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SUMMARY

During the primary oil recovery, wells are drilled into the reservoir, and due to natural
driving forces, the oil flows to the surface through these production wells. Unfortunately,
the production of oil in this first stage is typically between only five and ten percent of
the oil in place in the reservoir. In the secondary oil recovery some wells (used in the
previous stage for production) are converted into injection wells and water or gas are
injected into the reservoir to displace the oil to the surface. However, even after primary
and secondary oil recovery about 60% of the oil-in-place remains in the reservoir.

Microbial Enhanced Oil Recovery (MEOR) is a tertiary enhanced oil recovery tech-
nique used to extract the remaining oil after the secondary recovery. MEOR technique
was proposed since the 1920’s however it was until 1940’s that it was considered seriously.
In MEOR, bacteria and the resulting bioproducts are used to increase the mobilization
of oil in the reservoir. Bacterial growth can produce gases that increase the pressure of
the reservoir and decrease the viscosity of oil. Biosurfactants decrease the oil viscosity
which may lead to an increase of the mobility of oil. Furthermore, bacteria can selec-
tively plug the high permeability zones which changes the direction of water flow to the
areas where the oil is still trapped. Selective plugging by bacteria is a process that is used
simultaneously with a waterflooding operation. Among all the effects of biofilm growth,
selective plugging and interfacial tension reduction are thought to have the greatest im-
pact on oil recovery. The applicability of selective plugging to divert the flow of water has
been shown in laboratory experiments. However, on the field scale the applicability of
MEOR techniques is still under investigation since the MEOR techniques in pilot fields
have produced different outcomes.

In this study, we present a new 2D microscopic pore network biofilm growth model
that takes into account that nutrients might not be able to penetrate the biofilm com-
pletely. This phenomenon occurs if the consumption of nutrients is faster than the dif-
fusion of them. We incorporate in the model a characteristic volume related to the pen-
etration depth of the nutrients within the biofilm. This inclusion allows a more accurate
description of the biofilm growth in porous media. In addition, we model the continu-
ous spreading of the biofilm through the whole network, which is a phenomenon that
has been observed experimentally. Our numerical experiments show that the nutrients
spread fast throughout the whole network during the early stages of the process. Since
the nutrients are present in the whole network, the biofilm grows and spreads to the
neighbouring tubes. For a longer period of time the biofilm grows uniformly through
the network, however after this, the depletion of nutrients is observed and the biofilm
grows preferentially near the inlet of the network causing the complete blockage of the
network. Our model describes the transition between uniform biofilm growth and het-
erogeneous biofilm growth.

Furthermore, we determine under which conditions this microscopic model of biofilm
growth can be used for the description of the biofilm growth on a larger scale. For this

vii



viii SUMMARY

reason, we study the influence of parameters like the number of nodes in the network,
the size of the domain of computation and the inlet concentration of nutrients on the
relation between the porosity and permeability. We obtained the following results. If the
biofilm growth is heterogeneous, then the relation between permeability and porosity is
not unique and hence upscaling is not possible. However, with certain inlet concentra-
tions it is possible to obtain uniform biofilm growth; in this case upscaling is possible. We
use the Damkhöler number to determine the upscalability of the biofilm growth process.
The simulation shows that there is a transition region between uniform growth and het-
erogeneous growth. This transition occurs within the same range of Damköhler number
for all the cases studied. (different number of nodes, size of the domain of computa-
tion and different concentration of nutrients). If the Damköhler number is lower than
the transition value, then biofilm growth is uniform for the entire process and therefore
upscaling is possible.

Thereafter, we extend our 2D model to a 3D biofilm growth model. The porous
medium is represented as a 3D cubic network. We study the influence of the number
of nodes in the z direction on the porosity-permeability relation and on the criteria for
upscalability that were obtained in 2D. In addition, we incorporate a log-normal distri-
bution for the radii of the tubes in the network. For the heterogeneous biofilm growth
regime, we obtained that as the number of nodes in the z direction increases the amount
of biomass needed to block the network converges to a limit value. We obtained that the
transition between homogeneous and heterogeneous biofilm growth for the 3D cases
occurs approximately within the same range of Damköhler numbers as in the 2D cases.
Furthermore, we investigate the influence of the log-normal radius distribution on the
biofilm growth. It was observed that if the variance of the radius is large then the amount
of biomass needed to block the network decreases. However, also in this case the transi-
tion between the homogeneous and the heterogeneous regime takes place in the same
Damköhler number regime as in Chapter 3.

Additionally, we use a 2D network model to study the influence of biofilm growth on
the flow diversion of water. We model two regions having different permeability. We use
a log-normal distribution for the radii of the tubes. The average radius was larger for the
high permeability zone than in the low permeability zone. Since we are interested in the
production of oil from the low permeability zones which is hard to accomplish, we com-
puted the outflow of water from the low permeability region during the biofilm growth
process. We obtained that the flux from the low permeability region increased 60% dur-
ing a certain period. However, the flux through the low permeability region starts to
decrease due to the accumulation of biofilm. Therefore it is suggested that the injection
of nutrients has to be stopped in time to prevent clogging of the network. The increase
of the outflow from the low permeability region may indicate a successful flow diversion
and hence an increase of the efficiency of waterflood.

Finally, we applied the porosity-permeability relation obtained via the random biofilm
growth to two poroelasticity problems. We study the applicability of this microscopic re-
lation on a macro-scale problem. In the first problem, a high pressure is imposed in the
inlet of the porous medium package. This high pressure causes a movement of the grains
to towards the outlet and consequently a change in the local porosity of the medium. In
the second problem, the package is squeezed in the middle on the top and bottom edges
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of the domain. The network inspired relations were obtained using a quadrangular net-
work, a triangular structured network and a triangular unstructured network in 2D and
a cubic network in 3D. We compared the results obtained with the network inspired re-
lations to the results obtained via the Kozeny-Carman equation which is often used in
this kind of problems. For the set of parameters chosen, we noticed that the permeabil-
ity computed with the network-inspired relations are higher than the one obtained with
Kozeny-Carman. Furthermore, we observe that the porosity is very similar for the cases
studied. A possible explanation for this behaviour can be that the relation, between the
velocity field and the change of the displacements in time is not strong enough to lead to
significant changes in the porosity profile. The network inspired porosity-permeability
relation could be used as an alternative to the Kozeny-Carman equation.





SAMENVATTING

Tijdens de primaire oliewinning worden sommige putten in het reservoir geboord en
vanwege natuurlijke aandrijfkrachten stroomt de olie via de productieputten naar de
oppervlakte. Helaas is de productie van olie tijdens deze eerste winning slechts tussen
de vijf en de tien procent van de totale hoeveelheid aanwezige olie. In de secundaire
oliewinning worden sommige boorputten (die in de vorige fase zijn gebruikt voor pro-
ductie) omgezet in injectieputten en wordt water of gas in de boorput geïnjecteerd om
de olie naar het oppervlak te verplaatsen. Echter, zelfs na de primaire en secundaire
oliewinning blijft ongeveer 60

Microbieel versterkte oliewinning (EN: MEOR- Microbial Enhanced Oil Recovery) is
een tertiaire oliewinningstechniek die wordt gebruikt om de resterende olie na het se-
cundaire herstel te extraheren. MEOR werd voorgesteld in de jaren ‘20, maar pas vanaf
de 40’er jaren serieus is beschouwd. In MEOR worden bacteriën en de daaruit voortko-
mende bioproducten gebruikt om de mobilisatie van olie in het reservoir te vergroten.
Bacteriële groei kan gassen produceren die de druk op het reservoir verhogen en de vis-
cositeit van de olie verlagen. Biosurfactanten verlagen de viscositeit van de olie, wat kan
leiden tot een toename van de mobiliteit van olie. Bovendien kunnen bacteriën selec-
tief zones met hoge permeabiliteit dichtstoppen, wat ervoor zorgt dat de richting van
de waterstroom verandert naar gebieden waar de olie nog steeds gevangen zit. Selec-
tieve verstopping door bacteriën is een proces dat tegelijkertijd met een overstromings-
operatie wordt ingezet. Van alle effecten van biofilmgroei wordt gedacht dat selectieve
verstopping en reductie van grensvlakspanning de grootste impact hebben op oliewin-
ning. De toepasbaarheid van selectieve verstopping om de stroming van water te veran-
deren is aangetoond in laboratoriumexperimenten. De toepasbaarheid van de MEOR-
technieken op de veldschaal wordt echter nog onderzocht, omdat de MEOR-technieken
in proefvelden verschillende resultaten hebben opgeleverd. In hoofdstuk 1 geven we een
probleembeschrijving van MEOR.

