L

! !
Mﬁvﬂ«_—ﬂﬂﬂ: Len

s
7

S

SYSTEM-EMBEDDED
INTELLIGENCE IN
ARCHITECTURE

H. H. Bier/ TU Delft

SYSTEM-EMBEDDED
INTELLIGENCE IN
ARCHITECTURE

Proefschrift ter verkrijging van de graad van doctor aan de Technische
Universiteit Delft, op gezag van de Rector Magnificus Prof. dr.ir. J. T.
Fokkema, voorzitter van het College voor Promoties, is het openbaar
te verdedigen op woensdag, 21 mei 2008, om 12:30 uur door Henri-
ette Hildegard BIER, Diplom-Ingenieur TU Karlsruhe, geboren te Arad,

Roemenie.

Dit proefschrift is goedgekeurd door de promotoren: Prof. ir. S. U. Bar-
bieri en Prof. ir. K. Costerhuis

Samenstelling promotiecommisie:

Rector Magnificus, voorzitter
Prof. ir. S. U. Barbieri, Technische Universiteit Delft, promotor
Prof. ir. K. Qosterhuis, Technische Universiteit Delft, promotor

Prof. dr. T. Knight, Massachusetts Institute of Technology
Prof. dr. A. D. Graafland, Technische Universiteit Delft
Prof. ir. L. van Duin, Technische Universiteit Delft
Prof. dr. R. Oxman, University of Salford

Ass. Prof. dr. L. Sass, Massachusetts Institute of Technology

SUMMARY

Tanslation from English into Dutch by P. J. Teerds - SAMENVAT-
TING:

Dit onderzoek richt zich op een kritische beoordeling van computerg-
estuurde systemen in het domein van de architectuur, met betrekking
tot de verwerving van aspecten van intelligentie. Digitaal aangestuur-
de architectonisch ontwerpprocessen worden geclassificeerd op basis
van procedurele en objectgeoriénteerde studies. Verder worden meth-
oden van digitaal ontwerpen geintroduceerd, die gebaseerd zijn op in-
telligente computergestuurde systemen. Deze methoden impliceren
de ontwikkeling van software-prototypen, om het ontwerpproces te
ondersteunen.

Het eerste hoofdstuk geeft een overzicht over de stand van zaken in
het veld van de computergestuurde instrumenten en processen. Het
tweede hoofdstuk gaat in op de invloed hiervan op ontwerpconcepten
en -methoden. Dit onderzoek poogt een antwoord te geven op de
vraag hoe aspecten van intelligentie in ontwerpsystemen opgenomen
kunnen worden en op welke manier dit het proces en het ontwerp kan
beinvioeden.

De intelligente software-prototypen, die in dit onderzoek ontwikkeld en
in de praktijk en in ontwerpstudio's getest zijn, worden door de TU
Delft verder ontwikkeld in ontwerp- en onderzoeksprojecten. Obser-

vaties, hypothesen en theorieén zijn in dit onderzoek methodologisch
beproefd door middel van praktische experimenten in internationale
workshops. De software-prototypen zijn voornamelijk ontwikkeld en
getest op de TU Delft.

Aan de experimentele beoordeling en classificering van de comput-
ergestuurde systemen in relatie tot de opgenomen aspecten van intel-
ligentie, voegt dit onderzoek een beschrijving van de ontwikkeling van
prototypen toe, zowel in tekst, als ook in afbeeldingen, tabellen en dia-
grammen. De software-prototypen, die binnen het onderzoek
ontwikkeld zijn, zijn geimplementeerd in Java door middel van het ge-
bruik van de open-source 'Integrated Development Environment
Eclipse' in combinatie met de bibiliotheek en 'OpenGL Application
Programming Interface for 3D rendering' van Processing; deze kun-
nen geraadpleegd worden op website www.hen-ro.eu.

Het onderzoek richtte zich op de aspecten van intelligentie, die op-
genomen zijn binnen de computergestuurde instrumenten en proces-
sen en hun invloed op het architectonisch ontwerp. De nadruk lag
daarbij niet op de representatie, maar op de capaciteit van de comput-
ersystemen om complexe berekeningen binnen het domein van de ar-
chitectuur uit te voeren. De focus lag op complexe systemen, waarbij
de complexiteit gedefinieerd wordt door de veelvoud aan interacties
binnen architectonische sub-systemen, zoals de fysische en sociaal-
technische systemen.

De software-prototypen, samengevat in een systeem met de naam
SpaceCustomizer [SC], functioneren als een Expert System [ES] en
tonen verschillende gradaties van intelligentie, afhankelijk van de
complexiteit van de specifieke taken van de prototypen. Het basisniv-
eau van intelligentie is de intelligentie van de op automatische beweg-
ingen gebaseerde SpaceGenerator [SG]. Verder gevorderde niveaus
van intelligentie dragen aan de ene kant bij aan interactieve ruimtelijke
veranderingen, door de toepassing van Atrtificial Intelligence [Al], met
name door het gebruik van 'computer vision and sensor-actuator'
technologieén. Aan de andere kant vergemakkelijken de prototypen
de automatische ruimtelijke opzet, waarbij gebruik wordt gemaakt van
Boolean Satisfiablity [SAT].

De ontwikkelde software-prototypen zijn specifiek gerelateerd aan ge-
ometrie, beweging en functie. De kwesties die gerelateerd zijn aan de
vorm, structuur en materiaal zijn alleen in de context betrokken,
waarmee de bredere context van de geometrie, beweging en functie,
zoals deze onderzocht en verkent zijn, weerspiegeld wordt.

De geometrische aspecten duiden aan de ene kant op de omzetting
van een op 'NURBS' gebaseerde in een 'voxelized' geometrie en aan
de andere kant op de transformatie van een door NURBS oppervlakte
naar een in driehoeken opgedeelde opperviakte.

Geometrie, met name de niet-euclidische geometrie, en beweging
worden waargenomen als onderling verbonden fenomenen omdat be-
weging speelt binnen dit onderzoek een rol als ruimte-gerenerende

kracht. Verder is de functie onderling verbonden met de beweging.
Beweging in een ruimte kon daarom vastgesteld worden door de met
haar samenhangende functie en is opgenomen in functionele object-
en. Een etenswaren-kiosk, die in dit onderzoek als casus is genomen,
vraagt bijvoorbeeld om een specifiek aantal toepassingen om het op
deze manier te laten functioneren. Deze toepassingen zijn echter al-
leen bruikbaar als de ruimte die nodig is voor de operatie ook beschik-
baar is.

De ontwikkelde software-prototypen verstrekken elkaar daarom op
een fundamenteel niveau de benodigde informatie. De functie beinv-
loedt immers de beweging, de beweging beinvioedt het gebruik van
de functie en beide beinvloeden op hun beurt van binnenuit de geom-
etrie van de ruimte.

De prototypen opereren semi-automatisch. Complete automatisering
van ontwerpproces, van het idee tot het daadwerkelijke bouwen, is ni-
et toepasbaar:. Allereerst omdat dit even complexe berekeningen
vergt, als het proces zelf en bovendien is de totale automatisering, als
het al geimplementeerd kan worden, onuitvoerbaar. Niet alle taken
worden door computers beter opgelost dan door mensen. Computers
hebben bijvoorbeeld geen ‘common sense'. Daarentegen zijn ze in
staat complexe berekeningen in relatief korte tijduit te voeren. Neem
bijvoorbeeld Combinatorial Optimization, zoals in dit onderzoek geim-
plementeerd is. Dit impliceert niet alleen de berekening van alle
mogelijke, maar ook de best mogelijke ruimtelijke combinaties van
functies in programmatisch ontwerp. Terwijl architecten het misschien
moeilijk vinden een overzicht over de functies, hun bijbehorend vol-
ume en hun juiste positionering te houden, kunnen de functionele
delen gemakkelijk computergestuurd uiteengelegd worden, in
overeenstemming met de van te voren opgestelde regels een voor-
waarden.

Computers zijn daarom in dit onderzoek vooral gebruikt in de domein-
en waar ze het ontwerpproces verrijkten door machinematige intelli-
gentie op te nemen. Hiermee compenseerden ze de menselijke
besluitvorming op de momenten dat deze begrensd is of overvraagd
wordt.

Intelligentie, die opgenomen is in computer systemen, maakt de con-
tinue interactie tussen de ontwerper en de semiautomatische intelli-
gente ontwerpinstrumenten mogelijk; Deze instrumenten kunnen
daarom alleen als ondersteuning voor de ontwerper gezien worden.

De software-prototypen, die in dit onderzoek ontwikkeld zijn, zijn
getest in de casus van de eerder genoemde etenswaren kiosk. VVoor
deze kiosk zijn niet-euclidische ruimten ontwikkeld, gebaseerd op de
patronen van beweging van een menselijk lichaam door de ruimte.
Bovendien is de functioneel ruimtelijke opzet geoptimaliseerd.

Door het testen van de protoptypen zijn de meest relevante aspecten
van intelligentie vastgesteld. Deze zijn opgenomen in de zoekma-

chine, die ontwikkeld is voor de geautomatiseerde driedimensionale
indeling van functies in dubbelgekromde 'voxelized' ruimten .

De drie prototypen die in dit onderzoek ontwikkeld zijn, bevatten zowel
statisch-dynamische als ook interactieve concepten. Terwijl Space-
Customizer : FunctionLayouter [SC : FL] functies plaatst en SC :
SpaceGenerator [SG] ruimte dynamisch genereert door de beweging
van het lichaam in de ruimte te volgen, is de resulterende ruimte
statisch. SC : FL en SC : SG zijn daarom alleen in het ontwerpproces
gebruikt, terwijl SC : Space Interactivator [SI] niet alleen gebruikt is
gedurende het ontwerpproces, maar ook als de dynamische, interac-
tieve motor voor het controleren van interactie van gebouwcompo-
nenten en gebouwen.

SC : SG laat het statische tweedimensionale gezichtspunt op de
relatie tussen het lichaam en de architectonische ruimte, zoals
breschreven in de Modulor [Le Corbusier, 1948], achter zich. Het ves-
tigt de aandacht op de dynamische en driedimensionale beweging
van een lichaam door de ruimte, die ruimte-genererende karakter-
istieken oplevert.

SC : Sl laat de statische blik op de architectuur achter zich, door toe-
passing van interactieve architectuurprincipes [Oosterhuis, 2006].
Deze verschaffen een prototypisch instrument, dat de interactieve
verbinding legt tussen de beweging en dubbelgekromde gebouwen-
veloppen.

SC : FL verbetert het voorgaande tweedimensionale functional-
ruimtelijke onderzoek, door nieuwe benaderingen voor de zoektocht
naar optimale oplossingen voor de plaatsing in drie dimensionale
ruimten voor te stellen. SC : FL genereert, in vergelijking met andere
prototypen, zoals die van Loos en Wright [Flemming U. et al, 1992]
een functionele plaatsing op een vergelijkbare schaal en realistische
toepasbaarheid. Loos en Wright, echter, handelen slechts met de
plaatsing van functionele objecten in twee dimensies, terwijl SC : FL
de plaatsing in drie dimensies voorstelt. SC : FL verkavelt de functies
binnen een complexe, vrij-gevormde 'voxelized' geometrie, in plaats
van in een simpele orthogonale ruimtelijke geometrie.

Toegepast op het ontwerpen van complexe driedimensionale struc-
turen behoeft deze software prototypen echter verdere ontwikkeling.
Somige delen van de prototypen zijn slechts conceptueel ontwikkeld,
terwijl anderen als software al zijn geimplementeerd. Verder de toe-
passing op verschillende niveaus is nog niet uitputtend onderzocht.

Toekomstperspectieven voor het inregelen van intelligentie in comput-
ergestuurde systemen in architectuur duiden daarom aan de ene kant
op een intensiever onderzoek naar de ontwikkeling en het gebruik van
intelligente computergestuurde systemen in architectuur, en aan de
andere kant bewuste differentiatie tussen de problemen die opgelost
kunnen worden bij dergelijke middelen, afhankelijk van hun natuur en
schaal. Verder vereist het inregelen van de intelligentie in computerg-

estuurde systemen in architectuur, zoals uit het onderzoek blijkt, de
samenwerking tussen architecten en computerdeskundigen op een
vergelijkbbare manier als de manier waarop architecten samenwerken
met constructeurs. Dit zal plaatsvinden onder de voorwaarde dat ar-
chitecten niet slechts inzicht in het ontwerpprobleem hebben, maar
ook een basiskennis hebben van de automatiseringsproblematiek, die
relevant is voor het oplossen van de ontwerp- en constructieprobleem
in samenwerking met de computerdeskundigen.

PREFACE

Founded on the imperative to understand, evaluate and consciously
decide about the use of digital media in architecture this research not
only aims to analyze and critically assess computer-based systems in
architecture, but also proposes evaluation and classification of digital-
ly-driven architecture through procedural- and object-oriented studies.
It, furthermore, introduces methodologies of digital design, which in-
corporate intelligent computer-based systems proposing develop-
mentof prototypical tools to support the design process.

Vast references included in this research attempt to make this work-
self-contained: However, material which is too lengthy to explain, but-
which has been well documented elsewhere, has been either
onlyshortly mentioned or completely left out.

While the first chapter enumerates state-of-the-art computer-based-
tools and processes, the second chapter engages in interpretative-
work dealing with the influence of those computer-based tools
andprocesses on design concepts and methods. The third chapter in-
tro-duces innovative work describing prototypical tools - developed
withinthis research - incorporating aspects of machinic intelligence.

This research atempts to answer questions regarding how aspects of
intelligence are incorporated in design systems and how these influ-
ence the design process and the design: Generative Design, for in-

stance, has been focus of current design research and practice largely
due to the phenomenon of emergence explored within self-organizing-
systems, generative grammars and evolutionary techniques.

In this context, system-embedded intelligence has often been re-
ducedto the mechanics of working with these systems.

This research, in response, not only critically reveals what these tech-
niques offer architectural design, but also addresses challenges in-
their application and development. Its relevance as reference for de-
veloping an understanding for computer-based systems in relation
totheir incorporated aspects of intelligence has been meanwhile con-
firmed in projects implemented internationally.

Furthermore, intelligent software-prototypes developed within this re-
search have been tested in practice and in design studios and will be-
further developed in prospective design and research projects under-
taken at TU Delft.

Methodologically seen, observations, assumptions and theories have-
been verified in practical experiments implemented in international-
workshops, whereas, software-prototypes have been mostly devel-
oped and tested at TU Delft.

In addition to the experimental assessment and classification of com-
puter-based systems with respect to their incorporated aspects of in-
telligence, this research describes software-prototypes development.
This is presented in textual descriptions incorporating images, tables,
and diagrams as well as a self-starting presentation incorporatingmov-
ies delivered on an additional DVD.

Implemented in Java using the open source Integrated Development-
Environment Eclipse in combination with open source libraries and
OpenGL Application Programming Interface for 3D rendering of the
programming environment Processing, software-applications devel-
oped within this research are not included as machine-readable exe-
cutables on this DVD, but will be published on the website www.hen-
ro.eu.

This research represents the result of 3 3/4 years intensive work sup-
ported and in part implemented by experts in programming such as
R.Schmehl, J. Galle, H. van Maaren, M. Heule, A. de Jong, N. Brouw-
ers, and G. van der Hoorn, T. Nakata, K. Steinfeld, D. Rutten and A.
Feldman.

In addition, this research has benefited from the conceptual input of-
collaborators such as K. de Bodt and O. Vazquez- Ruano, as well as
the constructive critique of fellow researchers such as L. Sass, R. Ox-
man, and N. Biloria.

It also has benefited from the support of A. Graafland, L. van Duin, M.
Schoonderbeeck, F. Geerts, P. J. Teerds, A. Kilian, M. Male-Alemany,

P. Marone, and D. Spencer. Last but not least, this research could not
have been implemented without the support and critical input of U.
Barbieri, K. Oosterhuis, and T. Knight as well as the active participa-
tion of students from TU Delft, TU Innsbruck, TU Karlsruhe, Roma
Tre, and HIAS Antwerpen.

1. Tools and Processes:

1.1 Digital Design
1.1.1 Computational Tools: Topological Spaces, Isomorphical
Surfaces, Motion Kinematics and Dynamics, Parametric and 1.1 - 16
Generative Designs 16 - 1.7
1.1.2 Computational Processes: Collaborative Systems, Build-
ing Information Modeling

1.2 Digital Fabrication L7 -112

1.2.1 Computer-Numerically Controlled Processes: CAD-CAM
2. Concepts and Methods:

2.1 Typology 21 - 22

2.2 Morphology [of the Double-Curved] 29 29
2.2.1 De-Formation and De-Construction: F.O.Gehry and Coop e s
Himelblau
2.2.2 Software-Intrinsic Morphogenetic Features: Digital Design 22 - 26
Strategies - The Curvilinear and the Facetted
2.2.3 Architectural Avant-Garde: Curvilinearity as Negation of 26 - 29
the Past - Euclidean and Non-Euclidean Geometries in Architec-
ture

2.3 Methodology 29 -210
2.3.1 Diagrams > Patterns > Computations ~<oTe

2.4 Ideology
2.4.1 Principles of Digital Media Revisited 2.11-2.14
2.4.2 Hyper- and Super-Modernity: Digitally-Driven Architecture 215 -222

3. Visions and Perspectives:
3.1 Organic-Inorganic Relations
3.1 - 32

3.1.1 Machinic Reasoning: Artificial Intelligence, Human-Com-
puter Interaction 32 - 32
3.1.2 Cybernetic Organism

3.2 Semi-Automation
3.2.1 Semi-Automated Design and Fabrication Processes in Ar-

chitecture: Spacecustomizer - Geometry Triangulator and Un- 3.2 -3.10
folder
3.2.2 Robotics

3.3 System-Embedded Intelligence 3.10-3.12
3.3.1 Software Prototypes: SpaceCustomizer - SpaceGenera- 3.12-3.44
tor, Spacelnteractivator, GeometryVoxelizer, FunctionLayouter
3.3.2 Spatial Prototypes: Motion, Interactive, Mass, and Func- 3.44 - 3.48

tional Spaces

FIGURES

F1. 01 - Isomorphic Surfaces developed by H. Bier and R. Schmehl
[2004] are generated as spatial potential function displayed in Tecplot.

F1.02 - Parametric model developed by H. Bier within the GC-work-
shop at CAAD Futures [2005].

F1.03 - Parametric model developed by H. Bier within the GC-work-
shop at CAAD Futures [2005].

F1.04 - CA-models originating from A New Kind of Science by Wol-
fram [2002] available online from http:/www. wolframscience.com/nk-
sonline/toc.html

F1.05 - Figure showing the process in which students participating in a
SpaceCustomizer course lead by H. Bier at TU Delft [2006] generated
2D-files according to which the CNC-machine cut sections.

F2 01 - Image showing a student project from the master-class on
Digital Design [2003-2004] lead by H. Bier at TU Innsbruck and TU
Karlsruhe.

F2.02 - Figure showing forms and rules based on Shape Grammars
developed by H. Bier for the master-class on Digital Design [2003-

2004] lead by H. Bier at TU Innsbruck and TU Karlsruhe.

F2.03 - Image showing a student project from the master-class on
Digital Design [2003-2004] lead by H. Bier at TU Innsbruck and TU
Karlsruhe.

F2.04 - Denari’s project THE WALL described in Gyroscopic Horizons
- Prototypical Buildings and Other Works [1999].

F2.05 - Denari’s project THE WALL described in Gyroscopic Horizons
- Prototypical Buildings and Other Works [1999].

F2.06 - Denari’s project THE WALL and its replica developed by a stu-
dent participating in the master-class on Digital Design [2003-2004]
lead by H. Bier at TU Innsbruck and TU Karlsruhe.

F2.07 - Mutant - THE KIOSK - developed by students from TU Vienna
participating in the workshop on Digital Design [2004] lead by H. Bier
at Roma Tre.

F2.08 - Physical model of the mutant developed by students from TU
Vienna participating in the workshop on Digital Design [2004] lead by
H. Bier at Roma Tre.

F2.09 - Image showing student projects from ADSL-workshop [2005]
lead by H. Bier, O. Vazquez-Ruano, and K. de Bodt.

F2.10 - Image showing student project from ADSL-workshop [2005]
lead by H. Bier, O. Vazquez-Ruano, and K. de Bodt.

F2.11 - Translation diagram developed by H. Bier and O. Vazquez-
Ruano for the ADSL-workshop [2005].

F212 - Sound sample from Audacity filtered through three different
Photoshop-filters.

F2.13 - Image shows student project from ADSL-workshop [2005]
lead by H. Bier, O. Vazquez-Ruano, and K. de Bodt.

T2.01 - Table originating from The Metapolis Dictionary of Advanced
Architecture by Gausa, M. et al. [2003] modified by H. Bier.

F2.14 - Muscle-Tower project [2004] developed by Hyperbody avail-
able online from http:/fwww protospace. bk tudelft.nl.

F2.15 - Kaisersrot project developed by CAAD - ETHZ available on-
line http:/fwiki.arch.ethz chitwiki/binfview/Kaisersrot/ParzellenP.

F2.16 - Images from Samitaur by E. O. Moss available online from ht-
tp:www ericowenmoss.com/index. php?/projects/project/samitaur.

F2.17 - The Music Experience Project by F. O. Gehry described in the
bock titled Frank Gehry: The City and the Music by Gehry and Gilbert-
Rolfe [2002].

F3.01 - Image showing a side view of the NURBS-object and a top
view of its unfolded triangulation developed by H.Bier and R. Schmehl
[2008].

F3.02 - Figure showing data-structure generated for the triangulation
of the NURBS-surface developed by H.Bier and R. Schmehl [2008€].

F3.03 - Figure showing rotation of a triangle and with it the whole ge-
ometry developed by H.Bier and R. Schmehl [2008].

F3.04 - Images showing the unfolding process developed by H.Bier
and R. Schmehl [2008].

F3.05 - Images generated by students participating in the MAD-work-
shop [2007] lead by K. Steinfeld and S. Arida.

F3.06 - Image showing analog exercise with students participating in
the MAD-workshop [2007] lead by K. Steinfeld and S. Arida.

F3.07 - Images generated by students participating in the SpaceCus-
tomizer course [2005] showing top view movement of the body cap-
tured with video camera.

F3.08 - Image showing T. Nakata's movement simulator [2003] avail-
able online http://staff aist.go. jptoru-nakata/.

F3.09 - Image generated by H. Bier [2007] showing methods tested
for the generation of a NURBS-surface from curves and points.

F3.10 - Composite illustrating the development of curves from move-
ment and its conseguent transposition into 3D-space.

F3.11 - Image showing Glynn's project Reciprocal Space [2005] avail-
able online http:/Avww . interactivearchitecture org.

F3.12 - Image showing the interactive interface developed for SC : IS
by H. Bier, K. de Bodt and J. Galle [20086].

F3.13 - Images showing the interactive transformation of space ac-
cording to the movement of the body as developed by H. Bier, K. de
Bodt and J. Galle [20086].

F3.14 - Image showing the interface developed for SC : IS by K. de
Bodt and J. Galle [20086].

F3.15 - Displacement diagram for SC : IS [2008] developed retrospec-
tive by H. Bier.

F3.16 - Image showing the interface developed for SC : IS [20086] by
K. de Bodt and J. Galle.

F3.17 - Image showing principle of adjustment of a double-curved
slave-surface to a computer-generated masfer-surface [H. Bier, 2003].

F3.18 - Images showing Thon's procedure of voxelization of polygonal
objects [2004].

F3.19 - Composite showing the data-connectivity envisioned for SC :
MS : AS VG,

F3.20 - Image showing the voxelization-model developed by H. Bier
and K. Steinfeld for SC : MS | AS | V(G [20086].

F3.21 - Voxelization for polygonal objects by Thon et. al. [2004] using
a quad-free partitioning of the triangle-mesh in order to speed up the
ray-casting procedure.

F3.22 - Virtcols interface built by Hyperbody-students for the BR-
project [2008].

F3.23 - Dynamically Interactive Virtools model showing BR-project
lead by H. Bier and K. Oosterhuis [20086].

F3.24 - Change of movement of functional units within different build-
ing volumes as simulated by Hyperbody-students in BR [2006].

F3.25 - NURBS-based geometries tested Hyperbody-students for the
BR-project [2008].

F3.26 - Data-exchange system developed by Hyperbody-students for
the BR-project [2006]

F3.27 - Voxelization resolution ranges from 5-90 cm enabling an al-
most accurate representation of the curved geometry - Figure shows
voxelization resolution 30/30/30 and 15/15/15 cm developed by H.
Bier and R. Schmehl [2007].

F3.28 - Figure shows one of the four optimal layouts for 90/90/20 vox-
elization resolution as developed by H. Bier, A. de Jong, N. Brouwers,
G. van der Hoorn, M. Heule, and H. van Maaren [2007].

F3.29 - Figure shows best possible layout solution for 30/30/30 voxel-
ization resolution as developed by H. Bier, A de Jong, N. Brouwers,
G. van der Hoorn, M. Heule, and H. van Maaren [2007].

D3.01 - Diagram: SC incorporates three sub-tcols MS, IS, and FL,
which incorporate sub-tools such as AS, which in turn incorporate
sub-sub-tools such as VS, AV, AVM and GNV.

INTRODUCTION

Four decades agc Chermayeff and Alexander [1963] claimed that ar-
chitectural design can be automated with computers; follow-up re-
search proved automation in design to be inefficient, because it re-
quired extensive input, and ineffective, because the output was dia-
grammatic: The concept of automated design was, therefore, replaced
with Computer-Aided Design [CAD]. It seemed that rather simple not
complex design tasks could be solved with computer techniques [Tzo-
nis, 1990].

Since then, CAD-systems have gradually been developing towards in-
corporating aspects of knowledge about the designed object: Ranging
from autonomous design tocls to design support systems, Intelligent
Computer-Aided Design [InfCAD] systems have replaced meanwhile
CAD-systems [Brown, 1998].

Considering that scientists might be able today to develop a computer
model representing the whole universe but this computer model would
have a sophistication corresponding to the complexity of the universe
itself [Zuse, 1967 ; Schmidhuber, 1997] and knowing that according to
the concept of computational equivalence formulated by Wolfram
[2002] any process natural or artificial can be viewed as a computation
of equivalent sophistication, this research puts forward the argument
that complete automation in architecture is for the time being not rele-
vant because it requires computer models of equivalent sophistication.

NO.01

NO.02

If the computation takes as much effort as the real process of design,
what do architects gain from computation except additional insights,
which they can not derive from practice?

Architects gain from computation - in addition to insights - support in
the design process not only in form-finding, but also in functional, me-
chanical, structural, constructive problem-solving.

The shift from mechanical to digital, forces architects to reposition
themselves: [1] They do not produce merely drawings but produce
digital data, which becomes single source of design and fabrication
[Kolarevic, 2003]. [2] Furthermore, digital systems not only inform the
design process but also the fabrication process, challenging the MOD-
ERNIST concept of standardization, introducing the concept of mass-
customization, which implies, as Slessor [1979] put it, that ‘unigness is
now as easy and economic to achieve as repetition’. And [3] complete
automation from idea to building might not be relevant at the time be-
ing, because it requires computation as complex as the process itself,
but, semi-automation based on system-embedded irtelligence, which
addresses possibilities for architecture based on algorithmic tech-
niques, is of great relevance.

This research, therefore, explores system-embedded intelligence,
which informs the design and fabrication process, based on the
premise that only at the moment it incorporates intelligence, the com-
puter becomes more than a tool, it becomes a reasoning machine.
Purpose of this research in system-embedded intelligence is critical
assessment and evaluation of state-of-the-art computer-based meth-
ods and tools in architectural design with respect to their incorporated
aspects of machinic intelligence, and furthermore, development of
prototypical tools, which improve the design process by incorporating
reasoning capabilities.

In this context, machinic intelligence refers only in part to Artificial In-
telligence [Al] as described in Computer Science. It also denotes com-
puter-based concepts and systems that utilize what appear to be
reasoning capabilities: These imply computations employing strate-
gies which exploit heuristic knowledge [Brown and Chandrasekaran,
1989] described as either embedded in existing tools and procedures
or newly developed and tested within this research.

While the first two chapters focus on state-ofthe-art computer-based
Tools and Processes, and their influence on design Concepts and
Methods, the third chapter describes Visions and Perspectives incor-
porating frontier research in system-embedded intelligence.

Prototypical tools developed within this research - described in the
third chapter - operate as an Experf System by providing analysis of
specific design problems, and, depending on their programming, gen-
erating alternative designs or recommending corrections.

NO.03

NO0.04

NO.05

NO.06

Even though Expert Systems are not new, the system developed with-
in this research represents an INNOVATION from the point of view of
its components, their linkage to each other and their application to ar-
chitectural design. The proposed system, named SpaceCustomizer
[SC], is an experimental software platform able to execute semi-auto-
mated tasks such as the development of [1] Motion Spaces based on
NURBS-geometries, [2] Interactive Spaces, and [3] Functional Lay-
outs.

[1] Motion Spaces [MS] are double-curved 3D-spaces generated by
tracing the movement of the human body in space, whereas, the mo-
tion map defines boundaries of the volume within which architecture
can emerge. The volumetrical outlines of the body in motion establish
an initial framework to develop Motion Spaces employing movement
studies based on ergonomics.

The initial fundamental question in the development of MS has been:
HOW to control designs based on NURBS-geometries? On the one
hand it is easy to manipulate NURBS-surfaces by pulling control
points, on the other hand, the question is how to control their manipu-
lation, which rules and design methodologies can be developed to
control designs based on NURBS-geometries?

Ifin this context can be talked about a paradigm shift based on the in-
fluence of digital technologies, than this shift can be described in the
methodology: In opposition to modular, repetitive architecture devel-
oped by using grids and proportions based on functional and formal
rules, cunvilinear architecture is being developed within this research
by generating space through following the movement of the body in
space bhased on ergonomic principles.

SC : 8G [SpaceGenerator] generates space following the movement
of the body in space and can be seen as the Modulor [Le Corbusier,
1948] of the Digital Age since it establishes relationships between the
human body and the architectural space: As a system of proportions
Modulor uses measures of the human body in architecture by parti-
tioning it in modules according to the Golden Section and to two Fi-
bonacci Series. It puts, basically, man as measure of architectural
spaces, which SC : SG does as well in a more drastic manner, since
it generates 3D-space through following the movement of the body in
space based on ergonomic principles; While Modulor applies a 2D
proportioning system, SC : SG employs a 3D DYNAMIC space-gen-
erating system.

[2] Interactive Spaces [IS] are double-curved spaces generated inter-
actively by the movement of the body in space: The input - movement
- is being electronically processed in such a way that the output rep-
resents a continuous, real-time modification of the space. For this
purpose an on-site-built InterFace employing sensor-actuator tech-
nology enables translation of the recorded movement into spatial con-
figurations, whereas the f[nterAction between the body and the

NO.07

NO0.08

architectural space gives insight into, how the human body shapes
space.

As a software prototype, SC : S| [Spacelnteractivator] is different from
SC : 8G not only from the point of view of its interactive nature but
also from the point of view of its application: While SG is exclusively
applied in the design process to generate movement patterns, which
influence the design, Sl is applied in the design process as well as in
the implementation of dynamic building components and buildings as
interactive engine controlling dynamics on the software level.

[3] Functional Layouts [FL] are 3D space-configurations generated by
applying top-down and bottom-up problem-solving procedures to opti-
mally place functions in 3D-space.

SC : FL [FuncticnLayouter] generates functional layouts exhaustively
and enables the designer to develop and consider more alternatives
than by means of conventional sketching methods mainly because
architectural space-planning is highly combinatorial, and therefore,
difficult to conceive exhaustively by human search-means.

Instead of one, SC : FL generates multiple designs and enables in-
formed choices by departing from a singular-design principle, that
represents a potentially prejudiced position of the masfer-designer.
SC : FL generates ALL functional designs within the spectrum of an
optimal solutions field.

Considering intelligence, more specifically reasoning, an ability to op-
erate with concepts and form conclusions based on facts, the devel-
oped software-prototypes exhibit different degrees of intelligence
depending on the complexity of their particular tasks, the most basic
degree of intelligence being the intelligence of an automated move-
ment-based space-generator.

More advanced degrees of intelligence enable on the one hand inter-
active spatial transformations by employing Al, namely, computer vi-
sion and sensor-actuator technologies; on the other hand, they
facilitate spatial layout optimization by means of Boolean Satisfiability
[SAT] used, inter alia, in Automated Reasoning.

While these software-prototypes address exclusively issues related to
geometry, function and movement, they are interrelated as function
influences movement, movement influences the use of function, and
both influence the geometry of space.

Obviously, practice-relevant, these software prototypes generate au-
tomatically alternative designs confirming the assumption that semi-
automation based on system-embedded intelligence is of great im-
portance: They enhance the design process by incorporating machin-
ic intelligence, compensating where human decision-making might be
limited or overextended.

NO.09
NO.10

NO.11

Furthermore, their placing within the framework of contemporary
computer-based systems with respect to their incorporated aspects of
intelligence enables conscious decision about their use in architec-
ture as well as informed envisioning of their further development,
which is relevant for research as well as teaching.

NOTES: Notes to this section explain concepts and notions difficult to
extract from context.

NO.O1 - Intelligent Computer-Aided Design is a term used by Brown
[1993] to describe computer-aided design systems incorporating as-
pects of knowledge about the designed object.

MN0.02 - Automation implies the use of computers to control industrial
machines and processes.

N0.03 - System-Embedded Intelligence denotes intelligence incorpo-
rated in a computer-based system such as intelligence exhibited by a
computer program, which is demonstrably capable of intelligent action
andfor interaction, i.e. automated functional 3D-layout, interactive spa-
tial responsiveness, etc.

MN0.04 - Artificial Intelligence as described by McCarthy [1956] implies
the use of intelligent machines for task automation requiring intelligent
behavior. In general, this refers to actions and interactions regarded
as intelligent when carried out by a human being.

MNO0.05 - Heuristic is a methodology of approaching problems and for-
mulating solutions to them. Polya [1945] specifically describes heuris-
tics such as: [1] Simplify and abstract: Draw a diagram of the problem,
[2] Work backward: Assume a solution and see what can be derived
from that, [3] Find a concrete example for an abstract problem, etc.

MNO.06 - Expert Systems [ES] in architecture are - according to Brown
[1993] - design systems able to check design decisions for conform-
ance with standards and guidelines, extract features, select materials,
outline deficiencies and suggest corrections, as well as evaluate the
manufacturability or constructability of the design.

ES are, basically, programs employing computations that underlay in-
telligent behavior implying the use of general search strategies which
exploit qualitative heuristic knowledge about the problem domain
[Brown and Chandrasekaran, 1989] ES, therefore, can be seen as
systems operating with knowledge of experts in whole or in part.

NO.07 - NURBS - non-uniform, rational B-splines - are mathematical
representations for curves and curved surfaces.

NO.08 - Interactivity implies a two-way action-reaction exchange,

which is implemented in architecture by means of sensor-actuator
technologies.

NO0.09 - Computer vision implies technologies able to extract informa-
tion from images and multi-dimensicnal representations similarly or
complimentarily to biclogical vision.

MNO0.10 - Sensor-Actuator Technologies imply devices receiving and re-
sponding to signals such as sound, image, etc.

NO.11 - SAT refers to Boolean Satisfiability, which implies determining
if the variables of a given formula can be assigned in such a way that
the formula evaluates to a Boolean-value: TRUE or FALSE [Een and
Sorensson, 2003].

BIBLIOGRAPHICAL REMARKS: Research in computer-based sys-
tems in architecture incorporates a wide range of topics and sub-top-
ics addressing issues of representation, simulation and generation of
architecture.

Slessor addressed [1979] the potential of computer-based techniques
to generate economically unigness in architecture, whereas an over-
view on state-cof-the-art concepts and methods on computer-based
digital design and fabrication in architecture has been compiled two
decades later by Kolarevic [2003]

Issues of incorporated knowledge in the designed object and automa-
tion were addressed by Tzonis [1993] and Brown [1998]. Whereas is-
sues of computability, have been addressed by Schmidhuber [1997]
who reinterpreted Zuse's assumption [1967] that the history of the uni-
verse is computable: While Zuse suggested that the computer could
be a Cellular Automaton, Schmidhuber proposed an universal Turing-
machine.

Wolfram [2002] goes back to Zuse's assumption and undertakes re-
search in Cellular Automata in order to understand and model com-
plexity.

Complexity and complex processes in architecture have been studied
by Alexander [1963] and have been implemented in space allocation
algorithms by Seehof and Evans [1967], Mitchell [1974], Simpson
[1980], Baykan and Fox [1997], Michalek et al. [2002].

1. TOOLS AND PROCESSES

1.1 Digital Design
1.1.1 Computational Tools: Topological Spaces, Isomorphical
Surfaces, Motion Kinematics and Dynamics, Parametric and
Generative Designs
1.1.2 Computational Processes: Collaborative Systems, Build-
ing Information Modeling

1.2 Digital Fabrication
1.2.1 Computer-Numerically Controlled Processes: CAD-CAM

Digital media change the relationship between architecture and its
means of production: Digital fabrication allows production of complex
non-Euclidean geometries, and architecture, therefore, is no longer
defined by modernist principles of standardization and repetition.

Not only that the design process merges seamlessly into fabrication -
in an iterative process of transferring data from a 3D modeling soft-
ware to a 3D-printer or a CNC - Computer Numerically Controlled -
machine, but double-curved geometries become as feasible as planar
geometries [Slessor, 1997].

Inan attempt to classify and evaluate state-of-the-art computer-based

F1.1

P1.2

devices utilized in architecture with respect to their incorporated as-
pects of machinic intelligence, this chapter describes Digital Design
and Fabrication:

By departing from Kolarevic's [2003] summary on digital technologies
and their use in architecture, this chapter proposes a revised clas-
sification and introduces additional computer-based tools and pro-
CEesses.

1.1 Digital Design
1.1.1 Computational Tools: Topological Spaces, |somorphical
Surfaces, Motion Kinematics and Dynamics, Parametric and
Generative Designs

According to Kolarevic [2000] Digital Design implies computational
devices such as: Topological Spaces, Isomorphical Surfaces, Motion
Kinematics and Dynamics, Key Shape Animation, Parametric Design
and Genetic Algorithms.

Considering Genetic Algorithms as being part of Generative Design,
which also incomporates Self-organizing Systems and Generative
Grammars, this research proposes a revised classification.

[1] Topological Spaces: While classical geometry deals with faces,
sides and vertices looking at isolated elements, TOPOLOGY deals
with the whole, focusing on the connection between those elements.
It, basically, studies properties of objects independent of their size and
form [Gausa and Soriano, 2003] and incorporates, inter alia, the ge-
ometry of continuous curves and surfaces mathematically described
as NURBS: Non-Uniform Rational BSplines.

NURBS-geometries introduce double-curved surfaces in architecture
allowing not only for design but also for fabrication of cunvilinear geom-
etries changing fundamentally our understanding for architecture: Ar-
chitecture is not anymore about planar elements developed in a
repetitive, modular way but it is rather about complex, digitally de-
sighed and fabricated free-form geometries [Kolarevic, 2003].

[2] Isomorphic Surfaces imply blobs or metaballs, which are amor-
phous objects with internal forces due to mass attraction: When two
metaballs are close enough to affect one another they connect gener-

N1.01

F1.01

ating an isomorphic surface. The figure shows two spheres having
equal radii and equal fields of influence, whereas more complex con-
figurations are generated when metaballs of different size are interact-
ing with each other - as for instance in Franken's BMW Pavilion.

[3] Motion Kinematics and Dynamics: Animate Architectures as de-
scribed by Lynn [1998] rely on motion-based modeling techniques
such as forward and inverse kinematics and dynamics to generate ini-
tial architectural forms. While kinematics studies motion without con-
sideration given to mass or external forces, dynamics takes into
consideration physical properties such as mass, elasticity and physi-
cal forces such as gravity, inertia.

[4] Key Shape Animation generates designhs by deforming the model-
ing space, while the intermediate states of the transformation process
are computed accordingly. In this context, morphing as a process of
blending dissimilar forms in order to generate hybrid forms, represents
an additional deformation and transformation technique involving a
time-based design strategy.

[5] Parametric Design implies development of parametric models by
establishing dimensional and geometric consiraints between the parts
of the model. These models are, basically, topological descriptions
specifying the parts that constitute them and the relations between
those parts.

In this context, parametric modification can be accomplished with
spread-sheets, scripts, or by manually changing parameters such as
dimensions, relative distances, and angles in the digital model. These
are linked to geometry in such a way that when values for parameters
change, the part associated with them changes accordingly.

EXAMPLE: A 3D-model developed with a parametric modeling soft-
ware, Generative Components, exhibits an apparent complexity - Its
geometrical structure changes according to the movement of the slid-
er, which corresponds to changes in the numerical value from 130 to
460 to 880.

[Name 7 |¥alue [Analog Value
[myTralue 0,500 ——

Low Iimwtginni: " tion limit: 1.0 F1 02

P1.3

P1.4

Even though the structure seems to be complex it has been generated
by modeling three BSplines in 3D-space and by generating a so called
Generative Component [GC], which is - in this case - a triangle within a
triangle.

The curves have been divided in regular intervals by points and are
linked with the Generative Component in a way that between the points
of the three curves, similar to their unique context, adaptive compo-
nents are generated. The changing value determines the shape of the
inner triangle by moving the corners along the lines of the outer triangle.

That means, there is a relationship established between the compo-
nents of this model:

Changing a curve, for instance, implies that this change will be propa-
gated to all parts of the system. There are, basically, two connections,
one of them between GC and the curves, and the other one between
the corners of the inner triangle and the outer triangle, which lets the
corners slide along the curves according to a numerical input.

[6] Generative Design incorporates computational tools such as Self-
organizing Systems, Genetic Algerithms, and Generative Grammars.

Self-organizing Systems based on Cellular Automata and Swarm Intel-
ligence have been employed in architecture under the premise that
conceptualization has been shifting - as Kuhn [1996] describes it -
from object-generation to development of interacting components, sys-
tems and processes, which in turn generate objects.

Swarm Intelligence is addressed within this research in section
3.3.1.1. This section, therefore, only introduces Cellular Automata:

Cellular Automata [CA] are discrete models consisting of grids of regu-
lar cells, wherein each cell assumes one state from a number of possi-
ble states. Rules determine the state of the next cell depending on its
immediate neighbors’ state [Wolfram, 2002]. Even though this under-
laying structure is simple, CAs are able to perform sophisticated com-
putations: Their application in architectural design ranges from
ornamentation producing visual pattern variations to automated volu-
metric building generation [Coates, 1996].

F1.03

-

RS

s
o
e

EI Rl I BIai B P e e =]
!

X e i e,
LR R SRR
i AR

TR

ey

Genetic Algorithms [GA] use mechanisms inspired by hiological ev olu-
tion and are, basicaly, search and optimiz ation tools: Once the objec-
tve is encoded in & structure called genome, the genetic algorithm
creates a population of genomes then applies crossover and mutation
to the individuals in the population in order to generate new individo-
als.

These GA-technigques are applied in architectural design not anly to
generate functional diagrams [Elez kurtaj and Franck, 2002] but also to
nenerate designs [Loomis, 2003].

Looking for generative systems of organiz ation, architects re-discov er
principles of organiz ation in nature and their mathematical correspore
dence: The sequence 1, 2, 3, 4, 8, 13,... isknown as the Fibonacci se
ries, in which each number is the sum of the previous two. The
Fibonacci numbiers can be observed inthe arrangement of the branche
es or leaves around the stem of many plants.

This knowledge has been incorporated in Lindenmayer-sy sterms, also
called L-systems, which are a mathematical formalism proposed by
the hiologist Lindenmayer [1968] as a foundation for an axiomatic the-
ary of hiological development.

L-systems have found application in compuoter graphics including gen-
eration of fractals and modeling of plantogrowth; Cho's [19989] ap
proach to Digital Design is based on applying the generative rules of
the L-gysterm to architecture as shown in the project X P hylum.

Generative Grammars, in paricular Shape Grammars [Stiny, 1979]
have been also applied in architecture and design: They consist of
shapes, shape-rules and transformation-rules which enable genera-
tion of designs as tested within this research and described in section
222

Architects are using computational tools in an unconstrained way ap-
piving them wheney er helpful in the design process: Lynn's design
process in the Cardiff Bay Opera House project, for instance, relies,
initialbe, on fractal organiz ation.

This spatial arganization is subsequently superimposed with a func-

F1.04

F1.5

F1.6

tional organization, where the volumes are re-arranged according to
functional requirements. There is not one organizational concept de-
termining the design but many.

In contrast to Lynn, Franken's BMW-pavilicn is based exclusively on
isomorphic surfaces: Being designed and fabricated exclusively by
digital means, this project can ultimately be seen as a representative
example for computer-based architecture.

However, the exclusive use of digital techniques from idea to material-
ization seems to be rather exceptional. Instead there is a combination
of non-digital and digital tools and procedures being used in architec-
ture:

Gehry's design, for instance, implies a sculptural approach; only its im-
plementation in built architecture incorporates computational tech-
nigues. Gehry’s initial hand-made physical model is digitized in a 3D
scanning process. The obtained digital data is subsequently trans-
ferred to 3D modeling programs, where the actual process of analysis
and optimization is taking place. The form-finding process is, there-
fore, not based on computational tools. Only the subsequent process-
ing involves reverse engineering and parametric definition in order to
allow rationalization of geometry and engineering of structure.

1.1 Digital Design

1.1.2 Computational Processes: Collaborative Systems, Build-
ing Information Modeling

Computer programs influence design, whereas their use in different
phases of the design process establishes a MODUS OPERANDI new
to architecture:

Architects generate digital information, which can be used in fabrica-
tion and construction to directly drive the computer-controlled ma-
chines, and therefore, produce building components by CAD-CAM .

CAD-CAM processes establish a direct link between conception and
production and are supported by Collaborative Systems [CS] which al-
low team members such as architects, engineers and manufacturers
to work on projects at any place, while the files are available from a
common database on the Internet.

CS rely, basically, on the concept of shared virtual space, wherein col-
laborating participants work synchronously and/or asynchronously on
the same project. Intelligent engines incorporated in this shared space,
support activities of all participants by providing automated services,

N1.02

such as detecting design changes and automatically notifying the par-
ticipants about them [Castle and Pollalis, 1999].

In this context, Building Information Modeling [BIM] as a digital repre-
sentation and communication model for the building process, facili-
tates exchange of information in digital format: It connects archi-
tecture, engineering, and construction industry by incorporating data
about geometry and spatial relationships, quantities and qualities of
building components, number and nature of systems, etc.

So far, the described computational processes incorporate aspects of
intelfigence in the way systems store and share incorporated knowl-
edge about the designed object:

The knowledge itself is generated with help of computational devices.
These reflect the ability of digital media to frame questions and interro-
gate issues pertaining to conceptualization, representation and simula-
tion of architectural design. However, with exception of Parametric and
Generative Design, they do not incorporate aspects of knowledge
about the designed object going beyond its representation.

1.2 Digital Fabrication
1.2.1 Computer-Numerically Controlled Processes: CAD-CAM

Digital Fabrication refers to Computer Numerically Controlled [CNC]
technologies implying data transfer from a 3D modeling or a 2D draft-
ing program to a CNC-machine. These allow semi-automated produc-
tion of small-scale models and full-scale building components directly
from 2 - 3D digital models.

As described by Kolarevic [2004] and others, Computer-Aided Manu-
facturing [CAM] incorporates three main CNC-fabrication techniques:
Subtractive, Additive, and Formative Fabrication.

[1] Subtractive Fabrication refers to material removal processes as for
example milling and cutting. In both cases the geometry is translated
into a CNC-program, which operates the milling device.

CNC-milling has been applied, for instance, in the fabrication of molds
for the double-curved glass panels of Franken's BMW Pavilion, where-
as the aluminum frames have been cut using computer-controlled wa-
ter-jet technology.

As tested in a workshop [2005], where students from the university in
Delft employed a laser-cutter to build a NURBS-based model, CNC-
cutting technologies imply a basic level of machinic intelligence, since
the machine recognizes cutting lines and scoring lines from a 2D-file
and cuts and scores the sections, accordingly.

P1.7

P1.8

— . ~—

[2] In opposition to removal of material, Additive Fabrication involves
processes of layer-by-layer adding of material: 3D-Printing, as one of
these techniques, uses ceramic powder and glue. The physical model
is generated in a process of selective addition of glue layers to the
powder-mass.

As a Rapid Prototyping technique, 3D-Printing is used to generate
small-scale models not building components. More recently, experi-
ments applying a similar concept of additive fabrication based on
sprayed concrete technologies were introduced in the fabrication of
building-components and buildings [Khoshnevis and Bekey, 2002].

The contfour crafting prototype developed by Khoshnevis and Bekey is,
basically, an oversized 3D-Printing device enabling automated layered
fabrication of buildings and building components.

[3] Formative Fabrication implies shaping processes as, for example,
straining metal beyond the elastic limit by heating and bending it. For-
mative Fabrication has been used in Gehry’s recent projects such as
the EXPERIENCE MUSIC PROJECT.

CNC-fabrication techniques, therefore, enable architects not only to
generate and control complex geometries by establishing a feedback
mechanism between conception and production through Rapid Proto-
typing but also to directly produce and construct building components.

EXAMPLE: ONL [Oosterhuis_Lenard] has a particular digital design
and fabrication method, which implies scripting and programming:

The structure, for instance, of the double curved surface is generated
not by modeling in a 3D-software but by scripting, which means the
designer writes, a program which generates automatically the 3D-
structure. This digital model represents not only a 3D-model of the
building but incorporates all instructions needed in order to control the

F1.05

cutting machine, for instance.

ONL-projects rely mainly on three computational devices [Oosterhuis
et al., 2004]: The first one implies the geometry of continuous curves
and surfaces mathematically described as NURBS: Non-Uniform Ra-
tional BSplines. The second is based on parametric design, and the
third implies scripting and programming.

[1] BSplines establish the geometry of the building in the project
Acoustic Barrier: They follow the trajectory of the highway defining
within the sequence of a relative smooth curve a bulge: the Cockpit.

In addition to NURBS-geometry, Acoustic Barrier and Cockpit also
make use of parametric design and scripting as computational tools:

[2] Parametric design refers to parametric definitions such as 1 = x/a?

+ \/2/b2 for instance, to describe a 2D-curve. Each time a parameter
changes, the curve regenerates to reflect the new value. The paramet-
ric model represents, therefore, the setup of a meta-design allowing
for a reconfigurable design.

[3] Scripting and programming refer to the process of writing a pro-
gram consisting of a set of coded instructions that enables the com-
puter to perform a desired sequence of operations. In the case of
Acoustic Barrier the geometry is based on several MAX-Script rou-
tines:

[3.1] The first script loads the DWG-files containing point clouds. It
builds the axes of the steel profiles, that form the structure and
projects the planar surfaces generated between the points, defining
shape and position of the glass panels.

[3.2] The second script generates a detailed 3D-model of the steel-
glass structure.

[3.3] The third script verifies the 3D-model resulting from the previous
two scripts, applies constraints such as maximum tolerance, for in-
stance, and effectively replaces deficient parts. Finally, the data gener-
ated by scripting is directly transferred to the steel and the glass
manufacturer for further processing such as laser cutting.

Beyond generating small-scale models by means of Rapid Prototyp-
ing, ONL projects, as menticned before, make use of CNC-technolo-
gies such as laser-cutting to fabricate building components.

Not only that ONL establishes direct communication and data-transfer
with the manufacturers by accessing data from a common data base
on the Internet but the digital data from the 3D-model controls the
CNC-machine. Intermediate stages such as the production of 2D-
drawings, for instance, are eliminated.

P1.9

F1.10

W hile digital fabrication allows for production based on local variation
and differentiation, collaborative design and construction via Intemet
enable participants to communicate and collaborate in developing in-
dividual designs and produce custamized buildings.

The process of collaborative design and construction proves to be ef-
fective because of the direct link established between client, architect
and manufacturer: It skips several iterations such as generation of 20
drawings - construction documents - for the industrial production,
which hecomes unnecessary.

In the design process, ONL not only makes use of NURBS-geometry
and parametric design but introduces scripting and programming in
the design process of complex shapes such as double-curved surfac-
es: This allows not only for automated 30 modeling of building corm-
ponents according to the script but also allows for automated genera-
tion of quantitative and gualitative data to control the CNC-fabrication
of the components.

CONSTRUCTION STRATEGIES: In response to requirements of the
double-curved surface ONL employs four specific construction strate-
gies:

[1] Structural Skin, as a construction principle, implies skin geome-
tries such as double-curved surfaces capahle to serve as structure,
therefore capahble of selfsupport. The constructive concept of struc-
tural skin opposes the modemist concept of separation of skin and
structure.

[2] Polygonal Tessellation: Implies the transfornation of the surface
from curved to facetted enakling subseguent extraction of 20, planar
surfaces from those double-curved surfaces. In general, the transfor-
rnation of a NURBS-surface into a facetted surface refers to automat-

F1.06

ted tessellation processes based on surface subdivision algorithms
providing several computer generated tessellation alternatives.

OMNL develops a different strategy: It intersects in a first step the
NURBS-surface with a generc structure in order to create point
clouds. These points resulting from the intersection between the equi-
distant lines defining a pattem of identical triangles and the NURBS-
surface estaklish a spatial matrix. From these points the structure and
the envelope are developed by means of scripting, whereas the point
cloud establishes general conditions for the development of a generic
detail.

[3] Generic Detail: The constructive concept of the Generic Detail is
based on the premise that there is no separation between building
components such as wvertical and horizortal elements - walls and
floors - as known in modemist architecture. From the Generic Detail
developed according to the reguirements of the whole, specialized
details are developed according to local rules.

Forinstance, the triangulation of the skin of the project WEB of Morth-
Holland corresponds to the concept of generic detail, implying that
every single hylite-alurminurm panel although tiangular has an individ-
ual size and shape. Even though the elements are the same, since
they are all triangles, they are all different and therefore specialized.

N =11

C—

[4] Composite Materal: Produced by combining different constitugnt
rnaterials, the composite displays properties of the diferent compo-
nents representing an improvement in perfornance: The 2 mm thick
hylite-alurninurm panels employed in the project WEB of North-Hol-
land consist of a polypropylene core placed between two ultra thin
layers of alurinurm. By fastening the triangle at the mid points of three
sides and subsequently fastening of the edges of the triangle with
ormega shaped fasteners the panels are able to follow the geometry of
the double-curved surface.

CONCLUSION: Architects develop increasingly their own tools - They
customize their design tools by scripting and programrming with the ul-
timate ohjective to develop a computer model containing all qualita-
tive and quantitative data necessary for designing and producing a
huilding.

F1.07

F1.1

F1.12

While the single source of information is the digital model, architects
establish increasingly platforms of collaborative production with nu-
merous parties in the building process via Internet.

Architects have been, however, slow in implementing computer-
based technologies: While the car industry, for instance, has been
applying these technologies since the 1970s, architecturs only
recently started to look into the use of computer-based technologies
in design and construction.

CONTRIBUTORS: To this section have contributed K. Oosterhuis, S.
Boer, and K. Aalbers.

NOTES: Notes to this section explain concepts and notions difficult to
extract from context.

N1.01 - Free-form surfaces are used in CAD to describe double-
curved surfaces described mathematically as NURBS; however, there
are other methods such as Gorden- and Coon-surfaces [v. Dam et al.,
1996] to decribe free-forms.

N1.02 - CAD-CAM processes imply the direct transfer of data devel-
oped by means of Computer-Aided Design [CAD] to Computer-Aided
Manufacturing [CAM] firms in order to directly produce building compo-
nents from digital data.

BIBLIOGRAPHICAL REMARKS: Computer-based digital design and
fabrication tools in architecture - with exception of Generative Design
- have been outlined, inter alia, by Kolarevic [2003]. His overview on
state-of-the-art computer-based systems in architecture served within
this research as framework for evaluation and further development.

As co-author of Architecture in the Digital Age: Design and Manufac-
turing [2003] Kolarevic describes recent developments in the applica-
tion of digital design and fabrication technologies in architecture.

With respect to Generative Design, Shape Grammars have been
developed by Stiny [1979], while issues of self-organization dealing
with Cellular Automata have been employed in architectural design
experiments by Coates [1996]. Furthermore, Evolutiocnary Design has
been implemented by Elezkurtaj and Franck [2002] in floor plan
design.

Building Information Modeling has been extensively discussed at the
ACADIA Conference [2004] and has been described and published
published in the respective conference proceedings edited by East-
man &t al.

Digital design and fabrication exemplified in ONL-projects constitutes
a key-reference within this research mainly because of its relevance
in this research field and Oosterhuis’ direct influence on content and
implementation of this research.

P1.13

2. CONCEPTS AND METHODS

2.1 Typology

2.2 Morphology [of the Double-Curved]
2.2 1 De-Formation and De-Construction: F.O.Gehry and Coop
Himmelblau
2.2 .2 Software-Intrinsic Morphogenetic Features: Digital Design
Strategies - The Curvilinear and the Facetted
2.2.3 Architectural Avant-Garde: Curvilinearity as Negation of
the Past - Euclidean and Non-Euclidean Geometries in Architec-
ture

2.3 Methodology
2.3.1 Diagrams > Patterns > Computations

2.4 ldeology
2. 4.1 Principles of Digital Media Revisited
2.4.2 Hyper- and Super-Modernity: Digitally-Driven Architecture

Concepts and Methods [2] describes ideological and methodological
changes occurred in architecture through the influence of digital tech-
nologies such as changes in typology, morphology, methodology and
ideology.

P2.1

P2.2

2.1 Typology

Changes in typology are announced by Ito [1997] in his observation re-
garding the development of a new hybrid-building type, the medi-
atheque. He describes how electronic media surpasses other media
such as paintings and books, and therefore, established typologies for
museum, library, and theater, are challenged by a new building con-
cept in which typo-morphological differences are blurred and recon-
structed as mediatheque.

2.2 Morphology [of the Double-Curved)]
2.2.1 De-Formation and De-Construction: F.O.Gehry and Coop
Himelblau

In terms of changes in morphology, the morphology of the double-
curved is well represented in Gehry's architecture. Thinking of Gehry's
architecture in Kipnis' terms [1993] as an architecture of De-formation
and Coop Himmelblau's architecture as an architecture of De-con-
struction the differences in morphology seem obvious: Surface charac-
teristics such as continuos-smooth and angular-facetted can be traced
back to their corresponding SOFTWARE-INTRINSIC MORPHOGE-
NETIC FEATURES. These refer to attributes and software characteris-
tics related to generation and control of geometries pre-determining
design. For instance, curvilinear surfaces are based on the geometry
of continuous curves mathematically described as NURBS.

Does this curvilinearity, though, represent a break with the past? Con-
temporary computer-based architecture seems to reject the notion of
urban and structural typology suggesting an ideological, conceptual
and formal break. However, biomorphic forms based on curvilinear ge-
ometries are not new: There is a range of precedents from Gaudi‘s
Casa Batlo [1905] to Mendelsohn's Einsteinturm [1921] and Dome-
nig's Zentralsparkasse [1975].

Contemporary computer-based architecture addresses notions of bio-
morphology and deformation, exemplified in buildings such as Gehry's
Peix [1992] and Guggenheim Museum [1997]. Kipnis [1993] considers
this architecture an architecture of De-formation, since it emphasizes
form, regards modernist language historical reference and rejects Eu-
clidian-geometries.

2.2 Morphology [of the Double-Curved)]
2.2 2 Software-Intrinsic Morphogenetic Features: Digital Design
Strategies - The Curvilinear and the Facetted

An experimental approach to Digital Design has been implemented
within this research in three workshops [2003-2005] at the universities

N2.01

in Innsbruck, Rome, and Antwerp reflecting critical analysis and as-
sessment of 3D modeling software as design tools.

As a field of studies in architecture Digital Design introduces the use of
computer to students not only pragmatic, but also conceptual, as an in-
strument to explore complex systems of organization. A case study -
Denari‘'s project The Wall - served as a framework for a 3D-modeling
survey with emphasis on implementation of 3D-construction and edit-
ing operations as well as examination, interpretation and evaluation of
3D-modeling tools and their intrinsic morphogenetic features.

PROGRAM INTRINSIC MORPHOGENETIC FEATURES refer to at-
tributes and software characteristics related to generation and control
of geometries pre-determining design. Rhino‘'s morphogenetic features
are based on the geometry of continuous curves and surfaces, mathe-
matically described as NURBS: Non-Uniform Rational BSplines. The
ability to control effortlessly their shape by manipulating control points
implies rigor in understanding and applying methods to generate and
transform architectural space.

In contrast to Rhino, which is a surface modeler, FormZ operates with
solids, allowing a wide range of additive and subtractive operations.
FormZ's shape-generating features rely on Boolean-operations such
as union, intersection, and difference applied to solids.

Questions of HOW these computer programs are determining and in-
fluencing the design became relevant on the level of experimentation:
Students were asked to develop and implement software knowledge in
a design process, which implied the TRANSFORMATION of an archi-
tectural object designed by N. Denari: THE WALL [1990].

The transformation process defined by operations such as repetition,
segmentation, differentiation, diversification, deformation and rules
such as symmetry-asymmetry, regular-irregular, repetitive-nonrepeti-
tive, implies not only software-determined geometric properties such
as curvilinear-angular, but also qualities of space such as soft-sharp.

In this context, the transformation of a NURBS-surface into a polygon
mesh - as illustrated in F2.01 - represents a transformation from curvi-
linear to facetted. Polygon meshes defined as sets of connected planar
surfaces are used not only to represent polygonal objects but also

F2.01

P2.3

P2.4

aproximate curved surfaces by increasing the number of polygons in
order to create smooth transitions. Decreasing the number of polygons
creates angular discontinuities in the surface accentuating its angular-
facetted character in opposition to a continuous curvilinear surface.

Considering the transformation process as consisting of a series of
evolving spatial configurations, and the choice of a stadium in accor-
dance with targeted formal and programmatic conditions as being a
feasible methodology of design development and evaluation, the work-
shop gave insight into the influence of computer-based design tech-
nigues on design.

In this context, Shape Grammars provided a systematic approach to
the generation of designs: According to Stiny [1980] Shape Grammar
is defined as a set of rules based on shape, used to generate designs
by applying rules such as a->b where a and b denote shapes, and a
rule is applicable only if shape a is part of shape b.

In terms of Shape Grammar, the vocabulary used in the workshop con-
tained one initial shape: A cylindrical object - 1a. The spatial transfor-
mations applied to this object were multiplication, translation,
reflection, rotation, whereas the rules represented a selection of spatial
transformations chosen in accordance to the constraint that shape a is
part of shape b, which in turn is part of shape c. The rules consist of
three consecutive operations involving two spatial transformations -
multiplication and translation.

F2.02 shows the primitive 1a and its duplicate 2a in an axonometric
view. The extended duplicate is translated and positioned adjacent to
the primitive 3a. Operations such as parallel translation of the front-
face are shown in 3b and 4b in side and front views, whereas front face
translation, rotation, and torsion of primitive and duplicate are shown in
3c and 4c side and front view, respectively.

F2.02

Basically, the grammar development starts with shapes as basic com-
ponents and spatial relations between shapes. The definition of a rule
involving a spatial transformation a-=b->c¢, as described, leads to the
development of a series of shapes. Derivations of the rule defined as a
sequence of designs, where each design is generated from the previ-
ous design by applying rules, implies an ordering of the shapes into a
hierarchy, which provides a proliferous design-generating method.

Furthermore, decomposing Denari's object into a hierarchy of sub-
shapes allows for any parts of the shape to be transformed within a
system of rules. Denari‘'s object can be seen, therefore, as a template
to study cunilinear geometries in architecture.

Based on experiments in Rhino and FormZ, this workshop introduced
students to digital design, offering them clues to evaluate, compare
and consciously decide about the use of 3D-modeling software in the
design process.

The experimental approach to digital design implemented in this Rhi-
no-FormZ workshop implied three pre-defined conditions: [1] Students
had no preliminary knowledge of the 3D-modeling software, [2] Design
task was restricted to the transformation of an object designed by De-
nari, and [3] Workshop established a link between design and software
on the geometrical-formal level as well as explored how Shape Gram-
mar informs the design.

Students implemented 3D-modeling experiments revealing intrinsic
morphogenetic features of computer programs by generating complex
geometries using modification and assembly of simple geometrical ob-
jects resulting in complex, composite-objects.

Aside from 3D-modeling experiments, transpositioning digital design
strategies from practicing architects such as N. Denari in the academic
environment ensured exploration of methods and techniques, which

F2.03

P2.5

P2.6

found implementation in internationally relevant architectural practices.

The follow-up workshop has been organized [2004] at the University of
Studies Roma Tre in Rome and has been focusing on the implementa-
tion of digital models into physical prototypes:

2.2 Morphology [of the Double-Curved]

2.2.3 Architectural Avant-Garde: Curvilinearity as Negation of
the Past - Euclidean and Non-Euclidean Geometries in Architec-
ture

The workshop at Roma Tre exploring aspects of curvilinearity in archi-
tecture has been structured in three parts: [1] Other Geometries, [2]
Objects, and [3] Spaces.

[1] Other Geometries started with the analysis of the Denari-project,
which has been designed to separate a space in two areas - studio
and shop - serving simultaneously as space subdivisioning element
and storage space.

The workshop started with the development of design skills by using
3D-modeling tools based on NURBS-geometries, whereas the com-
puter has been employed not as a representation but as a design tool.

Even though Denari did not use NURBS and developed the curvilinear
shape from circles - meaning that every time the curvature changes,
every single circle center, radius, and tangent have to be re-designed
and re-positioned - the workshop focused on NURBS, specifically em-
phasizing the difference between curves from circles and NURBS.

[2] Objects explored methodologies of digital design: While Denari's
object can be seen as a template for studying curvilinear geometries in
architecture, its decompasition into a hierarchy of sub-shapes allows
for any parts of the shape to be transformed within a system of rules -
as described in section 2.22.

F2.04

From analysis of the original to development of a replica and a mutant,
the process is based on the exploration of NURBS-geometries and de-
velopment of alternative designs through trans-FORMATIONS of the
digitally modeled object into so called MUTANTS.

Considering the mutant a new organism resulting from a genetic
change in the parental type, the gene of the Denari-object can be seen
as the CURVE.

ORIGINAL REPLICA

Furthermore, assuming that curvilinear architecture is being developed
by generating space through following the movement of the body in
space based on ergonomic principles, the workshop implemented intu-
itively generation and modeling of the double-curved skin in accor-
dance to estimated movement within the proposed program. Basic
idea has been to generate space by following the movement of the hu-
man body, whereas the volumetrical outlines of the body in motion es-
tablish an initial framework for spatial development.

The third part of the workshop focused on the implementation of the
digital into physical models:

[3] Spaces implied the development of a coherent architectural space
and generation of physical models by means of contouring, whereas
contouring is a process in which supporting primary and secondary
structure is generated by sectioning the object.

This process, basically, emulates the CAD-CAM fabrication process
and informs students about the implementation of complex non-Euclid-
ean geometries in architecture: While the physical model has been
considered a working model, which means that input coming from the

F2.05

F2.06

P2.7

P2.8

model has been taken in consideration to eventually change the de-
sign, the digital model contained all data and became source of fabri-
cation.

Students employed intuitively principles of space-customization for the
development of a mutant named THE KIOSK.

The space accommodates activities related to the operation of a food-
kiosk, wherein equipment and movement patterns have been estimat-
ed with conventional sketching methods. The inner-space accommo-
dates movement and operation of equipment components, which are
placed in the space located between the outer- and the inner-skin on
two levels accessible for users: 0.00-0.90 m and 0.90-1.80 m.

The NURBS-based space has a degree of spatial complexity, which
proves to be difficult to control on the operational level - how much
space is available for equipment components and their operation can
only be roughly estimated.

The workshop showed that computer programs and their intrinsic mor-
phogenetic features are determining and influencing not only the de-
sign but also the design process: While experiments in digital design
offer clues to HOW software influences design and design processes,
new design strategies can be established by gaining expertise in the
creative use of software.

The workshop employed a two-phase procedure: [1] DESIGN: 3D-
modeling, rendering, visualizing, and [2] FABRICATION: Contouring,
which implied construction of a physical model by extracting sections
from the digital model.

While Denari developed his design based on circles, the workshop em-
phasized the use of NURBS: The workshop departs, therefore, from
modernist language as historical reference and rejects Euclidean-ge-
ometries, in order to explore NURBS.

Based on the premises that students had no preliminary knowledge of
the employed 3D-modeling computer program and the design task was
restricted to the transformation of an object designed by Denari, the
workshop established a link between design and software on the geo-
metrical-formal level.

F2.07

Students implemented 3D-modeling experiments revealing intrinsic
morphogenetic features of computer programs and their influence on
design: The developed experiments implied generation and control of
complex double-curved geometries, wherein deformation has been the
major focus. Control of deformation and manipulation of the NURBS-
geometry has been achieved by establishing a methodology in which
the volumetrical outlines of the body in motion generate architectural
space. Even though applied intuitively this methodology established
rules to generate and transform space.

This workshop not only assessed 3D-modeling tools and their intrinsic
morphogenetic features but redefined strategies of design and en-
sured their implementation in education.

MUTANT

The use of a case study, such as Denari‘'s design has been supporting
the development of an initial understanding not only for design based
on curvilinear shapes but also for the difference between curves based
on circles and NURBS-geometries. It offered a primitive to start the 3D-
modeling with, connecting the learning of the software with the devel-
opment of the replica, reinforcing the idea, that software taught from
within a design task is beneficial for the associative learning process.

2.3 Methodology
2.3.1 Diagrams > Patterns > Computations

Computer-based design methodologies can be traced back to, inter
alia, Alexander's pattern language [1977], Newell's information pro-
cessing theory [1957], and Wolfram’s concept of computational equiva-
lence [2002] that views any process natural or artificial as a computa-
tion of equivalent sophistication.

In this context, design is conceived as emerging from a process of de-
fining design problems by diagrammatically assessing recurring prob-
lem characteristics and identifying problem solutions, which are corre-
spondingly encoded in patterns. These, according to Alexander, not only
describe design problems but also incorporate generic solutions, which
describe spatial arrangements customizable to particular contexts.

F2.08

P2.9

P2.10

Within this research, patterns are encoded in algorithms in order to
compute best possible solutions for the formulated problems. Instead
of one, this methodology enables generation of multiple solutions by
departing from a singufar-design principle, that represents a potentially
prejudiced position of the master-designer. This methodology implies
generation of all possible designs within the spectrum of an opfimal
solutions field.

For Alexander [1977] diagrams have a generative capacity enabling
development of patterns from which proto-building and proto-urban
patterns can be abstracted.

Patterns, however, do not determine the design but rather narrow
down design choices to a relevant range:

Alexander’'s PATERN LANGUAGE offers, basically, a space planning
methodology - It not only defines planning problems but also structures
and frames them by specifying the elements of those problems and
their relationships to each other.

In this context, problem spaces can be seen as sets of knowledge
states containing potential solutions [Newell et al., 1957]. Taking those
knowledge states as input, new knowledge states can be generated by
applying operations defined as generative processes.

The newly generated knowledge states are verified by applying fest
procedures, whereas choice of generative processes and test proce-
dures are determined on the basis of the information contained in the
problem space definition.

Within this research, computer programs incorporating these problem-
solving mechanisms generate, inter alia, solutions for layout problems:

These involve placement and adjustment of functional units in respect
to one another and with respect to a whole - the building. The best
solution is achieved when no further improvement can be observed in
the overall arrangement.

However, best solution does not necessarily coincide with best possi-
ble sclution, and therefore the problem is reformulated as an optimiza-
tion-problem. In this context, search spaces are narrowed down to
optimal solution spaces in a sequential yet iterative three steps proce-
dure: diagrams > patterns > computations.

Considering computations computer-based information processors
employing algorithms, the following design methodclogy has been as-
serted:

[1] Find and describe diagramatically design problem, [2] Frame prob-
lem by defining problem-intrinsic patterns, and [3] Solve problem by
generating and computing appropriate algorithms.

N2.02
N2.03

N2.04

This three-steps procedure has been implemented in SC: FL described
in section 3.3.1.

2.4 |deology
2.4.1 Principles of Digital Media Revisited

Departing from Manovich's definition of principles of new media this
research adds to his fifth principles a sixth one:

SINCE DIGITAL, ALL MEDIA BECOME ONE - According to Manovich
[2001] digital media can be described formally by using mathematical
functions, and therefore, it becomes subject to algorithmic manipula-
tion. All media - sound, image, movie, text, etc. - are represented as
machinic code, which means that the sound code can be used to gen-
erate a drawing and vice-versa.

Manovich defines five principles, which distinguish new media from
old: Numerical Representation, Modularity, Automation, Variability, and
Transcoding.

[1] Numerical Representation implies that media is numerically repre-
sented, and therefore, it is subject to algorithmic manipulation.

While algorithms are expressed in programming langiages instructing
a computer about what steps to perform in what order so that specified
tasks are being errorless executed, computations employ machine-
readable code. This consists of a system of instructions and data struc-
tured as patterns of bits - binary digits - such as 00 01 00 00.

[2] Modularity - Media elements such as image, sound, text, are repre-
sented as individual objects, which can be assembled into larger-scale
object-compounds such as Power-Point files, but they continue to
maintain their separate identity.

F2.09

P2.11

P2.12

[3] Automation - Discrete representation of inrformation and its numeri-
cal coding allow automation of operations involved in media creation,
such as access, editing, and manipulation.

[4] Variability: A new media object such as a Web-site is not something
fixed but might exist in different, potentially, infinite versions.

[5] Transcoding, Manovich's fitth principle, reflects the ability of digital
media to represent both, image, and machine-readable code. Digital
media, therefore, are characterized by those two distinctive layers.

Reinterpreting Manovich's TRANSCODING-principle as a process of
translation and conversion from one digital medium to another, this
section presents the results of a workshop held at the Higher Institute
of Architectural Sciences Henry van de Velde [HIAS] in Antwerp
[2005].

The workshop explored design concepts based on Numerical Repre-
sentation, Modularity and Transcoding, whereas transcoding has been
reinterpreted as translation from one medium to another, by applying
graphical rules to sound compositions and vice versa. It introduced
students to software they did not previously know: A surface modeler -
Rhino - and a sound editing tool - Audacity.

Beyond learning to use these programs as design tools, the targeted
outcome of the workshop has been the generation of designs, so
called replicants and mutants, based - once again - on Denari's project
THE WALL.

PR —
bt B o e

LR

u—.*_-*.

|

MUTANT REPLICA

From the original to the replica and the mutant, the transformation pro-
cess involved interpretation of the Denari replica as a new media ob-
ject by means of transcoding: The sound-analysis provided the
diagram from which rules could be abstracted to transform the replica
into a mutated media object.

In a first step the replica has been analyzed in regard of proportions -
spatial and geometrical relations of the parts to the whole - in order to
generate a diagram, with a translation scale of length equaling 9 sec-
onds. This diagram represents a template, which has been generated
and used for the development of a sound-compaosition.

N2.05

F2.10

In a second step samples of sound such as the tick-tack of a watch,
the murmur of a conversation are imponted in Audacity, which is a mu-
sic sampling software introduced to the workshop participants. A
sound-composition has been generated in a cut-and-paste procedure
according to the diagram representing the proportions of the replica
developed in the previous step. These proportions represent, the
rhythm of the new sound composition.

The sound-composition has been, in a following step, pixelized and, fi-
nally, translated in a sound-no sound diagram from which a pattern
template has been developed. The developed pattern template has
been used to perforate the skin of the replica generating a mutant,
which could be read, according to Vasquez-Ruano [2005], as a test of
the sound of the space.

Technically speaking, the mutants have been generated in a process
of transfer from Rhino to Photoshop and Audacity, while the mutation
process itself implied operations such as subtract/cut/puncture applied
to the double-curved surface.

The cut-out patterns correspond to compositions, which have been
generated from sound. The sounds have heen, therefore, re-com-
posed in Audacity, filtered in Photoshop, drafted over, extruded and in-
tersected with the replica in Rhino. The puncturing, cutting, inter-
secting, and subtracting operations are conform to the patterns devel-
oped from the sound composition.

With respect to filters, three different filters - F2.12 - have been ap-
plied: One is generating a rectangular pattern, the second is generat-
ing a circular pattern and the third a mosaic pattern.

These three filters have been applied to the sound composition, which
has been generated in Audacity:

The resemblance between diagram and sound-composition as graphi-
cal representations is obvious. However, the sound-compositions
themselves, suggest a rather random sequence of different sounds,

F2.11

P2.13

P2.14

since they have been generated not by hearing them but by compos-
ing them according to graphical considerations.

Projects developed by students applying a pattern based on the rect-
angular sample - F2.13 - that generated bizame contours in the double-
curved surface, employed the filter, which resembles very much a code
language or a punch-card.

This exercise in transcoding in digital lingo across media, as Vasquez-
Ruano [2005] puts it, has been proven to be an alternative design
mechanism based on Manovich's and Kipnis’ definition of new media
and new architecture, respectively. Kipnis [1993] suggests that archi-
tects need to establish criteria for a new architecture by not repeating
the mistakes of modernism, which were erasure and replacement, in-
stead using recombination and experimentation.

ey

= B

Considering modernist language historical reference and rejecting Eu-
clidean-geometries the workshop developed an experimental ap-
proach based on non-Euclidean geometries. It, furthermore, employed
recombination and experimentation with forms: Its aim has been to
consciously test the concept of transcoding across media in architec-
tural design in order to explore their creative potential.

Although Manovich mentions hypermedia as a variant of his principle
of variability, he misses to elaborate on its interactive nature:

INTERACTIVITY, which can be seen as a sixth principle, is based on
the concept of digital linking or hyper-indexing and has been ad-
dressed within this research in the third chapter.

F2.12

N2.06

F2.13

Section Contributors: This workshop is the result of a collaboration
with O. Vazquez-Ruano and K. de Bodit.

Acknowledgements: This section has benefited from the contribution
of students participating in ADSL 2005.

2.4 ldeology
2.4.2 Hyper- and Super-Modernity: Digitally-Driven Architecture

Similarly to the way industrial fabrication with its concepts of standard-
ization and serial production has been influencing modernist architec-
ture, digital fabrication influences contemporary architecture:

While standardization focused on processes of rationalization of form,
mass-customization as a new paradigm, which replaces mass produc-
tion, focuses on unigness, which becomes as easy and economic to
achieve as repetition [Slessor, 1997].

As described in the first chapter, mass-customization is being imple-
mented in CAD-CAM processes, which are computer-driven design
and fabrication processes. These enable generation of complex de-
signs based on NURBS-geometries:

While modernist architecture has been developed in a modular, repeti-
tive way by using grids and proportions based on Euclidean-gecme-
tries, contemporary architecture is experimenting with non-Euclidean
geometries, which describe both hyperbolic and elliptic geometries
[Greenberg, 1993]

In this context, a series of hew & ofd concept pairs establish a frame-
work within which the influence of digital tools on architecture finds def-
inition:

[1] InfoAesthetics & Aesthetics: Analog to the modernists’ beliefs that
the aesthetics of industrial society emerged in the industrial realm, IN-
FO-AESTHETICS [Manovich, 2005] suggest that the new aesthetics
already exists in computer interfaces and tools, and the information
society, might not need new visual languages and forms because it
can re-configure the old ones by digital means.

In this context, one of the relevant computer-based reconfiguration
means is morphing:

[2] Morphing & Collage: Considering collage as an assemblage of dif-
ferent entities into a whole, whereas the parts maintain their own iden-
tity, morphing changes an entity into an other in a seamless computer-
implemented transition.

N2.07

P2.15

P2.16

|
MODERNIST | CONTEMPORARY
<RE>: RELATIVE | <IN>: INTERACTIVE
STATIC DYNAMIC
COLLAGE MORPHING
IMAGE | USER INTERFACE
INDEX | HYPERINDEX
FATTERNS | COMPUTATIONS
MECHANICAL DIGITAL
MODULAR FREE-FORMED
REPETITIVE | UNIQUE
STANDARDIZED | MASS-CUSTOMIZED
]
‘ MODULOR SPACECUSTOMIZER

[3] User Interface & Image: The User Interface [Ul] changes our un-
derstanding of Image, since it does not represent something to only be
gazed at, but rather something to inferact with. A desktop of a comput-
er might have a passive background and active icons, which establish
connections to other documents and software via hyperfinks.

[4] Hyperindex & Index: The Hyperindex represents a form of idexical-
ity, employing a trans-referential system existing in more than three di-
mensions, hyperspace, as an instrument to link and arrange non-
sequentially references in databases.

Summarily speaking, hyperindexing involves the generation of meta-
data - data about data - by establishing primary connections and rela-
tions, while storing secondary, for the query redundant information.

On a large scale the shift from mechanical to digital brings with it a
change from modular, repetitive, and standardized to free-formed,
unigue, mass-customized architecture:

[5] Electronics & Mechanics - The shift from mechanical to digital forc-
es architects to reposition themselves: since they do not produce
merely drawings but produce digital data, which becomes single
source of design and fabrication [Kolarevic, 2003].

Furthermore, digital systems not only inform the design process but al-
so the fabrication process, challenging the MODERNIST concept of
standardization, introducing the concept of mass-customization, which

T2.01

N2.08

implies, as Slessor [1997] put it, that unigness is how as easy and eco-
nomic to achieve as repetition.

If modernist architecture is about Euclidean geometries, contemporary
architecture looks into the potential of non-Euclidean geometries:

[6] Non-Euclidean & Euclidean geometries - For over two thousand
years only Euclidean geometry has been known, when Einstein's the-
ory of general relativity has shown that Euclid's axioms are only an ap-
proximate description of the physical space: The fitth axiom, the axiom
on parallels, has been proven to be incorrect [Greenberg, 1993].

Non-Euclidean geometries have shown that there are infinitely many
parallel lines in the elliptic space and there are no parallel lines in hy-
perbolic space. Even though Euclid believed that his axioms were self-
evident statements about physical reality, Einstein's theory of general
relativity has shown that the geometry of space-time is non-Euclidean.

Non-Euclidean geometries have been applied in architecture in a rath-
er experimental way - examples show often the juxtaposition of Euclid-
ean and non-Euclidean spatial principles. Gehry's architecture, for
instance, employs a spatial structure based on Euclidean geometries,
while the building envelope follows cunvilinear rules. Non-Euclidean
geometries require, therefore, a new discipline in architecture:

[7] Spacecustomizer & Modulor: While Modulor [Le Corbusier, 1943] is
a system of proportions, which uses measures of the human body par-
titioned in modules according to the Golden Section and two Fibonacci
Series, SpaceCustomizer uses measures of the human body in archi-
tecture by tracing the movement of the body in space. The volumetri-
cal outlines of the body in motion establish an initial framework to
develop spaces employing movement studies based on ergonomics.

Modulor applies a 2D proportioning system, while SpaceCustomizer
employs a 3D, dynamic, space-generating system. Both put man as
measure of architectural space: However, Modulor targets modular
space structures and standardization, while SpaceCustomizer aims for
non-standard, mass-customized spatial configurations.

In addition to non-Euclidean geometries, contemporary architecture in-
corporates aspects of dynamics and interactive-kinetics:

F2.14

P2.17

P2.18

[8] Dynamic & Static Architecture: Projects such as Decoi's Aegis Hy-
po-Surface and Hyperbody’s MuscleTower are prototypes for not only
dynamic but also interactive architecture:

While the Hypo-Surface transposes an up-and-down movement of pis-
tons into undulating movements of a triangulated surface, the Mus-
cleTower is a structure rotating, bending and twisting in the 3D-space.

In addition to being dynamic, these prototypes are interactive, which
implies that they respond to external inputs; They incorporate sensor-
actuator technologies enabling them to interact with their surrounding
in a self-organized manner. The MuscleTower, for instance, incorpo-
rates movement-sensors. As soon as movement is detected in the
neighboring area the tower responds by twisting and bending in this di-
rection.

In this context, interactivity denotes responsiveness, and can be seen
as a communication process in which each message is related not
only to the previous messages exchanged, but also to the messages
preceding them.

If modernist architecture is about top-down control, digitally-driven ar-
chitecture is about integrating bottom-up organization in the design
process.

[9] Self-organization & Control: Self-organization refers to a process, in
which the organization of a system is not only generated but also in-
creases automatically without being controlled from outside. In archi-
tecture, the exclusive control of the architect has been in part replaced
by emergent design processes based on swarms, cellular automata,
and genetic algorithms.

o CisE

F2.15

Swarms are employed in generative design processes, which deal with
ample amounts of data featuring sometime conflicting attributes and
characteristics. Those attributes and characteristics are incomporated
in behaviors according to which design components swarm towards
targeted spatial configurations.

In this context, architectural design becomes procedural instead of
object orriented:

[9.1] ARCHITECTURE AS PROCESS: Architectural form can be seen
as emerging from a process of self-organization, in which the dynam-
ics of all parts of a system determine the result, and therefore, the ar-
chitect becomes the designer of a process instead of a result.

F2.15

P2.19

P2.20

Kaisersrot [Braach et al., 2002] is a software prototypes developed to
generate urban and architectural structures based on Swarm Intelli-
gence: Urban and architectural components swarm and organize
themselves according to predefined rules towards a targeted spatial
configuration. These rules pertain to function, structure and geometry,
while formal aspects have been neglected.

Similarly, BuildingRelations [BR], developed with Hyperbody-students
within this research, employs Swarm Intelligence for design develop-
ment and is being described in the third chapter.

[9.2] ARCHITECTURE AS RESULT: Compositional rules specific to
computer-based designs emerge from software-intrinsic morphoge-
netic features, which can be traced back to operations such as Bool-
ean intersection, difference and NURBS-manipulation. Moss' Sami-
taur, for instance, reveals characteristics resulting from Boolean oper-
ations, while Gehry’s architecture is informed by NURBS-geometries.

Samitaur, is the result of in FormZ intersected geometrical objects
such as cones, cylinders and bars;

These have been interpenetrated, fragmentally deleted and recom-
posed in an apparent random way. Openings have been punched
through the conglomerate without consideration for resulting, perhaps,
contradictory complexities.

While Moss’ intersections of geometrical objects seem to stay in the
realm of deconstructivist principles based on Euclidean geometries,
Gehry’s deformation principles employ non-Euclidean geometries.

Both approaches involve a sculptural notion of spatial composition
and are pre-determined by software intrinsic morphogenetic features -
as described in section 2.2.2.

In this context, software intrinsic morphogenetic features refer to
shape-generation properties and characteristics inherent design soft-
ware such as FormZ and Rhino:

Both approaches involve a sculptural notion of spatial composition

F2.16

and are pre-determined by software intrinsic morphogenetic features -
as described in section 2.2 2. These refer to shape-generation proper-
ties and characteristics inherent design software such as FonmZ and
Fhina:

Farm? is a solid-modeler enahling Boolean operations, such as inter-
section and difference between solids as shown in the Samitaur
project, while Rhino is a NURES-modeler allowing for deformation as
shown in Music Experience Project.

Even, though, Gehry has mostly ermploved inverse engineering - see
section 1.2.1 - without relying on software to generate designs, more
recent designs such as the Music Expenence Project reveal morpho-
genetic characteristics stermming from NURBES-modeling software
such as Fhino.

In opposition to the projects employing swarm principles described
previously, these two projects reflect a top-down approach to design:

The architect designs the result by digital and non-digital means with
no ar little consideration to potential input stermming from some form
of machinic infeligence. More specifically, knowledge about the de-
signed ohject is exclusively incorporated in parametric models devel-
oped in Gehry's posi-engineering process. In addition, Gehry's con-
struction process involving BliM as a digital representation and corm-
munication model, which facilitates exchange of information in digital
format, incorporates aspects of intelligence as descrbed in section
1.1.2.

COMCLUSICON: While non-Euclidean geometries influence form, the

F217

P2

pP2.22

knowledge about the designed object is incorporated at the level of its
connectivity with data stermming not only from its geometry but also
from its content and behavior. Digitally-driven architecture implies,
therefore, on the one hand, digitally-designed architecture, on the oth-
er hand, it implies architecture generated and controlled by digital
means.

Beyond, digitally-driven design processes, digitally-driven architec-
tures such as interactive architectures are of interest, since they not
only incorporate knowledge about the designed object but also involve
intelligent interaction between user and architectural space. This inter-
action is based on data-exchange between building components and
users as described in the third chapter.

NOTES: Notes to this section explain concepts and notions difficult to
extract from context.

N2.01 - Morphogenesis originates from the Greek morphe meaning
shape and genesis meaning creation - http:/fen wikipedia.orgfwiki/
Morphogenesis.

N2.02 - Information Processing implies processing of data into infor-
mation by means of computation, which utilizes mathematics, namely,
algorithms to generate information from data [Newell, 1990].

Problem finding, framing and solving are parts of Information Process-
ing: While problem finding might require vision and creative thinking,
problem framing involves, mainly, critical thinking.

N2.03 - Knowledge is structured information of theoretical and/or prac-
tical content.

N2.04 - Algorithms describe tasks and sequences in which those tasks
are to be implemented by a computer.

N2.05 - Information is the result of data processing, in which data is
manipulated and organized in such a way that it increases knowledge
[Newell, 1990].

N2.06 - Hypermedia is a term introduced by Nelson [1965] used to de-
scribe hyperlinked graphics, audio, video, and text in order to generate
a non-linear medium of information. PowerPoint presentations and
Web-sites are hypermedia.

N2.07 - Hyper- and Super-Modernity: In contrast to Modernity, which
dealt with moderate changes while being embedded in a historical con-
text, Hyper- and Super-Modernity view history as an unreliable guide,
since changes take place at an accelerated pace [Charles and Lipov-
etsky, 2006].

N2.08 - Data are numbers, characters, pixels, which are usually pro-

cessed into information by means of manipulation and organization of
incorporated data in order to increases knowledge [Newell, 1920].

BIBLIOGRAFPHICAL REMARKS: Questions on how digital media have
developed in time are addressed, inter alia, by Manovich [2001]. He
describes the concept of Info-Aesthetics in a semi-open source book
presented on the Internet - http:/Mww.manovich.net/. His overview on
state-of-the-art computer-based concepts and methods served - within
this research - as framework for evaluation and further development.

Issues of information processing and problem solving have been ad-
dressed, inter alia, by Newell et al., [1957], whereas design specific
problem solving has been addressed by Alexander [1977]. He devel-
oped a design methodology based on diagrams from which patterns
were developed in order to generate designs.

P2.23

3. VISIONS AND PERSPECTIVES

3.1 Organic-Inorganic Relations
3.1.1 Machinic Reasconing: Artificial Intelligence, Human-Com-
puter Interaction
3.1.2 Cybernetic Organism

3.2 Semi-Automation
3.2.1 Semi-Automated Design and Fabrication Processes in Ar-
chitecture: SpaceCustomizer - GeometryTriangulator and Un-
folder
3.2.2 Robotics

3.3 System-Embedded Intelligence
3.3.1 Software Prototypes: SpaceCustomizer - SpaceGenera-
tor, GeometryVoxelizer, FunctionLayouter
3.3.2 Spatial Prototypes: Motion, Interactive, Mass, and Func-
tional Spaces

Visions and Perspectives [3] describes frontier research on computer-
based systems incorporating relevant aspects of intelligence including
prototypes developed and tested within this research.

Implemented in environments such as Rhino, MaxMSP, Virtools, Pro-
cessing, and MiniSat the developed software prototypes address is-

F3.1

P3.2

sues of motion-based 3D-space generation, NURBS-geometry voxe-
lization, and automated functional layouting. They incorporate aspects
of Artificial Intelligence [Al] based on computer vision and sensor-actu-
ator as well as constraint solving techniques.

3.1 Organic-Inorganic Relations
3.1.1 Machinic Reasoning: Artificial Intelligence, Human-Com-
puter Interaction
3.1.2 Cybernetic Organism

Generally speaking, Arificial Intelligence [Al] is intelligence exhibited
by a computer [McCarthy, 1956]. It incorporates methods classified as
machine learning, such as Expert Systems [ES], which process known
information and provide solutions based on them [Jackson, 1998]. The
Microsoft Office paperclip, for instance, is a well known ES: It recog-
nizes specific typed-in features and makes suggestions for corrections
accordingly.

Al also involves learning-based methods employing Neural Networks,
which are systems with pattern recognition capabilities, Fuzzy Sys-
tems, which apply techniques for reasoning under uncertainty, and
Evolutionary Computations, incorporating Swarm Intelligence and Ge-
netic Algorithms [McCarthy, 2004]

From the perspective of their incorporated aspects of intelligence, pro-
totypes developed within this research can be considered hybrid-intel-
figent as they combine methods relying on Expert Systems, Swarm
Intelligence and Constraint Satisfaction.

Since they function under human supervision, these systems can be
seen as being inferdependent and requiring Human-Computer Interac-
tion [HCI] devices and interfaces.

Incorporated in the human body, HCl-devices such as integrated
pacemakers, intraccular lenses, cochlear implants, and robotic pros-
theses, contribute to blurring borders between organic and inorganic
matter, transforming humans into Cybernetic Organisms [Haraway,
1991]. Similarly, wearable HCl-devices enveloping the human body,
and ubiquitous computing systems integrating computers into the liv-
ing environment intermingle increasingly organic-inorganic relations.
The following sections describe, however, prototypes employing HCI-
interfaces and devices developed within this research, addressing is-
sues of architectural design-development and computer-integration in-
to architecture.

3.2 Semi-Automation
3.2.1 Semi-Automated Design and Fabrication Processes in Ar-
chitecture: SpaceCustomizer - GeometryTriangulator and Un-
folder

Considering that scientists might be able today to develop a computer

model representing the whole universe but this computer model would
have a sophistication corresponding to the complexity of the universe
itself [Zuse, 1967; Schmidhuber, 1997] and knowing that according to
the concept of computational equivalence formulated by Wolfram
[2002] any process natural or artificial can be viewed as a computation
of equivalent sophistication, this research puts forward the argument
that complete automation in architecture might be for the time being
not relevant because it would require a computer model of equivalent
sophistication as architecture itself.

If the computation takes as much effort as the real process of design,
what do architects gain from computation except additional insights,
which they can not derive from practice?

Architects gain from computation - in addition to insights - support in
the design process not only in form-finding, but alsc in mechanical,
structural, constructive problem-sclving.

The shift from mechanical to digital, forces architects to reposition
themselves: [1] They do not produce merely drawings but produce dig-
ital data, which becomes single source of design and fabrication
[Kolarevic, 2003]. [2] Furthermore, digital systems not only inform the
design process but also the fabrication process, challenging the MOD-
ERNIST concept of standardization, introducing the concept of mass-
customization, which implies, as Slessor [1997] put it, that unigness
becomes as easy and economic to achieve as repetition. And [3] com-
plete automation from idea to building might not be relevant at the time
being, because it requires computation as complex as the process it-
self, but semi-automation based on system-embedded intelligence,
which addresses possibilities for architecture based on algorithmic
technigques is of great relevance.

ALGORITHMIC TECHNIQUES such as scripting and programming
enable automation of design and fabrication processes:

The script - UfoldNurbsSurface - developed within this research trian-
gulates and unfolds NURBS-surfaces, and implies a degree of intelli-
gence, since the script distributes points on the surface and attributes
each point a specific behavior, according to which triangles generated
between the points, translate and rotate in such a way that the com-
plete surface is, finally, flattened and laid out on the xy-plane.

The intelligence and degree of deterministic organization lies in the
way one point organizes itself spatially in relationship to the next one.
In this case the paint-cloud organizes itself into triangles:

These, translate and rotate achieving a certain order, which can be
seen as an emergent order, since it implies interaction between the
parts of a system, such as points and triangles, in a way that this inter-
action leads to a specific order. The emergent order, therefore, arises
not from the coexistence of the parts but from their interaction.

N3.01

N3.02

P3.3

P34

The rules according to which the points and triangles, respectively, in-
teract are local, affecting the points and triangles in next vicinity, gen-
erating a global order, only after the last point and triangle, has found
its place.

BACKGROUND: Even though commercial software such as FormZ
have an anfold function, this function is limited to the unfolding of a lim-
ited range of NURBS-surfaces.

Furthermore, the unfolding of complex double-curved geometries is
difficult to control: Fragments of the triangulated surface are often
placed somewhere in 3D-space without any connectivity to the main
triangulated surface, and therefore, finding their position within the
whole is very much similar to a puzzle-game.

The script developed within this research not only triangulates and un-
folds ANY double-curved surface but also places the unfolded strips
as defined by the user.

CONTENT: As an interdisciplinary field of expertise incorporating [1]
Mathematics, [2] Scripting and Programming, and [3] 3D Modeling and
Design, scripting-based design enables, in this case, the triangulation
and unfolding of NURBS-surfaces.

[1] Mathematics: Mathematical descriptions are used in this exercise
to enable translation and rotation of points and triangles, respectively.
They are based in vector and tensor analysis [Borisenko and Tarapov,
1968] and inform the scripting of the unfolding process. While mathe-
matical formulas are generic, scripts employ those generic formulas in
specific configurations. Furthermore, scripts establish the sequence in
which those formulas are to be applied.

[2] Seripting and Programming languages are used to develop com-

F3.01

puter programs.

Scripting languages are often implemented with interpreters; They are
usually stored in text form - ASCII| - and are interpreted prior to being
invoked. Interpreted, scripting-languages tend to be slower and use
more memory while running, however, it is usually faster to program in
a scripting language, and script-files are smaller than e-quivalent pro-
gram files.

The scripting language used to develop Ufold- and TriangulateNurbs-
Surface is Visual Basic Script: VBScript interpreted in Rhino has en-
abled the development of Scripting-Based Design Methods for Space-
Customizer - GeometryTriangulator and Unfolder - which is a tool-kit
[Bier and Schmehl, 2006] developed to implement, inter alia, tasks
such as the triangulation and unfolding of a NURBS-surface.

UfoldNurbsSurface is a script incorporating several sub-routines: [1]
Sub-routine ArrayPointsOnSurface generates points on UV-curves ac-
cording to the density required by the user, [2] Sub-routine Evaluate-
PointCoordinates, [3] Sub-routine AssignNodeNumbers, [4] Sub-rou-
tine ArrayTriangles, and [5] FlattenTriangles.

PROCEDURE: The script distributes a user-defined number of points
along the UV-curves on the NURBS-surface. In a second step, it gen-
erates triangles between those points. These group into ribbons, which
finally rotate, translate, and flatten into the xy-plan.

Triangulation of the UV-mesh: According to the original UV-parametri-
zation of the surface, the user has to specify direction, along which the
ribbons are defined. Using this re-assignment of the parameter direc-
tions, the node-points of a uniform UV-mesh are generated on the
NURBS-surface.

As illustrated in figure F3.02 each one ofthe i =0, ..., nv1 u-ribbons is
specified by an array of bottom-node points Pij with j= 0, ..., nu-1 and
array of upper node points Qi,j with j = 0, ..., nu-1. Two triangles are
formed per surface element: An upper triangle Si,j defined by points
Pi,j,Qi,j,Qi,j+1 and a bottom triangle Ti,j defined by points Qi j+1,
Pij+1, Pij.

N3.01

F3.02

P3.5

P3.6

Rotation of the first triangle edge into the plane: To prepare this step,
the base point P0,0 with the complete triangulated surface attached to
it is translated to the origin ©. Then the first triangle T0,0 and the com-
plete triangulated surface attached to it, is rotated around the x-axis in
such a way, that the triangle edge connecting points P0,0 and P0,1 is
positioned in the xy-plane. This configuration is the starting point for
the iterative unfolding process.

[3] 3D Modeling and Design: NURBS-surfaces are easy to manipulate
by puling control-points. Questions regarding how to control this ma-
nipulation, which rules and design methodologies can be developed to
control designs based on NURBS, are focus of the SpaceCustomizer
project, not of this section, though. This section describes, exclusively,
the scripting-based triangulation and unfolding of NURBS-surfaces,
more specifically of ANY double-curved surface, which means:

There are no constraints and rules in the design of a NURBS-surface
coming from the unfolding-process.

DISCUSSION: The presented exercise in scripted-based unfolding of
a double-curved surface requires expertise in mathematics, program-
ming and 3D-modeling. The programmed behavior for points and trian-
gles is based in mathematics, which defines rules according to which
the points and triangles relate to each other in xyz-space.

The established order is dynamic at least until the system reaches
equifibritim and is exercised on the global and the local level:

While the connectivity between the pants of the system is established
and applied on the global level, the rotational operations are local.
Each point and triangle positions itself in relationship to the previous
ohe. The script establishes befraviorrules for points and triangles sim-
ilar to the rules within a swarm:

[1] Keep a certain user-defined distance to the neighbor-point, [2]
Span triangle surface by connecting to two neighbor-points in the fol-

F3.03

lowing sequence [P0,0; Q0,0; Q0,1] and [QO0,1; PO,1; P0O,0] respective-
ly, [3] Rotate [P0,0; PO,1] into xy-plane, [4] rotate [PO,1; Q0,1] into xy-
plane, and so on.

While the sequence of behaviors is determined by the script, each be-
havior such as translation, rotation, is determined by the mathematics
behind them:

The rotation of the first triangle and with it of the whole geometry into
the xy-plane, for instance, requires three mathematical formulas per-
taining to the rotation of an arbitrary vector in the 3D-space:

[1] R:I*Sinr.:ftE»n|+|1fCDSr.:."H_E~n)2, [2] b'=in-bin—-n (n by,
and[3] b=R-b

In this context, b and b'are the original and the rotated vector, respec-
tively, nis the axis unit vector, and alpha is the rotation angle, whereas
the implementation of the mathematics in VB-scripting is as follows:

Function AssignRotationMatrix (mrot, wvn, alpha)
[A e e e e e O D B D D e e O R D R O D e B R R R O
Rotation tensor mrot from axis unit wvector vn & an-
gle
[e A D e D e e e e O R A O D e e e B D D O A A A e
Dim salpha: salpha = Sin (alpha)
Dim calpha: calpha = Cos (alpha)

mreot (0,0) = (1.0 - calpha)*vn{(0)*vn(0) + calpha
mrot (0,1) = (1.0 - calpha)*vn{(0)*vn(l) - sal-
pha*wvn (2)
mrot (0,2) = (1.0 - calpha)*vn{(0)*vn{(2) + sal-
pha*vn (1)
mrot (1,0) = (1.0 - calpha)*vn{(0)*vn(l) + sal-
pha*vn (2)
mrot (1,1} = (1.0 - calpha)*vn{(l)*vn(l) + calpha
mrot (1,2) = (1.0 - calpha)*vn{(l)*vn{(2) - sal-
pha*vn (0)
mrot (2,0) = (1.0 - calpha)*vn{(0)*vn{(2) - sal-
pha*vn (1)
mrot (2,1) = (1.0 - calpha)*vn{(l)*vn{(2) + sal-
pha*vn (0)
mret (2,2) = (1.0 - calpha)*vn{(2)*vn(2) + calpha

End Function

The unfolding process is represented in figure F3.04: From left to right,
the triangulated surface separates in U-ribbons. These stay connected
with the primary V-ribbon, while rotating in space.

This dynamic process stops when all ribbons are flattened into the xy-
plane, shown in the front-view - right-left image - as line.

N3.03

P3.7

P3.8

Basically, the ribbon-structure corresponds to a global order, which
can be changed according to the user's needs: Separate, numbered,
and flattened triangle-strips or triangles are, for instance, easy to CNC-
fabricate.

In any case, the order emerges from the global structure, while the ro-
tation and translation movements are determined locally:

This order is based on organizational principles such as feedback,
which are expressed in programming as if/then/else statements.

Understanding feedback as an evaluative response used to control the
behavior of the system, its correspondence in programming can be
seen as the ifthen/else statement, which conditionally, executes a
group of statements, depending on the value of the feedback - posi-
tive/negative. Does the if part evaluate to true, which means the feed-
back is positive, the process continues with an attempt to match the
then part. Otherwise, the else part is attempted instead.

The UnfoldNurbsSurface script employs in order to distribute a user-
defined number of points along the UV-curves on the NURBS-surface
the following ifthen/else statement:

"' Specify discretization 1in new u-direction of
surface

nU = Rhino.GetInteger ("Specify discretization of
new u-direction", 2, 2)

If IsNull (nU) Then Exit Sub

F3.04

' Specify discretization in new wv-direction of

surface
nV = Rhino.GetInteger ("Specify discretization of
new v-direction", 2, 2)
If IsNull{(nV) Then Exit Sub
L]
'* Get the domain (dimension of parameter space)
of the surface
If {itype = 1) Then
'Y u-glices
U = Rhino.SurfaceDomain (strObject, 0)
V = Rhino.SurfaceDomain (strObject, 1)
Else
"' v-glices
U = Rhino.SurfaceDomain (strObject, 1)
V = Rhino.SurfaceDomain (strObject, 0)
End If
If Not IsArray(U) or Not IsArray (V) Then Exit Sub

CLARIFICATION: Considering interaction as a reciprocal action be-
tween the parts of a system the UnfoldNurbsSurface script implies in-
teraction between the user and the script in the moment, when the
user chooses number of points to be distributed on the NURBS-sur-
face, or UV-direction of the surface discretization.

In this context, the rotation of triangles belonging to the triangulated
NURBS-surface into the xy-plane can be seen as an example of emer-
gence, where complex global behavior arises from the interaction of
simple local rules:

Based on rules such as [1] Rotate into xy-plane, and [2] Take attached
geometry with, the rotation paired with the progressive splitting into rib-
bons enables flattening of a complex 3D-geometry into a 2D-plane.

REASONING: The flattening of 3D-geometries into 2D is of particular
interest for the implementation of digital into physical models. In this
context, adaptive triangulated meshes [Delaunay, 1934] allow approxi-
mate representation of complex geometries based on NURBS:

While triangles are simply described by three numbers representing
the corners between which the triangle spans, NURBS are described
by knot vectors, uniform/ non-uniform degrees, etc. and are, therefore,
more difficult to operate with mathematically.

NOTES: Notes to this section explain concepts and notions difficult to
extract from context.

N3.01 - Adaptive triangulated meshes [Delaunay, 1934] are approxi-
mate representations of double-curved surfaces. While triangulated

P3.9

F3.10

meshes are described as a series of points, NURBS-surfaces are de-
scribed by UV-points, whereas UV-points represents intersection
points of length and width | respectively.

N3.02 - Point-clouds are sets of points in 3D-space describing surface
features of 3D-objects.

N3.03 - The three mathematical formulas pertaining to the rotation of
vectors in space are part of a complex system of formulas. They serve
in this case as an example for math-implementation in scripting.

Section Contributor: R. Schmehl - Scripting in VBScript for SpaceCus-
tomizer.

Acknowledgements: This section has benefited from the contribution
of students from the University in Vienna.

3.2 Semi-Automation

3.2.2 Reobotics

Not only fabrication but also assembly of building components relies
increasingly on digital technology:

Electronic surveying and laser positioning allow for precise placement
of building compeonents and robots are successfully used in the con-
struction and assembly process - Shimizu Manufacturing System by
Advanced Robotics Technology [SMART] is an automated construc-
tion system allowing for erection and welding of structural steel
frames, positioning of concrete floor panels, exterior and interior walls
[SHIMIZU, 2003].

Interactive architecture, described in the second chapter, relies on ro-
botics as well.

3.3 System-Embedded Intelligence

3.3.1 Software Prototypes: SpaceCustomizer - SpaceGenera-
tor, Spacelnteractivator, GeometryVoxelizer, FunctionLayouter

Based on the premise that only at the moment it incorporates intelfi-
gence the computer becomes more than a tool, it becomes a reason-
ing machine [Tzonis, 1993] this research focuses on the development
of prototypical tools, which improve the design process by incorporat-
ing aspects of intelligence. These refer to Artificial Intelligence [Al] as
described in Computer Science implying, inter alia, multi-agency,
computer vision, and machinic reascning using trueffalse logic to eval-
uate data.

N3.04

Multi-Agent Systems [MAS] are in Computer Science distributed Artifi-
cial Intelligence systems consisting of several agents capable of
reaching collectively goals [Ferber, 1999]. More recently, these sys-
tems have become the focus of interest within the discipline of archi-
tectural design - largely due to the phenomenon of emergence, which
can be seen as the formation of a complex whole from simple constitu-
ent parts. Multi-agency, however, has often been misunderstood with-
in the design community, and the principles of working with these
systems have remained unknown to many designers:

Within a course on multi-agent systems at TU Delft [2007] with invited
guests from Massachusetts Institute of Technology [MIT], students
have been introduced to the mechanics of a number of multi-agent de-
signh [MAD] procedures with the aim to critically reveal what this tech-
nique may offer architectural design, and what challenges remain in its
application.

Students were introduced to a multi-agent approach by starting with an
analog, hands-on approach, later moving into programmatic exercises
implemented in the programming environment processing.

The developed models are simulations of moving particles leaving
traces behind, while the employed system is a particle-spring system,
which can be seen as a collection of point-masses in 3D-space poten-
tially connected to each other by springs. The system obeys laws of
physics, and forces acted on particles include gravitation and friction,
whereas springs exert forces on particles according to spring-damping
principles.

This system has been successfully employed in architecture for mod-
els such as dynamic, interactive hanging-chain models developed by a
team of architects, computer scientists and engineers at MIT. Their
mode! employs a particle-spring system for representing a structure by
applying a gravitational field to it in order to generate its most efficient
form.

According to the developers, MIT's virtual method is as straightforward

F3.05

A3.01

P3.1

as Gaudi's physical method for exploring hanging-chain models [Kilian
and Ochsendorf, 2005]. In opposition to the MIT-model, the models
developed at TU Delft employed the particle-spring engine embedded
in processing not for developing physical simulations but for develop-
ing 2D designs.

The analog model, with which the course started, implied that students
worked in groups:

While, one of the students, the programmer, defined the rules accord-
ing to which each agent/student had to draft, the rest of the group
would draft according to rules such as: [1] Put your pen to the center of
the paper and draw a triangle; [2] When you finished drawing the trian-
gle, choose a corner of that triangle, which is going to be the starting
point of a new triangle. Draw a new triangle; [3] Repeat this step and
[4] Vary in size and direction.

F3.06

After simulating analog-wise MAD-principles, students started working
in processing on digital models. Similarly to the analog models, these
implied definition of agents and rules, according to which agents be-
have. By changing parameters and behavior-rules for agents new sys-
tems were generated. Even restarting a simulation with the same
parameters for agents and behaviors, would produce, however, differ-
ent results due to emergence, which arises, obviously, not from the co-
existence of the parts but from their interaction.

Section contributors: The workshop has been developed in collabora-
tion with K. Steinfeld, S. Arida and K. DeBiswas.

Acknowledgements: This section has benefited from the contribution
of international master students from TU Delft.

In addition to Multi-Agent Systems, Expert Systems [ES] have been
explored and developed within this research:

SpaceCustomizer [SC], is an experimental software prototype able to
execute semi-automated tasks such as the development of Motion,
Mass, and Interactive Spaces, as well as Functional Layouts.

Functioning as an Expert System [ES], SC provides analysis and eval-

uation of specific design problems, and generates altemative designs.
SC, therefore, can be seen as a system operating with knowledge and

P3.12

knowledge-based procedures of an expert in whole or in part [Brown
and Chandrasekaran, 1989].

In this context, Motion Spaces [MS] are double-curved 3D-spaces
generated by tracing the movement of the human body in space,
whereas, the motion map defines boundaries of the volume within
which architecture can emerge. The volumetrical outlines of the body
in motion establish an initial framework to develop Motion Spaces em-
ploying movement studies based on ergonomics.

The initial fundamental question in the development of MS has been:
HOW to control designs based on NURBS-geometries”? On the one
hand it is easy to manipulate NURBS-surfaces by puling control
points, on the other hand, the question is how to control their manipu-
lation®?

If in this context can be talked about a paradigm shift based on the in-
fluence of digital technologies, than this shift can be described in the
methodology:

In opposition to modular, repetitive architecture developed by using
grids and proportions based on functional and formal rules, curvilinear
architecture is being developed within this research by generating
space through following the movement of the body in space based on
ergonomic principles.

[1] SC : SG SpaceGenerator generates double-curved MS [Motion
Spaces] by following the movement of the body in space and can be
seen as the Modulor [Le Corbusier, 1948] of the Digital Age since it es-
tablishes relationships between the human body and the architectural
space:

As a system of proportions Modulor uses measures of the human body
in architecture by partitioning it in modules according to the Golden
Section and to two Fibonacci Series. It puts, basically, man as mea-
sure of architectural spaces, which SC does as well in a more drastic
manner, since it generates 3D-space through following the movement
of the body in space based on ergonomic principles. While Modulor
applies a 2D-proportioning system, SpaceCustomizer employs a 3D
DYNAMIC space generating system.

In a time where AFNOR - Association Francaise de Normalisation -
proposed standardization in building construction by getting a cross-
section of methods used by architects, engineers and manufacturers,
Le Corbusier created with Modulor a framework for architectural prac-
tice incorporating three intermingling areas - art, nature and mathe-
matics.

In addition, Modulor attempted to facilitate assembly and construction
by proposing a modular system to be used in the standardization of in-
dustrialized production of building components.

SC:8G

P3.13

P3.14

HUMAN SCALE AND ITS RELATIONSHIP TO ARCHITECTURE: Le
Corbusier considered the metric system alienated from the dimen-
sions of man, and credited it for the disfocation of architecture, imply-
ing according to Guerra [1999] that architecture is dislocated in
relation to its object, which is to contain men.

Le Corbusier's critique on renaissance and its abstract set of rules
based on mathematics, dealing with icosahedrons instead of using vi-
sion, addressed the need to establish a relationship between mathe-
matics, nature, and architecture, which he then implemented in
Modulor.

ERGONOMICS: In opposition to Modulor, Neufert’s Archifectural Da-
ta [1943] does not propose a modular methodology for mass-produc-
tion but instead informs about spatial requirements and offers plan-
ning criteria regarding function, structure and technical implementa-
tion.

However, this data, similar to Modulor's proportions, reduces dynam-
ics of the moving human body in 3D-space to a static, 2D-representa-
tion. In contrast, SC departs from ABSTRACTION in order to SIMU-
LATE the movement of the human body in 3D-space taking in consid-
eration ergonomic principles.

Considering simulation as a computer-based representation of not
only results but also processes, SC implements dynamic generation of
movement and function-driven 3D-spaces in a case-study named THE
KIOSK. Initially developed intuitively as a NURBS-model within a
workshop at Roma Tre described in the second chapter THE KIOSK
has been further tested and developed by means of space-customiza-
tiorr.

The movement of the body in space has been recorded with digital
cameras. From the recorded movies individual frames have been ex-
tracted, from which points and curves could be generated manually.

F3.07

The extracted points were, basically, flexure points at waist, neck,
arms, shoulders, and elbows, pelvic joint, knees and ankles These
points have been listed by their coordinates in a text file, which later on
has been imported into the 30-space using Rhino.

An alternative method for movement mapping developed by Makata
[2003] has been additionally tested: It involved simulation of a digital
human, which is an information-compressed, symbolic representation
of human body- mov ement.

Employing an automated generator of movement representation, this
simulation features red lines representing trajectories of the edges of
the head, arms, and legs, and blue lines representing postures. It wisu-
alizes the movement of a digital human using a methodology for dance
movement representation developed by Kandinsky [1926].

Movements such as walking, bending, liting, taking a seat, etc. have
been simulated and represented digitally for the purpose of MS-gener
ation: These movements have been chosen and developed in accor-
dance to the movements tested in the case-study, THE KIOSk,

CESCRIPTION: The digital human developed by Makata is defined by
flexures - [1] Flexure of the waist joint determined by the angle be-
tween pelvis and spine, [2] Flexure of neck joint determined by the an-
gle between spine and cervical vertebrate, [3] Flexures of both upper-
arms and, [4] Flexures of the left and right shoulders given by the an-
gle between spine and leftfright upper arm. Furthermore, [5] Flexures
of |eftfright elbow defined by the angle between |eftfright upper arm
and leftright forearm, [B] Flexures of both thighs determined by the an-
gle between directions of both thighs, [7] Flexures of [eftfright coxa:
Angle between pelvis and leftfight thigh, [3] Flexures of [eftfright knee
determined by the angle between leftfright thigh and leftright calf.

Fz.08

F3.15

Based on Cohen's [1993] and Kestenberg's [1999] theories which
describe the relationship between developmental and psychological
states, and body movement, Nakata's motion simulator builds up on
data gained from registered movements of torso, head and limbs with
a VICON motion capture system [Nakata, 2003].

For the purpose of this research, movements were simulated with Na-
kata's simulator in order to generate curves from which Motion Spaces
could be generated in SC : 8G and Rhino.

SC : SG [SpaceGenerator] generates Motion Spaces [MS] based on
NURBS-geometries. Conceptually speaking, MS are generated by
tracking the movement of the human body in space, whereas, the mo-
tion map defines the boundaries of the volume within which architec-
ture can emerge.

The 8G-script uses, basically, the point-cloud generated with the two
movement tracking methods - digital and real moving human. It em-
ploys, therefore, point-clouds generated from sequential images of the
body in motion, which have been projected on a referential system.

In this context, several methods have been tested for the generation of
a NURBS-surface from curves and points:

Rhino commands such as GenerateSurfaceFromCurvesNetwork, Loft-
Contours and RebuildSurface have been tested in order to choose the

most convenient implementation methodology. However, the use of
existing Rhino-commands has proven to be ineffective.

RebuildSurface

LoftContours

F3.09

P3.16

The MS-script has been developed in VBS to generate automatically
NURBS-surfaces from a point-cloud imported from a text file. The MS-
script has two sub-routines: [1] ImportPoitsFromTextFile, and [2] Gen-
erateSurfaceFromPaoints.

The first sub-routine imports the points from a previously generated
text file, and the second generates the NURBS-surface by adding a
surface from a point-grid.

The scripted MS is employed to adjust and reconfigure the intuitively
designed NURBS-space. MS allows, therefore, testing of the 3D-
space with respect to the human movement projected into it. The test
reveals if and where the space requires reconfiguration in order to ac-
commodate the projected movement.

"' Generate NURBS surface from points

Dim arrCount (1), j

"' Mark second point as RED polint

Rhinc.ChjectColor arrNames (1), RGB(255,0,0)

"' Specify discretization in u-direction of sur-
face

arrCount (1) = Rhino.GetInteger("Discretization of
let direction (marked by red point)"™, 2, 2)

If IsNull{arrCount (0)) Then Exit Sub

"' Specify discretization in v-direction of sur-
face

arrCount (0) = Rhino.GetInteger ("Discretization of
2nd direction", 2, 2}

If IsNull({arrCount (1)) Then Exit Sub

]

Rhinc.Print "Generate NUREBS surface"

Rhino.addSrfPtCrid arrCount, arrPoints

End Sub

‘curves from points ‘ ‘surface from curves‘

F3.10

P3.17

P3.18

[2] Alternatively, SI [Spacelnteractivator] generates space interactively
by following the movement of the body in space: The input - movement
- is being electronically processed in such a way that the output repre-
sents a continuous, real-time modification of the space.

For this purpose an on-site-built InterFace employing sensor-actuator
technologies enables translation of the recorded movement into spa-
tial configurations. The InterAction between the body and the architec-
tural space gives insight into, HOW the human body shapes space.

Interactive Spaces have been explored in the project SpaceCustomiz-
er : Spacelnteractivator [SC : Sl] within a workshop held 2006 at the
Henry van de Velde Academy in Antwerp.

BACKGROUND: At the time being large scale architectural projects in-
corporate interactive systems focusing on light. Kunsthaus in Graz, for
instance, has a light installation incorporating a matrix of fluorescent
lamps integrated into the acrylic glass facade enabling display of mov-
ies and animations.

Small scale installations seem to target more complex configurations
such as dynamic, interactive systems: Glynn's project Reciprocal
Space [2005], for instance, is a room where the walls change shape in
response to inhabitant's movements.

Similarly, Poenisch's Dynamic Terrain [2005] is an interactive surface,
which changes shape in correspondence to spatial and/or bodily re-
quirements in real time. Other projects such as Decoi's Aegis Hyposur-
face work with triangulated surfaces in a similar way. However,
Hyperbody's MuscleTower adds 3D-dynamics to the movement by en-
abling rotation and torsion of the structure.

All these projects work with input, processing and output tools, such as
sensors, camera tracking systems, projectors, speakers, and software
such as Macromedia Shockwave, Max/MSP, and Virtools.

SC : Sl uses Max/MSP, camera tracking, and projection to study and
implement double-curved space generation by following the move-
ment of the body in space.

SC: Si

F3.11

In opposition to the horizontal and verical surfaces employed in the
previously mentioned examples, SC ;51 employs a double-curved cy-
lindrical space surrounding the body in moverment.

COMNTENT: The interactive processes in SC 0 51 are controlled with
software developed by K. de Bodt and J. Galle in MaxiMSP, which is a
graphical prograrmming environment to create software using a visual
tool-kit of objects.

The basic environment that includes MIDI, control, user interface, and
tirming objects is called Max. On top of Max are built objects such as
MSP, which is & set of audio-processing objects enabling interactive
fiter design, hard disk recording, and Jitter, a set of matrix data-pro-
cessing objects optirnized for video and 30-graphics.

The irteractive environment has been developed for transcribing the
movernent of the body into 30-space based on SpaceCustormizer
[Bier, 2006], which can be seen asthe Modulor [Le Corbusier, 1348] of
the Digital Age, since it establishes relationships between the human
body and the architectural space.

SC 5l implements this concept on the level of transcription of move-
rment into space by interactive means:

The initial space represents the minirmurm space a standing person
needs, which is an ellipsoidal cylinder. The deformation of this cylinder
follows accurately the mov ermnents of the hurman being in 30-space.

IMPLEMEMNTATION: The ellipsoidal cylinder has been divided in five
segrments, while the ellipse itself in divided in eight sectors. Each of
the eight sectors is being activated, when moyverment in this area is de-

Fai12

F3.15

P3.20

tected. This means the left/lup movement of the arm triggers a defor-
mation in the corresponding sector. The actual movement is being
tracked by using a color/movement tracking technique, which involves
several steps:

A camera captures body movements and generates image sequences
from which movement data is being extracted. This movement acti-
vates the spatial deformation in a direct manner by inducing a propor-
tional deformation of space. The space enlarges to accommodate the
body in movement.

Geometrically speaking, the tracking of movement is based on the
conversion of Cartesian coordinates of the tracked points into polar co-
ordinates, while the deformation principle is based on NURBS, which
is a mathematical model for generating and representing curves and
cunvilinear surfaces.

Editing NURBS-based curves and surfaces is easy: Control points are
connected to the curves andfor surfaces in a way that their pulling or
pushing induces a proportional deformation. While it is easy to manip-
ulate NURBS-surfaces by puling control points, the question has been
HOW to control this manipulation? SpaceCustomizer proposes a
NURBS-manipulation based on the movement of the body through
space.

The interactive manipulation of space is monitored on two interfaces:
One of them is projected on a wall the other one is shown on the com-
puter display. While the projected interface serves as an interactive
representation and monitoring device, the interface on the computer

F3.13

screen enables control of spatial deformation by means of parametri-
cal change of mesh resolution, coler, and NURBS-dimension.

The computer screen interface has a display window for rendering,
one main and several sub-patches, which contain programming pack-
ages. The user works mainly on the main patch. By starting the pro-
gram, the processing of data, which is fed into the system, is initiated,
and the NURBS-surface is being rendered in the display window.

Interface elements cn the main patch are: [1] On/off switch, which is a
toggle sending a trigger signal every 20 milliseconds; [2] RGB alpha -
Controls the color of the NURBS-surface. [3] Bump-scale mesh - Slid-
er to control the relative amount of the deformation. The input can be
chosen for a smaller or larger deformation effect - The default is 1,
which represents no scaling, while scaling correspends to input multi-
plication up [>1] or down [<1]; [4] Draw mesh - Switches between
shaded and wire mesh rendering; [5] NURBS Dim - Slider to reset
manually the NURBS UV-mesh density; [6] Video window - 320 x 240
display for the camera image.

foo I3 rmlcamera
o R G B Alpha
po]po. Jpo Jpo]

bump scale mesh
[l |
draw mesh

S [—

nurb dam

P save to mov.f
render_toMovie

pinfluence | shdars input

open color track patch

Click inside image to select a point

el |

' 4
g
b }l'ﬁééq g
e
s

PROGRAMMING: Max/MSP is a graphical programming envirocnment
for multi-media, used to design cross-platform programs and user in-
terfaces. Programming takes place in the Patcher-window, where
Max/MSP objects, represented as boxes, are connected with patch-
cords. The program library includes several objects to perform a wide
range of tasks, from adding two numbers together to wave-form edit-

ing.

SC . Sl consists of three patches: [1] 3D-Shape, [2] Deformation, and
[3] Movement Tracking.

F3.14

P3.21

P3.22

[1] 3D-Shape: This patch implements 3D modeling in openGL. ltis, ba-
sically, a rendering patch, enabling NURBS-representation in real-
time. The 3D-shape itself has been developed by following a several
steps procedure: The jit. gl nurbs object has been used to generate the
cylindrical shape, from which the ellipsoidal cylinder has been derived
by scaling it down to 1/3 in the y-direction.

An 8 x 5 jit. matrix has been mapped onto the controlpoeints of the
NURBS-surface, in a way that the cylinder is divided in five sections
and each section is subdivided into eight sectors. This enables an ac-
curate implementation of shape deformation according to the move-
ment, as every subdivision can be addressed separately.

[2] Deformation: An initial displacement matrix establishes the way the
movement is translated into shape-deformation - F3.15. The sections
1-8 of the ellipse are mapped into the displacement matrix in a way
that a row represents the eight sections of the ellipse, while the degree
of displacement of each section is shown in the corresponding min-
max columns.

For instance, the initial ellipse - | - is represented in the displacement

matrix as corresponding to a middle value, while the deformed ellipse -
Il -is shown as an alternation between middle and maximum values of

displacement.

s

.E]E3456?B]23456?8

[3] Color Tracking: The movement tracking in real-time has been im-
plemented by means of computer vision, which employs color tracking
performed with cv jit.frack, which is an external object for Max. It ex-
tracts xy coordinates from the movement and sends them to the Defor-
mation patch, which in turn executes the shape deformation itself.

The color to be tracked is being selected by clicking with the mouse in
the video frame window, which shows the real-time movements cap-
tured with the camera connected to it. The Cartesian coordinates of
the tracked color/point are then converted into polar coordinates,
which find their correspondence in the eight ellipsoidal sections.

CONCLUSION: This exercise in interactivity shows that the concept of

F3.15

responsive environments applied to architecture can be implemented
in double-curved spaces, which dynamically react to the movement of
the human body in 3D-space.

In this context, emergence and seff-organization can be seen as prin-
ciples on which interactive architectures can be based on, as building
components dynamically adjust to their users’ needs.

Ty e I L T T

e, EEE———
=

Modes of emergence and self-organization in SC : Sl are based on
space-customization, which implies, inter alia, spatial transformations
generated through human movement-transcription. These interactive
spatial transformations are implemented by means of machinic intelli-
gence implying computer vision, human-computer interaction, and
parametric 3D-modeling.

Section Contributors: J. Galle, K. de Bodt - programming in Max/MSP
for SC : Sl - and R. Schmehl - scripting in VB for SC : SG.

Acknowledgements: SC : Sl has benefited from the contribution of stu-
dents from HIAS in Antwerpen.

Beyond its interactive aspects SC : Sl can be seen as a tool to adjust
and reconfigure intuitively designed NURBS-based spaces:

Alternatively, the process of spatial adjustment from the intuitively to
the computer generated NURBS-space and vice versa has been envi-
sioned to be implemented with a sub-tool SpaceAdjuster [SA] incorpo-
rated in SpaceGenerator [SG] acronymically named SC : SG . SA.

SA enables adjustment of a double-curved sfave-surface to a comput-
er-generated master-surface.

N3.05

F3.16

N3.06

N3.07

P3.23

‘ SlaveCurve

‘ MasterCurve

P3.24

SC : SG : SA has been implemented as a series of functions such as
GeometryVoxelizer [GV], VolumeToFunctionAdjuster [VFA], and Nurbs-
FromVoxelsGenerator [NVG], which are embedded in the alternatively
developed Java-application:

Instead of adjusting NURBS, this application voxelizes the NURBS-
space, it adjusts the voxelized space to functions and re-generates it
subsequently as NURBS. This procedure has been assessed as most
efficient in not only delivering means for volumetrical control of
NURBS-based spaces but also facilitating spatial manipulation and
adjustment.

CONSIDERATIONS: For the development of the software-prototype
dealing with functional layout two alternatives have been taken into
consideration:

Development of a plug-in for Rhino, which is a commercial software,
and development of a Java-application using processing library for
rendering. The second has been chosen because of its independency
from commercial software and on the Internet free available libraries
for geometry, physics, and optimization.

SC : SG : SA : GV [GeometryVoxelizer] enables voxelized representa-
tion of double-geometries, which can be seen as mass-models in ar-
chitectural design.

F3.17

BACKGROUND: Digital representation in the sixties and seventies
was based on vector representation, which presented advantages
since vectors address any point of the continuous space and exhibit,
therefore, no aliasing effects.

The alternative approach, raster graphics, has been introduced in the
late seventies and is based on a discretized representation of space
namely pixelized representation. Similar to 2D-images represented as
pixels, 3D-objects represented as voxels - volumetric pixels - have
specific resolutions: While low-resolutions objects are facetted, high-
resolution objects are smooth.

Voxelized representations have been successfully applied in medical
visualization [Thon &t. al., 2004] and computer gaming.

In architecture voxelized spaces enable fluent transition from curvilin-
ear-smooth to angular-facetted geometries and can be seen as mass-
models used for volumetrical and functional studies:

In an iterative process volumes are assigned to functions and spatial
relationships are established between the different functional volumes
in order to generate 3D-layouts.

IMPLEMENTATION: GV has been implemented in two versions as
VB-Script and Java-application.

The VB-scripted GV1 - GeometryVoxelizer1 - has been developed in
collaboration with D. Rutten, a program developer for Rhino. GV1
transforms enclosed NURBS-based solids in voxelized geometries -
as shown in appendix. The implementation of SC as plug-in for Rhino
has been, however, abandoned in favor of developing a Java-applica-
tion using processing for rendering. The first built-in function is the vox-
elization of double-curved geometries.

HEIGHT DEPTH WIDTH DESCR.
080m 0f0m 0fm miigerator M
050m 00 m 00 m | rekigerator S
020m o40m 050m nsert sk M
020m nA0m Da0m nd ik 5
050m o40m oEm cofies machine

N3.08

F3.18

A3.02

F3.19

P3.25

P3.26

GV2 - GeometryVoxelizer2 - generates voxelized mass-models, which
are linked to data-bases informing the space about the contained
equipment components:

The SC-database is, basically, a table listing equipment components
for a food-kiosk such as refrigerator, sink, dishwasher, coffee machine.
An array of different types is allocated to each item so that the choice
of a specific type induces automatically a corresponding change in the
voxelized model.

Since voxels are quantifying the volume, the advantage of a voxelized
geometry is obvious:

The established link between voxels and data-base allows for continu-
ous, real-time update of the corresponding geometry - numerical
changes in volume are automatically represented volumetrically and
vice-versa.

GV2 is employed, therefore, in the process of adjustment and recon-
figuration of functional spaces.

DESCRIPTION: In its first implementation, a point-cloud has been ex-
ported from the NURBS-model, which has been used for the develop-
ment of a voxelized 3D-model in processing. This voxelized model
built in collaboration with K. Steinfeld has been, however, inoperable:
Incremental change of resolution would result in inhomogeneous rep-
resentation of voxelized space featuring gaps between voxels.

In its second implementation, the NURBS-geometry has been export-
ed as a polygon mesh and has been voxelized in the, within this re-
search developed, Java-application using processing for rendering.

[1] Input-geometry: The input-geometry is defined as a polygonal sur-
face-mesh in obfformat. During parsing polygonal faces are automati-
cally decomposed into triangle faces. This object is in the next step
converted into a voxel-mesh in a process of voxelization for polygonal
objects:

[2] Voxel-mesh: Resulting from the voxelization of the surface-mesh,
the voxel-mesh provides a discrete 3D-space, which is later on popu-

F3.20

lated with Functional Objects [FO]. The association of an FO with vox-
els can be maintained on object level - an object knows which voxels
it is occupying - and on mesh level - a voxel knows by what object, if
any, it is occupied.

GV2 - developed in collaboration with R. Schmehl - follows the de-
scription of a voxelization process for polygonal objects by Thon et. al.
[2004] using a quad-tree partitioning of the triangle-mesh in order to
speed up the ray-casting procedure. This procedure determines the in-
side/outside status of a voxel based on the location of the voxel center
coordinate relative to the triangle-mesh.

The quad-tree has been used to partition the space by recursively sub-
dividing it into rectangular quadrants. This enables pre-computation of
ray/tiangle intersections and, therefore, accelerates the process of
ray-casting by pre-determining, which triangles intersect with rays.

Rays intersecting the object determine, therefore, insidefoutside condi-
tions and generate voxels accordingly [Bier and Schmehl, 2008].

In its final implementation, GV2 incorporates voxel-resolution sliders
and S/M/L buttons:

While sliders enable continuous, low-high resolution voxel-representa-
tion, S/M/L buttons show three resolutions representative for the study
30/30/30, 60/60/60 and 90/90/90 cm.

Voxelization resolution ranges from 5-80 cm enabling relative accurate
representation of the curved geometry.

Section Contributors: R. Schmehl, D. Rutten, and K. Steinfeld - script-
ing and programming for GV.

Acknowledgements: Movement studies have been implemented with
S. Bouten and A. Talic from TU Delft and the case study - THE KIOSK
- has been developed with M. Gulyas, K. Orehounig and E. M. Streit
from the University of Vienna.

N3.09

F3.21

N3.10

P3.27

P3.28

SC : 8G : SA : VMA [VolumeToMotionAdjuster] enables a voxelized
geometry, which can be seen as mass-model, to update according to
data-input from a database. It also enables adaptive voxel refinement
based on local resolution-needs.

SC : 8G : SA : NVG [NurbsFromVoxelsGenerator] generates, as its
names suggests, NURBS-surfaces from periphery voxels.

Both sub-tools, VMA and NVG have been, however, developed within
this research only conceptually and have been not implemented into
software prototypes.

The third SC-tool developed conceptually and implemented prototypi-
cally within this research is focusing on functional layout:

[3] SC : FL [FunctionLayouter] provides generation and optimization of
functional 3D-layouts by employing constraint solving techniques.

PRELIMINARY STUDY: BuildingRelations [BR] has been developed
with Hyperbody-students from TU Delft [2008]. It deals with generative
and parametric design concepts as well as interactivity principles.

Focusing on the development of an interactive design tool, which al-
lows simulation of complex design processes, the project proposes an
alternative design method based on swarm behavior:

BR consists of agents interacting locally with one another and with
their environment similarly to the way fish interact in a swarm and birds
in a flock, respectively.

In the absence of top-down control dictating, how individual agents
should behave, local interactions between agents lead to the bottom-
up emergence of global behavior.

The rules according to which agents are interacting are simple: Rey-
nolds' flocking simulation, for instance, is based on three rules accord-
ing to which digital birds, named boids, are flocking - [1] Maintain a

SC:FL

F3.22

minimum distance to vicinity, [2] match velocity with neighbors, and [3]
move towards the center of the swarm. While these rules are local es-
tablishing the behavior of one agent in relationship to its next vicinity,
the flock behaves as a whole, coherently [Reynolds, 1987].

Similarly, all functional units pertaining to a building can be seen as
flocking agents striving to achieve an optimal spatial layout. In this
context, spatial relations between functional units can be described as
rules, according to which all units organize-themselves into targeted
configurations. This approach is particularly suitable for the functional
layouting of complex structures:

While the architect might find it difficult to have an overview on all func-
tions and their attributed volume and preferential location, functional
units can easily swarm towards local optimal configurations.

Functional layouting in architectural design deals with the placement of
functions in 3D-space, whereas building components such as rooms
have no fixed, pre-defined dimensions, and are resizable.

Attempts to automate the process of layout incorporate approaches to
spatial allocation by defining the occupiable space as an orthogonal
2D-grid and use an algorithm to allocate each rectangle of the grid to a
particular function. Other strategies break down the problem into parts
such as topology and geometry:

While topology refers to logical relationships between layout compo-
nents, geometry refers to position and size of each component of the
layout. A topological decision, for instance, that a functional unit is ad-
jacent to another specific functional unit restricts the geometric coordi-
nates of a functional unit relative to another [Michalek et al., 2002].

Based on a similar strategy BR generates solutions for complex lay-
outing problems in an interactive design process. Furthermore, it oper-
ates in the 3D-space and therefore, it represents an innovative
approach to semi-automated design processes.

F3.23

P3.29

Fa.20

% Lalv

The dewveloped software prototype consists of seweral sub-tools such
as [1] Sizelefiner, [2] FunctionsDistributor, and [3] BoundingB o

[1] Sizelefiner is a sub-tool, which establishes interactively dimen-
sional relationships and constraints for building components. It s
based on datz originating from Building Regulations [DBRE, 2003].
These define mules and restrictions regarding minimal floor-space ar-
£35 per person.

The Sizelefiner script relies, therefore, on building regulations con-
cerning the size of a space in relation to its cccuparts and its specific
function. These define minimurm regquired floor areas and occcupancy
nurnbers in relaton to the allocated function.

Imits first wersion SizeCefiner receives the input from the Building Reg-
ulations database and the user/designer, who defines number of peo-
ple ococupying the space; Sizelefiner generates than accordingly the
space and scales it to fit the minimal size needed according to those
regulations.

A rnore advanced wersion incorporates additional functions enabling
the userdesigner to adjust amount of floors, adjust floor heights and

set the width and length of the space by owerruling regulation con-
straints, if needed.

The autonomous working of the script requires aspects of intelligence,
which in this case rely on a simple strategy:

Spatial units establish relationships with other spatial units by deter-
rining their in-between distance and automatically adjusting their
width, length and height in order to prevent potential owverlapsicolli-
sions. Spatial units, therefore, adjust themselves to their surroundings.
They are linked, therefore, to other units creating spatial relations de-
fined and simulated with another sub-tool:

[2] FunctionsCristrioutor takes, basically, a program of reguirerments -
rnumber of specific spaces, their coccupancy numbers, and building reg-
ulation classes - and translates it into an ordered spatial 1ayout. This

F3.24

order is achieved by defining distances between objects of the same
type and objects of different type, meaning that same type objects are
clustering while not related type objects disperse.

The development of this sub-tool involved several steps pertaining
spatial configuration:

[2.1] Organization: Functional objects have configurable distances to
each other enabling them to group together or to spread out depend-
ing on which group they belong to.

[2.2] Structure: Objects are square or spherical and their orientation is
in a grid-like or radial structure, respectively. This enables develop-
ment of specific layouts.

[2.3] Representation: Relations between objects are represented as
magenta lines, when relations are established between grouped ob-
jects. Green lines indicate nearest object relations. This representation
enables reading and evaluation of the dynamic 3D-diagram.

[2.4] Databases: FunctionsDistributor uses three arrays pertaining to
the program of requirements, building regulations, which defines di-
mensions of the objects, and the master array, which is a dynamic ar-
ray containing all data about functional objects.

[2.5] Min-max component number: Several tests have been imple-
mented in order to define a min-max number of spatial units. The max-
imum number of components has, however, dropped from 100-150 to
50-100 due to increasing complexity.

Placement of all functions in 3D-space is controlled by FunctionsDis-
tributor:

SizeDefiner generates functions depending on their Building Regula-
tion values as well as their external placement defined by Functions-
Distributor or by the user/designer.

This system enables adjustment of spaces to their surrounding spac-
es, whereas distances to other objects are defined by:

[1] Bounding-box, in which all functional objects are supposed to fit in,
establishing 3D-boundaries for the building to be designed. [2] Pre-
ferred distance to the nearest functional object, preferred distance to
the nearest object within its own functional group, and preferred dis-
tance to center and inside/outside boundaries follow the elastic-cord
principle: The bigger the distance, the harder the object tries to get to
the preferred distance. And [3] collision detection enforces at the mo-
ment an object touches another object that they both move for 0.1 sec-
ond in the opposite vectorial direction.

P3.31

FP3.32

These self-arganization mechanisms are complemented by interactivi-
tv: The lavouting process does not take place outside of the influence
of the userfdesigner. The user can select ohjects and move them to
other places and the model re-adjusts to the new configuration. By
clicking on an object, the user can freethe okject from a specific posi-
tion enabling it to paticipate in the simulation all over again. In this
way, the system and the user’desigrner search for g preferred layout of
functions.

Athird sub-tool, already mentioned, is the Bounding-Box [3], which es-
tablishes houndaries within which functional ohjects position them-
selves. It contains realdime ediing features, which enable farm-finding
pracesses pertaining to surface definitions such as NURBS and paoly-
gon-meshes.

This sub-toal converts the data defining min-max areas, min-max floor
heights, into a geometric model by creating a shape according to pre-
defined sguare-meter requiremernts. By dragging contral points the
model is recalculated to stay within the pre-detemmined houndares,
while changing shape.

BR receives and sends continuously data from and to the database,
which contains all information regarding which group the objects be-
longs to, towhich other groups they may relate to, etc. Functional units
are, therefore, described by their building regulation type, their name,
scale and position, their occupancy, their number of floors | their condi-
tion such as active - free to move - or inactive - fixed.

F3.25

These values or combinations of values can be used by other sub-
tools running at the same time. Furthermore, they can be exported to
other programs: Positions, dimensions and scale of objects can be ex-
ported to other 3D modeling programs such as Rhino, Maya, etc.

The database, therefore, establishes connectivities between different
software and functions as a parameter-pool containing geometric and
functional data: A 3D-model developed with the BoundingBox sub-tool
could be saved to an online database, for instance, from which Func-
tionsDistributor would take data to generate a functional model within
the parameters defined by the 3D-model.

PPN ‘Bounding_ses
T30

Ludn | [Expbain SOL | [Craate PHE Code | [Befresh |
 [CEETo] ronte) staring e vecoed o 5

Son by key! [Nome ~] [8=]

T amtaln escessestios seosal oot
i 0 -35,6706. 1, 3307 1e-DO8,-T1 4478 0.0.3 34

O ~fR 1 -15.9709,-3.10348-007.-63.8117 0,23 4
1 £ R T -25.7853,-4.0179%-008,-43.2073 0.3.4
1 I * 3 424749232630 007.-33.6T14 0.4.3
1R 4 53,0394 2.014240-007,- 33,9714 036

0% 3 30,9914, 3. 737 9e-007,-T7. 2677 06T

TR & ~46.8391.2.701120-007,-98.3711 0,78

18| seasTze.an s s
T azu
1 | «serseses B
3 | s rioasanene amas
F T o
s | a2een ez mer ot
e | sesmsan BT
T | emosarnaarrse o
s | a2 vcasaenme o
s
»
9

O”R 7 +29.2252.-5.75370e-008,-106.916 0.8.1
TR B -17.4354,-3.69430-007,- 874976 19,10
1 LR 9 ~16.8028,29,-83.1007 L10.2
T AR 10 -18.3802.29,63.2032 z10,11

SR 11 25.1842.29,-42.4447 2113
1SR 12 43.9426,29,-42.9901 311,12

1SR 13 -61.0951.29,-39.4331 212

4TI, 7 5008 ama

02000573 0 ez 1 4R 14 -63.7334.79.-80.0966 41233

vosoveesesenanenoson o)l

6o o o 6606 660 0 00

e T B amn
263007 277 800 EEE

145 13 49,3142 29,-90.4777 4133

BR, therefore, is being used interactively and in combination with other
software, to achieve non-deterministically designs. It is a design sup-
port system, since it supports the user/designer in the functional lay-
outing process rather than prescribes a solution.

Its current implementation, even though diagrammatic, demonstrates
an obvious capability to support functional layouting of large and com-
plex buildings based on swarm principles, ON CONDITION THAT glo-
bal optimization mechanisms are incorporated into it - which is the next
step in the development of this software.

The inability to achieve a consistent functional layout with this software
prototype goes back, in part, to the definition of local optima:

The software generates endlessly many local optima. It does not,
though, generate a global optimum.

The further development of this tool aims, therefore, to incorporate glo-
bal optimization mechanisms. It also aims to address issues related
not only to functional organization of space but also issues of spatial
coherency.

Section Contributors: D. Hoffers, M. Frederiks, and S. Korebrits script-
ed in Virtools SizeDefiner, FunctionsDistributor, and BoundingBox, re-
spectively.

F3.26

P3.33

F3.34

Acknowledgments: BuildingRelations has been developed and imple-
mented with Hyperbody-students M. Frederiks, S. Korebrits, D. Hof-
fers, J. Pointl, M.C. van der Marel, R. Siemerink, T. Godbersen, and
W.S. Slot.

CONSIDERATIONS: Local search algorithms are incomplete algo-
rithms, as the search might stop even if the solutions found are not op-
timal [Orlin et al., 2004]. While these algorithms move from solution to
solution in the search space of candidate solutions until a solution is
found, optimal solutions might lie far from the neighborhood of the so-
lutions explored by the search algorithm.

In addition, design problems have large numbers of local optima.
While, finding an arbitrary local optimum is relatively easy by using lo-
cal optimization methods, finding the global optimum of such a func-
tion is challenging [Ghallab et al., 2004].

For purposes of optimization, such a function has to be defined, ac-
cording to Ghallab et al. [2004] over the whole domain and must have
a range of local optima, from which a global optimum can be selected.
By contrast, a local optimum represents a solution from a selection of
neighboring values.

Hybrid techniques, therefore, seem to be more efficient when applied
to automated planning problems.

PRECEDENTS: Two systems for automated 2D-layout design based
on Constraint Safisfaction [CS] techniques have been compared by
Fleming et al. [1992] While one of the systems - LOOS - uses a form
of generate-and-test constraint satisfaction and the other system -
WRIGHT - uses disjunctive constraint satisfaction.

According to Fleming et al., both have an under-constrained general
problem definition and, therefore, both produce an unmanageable
large amount of feasible solutions. Loos adds objects sequentially,
while Wright satisfies constraints incrementally. When tested and com-
pared both generate similar solutions for the same problem.

According to the authors, disjunctive constraint satisfaction is more ef-
ficient, but less general than hierarchical generate-and-test constraint
satisfaction regarding criteria it can incorporate. However, both can in-
corporate features of the other approach and overcome their limita-
tions [Fleming et al., 1992].

IDIOM, a third constraint solver for 2D-layouts [Lottaz, 1998] aims to
find globally consistent and complete solution spaces in an interactive
design process.

Similarly, SC : FL - FunctionLayouter - solves layout problems by ex-

N3.1

N3.12

ploring large solution spaces and achieves this by reducing the search
space, and by exploring it efficiently.

[1] The search space is reduced by applying heuristics: From previous
spatial studies executed by conventional means such as sketching, it
becomes obvious that certain parts of the available space are difficult
to access or too small to accommodate Functional Objects [FOs]. This
space has been deducted from the total amount of space enabling a
search space reduction of almost 1/2. And [2] efficient exploration of
the search space is ensured by employing search algorithms based on
SAT-solving techniques.

IMPLEMENTATION: SC : FL relies on constraint-based modeling,
which not only specifies geometry and content of objects but also gen-
erates object-layouts using constraint-sclvers.

Constraint-based modeling systems - employed in parametric design
tools - contain in addition to 2D-3D cbjects, constraints that are stored,
displayed, edited, and solved correspondingly. In this context, persis-
tent constraints relationships among modeled parts are maintained in
the modeling process until further editing.

Constraint-solvers, therefore, exhibit an elevated level of complexity:
SC : FL, for instance, generates solutions by applying constraint and
optimization algorithms to the layout problem.

SC : FL incorporates aspects of intelligence: While global searches go
systematically through all instances of solution-spaces, lccal searches
go through some but not all instances of possible solutions. SC @ FL,
however, is not only a global but also a complete search enging, since
able to find if an assignment is possible or not.

SC : FL employs constraints in order to direct the search for feasible
and optimal solutions and it has been implemented in two versions SC
. FL90 and SC . FlexFL. Both, address functional layout-problems for
architectural designs based on curvilinear geometries:

While rather easy to manipulate formally, NURBS-based spaces are
difficult to control with respect to allocation of functions in 3D-space.
Therefore, in a first step the NURBS-based space is voxelized.

Voxelization within this project enables continucus, low-high resolution
voxel-representation of the space within a 5-90 cm range.

SC : FL90 uses, basically, an abstracted problem definition. Equip-
ment components are placed in a voxelized KIOSK-space with a reso-
lution of 90/90/90 cm by applying heuristics such as:

Equipment is placed on two levels easily accessible for the kiosk-us-
ers: 0.00-0.90 and 0.90-1.80 m and the search space is, therefore, re-
duced to those two layers of voxels relevant for the search.

N3.13

P3.35

P3.36

Furthermore, equipment is defined as 90/90/90cm units, ensuring a
1:1 mapping of FO to voxel, which is, as mentioned before, a simplified
model.

In a second iteration, Flexible FunctionLayouter [FlexFL] drops the 1:1
mapping constraints, allowing FOs to span multiple voxels. This en-
ables, inter alia, flexible voxel resolutions, which have been tested on
a 30/30/30 cm resolution case study wherein FOs can span multiple
voxels, increasing complexity in FO allocation with respect to geome-
try.

In the original FLO0 test-case, a food kiosk has been modeled, in
which a total number of 14-26 functional objects have been assigned
to 26 voxels. In this context, 11 functional object types have been dif-
ferentiated: Refrigerator [RF], sink [SK], stove [ST], exhaust [EX], au-
tomat [AT], storage room [SR], trash bin [TB], dish-washer [DW],
coffee machine [CM], micro-wave [MW)], and cash desk [CD]. These
FOs represent a typical equipment selection for a food-kiosk.

In addition, allocation constraints have been formulated implying defi-
nition of most effective functional spatial configurations:

These are in part based on empirical findings formalized by Neufert
[2005] as well as the kitchen work-triangle defined by the Building Re-
search Council [1993] at the University of lllinois, which specifies that
SK, ST, and RF form, preferably, a triangle in which the closer the
length of the triangle sides is to 200 cm, the better is the layout.

The FlexFL test-case uses a higher resolution model 30/30/30 cm,
which implies a higher accuracy in geometrical representation, and
therefore, a reduction of available space for placing FOs:

Instead of 14-26 FOs FlexFL30 allocates 10 FOs with sizes defined by
their corresponding height/width/depth:

SK 60/60/30, ST 60/60/15, RF 60/60/60, AT 60/60/60, SR 60/60/60,
MW 45/45/45, DWW 45/45/45, TB 45/45/60, EX 45/45/15, CM 45/45/15,
and CD 45/45/15. Sizes are, in this case, simplified but realistic as-
sumption for usual FO-dimensioning. FlexFL30 deals, therefore, with a

F3.27

nearly realistic problem description, while FL90 deals with an abstract-
ed one.

METHODOLOGY: The layout-problem has been addressed in SC : FL
by master students at the Computer Science Department at TU Delft.
They employed constraint propagation with separate optimization us-
ing SAT-solving techniques.

SAT refers to Boolean Satisfiability, which determines if the variables
of a given farmula can be assigned in such a way that the formula
evaluates to a Boolean value: TRUE or FALSE.

The constraint solver used for solving the described layout-problem is
MiniSAT+. This solver employs a systematic backiracking search pro-
cedure to explore a space of variable assignments looking for satisfy-
ing assignments [Sorensson, 2003] referred to as the Davis-Putham-
Logemann-Loveland [DPLL] algorithm.

MiniSAT improves the basic DPLL search algorithm by employing effi-
cient conflict analysis, clause learning, non-chronological backtrack-
ing, and random restarts [Dechter, 2003].

Without going into detail, backtracking - for the previously described
layout problem - can be defined as an algorithm, which explores each
possible combinations of FOs layout:

During the search, when a combination does not work, the search
backtracks to the previocus constellation, which presented possible al-
ternatives, and explores them. When these alternatives are exhaust-
ed, the search returns to the previous constellation and explores all
possible alternatives from there. When all constellations are explored,
the search is complete [Gurari, 1999].

FL ARCHITECTURE: FunctionLayouter [FL] is based on a sequence
of operations. Initially, the problem is read from an XML problem de-
scription. There, the problem is split into a number of rules and optimi-
zation targets. The problem is then translated into pseudo-Boolean
constraints [Bier, et al., 2007] which are run through a modified version
of MiniSat+.

The SAT solver's output is then parsed and translated into solutions.
Based on the optimization target, new constraints are added, and Mini-
Sat+ is invoked again. Finally, the solutions are displayed on a graphi-
cal user interface, where the user can request more information on a
specific solution, again invoking the constraint translation system.

In this context, the main focus has been the translation of constraints
from the specifications as given by user/designer, to the pseudo-Bool-
ean constraints solvable by MiniSat+.

FL CONSTRAINTS: FL deals with a series of constraints such as car-
dinality, adjacency and design constraints.

N3.14

N3.15

N3.16

P3.37

F3.38

Cardinality related constraints refer to max-min voxel occupancy
in relationship to allocated functional objects:

- At least 2 voxels and at most 6 voxels should be assigned to AT.
- At least 2 voxels and at most 4 voxels should be assigned to SR
and RF.

- At least 1 voxel and at most 2 voxels should be assigned to TB,
EX, SK, and ST.

- Precisely 1 voxel should be assigned each DW, CM, MW, and
CD.

Generic design constraints are not specific to a case but rather
generic to all KIOSK-layouts:

- SK must be adjacent to DWand TB.
- If a voxel is assigned a ST at least one adjacent voxel must be

assigned a SR.
- RF and ST can not be adjacent; SK and ST can not be adjacent.

Triangle rules - Place RF, 8T, and SK in a triangle, so that:

- Each triangle side ranges between 300-65 cm and triangle pe-
rimeter ranges between 865-400 cm.

Adjacency and occupancy rules describe constraints referring to
neighboring relations such as:

- RF can be adjacent to RF, AT, DW, CM, MW, TB, CD, SR, EX
and can occupy voxels on levels 0.00-0.90 and 0.90-1.80.

- 8K can be adjacent to SK, AT, DW, TB, SR, CD, and can occupy
voxels on level 0.00-0.90.

- ST can be adjacent to ST, AT, DW TB, SR, CD, and can occupy
voxels on level 0.00-0.90.

- EX can be adjacent to RF, MW, AT, CM, SR, and can occupy vox-
els placed above ST on level 1.80.

- AT can be adjacent to AT, ALL FOs, and can occupy voxels on
levels 0.00-0.90 and 0.20-1.80.

- SR can be adjacent to SR, ALL FOs, and can occupy voxels on
levels 0.00-0.90 and 0.90-1.80.

- TB can be adjacent to ST, SK, RF, AT, DW, TB, SR, CD, and
can occupy voxels on level 0.00-0.90.

- DW can be adjacent to ST, SK, RF, AT, TB, SR, CD, and can oc-
cupy voxels on level 0.90-1.80.

- CM can be adjacent to RF, MW, AT, CM, SR, SK, ST, and can oc-
cupy voxels on level 0.90-1.80.

- MW can be adjacent to RF, MW, AT, CM, SR, SK, ST, and can oc-
cupy voxels on level 0.90-1.80.

- CD can be adjacent to SK, ST, AT, TB, SR, DW, and can occupy
voxels on level 0.90-1.80

FlexFL employs in addition to horizontal rules determining inside-
outside orientation of FOs, vertical rules determining top-bottom
orientation of FOs. |n this context, inside describes an orientation
towards the inner space of the kiosk, while outside describes an
orientation towards the outer space. Furthermore, fop-bottom re-
lations specify location of FOs on top of other FOs such as the ex-
haust on top of stove.

In addition to cardinality, adjacency and design rules, FL employs
optimization rules. These imply definition of most effective func-
tional spatial configurations from an ergonomic point of view,
which is based on empirical findings formalized by Neufert [1936]
and on the kifchen work triangle introduced by the Building Re-
search Council [1993] within the Scheol of Architecture of the Uni-
versity of lllinois:

- The closer the length of the SK-ST-RF triangle sides is to 200
cm the better is the layout. In other words, the closer the SK-8T-
RF triangle perimeter is to 600 cm the better is the kitchen layout.
- And maximize voxel occupancy.

A major difference between the FLO0 and FlexFL is that a placement
variable no longer represents the whole FO, but the anchor of an FO,
i.e. the FO's voxel that is closest to the left, front, bottom corner of the
FO. Most constraints are based on this anchor-voxef, including cardi-
nality and occupancy constraints, as well as optimizations.

Overlap constraints are more complex: To prevent overlaps, rules are
added to ensure that if a certain voxel is cccupied by the anchor of an
FO, the other voxels occupied by it are marked with arrows to such an
anchor voxel. By ensuring that different arrows can not co-exist with
each other or other occcupying FOs in a single voxel, overlap is pre-
vented. Extension to the 3D-case is done by adding a third, down-
wards pointer [Bier et al., 2007].

Adjacency rules are translated in a similar fashion to the FL90, howewv-
er, neighbor list calculation is performed differently.

FlexFL’s major contribution lies not necessarily in the automated hori-
zontal placement of FOs, since this has been already addressed, inter
alia, in Wright and Loos, but in the vertical placement of FOs, enabling
3D-layout of functions.

OPTIMIZATION: Once the search space has been reduced by alloca-
tion constraints, optimal solutions are generated from the number of
valid solutions. In both FL20 and FlexFL, two optimization targets have
been consecutively allowed, one to maximize the occupancy, and one
to optimize spatial layout with respect to ergonomic aspects. The max-
imization goal is applied during an initial invocation of the SAT-solver
[Bier et al., 2007].

P3.39

P3.40

A second call is then made to the SAT-solver, with an additional con-
straint that fixates the occupancy to the previously found maximum
value. During this second run, an ergonomic target is used, based on
the empirical findings formalized, inter alia, in the kitchen work triangle
by the Building Research Council.

The procedure that MiniSat+ uses to find the optimal solution is to find
an initial solution while ignoring the minimization function. It then com-
putes the value of the goal function, and adds a constraint that all new
solutions should be better. The solver then continues its search with
this new constraint. This procedure is repeated until no new results are
found, where the last result is the optimal one.

Ergonomic Rules: Since translating the kitchen work triangle target to
a pseudo-Boolean goal function would be too complex, a different ap-
proach has been chosen. An exhaustive search is performed for all dif-
ferent layouts of the sink, stove and refrigerator. This is implemented
by running the solver repeatedly, while adding constraints to exclude
sink-stove-refrigerator configurations that have previously been found.

RESULTS: FL90 generates 11 possible layout solutions from which 4
are optimal. All 4 optimal solutions satisfy occupancy maximization as
well as SK, ST, and RF triangle optimization.

Generated solutions are shown as 2D-layouts at 0.90 m and 1.80 m
relative space height. The triangle spanning between SK, ST, and RF
shows gradient from possible to best possible solutions according to
the principle the smaller the triangle, the better the solution.

Petmeter Edge Dit Decs
7492 1892 2 AT SR RF AT
7492 1892 2%
1892 %
743.2 1892 % AT RF AT AT
7443 21449 2%
77443 21443 %
77443 21443 26 SR AT SR SR
1004.6 4ME 2%
1080 480 %
111928 51928 2 TH MW
1169.39 56939 2%
Sk oM
AT 5T oW EX AT
AT ™ RF co AT
Find sohutions Resat

The figure - F3.28 - shows one of the four optimal layouts for 90/90/90
voxelization resolution as 2D-representation of the levels at 0.90 and
1.80 m relative space height. Sub-optimal solutions are marked in the
table dark gray.

FlexFL30 generates 28 layout solutions incorporating about 23 differ-
ent triangle configurations from which all are sub-optimal, since the
maximum triangle edge length is exceeding 391cm. However, 9 trian-
gle configurations are close to optimal.

F3.28

REEpe EI

.

.
ETB e E‘ ISK |m y E

=] may
=

b]

Solutions are represented in a sequence of 2D voxel-layers, where
FO-positions are obviously more differentiated in response to not only
the complex geometry but also to a nearly realistic problem definition.
Each voxel-layer shows contained FOs:

TB for instance spans 2 voxel-layers, since it is 60 cm high, while SK
occupies one voxel-layer, since it is only 30 cm high. FOs are placed in
such a way that they accommodate the complex geometry except for
ohe case, where an AT is hot accessible - F3.29. This problem can be
addressed by defining additional constraints describing in more detail
spatial accessibility. This FOs layout satisfies, however, general re-
quirements of not only accessibility but also optimal placement relative
to each other as well as to the whole space.

The best possible layout solution for 30/30/30 cm voxelization resolu-
tion - shown in F3.29 - is generated corresponding to the following
computing time-scheme: AllSolutionsTarget is found in 00:00:01:848
h:m:s:ms, while MaximiseOccupancyTarget and TriangleTarget are
found in 00:00:00:793 and 00:00:00:460 h:m:s:ms, respectively. The

F3.29

P3.41

F3.42

search stops when all possible and all best possible solutions are
found. And since the search even at 30/30/30 cm voxel-resolution is
extremely fast - about 3 seconds - the software prototype does not
need interactive features: A new search can be started almost every 3
seconds.

FL incorporates sub-tools such as SC : FL : SA : VFA [VolumeToFunc-
tionAdjuster] and SC : FL : SA : NVG [NurbsFromVoxelsGenerator],
which have been conceptually developed within the frame of this re-
search but have not been implemented as software prototypes.

SC : FL : SA : VFA enables a voxelized geometry able to update ac-
cording to data-input from a database. It also enables adaptive voxel
refinement based on local resolution-needs.

SC :FL : SA : NVG generates, as its names suggests, NURBS-surfac-
es from periphery voxels.

CONCLUSIONS: FL generates functional layouts exhaustively and en-
ables the designer to consider more alternatives than by means of
conventional sketching methods mainly because functional space
planning is highly combinatorial and, therefore, difficult to conceive ex-
haustively by human search means.

Instead of one, FL generates multiple designs and allows for critical
choices by departing from a singular design principle, that represents
a potentially prejudiced position of the singular designer: FL does not
generate the uffimate design but instead offers alternative designs
within the spectrum of an optimal solutions-field.

DISCUSSION: 8C incorporates three sub-tools SpaceGenerator [SG],
Spacelnteractivator [Sl], and FunctionLayouter [FL], which incorporate
sub-tools such as SpaceAdjuster [SA], which in turn incorporate sub-
sub-tools such as GeometryTriangulator [GT], GeometryVoxelizer
[GV], [VolumeToMotionAdjuster [VMA] and NurbsFromVoxelsGenera-
tor [NVG] as shown in the diagram D3.01.

While GV and GT has been implemented as software prototypes, VMA
and NVG have been only developed conceptually. Each of the three
SC-tools SG, Sl and FL incorporate their own specific SA sub-tools.
GV, GT, VMA and NVG are, however, envisioned to operate together
on the same platform using data from all three specific SA sub-tools.

Advanced degrees of intelligence enable on the one hand interactive
spatial transformations by employing Al, namely, computer vision and
sensor-actuator technologies [SC : Sl

On the other hand, they facilitate spatial layout optimization [SC : FL]
by means of Boclean Satisfiability [SAT] used, inter alia, in Automated
Reasocning.

A3.03

EC:5G:SA:6T

S5C:56: SA:GV
SC: SI: SA: VMA

SC:FL:SA:NVG

Automated Reasoning as employed in SC : FL is, basically, logical
reasoning, not common-sense or probabilistic reasoning since accept-
able conclusions follow logically from the supplied facts such as 3D-
space geometry, functional objects descriptions and rules for their po-
sitioning in the 3D-space.

For instance, optimization such as occupancy maximization is imple-
mented in MiniSAT+ with a goa/ function, which finds a solution and
takes the occupancy of that as a base value. It adds then an inequalify
stating that the occupancy must be larger than that for the next run
and continues to run until no solution is found [Bier et al., 2007].

Once the occupancy has been maximized all possible SK-ST-RF trian-
gles with that occupancy are found.

In comparison with Loos and Wright, FL generates functional layouts
of similar scale and realistic relevance. However, Loos and Wright
deal only with the placement of functional objects in 2D, while Func-
tion Layouter addresses the layout in 3D dealing with the allocation of
functions within complex - at the origin curvilinear geometries - instead
of simple - rectangular - geometries.

With respect to optimization, Loos constructs solutions incrementally,
testing intermediate solutions on consistency and criteria relevant for
architectural design, while an impromptu optimization is carried out ac-
cording to these intermediate tests implying that no overall objective
directs the search. However, without invoking a backtracking proce-
dure, Loos' search is not complete: As presented in Fleming's paper it
is neither exhaustive nor does it yield solutions with an overall optimal
objective [Bier et al., 2007].

D3.01

P3.43

F3.44

Wright is more similar to the approach implemented in FL: Wright uses
constraint satisfaction, to implement a backtracking procedure that
makes the search complete, while optimization is implemented after-
wards and is, therefore, not used to direct the search.

Loos and Wright deal directly with the geometric aspects of both space
and objects, while FL employs voxelization after which all geometric
aspects are modeled through neighboring constraints. Furthermore,
FL allows for a hierarchical optimization procedure:

Optimal occcupancy is an overall objective directing the search while
the triangle objective is done by inspection and selection [Bier et al
2007].

As presented in Fleming's paper [1992] Loos and Wright are rather
sensitive to scaling effects, while FlexFL30 indicates that this ap-
proach is less sensitive with respect to scaling. Furthermore, since FL
is able to find if an assighment is possible or not, its search is com-
plete.

With respect to incorporated aspects of intelligence, FL employs SAT-
solving techniques based on an improved DPLL search algorithm:

While the search goes systematically through all instances, intelligent
search mechanisms such as non-chronological backtracking and con-
strain learning are employed. The first one is a backtracking technigue
[Zhong P. et al., 1998] which increases search efficiency by jumping
up - instead of one as backtracking does - more then cne level in the
search tree, while the second one is a technique for improving efficien-
cy by recording and storing constraints whenever an inconsistency is
found.

Section Contributors: H. van Maaren, M. Heule, A. de Jong, N. Brouw-
ers, and G. van der Hoorn.

Acknowledgements: FL has been implemented with graduate stu-
dents from the Faculty of Computer Science at TU Delft.

3.3 System-Embedded Intelligence

3.3.2 Spatial Prototypes: Motion, Interactive, Mass, and Func-
tional Spaces

The developed prototypical tools generate spatial prototypes such as
Motion, Mass, Functional, and Interactive Spaces.

[1] Motion Spaces are spaces generated by tracing the movement of
the human body, whereas the motion map defines the boundaries of
the volume within which architecture can emerge:

The volumetrical outlines of the body in motion establish an initial
framework for architectural studies.

[2] Interactive Spaces are NURBS-based spaces generated interac-
tively by the movement of the body in space, wherein the input - move-
ment - is being electronically processed in such a way that the cutput
represents a continuous, real-time modification of the space.

[3] Mass and Functional Spaces are spaces generated toc not only
study volumetrical and programmatic issues in architectural design but
also to optimize functional layouts.

While the architect is able to find possible solutions for a functional lay-
out, it is uncertain if those seolutions are the best possible. An optimiza-
tion algorithm as employed by SC : FL ensures finding best possible
solutions for a functicnal layout as shown in the previous section.

CONCLUSION: The software-prototypes developed within this re-
search address exclusively issues related to [1] Geometry, [2] Func-
tion and [3] Movement.

[1] Euclidean and non-Euclidean Geometries - In this research double-
curved 3D-spaces are voxelized and double-curved surfaces are trian-
gulated using GV and GT, respectively.

The reason for this conversion implies that adaptive triangulated
meshes [Delaunay, 1934] allow approximate representation of com-
plex geometries based on NURBS:

While triangles are simply described by three numbers representing
the corners between which the triangle spans, NURBS are described
by knot vectors, uniform/ non-uniform degrees, etc. and are, therefore,
more difficult to operate with.

NURBS are optimal for intuitive 3D modeling, their implementation in
built architecture require, however, discretized spaces and surfaces
such as voxelized spaces and triangulated surfaces, respectively.

Methodologically seen voxelized 3D-spaces are employed in SC as
mass-models in architectural design: The space is discretized in vox-
els allowing for input and control of each individual voxel.

Furthermore, the voxelized space is in its gradually refined discretiza-
tion a volumetric correspondent for the double-curved space. The de-

P3.45

F3.46

gree of voxel refinement determines not only formal affinity but in-
creases significantly layout options:

Inits ability to represent continuous space by means of high voxel-res-
olution the voxelized space becomes nct only a conversion-tool from
continuous to discretized space but also a tool to enable and study
function- and mass-modeling for designs based on NURBS-gecme-
tries.

[2] Function - In an iterative process employing constraint-based tech-
niques volumes are assigned to functions and spatial relationships are
established between the different functional volumes in order toc gener-
ate 3D functional layouts using FL.

[3] Movement incorporates several aspects: On the one side it re-
quires minimum spaces for implementing specific movement-patterns
as developed in SG, on the other side it potentially establishes an in-
teractive connectivity between body and space as implemented in Sl

SG can be seen as a prototype for spatial explorations based on hu-
man movement. Even though employed within this research exclusive-
ly for NURBS-based spatial generation, SG develops movement
patterns for non-orthogonal as well as orthogonal structures. In both
cases movement patterns developed with SG allow a realistic estimate
for movement/space relations.

Movement, space and function are interrelated, since movement influ-
ences the use of function, and both influence the geometry of space.

NOTES: Notes to this section explain concepts and notions difficult to
extract from context.

N3.04 - Robotics imply feedback-driven relations between sensors
and actuators embedded in a mechanical device, whereas control and
feedback are provided by a software run on either an external or
embedded computer or micro-controller.

Hyperbody's MuscleTower described in the second chapter can be
considered a robotic mechanism.

N3.05 Self-organization for SC:Sl has been defined as movement of
control points of the NURBS-surface according to rules such as: [1]
Keep a certain distance to moving body part, while not exceeding a
max-distance, and [2] Go back to original position when no body part
is at min-distance. Control points, therefore, organize themselves into
specific spatial configurations by following the movement of the body
in space.

N3.06 - Sub-tools are named by adding acronyms such as: [1] SC :

SG, [2] SC: SG : SA, and [3] SC: SG : SA : GT.

N3.07 - Adjustment of a double-curved slave-surface to a computer-
generated master-surface is based on the principle that the master-de-
vice is controlling the slave-device, in such a way that, for instance,
min-max distances defined by the master-surface are not exceeded.

N3.08 - Aliasing is a distortion exhibiting a jagged, stepped effect
when representing high-resolution objects at low pixel/voxel resolution.

N3.09 - Quad-tree is a tree data structure in which each internal node
has up to four children-nodes.

Tree data structures consist of ramified nodes emulating tree struc-
tures. In this context, tree-search implies that a problem is recursively
split into sub-problems, forming a tree:

Sub-problems are simplified or eliminated using range reduction tech-
hiques, until none, one or all solutions are found - http://hpce.engin.u-
mich.edu/CFD/users/charlton/Thesis/html/node28. html.

The basic range reduction eliminates values that are forbidden by con-
siderations of one to few constraints at a time.

N3.10 - Sliders are used as GUI-controls for choosing a value within a
range of values.

N3.11 - Searches have degrees of rigor: [1] Incomplete - heuristics, [2]
Complete - approximate global min/max is found, and [3] Rigorous -
complete [Russell and Norvig, 2003].

N3.12 - Constraint Satisfaction Problem [CSP] is solved by finding so-
lutions, which satisfy pre-defined criteria named constraints. CSPs are
solved by means of search techniques such as backtracking, con-
straint propagation, local search [Tsang, 1993].

N3.13 - Heuristics consists of methods and approaches for directing
the search for solutions.

N3.14 - Backtracking is a search algorithm exploring each possible so-
lution until it finds the correct one [Tsang, 1993].

N3.15 - Non-chronological backtracking is a backtracking technigue
[Zhong P et al., 1998] which increases search efficiency by jumping up
- instead of one as backtracking does - more then one level in the
search tree.

Constraint or clause learning is a technique for improving efficiency by
recording and storing constraints whenever an inconsistency is found.

N3.16 - XML [Extensible Markup Language] is a general-purpose
markup language facilitating the sharing of data across different infor-

P3.47

F3.48

mation systems.

BIBLIOGRAPHICAL REMARKS: As Gropius' disciple Neufert [1943]
published a systematic database consisting of spatial relationships
and measurements describing the human body in relation to the occu-
pied space.

Cohen [1993] is comparing body movement patterns of animals and
determines the relationship between evolutionary state and mechani-
cal constraints on body movement, whereas Kestenberg [1999] inter-
prets body movement rhythms. From Cohen's and Kerstenberg's
movement models Nakata [2003] develops an automatic choreogra-
phy method to generate life-like body movements for humanoids and
video game characters.

Reynolds [1987] introduced simple rules for Multi-Agent Systems and
Self-organization in his paper on distributed behavioral models, where-
as Travers [1996] addressed issues of programming with agents. Both
dealt with particle systems, where particles/agents are programmed to
have specific behaviors. Kilian and Ochsendorf’'s particle system, for
instance, simulates hanging chain-models [2003].

According to Jackson [1998] and, Brown and Chandrasekaran [1989]
ES apply general search strategies based on heuristic knowledge
about the problem domain.

Automated Planning by Ghallab et al. [2004] gives insight into the use
of combinatorial search in planning, whereas issues on constraint sat-
isfaction are, inter alia, addressed by Tsang [1993], Dechter [2003]
and Yokoo [2001].

Automation of functional 2D-layout problems in architectural design
has been addressed, inter alia, by Elezkurtaj and Franck [2002], Mi-
chalek et al. [2002], Flemming U. et al. [1992], Baykan and Fox [1992],
and Lottaz et al. [1998].

Global optimization is described in publications by Kearfott [1996] and
Floudas [1999], while local search in combinatorial optimization is ad-
dressed by Orlin et al. [2004]. SAT issues have been researched by
Davis and Putnam [1960], Davis et al. [1962], and Een and Sorensson
[2005].

CONCLUSION

Aspects of intelligence incorporated in computer-based tools and pro-
cesses and their influence on architectural design have been explored
within this research with emphasis - not on representation but - on ca-
pabilities compute complexity, i. e. complex systems, in architecture,
whereas complexity has been defined as arising from the multiplicity
of interactions within architectural sub-systems such as physical, envi-
ronmental and socio-technical systems.

While state-of-the-art computer-based devices have been discussed
in the first chapter with little or no reference to how they might inform
thinking, the second chapter addressed exclusively guestions regard-
ing their influence on design and design thinking.

In both chapters compute-based systems have been identified as in-
corporating aspects of intelligence not only on in the way systems
store and share incorporated knowledge about the designed object
but also in the way generated knowledge reflects the ability of digital
media to frame questions and interrogate issues pertaining to concep-
tualization, representation and simulation of architectural design.
However, with exception of Parametric and Generative Design, com-
puter-based devices described in the first two chapters have been
identified as not incorporating aspects of knowledge about the de-
signed object going beyond its representation.

Parametric and generative design principles, however, have been
identified as incorporating knowledge about the designed cbject at the
level of their connectivity with data stemming not only from the object’s
geometry but also from its confent and behavior. This specific data-
connectivity described in the third chapter has been studied and
implemented in software-prototypes developed within this research:

These prototypes operating as an Expert System [Brown and Chan-
drasekaran, 1989] have been exhibiting different degrees of intelli-
gence depending on the complexity of their particular tasks, the most
basic degree of intelligence being the intelligence of an automated
movement-based SpaceGenerator. More advanced degrees of intelli-
gence enabled on the cne hand interactive spatial transformations by
employing Artificial Intelligence, namely, computer vision and sensor-
actuator technologies, on the other hand, they facilitated automated
spatial layout by means of Boolean Satisfiability [SAT].

The developed software-prototypes have, specifically, addressed as-
pects related to geometry, movement and function. Issues related to
form, structure, material have been addressed only contextually, as
they reflect the broader context within which geometry, movement,
and function have been examined and explored.

Geometrical aspects imply on the one hand conversion from NURBS-
based to voxelized geometries on the other hand transformation from
NURBS- to triangulated-surfaces. Both processes enable use of com-
plex, non-Euclidean geometries in architecture by conversion to Eu-
clidean geometries.

Geometry - more specifically non-Euclidean geometry - and move-
ment have been conceived as interrelated, since movement acts with-
in this research as space-generating force.

Furthermore, function has been conceived as interrelated with move-
ment. Movement within a space is, therefore, determined by its asso-
ciated function and inceorporated functional objects. A food-kiosk - as
shown in this research - requires a specific number of appliances in
order to be coperable as such. Those appliances, however, are only
usable if the space needed for their operation is available.

The developed software-prototypes, therefore, inform each other on a
fundamental level, since function influences movement, movement in-
fluences the use of function, and both influence intrinsically the geom-
etry of space. They operate semi-automatically and demonstrate not
only that complete automation from idea to building is not relevant for
the time being, since it requires computation as complex as the pro-
cess itself but also that complete automation is, if implementable, not
applicable:

Computers solve specific not all tasks better then humans. Computers
have, for instance, no common sense. They are able, however, to per-
form complex computations in relative short time:

Combinaterial optimization implemented in this research, for instance,
implies computation of not only all possible but also all best possible
spatial combinations of functional units for functional layout design.

While architects might find it difficult to have an overview on all func-
tions and their attributed volume and preferential location, functional
units are easily computer-based configured according to pre-defined
rules and constraints.

Computers, therefore, have been employed - within this research -
specifically in areas where they enhance the design process by incor-
porating machinic intelligence, compensating where human decision-
making might be limited or overextended.

In this process the designer has been rendered as being in constant
interaction with the developed semi-automated, intelligent design
tools, which can be, therefore, only considered as supporting the de-
signer not replacing him/her.

Software prototypes developed within this research have been tested
in a case study, a food-kiosk, for which non-Euclidean spaces evolv-
ing from movement patterns and optimized functional layouts have
been generated.

Prototypes’ testing has identified most relevant aspects of intelligence
as being incorporated in the search engine developed for the automat-
ed 3D-layout of functions in curvilinear voxelized spaces:

Since able to find if an assignment is possible or not SC : FL has
been identified as a complete search engine.

This is based on the employed SAT-solving techniques, whereas Sat-
isfiability can be seen as an NP-complete problem. This implies that
there is no known algorithm able to determine in palynomial time -
with respect to computation time - whether there is a satisfying assign-
ment or what that assignment is [Garey and Johnson, 1979]. Only due
to the recent development of SAT-solvers such as MiniSat [Een and
Sorensson, 2003], RSat [Pipatsrisawat and Darwiche, 2007] and
March [Heule and van Maaren, 2006] it is currently possible to solve
problems with a large amount of clauses in reasonable time, which is
what SC : FL does [Bier et al., 2007].

All three prototypes developed within this research incorporate either
static-dynamic or interactive concepts:

While SC : FL places functions and SC : SG generates dynamically
space following the movement of the body in space, the resulting
space is static. SC : FL and SC : SG are, therefore, only used in the
design process, while SC : Sl is not only used in the design process
but also as dynamic, interactive engine for controlling movements and

interactions of building components and buildings on the software lev-
el.

All prototypes yield on some level innovative approaches enabling
semi-automated design processes in which on the one hand move-
ment patterns dynamically generate space, on the other hand double-
curved geometries are voxelized in order to not only estimate volumet-
rical capacity but also to place optimally functions in 3D-space:

SC : SG departs from a static 2D-view on the relationship between
body and architectural space as described in Modulor [Le Corbusier,
1948] in order to address dynamic 3D-movement and its space gener-
ative characteristics.

SC : Sl departs from a static view on architecture by applying interac-
tive architecture principles [Oosterhuis, 2006] offering a prototypical
tool to establish interactive connectivity between movement and curvi-
linear building-envelopes.

SC : FL advances previous work in 2D, by proposing novel approach-
es for finding efficiently optimal layout solutions in 3D spaces. SC : FL
generates, in comparison with cther prototypes such as Loos and
Wright, functional layouts of similar scale and realistic relevance.
However, Loos and Wright deal only with the placement of functional
objects in 2D, while SC : FL addresses the layout in 3D dealing with
the allocation of functions within complex - free-formed geometries -
instead of simple - rectangular - space geometries.

With respect to optimization, Loos constructs solutions incrementally,
testing intermediate solutions on consistency and other criteria rele-
vant for architectural design, while optimization is carried out accord-
ing to these intermediate tests implying that no overall objective
directs the search. However, without invoking a backtracking proce-
dure, Loos' search is not complete. It is, therefore, neither exhaustive
nor does it yield solutions with an overall optimal objective as SC : FL
[Bier et al., 2007].

Applied in the design development of complex 3D-structures, these
software prototypes require, however, further development:

Some prototype parts have been only developed conceptually, while
others have been implemented as software. Also, their application at
different scales has not yet been exhaustively explored.

Future perspectives for embedding intelligence in computer-based
systems in architecture, therefore, imply on the one hand intensified
research in the development and use of intelligent computer-based
systems in architecture, on the other hand conscious differentiation
between problems solvable by such means mainly depending on their
nature and scale.

Furthermore, embedding intelligence in computer-based systems in

architecture require, as shown in this research, co-operation between
architects and computer scientist in a similar way architects co-oper-
ate with structural engineers:

This only takes place under the premise that architects have not only
the insight into the design problem, which needs to be addressed, but
also basic understanding for computational issues relevant for soclving
together with computer scientists design and construction problems.

APPENDIX

A3.01 - The model developed at MIT employs a particle-spring system
for representing a structure by applying a gravitational field to it in or-
der to generate its most efficient form.

MIT's virtual method is considered to be as straightforward as Gaudi's
physical method for exploring hanging-chain models [Kilian and
Ochsendorf, 2005].

A3.02 - The VB-scripted function GeometryVoxelizer1 [GV 1] has been
developed in collaboration with D. Rutten, a program developer for
Rhino. It transforms enclosed NURBS-based solids in voxelized ge-
ometries. The development of a plug-in for Rhino has been, however,
abandoned in favor of developing a Java-application using processing
for rendering.

CLOSED NURBS VOLUME

A3.03 - FL-layout solutions are 2D represented as a sequence of vox-
el-layers, where FO positions are obviously more differentiated in re-
sponse to not only the complex geometry but also to a nearly realistic
problem definition.

FL employs voxelization after which all geometric aspects are mod-
eled through neighboring constraints. Futhemore, FL allows for a hi-
erarchical optimization procedure: Optimal occupancy is an overall
objective directing the search while the triangle objective is done by in-
spection and selection.

Furthermore, FL is able to find if an assignment is possible or not, and
therefore, its search is complete [Bier et al., 2007].

FlexFL's major contribution lies not necessarily in the automated hori-
zontal placement of FOs, since this has been already addressed, inter
alia, in Wright and Loos, but in the vertical placement of FOs, enabling
3D-layout of functions.

Once the search space has been reduced by placement constraints,
optimal solutions are generated from the number of valid solutions.
The maximization goal is applied during an initial invocation of the
SAT-solver. A second call is made to the SAT-solver, with an addition-
al constraint that fixates the occupancy to the previously found maxi-
mum value. During this second run, an ergonomic target is used,
based on the empirical findings formalized, inter alia, in the kitchen
work triangle by the Building Research Council.

A3.04 - PROPOSITIONS are considered opposable and defendable,
and as such have been approved by the supervisors, Prof. Ir. S. U.
Barbieri and Prof. Ir. K. Oosterhuis.

01. Complete automation from idea to building is not be relevant at the
time being, because it requires computation as complex as the pro-
cess itself, but, semi-automation based on system-embedded intelli-
gence is of great relevance.

A3.04

02. System-embedded intelligence improves the design process by
compensating where human decision-making might be limited or cver-
extended.

03. Architects gain from computational intelligence - in addition to in-
sights - support in the design process not only in form-finding, but also
in functional, mechanical, structural, and constructive problem-solv-

ing.

04. Embedding intelligence in computer-based systems in architecture
requires co-operation between architects and computer scientist in a
similar way architects co-operate with structural engineers.

05. Architects need to develop into computational issues relevant for
solving together with computer scientists design and construction
problems.

08. Future perspectives for embedding intelligence in computer-based
systems in architecture imply intensified research and conscious dif-
ferentiation between problems solvable by such means mainly de-
pending on their nature and scale.

07. System-embedded intelligence renders the designer as being in
constant interaction with the semi-automated, intelligent design tools,
which can be, therefore, only considered as supporting the designer
not replacing him/her.

08. Computers incorporating aspects of intelligence solve specific not
all tasks better then humans.

09. Computers have no common sense: They are able, however, to
perform complex computations in relative short time.

10. Computer supported functional layout development based on con-
straint-satisfaction techniques departs from a singular-design princi-
ple, that represents a potentially prejudiced position of the master-
designer, in order to generate multiple designs within the spectrum of
an optimal solutions field.

These propositions are considered opposable and defendable, and as
such have been approved by the supervisors, Prof. Ir. . U. Barbieri
and Prof. Ir. K. Qosterhuis.

These propositions have been translated into Dutch by P. J. Teerds -
STELLINGEN: Deze stellingen worden opponeerbaar en verdedig-
baar geacht en zijn als zodanig goedgekeurd door de promotoren
Prof. ir. S. U. Barbieri en Prof. ir. K. Qosterhuis.

01. Complete automatisering van het ontwerpproces, van het concept
tot aan het bouwen zelf, is voorlopig niet relevant: het vraagt even
complexe computer berekeningen als het proces zelf. Maar semiauto-

matisering, gebaseerd op in het systeem opgenomen computerge-
baseerde intelligentie, is van grote relevantie.

02. Computergebaseerde intelligentie verbetert het ontwerpproces
door de menselijke begrensdheid op het gebied van het nemen van
beslissingen te compenseren.

03. Architecten krijgen van computergebaseerde intelligentie - naast
inzicht - ondersteuning in het ontwerpproces en bij het zoeken naar de
juiste vormen, bij het oplossen van functionele, technische, structurele
en constructieve problemen.

04. Computergebaseerde intelligentie in architectuur vereist een
vergelijkbare samenwerking tussen architecten en computerdeskundi-
gen als tussen architecten en constructeurs.

05. Architecten moeten kennis ontwikkelen van automatisering die rel-
evant is voor het oplossen van ontwerp en constructie problemen in
samenwerking met computerdeskundigen.

08. Het perspectief voor het implementeren van computergebaseerde
intelligentie in architectuur veronderstelt een precies onderzoek naar
en een beredeneerde differentiatie van problemen die opgelost kun-
nen worden door deze middelen, afhankelijk van hun karakter en
schaal.

07. Intelligentie, die opgenomen is in computer systemen, maakt de
continue interactie tussen de ontwerper en de semiautomatische intel-
ligente ontwerpinstrumenten mogelilk; deze instrumenten kunnen
daarom alleen als ondersteuning voor de ontwerper gezien worden.

08. Computers, die aspecten van computergebaseerde intelligentie in
zich opnemen, lossen beslist niet alle taken beter op dan ontwerpers.

09. Computers hebben geen common sense, daarentegen zijn ze in
staat complexe berekeningen in relatief korte tijd uit te voeren.

10. De ontwikkeling van de door de computer ondersteunde function-
ele organisatie, gebaseerd op constraint-satisfaction technieken, laat
het simpele ontwerpprincipe van de meester-ontwerper achter zich,
ten gunste van het mogelijk maken van verschillende ontwerpen bin-
nen het spectrum van een veld optimale oplossingen.

BIBLIOGRAPHY

Alexander, C. et al.: 1977, A Pattern Language - Towns, Buildings,
Construction, Center for Environmental Structure Series, Oxford Uni-
versity Press, USA.

Alexander, C.: 2004, The Phenomenon of Life - The Nature of Order -
An Essay of the Art of Building and the Nature of the Universe, Rout-
ledge, UK.

Allen, S.: 1999, Points + Lines: Diagrams and Projects for the City,
Princeton Architectural Press, New York.

Altshuller, G.: 1973, Innovation Algorithm, Technical Innovation Cen-
ter, Worcester.

Barbieri, S. U.: 2003, Res Aedificatoria Fragments of a Contemplation,
OASE 62 - Autchomous Architecture and the Project of the City, NAI
Publishers, Rotterdam.

Baykan C. A and Fox M. &§.: 1992 Wright - A Constraint-Based Spa-
tial Layout System, published in Artificial Intelligence in Engineering
Design, Academic Press, Boston.

Baykan C. A. and Fox M. S.: 1991, Constraint Satisfaction Techniques

for Spatial Planning in Intelligent CAD Systems Ill - Practical Experi-
ence and Evaluation, Springer-Verlag, Berlin.

Bier, H.. 2004, Digital Design Strategies, 8th International DESIGN
Conference Proceedings, Dubrovnik.

Bier, H.: 2004, Digital Architecture, Architecture - Time, Space and
People Magazine, 4/6, Mumbay.

Bier, H.: 2005, Esperimenti di Automazione Digitale - article published
in the Journal for Architecture: |l Giornale dell’ Architettura, Rom.

Bier, H.: 2005, Other Geometries Objects Spaces, published paper
at the Conference Engineering & Product Design Education, Edin-
burgh.

Bier, H. and Schmehl, R.: 2006, SpaceCustomizer - Scripting Based
Methods in Architectural Design - Game Set Match 2, Delft.

Bier, H. et al.: 20086, SC - Prototypes for Interactive Architecture, Lec-
ture Notes in Computer Science, Springer, Berlin.

Bier, H. et al.: 2007, Prototypes for Automated Architectural 3D-Lay-
out, Lecture Notes in Computer Science, Springer, Berlin.

Bier, H. and Schmehl, R.: 2008, GeometryVoxelizer - article submitted
for publication in Lecture Notes in Computer Science, Springer, Berlin.

Boyer, C: 1996, Cibercities - Visual Perception in the Age of Electronic
Communication, Princeton Architectural Press, New York.

Borisenko, A. |. and Tarapov, |. E.: 1968, Vector and Tensor Analysis,
Dover Publications, New York.

Brown, D. C.: 1993, Intelligent Computer-aided Design, Encyclopedia
of Computer Science and Technology available online from http://
web.cs. wpi.edu/~deb/Papers/EofCSandT . html.

Brown, D. and Chandrasekaran, B.: 1989, Design Problem Solving,
Morgan Kaufmann Publishers, San Francisco.

Building Research Council: 1993, Kitchen Planning Standards, Uni-
versity of lllinois, Urbana-Champaign.

Castle, C. and Pollalis, S.N.: 1999, On-line Networks for Construction
Projects, Internet-based Information Systems Group, Digital Design
Information, Harvard Design School, Cambridge.

Charles, S. and Lipovetsky, G.: 2005, Hypermodern Times, Polity
Press, Cambridge.

Chermayeff, 8. and Alexander C.: 1963, Community and Privacy -
Toward a New Architecture of Humanism, Doubleday, USA.

Childs, M. et al.: 2000, VBScript in a Nutshell: A Desktop Quick Refer-
ence, O'Reilly & Associates, Sebastopol.

Coates, P.: 1996, The Use of Cellular Automata to Explore Bottom Up
Architectonic Rules, Eurographics Conference, Imperial College of
Science and Technology, London.

Cohen, B. B.: 1993, Sensing, Feeling, and Action - The Experimental
Anatomy of Body-Mind Centering, Contact Editions, Torornto.

Cook, S. A1 1971, The Complexity of Theorem-proving Procedures,
Proceedings of the Third Annual ACM Symposium on theory of
Computing, ACM Press, New York.

Cormen, T. H. et al.: 2001, Introduction to Algorithms, MIT Press,
Cambridge.

Chu, K. §.: 1999, X Phylum - The Turing Dimension, available online
http:/Awvww . archilab.org/public/2000/catalog/xkavyalxkavyaen. htm.

Davis, M. and Putnam, H.: 1960, A Computing Procedure for Quantifi-
cation Theory, Journal of the ACM 7/1.

Davis, M. et al.: 19582, A Machine Program for Theorem Proving, Com-
munications of the ACM.

Dechter, R.: 2003, Constraint Processing, Morgan Kaufmann, San
Francisco.

Dekkers, D. et al.: 2004, MVRDV: The Regionmaker, Wieland & Gou-
wens Hatje Cantz Publishers, Ostfildern-Ruit.

Delaunay, B.: 1934, Sur la sphére vide, lzvestia Akademii Nauk
SSSR, Otdelenie Matematicheskikh i Estestvennykh, Nauk.

Denari, N.: 1999, Gyroscopic Horizons - Prototypical Buildings and
Other Works, Princeton Architectural Press, New York.

Eastman, C.: 1973, Automated Space Planning, Artificial Intelligence,
Elsevier.

Eastman, C.M., et al.: Fabrication: Examining the Digital Practice of
Architecture, Editor Proc. 2004 ACADIA Conference, Cambridge.

Een, N. and Sorensson, N.: 2004, An Extensible SAT-solver, Lecture
Notes in Computer Science, Springer Berlin / Heidelberg.

Elezkurtaj, T. and Franck, G.: 2002, Evolution Methods in Architectur-
al Floorplan Design, Umbau, 19:129-37.

Ferber J.: 1999, Multi-Agent Systems - An Introduction to Distributed
Artificial Intelligence, Addison-VWesley, Harlow.

Flemming U. et al.: 1892, Hierarchical Generate and Test vs. Con-
straint-Directed Search - A Comparison in the Context of Layout Syn-
thesis published in Artificial Intelligence in Design, Kluwer Academic
Publishers, Dordrecht.

Floudas, C. A.: 1999, Deterministic Global Optimization - Theory, Al-
gorithms and Applications, Kluwer, Dordrecht.

Franken, B.: 2003, Real as Data - Architecture in the Digital Age: De-
signing and Manufacturing, Spon Press, London.

Friedberg, A.: 2006, The Virtual Window: From Alberti to Microsoft,
MIT Press, Cambridge.

Garey, M. R. and Johnson D. §.: 1979, Computers and Intractability -
A Guide to the Theory of NP-Completeness, Mathematical Sciences,
W. H. Freeman, New York.

Gausa, M et al.: 2003, The Metapolis Dictionary of Advanced Archi-
tecture, Actar, Barcelona.

Gehry, F. O. and Ragheb, J. F.: 2003, Frank Gehry Architect, So-
lomon R. Guggenheim Foundation.

Gehry, F. O. and Gilbert-Rolfe, J.: 2002, Frank Gehry: The City and
the Music, Routledge, New York.

Ghallab, M. et al.: 2004, Automated Planning, Theory and Practice,
Elsevier, Morgan Kaufmann Publishers.

Glymph, J.: 2003, Evolution of the Digital Design Process - Architec-
ture in the Digital Age: Designing and Manufacturing, Spon Press,
London.

Greenberg, D. P. and Georgiades, P. N.: 1992, Locally Manipulating
the Geometry of curved Surfaces, IEEE Computer Graphics and Ap-
plications, USA.

Greenberg, M. J.: 1993, Euclidean and Non-Euclidean geometries:
Development and history, W. H. Freeman, New York.

Gurari, E.: 1999, Backtracking Algorithms CIS 680: DATA STRUC-
TURES available online from http:/Awvww cse.chio-state.edu/~gurari/
course/cis680/cis680Ch19. html#QQ1-51-128

Haraway, D.: 1991, A Cyborg Manifesto - Science, Technology, and
Socialist-Feminism in the Late Twentieth Century, published in Simi-
ans, Cyborgs and Women: The Reinvention of Nature, Routledge,

New York.

Heule, M.J.H. and Maaren, H. van: 2006, March_dl: Adding Adaptive
Heuristics and a New Branching Strategy published in Journal on Sat-
isfiability, Boolean Modeling and Computation 2, Amsterdam.

Jackson, P.: 1998, Introduction to Expert Systems, Addison-Wesley,
Harlow UK.

Johnson, P. et al.: 1996, Eric Owen Moss - Buildings and Projects 2,
Rizzoli, New York.

Karthik, N.: 2003, A Simple Mathematical Approximation For Efficient
and Faster Rendering of Blobs, available online http:/Avww.metlin.org.

Kearfott, R. B.: 1996, Rigorous Global Search: Continuous Problems,
Kluwer, Dordrecht.

Kestenberg, J. et al.: 1999, The Meaning of Movement, Gordon &
Breach Publishers, USA.

Kilian, A. and Ochsendorf, J A.: 2005, Particle-spring Systems for
Structural Form-finding, Journal of the International Association for
Shell and Spatial Structures, Madrid.

Kipnis, J.: 1993, Toward a New Architecture, AD: FOLDING AND
PLIANCY, Academy Editions, London.

Knight, T.: 1998, Designing a Shape Grammar: Problems of
Predictability, Adrtificial Intelligence in Design 98, Kluwer Academic
Press, Dordrecht.

Kolarevic, B.: 2001, Designing and Manufacturing Architecture in the
Digital Age, Architectural Information Management, ECAADE, Helsin-
ki.

Kolarevic, B.: 2003, Digital Morphogenesis, Architecture in the Digital
Age: Designing and Manufacturing, Spon Press, London.

Kramer, K. et al.: 1999, Tutorial - Mobile Software Agents for Dynamic
Routing, ACM SIGMOBILE Mobile Computing and Communications
Review, ACM Press, New York

Kuhn, T.S.: 1996, The Structure of Scientific Revolutions, University of
Chicago Press, Chicago.

Khoshnevis, B. and Bekey, G.: 2002, Automated Construction Using
Contour Crafting - Applications on Earth and Beyond, University of

Southern California, 19th International Symposium on Automation and
Robetics in Construction, Washington.

Le Corbusier: 1954, The Modulor - A Harmenious Measure to the Hu-
man Scale Universally Applicable to Architecture and Mechanics,
Faber and Faber, UK.

Lieberman, H. et al.: 2003, Agents for the User Interface, Handbook of
Agent Technology, MIT Press, Cambridge.

Liggett, R.: 1985, Optimal Spatial Arrangement as a Quadratic Assign-
ment Problem, Design Optimization, Academic Press, Crlando.

Lintao, Z. and Sharad, M.: 2002, The Quest for Efficient Boolean Sat-
isfiability Sclvers, LNCS, Springer Berlin/Heidelberg.

Loomis, B.: 2003, User-Driven Genetic Algorithm for Evolving Non-
Deterministic Shape Grammars, available online from http://architec-
ture. mit.edu/descomp/works. htm.

Lottaz, C. et al.: 1998, Constraint Solving and Preference Activation
for Interactive Design, Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, Cambridge.

Lynn, G: 1999, Animate Form, Princeton Architectural Press, New
York.

Maher, M. and Zhang, D. M.: 1991, Case-based Reasoning in Design.
Al in Design 91, Sydney.

Manovich, L. 2001, The Language of New Media, MIT Press, and
INFO-AESTHETICS MANIFESTO from http:/fwww. manovich.net/.

McCarthy, J. and Hayes, P.: 1969 Some Philosophical Problems from
the Standpeint of Artificial Intelligence, Machine Intelligence 4, Edin-
burgh University Press, Edinburgh.

McCarthy, J.: 1958, Inversion of Functions Defined by Turing
Machines, Automata Studies, Princeton University Press, Princeton.

McCormack, J.: 2000, Enabling the Use of Shape Grammars: Shape
Grammar Interpretation through General Shape Recognition, Bennett
Conference, Pittsburgh.

McCullough, M. et al.: 1999, The Electronic Design Studio - Architec-
tural Knowledge and Media in the Computer Era, MIT Press, Cam-
bridge.

Michalek, J. J. et al.: 2002, Architectural Layout Design Optimization,
Engineering Optimization, Taylor and Francis, UK.

Mitchell, W.: 1995, City of Bits - Space, Place and the Infobahn, MIT
Press, Cambridge.

Nakata, T.. 2003, Automatic Generation of Expressive Body
Movement Based on Cohen-Kestenberg Lifelike Motion Stereotypes,
Journal of Advanced Computational Intelligence and Intelligent
Informatics, Fuji Technology Press, Tokyo.

Negroponte, N.: 1995, Being Digital, Alfred A. Knopf, New York.

Neufert, E.. 2005, Bauentwurfslehre - Handbuch fur den Baufach-
mann, Bauherren, Lehrenden und Lernenden. Friedr. Vieweg & Sohn
Verlag, Wiesbaden.

Newell, A et al., 1957, Elements of a Theory of Problem Solving,
Rand Corporation Report, USA.

Nocedal, J. and Wright, S. J.: 2006, Numerical Optimization, Springer-
Verlag Berlin Heidelberg New York.

Novak, M: 1991, Liquid Architectures in Cyberspace, MIT Press, Cam-
bridge.

Novak, M: 1996, Transmitting Architecture - The Transphysical City,
article available online under WORD http:/fwww. mat. ucsb.edu/~mar-
cos/Centrifuge_Site/MainFrameSet. html

Oosterhuis, K.: 2002, Mission Statement, Programmable Architecture,
I'Arca Edizione, Milano.

Oosterhuis, K.: 2003, Hyperbodies - Towards an E-motive Architec-
ture, Birkhauser, Basel.

Oosterhuis, K. et al.: 2003 E-activities in Design and Design Educa-
tion, Virtual Operation Room - A Time-based Architecture for the Aug-
mented Body, Europia Productions, Paris.

Oosterhuis, K. et al.: 2004, Real Time Behavior in Architecture - paper
published in the Conference Proceedigs CONVRO04, Lisbon.

Oosterhuis, K. et al.: 2004, File to Factory and Real Time Behavior in
Architecture - paper published in the Conference Proceedigs ACADIA,
Cambridge.

Orlin, J. B. et al.: 2004, Approximate Local Search in Combinatorial
Optimization, Society for Industrial and Applied Mathematics, 33/5,
Philadelphia.

Pipatsrisawat, K. and Darwiche, A.: 2007, RSat 2.0: SAT Solver De-
scription, Technical report D153, Automated Reasoning Group, Com-
puter Science, Los Angeles.

Quigley, A. and Eades, F: 2000, FADE: Graph Drawing, Clustering,
and Visual Abstraction, Lecture Notes In Computer Science, Proceed-
ings of the 8th International Symposium on Graph Drawing, Springer-
Verlag London.

Reynolds, C.: 1987, Flocks, Herds, and Schools - A Distributed Be-
havicral Model, Computer Graphics, 21/4 SIGGRAPH '87 Conference
Proceedings.

Rowe, P.: 1991, Design Thinking, MIT Press - reprint edition, Cam-
bridge.

Sam-Haroud, D.: 1995, Constraint Consistency Technigues for Con-
tinuous Domains, PhD thesis, SFIT, Lausagne.

Sassen, S.: 2001, The Topoi of E-Space: Global Cities and Global Val-
ue Chains, Sarai Reader: The Public Domain, http:/Mwww.sarai.net/
publications/readers/01-the-public-domain.

Schmidhuber, J.: 1997, A Computer Scientist's View of Life, the Uni-
verse, and Everything, Foundations of Computer Science: Potential -
Theory - Cognition, Lecture Notes in Computer Science, Springer-Ver-
lag, Berlin.

Simon, H. A.: 1996, The Sciences of the Arificial, MIT Press, Cam-
bridge

Slessor, C.. 1997, Atlantic Star, Architectural Review, 102/12: 30-42,
USA.

Smith, | F. C. et al.: 1995, Spatial Composition Using Cases - IDIOM,
ICCBR, Sesimbra.

Stephens, S.: 1997, The Samitaur Building, Architectural Record, New
York.

Stiny, G: 1980, Introduction to Shape and Shape Grammars, Environ-
ment and Planning B.

Stiny, G.: 1975, Pictorial and Formal Aspects of Shape and Shape
Grammars, ISR, Interdisciplinary Systems Research, Birkhaeuser,

Basel.

Yamazakia, Y. and Maedab, J.: 1998, The SMART system - An Inte-
grated Application of Automation and Information Technology in Pro-
duction Process, Computers in Industry, 1/35, 87-99, Elsevier.

Thon, S et. al.: 2004, A Low Cost Antialiased Space Filled Voxeliza-
tion Of Polygonal Objects, Proceedings of GraphiCon 04.

Toyo, 1.: 1997, Image of Architecture in Electronic Age, in AAVV. The
Virtual Architecture, Tokyo University Digital Museum, available online
http:/Avwww . um.u-tokyo.ac.jp/publish_db/1997VAjenglish/contents. ht-
ml.

Travers, M.: 1996, Metaphors in Programming with Agents: New Met-
aphors for Thinking about Computation available online from http://
alumni.media. mit.edu/~mt/diss/index.html.

Tsang, E.: 1993, Foundations of Constraint Satisfaction, Academic
Press, Elsevier.

Tzonis, A2 1993, Automation Based Creative Design, Current Issues
in Computing and Architecture, edited in collaboration with Dr. lan
White, Elsevier, Amsterdam.

Vazquez-Ruano, O.: 2005, The Hand Stays in the Picture - Virtual
Indexicality and Digital Transcoding, CATH Congress on The Ethics
and Paolitics of Virtuality and Indexicality, Bradford.

Venturi, R.: 1996, Iconography and Electronics - Upon a Generic Ar-
chitecture, MIT Press, Cambridge.

Vidler, A.: 2000, Warped Space: Art, Architecture, and Anxiety in Mod-
ern Culture, MIT Press, Cambridge.

Vivacqua, A.: 1999, Agents for Expertise Location, Proceedings AAAI
- Spring Symposium on Intelligent Agents in Cyberspace, Stanford.

Watanabe, M.: 2002, Induction Design - a Method for Evolutionary De-
sign, Birkhaeuser, Basel.

Wolfram, S.: 2002, A New Kind of Science, Wolfram Media, Cham-
paign.

Yokoo, M.: 2001, Distributed Constraint Satisfaction - Foundations of
Cooperation in Multi-agent Systems, Springer-Verlag Berlin Heidel-
berg.

Zhong, P etal.: 1998, Using Reconfigurable Computing Technigues to
Accelerate Problems in the CAD Domain - A Case Study with Boolean
Satisfiability, Design Automation Conference, San Francisco.

Zuse, K.: 1969, Rechnender Raum, Friedrich Vieweg & Sohn, Braun-
schweig. English translation from 1970, Calculating Space, MIT Tech-
nical Translation AZT-70-164-GEMIT, Cambridge.

GLOSSARY

The following definitions explain not only used nomenclature but also
describe tools developed within this research:

SC - SpaceCustomizer is a tool-kit developed within this research to
implement, inter alia, tasks such as the triangulation and unfolding of a
NURBS-surface, voxelization of a NURBS-based volume, and layout-
ing of functions in a voxelized 3D-space.

SC : 8G - SpaceGenerator is a SC-subtool generating NURBS-based
spaces by following the movement of the body in 3D-space.

SC : Sl - SpacelnterActivator is a SC-subtool generating interactively
NURBS-based spaces by following the movement of the body in 3D-
space.

SC : FL - FunctionLayouter is a SC-subtool placing functional objects
voxelized 3D-spaces.

SC : 8G : SA - SpaceAdjuster is a SG-subtool adjusting intuitively
generated NURBS-based spaces to the movement of the body in
space.

SC : 8l : SA - SpaceAdjuster is a Sl-subtool adjusting interactively
NURBS-based 3D-spaces to the movement of the human body in
space.

SC : FL : SA - SpaceAdjuster is a FL-subtool, which allows spatial ad-
justment according to functional layout.

SC : 8G : SA 1 GV - GeometryVoxelizer is a SG : SA-subtool that en-
ables voxelization of NURBS-based volumes.

SC : SG : 8A : GT - GeometryTriangulator is a SG : SA-subtool trian-
gulating NURBS-surfaces.

SC : 8G : SA : GU - GeometryUnfolder is a SG . SA-subtool unfolding
triangulated NURBS-surfaces.

SC : Sl SA VMA - VolumeToMotionAdjuster is a Sl : SA-subtool en-
abling adjustment of voxel-layout to the the movement of the body in
3D-space.

SC: FL : SA :NVG - NurbsFromVoxelsGeneratorisa FL : SA-subtool
generating as its names suggests, NURBS-surfaces from periphery
voxels.

DVD SYNOPSIS

The attached DVD has autorun functionality for Windows, which im-
plies that the PowerPoint presentation starts automatically as scon as
the DVD is placed in the drive. The presentation starts with an inte-
grated viewer, making the installation of PowerPoint, if not already
available, unnecessary.

The presentation consists of text, images and AVI-format movies us-
ing the Cinepak Codec available by default on Windows. Forward/
backward browsing is enabled by keyboard navigation with up/down
arrows. Used nomenclature is described in the glossary.

On Linux or MAC systems, the PowerPoint file must be opened manu-
ally. Movies, however, can not be viewed, if Cinepak Codec not avail-
able.

Slides 1-2 introduce SC and SC : IS, which deal with the development
of digital design strategies based on non-Euclidean geometries,
whereas the body in movement generates interactively architectural
SPACE.

Slide 3 describes SC : FL, which generates and optimizes functional
3D-layouts for voxelized NURBS-based spaces by employing con-
straint solving techniques.

Slides 4-6 describe BR, which is a preliminary study implemented with
Hyperbody-students in Virtools focusing oh defining constraints for the
3D-placement of functions in a building.

Slides 7-9 describe SC : GV dealing with the voxelization of NURBS-
based volumes.

Slides 10-14 describe SC : FL, whereas slide 10 shows how FOs -
Functional Objects - are placed in the voxelized space according to
functional and spatial rules described in detail in the third chapter of
this research.

Slide11-BRUTE S EAR CH goes through all possible solution-
instances.

Slide 12 - CSP : SAT-RULES - Constraint Satisfaction Problem : Sat-

isfiability-Rules - and C5P : SAT-SOLVER - Constraint Satisfaction
Problem : Satisfiability-Solver - imply search for all possible solutions.
In this context INTELLIGENT SEARCH is an optimized search by
means of, inter alia, non-chronological backtracking and constraint
learning.

Slide 13 - FlexFL30 generates and represents 3D-layout solutions by

showing each individual voxel-layer between 0.00-1.50 m and/or
more.

Slides 15-22 describe SC : GT, whereas slide 21 shows the structure
developed for the triangulation of the NURBS-surface:

Eachone of thei =0, ..., nv-1 u-ribbons is specified by an array of bot-
tom-node points Pijwith j =0, ..., nu-1 and array of upper node points
Qijwithj=0, .., nu-1.

Two triangles are formed per surface element, whereas an upper tri-
angle Si,j defined by points Pi,j,Qi,j,Qi,j+1 and a bottom triangle Ti,j
defined by points Qi j+1, Pi,j+1, Fi,j.

Slide 22 shows rotation based on rules such as rotate into xy-plane,
and take attached geometry with:

Rotation paired with the progressive splitting into ribbons enables flat-
tening of a complex 3D-geometry into a 2D-plane.

Slides 23-29 describe SC . Sl, whereas slide 27 shows interfaces,
which enable use of real-time and movie-based interaction:

Misuse of S| allows for spatial experimentation with NURBS-based
designs.

CURRICULUM VITAE

After graduating in architecture [1998] from the University of Karlsruhe
in Germany, Henriette Bier has worked with Morphosis [1999-2001]
on internationally relevant projects in the US and Europe. She has
taught computer-based architectural design [2002-2003] at universi-
ties in Austria, Germany, and the Netherlands and worked on a doc-
toral research at TU Delft [2004-2008].

Henriette Bier's research focuses not only on analysis and critical as-
sessment of digital technologies in architecture, but also reflects eval-
uation and classification of digitally-driven architectures through
procedural- and object-oriented studies. It defines methodologies of
digital design, which incorporate Intelligent Computer-based Systems
proposing development of prototypical tools to support the design pro-
cess. Results of this research have been published in books, journals
and conference proceedings.

Henriette Bier regularly leads workshops and lectures at universities in
Europe and US. She teaches design studios within Hyperbody Re-
search Group and Border Conditions at TU Delft. Currently, she is
project coordinator of the workshop and lecture series on Digital De-
signh and Fabrication within DSD [Delft School for Design] with invited
guests from MIT [Massachusetts Institute of Technology] and ETHZ
[Eidgenoessische Technische Hochschule Zuerich].

	diss HB 08-2_Page_004.jpg
	diss HB 08-2_Page_005.jpg
	diss HB 08-2_Page_006.jpg
	diss HB 08-2_Page_004.jpg
	diss HB 08-2_Page_005.jpg
	diss HB 08-2_Page_006.jpg
	diss HB 08-2_Page_011.jpg
	diss HB 08-2_Page_012.jpg
	diss HB 08-2_Page_018.jpg
	diss HB 08-2_Page_019.jpg
	diss HB 08-2_Page_020.jpg
	diss HB 08-2_Page_021.jpg
	diss HB 08-2_Page_022.jpg
	diss HB 08-2_Page_023.jpg
	diss HB 08-2_Page_024.jpg
	diss HB 08-2_Page_025.jpg
	diss HB 08-2_Page_026.jpg
	diss HB 08-2_Page_027.jpg
	diss HB 08-2_Page_028.jpg
	diss HB 08-2_Page_029.jpg
	diss HB 08-2_Page_030.jpg
	diss HB 08-2_Page_031.jpg
	diss HB 08-2_Page_032.jpg
	diss HB 08-2_Page_033.jpg
	diss HB 08-2_Page_034.jpg
	diss HB 08-2_Page_035.jpg
	diss HB 08-2_Page_036.jpg
	diss HB 08-2_Page_037.jpg
	diss HB 08-2_Page_038.jpg
	diss HB 08-2_Page_039.jpg
	diss HB 08-2_Page_040.jpg
	diss HB 08-2_Page_041.jpg
	diss HB 08-2_Page_042.jpg
	diss HB 08-2_Page_043.jpg
	diss HB 08-2_Page_044.jpg
	diss HB 08-2_Page_045.jpg
	diss HB 08-2_Page_047.jpg
	diss HB 08-2_Page_048.jpg
	diss HB 08-2_Page_052.jpg
	diss HB 08-2_Page_053.jpg
	diss HB 08-2_Page_054.jpg
	diss HB 08-2_Page_055.jpg
	diss HB 08-2_Page_056.jpg
	diss HB 08-2_Page_057.jpg
	diss HB 08-2_Page_058.jpg
	diss HB 08-2_Page_059.jpg
	diss HB 08-2_Page_061.jpg
	diss HB 08-2_Page_062.jpg
	diss HB 08-2_Page_063.jpg
	diss HB 08-2_Page_064.jpg
	diss HB 08-2_Page_065.jpg
	diss HB 08-2_Page_066.jpg
	diss HB 08-2_Page_067.jpg
	diss HB 08-2_Page_068.jpg
	diss HB 08-2_Page_069.jpg
	diss HB 08-2_Page_070.jpg
	diss HB 08-2_Page_071.jpg
	diss HB 08-2_Page_072.jpg
	diss HB 08-2_Page_073.jpg
	diss HB 08-2_Page_074.jpg
	diss HB 08-2_Page_075.jpg
	diss HB 08-2_Page_076.jpg
	diss HB 08-2_Page_077.jpg
	diss HB 08-2_Page_078.jpg
	diss HB 08-2_Page_079.jpg
	diss HB 08-2_Page_080.jpg
	diss HB 08-2_Page_081.jpg
	diss HB 08-2_Page_082.jpg
	diss HB 08-2_Page_083.jpg
	diss HB 08-2_Page_085.jpg
	diss HB 08-2_Page_086.jpg
	diss HB 08-2_Page_087.jpg
	diss HB 08-2_Page_088.jpg
	diss HB 08-2_Page_089.jpg
	diss HB 08-2_Page_090.jpg
	diss HB 08-2_Page_091.jpg
	diss HB 08-2_Page_092.jpg
	diss HB 08-2_Page_093.jpg
	diss HB 08-2_Page_094.jpg
	diss HB 08-2_Page_095.jpg
	diss HB 08-2_Page_096.jpg
	diss HB 08-2_Page_098.jpg
	diss HB 08-2_Page_100.jpg
	diss HB 08-2_Page_101.jpg
	diss HB 08-2_Page_102.jpg
	diss HB 08-2_Page_103.jpg
	diss HB 08-2_Page_104.jpg
	diss HB 08-2_Page_105.jpg
	diss HB 08-2_Page_107.jpg
	diss HB 08-2_Page_108.jpg
	diss HB 08-2_Page_109.jpg
	diss HB 08-2_Page_110.jpg
	diss HB 08-2_Page_111.jpg
	diss HB 08-2_Page_112.jpg
	diss HB 08-2_Page_113.jpg
	diss HB 08-2_Page_114.jpg
	diss HB 08-2_Page_115.jpg
	diss HB 08-2_Page_116.jpg
	diss HB 08-2_Page_117.jpg
	diss HB 08-2_Page_118.jpg
	diss HB 08-2_Page_119.jpg
	diss HB 08-2_Page_120.jpg
	diss HB 08-2_Page_121.jpg
	diss HB 08-2_Page_122.jpg
	diss HB 08-2_Page_123.jpg
	diss HB 08-2_Page_124.jpg
	diss HB 08-2_Page_125.jpg
	diss HB 08-2_Page_126.jpg
	diss HB 08-2_Page_127.jpg
	diss HB 08-2_Page_128.jpg
	diss HB 08-2_Page_129.jpg
	diss HB 08-2_Page_130.jpg
	diss HB 08-2_Page_131.jpg
	diss HB 08-2_Page_132.jpg
	diss HB 08-2_Page_133.jpg
	diss HB 08-2_Page_134.jpg
	diss HB 08-2_Page_135.jpg
	diss HB 08-2_Page_136.jpg
	diss HB 08-2_Page_137.jpg
	diss HB 08-2_Page_138.jpg
	diss HB 08-2_Page_139.jpg
	diss HB 08-2_Page_140.jpg
	diss HB 08-2_Page_141.jpg
	diss HB 08-2_Page_142.jpg

