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Two diffusing molecules control secretion rate & gene expression
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e Communicating cells can form spatial patterns without
morphogen gradients

e Disordered field of communicating cells forms dynamic
patterns (e.g., spiral waves)

e Simulations and theory found dynamic-pattern-forming cell-

communication methods

e Dynamic patterns form via a three-stage (“order-fluctuate-

settle”) process
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In Brief

Dang et al. developed a software and a
theoretical framework to discover and
classify all moving spatial patterns (e.g.,
waves) that cells can form by secreting
two diffusible molecules that control their
gene expressions. They identified all gene
regulations that the molecules can have
for forming moving patterns, which self-
organize through a three-stage, “order-
fluctuate-settle” dynamic.
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SUMMARY

Cells form spatial patterns by coordinating their gene
expressions. How a group of mesoscopic numbers
(hundreds to thousands) of cells, without pre-exist-
ing morphogen gradients and spatial organization,
self-organizes spatial patterns remains poorly under-
stood. Of particular importance are dynamic spatial
patterns such as spiral waves that perpetually
move and transmit information. We developed an
open-source software for simulating a field of cells
that communicate by secreting any number of mole-
cules. With this software and a theory, we identified
all possible “cellular dialogues”—ways of communi-
cating with two diffusing molecules—that yield
diverse dynamic spatial patterns. These patterns
emerge despite widely varying responses of cells to
the molecules, gene-expression noise, spatial ar-
rangements, and cell movements. A three-stage, “or-
der-fluctuate-settle” process forms dynamic spatial
patterns: cells form long-lived whirlpools of wavelets
that, following erratic dynamics, settle into a dynamic
spatial pattern. Our work helps in identifying gene-
regulatory networks that underlie dynamic pattern
formations.

INTRODUCTION

Spatial patterns can form when multiple cells, without pre-exist-
ing morphogen gradients, communicate with each other to coor-
dinate their gene expressions (Gregor et al., 2010; Lubensky
et al., 2011; Sgro et al., 2015; Idema et al., 2013; Manukyan et
al., 2017; Jorg et al., 2019). Understanding how cells collectively
organize spatial patterns through cell-cell communication is
crucial for understanding and engineering mammalian tissues
(Javaherian et al., 2013). Many synthetic and natural mammalian
tissues are monolayers of genetically identical cells (e.g., epithe-
lial sheets) whose gene expression levels are initially uncorre-
lated but become more correlated over time during develop-
ment, leading to specialized cell types within tissues. This
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process often involves cell-cell communication (Menéndez
etal., 2010). There has been arising interest in developing exper-
imental methods for spatially arranging individual cells in a
monolayer and then observing how such a heterogeneous tis-
sue—composed of cells at differing locations having different
gene expression levels—develops over time (Javaherian et al.,
2014). Although there are quantitative models to explain such
experiments, they are often tailored to specific tissues and
signaling molecules. Thus, it is challenging to use them as a
general framework that one can adapt to different gene circuits,
signaling molecules, and cell types (Drasdo et al., 2007).
Currently unknown is a comprehensive set of generally appli-
cable, quantitative mechanisms by which organized spatial
patterns can form in heterogeneous tissues made of meso-
scopic numbers (hundreds to thousands) of cells without pre-
existing morphogen gradients (Figure 1A, top).

To explain pattern formations, one often uses reaction-diffu-
sion equations and Turing instability in which a uniformly
spread field of chemicals develops minute fluctuations in its
chemical concentrations at some locations that grow over
time to yield spatial patterns (Figure 1A, bottom) (Turing,
1952). Although theoretical studies of Turing instability uncov-
ered many insights into how continuous fields of chemicals or
cells form patterns, the instability does not treat gene expres-
sions of individual cells when there are biologically realistic,
mesoscopic numbers of cells (Figure 1A, top). Furthermore,
while many gene networks can use Turing instability to generate
spatial patterns, they are not robust as their circuit parameters
need to be finely tuned (Marcon et al., 2016; Scholes et al.,
2019). In light of these difficulties, a promising route for explain-
ing multicellular patterning would be to develop multiscale
models that link intracellular signaling with cell-cell communica-
tion for mesoscopic numbers of cells. While researchers have
developed such models for specific systems—examples
include studies of how eyes form (Lubensky et al., 2011) and
neurons differentiate (Jorg et al., 2019 —we currently lack a
general framework for identifying widely applicable principles
of pattern formation. Motivated by this shortcoming, we sought
to build a generalized framework that uncovers relationships
between properties of cellular communication—the various
ways in which the cells secrete and sense signaling mole-
cules—and gene expression patterns (spatial patterns) that
emerge for mesoscopic populations of cells.
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Figure 1. Computationally Screening Cellular Dialogues to Find Ones that Enable Dynamic Patterns to Form

(A) Pattern formation by cells versus chemicals. (Top) Mechanisms by which an initially disordered field of a mesoscopic number of cells (~hundreds to thou-
sands) (left panel) become more ordered through cell-cell communication (right panel) remain poorly understood, as is the method to analyze this complex self-
organization dynamics. (Bottom) A field of chemicals or a continuum of cells (large number of tightly packed cells) initially having no pattern (left) can form a pattern
(right) without pre-existing morphogens. This is usually modeled by reaction-diffusion equations and can be understood through the Turing mechanism.

(B) Static versus dynamic patterns. (Top) Static patterns do not change over time. (Bottom) In dynamic patterns, a structure changes over time without ever
stopping (e.g., shown here is a traveling wave).

(C) Schematic of cellular dialogues. Brown (molecule-1) and green (molecule-2) circles are ligands that bind to their cognate receptors on the cell membrane.
Ligand-bound receptors trigger intracellular signal transductions that either positively or negatively regulate the production and secretion of molecules-1 and 2

(molecule-1 can self-promote or self-repress its own secretion while also regulating the secretion of molecule-2, and vice versa). Bottom row shows graphic
representation of cellular dialogues.

(legend continued on next page)
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Here, we developed an open-source software that simulates
spatial-patterning dynamics for a system of communicating
cells. One can easily modify and expand our software with
more ingredients and use it for both research and educational
purposes. We also developed algorithms for analyzing these
simulations. With the software and analysis algorithms, we
sought to quantitatively reveal mechanisms by which meso-
scopic numbers of cells can form spatial patterns. We focused
on dynamic patterns—patterns that constantly change over
time without ever stopping such as oscillations and spiral waves
(Sgro et al., 2013)—instead of static patterns that remain still
after forming (Figure 1B). Our computational search discovered
all the ways in which cells can communicate with just two
diffusing molecules to form dynamic patterns, including those
that have been experimentally observed. We found that a few
ways of communicating, which we refer to as “cellular dia-
logues,” can generate a large palette of complex, dynamic
spatial patterns such as whirlpools of wavelets and traveling
waves of various shapes and orientations. We devised an analyt-
ical (pen and paper) approach that recapitulates the simulations
and used it to understand why only certain cellular dialogues
can sustain dynamic spatial patterns. We found that cells form
dynamic spatial patterns through a three-stage, “order-fluc-
tuate-settle” process. Starting from a configuration in which
there is no spatial correlation among cells’ gene expression
levels, cells rapidly become more spatially correlated over
time, resulting in self-organized wavelets. This is followed by a
prolonged transient phase in which the wavelets constantly
and erratically form and annihilate each other. Finally, as the
wavelets settle down, a dynamic spatial pattern such as a trav-
eling wave emerges. We show that self-organized dynamic
patterns can still form despite widely varying gene expression
noise, cellular responses to the sensed molecules, spatial ar-
rangements of cells, and diffusive (random) motions of cells.
As a theoretical study, we focused on exploring how cells can
form dynamic spatial patterns, rather than explaining any
specific biological system. But our computational screen still
uncovered cellular dialogues that are known to generate dy-
namic spatial patterns in specific multicellular systems. Our
paper ends by suggesting how one can expand our work,
including the open-source software, to identify as-yet-unknown
cellular dialogues that produce known dynamic spatial patterns
in multicellular systems.

RESULTS

Computational Search for Cellular Dialogues that
Enable Self-Organized Patterns

We built a visualization software that simulates all possible ways
in which cells can communicate—which we call “cellular
dialogues” —by secreting, sensing, and responding to two
diffusing molecules (Figure 1C). Such cells, which simulta-
neously secrete and sense one or more signaling molecules,
are ubiquitous in nature (Hart et al., 2014; Youk and Lim,

2014a, 2014b; Chen et al., 2015; Maire and Youk, 2015b). Our
simulations combine reaction-diffusion equations—describing
the concentrations of the molecules—and a cellular autom-
aton—describing the cells’ gene expression levels that are set
by the concentrations of the two molecules. We represent
a cellular dialogue as a network diagram that consists of two
nodes (one for each molecule) joined by signed arrows, which
can be positive (activating) or negative (repressing). A signed
arrow denotes how the sensing of one molecule, represented
by the node on which the arrow begins, increases (for a positive
arrow) or decreases (for a negative arrow) the sensing cell’s
secretion rate of a molecule that is represented by the node
on which the arrow ends (Figure 1C). We assume that both
molecules diffuse on a faster timescale than the cells can
respond—the two molecules “rapidly” diffuse and reach
steady-state concentrations to which the cells then respond—
as is the case in many multicellular systems (Heemskerk
et al., 2019).

We first considered cells that digitally respond to each
molecule: a cell secretes “molecule-i” at either a low rate
(“OFF” state for molecule-i) or a high rate (“ON” state for mole-
cule-i). If molecule-j activates (represses) molecule-i, then a
cell becomes ON (OFF) for molecule-i if and only if it senses a
concentration of molecule-j that is “above” a set threshold con-
centration. We first considered these digital cells for two rea-
sons. First, experimental studies have shown that signal trans-
duction pathways such as MAPK or other phospho-relay
cascades, which are triggered by ligand-bound receptors and
control gene expressions downstream—as in our digital cells
(Figure 1C)—can have an effective Hill coefficient with a value
of 4 or more (e.g., as high as 32 [Trunnell et al., 2011]). An effec-
tive Hill coefficient characterizes the “sharpness” of the cell’s
response to a ligand (Ferrell and Ha, 2014a, 2014b, 2014c; Plot-
nikov et al., 2011; Trunnell et al., 2011). Such high numbers are
due to multiple molecular parts amplifying each other’s effects
in combination. A digital (ON/OFF) response models such high-
valued Hill coefficients. The second reason is that a digital
response simplifies the mathematics that describes the
response, while retaining its main qualitative features, even
when the actual Hill coefficient of the system being modeled is
relatively low (Alon, 2006). Finally, the digital cells also have a re-
porter gene for each molecule, which we call genes “1” and “2,”
which are also either ON or OFF to reflect the secretion state of
its corresponding molecule (Figure 1C, brown and green boxes).
In our simulations, we assigned a distinct color to each of the four
states, which are (ON for gene-1, ON for gene-2), (ON, OFF),
(OFF, ON), and (OFF, OFF).