In deze studie presenteren we een nieuw 2D microscopisch porienetwerk biofilm
groeimodel, dat rekening houdt met het feit dat voedingsstoffen mogelijk niet volledig
in de biofilm door kunnen dringen. Dit fenomeen treedt op wanneer de consumptie van
voedingsstoffen sneller is dan de diffusie ervan. In het model nemen we een karakteris-
tiek volume op, dat is gerelateerd aan de penetratiediepte van de voedingsstoffen in de
biofilm. Dit maakt een meer nauwkeurige beschrijving van de biofilmgroei in poreuze
media mogelijk. Daarnaast modelleren we de continue verspreiding van de biofilm door
het hele netwerk, een fenomeen dat experimenteel is waargenomen. Onze numerieke
experimenten tonen aan dat de voedingsstoffen zich tijdens de vroege stadia van het
proces snel door het hele netwerk verspreiden. Doordat de voedingsstoffen in het hele
netwerk aanwezig zijn, groeit de biofilm en verspreidt deze zich naar de naburige bui-
zen. Gedurende een langere periode groeit de biofilm gelijkmatig in het netwerk, maar
hierna wordt de uitputting van voedingsstoffen waargenomen en groeit de biofilm bij

xi
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voorkeur dicht bij de ingang van het netwerk, wat een volledige blokkering van het net-
werk veroorzaakt. Ons model beschrijft de overgang tussen gelijkmatige biofilmgroei en
een heterogene biofilmgroei.

Voorts bepalen we onder welke omstandigheden dit microscopische model van bio-
filmgroei kan worden gebruikt voor de beschrijving van de biofilmgroei op grotere schaal.
Om deze reden bestuderen we de invloed van parameters zoals het aantal knooppun-
ten in het netwerk, de grootte van het berekeningsdomein en de inlaatconcentratie van
voedingsstoffen op de relatie tussen de porositeit en de permeabiliteit. We hebben de
volgende resultaten verkregen. Als de biofilmgroei heterogeen is, dan is de relatie tussen
permeabiliteit en porositeit niet uniek en is opschaling dus niet mogelijk. Met bepaalde
inlaatconcentraties is het echter mogelijk om een uniforme biofilmgroei te verkrijgen;
in dat geval is opschaling mogelijk. We gebruiken het Damkhöler-getal om de opschaal-
baarheid van het biofilmgroeiproces te bepalen. De simulatie laat zien dat er een over-
gangsgebied bestaat tussen uniforme groei en heterogene groei. Deze overgang vindt in
alle bestudeerde gevallen plaats binnen hetzelfde bereik van het Damköhler-getal (ver-
schillend aantal knooppunten, grootte van het rekengebied en verschillende concentra-
ties van voedingsstoffen). Als het Damköhler-getal lager is dan de overgangswaarde, dan
is de biofilmgroei in het gehele proces uniform en is opschaling daarom mogelijk.

Daarna, breiden we ons 2D-model uit naar een 3D-biofilmgroeimodel. Het poreuze
medium wordt weergegeven als een 3D kubiek netwerk. We bestuderen de invloed van
het aantal knooppunten in de z-richting op de porositeit-permeabiliteitsrelatie en op
de criteria voor opschaalbaarheid die werden verkregen in 2D. Daarnaast nemen we
een lognormale verdeling voor de straal van de buizen in het netwerk op. Voor het he-
terogene biofilmgroeistelsel verkregen we dat naarmate het aantal knooppunten in de
z-richting toeneemt, de hoeveelheid biomassa die nodig is om het netwerk te blokke-
ren convergeert naar een grenswaarde. We hebben vastgesteld dat de overgang tussen
homogene en heterogene biofilmgroei voor de 3D-gevallen ongeveer binnen hetzelfde
bereik van het Damköhler-getal voorkomt als in de 2D-gevallen. Verder onderzoeken
we de invloed van de lognormale straalverdeling op de biofilmgroei Het is waargeno-
men dat als de afwijking van de straal groot is, de hoeveelheid biomassa die nodig is om
het netwerk te blokkeren afneemt. Echter, ook in dit geval vindt de overgang tussen het
homogene en het heterogene stelsel plaats in hetzelfde Damköhler-getal stelsel als in
hoofdstuk 3.

Bovendien, gebruiken we een 2D-netwerkmodel om de invloed van biofilmgroei op
verandering van de waterstroom te bestuderen. We modelleren twee gebieden met een
verschillende permeabiliteit. We gebruiken een lognormale verdeling voor de straal van
de buizen. De gemiddelde straal was groter voor de zone met een hoge permeabiliteit
dan in de zone met een lage permeabiliteit. Omdat we geïnteresseerd zijn in de pro-
ductie van olie uit de lage permeabiliteitszones, wat erg moeilijk is, berekenden we de
uitstroom van water uit het gebied met lage permeabiliteit tijdens het groeiproces van
de biofilms. We verkregen dat de flux uit het gebied met lage permeabiliteit in een be-
paalde periode 60

Tenslotte, hebben we de via de willekeurige biofilmgroei verkregen
porositeit-permeabiliteitsrelatie toegepast op twee poro-elasticiteitsproblemen. We be-
studeren de toepasbaarheid van deze microscopische relatie op een macro-schaal pro-
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bleem. Bij het eerste probleem wordt een hoge druk opgelegd in de inlaat van het po-
reuze mediumpakket. Deze hoge druk veroorzaakt een beweging van de korrels naar
de uitlaat en daarmee een verandering in de lokale porositeit van het medium. Bij het
tweede probleem wordt het pakket in het midden aan de boven- en onderrand van het
domein dichtgedrukt. De op netwerken geïnspireerde relaties werden verkregen met
behulp van een vierhoekig netwerk, een driehoekig gestructureerd netwerk en een drie-
hoekig ongestructureerd netwerk in 2D en een kubisch netwerk in 3D. We hebben de
verkregen resultaten vergeleken met de op het netwerk geïnspireerde relaties met de
resultaten verkregen via de Kozeny-Carman-vergelijking, die vaak bij dit soort proble-
men wordt gebruikt. Voor de gekozen set van parameter zagen we dat de permeabiliteit
berekend met de op het netwerk geïnspireerde relaties hoger is dan die verkregen met
Kozeny-Carman. Verder zien we dat de porositeit voor de onderzochte gevallen erg ver-
gelijkbaar is. Een mogelijke verklaring hiervoor kan zijn dat de relatie tussen het snel-
heidsveld en de verandering van de verplaatsingen in de tijd niet sterk genoeg is om
tot significante veranderingen in het porositeitsprofiel te leiden. De door het netwerk
geïnspireerde porositeit-permeabiliteitsrelatie zou kunnen worden gebruikt als een al-
ternatief voor de Kozeny-Carman-vergelijking.





1
INTRODUCTION

The energy resources of the world still rely heavily on oil production [1]. In the primary
recovery stage the oil is extracted from the reservoir by drilling a well and by natural pres-
sure part of the oil, mainly (dissolved) gas, comes out to the surface. In this stage only
5-10% of the oil-in-place is obtained. In the secondary recovery stage some production
wells are converted into injection wells and water or gas is injected into the reservoir
to physically displace the oil to the surface. However, after primary and secondary oil
recovery 60% of the total oil-in-place is still trapped in the reservoir.

The mobilization of oil is mainly determined by two factors: the capillary number
and the mobility ratio [2]. The capillary number is defined as, Nc = νµ/σ, in which ν is
the Darcy velocity [m/s], µ is the viscosity and σ is the interfacial tension. This number
represents the effects of the viscous forces and the surface tension between two immisci-
ble fluids. One way to improve oil recovery is by increasing the capillary number which
is usually done by decreasing the interfacial tension σ via the injection of surfactants
or the application of heat. The mobility ratio is defined as M = λi ng /λed , here λi ng is
the mobility of the displacing fluid and λed is the mobility of the displaced fluid [2]. If
the mobility ratio is larger than one, the displacing fluid flows easier than the displaced
fluid, which causes fingering of the displacing fluid. Consequently, the displacing fluid
by-passes the oil residual regions. Another way to improve oil recovery is by decreasing
the mobility ratio such that the fingering effect is reduced. For this reason, enhanced
oil recovery (EOR) methods aiming at decreasing the mobility ratio and increasing the
capillary number are often used after secondary oil recovery.

