd/home/products/hw/microlabbox.cfm#145_23644
http://www.dspace.com/en/ltd/home/products/hw/microlabbox.cfm#145_23644
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332002000500003&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332002000500003&nrm=iso
https://www.ligo.caltech.edu/image/ligo20160211d
https://www.ligo.caltech.edu/image/ligo20160211d


52 BIBLIOGRAPHY

[16] C. Fabry, “Theorie et applications d’une nouvelle methods de spectroscopie intereferentielle,”
Ann. Chim. Ser. 7, vol. 16, pp. 115–144, 1899.

[17] A. A. Michelson and E. W. Morley, “Lviii. on the relative motion of the earth and the lu-
miniferous æther,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, vol. 24, no. 151, pp. 449–463, 1887.

[18] LIGO’s Interferometer, [Online], Available: https://www.ligo.caltech.edu/page/ligos-ifo,
Accessed: 04 March 2020.

[19] M. Granata, Optical development for second-and third-generation gravitational-wave detec-
tors: stable recycling cavities for advanced virgo and higher-order Laguerre-Gauss modes,
2011.

[20] C. Bond, D. Brown, A. Freise, and K. A. Strain, “Interferometer techniques for gravitational-
wave detection,” Living reviews in relativity, vol. 19, no. 1, p. 3, 2016.

[21] M. Nickerson, “A review of pound-drever-hall laser frequency locking,” JILA, University of
Colorado and Nist, 2019.

[22] R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser
phase and frequency stabilization using an optical resonator,” Applied Physics B, vol. 31,
no. 2, pp. 97–105, 1983.

[23] M. Razzano and E. Cuoco, “Image-based deep learning for classification of noise transients
in gravitational wave detectors,” Classical and Quantum Gravity, vol. 35, no. 9, p. 095016,
2018.

[24] R. Biswas, L. Blackburn, J. Cao, R. Essick, K. A. Hodge, E. Katsavounidis, K. Kim, Y.-M.
Kim, E.-O. Le Bigot, C.-H. Lee et al., “Application of machine learning algorithms to the
study of noise artifacts in gravitational-wave data,” Physical Review D, vol. 88, no. 6, p.
062003, 2013.

[25] D. George and E. Huerta, “Deep neural networks to enable real-time multimessenger astro-
physics,” Physical Review D, vol. 97, no. 4, p. 044039, 2018.

[26] K. Abdelouahab, “Reconfigurable hardware acceleration of cnns on fpga-based smart cam-
eras,” Ph.D. dissertation, Clermont Auvergne, 2018.

[27] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” CoRR, vol. abs/1703.09039, 2017. [Online]. Available:
http://arxiv.org/abs/1703.09039

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 1–9.

[29] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and trends® in Machine
Learning, vol. 2, no. 1, pp. 1–127, 2009.

[30] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “Joint learning of words and meaning
representations for open-text semantic parsing,” in Artificial Intelligence and Statistics, 2012,
pp. 127–135.

[31] A. Karpathy, “What i learned from competing against a convnet on imagenet,” Andrej
Karpathy Blog, vol. 5, pp. 1–15, 2014.

[32] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

https://www.ligo.caltech.edu/page/ligos-ifo
http://arxiv.org/abs/1703.09039


BIBLIOGRAPHY 53

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

[34] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2019.

[35] A. Karpathy, Neural Networks Part 1: Setting up the Architecture, [Online], Available:
https://cs231n.github.io/neural-networks-1/, Accessed: 24 Mar 2020.

[36] The MathWorks, Inc, Deep Learning Toolbox, [Online], Available: https://www.mathworks.
com/products/deep-learning.html, Accessed: 24 Mar 2020.

[37] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings
of the 22nd ACM international conference on Multimedia, 2014, pp. 675–678.

[38] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[39] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Bal-
las, F. Bastien, J. Bayer, A. Belikov et al., “Theano: A python framework for fast compu-
tation of mathematical expressions,” arXiv preprint arXiv:1605.02688, 2016.

[40] F. Chollet et al., “Keras: Deep learning library for theano and tensorflow,” URL:
https://keras. io/k, vol. 7, no. 8, p. T1, 2015.

[41] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[42] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “Fp-bnn: Binarized neural network on fpga,”
Neurocomputing, vol. 275, pp. 1072–1086, 2018.

[43] A. Karpathy, Convolutional Neural Networks (CNNs / ConvNets), [Online], Available: http:
//cs231n.github.io/convolutional-networks/, Accessed: 24 Mar 2020.

[44] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Toward uniformed
representation and acceleration for deep convolutional neural networks,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–
2085, 2018.

[45] X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, “Computer vision algorithms and hardware
implementations: A survey,” Integration, 2019.

[46] A. Shawahna, S. M. Sait, and A. El-Maleh, “Fpga-based accelerators of deep learning
networks for learning and classification: A review,” CoRR, vol. abs/1901.00121, 2019.
[Online]. Available: http://arxiv.org/abs/1901.00121

[47] X. Zhang, A. Ramachandran, C. Zhuge, D. He, W. Zuo, Z. Cheng, K. Rupnow, and D. Chen,
“Machine learning on fpgas to face the iot revolution,” in 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2017, pp. 894–901.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://cs231n.github.io/neural-networks-1/
https://www.mathworks.com/products/deep-learning.html
https://www.mathworks.com/products/deep-learning.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://arxiv.org/abs/1901.00121


54 BIBLIOGRAPHY

[48] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and Z. Zhang,
“Accelerating binarized convolutional neural networks with software-programmable fpgas,”
in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2017, pp. 15–24.

[49] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[dl] a survey of fpga-based neural net-
work inference accelerators,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 12, no. 1, pp. 1–26, 2019.

[50] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “Tgpa: tile-grained pipeline
architecture for low latency cnn inference,” in Proceedings of the International Conference
on Computer-Aided Design, 2018, pp. 1–8.

[51] D. J. Moss, E. Nurvitadhi, J. Sim, A. Mishra, D. Marr, S. Subhaschandra, and P. H. Leong,
“High performance binary neural networks on the xeon+ fpga™ platform,” in 2017 27th
International Conference on Field Programmable Logic and Applications (FPL). IEEE,
2017, pp. 1–4.

[52] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella, M. Blott, L. Lavagno,
K. A. Vissers, J. Wawrzynek, and K. Keutzer, “Synetgy: Algorithm-hardware co-design
for convnet accelerators on embedded fpgas,” CoRR, vol. abs/1811.08634, 2018. [Online].
Available: http://arxiv.org/abs/1811.08634

[53] T. Wang, C. Wang, X. Zhou, and H. Chen, “A survey of fpga based deep learning accelera-
tors: Challenges and opportunities,” arXiv preprint arXiv:1901.04988, pp. 1–10, 2018.

[54] K. Abdelouahab, M. Pelcat, J. Sérot, and F. Berry, “Accelerating CNN inference
on fpgas: A survey,” CoRR, vol. abs/1806.01683, 2018. [Online]. Available: http:
//arxiv.org/abs/1806.01683

[55] G. B. Hacene, C. E. R. K. Lassance, V. Gripon, M. Courbariaux, and Y. Bengio, “Attention
based pruning for shift networks,” CoRR, vol. abs/1905.12300, 2019. [Online]. Available:
http://arxiv.org/abs/1905.12300

[56] S. I. Venieris, A. Kouris, and C. Bouganis, “Toolflows for mapping convolutional neural
networks on fpgas: A survey and future directions,” CoRR, vol. abs/1803.05900, 2018.
[Online]. Available: http://arxiv.org/abs/1803.05900

[57] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,” Interna-
tional journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[58] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in neural information processing systems, 2012, pp.
1097–1105.

[60] S. Ghaffari and S. Sharifian, “Fpga-based convolutional neural network accelerator design
using high level synthesize,” in 2016 2nd International Conference of Signal Processing and
Intelligent Systems (ICSPIS). IEEE, 2016, pp. 1–6.

[61] S. I. Venieris and C.-S. Bouganis, “Latency-driven design for fpga-based convolutional neural
networks,” in 2017 27th International Conference on Field Programmable Logic and Appli-
cations (FPL). IEEE, 2017, pp. 1–8.

http://arxiv.org/abs/1811.08634
http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1905.12300
http://arxiv.org/abs/1803.05900


BIBLIOGRAPHY 55

[62] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional
neural network for mobile devices,” in The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2018.

[63] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J. Li, “An fpga-based cnn accelerator
integrating depthwise separable convolution,” Electronics, vol. 8, no. 3, p. 281, Mar 2019.
[Online]. Available: http://dx.doi.org/10.3390/electronics8030281

[64] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for effi-
cient cnn architecture design,” in The European Conference on Computer Vision (ECCV),
September 2018.

[65] Z. Yan, X. Li, M. Li, W. Zuo, and S. Shan, “Shift-net: Image inpainting via deep feature re-
arrangement,” in The European Conference on Computer Vision (ECCV), September 2018.

[66] L. Bai, Y. Zhao, and X. Huang, “A cnn accelerator on fpga using depthwise separable
convolution,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10,
pp. 1415–1419, 2018.

[67] Y. He, X. Liu, H. Zhong, and Y. Ma, “Addressnet: Shift-based primitives for efficient con-
volutional neural networks,” in 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV), 2019, pp. 1213–1222.

[68] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M. Pierini,
R. Rivera, N. Tran et al., “Fast inference of deep neural networks in fpgas for particle
physics,” Journal of Instrumentation, vol. 13, no. 07, p. P07027, 2018.

[69] J. Faraone, M. Kumm, M. Hardieck, P. Zipf, X. Liu, D. Boland, and P. H. W. Leong,
“Addnet: Deep neural networks using fpga-optimized multipliers,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 115–128, 2020.

[70] E. Delaye, A. Sirasao, C. Dudha, and S. Das, “Deep learning challenges and solutions with
xilinx fpgas,” in 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2017, pp. 908–913.

[71] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional neural
networks,” J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, Feb. 2017. [Online]. Available:
https://doi.org/10.1145/3005348

[72] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang et al.,
“Ese: Efficient speech recognition engine with sparse lstm on fpga,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2017, pp.
75–84.

[73] Y. Umuroglu and M. Jahre, “Streamlined deployment for quantized neural networks,” arXiv
preprint arXiv:1709.04060, 2017.

[74] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit quantization of neural net-
works for efficient inference.” in ICCV Workshops, 2019, pp. 3009–3018.

[75] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks with weights
and activations constrained to +1 or -1,” CoRR, vol. abs/1602.02830, 2016. [Online].
Available: http://arxiv.org/abs/1602.02830

[76] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr, “Accelerating
binarized neural networks: Comparison of fpga, cpu, gpu, and asic,” in 2016 International
Conference on Field-Programmable Technology (FPT). IEEE, 2016, pp. 77–84.

http://dx.doi.org/10.3390/electronics8030281
https://doi.org/10.1145/3005348
http://arxiv.org/abs/1602.02830


56 BIBLIOGRAPHY

[77] Y. Li, L. Zichuan, K. Xu, H. Yu, and F. Ren, “A 7.663-tops 8.2-w energy-efficient fpga
accelerator for binary convolutional neural networks,” FPGA ’17: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 02 2017.

[78] Y. Zhou, S. Redkar, and X. Huang, “Deep learning binary neural network on an fpga,” in
2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS).
IEEE, 2017, pp. 281–284.

[79] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification
using binary convolutional neural networks,” in Computer Vision – ECCV 2016, B. Leibe,
J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer International Publishing, 2016,
pp. 525–542.

[80] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers,
“Finn: A framework for fast, scalable binarized neural network inference,” in Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
2017, pp. 65–74.

[81] Advanced Micro Devices, Inc, AMD RyzenTM ThreadripperTM 3990X Proces-
sor, Jan 2020, [Online], Available: https://www.amd.com/en/products/cpu/
amd-ryzen-threadripper-3990x, Accessed: 25 Mar 2020.

[82] A. Rush, A. Sirasao, and M. Ignatowski, “Unified deep learning with cpu gpu and fpga
technologies,” White paper, AMD and Xilinx, 2017.

[83] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks: Training deep neural networks with weights and activations constrained to+ 1
or-1,” arXiv preprint arXiv:1602.02830, 2016.

[84] Y. Li, Z. Liu, K. Xu, H. Yu, and F. Ren, “A 7.663-tops 8.2-w energy-efficient fpga accelerator
for binary convolutional neural networks,” in FPGA, 2017, pp. 290–291.

[85] S. Ren, K. Bertels, and Z. Al-Ars, “Efficient acceleration of the pair-hmms forward algorithm
for gatk haplotypecaller on graphics processing units,” Evolutionary bioinformatics, vol. 14,
2018.

[86] N. Ahmed, J. Lévy, S. Ren, H. Mushtaq, K. Bertels, and Z. Al-Ars, “Gasal2:
a gpu accelerated sequence alignment library for high-throughput ngs data,” BMC
Bioinformatics, vol. 20, no. 1, p. 520, Oct 2019. [Online]. Available: https:
//doi.org/10.1186/s12859-019-3086-9

[87] S. Ren, N. Ahmed, K. Bertels, and Z. Al-Ars, “Gpu accelerated sequence alignment with
traceback for gatk haplotypecaller,” BMC Genomics, vol. 20, no. 2, p. 184, Apr 2019.
[Online]. Available: https://doi.org/10.1186/s12864-019-5468-9

[88] NVIDIA, RTX. IT’S ON. GEFORCE RTX 2080 Ti, 2019, [Online], Available: https://
www.nvidia.com/nl-nl/geforce/graphics-cards/rtx-2080-ti/, Accessed: 25 Mar 2020.

[89] C. Murphy and Y. Fu, Xilinx All Programmable Devices: A Superior Platform for
Compute-Intensive Systems, 2017, [Online], Available: https://www.xilinx.com/support/
documentation/white{ }papers/wp492-compute-intensive-sys.pdf, Accessed: 3 Apr 2020.

[90] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through microbenchmarking,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp. 72–86, 2017.

[91] C. Nvidia, “Nvidia cuda programming guide (version 1.0),” NVIDIA: Santa Clara, CA,
2007.

https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://doi.org/10.1186/s12859-019-3086-9
https://doi.org/10.1186/s12859-019-3086-9
https://doi.org/10.1186/s12864-019-5468-9
https://www.nvidia.com/nl-nl/geforce/graphics-cards/rtx-2080-ti/
https://www.nvidia.com/nl-nl/geforce/graphics-cards/rtx-2080-ti/
https://www.xilinx.com/support/documentation/white{_}papers/wp492-compute-intensive-sys.pdf
https://www.xilinx.com/support/documentation/white{_}papers/wp492-compute-intensive-sys.pdf


BIBLIOGRAPHY 57

[92] M. Amaŕıs, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram, “A comparison
of gpu execution time prediction using machine learning and analytical modeling,” in 2016
IEEE 15th International Symposium on Network Computing and Applications (NCA), 2016,
pp. 326–333.

[93] A. Boutros, S. Yazdanshenas, and V. Betz, “You cannot improve what you do not
measure: Fpga vs. asic efficiency gaps for convolutional neural network inference,” ACM
Trans. Reconfigurable Technol. Syst., vol. 11, no. 3, Dec. 2018. [Online]. Available:
https://doi.org/10.1145/3242898

[94] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” SIGARCH Comput. Archit. News, vol. 45,
no. 2, p. 1–12, Jun. 2017. [Online]. Available: https://doi.org/10.1145/3140659.3080246

[95] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation and dataflow in fpga
acceleration of deep convolutional neural networks,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2017, pp. 45–54.

[96] J. Fang, J. Chen, J. Lee, Z. Al-Ars, and H. P. Hofstee, “An efficient high-
throughput lz77-based decompressor in reconfigurable logic,” Journal of Signal
Processing Systems, vol. 92, no. 9, pp. 931–947, Sep 2020. [Online]. Available:
https://doi.org/10.1007/s11265-020-01547-w

[97] J. Hoozemans, R. de Jong, S. van der Vlugt, J. Van Straten, U. K. Elango, and
Z. Al-Ars, “Frame-based programming, stream-based processing for medical image
processing applications,” Journal of Signal Processing Systems, vol. 91, no. 1, pp. 47–59,
Jan 2019. [Online]. Available: https://doi.org/10.1007/s11265-018-1422-3

[98] E. Houtgast, V. Sima, and Z. Al-Ars, “High performance streaming smith-waterman im-
plementation with implicit synchronization on intel fpga using opencl,” in 2017 IEEE 17th
International Conference on Bioinformatics and Bioengineering (BIBE), 2017, pp. 492–496.

[99] G. Smaragdos, G. Chatzikonstantis, R. Kukreja, H. Sidiropoulos, D. Rodopoulos,
I. Sourdis, Z. Al-Ars, C. Kachris, D. Soudris, C. I. D. Zeeuw, and C. Strydis,
“BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations,”
Journal of Neural Engineering, vol. 14, no. 6, p. 066008, nov 2017. [Online]. Available:
https://doi.org/10.1088/1741-2552/aa7fc5

[100] Xilinx, Inc, What is an FPGA?, 2019, [Online], Available: https://www.xilinx.com/
products/silicon-devices/fpga/what-is-an-fpga.html, Accessed: 25 Mar 2020.

[101] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang, and J. Cong,
“Fp-dnn: An automated framework for mapping deep neural networks onto fpgas with
rtl-hls hybrid templates,” in 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2017, pp. 152–159.

[102] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based accelerator
design for deep convolutional neural networks,” in Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2015, pp. 161–170.

https://doi.org/10.1145/3242898
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1007/s11265-020-01547-w
https://doi.org/10.1007/s11265-018-1422-3
https://doi.org/10.1088/1741-2552/aa7fc5
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html


58 BIBLIOGRAPHY

[103] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song et al., “Going
deeper with embedded fpga platform for convolutional neural network,” in Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2016,
pp. 26–35.

[104] Falcon Computing Solutions, MERLIN COMPILER, [Online], Available: https://www.
falconcomputing.com/merlin-fpga-compiler/, Accessed: 24 Mar 2020.

[105] Intel Corporation, Intel® FPGA SDK for OpenCLTM Software Technology, [Online], Avail-
able: https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/
overview.html, Accessed: 24 Mar 2020.

[106] Xilinx, Inc, The Xilinx SDAccel development environment: Bringing the best perfor-
mance/watt to the data center, 2014, [Online], Available: https://www.xilinx.com/support/
documentation/backgrounders/sdaccel-backgrounder.pdf, Accessed: 24 Mar 2020.

[107] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, and D. Qian, “The deep learning
compiler: A comprehensive survey,” arXiv preprint arXiv:2002.03794, 2020.

[108] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “An automatic rtl compiler for high-throughput
fpga implementation of diverse deep convolutional neural networks,” in 2017 27th Interna-
tional Conference on Field Programmable Logic and Applications (FPL). IEEE, 2017, pp.
1–8.

[109] Y. Ma, M. Kim, Y. Cao, S. Vrudhula, and J.-s. Seo, “End-to-end scalable fpga accelerator for
deep residual networks,” in 2017 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2017, pp. 1–4.

[110] Y. Ma, N. Suda, Y. Cao, J.-s. Seo, and S. Vrudhula, “Scalable and modularized rtl compila-
tion of convolutional neural networks onto fpga,” in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 2016, pp. 1–8.

[111] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J.-s. Seo, “Alamo: Fpga acceleration of deep
learning algorithms with a modularized rtl compiler,” Integration, vol. 62, pp. 14–23, 2018.

[112] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “Angel-eye: A complete
design flow for mapping cnn onto customized hardware,” in 2016 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 24–29.

[113] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang, “Angel-
eye: A complete design flow for mapping cnn onto embedded fpga,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 1, pp. 35–47, 2017.

[114] Z. Liu, Y. Dou, J. Jiang, and J. Xu, “Automatic code generation of convolutional neural
networks in fpga implementation,” in 2016 International Conference on Field-Programmable
Technology (FPT). IEEE, 2016, pp. 61–68.

[115] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning: automatic generation of fpga-
based learning accelerators for the neural network family,” in 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[116] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and H. Es-
maeilzadeh, “From high-level deep neural models to fpgas,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[117] H. Sharma, J. Park, E. Amaro, B. Thwaites, P. Kotha, A. Gupta, J. K. Kim, A. Mishra, and
H. Esmaeilzadeh, “Dnnweaver: From high-level deep network models to fpga acceleration,”
in the Workshop on Cognitive Architectures, 2016.

https://www.falconcomputing.com/merlin-fpga-compiler/
https://www.falconcomputing.com/merlin-fpga-compiler/
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf


BIBLIOGRAPHY 59

[118] H. Zeng, C. Zhang, and V. Prasanna, “Fast generation of high throughput customized
deep learning accelerators on fpgas,” in 2017 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 2017, pp. 1–8.

[119] H. Zeng, R. Chen, and V. K. Prasanna, “Optimizing frequency domain implementation of
cnns on fpgas,” University of Southern California, Tech. Rep, 2017.

[120] C. Zhang and V. Prasanna, “Frequency domain acceleration of convolutional neural networks
on cpu-fpga shared memory system,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 35–44.

[121] H. Zeng, R. Chen, C. Zhang, and V. Prasanna, “A framework for generating high through-
put cnn implementations on fpgas,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2018, pp. 117–126.

[122] N. J. Fraser, Y. Umuroglu, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers,
“Scaling binarized neural networks on reconfigurable logic,” in Proceedings of the 8th Work-
shop and 6th Workshop on Parallel Programming and Run-Time Management Techniques
for Many-core Architectures and Design Tools and Architectures for Multicore Embedded
Computing Platforms, 2017, pp. 25–30.

[123] V. Rybalkin, A. Pappalardo, M. M. Ghaffar, G. Gambardella, N. Wehn, and
M. Blott, “FINN-L: library extensions and design trade-off analysis for variable precision
LSTM networks on fpgas,” CoRR, vol. abs/1807.04093, 2018. [Online]. Available:
http://arxiv.org/abs/1807.04093

[124] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu, M. Leeser,
and K. Vissers, “Finn-r: An end-to-end deep-learning framework for fast exploration of
quantized neural networks,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 11, no. 3, pp. 1–23, 2018.

[125] Xilinx, Inc, FINN, 2020, [Online], Available: https://finn.readthedocs.io/en/latest/index.
html, Accessed: 25 Apr 2020.

[126] S. I. Venieris and C. Bouganis, “fpgaconvnet: A toolflow for mapping diverse convolutional
neural networks on embedded fpgas,” CoRR, vol. abs/1711.08740, 2017. [Online]. Available:
http://arxiv.org/abs/1711.08740

[127] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: A framework for mapping convolutional
neural networks on fpgas,” 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 40–47, 2016.

[128] ——, “fpgaconvnet: Automated mapping of convolutional neural networks on fpgas,” in Pro-
ceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2017, pp. 291–292.

[129] K. Abdelouahab, M. Pelcat, J. Serot, C. Bourrasset, and F. Berry, “Tactics to directly map
cnn graphs on embedded fpgas,” IEEE Embedded Systems Letters, pp. 1–4, 2017. [Online].
Available: http://ieeexplore.ieee.org/document/8015156/

[130] A. X. M. Chang, A. Zaidy, V. Gokhale, and E. Culurciello, “Compiling deep learning models
for custom hardware accelerators,” arXiv preprint arXiv:1708.00117, 2017.

[131] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello, “Snowflake: An efficient hardware
accelerator for convolutional neural networks,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.

http://arxiv.org/abs/1807.04093
https://finn.readthedocs.io/en/latest/index.html
https://finn.readthedocs.io/en/latest/index.html
http://arxiv.org/abs/1711.08740
http://ieeexplore.ieee.org/document/8015156/


60 BIBLIOGRAPHY

[132] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong, “Auto-
mated systolic array architecture synthesis for high throughput cnn inference on fpgas,” in
Proceedings of the 54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[133] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim, and H. Es-
maeilzadeh, “Tabla: A unified template-based framework for accelerating statistical ma-
chine learning,” in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2016, pp. 14–26.

[134] Xilinx, Inc, Vitis Unified Software Platform, 2019, [Online], Available: https://www.xilinx.
com/products/design-tools/vitis/vitis-platform.html, Accessed: 24 Mar 2020.

[135] V. Kathail, “Xilinx vitis unified software platform,” in The 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser. FPGA ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 173–174. [Online]. Available:
https://doi.org/10.1145/3373087.3375887

[136] X. Yu, Y. Wang, J. Miao, E. Wu, H. Zhang, Y. Meng, B. Zhang, B. Min, D. Chen, and
J. Gao, “A data-center fpga acceleration platform for convolutional neural networks,” in
2019 29th International Conference on Field Programmable Logic and Applications (FPL),
2019, pp. 151–158.

[137] E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr, “Accel-
erating recurrent neural networks in analytics servers: Comparison of fpga, cpu, gpu, and
asic,” in 2016 26th International Conference on Field Programmable Logic and Applications
(FPL), 2016, pp. 1–4.

[138] M. Blott, N. Fraser, G. Gambardella, L. Halder, J. Kath, Z. Neveu, Y. Umuroglu, A. Vasil-
ciuc, M. Leeser, and L. Doyle, “Evaluation of optimized cnns on heterogeneous accelerators
using a novel benchmarking approach,” IEEE Transactions on Computers, 2020.

[139] H. Frazier, “The 802.3 z gigabit ethernet standard,” Ieee network, vol. 12, no. 3, pp. 6–7,
1998.

[140] J. Axelson, “Usb complete: Everything you need to develop usb peripherals,” Lakeview
Research, 2005.

[141] K. Tindell, H. Hanssmon, and A. J. Wellings, “Analysing real-time communications: Con-
troller area network (can).” in RTSS. Citeseer, 1994, pp. 259–263.

[142] F. Dehmelt, “Performance of lvds with different cables,” Analog Applications, 2000.

[143] I. HP et al., “Universal serial bus 3.0 specification,” 2008.

[144] Xilinx, Inc, Xilinx Vitis AI Model Zoo, 2019, [Online], Available: https://github.com/
Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo, Accessed: 18 Dec 2020.

[145] L. Petrica, T. Alonso, M. Kroes, N. Fraser, S. Cotofana, and M. Blott, “Memory-efficient
dataflow inference for deep cnns on fpga,” arXiv preprint arXiv:2011.07317, 2020.

[146] Y. Umuroglu, PyVerilator, November 2020, [Online], Available: https://github.com/
maltanar/pyverilator, Accessed: 22 Jan 2021.

[147] Xilinx, Inc, FINN, 2020, [Online], Available: https://finn.readthedocs.io/en/latest/getting
started.html, Accessed: 25 Apr 2020.

[148] Xilinx, PYNQ-Z1 Overlays), 2018, [Online], Available: https://pynq.readthedocs.io/en/
latest/pynq overlays/pynqz1.html, Accessed: 22 Jan 2021.

https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://doi.org/10.1145/3373087.3375887
https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo
https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo
https://github.com/maltanar/pyverilator
https://github.com/maltanar/pyverilator
https://finn.readthedocs.io/en/latest/getting_started.html
https://finn.readthedocs.io/en/latest/getting_started.html
https://pynq.readthedocs.io/en/latest/pynq_overlays/pynqz1.html
https://pynq.readthedocs.io/en/latest/pynq_overlays/pynqz1.html


BIBLIOGRAPHY 61

[149] ——, PYNQ-Z2 Overlays), 2018, [Online], Available: https://pynq.readthedocs.io/en/
latest/pynq overlays/pynqz2.html, Accessed: 22 Jan 2021.

[150] Zynq-7000 SoC Data Sheet: Overview, Xilinx, July 2018, [Online], Available: https://www.
xilinx.com/support/documentation/data sheets/ds190-Zynq-7000-Overview.pdf, Accessed:
22 Jan 2021.

[151] Xilinx, Zynq UltraScale+ MPSoC, 2018, [Online], Available: https://www.xilinx.com/
support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf,
Accessed: 22 Jan 2021.

[152] L. Limited, Ultra96, 2021, [Online], Available: https://www.96boards.org/product/ultra96/,
Accessed: 22 Jan 2021.

[153] Xilinx, Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit, [Online], Available: https://
www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#hardware, Accessed: 22
Jan 2021.

[154] ——, Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit, [Online], Available: https://www.
xilinx.com/products/boards-and-kits/zcu104.html#hardware, Accessed: 22 Jan 2021.

[155] ——, Alveo U50 Data Center Accelerator Card, [Online], Available: https://www.xilinx.
com/products/boards-and-kits/alveo/u50.html#specifications, Accessed: 22 Jan 2021.

[156] P. kennedy, Xilinx Alveo U50 FPGA Card for Data Center Accelera-
tion, August 2019, [Online], Available: https://www.servethehome.com/
xilinx-alveo-u50-fpga-card-for-data-center-acceleration/, Accessed: 22 Jan 2021.

[157] Xilinx, Alveo U200 and U250 Data Center Accelerator Cards Data Sheet, May 2020, [Online],
Available: https://www.xilinx.com/support/documentation/data sheets/ds962-u200-u250.
pdf, Accessed: 22 Jan 2021.

[158] ——, Alveo U280 Data Center Accelerator Card, [Online], Available: https://www.xilinx.
com/products/boards-and-kits/alveo/u280.html#specifications, Accessed: 22 Jan 2021.

[159] ——, Alveo U250 Data Center Accelerator Card, [Online], Available: https://www.xilinx.
com/products/boards-and-kits/alveo/u250.html#specifications, Accessed: 22 Jan 2021.

[160] ——, Adaptable Accelerator Cards for Data Center Workloads, 2018, [Online], Available:
https://www.xilinx.com/publications/product-briefs/alveo-product-brief.pdf, Accessed: 22
Jan 2021.

[161] Y. Umuroglu, FINN v0.4b (beta) is released, September 2020, [Online], Available: https:
//xilinx.github.io/finn/2020/09/21/finn-v04b-beta-is-released.html, Accessed: 22 Jan 2021.

https://pynq.readthedocs.io/en/latest/pynq_overlays/pynqz2.html
https://pynq.readthedocs.io/en/latest/pynq_overlays/pynqz2.html
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
https://www.96boards.org/product/ultra96/
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#hardware
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#hardware
https://www.xilinx.com/products/boards-and-kits/zcu104.html#hardware
https://www.xilinx.com/products/boards-and-kits/zcu104.html#hardware
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html#specifications
https://www.servethehome.com/xilinx-alveo-u50-fpga-card-for-data-center-acceleration/
https://www.servethehome.com/xilinx-alveo-u50-fpga-card-for-data-center-acceleration/
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html#specifications
https://www.xilinx.com/publications/product-briefs/alveo-product-brief.pdf
https://xilinx.github.io/finn/2020/09/21/finn-v04b-beta-is-released.html
https://xilinx.github.io/finn/2020/09/21/finn-v04b-beta-is-released.html




Appendices

63





Appendix A

Measurement setup Nikhef

This appendix presents the detailed version of the experimental setup from Nikhef.

Figure A1: Detailed experimental setup suspended mirrors.

65


	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Objectives and motivation
	Project context
	Research questions
	Contributions

	Report structure

	Background research
	Gravitational waves detection
	Gravitational waves
	Michelson laser interferometer
	Fabry-Pérot resonance cavities

	Convolutional neural network
	Neural networks
	Introduction to convolutional neural networks
	CNNs complexity
	CNNs complexity reduction techniques

	Potential hardware platforms
	Central processing unit
	Graphics processing units
	Field-programmable gate arrays
	Application-specific integrated circuits
	Comparison and combination of different platforms


	Use case requirements
	Design methodology
	Hardware constraints for pipeline
	dSPACE MicroLabBox
	Cameras
	The neural network input and output

	Design choices
	FPGA choice
	Framework neural network inference

	Neural network architecture
	Tiny fully connected network
	CNV


	Exploration pipeline designs
	Considerations and motivation
	Parallelisation parameters FINN
	Neural network analysis tools TFC/CNV
	Timing analysis
	Resource Analysis

	Hardware options FINN

	Evaluation
	Experimental setup
	Measurements
	Timing analysis
	Resource analysis

	Discussion

	Conclusions and recommendations
	Conclusions
	Recommendations

	Bibliography
	Appendices
	Measurement setup Nikhef