We began each simulation by randomly assigning the four
gene expression states (i.e., four colors) to each cell so that
the gene expression levels were spatially uncorrelated. Thus,
the field of cells initially did not exhibit any spatial organization.
We quantitatively verified this with a “spatial index” metric,
which is a weighed spatial autocorrelation function that is
zero when cells are completely, spatially disorganized and

(D) Elements that we varied in simulations: cellular dialogues of all possible topologies, the values of the parameters for each cellular dialogue, and spatial
arrangement of cells. Our study first begins with an infinite Hill coefficient (i.e., digital response to each of the two signaling molecules) and a regular lattice. After
reporting the outcomes of these simulations, we report the result of relaxing these two constraints and well as other elements not depicted.

See also Figure S1.
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A Dynamic patterns self-organized from disordered beginnings
60 272 12
frames frames frames

gJ AN NN ) (AT ) RSN > ) DRSS R
©

=

S

c

o

N

T M.

B Day 400 Day 597 Day 2003 Day 70000 Day
1 frames 1 frames 1 frames 3 frames 7

[
©
°©
>
©
2
x
Q
a
IS
[e]
O
(Gene 1, Gene 2) = (ON, ON), (ON, OFF), (OFF, ON),
Examples of uncovered dynamic patterns
c Horizontal wave D Vertical wave

Zig-zag wave

G Diagonal wave H Oscillating island

Everyone oscillates together
T ] TR D) Exmmccan D) e

Figure 2. Examples of Self-Organized Dynamic Patterns Found through Computational Screening

In all the figures shown here, a cell (drawn as a circle) can have four colors. Each color represents a distinct gene expression state, (gene 1 = ON/OFF, gene 2 =
ON/OFF): black means (ON, ON), red means (ON, OFF), blue means (OFF, ON), and white means (OFF, OFF). In all the simulations, a field of cells starts with a
completely spatial disordered configuration—there is no correlation between neighboring cells’ gene expression states—as exemplified by the leftmost picture
shown in (A).

(A) Traveling wave of horizontal bands. Snapshots of the formation process shown at different stages of a simulation. Assuming that one time step in the
simulation takes one min, the clocks show time passed from noon (beginning of the simulation).

(legend continued on next page)
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increases toward one as the cells become more spatially orga-
nized (see STAR Methods and Figure S1). We then observed
how each cell’s state (i.e., four colors) changed over time to
determine whether a spatial pattern formed and, if so, what
type of a pattern formed. For each cellular dialogue, we fixed
the values of all parameters (e.g., threshold concentrations
and secretion rates for each molecule), and then ran large
numbers of simulations with different initial conditions (see
STAR Methods). We screened a wide range of parameter
values for every possible cellular dialogue (STAR Methods).
We first performed such a computational search with immobile
digital cells that were placed on a regularly spaced lattice.
We will first describe these results in the next sections before
explaining how these results change when we relax the con-
straints—by randomly displacing cells so that they no long
form a regular lattice, having each cell continuously move, allow-
ing the Hill coefficient to be any finite value (i.e., analogue instead
of digital response), and including gene expression noise
(Figure 1D).

Cellular Dialogues Enable Self-Organization of Wide
Array of Dynamic Patterns

The computational search revealed a wide variety of dynamic
patterns from never-ending traveling waves (Figure 2A and Video
S1) to complex patterns consisting of wavelets that evolved
over time in an erratic, complex manner (Figure 2B). All patterns
self-organized from completely disorganized fields of cells by
their ON/OFF-states becoming more spatially correlated over
time (Figures 2A and 2B). The time taken to self-organize widely
varied and depended on the type of pattern formed. For
example, if we assume that a gene expression change such as
an ON-cell becoming an OFF-cell takes 1 min—this is one
time-step of a simulation and every cell synchronously changes
their ON/OFF states—then horizontal waves could take nearly
6 h to form (Figure 2A) whereas the constantly changing,
complex whirlpool of wavelets would not show any signs of
settling into any pattern that cyclically repeats itself even after
a week or longer (Figure 2B). Since the simulations are determin-
istic for now—we will later add gene expression noise—once
a simulation reproduces a spatial configuration that it had
before, the cell population has formed a dynamic pattern that
periodically repeats itself forever.

The dynamic patterns that we uncovered differed in their
shape, complexity, and movements (Figures 2C-2J; Videos
S1, S2, S3, and S4; and Supplemental Analysis Section S1).
Among these, the most prominent were rectilinear traveling
waves and spiral waves, both of which have high degrees of
spatial order (Figures 2C-2F). In the case of traveling waves—
which can be oriented horizontally, vertically, or diagonally
(Figures 2C, 2D, and 2G) and have a straight or bent shape (Fig-

ures 2D and 2E)—a rigid shape moves across space over time.
Since the simulations were deterministic and the system had
periodic boundary conditions, if the simulation revisits an earlier
spatial configuration, then it would periodically and forever
repeat the same dynamics from then on. In the case of traveling
waves, this meant that the waves perpetually propagated,
disappearing at one edge of the field and then appearing at the
opposite end. This behavior also applies to patterns that do
not propagate over space, but rather, oscillate in time. In some
cases, such oscillations were limited to a few cells that formed
an island (Figure 2H) whereas in others, every cell in the field
oscillated together (Figure 2I). In particular, an island of cells
could oscillate in such a way that individual cells oscillated
with different periods (Figure 2H), causing the entire island, as
a collective entity, to display a complex oscillation with a period
larger than four time steps. We call this a “complex” oscillation
because the simplest oscillation would involve all cells in the
island having the same gene expression state that oscillates
with a period of at most 4 time steps, since a cell can have
at most four distinct gene expression states (i.e., [ON/OFF,
ON/OFF]). Finally, some cellular dialogues yielded temporally
non-repeating, complex patterns consisting of whirlpools of
wavelets that evolved over time in an erratic manner (Figure 2J),
which, in many cases, transiently existed for tens of thousands
of time steps before the cells formed temporally repeating,
well-defined dynamic patterns such as horizontal waves.

Common Structural Elements in Cellular Dialogues that
Generate Dynamic Patterns

The wide array of dynamic patterns that we observed fall into
two categories (Figure 3A): (1) dynamic temporal patterns, in
which cells periodically oscillate over time but do not propagate
information over space (e.g., Figures 2H and 2I), and (2) dynamic
spatial patterns, in which cells propagate information over
space in the form of a well-defined shape (e.g., a wave front)
that moves from one part of the field to another, often from
one edge to the other edge of the field (e.g., Figures 2C-2F).
There are 44 distinct cellular dialogues in total (see STAR
Methods) that we could group into three categories: (1) those
that cannot form any dynamic patterns, (2) those that can form
only dynamic temporal patterns, and (3) those that can form
both dynamic spatial patterns and dynamic temporal patterns.
To categorize them, we developed a method to deduce,
for each cellular dialogue, all possible ways that a cell’s state
(ON/OFF, ON/OFF) can change over time. Concretely, we con-
structed a directed graph for each cellular dialogue (see Supple-
mental Analysis Section S2), which has four nodes—one for
each gene expression state—that are connected by edges
with directions that represent the allowed transitions between
the nodes. We deduced how some of the directed edges

(B) Complex pool of multiple wavelets formed, starting with a spatially disorganized field of cells. Snapshots at different stages of the simulation are shown.
Assuming that one time step represents 1 min, the clock and the days elapsed indicate at which time steps in the simulation the snapshots are taken.

(C-J) Each filmstrip shows three non-contiguous snapshots of a moving, dynamic pattern that formed, starting from a spatially disorganized configuration (not
shown, see examples in the first snapshots in (A). Where shown, the arrows represent the direction of travel. The dynamic patterns are: (C) a single traveling
horizontal band, (D) traveling vertical bands, (E) a traveling zigzag band, (F) a spiral wave, (G) traveling diagonal bands, (H) a small island of cells (enclosed in the
blue hexagon) oscillating over time while all cells outside the island remain static, (I) every cell oscillates between red and blue with period 2, and (J) seemingly
erratic, never-ending dynamics in which multiple wavelets form and meet and annihilate each other with the pool of wavelets constantly evolving and never

repeating the same configuration throughout the simulation.

86 Cell Systems 10, 82-98, January 22, 2020
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become inaccessible while others become accessible as we
change the cellular dialogue’s parameter values (Figure S2).
Then, following the directed edges from node to node yields all
possible ways that a cell’s gene expression can change over
time. By looking for graphs that contained cyclic paths, we iden-
tified cellular dialogues and ranges of their parameter values that
can potentially sustain dynamic patterns if they were to form.
Since self-organization of dynamic patterns can only occur for
parameter values that can sustain dynamic patterns in the first
place, we only had to check these values in simulations to see
if they led to dynamic patterns. This method, thus, vastly
reduced the range of parameter values that we had to screen.
For each cellular dialogue, we generated a large set of random
parameters and ran many simulations (see STAR Methods),
each starting with a different and randomly generated gene
expression pattern. We checked whether each of these simula-
tions yielded a dynamic pattern using automated methods (see
STAR Methods).

We discovered that cellular dialogues, when grouped into the
three categories mentioned above, form distinct tree structures
(Figures 3B-3D) in which a node denotes a particular cellular dia-
logue and an edge connects two nodes if one node (cellular dia-
logue) comes from the other node (another cellular dialogue) by
adding or removing one regulatory interaction. The fact that tree
structures emerged, which link the different cellular dialogues
together if they form the same type of patterns, suggests that
there may be common elements in the cellular dialogues that
belong to the same tree. Indeed, we found that all ten cellular di-
alogues (Figure 3B) that can only generate static configurations,
and no dynamic patterns at all, consist of two molecules that do
not mutually regulate each other and also do not have any self-
repressions. We also found that twenty-six cellular dialogues
can produce dynamic temporal patterns but not dynamic spatial
patterns (Figure 3C). Their common feature is that they all
contain a self-repression and/or a mutual feedback of the
same sign (i.e., both molecules either activate or repress each
other’s production). The sole exception to this rule, within this
family of cellular dialogues, is cellular dialogue 14 (Figure 3C).
Cellular dialogue 14 consists of an activator-inhibitor pair,
whereby one molecule promotes the production of the second
molecule, which in turn represses the production of the first

molecule. Here, neither molecule regulates its own production.
However, all eight cellular dialogues that one can obtain
from cellular dialogue 14 by adding one or more self-interactions
can yield dynamic spatial patterns, in addition to dynamic
temporal patterns (Figure 3D). We could further divide these
eight cellular dialogues into two classes: ones that contain
only self-repressions (Figure 3D, blue boxes) and ones that
contain at least one self-activation (Figure 3D, red boxes). The
three cellular dialogues that contain only self-repressions
produce dynamic spatial patterns in which the moving shape
periodically changes its gene expression composition (Fig-
ure S3 and Video S3). In contrast, the five cellular dialogues
that contain at least one self-activation yield dynamic spatial
patterns such as traveling waves (Figures 2C-2G) in which
the pattern moves across the field of cells without changing in
shape or composition.

Grouping Cellular Dialogues Based on How Fast They
Form Patterns Is Equivalent to Grouping Them Based on
Their Shared Structural Elements

We discovered that if we analyze the typical times or the longest
time that a cellular dialogue takes to form a pattern (static config-
uration or a dynamic pattern), and then group the cellular dia-
logues based on those times, then we would identify the same
three categories of cellular dialogues (Figures 3E and S4). Spe-
cifically, all eight cellular dialogues that can form dynamic spatial
patterns stood out as taking the longest times to form patterns
compared to the other cellular dialogues, by at least about
100-fold longer durations (Figure 3E, circles). As we will later
discuss, we found that these long self-organization times
(~1 week if one time step represents 1 min) are due to complex
dynamics that is intrinsic to the pattern-formation process.
We found that all cellular dialogues that cannot form dynamic
spatial patterns but do form dynamic temporal patterns take
less times to form patterns, by at least a 100-fold less, than the
ones that form dynamic spatial patterns (Figure 3E, triangles).
Finally, we discovered that the cellular dialogues that cannot
form any dynamic patterns and thus only form static configura-
tions—some of which are highly organized patterns—require
the least amounts of time to form these configurations (Figure 3E,
squares).

Figure 3. Computational Search Revealed Tree Structures that Group Cellular Dialogues Based on Their Ability to Generate Either Static
Patterns, Dynamic Temporal Patterns, or Dynamic Spatial Patterns

(A) Two classes of dynamic patterns. (Top) Dynamic temporal patterns repeat themselves over time without transmitting information across space. (Bottom)
Dynamic spatial patterns involve cells that transmit information over space through a coherent structure that moves across the field.

(B-D) Tree diagrams show a full classification of all 44 unique, non-trivial cellular dialogues into three distinct classes (see STAR Methods). In each tree diagram, a
cellular dialogue is a leaf (box) that is joined by branches to other cellular dialogues. As one moves from one leaf to the next, an edge is either removed or added to
the cellular dialogue. (B) Tree diagram showing all cellular dialogues that cannot generate any dynamic patterns. All cellular dialogues here lack mutual in-
teractions and self-repressions. (C) Tree diagram showing all cellular dialogues that can generate dynamic temporal patterns but not dynamic spatial patterns.
These all have either a self-repression (red boxes), a mutual interaction of the same sign (blue boxes), or both (purple boxes). Cellular dialogue 14 is an
exception—it has mutual interactions of different signs and no self-interactions. (D) Tree diagram showing all cellular dialogues that can generate dynamic spatial
patterns, as well as dynamic temporal patterns. These are all generated by adding at least one additional self-interaction to cellular dialogue 14. Cellular dialogues
in the five red boxes have at least one positive feedback loop and can generate non-oscillatory dynamic spatial patterns (e.g., traveling waves). Cellular dialogues
in the blue boxes have only negative self-interactions and produce dynamic spatial patterns but always with a concurrent dynamic temporal pattern (e.g., a
traveling wave where the cells oscillate simultaneously) (see Figure S3 for examples).

(E) The maximum observed simulation time is a metric that naturally separates the three classes of cellular dialogues (B-D) (see Figure S4 for other metrics).
A node represents a cellular dialogue and the node’s shape represents the type of cellular dialogue (one of the three B-D). A node’s color indicates the longest
observed simulation time among a large set of simulations that were performed with different parameters.

See also Figures S2-S4.
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Figure 4. Analytic Framework Predicts and Explains How Cells Can Sustain Dynamic Spatial Patterns
(A-C) Three-step overview of an analytic (pen and paper) approach to understanding the simulations (see Supplemental Analysis Section S3 for details). (A) Step
1: decompose straight (top) and bent (bottom) waves into distinct layers of cells. Cells of the same layer have the same gene expression state. (B) Step 2: estimate

(legend continued on next page)
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Analytic Framework Explains How Cells Collectively
Sustain Dynamic Spatial Patterns

To explain why certain cellular dialogues enable cells to sustain
the dynamic spatial patterns after having formed them, we devel-
oped a theory that does not use simulations and still correctly
predicts when dynamic spatial patterns occur and explains
how the cells sustain them (Figures 4A-4C). The key idea behind
this analytical approach is that many dynamic spatial patterns,
from the complex whirlpools of wavelets to spiral waves, share
a common structure: one can build diverse dynamic spatial
patterns by gluing together multiple rectilinear waves (i.e., hori-
zontal, vertical, and bent waves). Thus, if we can understand
how cells can sustain rectilinear waves, we can piece them
together to understand the more complex shapes that are built
out of them. Each rectilinear wave has six distinct layers of
gene expression states (Figure 4A). Three of the layers—“front,”
“middle,” and “back” (Figure 4A, red, black, and blue cells)—
constitute the wave itself and continuously move forward while
the other three layers— “exterior front,” “exterior,” and “exterior
back” —consist of all the other cells. After a one-time step, each
layer adopts the identity of the layer just behind it (e.g., the exte-
rior-front layer, which is just in front of the front layer, becomes
the front layer) (Figure 4C). This must occur at every time step
in order for the wave to continuously propagate, meaning that
the concentrations of the two molecules within each layer must
coordinately change so that the layers can synchronously
move forward. We developed a method to estimate the concen-
trations of the molecules in each layer (Figure 4B; Supplemental
Analysis Section S3).

Using the analytical approach, we derived six mathematical
inequalities, one for each layer that must all be satisfied in order
for the concentrations of the two molecules to coordinately
change to enable the rectilinear wave to propagate (Figure 4C;
Supplemental Analysis Section S3). The inequalities impose
relationships among the different parameters of the cellular
dialogues, such as the maximal secretion rates and sensing
thresholds (Figure 1D). By solving these inequalities, we found
that only five cellular dialogues—the exact same ones that we
computationally identified—can satisfy all six inequalities and
thus generate non-oscillatory dynamic spatial patterns (i.e., the
ones that do not involve concurrent dynamic temporal patterns)
(Figure 3D, red boxes). In accordance with the computational
screening, the analytical approach revealed that only two types
of rectilinear waves are possible, each differing by which gene
expression state is assigned to each layer: all cellular dialogues
with cellular dialogue 15 as the common motif (i.e., molecule-1

promotes its own secretion) generate one type of rectilinear
wave (Figure 4D, top row) while the others, having cellular dia-
logue 19 as the common motif (i.e., molecule-2 promotes its
own secretion), generate the other type of rectilinear wave (Fig-
ure 4D, bottom row). As an exception, cellular dialogue 33 can
generate both types of traveling waves because nested in it
are both cellular dialogues 15 and 19 as sub-graphs.

To understand why only these five cellular dialogues (Fig-
ure 4D) can generate dynamic spatial patterns, we considered
the directed-graph representation of the cellular dynamics that
we introduced earlier (Supplemental Analysis Section S2). For
a wave, the directed graph must contain a cyclic path that
goes through all four nodes—one node for each gene expres-
sion state—since an exterior cell must eventually become a
front-layer cell, then a middle-layer cell, then a back-layer
cell, and then finally an exterior cell again (Figure 4C). Cellular
dialogue 14, which is the backbone of all five cellular dialogues
that generate dynamic spatial patterns (Figure 3D, red boxes),
can potentially produce a cyclic graph with these four nodes
(Figure 4E, left panel) as long as they permit parameter values
that allow each cell to cyclically traverse through the nodes.
This is because starting with a gene expression state of
(1, 0)—where the 1 means ON-state for molecule-1 and the
0 means OFF-state for molecule-2—may lead to (1, 1) due
to molecule-1 promoting molecule-2 secretion, which then
may lead to (0, 1) due to molecule-2 repressing molecule-1
secretion, which then may lead to (0, 0) due to there being
not enough molecule-1 for promoting molecule-2 secretion,
and finally, this may lead back to the starting state, (1, 0),
due to there being not enough molecule-2 for inhibiting mole-
cule-1 secretion. However, such a cycle through the four
nodes alone is insufficient for sustaining a wave because the
exterior cells must remain as exterior cells unless they are
adjacent to the front or back layer (Figure 4C). But if the exte-
rior cells have state (0, 0) and the front-layer cells have state
(1, 0), then the exterior cells near the front layer (i.e., the exte-
rior-front cells) would sense more molecule-1 than the exterior
cells that are further away from the wave. Modifying cellular
dialogue 14 by having molecule-1 promoting its own secre-
tion, as in cellular dialogue 15, would create the possibility
of the exterior-front cells activating molecule-1 secretion and
thus transition to (1,0) at the next time step, thereby becoming
a front layer whereas the exterior-layer cells remain in the (0, 0)
state (Figure 4E, top right). A similar reasoning also yields an
analogous result for cellular dialogue 19 (Figure 4E, bot-
tom right).

the total concentrations of molecules that a cell senses by exactly calculating the portions of those concentrations that are due to the cell itself and its nearest
neighbors and by approximating the portions of the total concentrations that are due to further-away cells. (C) Step 3: (right) Directed graph-representation
showing how a cell must transition to distinct layers shown in (A) at each time step, which is explained by six mathematical inequalities that are derived through

step 2.

(D) Numerically solving the six inequalities in (C) shows that only two types of waves, shown here are possible and which cellular dialogues can produce them
(cellular dialogues 15, 36, and 33 for wave type 1; cellular dialogues 19, 33, and 34 for wave type 2).

(E) Adding self-activation to cellular dialogue 14 yields, in the left column, cellular dialogues 15 and 19. Directed graph -representation showing the gene
expression transitions of a cell for each cellular dialogue (see Supplemental Analysis Section S2).

(F) Parameter values that allow for sustaining of rectilinear waves, when represented as red points, form a dense region (red region) as shown in these spider
charts. These parameter values satisfy the six inequalities derived by the analytic theory (C) (see Figure S6C for a direct comparison with parameter values found
purely through computational search). The spider charts show the following parameters: threshold concentrations K(i) for each molecular interaction and the

maximum secretion rate Cg)N for each of the two molecules.
See also Figures S5 and S6.
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Figure 5. Three-Step, “Order-Fluctuate-Settle” Process Leads to Formation of Dynamic Spatial Patterns
(A) Snapshots of a simulation showing the three stages of a traveling-wave formation —the three stages are described above the filmstrip. Assuming that one time
step of a simulation represents 1 min, indicated above each snapshot is the elapsed time in hours. Color scheme for cells is the same as in Figure 2.

(legend continued on next page)
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To realize the qualitative scenario described above, a cellular
dialogue must contain parameter values that satisfy all six in-
equalities that we derived (Figure 4C). We found that the five
cellular dialogues indeed admit such parameter values and
that these values—obtained through the analytical approach—
nearly perfectly match those found in the computational screen
(Figures S5 and S6). We can represent these parameter values
as spider charts (Figure 4F), which show that each of the five
cellular dialogues can realize dynamic spatial patterns with
parameter values that vary over many orders of magnitude.
The spider charts also geometrically reveal a common feature
among the five cellular dialogues: the threshold concentration
must be low for a molecule that promotes its own secretion
(Figure 4F, note the inward indentations in the red spider webs
along the axes that represent the threshold concentrations).
This makes sense because, for all types of rectilinear waves
(Figure 4D), the exterior-front cells need to turn on the secretion
of a molecule that promotes its own secretion by sensing it
from the other layers and having a low activation threshold
for that molecule would facilitate this. Taken together, our analyt-
ical approach unveiled how cells can sustain dynamic spatial
patterns.

Self-Organization Occurs through a Three-Stage,
“Order-Fluctuate-Settle” Process

We now turn to the self-organization process itself. Given that
many of the dynamic spatial patterns are traveling waves and
that more complex dynamic spatial patterns can be built from
gluing together multiple rectilinear waves, we focused on trav-
eling waves and the core features of their self-organization
process. Our simulations revealed that traveling waves form in
three stages (Figure 5A and Video S2). First, a field of cells whose
gene expression levels form a completely disorganized spatial
configuration rapidly becomes more spatially ordered, meaning
that the gene expression levels of neighboring cells tend to
become more correlated over time. To quantify the degree of
spatial organization, we used ‘“spatial index” —a metric from
our previous work whose value is zero for a completely disorga-
nized spatial configuration and increases toward one as the
spatial configuration becomes more organized (see STAR
Methods and Figure 5B, left panel’s inset) (Maire and Youk,
2015a; Olimpio et al, 2018).

In the following discussion, we consider one time step to
represent 1 min and express the time in minutes or hours.
Then this rapid spatial ordering typically takes less than an
hour (Figure 5A, green arrow and Figure 5B, left panel). At the
end of this process, the cells have formed multiple whirlpools
of wavelets (Figure 5A, frame at 0.33 h). Thus, begins the second
stage of self-organization: long-lived complex dynamics—last-
ing for days or weeks—in which multiple wavelets travel
through the field of cells, meeting and annihilating each other,
all the while as the cells form new wavelets to replace the de-
stroyed ones (Figure 5A, filmstrip from 0.33 h to 55 h). During
this days-long dynamics, the spatial organization neither stably
increases nor decreases—the spatial index erratically (unpre-
dictably) fluctuates over time (Figure 5B, left panel; Figure S7;
Videos S4 and S5), which we can see by plotting the Fano factor
for the spatial index over time (Figure 5C, left panel; STAR
Methods). The spatial index erratically fluctuating represents
multiple wavelets forming and annihilating at various, seemingly
random locations and wavelets unpredictably morphing over
time, all despite the fact that the simulations are completely
deterministic. Crucially, we verified that the same spatial config-
uration never repeats itself throughout the days-long dynamics
which could, in fact, last for weeks or longer if we do not termi-
nate the simulations (i.e., some fields of cells never reach a
steady state and never attain a dynamic pattern within the
allotted time for the simulations). Such erratic, complex dy-
namics is followed by the third and final stage of the self-organi-
zation process: the wavelets die down and as this occurs, a more
rigid, spatially ordered structure that travels as a wave emerges
(Figure 5A, last frame). During this final process, the spatial
index’s fluctuations rapidly decay, typically over a few hours.
The system then settles into a regular dynamic pattern that
repeats itself over time. This is marked by the sudden disappear-
ance of the fluctuations in the spatial index (Figure 5B, left figure).
This settling process takes a few minutes to several hours
(Figures 5A, purple arrow, and 5B, left panel). Leading up to
this last stage, there are no clear indications that a well-orga-
nized regular shape will emerge. This highlights the erratic, com-
plex nature of the self-organization dynamics.

The spatial index, one for each gene, represents a macrostate
variable—a single number that measures how much spatial
correlation there is in the expression of a particular gene (see

(B) Two macroscopic parameters—the spatial index and the fractions of cells with a particular gene ON—plotted as a function of time for the wave-forming
simulation shown in (A). 1 min represents one timestep. (Left panel) the spatial index—with magnitude between zero and one—measures the degree of spatial
organization (zero means complete disorder, i.e., no spatial correlation in gene expression among cells and increasing values correspond to more spatial
organization). Inset shows the spatial index rapidly increasing for the first twenty time steps. Spatial index for gene 1 (red) and gene 2 (blue). (Right panel) Fractions
of cells with gene 1 ON (red) and of gene 2 ON (blue) for a typical wave-formation process. Inset shows the first twenty time steps.

(C) For datain (B) and genes 1 (red) and 2 (blue), we used a moving window to compute the moving coefficient of variations in the spatial index (left panel) and in the
fractions of cells with the specified gene ON (see STAR Methods).

(D) For a typical simulation that self-organizes into a traveling wave, we plot the trajectory in phase space formed by the fractions of cells with gene 1 ON and gene
2 ON. The trajectory begins at the square (first time step of the simulation) and terminates at the circle (last time step of the simulation).

(E) Analogy for the three-stage self-organization process—a billiard ball rolls down a bowl, bounces around on the flat circular bottom, and then fall through a
tunnel after finding a small hole drilled into the circular bottom.

(F) Probability of forming a traveling wave for each of the five cellular dialogues (detailed results in Figure S8). Violin plots showing the non-parametric kernel
density (colored distributions), together with the median (white circle), interquartile range (thick vertical line) and 1.5 X interquartile range (thin vertical line). Results
are obtained by running 500 simulations for each of the parameter sets for which at least one traveling wave formed in the computational screening (see STAR
Methods). Individual dots represent probabilities for individual parameter sets.

(G) Distributions of the time taken to form traveling waves for each of the five cellular dialogues that enable cells to form dynamic spatial patterns (detailed results
in Figure S10).

See also Figures S7-S10.
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Figure 6. Dynamic Spatial Patterns Still Form Even with More Complex Elements

(A) Schematic of four additional, more complex elements that we added to our computational screen.

(B) We examined two features with the elements in (A): (Top) can a disorganized field of cells still self-organize dynamic spatial patterns? (Bottom) Starting with a
traveling wave, can the cells sustain it?

(C) Examples of dynamic spatial patterns formed for each of the elements shown in (A). Colored boxes that enclose the filmstrips correspond to the colors used for
each element shown in (A).

(legend continued on next page)
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STAR Methods). Another macrostate variable is the fraction of
cells that have the same gene expression level (i.e., fractions of
cells that have gene-i in the ON-state). There are two such frac-
tions, one for each gene. During the self-organization process,
these two fractions erratically fluctuate over time—just like the
spatial indices—as the wavelets constantly and erratically
change their shapes while meeting and annihilating each other
for days. Afterward, the two fractions’ fluctuations quickly decay
over time—the decay takes a few hours whereas the whole
self-organization process takes days—and eventually settle at
steady-state values (Figures 5B, 5C, right panel, and S7).
When we view the temporal change of these two fractions as a
trajectory in a plane—a phase space—defined by the two frac-
tions, we see an irregular orbit that eventually stops at a single
point (Figure 5D, black circle). Specifically, a point in the two-
dimensional phase space—representing the values of the two
fractions at a given time—erratically moves within a restricted
region of the plane. If we follow the trajectory with a pencil, we
would obtain a jagged curve that densely and nearly entirely
fills the whole space within the restricted region that encloses
the single point where the trajectory terminates (Video S4).

The phase-space trajectory described above suggests the
following analogy for the self-organization dynamics (Figure 5E):
a ball quickly rolls down a steep side of a large bowl, speeding
up as it does so, until it reaches the bowl’s flat bottom. This is
the first stage of self-organization in which the decreasing
height represents more spatial ordering (Figure 5E, green arrow).
After reaching the frictionless, flat circular bottom, the ball
rapidly bounces off the sidewalls, like a billiard ball, without
ever losing its speed (Figure 5E, brown dashed lines). This
bouncing ball, which would produce seemingly erratic yet deter-
ministic motion—as Newton’s laws of motion are deterministic —
represents the second stage of self-organization in which
multiple whirlpools of wavelets are unpredictably created and
destroyed. Eventually, the ball finds the small hole, falls into it,
and then spirals its way downward along the sidewalls of the
trench through the hole until it reaches the bottom of the trench
(Figure 5E, purple arrow). This would represent the third and
the final stage of the self-organization. The shape of the bowl
and the location of the trench would be determined by the
parameters of the cellular dialogue.

In each of the five cellular dialogues that can yield dynamic
spatial patterns, we found that, for parameter values that enable
dynamic pattern formations, approximately 30% of the initially
disorganized spatial-configurations successfully self-organized
traveling waves (Figure 5F). Moreover, our simulations and the
analytical approach revealed that cells can have arbitrarily high
parameter values and still form traveling waves, as long as the
secretion rates and threshold concentrations are appropriately
tuned (Figures S6 and S8). Our analytical framework presents

an optimization strategy for ensuring that cells form traveling
waves for the largest possible set of parameter values (Fig-
ure S9). This strategy depends on balancing how much a cell
communicates with itself by capturing back the molecules that
it had just secreted (self-communication) with how much a cell
communicates with the other cells by sending its secreted
molecules to them (neighbor-communication). In short, we found
that when the cells are sparsely packed, there is not enough
neighbor communication for sustaining traveling waves. On the
other hand, when the cells are densely packed, then cells cannot
cycle through a set of gene expression states—a requirement
for dynamic patterns such as waves - because the signaling mol-
ecules quickly reach saturating concentrations rather than un-
dergoing the necessary cycles of decreases and increases.
This leaves us with intermediate, “goldilocks” density of cells
as being ideal for forming and sustaining waves and dynamic
spatial patterns (Figure S9B). Furthermore, for all five cellular di-
alogues, we discovered that the probability of forming a traveling
wave at a given time is well described by an exponential distribu-
tion (Figures 5G and S10A), with a characteristic decay time of
thousands of time steps (i.e., tens of hours if one time step is
1 min). This strongly suggests that traveling wave formation is
a memoryless process whereby at each time step, the probabil-
ity that the next time step yields a traveling wave remains the
same regardless of at which time step the simulation is. This re-
flects the fact that watching the simulations that yield a dynamic
spatial pattern does not give the observer a sense that the
cells are getting anywhere closer to forming a dynamic spatial
pattern as time passes (Figures S10B-S10D).

Dynamic Patterns with More Complex Elements

We next extended our investigation by relaxing the two main
constraints in the simulations—having an infinite Hill coefficient
and cells on a regular lattice. We modified the simulations by
separately adding four elements (Figure 6A; STAR Methods):
(1) stochastic response to the signaling molecules (Figure 6A,
top left), (2) a sigmoidal response function characterized by a
finite Hill coefficient (i.e., cells no longer digitally respond to the
signaling molecules) (Figure 6A, top right), (3) randomized loca-
tions of cells instead of each cell residing on a regular lattice (Fig-
ure 6A, bottom left), and (4) random (diffusive) motion of each cell
(Figure 6A, bottom right). We tuned each element and asked
two questions: (1) can the cells still form traveling waves if they
start with a completely disordered spatial configuration? (Fig-
ure 6B, top)—this probes the self-organization capability —and
(2) can the cells still sustain traveling waves after forming
them? (Figure 6B, bottom) —this investigates whether dynamic
spatial patterns can be sustained once formed. In general, we
found that cells could still form a wide range of dynamic spatial
patterns with the four additional elements (Figure 6C). For

(D) Fraction of simulations that form a dynamic pattern as a function of the deviation from the more idealized setting—cells placed on a regular lattice and re-
sponding digitally with an infinite Hill coefficient—in which the results for Figures 1, 2, 3, 4, and 5 were reported. Four colored boxes with each color corresponding
to colored box in (A) that shows the modified element in the simulations. For each data point, we ran a large set of simulations with a fixed set of initial conditions as
we varied the parameter controlling the deviation from our original model and classified their final states (see Figure S11 for details on finite Hill coefficient and

noise). All results here are for cellular dialogue 15.

(E) Fraction of simulations with cellular dialogue 15 that can sustain a traveling wave for at least one full period after starting with a traveling wave. We took
parameter values for which the simulations with simpler elements (i.e., infinite Hill coefficient and cells on a regular lattice) can propagate traveling waves.

See also Figures S11-S14.
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example, we discovered that cells under the influence of a mod-
erate noise could form a band that travels as a wave despite a
number of cells stochastically obtaining the “wrong” (incoherent)
gene expression state. In this case, the wave, thus, propagates
while stochastically evolving (Figure 6C, top left; Video S6). As
another example, we discovered that even when we randomly
arrange cells in space, instead of on a regular lattice, the cells
could still form never-ending, complex wavelets (Figure 6C, bot-
tom left; Video S7).

By running many simulations for each of the four complex
elements, we discovered that the dynamic spatial patterns that
we previously observed, on a regular lattice with an infinite Hill
coefficient (Figure 2), still formed as long as the amount of the
deviation introduced by the four elements, relative to the regular-
ity of the lattice and the infinite Hill coefficient, was non-negligible
but not too large (Figure 6D). For instance, we found that, with
a moderate noise, dynamic spatial patterns continued to form
and persist (Figures 6D, 6E, top left, and S11). The probability
that an initially disordered configuration morphed into a trav-
eling wave became higher with moderate noise, compared to
not having any or low noise, indicating that noise can drive the
system toward more ordered states—a phenomenon also
observed for static patterns in an earlier work (Olimpio et al.,
2018). To account for this observation, we extended our theory,
which we developed for explaining wave propagation without
noise (Figures 4A-4C), to now include noisy gene expression.
Using this extended theory, we calculated the probability that a
wave, after forming, “survives” for a given amount of time. This
probability closely matched the actual fraction of simulations in
which waves survived (Figure S12 and Supplemental Analysis
Section S4). The theory also let us calculate, for each of the
five cellular dialogues that can form dynamic spatial patterns,
how much noise there must be to prevent waves from forming
(see Supplemental Analysis Section S4).

By varying the Hill coefficient over a wide range, we discov-
ered that dynamic patterns can form for finite Hill coefficients
of values ~4 or higher (Figures 6D, top right, and S11). However,
these did not typically include “pure” traveling waves that neatly
decompose into the previously identified layers. Moreover, an
already-formed traveling wave—as in the case of a simulation
that starts with a wave—could persist for Hill coefficients of
values down to ~3 (Figure 6E, top right). These results indicate
that a finite Hill coefficient is mainly detrimental to the self-orga-
nization of traveling waves whereas it is less detrimental to the
cells’ ability to sustain a traveling wave once it is formed. With
a Monte Carlo algorithm that randomly displaces the cells and
quantifies the amount of resulting “lattice disorder” (see STAR
Methods), we found that dynamic spatial patterns still formed
and persisted even with a high degree of spatial disorder (Figures
6D, 6E, bottom left, and S6). Even with saturating amounts of
spatial disorder, we still observed self-organized wavelets
that propagated, albeit with a lesser degree of regularity than
in a regular lattice (Figure 6C, bottom left). When we allowed
the cells to diffusively move—we tuned the cells’ motility by ad-
justing the diffusivity of their Brownian motion (see STAR
Methods)—we found that large-scale, uncoordinated motion of
the cells prevented any kind of dynamic spatial patterns from
stably propagating, as large variations between the local envi-
ronments of individual cells tended to diminish the cells’ ability

to spatially propagate information (Figure 6D, bottom right).
However, we found that motile cells could still propagate
waves, once formed, for an extended amount of time before
the wave disintegrated even when the cells had a high degree
of diffusive motion (Figure 6E, bottom right). Together, these re-
sults strongly suggest that diffusively moving cells can sustain
traveling waves as long as the waves travel sufficiently rapidly
(i.e., compared to the cells’ average speed).

We also studied three more complex elements. First, we
considered the influence of a spatial gradient of parameter
values on traveling-wave formation (see STAR Methods). Re-
searchers have suggested that spatial gradients of parameter
values can influence the orientation of Turing patterns such as
stripes (Hiscock and Megason, 2015). Similarly, we observed
that a spatially varying parameter, having a simple step-function
profile over space, can influence the direction in which the trav-
eling waves moved after forming: the waves tended to align
perpendicularly to the gradient (Figure S11). Second, whereas
until now the cells integrated the two signals with an AND-logic
scheme—both molecules were required for activating or repres-
sing gene expression—we repeated the computational search
(Figure 1D) but now with an OR-logic scheme in which only
one of the molecules is required for activation or repression of
agene (see STAR Methods). We found that the OR-logic scheme
yields exactly the same groupings of cellular dialogues as in the
AND-logic scheme in terms of the three classes of patterns that
they generate—static, dynamic temporal, and dynamic spatial
patterns (Figure S13 and Video S8). But we discovered that the
OR-logic scheme produces a different “wave structure” (Fig-
ure 4D) than the AND-logic scheme (Figure S13). Finally, we per-
formed simulations in which we disrupted the individual cell’s
gene expression to check whether traveling waves could still
form and propagate. Experimentally, one can perturb individual
cells this way with optogenetics. Our main finding is that traveling
waves can still form and continue to propagate as long as we dis-
rupted sufficiently low numbers of cells (e.g., up to ~20 cells in a
field of ~200 cells) (Figure S14).

DISCUSSION

The dynamic-pattern-forming cellular dialogues that we identi-
fied include some that have been experimentally observed to
yield patterns. They all have interlocked positive and negative
feedbacks (Figure 3D). Researchers have found that, without
any cell-cell communication, such interlocked feedbacks can
cause gene expression levels to robustly oscillate temporally
(Stricker et al., 2008; Tsai et al., 2008; Li et al., 2017). Re-
searchers have also synthetically engineered a quorum-sensing
gene circuit resembling cellular dialogue 20 (Figure 3D) and
observed that the cells’ gene expression levels synchronously
oscillate over time and, under certain conditions, spontaneously
form traveling waves (Danino et al., 2010). More generally, the
activator-inhibitor structure of cellular dialogue 15 is qualitatively
similar to the structure of the FitzZHugh-Nagumo (FHN) model,
which describes excitable systems such as cells whose biomol-
ecule concentrations oscillate over time and/or form traveling
waves (Gelens et al., 2014; Sgro et al., 2015; Hubaud et al.,
2017). Cellular dialogue 15 has an activating molecule that pro-
motes its own production and an indirect negative feedback
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through the second molecule. This indirect negative feedback is
analogous to the slow repression in the FHN model. Similarly, the
interlocked positive-negative feedback loops of the dynamic-
pattern-forming cellular dialogues resemble the activator-inhibi-
tor systems that generate Turing patterns (Kondo and Miura,
2010) and resemble the two-gene networks that can generate
Turing patterns (Scholes et al., 2019). But the cells in our simula-
tions do not generate Turing patterns such as stripes or spots of
fixed sizes, likely due the large separation of timescales between
molecular and gene expression dynamics in our simulations.
Here, we focused on cellular dialogues with two molecules
and the two genes that they control. But our software can easily
be modified to include multiple—more than two—extracellular
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Figure 7. Self-Organized Dynamic-Pattern-
Forming Systems with Poorly Understood
Interactions that Our Software and Analytic
Framework May Help in Elucidating

(A-D) Biological systems with two or more inter-
acting pathways that generate spatiotemporal
patterns but whose exact mechanisms and
cellular dialogues remain poorly understood. (A)
During somitogenesis, a wave of gene expression
states propagates along the anterior-posterior
axis of an elongating, pre-somite mesoderm. The
conventional view is that this wave is mediated by
a coupling between individual oscillators—oscil-
lations in expression levels of Wnt, Notch, and Fgf
and/or by large-scale gradients in the gene
expression levels for those molecules. But how
Notch regulates Wnt and vice versa remains
questionable while Hes7 is known to mediate the
Fgf-Notch interaction (Sonnen et al., 2018). Fig-
ure partially adapted from (Oates et al., 2012). (B)
Waves of B-catenin (green ring) and Smad2 (red
ring) expression levels propagate in a field of stem
cells. Although we know that these waves form
because of BMP inducing B-catenin (part of the
Wnt pathway) and SMAD2 (part of the NODAL
pathway), how exactly these two inductions occur
remains poorly understood (Chhabra et al., 2019).
(C) The circadian clocks of each cell within the leaf
of Arabidoposis thaliana are thought to be coupled
to each other through an as-yet-unknown mech-
anism, which is suspected to involve a variety of
hormones, sugars, mMRNAs, and other molecules
(Greenwood et al., 2019). (D) A planarian re-
generates itself after being cut into two or more
pieces. This is thought to rely on mutual antago-
nism between gradients of Wnt expression
(purple) and of an as-yet-unidentified molecule
(yellow) (Stuckemann et al., 2017). Figure partially
adapted from (Stuckemann et al., 2017).
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molecules and genes as well as arbitrary
regulations of those genes (as show-
cased by our inclusion of finite Hill coeffi-
cients). Such extensions would allow one
to explore more complex ways that
cellular dialogues can mediate dynamic-
pattern formations. These extensions,
our analytical method for analyzing the
simulations, and our results on two-mole-
cule cellular dialogues may provide insights on poorly under-
stood systems in which multiple signaling molecules interact
with each other. For many biological systems, the regulatory
links among the various molecular players remain unknown (Fig-
ure 7). For example, researchers have found that three signaling
molecules—Fgf, Notch, and Wnt—regulate one another during
somite formations. But how Wnt and Notch regulate each other
so that their levels coordinately oscillate over time remains un-
known (Figure 7A) (Oates et al., 2012; Harima and Kageyama,
2013; Sonnen et al., 2018). One may address this question by
modifying our software to include three-molecule cellular dia-
logues and then applying our analysis method to analyze those
simulations. Doing so may also help in identifying, in stem cells,
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the as-yet-unknown regulatory links among Bmp, Wnt, and
Nodal that lead to self-organized spatiotemporal waves (Fig-
ure 7B) (Chhabra et al., 2019). In the Arabidopsis thaliana leaves,
the circadian clocks of individual cells may be synchronized
through self-organized traveling waves (Wenden et al., 2012;
Gould et al., 2018) (Figure 7C). While these waves are known
to occur through interactions between cells on a regular lattice,
the exact interaction mechanism remains unknown (Greenwood
et al., 2019). Finally, in planaria—flatworms that regenerate their
bodies after they are cut into pieces—a self-organized Wnt
gradient specifies where the tail reforms after it is cut. Re-
searchers believe that an as-yet-unidentified signaling molecule
may interact with Wnt in a mutually antagonistic way to indicate
where the head should reform after it is excised (Figure 7D)
(Stuckemann et al., 2017). Thus, our results on two-molecule
cellular dialogues may provide insights into this system.

Our work revealed that complex, erratic dynamics is integral to
the cellular dialogues enabling dynamic spatial patterns. Re-
searchers have experimentally observed irregular, complex
heart beats during ventricular fibrillations (Ten Tusscher and
Panfilov, 2006; Qu et al., 2014) and turbulent flows of cytoskeletal
fluids (Giomi, 2015) and fluids of Min proteins (MinC, MinD, and
MinE) from E. coli lysates that form patterns on a petri dish (Ha-
latek and Frey, 2018). Our work expands this repertoire to include
pattern formations through cellular dialogues. Such complex
spatial-patterning dynamics may be difficult to observe in exper-
iments because genetic or developmental programs might be
triggered and “take over” the pattern-forming dynamics before
the cells had enough time to exhibit the kind of prolonged, erratic
dynamics that we uncovered here. For example, before a pattern
finalizes, some of the cells in the tissue or an embryo may turn on
a different developmental program such as those that lead to
cavitation in parts of the tissue or some of the cells to collectively
migrate. Consequently, cells may not have the time to exhibit
the prolonged complex dynamics for a sufficiently long enough
time for us to experimentally distinguish it from a short-lived,
transient dynamics. Moreover, another experimental challenge
to observing the prolonged complex dynamics is that one must
measure gene expression levels of every cell in a tissue or an em-
bryo with sufficiently high temporal and spatial resolutions and
do so continuously for a sufficiently long time. With these diffi-
culties in mind, a plate of natural or synthetic cells that use
two-molecule cellular dialogues—rather than a full embryo—
may allow us to fully observe the complex dynamics using
time-lapse microscopy. It may also be interesting to interpret
and analyze our work in the context of complex systems theory
(Bar-Yam, 2003). Doing so may link our findings to those of
non-living chemical systems that self-organize patterns (Nicolis
and Prigogine, 1977).

Key Changes Prompted by Reviewer Comments

In response to the reviewers’ comments, we lightly modified the
main and supplementary figures to stress the main message
contained in them. Although the reviewers did not ask for more
work, we added six new supplemental figures to further clarify
and support the message that was contained in the original
figures. We also added a paragraph in the Discussion section
to describe the experimental challenges that one faces in
observing the prolonged, erratic self-organization dynamics.

For context, the complete Transparent Peer Review Record is
included within the Supplemental Information.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

e KEY RESOURCES TABLE
o LEAD CONTACT AND MATERIALS AVAILABILITY
e METHOD DETAILS
O Detailed Description of Our Model
O Simulation and Analysis of the Model
O Extending the Model by Adding Complex Elements
e DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
cels.2019.12.001.
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METHOD DETAILS

Detailed Description of Our Model

In this section, we provide a detailed description of a generalized version of our model, which one can apply to an arbitrary number of
diffusing molecules that cells secrete and sense. Our aim here is to concisely summarize the model. For motivations behind the as-
sumptions of our model, please see the main text and our earlier studies (Maire and Youk, 2015a; Olimpio et al., 2018).

We consider N cells that communicate through / distinct, diffusing signaling-molecules that the cells secrete and sense. We first
consider cells that are placed on a triangular lattice such that each cell has six nearest neighbors, each at a distance of ag. We specify
the state of the system - a "system state" - by

X(t)= {Xk(t)}f: 4» Where X = (X,((’), .‘.,X,((’)) is the state of cell k, which we call a "cell state" for cell k. In our description below, we will
distinguish between the system state X and the cell state of cell k, X.

Suppose that cell k secretes a signaling molecule i (1 <i</) at arate C\, which is bounded below and above as: CQ:F < C,((’) < Cg>N.
Note that we allow for the possibility that the lower and upper bounds on the secretion rate can be different for each signaling
molecule. The secretion rate is related to the cell state through the relation

O () = (b~ Gl X +

In the simplest scenario, the cells secrete signaling molecules at a rate which is either low or high. In this case, each of the X,((') takes
binary values - 0 or 1 - such that C(X{ =1) = Cl)\ and CO(x{" =0)=Cl)... Alternatively, the secretion rate could take continuous
values within the closed interval [Cg)FF,Cg)\,]. If so, then the cell states are continuous variables (i.e., X,((i) can take any value between

0and 1. For convenience, we set C&F =1 for alli and measure all concentrations in units of this OFF-secretion rate (which we take to
be equal for all molecules, unless we state otherwise).

The concentration of a signaling molecule, once it reaches a steady state, decays with distance from the cell that is secreting it as
follows (Olimpio et al., 2018):

c(r) = CY1Or).

, A0 Reen — I R
) = TGXp( ch</‘> )Sinh ( A??)”)

Here we assumed that the cells are spherical with radius Ree =rceao and 29 is the diffusion length of signaling molecule i. The
diffusion length measures how far the molecule can typically travel before degrading and is set by the molecule’s diffusion constant
and degradation rate (Olimpio et al., 2018). Here, we also introduced an “interaction function” function ) (r) to capture the distance-

dependent decay. Note that Cg)N and Cg>FF are effective secretion rates for ON- and OFF-cells respectively that lump together several
terms which appear in the reaction-diffusion equation for molecule i. They can depend on the diffusion lengths 1. But we will

consider them to be independent of the diffusion lengths by assuming that Cg)N and Cg),_.,_. remain constant as we change A by tuning
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other parameters which we do not specify here for brevity. We can reduce the number of parameters by expressing all lengths in units
of lattice spacing, ag. We define /) = (1) /ap) and rewrite the interaction function as

i 1 Teel — r
(i) _ ! cell — P\ . Feell
f9(p) = pexp( G )smh(lw )
where we introduced p=(r/ag). Here, rces =Rcen/ao is the radius of a cell expressed in units of the lattice spacing ag.

At any given time, the concentration that a cell senses is the sum of the concentrations due to each of the cells in the system. We
express the concentration of molecule i that a cell k senses as

N
vi = S e,

where f,((’,)n is a distance-dependent interaction strength between cells k and m. Explicitly, we have

) = O (tm), (k= m)
w=\1 k=)

with r,» being the distance between cells k and m and f¢)(r) as defined above.
For later reference, we introduce an "interaction strength" ff\’,) for each signaling molecule i:

W= St

m# k

Note that if all cells secrete at the same rate C?), then they would all sense the following concentration

YO = (1 +£))CO.

Regulatory Interactions

We now consider how the sensing of one signaling molecule affects the secretion of itself and other molecules by a cell. Molecule j
can affect the secretion of signaling molecule i in three distinct ways (note that i can be equal to j). First, molecule j may activate
secretion of molecule i, meaning that a higher concentration of j leads to a higher secretion rate of i. Secondly, molecule j may
repress secretion of molecule i, meaning that a higher concentration of j leads to a lower secretion rate of i. Finally, molecule j
may not influence the secretion rate of molecule i at all. We can capture these three possibilities by an “interaction matrix” My,
defined as

) 1, j activates i
MY = f(x)={ —1, jrepressesi
0, nointeraction

The interaction matrix allows us to define a “cellular dialogue” as a directed (multi)graph in which each node represents one of the /
signaling molecules and each directed edge represents one molecule (node) controlling the secretion rate of either itself (self-loop) or
another molecule (directed edge from one node to another) as dictated by the interaction matrix.

A cell may respond in one of multiple possible ways to the sensed concentrations of all the signaling molecules. lts biochem-
ical circuitry sets its response. Here we consider a relatively simple case in which the cell senses the extracellular signaling mol-
ecules and then uses one of two standard logic gates — AND and OR gates - to integrate the signals triggered by the sensed
molecules to regulate the genes that encode each of the signaling molecules. These gates apply to cells with infinite and finite
Hill coefficients (i.e., cell’'s response is not necessarily binary for either logic gates). First, let us consider a cell that uses an AND-
gate to integrate the intracellular signals triggered by the sensing of two signaling molecules. For two signaling molecules that
activate the secretion of each other, one way to achieve an AND-gate is having two transcription factors — one for each signaling
molecule — both needing to bind to the promoter of the gene that encodes the signaling molecules. One of the two transcription
factors alone binding to the promoter would be insufficient for activating expression of — and thus secretion of - any of the
signaling molecules. Only when both transcription factors are bound to the same promoter, their cooperative interactions would
induce the expression and secretion of the signaling molecule that the gene encodes (Buchler et al., 2003). This scenario leads
to a multiplicative update rule for our model. Namely, we determine the cell’s secretion rate at the next time step in the cellular
automaton by multiplying several mathematical functions — one for each transcription factor — with each function describing the
bound fraction of a given transcription factor. Alternatively, a cell may use an OR-gate to regulate genes that encode the two
signaling molecules. Here, either of two transcription factors can induce transcription, without the need for both transcription
factors to be present. In practice, this can be realized by placing strong binding sites for both molecules at a considerable
distance apart, so that the two transcription factors can individually bind to the promoter and recruit RNA polymerases (Buchler
et al., 2003).

e2 Cell Systems 10, 82-98.e1-e7, January 22, 2020



Mathematically, let g¥) (X) be the result of the regulation of the gene that encodes molecule i by molecule j, given a system state X.
If g (X) =1, then the gene is activated or unrepressed, whereas g/ (X) = 0 means that the gene is either un-activated or repressed.
The specific mathematical form of g)(X) depends on the regulatory interaction. As a general form, we can write it as

gP(X(1) = 0((v) —KD M),

1, x>0
0, x<0
ulatory interaction (Ml(gg =0), we set §(0) =1 for the AND-logic and 6(0) =0 for the OR-logic. Using the standard syntax of Boolean
algebra, we can denote the AND-operation as A and the OR-operation as V. Then, using arithmetic representation of logic gates,
we have xAy =xy and

xVy=x+y— xy. Hence, a cell's response with an AND-gate takes the form

X[ (t+1) = gV X)ngP (X (1) =g (X(1)gy” (X(t)),

and a cell’s response with an OR-gate takes the form

Xt +1) =gV (X(1) VaRX() =gy (X(1) +gi2 (X (1) — gi (X (1)gy? (X (1)),

We can readily generalize these expressions to cells with more than two signaling molecules by using the standard rules of Boolean
algebra.
Steady States of the System
For regulatory interactions with infinite Hill coefficients, each cell has one of two states for each signaling molecule — OFF (i.e., basally
secreting the molecule) and ON (i.e., maximally secreting the molecule). Hence, if the system has a total of N cells, the total number of
possible gene-expression states for the population is finite (2V), meaning that the system (i.e., population) is bound to eventually
reach one of two types of steady states in terms of the population-level gene-expression:

where 0(x) = { is the step function. The value of §(0) is unspecified, but to be consistent with the case of not having a reg-

1. Stationary steady-state: There is a time t* such that for all t>t*, the system does not change any more (i.e., X(t +1)= X(t)).
Simply put, this means that the population-level gene-expression state remains constant starting at time t*.

2. Periodic steady-state: There exists a time t* after which we have X(t + 7) = X(t) for all t >t*. Then 7 is the period of the periodic
steady-state. Simply put, this means that the population-level gene-expression state undergoes a periodic oscillation with a
period 7.

The t* - which we will call equilibration time - is the time that the system takes to reach either one of the two types of steady states.
For stationary steady-states, this is simply the first time when the system reaches a state that does not change over time any more.
For periodic steady-states, we define the equilibration time when the onset of the periodicity occurs.

Enumerating Cellular Dialogues
If we have two signaling molecules, there are four possible interactions between those two molecules. Each interaction can be either
activating, repressing or absent. Hence two molecules can form a total of 34 = 81 possible cellular dialogues. However, many of these
cellular dialogues are equivalent to one another because swapping the labels "1" and "2" on the two molecules (Figure 1C) conserves
the topology of the graphs that represent the cellular dialogues (i.e., which molecule is labeled "1" or "2" is arbitrary). Under this label-
swapping operation, the interaction matrix becomes
Mo M\ (M MR
My M) A\ME Mg

Hence, for cellular dialogues that are invariant under the label-swapping operation, we must have Mi(r:t” = Mi(ff) and Mi(r:f) = Mi(ft”,
leaving us with two independent elements in the interaction matrix. Each of these two elements can have one of three possible values.
Thus, the cellular dialogues that are invariant under the label-swapping operation reduce down to a set of 9 distinct cellular dialogues.
We can reduce the remaining 72 cellular dialogues to a set of 36 unique cellular dialogues. Hence, we have total of 45 distinct cellular
dialogues. After neglecting the trivial cellular dialogues - those in which neither of the two molecules regulates the other - we obtain
the set of 44 cellular dialogues that are shown in Figure 3. Note that we also enumerate all cellular dialogues in which a molecule
regulates itself but does not regulate the other molecule.

Population-Level Description

To characterize the population-level behavior without focusing on the state of every single cell, we introduce "macroscopic vari-
ables". Specifically, we define two macroscopic variables for each molecule, leading to a total of four macroscopic variables for a
population. One of them is the average expression level of the gene that encodes molecule i which, in the case of the digital cells,
is equal to the fraction of cells that have gene i turned on:

1L
pl =5 > X,
k=1

2|
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The other macroscopic variable is the "spatial index" for gene i, which characterizes how spatially correlated the expression levels
for geneiis among the cells. We first introduced this in earlier studies (Maire and Youk, 2015a; Olimpio et al., 2018) and we now define
it for a population with multiple signaling molecules as follows:

/0 = 1 ZmZn:&mfgv)n (Xg”r) — <X<i)>) (Xg) — <X(i)>)
Snemfmn (X9~ xw)?

The spatial index for gene i, I), quantifies how spatially ordered the cells are in terms of their expression level for gene i. It can have
avalue between -1 and 1, with negative values indicating that neighboring cells tend to have different gene-expression levels (such as
in checkerboard patterns or anti-ferromagnetism in spin models) and positive values indicating that neighboring cells that tend
to have similar gene-expression levels (forming islands with the same gene expression level, similar to ferromagnetism). When
10 =0, the cells’ expression levels of gene i are, on average, uncorrelated. In the case of spatially ordered patterns such as traveling
waves, the values of /) are positive and relatively high, with exact values depending on the parameters of the system and the
wave’s shape.

Together, the set of macroscopic variables {p®, l(")}ﬁ=1 - for I signaling molecules (we considered / = 2 here) - convey population-
level information. However, this description does not contain information about correlations between different genes. For example,
we may specify, for two-molecule cellular dialogues, that p(V) =p@ =0.5 and /(') = /@ = 0.5. This tells us that half of the genes of each
type are turned on and that the cells which have a certain gene on will tend to cluster with other cells that have the same gene turned
on. However, we cannot infer whether a cell that has gene 1 turned on is likely to have gene 2 turned on as well or whether its neigh-
bors tend to have gene 2 turned on. There are different ways to consider metrics that also consider such cross-correlations. For
example, we can group together cells with each of the four cell states (i.e., (gene 1=0N, gene 2=0N), (ON, OFF), (OFF, ON), (OFF,
OFF)) and study the evolution of these populations. However, the disadvantage of this approach is that it does not easily generalize
to continuous gene-expression states that we also consider in our work (i.e., for gene regulations with finite Hill coefficients). Alter-
natively, we can use established statistical metrics for correlations between two sets of values (i.e., gene-expression levels for the two
different genes) such as the Hamming distance, the Jaccard index (JI) and the Serensen-Dice coefficient. As we are mainly interested
in knowing whether a spatial configuration is ordered or disordered (i.e., whether the cells have an "interesting" pattern or not), we
have not studied such cross-correlations. Nevertheless, our open-source software, MultiCellSim, computes the cross-correlation
along with p() and /0,

Moving Averages

We calculated the Fano factor - variance divided by the mean - for each macroscopic variable in Figures 5C and S7 by using a sliding
time-window of 10 timesteps (i.e., for a macroscopic variable y(f), we compute its mean and variance for values of t within the interval
(t, t+10)). Specifically, we calculated a moving variance using the MATLAB function ttmovvar and the moving mean using ttmovmean.
The Fano factor represents a signal-to-noise ratio within a given time-window frame.

)

Simulation and Analysis of the Model

In this section, we provide a concise overview of our simulations and analyses.

Fixing Initial Conditions

We started simulations by generating a randomly chosen, initial spatial-configuration that is subject to certain constraints. Unless we
chose p") and /) to each have a specific value at the beginning of a simulation, we let each cell to have a 50% chance of having gene i
be ON. This tends to generate spatial configurations in which half of the cells have gene i turned on. In some cases, we chose p() and
1 to each have a specific value at the beginning of a simulation (Figure S6). Here, we fixed the value of p) by randomly selecting this
fraction of cells, for which we turn on gene i. To fix the value of /), we used a Monte Carlo algorithm outlined below.

Algorithm for Generating Spatial Configurations with a Given Spatial Index

We devised an algorithm that generated spatial configurations, for initializing our simulations, with specified values for the spatial
index /™) and p). Our algorithm was motivated by a similar problem in physics - a problem on Ising spin systems - in which one needs
to fix the total energy of the spins (analogous to /()) without changing the average magnetization (analogous to p). Our algorithm is
illustrated in Figure S1 and is as follows:

1. Given a spatial configuration with a given value of p, start by computing the value of the / for this configuration
2. Check whether we should increase or decrease | by comparing it to the target value /iarget
3. If I<harget
a) Select the ON-cell with the minimum number of neighbors which are also ON. Turn this cell OFF.
b) Select the OFF-cell with the maximum number of neighbors which are also OFF. Turn this cell ON.
4. Else if I>liarget
a) Select the ON-cell with the maximum number of neighbors which are also ON. Turn this cell OFF.
b) Select the OFF-cell with the minimum number of neighbors which are also OFF. Turn this cell ON.
5. Compute the spatial index of the new configuration, /. Check whether it has increased or decreased as required.
. If it has changed as required, accept the change. Go to step 8.
7. Else, reject the new configuration. Go to step 1.

o
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8. If Inew€ [harget — ¢, ltarget + €], terminate the simulation.
9. Else, go to step 1 with the new configuration with / =/,e.

Because we switch the state of both an ON-cell and an OFF-cell, the average number of ON-cells remains constant. To increase /,
we choose cells that tend to have a different state from most of their neighbors and change their state. To decrease /, we change cells
whose state are similar to that of their neighbors. Note that this algorithm is not guaranteed to converge to larget because at each
iteration of the loop outlined above, we are not guaranteed to increase or decrease / as required. In particular, if the specified value
of I is outside the range of possible values for / (Olimpio et al., 2018), the algorithm cannot reach the specified value of . Therefore, we
typically set a limit on the maximum number of iterations before we terminate the algorithm. Finally, we typically set e= 0.01, which
allowed for convergence at reasonable speeds while limiting deviations from the target value.

Terminating Simulations

As noted earlier, we terminate a simulation either when the population reaches a steady state or the simulation reaches the maximum
number of time steps tyax, Which we arbitrarily set to be a sufficiently large number. As an example, we chose t. = 10° for popu-
lations with N =225 cells. At each time step, we checked for stationary steady-states by comparing the current system state with the
previous timestep’s system state. To check for periodic steady-states, one might resort to manually checking the system state at
every timestep to see whether the current state has been visited earlier. This becomes computationally infeasible for running
many simulations. So, we devised a more efficient scheme for detecting whether the simulation has entered a periodic steady-state.
Instead of checking at every timestep, at every tc.heck timesteps we manually check whether the previous system state has been
visited earlier (we chose teneck = 10%). If we find periodicity in the system states, we ran a second algorithm to find the earliest time
at which any state has repeated itself, which told us when the periodic steady-state began.

Batch Simulations

Many of the results presented here are from batch simulations, which means that we performed a large set of simulations and ob-
tained statistics on various measures. In many cases, we fixed all parameter values and only varied the initial spatial configuration. By
performing a large set of such simulations, we could distinguish whether an observed feature was a general feature for a particular set
of parameters or was merely an artifact of a specific initial spatial-configuration. We also ran many simulations, each time varying the
parameter values, to find features that were general for a large range of parameter values. Since the parameter values form a con-
tinuum, we could not simulate all possible parameter values and thus had to find a way to sample over the space of all parameter
values. Specifically, we employed Latin hypercube sampling (McKay et al., 1979), in which we efficiently sampled over a multi-dimen-
sional parameter space by taking parameter sets that were non-overlapping in any of the dimensions. We used this method to
generate a large set of conditions for each of the 44 distinct cellular dialogues that we computationally screened. The results in Fig-
ures 3, S4, and S13 used this approach. Specifically, to obtain these results, we defined a region in the parameter space in which we
varied the parameters K and Cg),\, over a range of values - ranging from 1 to 10° - while keeping all other parameters held fixed. We
sampled parameter values within this region by using the MATLAB function /hsdesign to generate a Latin hypercube sample with
10,000 points. We used this approach for each of the 44 cellular dialogues, with both the AND-logic (Figures 3 and S4) and the
OR-logic gate (Figure S13).

Identifying Traveling Waves

We devised an algorithm for automatically identifying traveling waves in large sets of simulations. Since traveling waves retain their
shape while propagating through space, the values of p) and /) would remain constant over time. Due to the periodic boundary
conditions that we used, having a traveling wave would mean that the system state returns to itself after n time steps, where n=
VN and N is the total number of cells. Hence, we first screened through the simulations to find the ones that had a periodic
steady-state with a period that was a multiple of n — we looked for integer multiples of n since there may be more complicated waves
whose shapes slightly morph as they enter the edges of the field. We next checked whether p and /) were (sufficiently) constant
over the course of one period. Using these two features, we could identify traveling waves in batch simulations without, by eye, exam-
ining the simulations explicitly one by one. We then extended the algorithm such that it also gave the orientation of the wave if the cells
indeed formed a traveling wave (see Figure S11C). We did so through a two-step procedure. First, we distinguished cells that formed
the “background” (exterior cells — Figure 4A) from the cells that formed the wave band (assuming that there were three states that
made up a wave - see Figure 4A). Then, we traced the cells from an arbitrarily chosen layer of the wave band to see whether they
percolate the system from one horizontal (vertical) edge to the other. If so, then we assigned a horizontal (vertical) orientation to
the wave. Else, we assigned a diagonal orientation to the wave.

Extending the Model by Adding Complex Elements

In this section, we discuss how we extended our model by adding more complex elements (Figure 6A). In the main text and Figures 6,
S11, and S12, we describe in detail how adding the four complex elements shown in Figure 6A affect the formation and propagation
of dynamic spatial-patterns. Below, we dedicate one section for each of these four complex elements as well as for another complex
element that is not shown in Figure 6 (i.e., spatial gradient of parameter values).

Stochastic Sensing and Response

There are various sources of stochasticity that can affect pattern formations. These include stochastic expression of the genes that
encode the signaling molecules and the fact that a cell cannot determine the concentration of the signaling molecules to an arbitrary
level of accuracy (i.e., the Berg-Purcell limit). We did not try to specify the exact source of noise. Instead, we modeled the cells’ noisy
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responses to the signaling molecules by taking a phenomenological approach in which we lumped together various possible sources
of stochasticity into a single mathematical term. Specifically, based on our previous work (Olimpio et al., 2018), we let the threshold
concentration for how gene / is regulated by molecule j - denoted K@) - to fluctuate from cell to cell and from time to time (Figure 5A —
top left). Mathematically, we can represent this fluctuation as

K = Kg/) + oK

Here Kgﬁ is the threshold concentration for gene i being regulated by molecule j in the absence of any noise and
oK ~ N(0, al) is a normally distributed random variable. At each time step, we used above equation to update the threshold con-
centration K@ independently for each cell. In order to define a global noise-strength without introducing many variables, we have let

all) = ochj). In other words, a = a(’j)/ng) was fixed for all interactions (i.e., for all pairs (j, j)), meaning that the variation in the threshold
concentration was proportional to the threshold concentration, with the same proportionality factor « used for every pair (i, j).
Continuous Cell-Response Function _

In our model, we so far assumed that cells are binary and secrete signaling molecule / at either a low, basal rate C(O’)FF or at a high,
maximal rate CE',)N. This is a valid assumption whenever the response function is sufficiently ultrasensitive, as discussed in the main
text. However, to treat more gradual response functions, we replaced the step-response function (i.e., infinite Hill coefficient) by a
continuous, Hill function with a finite Hill coefficient. The Hill coefficient quantifies the steepness of the Hill function. For simplicity,
we assumed that all molecules have the same Hill coefficient n. The update rule for the cells’ states is still the same as previous,
but now with

(YO (KDY j activates i
g(’l) (X(t)) =S (K(ii))n . |
(Y(i))" N (K(u) o lrepresses |
k
1, no interaction

Note that the Hill coefficient in our model does not have a direct physical interpretation. Instead, it is a phenomenological parameter
that describes the steepness of the response function. This is because, in real cells, a ligand-bound receptor typically induces gene
expression through a complex signal-transduction cascade rather than through a single molecular process such as a binding of a
transcription factor at a promoter. As such, the Hill coefficient does not model any one specific biomolecular process. Therefore,
whereas in cooperative binding models, Hill coefficients less than one and larger than two are rare, our model allows for the Hill
coefficient to be arbitrarily high or low.

Disordered Cell Positions

In the previous sections, we considered cells to be on a triangular lattice. This is a fair representation of certain multicellular systems
(see Table S1in Olimpio et al., 2018 for a list of examples). But in general, communicating cells do not need to be on a regular lattice.
To extend our model to account for alternative spatial arrangements of cells, we adapted our model to allow for randomization of the
cell positions through an algorithm adapted from Markov Chain Monte Carlo (MCMC) simulations of hard spheres (Krauth, 2006). The
algorithm allowed us to tune the degree of randomness of the cell positions, varying from a perfect lattice to a fully disordered
arrangement of cells. However, we still assumed that the cells are immobile or move at a much slower time scale than the time scale
involved in molecular/gene-expression changes.

We modeled the cells as 2D hard spheres with a radius of R (identical for all cells). The cells were placed in such a way that no two
cells overlapped. Initially, the cells were placed on a regular hexagonal lattice, with distance ag between the cells. We selected a

random cell j with position x; = (xjm, x}z)). We then performed a Monte Carlo step, where we attempted to move the cell by a

displacement, x; —x; + 0x;. Here ox; = (6x}1), 5x/§2)), with 6x;1)7 6x;2) being two random variables that are independent of each other

and drawn from a uniform distribution on [ — ¢, ¢]. If the cell did not overlap with any other cell at the new position, we accepted the
move. Otherwise, we rejected the move and a new move was proposed. To avoid repeated rejections, the cell radius and ¢ were
chosen to be sufficiently small. In all our simulations, we took Reei =0.2 ag and € = (ag — 2Rcen)/4=0.15a0.

The number of Monte Carlo steps we performed using this algorithm is a measure for the degree of randomness in our cells’ po-
sitions. As a rough indication, for a system of N = 144 cells, after 100 Monte Carlo steps, the arrangement still appears to be very
similar to a minutely perturbed lattice. After 10* Monte Carlo steps, we observed that the cells were clearly not on a lattice anymore
and that distinct rows and columns of cells were still recognizable. After 10° Monte Carlo steps, we found that the arrangement of
cells looked similar to what one would obtain by randomly "dropping" cells onto a plane. We can make these statements more
precise by looking at the spatial distribution of cells surrounding each cell. Quantitatively, we now have a different interaction strength

f,(\’;) for each cell in the system. As the cells become more randomly arranged, the distribution of the interaction strengths becomes
broader and the mean also increases. From these calculations, one can show for example, that after ~1 0° Monte Carlo steps, a field
of N=144 cells obtains spatial configuration that is indistinguishable from that of a field of randomly placed cells.
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Cell Motility

We also extended our model to account for undirected, diffusive movements of the cells. Researchers have considered diffusive cell
motility as a stochastic process and modeled it with the Langevin equation. They have applied this approach to treat fibroblasts (Dunn
and Brown, 1987), endothelial cells (Stokes et al., 1991) and granulocytes (Schienbein and Gruler, 1993). More precisely, these earlier
studies have proposed that the underlying process is that of an Ornstein-Uhlenbeck process, in which cells randomly drift while expe-
riencing a restorative force - this force represents friction in a Brownian motion - which tends to bring the cells back to their original
positions. A previous work showed that one can represent the discrete time process that corresponds to this process with the
following equation (Dunn and Brown, 1987):

dx(t) =¢dx(t—1)+nt)+0n(t—1),

where dx(t) =x(t) — x(t —1) is the displacement of a cell at time ¢, n(t) is a discrete random noise term with mean zero, and ¢ and ¢
are real numbers that depend on the restorative force’s strength.

For our system, we took a simpler approach to model cell motility by neglecting the temporal correlations which arise in the fric-
tional term. Hence, we assumed that the cells drift around without one cell’s motion being correlated with another cell’s motion, as in
a classic random-walk and Wiener process. To model cell motility then, we used the same Monte Carlo algorithm that we used for
randomizing the cell positions but now move all cells at each time step instead of perturbing the initial positions for a fixed number of
cells. We defined the cell motility op to be the width of the Gaussian term, in units of ap, describing the Brownian motion process
through which we update the cell positions. Explicitly, at each time step, we updated each of the N cells one by one through

X;(t) = x;(t) +6x;,  0x; ~ N(O, opao) .

Here gp is a parameter that quantifies the extent of a cell’s motion in units of the lattice constant aq (i.e., the distance between two
neighboring cells when placed on a regular lattice).
Spatial Gradient of Parameter Values
Studies of the Turing-patterning mechanism have revealed that a spatial gradient of production rates and other parameters as well
as more complex, spatially anisotropic parameter values can affect in which direction stripes become aligned after forming through
Turing instability (Hiscock and Megason, 2015). Motivated by this observation, we wondered whether spatial gradients of parameter
values can influence the direction in which waves would travel after forming in our system. To this end, we experimented with
applying spatial gradient of parameter values in various directions and for various parameters. As an example, cells at the top
edge may have a higher maximal secretion rate for molecule / than the cells at the bottom edge, with the maximal secretion rate
continuously changing as we traverse the field of cells row by row. Starting from a parameter set which is able to generate waves,
we modified one of the parameters P of a cell k to be position dependent:

P(xi) = (1 + f(x«))Po,

where x, = (x,({1)7 xff)) is the position of cell k, f(xx) is a modulation term that adjusts the parameter PP, and Py is a constant. The

simplest type of a spatial gradient that we could consider was a step function defined in either a horizontal or vertical direction (Fig-

1, x>0 ., .
1, x<o (S
assumes that half of the cells are at x®) > 0). We then quantified the sharpness of the gradient by a gradient-strength parameter A,,
which represents the fractional change in the value of P on either side of the step. Note that with this gradient, the average value of the
parameter remains unchanged from cell to cell (i.e., >_f(x;) =0).

ure S11C). For example, we could take a vertical gradient by defining f(x;) =A, B(x;z)), with a step function 6(x) = {

DATA AND CODE AVAILABILITY

The software with graphical user interface used to visualize simulations is available in the GitHub repository: https://github.com/
YitengDang/MultiCellSim. All codes that we used for simulations, analyses of results, and generating plots are available in the GitHub
repository: https://github.com/YitengDang/Cell_Systems_2019. All raw data used for the main figures are available at Dryad: https://
doi.org/10.5061/dryad.6hdr7sqw5
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