EOR methods can be subdivided into the following categories: thermal methods,
chemical methods, miscible methods, foam methods and microbial enhanced oil re-
covery (MEOR) methods. In thermal processes, oil recovery is carried out by the reduc-
tion of the viscosity caused by high temperatures. The main methods used in thermal
processes are steam injection and in-situ combustion. In chemical flooding, a chemi-
cal substance is added to the displacing water to stimulate oil mobility by reducing the
interfacial tension. The most common chemical substances used are polymers, surfac-
tants and alkaline solutions [2]. In miscible flooding a displacing fluid that is miscible
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with the oil in the reservoir is used. In this case, interfacial tension is reduced to nearly
zero. In foam flooding a surfactant is injected into the reservoir together with a gas such
as CO2 or N2 to produce foam in-situ. Foam is used to improve gas sweep efficiency.

Microbial Enhanced Oil Recovery (MEOR) is a technique in which the growth of bac-
teria and the resulting by-products are used to increase residual oil production as a ter-
tiary oil recovery method. There are two main approaches for MEOR. In the ex-situ
method the desired by-products are produced outside of the field and then they are in-
jected into the well. In this approach, the microbes are isolated in the laboratory and
subsequently injected into the well to enhance the production of oil from the reservoir
[1]. In the second approach, the in-situ methods use the indigenous microorganisms to
obtain a large portion of the trapped oil. In this MEOR technique bacterial population
growth is supported by the injection of nutrients into the reservoir [3].

Microbes enhance oil displacement via various processes: interfacial tension reduc-
tion, a decrease of the viscosity of oil [4], rock wettability change and an increase of the
waterflood sweep efficiency caused by selective plugging [5]. The interfacial tension re-
duction is caused by microorganisms that produce amphiphilic compounds and biosur-
factants [5]. In the process of wettability alteration, the microorganisms form a biofilm
that grows around the rock of the porous medium changing the wettability. Depending
on the biofilm characteristics the reservoir’s wettability might change to a more water-
wet or more oil-wet condition [5]. During selective plugging, bacteria grow and adhere
within a self-produced matrix of extra-cellular polymeric substances (EPS) to the walls
of the pores of high permeability zones. The adhering bacteria and the self-produced
matrix are referred to as biofilm. Biofilm growth plugs the pores in high-permeability
zones diverting the water-flood from these thief zones towards oil-rich areas. Among
these mechanisms interfacial tension reduction and selective plugging are thought to
have the greatest impact on recovery [3, 4]

The oil recovery via MEOR at field scale has had different outcomes [3, 6]. However,
the applicability of MEOR techniques to increase oil extraction has been demonstrated
in laboratory experiments [6–8]. Raiders et al. [9] show that biofilm accumulates in high
permeability zones, diverting the water flood towards oil trapped zones. This suggests
that MEOR can be a successful tertiary oil recovery technique.

1.1. MEOR MODELLING
The success of MEOR techniques depends on a good understanding of microbial activity
in porous media, both quantitatively and qualitatively. For this reason, it is vital to de-
velop mathematical and numerical models to predict the bacterial population growth,
nutrients transport and the effects of selective plugging on porosity and permeability in
order to develop a proper field strategy [3]. Several numerical models have been pro-
posed to describe biofilm growth in porous media [10–17]. However, usually in macro-
scopic models [18] it is assumed that the biofilm grows uniformly through the domain
of computation and the microscopic heterogeneity produced by biofilm growth is not
taken into account. Therefore pore-scale models have been used to provide a consti-
tutive equation for macro-scale models [17]. Among pore-scale models, Pore Network
Models (PNM) have been extensively used to describe flow and transport in porous me-
dia. In this thesis, we are going to use a network model to describe the biofilm growth in
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a porous medium.

In general, MEOR methods are difficult to model due to the different scales involved
in the process [19]. It might be impractical to use all the data obtained at the micro-scale
to describe MEOR at the macro-scale. For this reason effective parameters and constitu-
tive equations are used to replace the microscopic details of the system [19, 20]. In gen-
eral the effective parameters are obtained via an up-scaling process. There exist different
up-scaling processes: averaging volume methods, homogenization and statistical proce-
dures. In the homogenization process it is assumed that there exists spatial periodicity
in the medium. Furthermore, this medium is subjected to periodic boundary conditions
and it is supposed that the period is very small compared to the size of the studied do-
main [21]. Van Duijn et al. [20] obtained effective equations for two-phase flow in porous
media when the medium consists of alternating layers with two different permeabilities.
They found a good agreement between the effective solution and the average solution
that takes into account the details of the microstructure. In the statistical methods the
effective variables are considered as random functions in space. The probability distri-
bution of the effective permeability is obtained via stochastic differential equations [22].
In Cliffe et al. [23] the permeability is described as a log-normal random distribution
field. They computed the expectation of the pressure given the random distribution for
the permeability using a Quasi-Monte Carlo method.

In the existing biofilm pore network models from the previous paragraph there are
some important phenomena that are not taken into account that are vital for a proper
understanding of biofilm growth in porous media. Firstly, the biofilm growth rate is com-
monly assumed to be proportional to the volume of biomass. Nevertheless, the nutrients
might not be available in the entire volume of the biofilm. This phenomenon occurs if
the consumption of nutrients is faster than the diffusion rate within the biofilm so that
the (diffusion) penetration of the nutrients into the biofilm proceeds at a slower rate
than the other processes [24, 25]. Secondly, it is usually assumed that microbial activity
takes place only in the interior of the tubes and that there is no spreading of biomass be-
tween neighbouring tubes [15–17, 26, 27]. However, experiments show that the biomass
or biofilm grows continuously, extending through the whole medium [28]. Finally, the
up-scaling of the micro-scale biofilm growth requires an equivalent permeability as a
constant permeability that represents a heterogeneous medium. However, in general, it
is impossible to obtain a one-to-one mapping between the real heterogeneous medium
and the homogeneous up-scaled medium. Therefore the equivalence, that is the one-
to-one mapping, is defined in a limited sense [22].

The goal of this thesis is to obtain a better description of selective plugging caused by
biofilm growth in porous media in order to provide a new insight into the applicability
of MEOR techniques and to optimize MEOR techniques. For this purpose, we develop a
new micro-scale biofilm growth model that takes into account the likelihood of a non-
homogeneous distribution of nutrients within the biofilm and it describes the spreading
of the biofilm through the whole network. Then we discuss the effects of biofilm growth
on porosity and permeability and we set the conditions for up-scalability of these results
to the macro-scale. Further, we present a model of the kinetics of the flow diversion
caused by selective plugging. Finally, a network-inspired porosity-permeability relation
obtained via the random biofilm growth model was used to describe two poroelasticity
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A NETWORK MODEL FOR THE

BIOFILM GROWTH IN POROUS

MEDIA AND ITS EFFECTS ON

PERMEABILITY AND POROSITY

GROWTH MODEL

An accurate description of the effects of biomass growth in porous media at pore scale is
needed for a better understanding of MEOR at the field scale. The pore network models
of biofilm growth often ignore the possibility of spreading of biomass through the net-
work even though this phenomenon has been reported in laboratory experiments, e.g.
in experiments with biomass growth in glass beds. In addition, biofilm growth models
usually assume that the biofilm growth rate is proportional to the biofilm volume. This
assumption is only justified only if the nutrients are homogeneously distributed within
the biofilm volume which could be an oversimplification.

In this chapter we present a novel approach for the biofilm growth in porous me-
dia. We assume that there are two kinds of biofilm growth: biofilm growth in the inte-
rior of the tube and biofilm growth in the extremes of the tubes. The biofilm growth in
the extremes of the tube leads to the spreading of biomass to the neighbouring tubes.
This mechanism allows spreading of biomass through the whole network. In addition
we propose the existence of a characteristic volume which measures the penetration of
nutrients within the biofilm.

In Section 2.1 we are going to describe the state of the art of biofilm growth mod-
els at pore-scale. Then in the mathematical model Section 2.2, we are going to describe
the equations that model the transport of nutrients and the biofilm growth in the pore
network. Subsequently in the numerical method section 2.3 the numerical scheme used
to solve these equations is presented. After this, in the simulation results Section 2.4 we
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discuss the effects of biofilm growth on the permeability and the porosity of the network.
Additionally, in this section we compare the full model with two different biofilm growth
models in order to interpret the results obtained with the full biofilm growth model. Fi-
nally, we draw some conclusions in Section 2.5.

2.1. INTRODUCTION
The production of oil from the reservoir is initially accomplished by the internal pressure
of the reservoir. However, when the primary production declines some external forces
have to be applied, hence waterflooding or gas injection techniques are implemented to
extract oil from the reservoir. These injection schemes are called the secondary oil re-
covery production. Nevertheless, even after primary and secondary recovery two-thirds
of the oil are still trapped in the ground ([1]). The tertiary oil recovery extraction aims to
increase the mobility of the remaining oil. One of the tertiary (or enhanced) oil recovery
techniques is the Microbial Enhanced Oil Recovery (MEOR) which uses the growth of
bacteria and the resulting by-products in order to increase the oil production. Microbial
growth may enhance oil displacement by increasing the efficiency of the waterflood-
ing process, by reducing interfacial tension and by changing the rock wettability ([2, 3]).
([4]).

Since it is hard to quantify the relation between the successful application of MEOR
and parameters like the individual reservoir characteristics and the microbial activity,
the development of computational models is of vital importance. These models are
used to predict the bacterial growth and the in-situ regeneration of bioproducts in or-
der to develop a proper field strategy ([4]). The influence of biofilm growth on porous
media characteristics such as permeability and porosity has been modelled in several
studies ([5–11]). The mathematical description is based on a theoretical framework and
phenomenological relations obtained from experimental results ([5, 7, 9–12]). Biofilm
growth models include Darcy continuum models ([13, 14]), bacterially-based models
([10]), Lattice Boltzmann based simulations ([15, 16]) and Pore Network Models (PNM)
([5, 7, 9, 17–19]). Usually, in biofilm growth models the porous medium consists of three
components: the grains, the biofilm which grows on the walls of the solid grains and the
liquid in the pore space. The grains are assumed to be impermeable to the liquid and the
nutrients, therefore hydrodynamic model equations are written only for the liquid and
biofilm ([15]).

[20] showed experimentally the effect of the accumulation of biofilm on the poros-
ity, permeability and friction factor of the porous media. The porosity of the media de-
creased between 50% and 96% due to the accumulation of biofilm, while permeabil-
ity decreased between 92% and 98%. [21] obtained an analytic expression to describe
changes in the porous media as a result of biofilm growth in the continuum scale. How-
ever, in [21] it is assumed that biofilm growth proceeds uniformly through the network
which is an oversimplification according to laboratory experiments, ([22]). [6] model the
biofilm growth using a macroscopic approach. This model does not assume any specific
pattern for biofilm accumulation, instead it is based on macroscopic estimates of aver-
age biomass concentrations. [23] proposed a mathematical model for bioclogging that
takes into account the nonuniform microbial distribution of colonies which ranges from
micro-colonies to biofilm. However assuming uniform biofilm thickness in their model
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gives an overestimation of the bioclogging process ([24]). Therefore, pore network mod-
els and pore-scale models are needed to describe the growth of biomass and its effects
on the macroscopic properties of the media properly ([25]).

In PNMs, the porous medium is modelled by cylindrical interconnected tubes in
which water or any fluid can flow. The biofilm development is stimulated by the injec-
tion of nutrients into the network. Transport of nutrients takes place within an aqueous
phase and is described by a convection-diffusion-reaction equation. The reaction term
models the consumption of nutrients caused by bacterial population growth. The bac-
terial population will determine the development of biofilm in the pores of the medium.
This biofilm will grow and will change the radii of the pores, leading to porosity and
permeability reduction and hence to a modification in the flow pattern dynamics of the
fluid that carries the nutrients through the network ([5, 18, 19]). [8] studied the effects
of biofilm growth on porosity under starvation conditions. They show a good agreement
with experimental results and show the existence of a critical shear stress. [26] used a
pore network model to describe two-phase flow in porous media. They took into ac-
count the influence of the nodes of the network on the effective resistance of the fluids.
They used a coordination number distribution which allows a maximum coordination
number of 26. Additionally, they assigned a variety of cross-sectional shapes including
circular, rectangular and triangular. They claimed that the inclusion of the volume of
the nodes of the network affects the relation between the relative permeability and the
saturation of the fluids. Despite the relevance of their work, in their model, they did not
include the development of biofilm in the porous medium. In this study, as an approx-
imation, we disregard the volume of the nodes to avoid additional complications in the
model. [27] studied the effect of topology in the relative permeability of the networks.
They found that the relative permeability curves obtained with stochastic networks are
in good agreement with the ones obtained from imaged rock networks. The bacteria and
Extracellular Polymeric Substance (EPS) in porous media are often lumped together and
are represented as a continuous uniform layer of biomass attached on the surface of the
solid grains of the porous media ([7, 18, 19]). This uniform layer of biomass is referred to
as biofilm. Furthermore, the biofilm growth rate is usually assumed to be proportional
to the volume of biomass. Nevertheless, the nutrients might not be available in the en-
tire volume of the biofilm. This phenomenon occurs if the consumption of nutrients is
faster than the diffusion rate within the biofilm so that the (diffusion) penetration of the
nutrients into the biofilm proceeds at a slower rate than the other processes ([28, 29]).
Hence, the hypothesis that the nutrients are distributed over the whole volume of biofilm
is questionable. Therefore, we assume that biofilm growth occurs only in a limited vol-
ume where the concentration of nutrients is maximal.

Usually, in PNMs the microbial activity is assumed to exist only within the tubes and
no spread of biomass between neighbouring tubes is described ([5, 9, 17–19]). However,
experiments show that the biomass or biofilm continuously grows, extending through
the whole medium [22]. To model the inter-pore transport, [7] consider a spreading
potential among neighbouring tubes. The spreading of the biofilm is allowed once the
biomass has completely saturated the host pore. [19] modelled the colony growth by as-
suming that a tube in the network was completely full or empty. Hence a binary switch
mechanism is used to describe the spreading of biomass. The switch to completely filled



2

10
2. A NETWORK MODEL FOR THE BIOFILM GROWTH IN POROUS MEDIA AND ITS EFFECTS ON

PERMEABILITY AND POROSITY GROWTH MODEL

tubes is determined by the size of the tubes. However, they did not consider any ex-
change of biomass between neighbouring tubes. In our model, we describe the contin-
uous spreading of the biofilm between adjacent tubes by computing the spreading of
biomass from one pore to its neighbours, if there is a difference of volume of biomass
between neighbouring tubes.

In this study, we present a new biofilm growth model which takes into account that
nutrients cannot fully penetrate the biofilm since consumption of nutrients is faster than
the diffusion rate through the biofilm. We take into account that the biofilm growth is
limited within a thin penetration layer, in which bacteria are in direct contact with the
nutrients. In our model, there are two types of biofilm development: growth in the inte-
rior of the tube and growth at the extremes of the tube. Biofilm growth in the extremes of
the tube will lead to the spreading of the biofilm to the neighbouring tubes and through
the whole network. The currently proposed biofilm growth model approach has several
advantages over other models. Firstly, we incorporate the likely non-homogeneous dis-
tribution of the nutrients within the biofilm. Secondly, since biofilm growth takes place
mainly in the boundary between water and biofilm, the internal biofilm growth will nat-
urally stop if the tube is full of biofilm. Finally, the biofilm growth in the extremes of the
tubes leads to spreading of biomass through the whole network. In this model there is no
need to seed initially all the tubes in the network to observe the clogging of the network.
This paper is focused on the presentation of biofilm growth model in a pore network.
Future research might be the use of these results to obtain an alternate relation between
porosity and permeability. The up-scaling of these results is beyond the scope of this
paper.

2.2. MATHEMATICAL MODEL
We represent the porous medium as a 2D rectangular network composed of intercon-
nected cylindrical tubes. The point where these tubes are connected is called a node of
the network and is indexed as node ni . The tube between the node ni and n j is indexed
as the tube ti j (see Figure 2.1). We assume that the radius is the same for all the tubes
(which differs from previous studies because we want to express the spreading of the
biofilm in a simple way, the modelling of this phenomenon is explained later) and the
same length l . The number of tubes connected in each node is four for interior nodes,
three for boundary nodes and two for the nodes in the corners of the network.

We assume the bacteria and the biofilm are lumped together and hence we refer to
them as the single phase: biofilm. We assume that nutrients are injected through the
network and transported within a fluid phase. For simplicity we chose water as the fluid
in which the nutrients are transported. We define the thickness of the biofilm in the tube
ti j by rbi j , the radius available for water by rwi j and the total radius of the tube by R (see
Figure 2.1). The volumetric flow of the water phase qi j in the tube ti j is described by a
modified form of the Poiseuille equation, ([30]),

qi j = π

8µl
[r 4

wi j
+ (R4 − r 4

wi j
)β−1]∆p, (2.1)

where ∆p is the pressure drop between neighbouring nodes, µ is the viscosity of wa-
ter that flows in the bulk, l is the length of the tube and the dimensionless number β is
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Figure 2.1: Pore network and biofilm thickness within a tube
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Figure 2.2: Biofilm growth in the interior and in the extremes of the tube

the ratio between the viscosity of water flowing through the biofilm and the viscosity of
water flowing through the bulk. We use β = 107 which according to [30] is a good ap-
proximation for an impermeable biofilm. Despite the β term only a negligible addition
in equation (2.1) we incorporate it to keep the description general. Mass conservation is
imposed on each of the nodes. For the node ni we have∑

j∈Si

qi j = 0, (2.2)

where,
Si = { j | n j is adjacent to the node ni }, (2.3)

and further qi j is the flux in the tubes connected to node ni .
The balance of nutrients is described by an advection-diffusion-reaction equation.

Denoting the concentration of nutrients by C , this gives

∂C

∂t
+u ·∇C −D∇2C =−∂b+

∂t
, (2.4)

where u is the advection velocity related to the local flux q by u = q/A. Here A denotes
the area of the cross-section of the tube and D is the diffusion coefficient of water. Fur-
ther b+ represents the concentration of biofilm that grows as a result of consumption of
nutrients (no detachment term is taken into account in this equation). In general, the
concentration of nutrients b is linked to the volume of biofilm, Vb f by

b = ρ

VT
Vb f , (2.5)

where ρ and VT , respectively, denote the mass density of biofilm and the total volume of
the tube. We describe the overall growth rate of the biofilm in the following paragraphs.

In this model we assume that nutrients might not penetrate completely through the
biofilm since the reaction is faster than the diffusion rate within the biofilm. Therefore
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we propose that there exists a maximal distance (from the water biofilm interface) that
the nutrients can travel within the biofilm. The maximal distance is called the penetra-
tion layer, Γ, and implicitly defines a maximal volume in which the nutrients can diffuse.
This volume is called the penetration volume Vp and it is assumed to be constant during
the whole process of biofilm growth. If the volume of biofilm is smaller than the pen-
etration volume, the nutrients can penetrate the whole biofilm volume and hence the
biofilm growth rate is proportional to the volume of biofilm. However, if the biofilm vol-
ume is much larger than the penetration volume, the nutrients react with the biofilm
only within this penetration volume, which is adjacent to the water-biofilm interface. In
this case, the biofilm growth rate is proportional to the area of the water biofilm interface.
Further, since in general there are two regions in the tube where the biofilm encounters
the nutrients, we model two kinds of biofilm growth: internal biofilm growth and biofilm
growth at the extremes of the tube (see 2.2). Firstly, we describe the internal growth.

The biofilm growth rate in the interior of the tube ti j is modelled as follows,

∂V i
b fi j

∂t
= k1

Ai
wb f

Ai
T

VT
Ci j

Es +Ci j
f (Vb fi j ). (2.6)

Here V i
b fi j

denotes the volume of interior biofilm in the tube ti j . Further, f (Vb fi j ) ≥ 0 is

the positive part of a sigmoid function for Vb fi j that depends on the penetration volume

Vp , k1 is the specific biofilm growth rate, Ai
wb f is the internal interface water biofilm

area, Ai
T is the external area of the tube, Ci j is the concentration of nutrients within the

tube and Es is a saturation constant. The positive part of the sigmoid-like function is
defined as,

f (Vb f ) =
Vb f

Vp

1+ Vb f

Vp

. (2.7)

The dependence of biofilm growth rate (equation 2.6) on the concentration of nutri-
ents is given by the Monod equation which models the limiting nutrient consumption
by the biofilm. Next we explain the reason why we use the positive part of a sigmoid-
like function: if the volume of biofilm is small, i.e. Vb f << Vp , then Ai

wb f ∼ Ai
T and

f (Vb f ) ∼ Vb f

Vp
. Therefore, the biofilm growth rate is proportional to the volume of biofilm,

∂V i
b fi j

∂t ∼ Ci j

Es+Ci j
Vb f . If the volume of biofilm is much larger than the penetration volume,

Vb f >> Vp , then f ∼ 1 and therefeore the biofilm growth is proportional to the area of

the interface between water and biofilm,
∂V i

b fi j

∂t ∼ Ci j

Es+Ci j

Ai
wb f

Ai
T

.

The biofilm growth rate is zero when there is no biofilm in the tube or when the tube
is filled with biofilm, consequently, biofilm growth in the interior of the tube stops if
there is no more space in the tube. Note that our approach is phenomenological. Fur-
ther, the area Ai

wb f can be written in terms of the total volume of the tube VT and the

volume of biofilm Vb f , therefore equation (2.3) for the biofilm which grows in the interior
of the tubes, is expressed as follows,
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∂V i
b fi j

∂t
= k1R

Ci j

Es +C i j

√
πl (VT −Vb fi j ) f (Vbi j ). (2.8)

Note that the above relation for V i
b fi j

represents a continuous relation of biomass growth

with the volume of biofilm.
Secondly, we describe the biofilm that grows in the extremes of the tube. Since the

penetration volume in the extremes is very small compared to the whole volume of
biofilm, the biofilm growth rate in the extremes of the tubes is proportional to the area
of the interface between water and biofilm (see Figure 2.2). We assume binary interac-
tions with the neighbouring tubes. The area of the interface between water and biofilm
Ae

wb f between the tube ti j and the tube t j k can be written in terms of the difference be-

tween biofilm volumes of neighbouring tubes. The biofilm grows in the extreme of the
tube with a larger volume of biofilm and it is given to the neighbouring tube which has a
smaller volume of biofilm.

If we assume that the volume of biofilm Vb f j k
in the neighbouring tube t j k (con-

nected to the node n j ) is larger than the volume of biofilm Vb fi j in the tube ti j , then the
biofilm growth in the extreme of the neighbouring tube t j k is given by,

∂V e
b f j k

∂t
= k1

Ae
wb f

Ae
T

VT
C j k

Es +C j k
. (2.9)

Here V e
b f j k

represents the volume of biofilm at the extreme of the tube, Ae
wb f is the ex-

ternal interfacial water biofilm area and Ae
T is the cross-sectional area in the extreme of

the tube. The ratio between the external interfacial water biofilm area and the cross-
sectional area of the tube Ae

T is a measure of the biofilm growth in the extremes of the
tube. This ratio is zero if the volume of biofilm is the same in both interacting tubes
which means there is no biofilm growth in the extreme of the tube and hence no vol-
ume of biofilm is added to either of them. On the other hand, when this ratio is one,
the biofilm grows at a maximal rate and the accumulated biofilm is added to the tube
ti j . Note that there is no biomass exchange between neighbouring tubes; the biomass
is produced in the extreme of the tube and it is given to the neighbouring one, hence no
loss term for the biomass growth is necessary to describe this phenomenon. In this way,
this model for the biofilm growth allows the spreading of the biofilm through the whole
network, which is consistent with experimental observations. The area Ae

wb f between

the tube ti j and the tube t j k can be written in terms of the volume of the biofilm of the
tubes. Hence equation (2.9) for the biofilm growth at the extreme of the tube t j k changes
into,

∂V e
b f j k

∂t
= k1

C j k

Es +C j k
(Vb f j k

−Vb fi j ). (2.10)

We take into account all the neighbouring tubes whose volumes of biofilm are larger than
the volume of biofilm in the tube ti j . To this extent we introduce the following index set
notation for the tube ti j which connects nodes ni and n j . Consider the node n j then we
define the set of neighbouring nodes of it, except ni by Λ j i (see Figure 2.1). Therefore,
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taking into account all neighbouring tubes, the equation for the biofilm growth in the
tube ti j due to biofilm growth in the extremes of the neighbouring tubes is written as,

∂V e
b fi j

∂t
= k1

∑
k∈Λ j i

C j k

Es +C j k
(Vb f j k

−Vb fi j )++k1
∑

k∈Λi j

Cki

Es +Cki
(Vb fki

−Vb fi j )+, (2.11)

in which we use the notation (Vb fki
−Vb fi j )+ = max(0,Vb fki

−Vb fi j ). Finally, using that

Vb fi j =V i
b fi j

+V e
b fi j

we combine the internal growth of biofilm with the biofilm growth in

the extremes of the neighbouring tubes and including a possible detachment of biofilm,
which is proportional to the interfacial water-biofilm area, we obtain,

∂Vb fi j

∂t
= k1R

Ci j

Es +Ci j

√
πl (VT −Vb fi j ) f (Vb fi j )+k1

∑
k∈Λ j i

C j k

Es +C j k
(Vb f j k

−Vb fi j )+

+k1
∑

k∈Λi j

Cki

Es +Cki
(Vb fki

−Vb fi j )+−k2R
√
πl (VT −Vb fi j )H(Vb fi j ).

(2.12)

where k2 is the detachment rate coefficient. Further, H(Vb fi j ) is defined as,

H(Vb fi j ) =
0 if Vb fi j = 0

1 if Vb fi j ≥ 0.
(2.13)

We include the function H because detachment occurs only when there is biofilm
within the tube. In case there is no biofilm in the tube, H = 0, which means the de-
tachment rate is zero. In equation (2.12) the first term is the interior biofilm growth, the
second and third term describes the biofilm which grows in the extremes of the neigh-
bouring tubes and the fourth term is a term for the detachment of the biofilm.

The reaction rate of the nutrients is given by,[∂b+
i j

∂t

]
= k1

Y

ρ

VT

Ci j

Es +Ci j

[
R

√
πl (VT −Vb fi j ) f (Vb fi j )

+ ∑
k∈Λ j i

(Vb fi j −Vb f j k
)++ ∑

k∈Λi j

(Vb fi j −Vb fki
)+

]
.

(2.14)

In summary, we solve the following coupled mathematical problem: Find p, subject
to

p(0, y) = 1600Lx ,

p(Lx , y) = 0,

∂p

∂n
(x,0) = 0,

∂p

∂n
(x,Ly ) = 0,

(2.15)
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such that,

∑
j∈Si

qi j = 0,∀ni , (2.16)

where,

qi j = π

8µl
[r 4

wi j
+ (R4

i j − r 4
wi j

)β−1](p j −pi ). (2.17)

Here Lx is the size of the network in the x direction and Ly the size in y direction. Next to
this rwi j decreases as a result of deposition of biofilm, which grows under the presence
of nutrients. The balance of nutrients is given by,

∂C

∂t
+u ·∇C −D∇2C =−∂b+

∂t
, (2.18)

subject to,

C (x, y, t0) = 0,

t0 = 0,
(2.19)

C (0, y, t ) = 1,

∂C

∂x
(Lx , y, t ) = 0,

∂C

∂y
(x,0, t ) = 0,

∂C

∂y
(x,Ly , t ) = 0.

(2.20)

The biofilm grows according to,

∂Vb fi j

∂t
= k1R

Ci j

Es +Ci j

√
πl (VT −Vb fi j )+k1

∑
k∈Λ j i

C j k

Es +C j k
(Vb f j k

−Vb fi j )+

+k1
∑

k∈Λi j

Cki

Es +Cki
(Vb fki

−Vb fi j )+−k2R
√
πl (VT −Vb fi j )H(Vb fi j ).

(2.21)

Subject to the initial condition

Vb fi j (t = 0) =


b0VT
ρ if the tube ti j is chosen

0 el sewher e.
(2.22)

Our routine randomly chooses 4% of the tubes. Note that bi j =
ρVb fi j

VT
. We have chosen

b0 = 10−4 [kg /m3] for the initial tubes that were seeded with biofilm. The consumption
of nutrients is modelled by,
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[∂b+
i j

∂t

]
= k1

Y

ρ

VT

Ci j

Es +Ci j

[
R

√
πl (VT −Vb fi j ) f (Vb fi j )

+ ∑
k∈Λ j i

(Vb fi j −Vb f j k
)++ ∑

k∈Λi j

(Vb fi j −Vb fki
)+

]
.

(2.23)

Further Ci j = Ci+C j

2 links the concentration of nutrients in the nodes and the concentra-
tion in the tubes.

2.3. NUMERICAL METHOD
The numerical approach and the computational procedure used in this work are de-
scribed in this section. When mass conservation, equation (2.1), is combined to equa-
tion (2.2) a linear system for the pressures at the nodes pi arises. After solving this sys-
tem, the flux qi j in each of the tubes is computed.

The equation for the balance of nutrients is solved for the concentration Ci at each
node ni of the network (see Figure 2.4). To discretize the equation for the balance of
nutrients, we write it in the following form,

Cτ+1
i −Cτ

i

∆t
= Jτ+1,τ

ad v + Jτ+1,τ
di f f −Rτ+1,τ

cons (2.24)

where the first-order upwind scheme for the advection term gives,

Jτ+1,τ
ad v = ∑

j∈Ωi

qi j
τ

VT
(C j

τ+1 −Ci
τ+1), (2.25)

whereΩi = { j | qi j is directed towards the node ni }.
Further, the diffusion term of the equation (2.4) is discretized using a time-implicit

method for the concentration. The area is used from the previous time step. We use
a finite difference scheme in space. Therefore the discretization for the diffusion part,
reads as,

Jτ+1,τ
di f f = D

l 2

∑
j∈Si

(Ci
τ+1 −C j

τ+1)
Aτ

wi j

Ai j
, (2.26)

where Aτ
wi j

is the area of the cross section of the bulk water in the tube ti j and Ai j is the
total area of cross section of the tube ti j .

To write the reaction term in each node, we assume that at each node there is a per-
fect mixture of biofilm. Therewith we get,

Rτ+1,τ
cons = k1

Y

Cτ+1
i

Es +Cτ
i

∑
j∈Si

G(V τ
b fi j

)VT∑
j∈Si

VT
. (2.27)

where,
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G(V τ
b fi j

) = ρ

VT

[
R

√
πl (VT −V τ

b fi j
) f (V τ

b fi j
)

+ ∑
k∈Λ j i

(V τ
b fi j

−V τ
b f j k

)++ ∑
k∈Λi j

(V τ
b fi j

−V τ
b f j k

)+
]

.
(2.28)

The solution of the concentration of nutrients obtained from the advection-diffusion-
reaction is used for the approximation of the biofilm volume.

The biofilm growth takes place within the tubes of the network. Here we use an ex-
plicit Euler time integration method to arrive at,

[
Vb fi j

τ+1 −Vb fi j
τ

∆t

]
= k1R

[
Ci j

τ

Es +Ci j
τ

]√
πl (VT −V τ

b fi j
) f (V τ

b fi j
)

+k1
∑

k∈Λ j i

[
Cτ

j k

Es +Cτ
j k

]
(V τ

b f j k
−V τ

b fi j
)++k1

∑
m∈Λi j

[
Cτ

mi

Es +Cτ
mi

]
(V τ

b fmi
−V τ

b fi j
)+

− k2R
√
πl (VT −V τ

b fi j
)H(V τ

b fi j
)

(2.29)

The computational procedure used in this work is as follows. Firstly, the pressure is
imposed in the left and right boundary of the network. Subsequently, the pressure in
each node is computed from the linear system resulting from the mass conservation in
each node. For solving this system, we consider Dirichlet boundary conditions in the
left and right boundaries and homogeneous Neumann boundary condition for the up-
per and lower boundary. The pressures in each node are used to compute the flux in
each tube by means of equation (2.1). After this step, we proceed to solve the advection-
diffusion reaction equation for the nutrients and we compute the concentration of nu-
trients in each node as well as the volume of biofilm in the tubes. The thickness of the
biofilm and the radius of the void space available for water is updated and the process
starts again at the next time step (See Figure 2.3).

2.4. SIMULATION RESULTS
In this section we describe the numerical experiments and the results obtained for the
biofilm growth in a pore network. Firstly, in order to validate the advection-diffusion
part of our code, we compare our results with an analytic solution and with a Continu-
ous Time Random Walk (CTRW) transport model [31]. Secondly, we studied the biofilm
growth effects on the out-flux and porosity. For this study, the biofilm growth rate k1 is
fixed but three different detachment rates k2 are used. Finally, we compare our results
with the Kozeny-Carman relation and with two quasi-steady biofilm growth models.

Firstly, the evolution of the concentration of nutrients through the network is stud-
ied without the presence of biofilm. We disregard the reaction term in order to be able
to compare the transport and diffusion of nutrients with an analytic solution in 1-D and
with an existing model based on CTRW. The CTRW transport model can consider clas-
sical and non-classical Fickian dispersion. In this case we use Fickian diffusion for the
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Figure 2.3: Full model algorithm that combines the transportation of nutrients and biofilm growth



2

20
2. A NETWORK MODEL FOR THE BIOFILM GROWTH IN POROUS MEDIA AND ITS EFFECTS ON

PERMEABILITY AND POROSITY GROWTH MODEL

Ci

Ci-Nx

Ci+Nx

Ci+1Ci-1

     Tube      Node

x

y

Ci, i+1

t1

Lx

Ly

0

Figure 2.4: Network discretization and domain of computation

CTRW since in our model we are not considering other kinds of diffusion. We use a MAT-
LAB toolbox developed by [31] to obtain the breakthrough curve with the CTRW model.
The diffusion coefficient and the pore velocity used in the CTRW transport model are
listed in Table 2.1.

We solve the advection-diffusion equation for the concentration of nutrients with our
model using a mesh with 201×11 nodes, which means there are 201 nodes in x direction
and 11 nodes in y direction. The number of tubes is determined implicitly by the num-
ber of nodes and by the topology of the network. Further, we assume that all the tubes in
the network have the same radius. We use the volumetric flows through the pores from
the network model for the solution of the concentration of nutrients. Under these con-
ditions for the size of the mesh and the uniform size of the radii in all the tubes, we can
compare the results with a model based on CTRW and with an analytic solution in one
dimension, ([32]). The analytic solution of the advection-diffusion equation (equation
2.4 without reaction term) in 1-D is given by:

c(x, t ) = Ci n

2
[er f c

( x − v∗tp
4D∗t

)
+er f c

( x + v∗tp
4D∗t

)
exp

( v∗x

D∗
)
], (2.30)

in which erfc is the complementary error function, v∗ is the velocity and D∗ is the diffu-



2.4. SIMULATION RESULTS

2

21

Figure 2.5: Comparison of the solution of the advection diffusion equation for our model CTRW model and an
analytic solution

sion coefficient used in this first simulation.

Figure 2.5 shows the results for the normalised concentration of nutrients C /C0 in
one of the tubes that is located adjacent to to the outlet of the network for our model, a
model based on CTRW and the analytic solution given by equation (2.30). We observe a
good agreement between, the CTRW model, the analytic solution and our model, which
indicates that our scheme produces consistent results. However we observe a small shift
between our model, the CTRW and the analytic solution. The shift is attributed to the
following cause: our model contains a Neumann boundary condition at the outflow
boundary, whereas the analytic solution is valid in a domain with infinite size. There-
fore the concentration calculated by our model is a little higher than the one computed
the use of the analytic solution. This can be proved in more rigour using smoothness of
the solution and the maximum principle. The complete set of parameters for this simu-
lation is presented in Table 2.1.

The next step is to quantify the effects of biofilm growth on the porosity and perme-
ability of the porous medium. Therefore, we solve the biofilm growth and the transport
of nutrients as a coupled problem. Initially 4% of the tubes are seeded with an initial
concentration of biomass b0 = 1×10−4 [kg /m3]. We performed three sets of simulations
in which the biofilm growth rate is fixed, however three different values for the detach-
ment rate factor are chosen, k2 = 10−6 [1/s], k2 = 10−7 [1/s] and k2 = 0 [1/s]. For this
set of simulations we used a network with 101 x 61 nodes and we considered a radius
R = 1.1937×10−5 [m] for all the tubes of the network. The complete set of parameters for
this set of simulations is listed in Table 2.2.

For each pair of biofilm growth k1 and detachment rate factor k2, we performed ten



2

22
2. A NETWORK MODEL FOR THE BIOFILM GROWTH IN POROUS MEDIA AND ITS EFFECTS ON

PERMEABILITY AND POROSITY GROWTH MODEL

Figure 2.6: Average normalised flux for two different detachment rates k2 = 0[1/s] and k2 = 10−4[1/s]

Parameters for the simulations without growth of biofilm
Name Symbol Value
Pore length l 95 × 10−6 [m]
Network size in the x direction Lx 0.019 [m]
Network size in the y direction Ly 0.00095 [m]
Number of tubes in the net-
work

Na 4210

Mean pore radius rmean 3.5339 × 10−6 [m] [7]
Global pressure gradient ∆P 1.6 [kPa/m]
Viscosity of water µ 4.7 × 10−5 [Pa ·mi n]
Density of water ρw 1000 [kg /m3]
Diffusion coefficient of water Dw 3.9710 × 10−8 [m2/mi n] [33]
Inlet reservoir concentration Ci n 1 [kg /m3]

Table 2.1
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Parameters for the second series simulation
Name Symbol Value
Mean pore radius R 12.2×10−6 [m] [7]
Pore length l 95 ×10−6 [m]
Global pressure gradient ∆P 1.6 [kPa/m]
Viscosity of water µ 0.001/60 [Pa ·mi n]
Density of water ρw 1000 [kg /m3]
Density of biofilm ρb f 20 [kg /m3] [34]
Yield coefficient Y 0.34 [35]
Half saturation constant for
biofilm

Esb 2×10−3 [kg /m3] [35]

Inlet reservoir concentration Ci n 1 [kg /m3]
Initial biomass concentration b0 1×10−6 [kg /m3]
Biofilm / bulk water viscosity
ratio

β 107 [30]

Table 2.2

Figure 2.7: Average fraction of biomass for two different detachment rates k2 = 0[1/s] and k2 = 10−4[1/s]
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simulations where we fixed all the parameters, except the initial distribution of tubes
seeded with biofilm. The normalised flux Qn is defined as, Qn = Q

Q0
, where Q0 is the

initial flux in the network (i.e. before biofilm growth). We compute the average of the
normalised flux and we observe that the 95% confidence interval is very close to the
average value of the normalised flux, therefore the initial random biofilm distribution
does not have a significant effect on the results.

The evolution of the average normalised flux through the network for the detach-
ment rate k2 = 10−7 [1/s] and k2 = 0 [1/s] is shown in Figure 2.6. For detachment rates
k2 = 10−7 [1/s] and k2 = 0 [1/s], we observe a decrease of the normalised flux due to the
accumulation of biomass in the network. However, for k2 = 10−6 [1/s] the detachment
of biofilm dominates over biofilm growth and the initial distribution of biomass is re-
moved during the first stage. Therefore, in this case no biofilm develops in the medium
and there will be no changes in the permeability and porosity of the network. This im-
plies that Qn = 1 at all times. If the biofilm detachment rate is smaller, the develop-
ment of biofilm attached to the walls of the pores leads to a reduction in the radius avail-
able for the water flow and consequently biofilm growth leads to a reduction of the nor-
malised flux of the network. We observe very similar behaviour for the detachment rate
k2 = 10−7 [1/s] and k2 = 0 [1/s].

In Figure 2.7 the average of the fraction of biofilm volume is presented for
k2 = 10−7 [1/s] and k2 = 0 [1/s]. The fraction of volume of biofilm in the network is given

by Vpb f =
∑

i j Vb fi j∑
i j VTi j

. The sum is taken over all the tubes in the network. Since we ne-

glect the volume of the nodes, the volume of the tubes corresponds to the volume of the
pore space. We observe that during the first minutes the volume of biofilm in the net-
work increases monotonically for the two cases. Further, after approximately 300 min
the biomass growth reaches a steady state. We observe that approximately 32% of the
void space of the network is occupied by volume of biomass at the steady state for both
cases.

Finally, in addition to the full model which considers the transport of nutrients and
the biofilm growth as two coupled phenomena, two quasi-steady state models of biofilm
growth are also considered in this work. In these models we set an amount of volume of
biofilm in the network, then we compute the effect of the volume of biofilm in the radius
available for water and finally we compute the flux through the network. Note that the
transport-diffusion equation is not solved in these models.

In the first model we consider that initially biofilm is present in all the tubes of the
network and that the biofilm grows at the same rate in all the tubes. Therefore we refer
to this model as uniform biofilm growth.

In the second model we hypothesise that each tube in the network could either be
completely filled with biofilm or completely empty. We vary the percentage of tubes
filled with biofilm from 1% of the tubes to 100% of the tubes. In each stage, the tubes
filled with biofilm are chosen randomly. We refer to this model as random biofilm growth.
We perform 10 simulations and we determine the average flux in the outlet of the net-
work. We found that the variance of the result was very small. We compare the results
of the full biofilm growth model with the uniform growth, with the random growth and
with the Kozeny-Carman relation. The Kozeny-Carman is a well-known equation that
provides a relation between the porosity φ and the permeability K and it is given by the
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Figure 2.8: Compariosn of the normalised flux vs porosity for the full model, the random growth model, the
uniform growth model and the Kozeny-Carman relation

following equation,

K =Ck
φ3

(1−φ)2 , (2.31)

in which Ck is a parameter related to the specific internal surface area of the pores in a
porous media.

In order to be able to compare the full model with the uniform growth model, with
the random growth and with the Kozeny-Carman equation, we have to express the vol-
ume of biofilm in terms of porosity and the normalised flux in terms of the permeability.
The relation between the fraction of biomass and porosity is given by the following equa-
tion,

Vpb f = 1− φ

φ0
, (2.32)

in which φ0 is the initial porosity.
The relation between the normalised flux Qn and the permeability is determined by

the Darcy’s Law,

K = QLµ

∆PAn
. (2.33)

If the pressure drop ∆P , the cross-sectional area of the network An , the length in the
flux direction L and the viscosity µ are constant during the process of biofilm growth, we
have that

K

K0
= Q

Q0
. (2.34)
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In which K0 is the initial permeability. Then, using equation (2.31) and equation (2.34)
we can write the normalised flux predicted by Kozeny-Carman as follows,

Q

Q0
= (1−φ0)2φ3

φ3
0(1−φ)2

. (2.35)

Note that in order to derive equation (2.35) the parameter Ck has been taken con-
stant. However, since the porous medium channels are changed by the non-uniform
accumulation of biomass, the assumption of taking Ck constant is probably inappropri-
ate. Hence, our results may deviate from the results predicted by the Kozeny-Carman
model.

In Figure 2.8 the numerical results for the porosity φ versus the normalised flux are
shown for the two different detachment rates studied in this work k2 = 10−7 [1/s] and
k2 = 0 [1/s], the two cases of quasi-steady-state biofilm growth models and the Kozeny-
Carman relation (equation (2.35) ).

The uniform growth model and the full model overlap from the initial porosity to 0.35
approximately where a sudden decrease in the normalised flux is described in the full-
model for k2 = 0[1/s] and k2 = 10−7 [1/s]. This is explained as follows: in the beginning in
the full model, the biomass starts spreading through the network and since the thickness
of the biomass in the tubes is still small, the influence of the biomass on the permeabil-
ity is insignificant at this stage. However, since the nutrients are transported through
the network and the biomass is spread continuously, uniform biofilm growth is stimu-
lated in the network, causing a decrease in the permeability due to the accumulation of
biomass. Afterwards, the nutrients are consumed by the bacteria and the biofilm starts
growing and clogging the pores, therefore there is a reduction of the flux of the nutri-
ents in the whole network. Hence, the nutrients are present preferentially near the inlet
which causes a preferential growth of biofilm near the inlet and at the final stage causes
the total decrease of the flux. The random growth model shows a linear decay of the nor-
malised flux. For high porosity the slope of the decay of the normalised flux predicted
by the random growth model is similar to the slope of the normalised flux predicted by
the full model. The linear behaviour of the random growth model deviates from the full
model for lower porosity. The random biofilm growth predicts a plugging of the network
when the porosity is about 0.2. The porosity is approximately half the initial porosity,
which is in accordance with the percolation threshold for a rectangular network, ([36]).
The fact that the full model stays in accordance with the uniform growth model seems to
indicate that at the beginning the time evolution of the flux is predominantly determined
by the localized growth kinetics of the biofilm, rather than the kinetics of spreading over
the network. Finally, the Kozeny-Carman relation shows a behaviour that is similar to
the uniform biofilm growth, but the decrease of the normalised flux with the decrease in
porosity is faster than the uniform growth.

2.5. CONCLUSIONS AND OUTLOOK
In this work, we simulate biofilm growth, in particular its effects on the porous medium
characteristics such as porosity and permeability. We use a two-dimensional pore net-
work model to represent the porous medium. We develop a new model for biofilm
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growth, which predicts that the nutrients are not able to penetrate fully in the biofilm
if the reaction term is dominant over the diffusion of nutrients within the biofilm. In
addition, our model is able to simulate the spreading of the biofilm through the whole
network which is a phenomenon that has been observed experimentally ([22]). The pro-
posed model shows that at early stages biofilm growth is mostly uniform through the
whole network, however eventually the biofilm will grow preferentially near the inlet
of the network, plugging the pores at the inlet and causing a cease of the flux through
the network. The modifications in porosity and permeability caused by biofilm growth
might be beneficial for a Microbial enhanced oil recovery technique, especially in the
first stage before the plugging of the network. Since we see that uniform growth provides
a relatively good correspondence with the full model for high porosity, we conclude that
the clogging of the porous medium in high permeability layers is feasible without block-
ing the inlet. For this reason, we propose to stop injection of nutrients in order to avoid
plugging the medium. This behaviour is not described by the uniform growth model, the
random growth nor the Kozeny-Carman relation.

Since we consider a 2D rectangular pore network model consisting of cylindrical
tubes with the same radii, this model could be too simplified to describe a real reser-
voir field. Interesting further research is to find the representative elementary volume in
order to upscale these results to the macroscale. In addition, future plans entail the study
of the effects of biofilm growth in porosity and permeability in more complex topologies
in 2D and 3D.

REFERENCES
[1] L. R. Brown, Microbial enhanced oil recovery (meor), Current opinion in Microbiol-

ogy 13, 316 (2010).

[2] R. T. Armstrong and D. Wildenschild, Investigating the pore-scale mechanisms of
microbial enhanced oil recovery, Journal of Petroleum Science and Engineering 94,
155 (2012).

[3] I. Lazar, I. Petrisor, and T. Yen, Microbial enhanced oil recovery (meor), Petroleum
Science and Technology 25, 1353 (2007).

[4] R. Sen, Biotechnology in petroleum recovery: the microbial eor, Progress in energy
and combustion Science 34, 714 (2008).

[5] B. Chen-Charpentier, Numerical simulation of biofilm growth in porous media,
Journal of computational and applied mathematics 103, 55 (1999).

[6] T. Clement, B. Hooker, and R. Skeen, Macroscopic models for predicting changes
in saturated porous media properties caused by microbial growth, Groundwater 34,
934 (1996).

[7] C. Ezeuko, A. Sen, A. Grigoryan, and I. Gates, Pore-network modeling of biofilm
evolution in porous media, Biotechnology and bioengineering 108, 2413 (2011).



2

28 REFERENCES

[8] D.-S. Kim and H. S. Fogler, Biomass evolution in porous media and its effects on
permeability under starvation conditions, Biotechnology and Bioengineering 69, 47
(2000).

[9] C.-Z. Qin and S. M. Hassanizadeh, Pore-network modeling of solute transport and
biofilm growth in porous media, Transport in Porous Media 110, 345 (2015).

[10] C. Picioreanu, J.-U. Kreft, and M. C. Van Loosdrecht, Particle-based multidimen-
sional multispecies biofilm model, Applied and environmental microbiology 70,
3024 (2004).

[11] M. Thullner, Comparison of bioclogging effects in saturated porous media within
one-and two-dimensional flow systems, Ecological Engineering 36, 176 (2010).

[12] R. Samsó, J. García, P. Molle, and N. Forquet, Modelling bioclogging in variably
saturated porous media and the interactions between surface/subsurface flows: Ap-
plication to constructed wetlands, Journal of environmental management 165, 271
(2016).

[13] Y. