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Abstract: The chemical and rheological properties of terminal blend hybrid asphalt (TBHA) contribut-
ing to the consumption of waste tires before and after aging were studied. Styrene-butadiene-styrene
(SBS) polymer, sulphur, crumb rubber (CR), and neat asphalt were chosen to prepare the TBHA. The
short-term aging (STA) and long-term aging (LTA) of TBHA were simulated using a rolling thin
film oven test (RTFOT) and pressure aging vessel (PAV), separately. The chemical and rheological
properties of the TBHA were tested. The results show that the G* and G*/sin δ of TBHA ares gen-
erally lower than SBS-modified asphalt (SBSMA) at 76 ◦C, and the δ, Jnr0.1, and Jnr3.2 of TBHA are
generally higher than SBSMA at 76 ◦C. Additionally, with the decrease of CR, the G* and G*/sin δ of
TBHA decreased more obviously, and the G* and G*/sin δ of 5T_3S_0.2Sul (5 wt% CR, 3 wt% SBS,
and 0.2 wt% sulphur) were the smallest. Moreover, during the STA, the SBS modifier in the TBHA
degraded and made the bitumen predominantly soft; however, during the LTA, the hardening of the
bitumen played a dominant role and increased its elasticity. The superior anti-aging properties of
TBHA (both STA and LTA) are further demonstrated.

Keywords: terminal blend hybrid asphalt; rheological properties; short-term aging; long-term aging

1. Introduction

With the rapid development of the automotive industry, the amount of crumb rubber
(CR) obtained from the treatment of waste tires is increasing. The use of CR in asphalt mod-
ification to enhance the road performance of asphalt is an effective resource utilization [1,2].
Crumb-rubber-modified asphalt (CRMA) not only makes use of a large number of waste
tires and reduces pollution, but also has excellent high- and low-temperature properties,
which can effectively extend the service life of pavements and reduce the occurrence of
pavement distress [3–6]. The traditional CRMA preparation process is simple and fast,
but at the same time, there are some drawbacks [7,8]. Firstly, as CR and asphalt are ther-
modynamically incompatible systems, in the CRMA preparation process, in order for the
modified asphalt to achieve a certain performance, the amount of CR needs to be higher
than 15%, resulting in the fact that the CR dispersed in the asphalt is difficult to form into a
plastic mesh structure. The asphalt is quick to produce a segregation phenomenon, which
is not conducive to long-term storage and transportation. Secondly, in the process of CR
development and swelling, CR will absorb the light components in the asphalt, increasing
the viscosity of CRMA, which requires a high temperature in order to facilitate the mixing
of asphalt and minerals [9].

To solve the cost and difficulty of the construction of CR asphalt pavements, researchers
have begun to investigate styrene-butadiene-styrene (SBS)/CR modified asphalt [10–12].
SBS modified asphalt (SBSMA) is a polymer-modified asphalt, and the storage stability of
SBSMA has been improved through extensive research [13,14]. However, SBS is expensive
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and the SBSMA produced by modifying the bitumen with SBS alone suffers from inad-
equate aging resistance. By combining CR and SBS, the aging resistance of the bitumen
can be improved, and the amount of CR can be reduced, thus reducing the viscosity of the
bitumen [10]. In addition, from a practical point of view, the SBS/CR-composite-modified
asphalt pavement has a great advantage over SBSMA pavement in terms of reducing traffic
noise and can make it possible to save part of the cost of sound insulation facilities in the
construction of highways [15,16].

The terminal blend (TB) process provides a new technical approach to the production
of CRMA from the perspective of high temperature degradation technology and improves
the storage stability of CRMA [17]. This process allows CR and asphalt to be sheared at high
temperatures for long periods at high speeds to produce modified bitumen, allowing a high
degree of desulphurization and cracking of the CR [18], which can be stored uniformly and
stably in the asphalt [19–22], effectively avoiding the storage stability problems associated
with inadequate desulphurization of CR caused by insufficient degradation [23]. The
CR-composite SBS-modified bitumen prepared under the TB process is called terminal
blend hybrid asphalt (TBHA).

Thermal oxygen aging is one of the aging phenomena of asphalt produced by an
oxidation reaction under high temperature conditions, and is divided into short-term aging
(STA) (in the process of storage, transportation, and mixing) and long-term aging (LTA)
(after the completion of asphalt paving) [24], which has a certain impact on the pavement
performance and its life. In the actual use state of asphalt pavement, the asphalt will also be
affected by ultraviolet rays from solar radiation, resulting in an aging reaction, leading to
changes in its physical and chemical properties, which affect the service life of the pavement.
Most of the research on TBHA has focused on the performance comparison of pre-aging
asphalt [25], and the application of TBHA aging performance is still in the exploration
stage [22,26]. The research on the aging performance of modified bitumen is mainly
through the testing of penetration, ductility, and softening points to reflect the performance
of modified bitumen after aging, but there is no in-depth research on the changes in TBHA
chemical composition and rheological index during thermal oxygen aging. Therefore, in
this study, the effect of aging on the chemical and rheological properties of TBHA was
investigated. The changes before and after STA and LTA in the chemical composition of
the TBHA were analyzed using the attenuated total reflection-Fourier transform infrared
spectroscopy (ATR-FTIR) test. The rheological indexes of the TBHA binders were also
evaluated. In addition, correlations between TBHA’s chemical performance indexes and
rheological performance indexes were studied.

2. Materials and Methods
2.1. Materials

In this paper, linear SBS polymer, sulphur, CR, and neat asphalt (PG 64-16) were
selected to prepare the five kinds of TBHA. The details of the TBHA composition are
present in Table 1. The softening point, ductility (10 ◦C), and penetration (25 ◦C) of neat
asphalt are 52 ◦C, 25 cm, and 70d mm respectively. The choice of sulphur in this paper helps
to ensure the homogeneity of the TBHA network structure. The linear SBS polymer has an
average molecular weight of 120,000 g/mol. The −30 mesh CR, containing 54% natural
rubber and synthetic rubber, was produced in Jiangyin, China. Sulphur was employed as a
cross-linking agent to meet the storage stability requirements of TBHA. Figure 1 provides
an illustration of the detailed preparation of TBHA.
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Table 1. Description of Asphalt Studied.

Binder Type
Modification Plan

Linear SBS Polymer, % Sulphur, % CR, %

0T_3S_0.1Sul 3 0.1 0
5T_3S_0.2Sul 3 0.2 5

10T_3S_0.2Sul 3 0.2 10
15T_3S_0.2Sul 3 0.2 15
20T_3S_0.2Sul 3 0.2 20
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Figure 1. Schematic of the preparation of TBHA.

2.2. Aging Procedures

In the study, based on AASHTO T240 and AASHTO R28 [27,28], the binders were
conditioned using the rolling thin-film oven (RTFO) test at 163 ◦C for 85 min to simulate the
STA, and the obtained RTFO-aged binders were subsequently moved to the LTA process
by pressure aging vessel (PAV) at 100 ◦C for 20 h.

2.3. ATR-FTIR Test

The chemical characteristics of TBHA before and after STA and LTA were measured
using the ATR-FTIR test. The TBHA was subjected to 32 scans and the test range was
4000–600 cm−1. Three replicates were used for each test, and the final data are the average
value of every experiment.

The carbonyl and sulfoxide groups are two oxidation functional groups, but during
aging, the sulfoxide group of the TBHA is less stable. Therefore, carbonyl groups were
chosen to assess the oxidation degree of TBHA in this study. Higher ICA values indicate
greater oxidation of TBHA. The ICA was calculated as shown in Table 2.

Table 2. Calculation Methods of ICA.

Index Calculation Method

ICA CI= A1700cm
−1/A2700~3000cm

−1

A (XX) cm−1 represents the area of (XX) cm−1 peak.

2.4. Temperature Sweep (TS) Test

The TS test was carried out on the TBHA with a 25 mm parallel plate and a 1 mm gap.
The frequency (ω) was set at 10 rad/s. The sweeping temperature range was set at 76 ◦C.
Complex modulus (G*), phase angle (δ), G*/sin δ, storage modulus (G′), loss modulus (G′′),
η′′ values (η′′ = G′/ω), and η′ values (η′ = G′′/ω) were utilized to analyze the rheological
performances of TBHA.
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2.5. Multiple Stress Creep and Recovery (MSCR) Test

The MSCR test was performed according to AASHTO M332-14 in the dynamic shear
rheometer (DSR) machine at 76 ◦C to get values of Jnr0.1, Jnr3.2, Jnr-diff, R0.1, R3.2, and
Rdiff [29]. Jnr3.2 and Jnr0.1 are used to indicate the amount of the non-recoverable creep
compliance (Jnr) at 3.2 kPa and 0.1 kPa stress to reflect the elasticity of the binder. R3.2 and
R0.1 are expressed in this article as the percent recovery (R) of TBHA under 3.2 kPa and
0.1 kPa, respectively.

3. Results and Discussion
3.1. ATR-FTIR Analysis

∆ICA is the difference in the change value of ICA after STA and LTA, which is used
to quantitatively evaluate the aging extent of TBHA. TBHA binders before and after STA
and LTA were examined via ATR-FTIR, and the homologous ICA and ∆ICA are shown in
Figure 2. As shown in Figure 2, from STA to LTA, the ICA value continuously increases for
the same binder, and the ∆ICA of the TBHA binder is less than that of the 0T_3S_0.1Sul
after the STA and LTA. The ∆ICA ranking after STA is 5T_3S_0.2Sul < 20T_3S_0.2Sul <
15T_3S_0.2Sul < 10T_3S_0.2Sul < 0T_3S_0.1Sul. The ∆ICA of 5T_3S_0.2Sul is the lowest. In
addition, the ranking of ∆ICA after LTA is 20T_3S_0.2Sul < 15T_3S_0.2Sul < 5T_3S_0.2Sul <
10T_3S_0.2Sul < 0T_3S_0.1Sul, indicating CR can delay the effect of STA and LTA compared
with 0T_3S_0.1Sul, and the superior anti-aging properties of TBHA (both STA and LTA) are
further demonstrated. The reason for this is that nano-silica in the CR of TBHA enters the
asphalt after desulfurization and degradation and acts as an oxygen barrier and insulator,
which improves the aging resistance of the asphalt [30–33]. Thus, the nano-silica in the
TBRA binder makes its resistance of STA and LTA better than that of 0T_3S_0.1Sul.
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Figure 2. ICA and ∆ICA of TBHA at unaged and aged conditions.

3.2. Evaluation of G*

Figure 3 shows the G* of TBHA at 76 ◦C. As shown in Figure 3, the G* of 0T_3S_0.1Sul,
5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 20T_3S_0.2Sul in virgin condition are 1375,
1115, 1240, 1233, and 1302 Pa respectively. In other words, the G* value ranking of binders
in unaged condition is 0T_3S_0.1Sul > 20T_3S_0.2Sul > 10T_3S_0.2Sul > 15T_3S_0.2Sul
> 5T_3S_0.2Sul. The above results show that the G* of TBHA is generally lower than
0T_3S_0.1Sul at 76 ◦C. With the decrease of CR, the G* of TBHA decreases more obviously,
and the G* of 5T_3S_0.2Sul is the smallest. This is due to the high temperature desul-
phurization degradation of CR, which greatly reduces the effect of CR on the mechanical
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properties of TBHA, leading to a reduction in G*, and a smaller G* value for TBHA with a
smaller CR doping. However, the addition of SBS followed by the sulphur cross-linking
agent to the desulphurized and degraded TBHA system results in a cross-linking reaction,
leading to an increase in G* as the CR dosing increases [15].

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 13 
 

more obviously, and the G* of 5T_3S_0.2Sul is the smallest. This is due to the high tem-

perature desulphurization degradation of CR, which greatly reduces the effect of CR on 

the mechanical properties of TBHA, leading to a reduction in G*, and a smaller G* value 

for TBHA with a smaller CR doping. However, the addition of SBS followed by the sul-

phur cross-linking agent to the desulphurized and degraded TBHA system results in a 

cross-linking reaction, leading to an increase in G* as the CR dosing increases [15]. 

The G* of 0T_3S_0.1Sul, 5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 

20T_3S_0.2Sul in STA are 1378, 702.9, 1136, 955.6, and 1009 Pa respectively. Moreover, the 

G* of 0T_3S_0.1Sul, 5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 20T_3S_0.2Sul in 

LTA is 2951, 2268, 2593, 2193, and 2167 Pa respectively. The G* ranking of binders is 

0T_3S_0.1Sul > 10T_3S_0.2Sul > 20T_3S_0.2Sul > 15T_3S_0.2Sul > 5T_3S_0.2Sul in STA con-

dition, and the G* ranking values of binders is 0T_3S_0.1Sul > 10T_3S_0.2Sul > 

5T_3S_0.2Sul > 15T_3S_0.2Sul > 20T_3S_0.2Sul in LTA condition. Compared to other 

TBHA binders, G* of 0T_3S_0.1Sul is the largest after experiencing both STA and LTA. 

The above results show that the G* of TBHA decreases after STA but becomes larger after 

LTA. The reason for this is that aging causes degradation of the SBS modifier in the TBHA, 

which softens the bitumen and weakens the age-hardening effect of the TBHA after STA 

[34–36], leading to a reduction in the G* growth rate. Additionally, different CR doping 

provides TBHA with different mechanical strength, resulting in different TBHA’s G* at 

STA and LTA conditions. However, during the LTA aging phase, the age-hardening effect 

of TBHA plays a dominant role, increasing elasticity and G*. 

 

Figure 3. G* of TBHA binders before and after aging. 

3.3. Evaluation of δ 

The δ values for TBHA are shown in Figure 4. As shown in Figure 4, the δ of 

0T_3S_0.1Sul, 5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 20T_3S_0.2Sul in virgin 

condition are 67.95, 70.14, 69.24, 67.9, and 66.09°, respectively. The above results show that 

the δ of TBHA is generally higher than 0T_3S_0.1Sul at 76 ℃, except 20T_3S_0.2Sul and 

15T_3S_0.2Sul. The δ of 0T_3S_0.1Sul, 5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 

20T_3S_0.2Sul in STA are 75.79, 84.97, 76.87, 79.11, and 75.35°, respectively. Moreover, the 

δ of 0T_3S_0.1Sul, 5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 20T_3S_0.2Sul in LTA 

is 78.89, 76.84, 75.52, 77.83, and 75.36°, respectively. The δ ranking of binders is 

1375

1115
1240 1233 1302 1378

702.9

1136
955.6 1009

2951

2268

2593

2193 2167

0

500

1000

1500

2000

2500

3000

3500
G

*
, 
P

a

Binder Type

Virgin STA LTA

67.95
70.14

30

40

50

60

70

80

90

δ
, 
°

Virgin

Figure 3. G* of TBHA binders before and after aging.

The G* of 0T_3S_0.1Sul, 5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 20T_3S_0.2Sul
in STA are 1378, 702.9, 1136, 955.6, and 1009 Pa respectively. Moreover, the G* of 0T_3S_0.1Sul,
5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 20T_3S_0.2Sul in LTA is 2951, 2268, 2593,
2193, and 2167 Pa respectively. The G* ranking of binders is 0T_3S_0.1Sul > 10T_3S_0.2Sul >
20T_3S_0.2Sul > 15T_3S_0.2Sul > 5T_3S_0.2Sul in STA condition, and the G* ranking values
of binders is 0T_3S_0.1Sul > 10T_3S_0.2Sul > 5T_3S_0.2Sul > 15T_3S_0.2Sul > 20T_3S_0.2Sul
in LTA condition. Compared to other TBHA binders, G* of 0T_3S_0.1Sul is the largest
after experiencing both STA and LTA. The above results show that the G* of TBHA de-
creases after STA but becomes larger after LTA. The reason for this is that aging causes
degradation of the SBS modifier in the TBHA, which softens the bitumen and weakens
the age-hardening effect of the TBHA after STA [34–36], leading to a reduction in the G*
growth rate. Additionally, different CR doping provides TBHA with different mechanical
strength, resulting in different TBHA’s G* at STA and LTA conditions. However, during
the LTA aging phase, the age-hardening effect of TBHA plays a dominant role, increasing
elasticity and G*.

3.3. Evaluation of δ

The δ values for TBHA are shown in Figure 4. As shown in Figure 4, the δ of
0T_3S_0.1Sul, 5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 20T_3S_0.2Sul in virgin
condition are 67.95, 70.14, 69.24, 67.9, and 66.09◦, respectively. The above results show
that the δ of TBHA is generally higher than 0T_3S_0.1Sul at 76 ◦C, except 20T_3S_0.2Sul
and 15T_3S_0.2Sul. The δ of 0T_3S_0.1Sul, 5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul,
and 20T_3S_0.2Sul in STA are 75.79, 84.97, 76.87, 79.11, and 75.35◦, respectively. Moreover,
the δ of 0T_3S_0.1Sul, 5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 20T_3S_0.2Sul
in LTA is 78.89, 76.84, 75.52, 77.83, and 75.36◦, respectively. The δ ranking of binders is
5T_3S_0.2Sul > 15T_3S_0.2Sul > 10T_3S_0.2Sul > 0T_3S_0.1Sul > 20T_3S_0.2Sul in STA con-
dition, and the ranking of δ values of TBHA is 0T_3S_0.1Sul > 15T_3S_0.2Sul > 5T_3S_0.2Sul
> 10T_3S_0.2Sul > 20T_3S_0.2Sul in LTA condition. The results show that δ increases after
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STA for TBHA and becomes smaller after LTA, which is the opposite of the rule after G*
aging, indicating that TBHA softens and then hardens from STA to LTA.
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3.4. Evaluation of G*/sin δ

The G*/sin δ of TBHA is summarized in Figure 5. The G*/sin δ of 0T_3S_0.1Sul,
5T_3S_0.2Sul, 10T_3S_0.2Sul, 15T_3S_0.2Sul, and 20T_3S_0.2Sul in virgin condition are
1484, 1186, 1326, 1331, and 1424 Pa, respectively. The above results show that the G*/sin δ
of TBHA has decreased compared to 0T_3S_0.1Sul. The G*/sin δ sequence of TBHA after
aging is the same as that of G*. The G*/sin δ of TBHA decreases after STA and becomes
larger after LTA.
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3.5. Evaluation of G′, G′′, η′, and η′′

G′ represents the energy stored and releasable by the material under alternating
stress, reflecting the elastic component of the bitumen. The G′′ reflects the energy dis-
sipated in the form of heat due to internal friction during deformation, reflecting the
viscous component of the bitumen. Considering the modified bitumen as a linear vis-
coelastic body, the complex viscosity (η) obtained under stress can be broken down into
two parts: one part is the imaginary part η′ of the complex viscosity, which represents
the contribution of the purely elastic part of the modified bitumen. The other part is the
real part η′′ of the complex viscosity, representing the contribution of the pure viscous
part of the modified bitumen. The G′ and G′′ of binders before and after STA and LTA are
presented in Table 3, and η′ and η′′ of binders before and after STA and LTA are shown
in Table 4. In Table 3, the G* of 20T_3S_0.2Sul is higher than that of the other TBHA at
virgin status. The ranking of binders’ G′ at virgin status is 5T_3S_0.2Sul < 10T_3S_0.2Sul <
15T_3S_0.2Sul < 0T_3S_0.1Sul < 20T_3S_0.2Sul, and the ranking of binders’ G′′ at virgin
status is 5T_3S_0.2Sul < 15T_3S_0.2Sul < 10T_3S_0.2Sul < 20T_3S_0.2Sul < 0T_3S_0.1Sul.
The G′ and G′′ of binders are in the same order at STA status, which is 5T_3S_0.2Sul <
15T_3S_0.2Sul < 20T_3S_0.2Sul < 10T_3S_0.2Sul < 0T_3S_0.1Sul, indicating that at STA
status, the elastic component and the viscous component of the bitumen is less than that of
0T_3S_0.1Sul. As the aging level changes from STA to LTA, the G′ and G′′ of the binders
become larger, indicating the elastic component and the viscous component of the TBHA
and 0T_3S_0.1Sul become larger from STA to LTA. In addition, the G′ and G′′ of TBHA
binders at STA status are also less than that of TBHA binders at virgin status. The η′ and
η′′ of TBHA before and after STA and LTA are presented in Table 4. For the same binder
at virgin status, STA status, and LTA status, the rule of variation of G′ coincides with the
rule of variation of its η′′, and the rule of change in G′′ is the same as that of η′. The above
results show that from virgin status to LTA status, the elastic component and the viscous
component of the TBHA and 0T_3S_0.1Sul decrease and then increase. This is due to the
increased asphaltene in the TBHA and 0T_3S_0.1Sul after aging.

Table 3. G′ and G′′ of Binders.

Binder Type
Virgin Status STA Status LTA Status

G′, Pa Rank G′′, Pa Rank G′, Pa Rank G′′, Pa Rank G′, Pa Rank G′′, Pa Rank

0T_3S_0.1Sul 516 2 1274 1 338 1 1336 1 569 2 2896 1

5T_3S_0.2Sul 379 5 1049 5 62 5 700 5 516 4 2208 3

10T_3S_0.2Sul 440 4 1159 3 258 2 1106 2 648 1 2511 2

15T_3S_0.2Sul 464 3 1142 4 181 4 938 4 462 5 2144 4

20T_3S_0.2Sul 528 1 1190 2 255 3 976 3 548 3 2097 5

Table 4. η′ and η′′ of Binders.

Binder Type
Virgin Status STA Status LTA Status

η′, Pa·s Rank η′′, Pa·s Rank η′, Pa·s Rank η′′, Pa·s Rank η′, Pa·s Rank η′′, Pa·s Rank

0T_3S_0.1Sul 127.4 1 51.6 2 133.6 1 33.8 1 289.6 1 56.9 2

5T_3S_0.2Sul 104.9 5 37.9 5 70.0 5 6.2 5 220.8 3 51.6 4

10T_3S_0.2Sul 115.9 3 44.0 4 110.6 2 25.8 2 251.1 2 64.8 1

15T_3S_0.2Sul 114.2 4 46.4 3 93.8 4 18.1 4 214.4 4 46.2 5

20T_3S_0.2Sul 119.0 2 52.8 1 97.6 3 25.5 3 209.7 5 54.8 3
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3.6. Evaluation of Jnr0.1 and Jnr3.2

The Jnr index correlates well with the high-temperature performance of asphalt mixes.
lower Jnr values indicate better resistance to high temperature rutting [37]. Jnr at 0.1 and
3.2 kPa were recorded as Jnr0.1 and Jnr3.2. As shown in Figures 6 and 7, the sequence of
Jnr0.1 and Jnr3.2 of TBHA before and after STA and LTA is the same as that of δ. The Jnr0.1
and Jnr3.2 of TBHA are generally higher than 0T_3S_0.1Sul at 76 ◦C, and the Jnr0.1 and
Jnr3.2 of TBHA increase after STA and become smaller after LTA.
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3.7. Evaluation of R0.1, R3.2, Jnr-diff, and Rdiff

The higher the R value, the higher the elastic deformation capacity of the asphalt
material. R0.1 and R3.2 of binders at virgin status, STA status, and LTA status are presented
in Table 5, which shows that the R0.1 and R3.2 of the same binder decrease from virgin
status to LTA status. The R0.1 and R3.2 of TBHA at virgin status are lower than that of
0T_3S_0.1Sul. In addition, the ranking of R0.1 and R3.2 at STA status both are 5T_3S_0.2Sul
< 15T_3S_0.2Sul < 10T_3S_0.2Sul < 0T_3S_0.1Sul < 20T_3S_0.2Sul, and the ranking of
R0.1 and R3.2 at LTA status both are 0T_3S_0.1Su l < 15T_3S_0.2Sul < 5T_3S_0.2Sul <
10T_3S_0.2Sul < 20T_3S_0.2Sul, which indicates that compared with 0T_3S_0.1Sul, aging
has less impact on the percent recovery of TBHA. This is due to the fact that CR in TBHA
can have an oxygen-barrier effect to improve its aging resistance.

Table 5. R0.1 and R3.2 of Binders.

Binder Type
Virgin Status STA Status LTA Status

R0.1, % Rank R3.2, % Rank R0.1, % Rank R3.2, % Rank R0.1, % Rank R3.2, % Rank

0T_3S_0.1Sul 96.57 1 84.36 1 28.58 2 10.12 2 3.35 5 2.88 5

5T_3S_0.2Sul 89.17 5 51.75 2 0 5 0 5 18.78 3 5.39 3

10T_3S_0.2Sul 89.95 4 51.73 3 22.88 3 5.76 3 21.77 2 6.91 2

15T_3S_0.2Sul 93.50 3 45.92 4 20.47 4 2.54 4 18.63 4 4.23 4

20T_3S_0.2Sul 95.00 2 37.50 5 55.14 1 12.90 1 37.31 1 9.60 1

The stress sensitivity index (Jnr-diff, and Rdiff) reflects the sensitivity of the mechanical
response of the bituminous material to different stress levels, and the higher the stress
sensitivity index, the more significant the non-linear characteristics of the material during
the transition from low- to high-stress levels. Jnr-diff and Rdiff of binders at virgin status,
STA status, and LTA status are shown in Table 6. As illustrated in Table 6, the Jnr-diff values
of all TBHA show a decreasing trend from virgin status to LTA status, indicating that
aging reduces the stress sensitivity of TBHA to Jnr. In addition, Rdiff values become bigger
from virgin status to LTA status. This indicates that the stress sensitivity of the R of TBHA
increases after LTA. This is because, after LTA, SBS undergoes degradation and CR acts as a
skeleton in TBHA, resulting in an increased stress sensitivity of TBHA.

Table 6. Jnr-diff and Rdiff of Binders.

Binder Type
Virgin Status STA Status LTA Status

Jnr-diff, % Rank Rdiff, % Rank Jnr-diff, % Rank Rdiff, % Rank Jnr-diff, % Rank Rdiff, % Rank

0T_3S_0.1Sul 294.00 5 12.64 5 44.67 4 64.60 4 14.38 5 14.18 5

5T_3S_0.2Sul 349.18 4 41.97 4 13.08 5 0 5 33.19 4 71.31 3

10T_3S_0.2Sul 366.93 3 42.49 3 39.30 2 74.80 3 35.49 3 68.27 4

15T_3S_0.2Sul 752.97 2 50.89 2 41.27 2 87.62 1 36.66 2 77.30 1

20T_3S_0.2Sul 1280.95 1 60.52 1 108.60 1 76.61 2 63.85 1 74.26 2

3.8. Correlation Analysis

In order to further study the relationship between TBHA chemical and rheological
indexes before and after STA and LTA, Pearson correlation analysis was carried out using
SPSS software. The Pearson correlation of TBHA chemical and rheological indexes before
and after STA and LTA are presented in Table 7. As shown in Table 7, there are good
correlations between ICA, G*, G′′, and η′, and good correlations between G*, G*/sin δ, G′′,
and η′. However, the correlations between G*, Jnr0.1, Jnr3.2, Jnr-diff, R0.1, R3.2, and Rdiff
are not high, indicating that the rheological indexes of the DSR oscillation test and MSCR
test index of TBHA binders before and after STA and LTA are not well correlated, and the
rheological indexes of the DSR oscillation test and ICA indexes of the ATR-FTIR test of
TBHA before and after STA and LTA are better correlated.
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Table 7. Pearson Correlation Analysis Results Index.

Index Type ICA G* δ G*/sin δ G′ G′′ η′ η′′ Jnr0.1 Jnr3.2 Jnr-diff R0.1 R3.2 Rdiff

ICA
P 1 0.902 0.518 0.882 0.463 0.918 0.918 0.463 0.080 −0.050 −0.543 −0.709 −0.650 0.205

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

G*
P 0.902 1 0.145 0.999 0.776 0.999 0.999 0.776 −0.276 −0.421 −0.277 −0.389 −0.307 0.068

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

δ
P 0.518 0.145 1 0.099 −0.494 0.187 0.187 −0.494 0.865 0.799 −0.781 −0.945 −0.842 −0.002

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

G*/sin δ
P 0.882 0.999 0.099 1 0.805 0.996 0.996 0.805 −0.314 −0.458 −0.238 −0.346 −0.267 0.062

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

G′
P 0.463 0.776 −0.494 0.805 1 0.747 0.747 1.000 −0.752 −0.846 0.253 0.250 0.266 0.046

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

G′′
P 0.918 0.999 0.187 0.996 0.747 1 1.000 0.747 −0.240 −0.386 −0.313 −0.427 −0.343 0.073

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

η′
P 0.918 0.999 0.187 0.996 0.747 1.000 1 0.747 −0.240 −0.386 −0.313 −0.427 −0.343 0.073

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

η′′
P 0.463 0.776 −0.494 0.805 1.000 0.747 0.747 1 −0.752 −0.846 0.253 0.250 0.266 0.046

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Jnr0.1
P 0.080 −0.276 0.865 −0.314 −0.752 −0.240 −0.240 −0.752 1 0.976 −0.495 −0.715 −0.620 −0.215

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Jnr3.2
P −0.050 −0.421 0.799 −0.458 −0.846 −0.386 −0.386 −0.846 0.976 1 −0.395 −0.626 −0.607 −0.111

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Jnr-diff

P −0.543 −0.277 −0.781 −0.238 0.253 −0.313 −0.313 0.253 −0.495 −0.395 1 0.759 0.558 −0.069

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

R0.1
P −0.709 −0.389 −0.945 −0.346 0.250 −0.427 −0.427 0.250 −0.715 −0.626 0.759 1 0.908 −0.124

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

R3.2
P −0.650 −0.307 −0.842 −0.267 0.266 −0.343 −0.343 0.266 −0.620 −0.607 0.558 0.908 1 −0.393

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Rdiff

P 0.205 0.068 −0.002 0.062 0.046 0.073 0.073 0.046 −0.215 −0.111 −0.069 −0.124 −0.393 1

N 15 15 15 15 15 15 15 15 15 15 15 15 15 15

4. Conclusions

The chemical and rheological properties of TBHA before and after STA and LTA were
studied. The following conclusions were drawn:

• ATR-FTIR analysis shows the ∆ICA of the TBHA binder is less than that of the
0T_3S_0.1Sul after the STA and LTA, and the superior anti-aging properties of TBHA
(both STA and LTA) are further demonstrated.

• During the STA, the SBS modifier in the TBHA degrades and makes the bitumen
predominantly soft, however, during the LTA, the hardening of the bitumen plays a
dominant role and increases its elasticity.

• Before and after STA and LTA, the rheological indexes of the DSR oscillation test and
the MSCR test indexes of the TBHA binder do not correlate well, but the rheological
indexes of the DSR oscillation test and the ICA indexes of the ATR-FTIR test of the
TBHA binder correlate better.
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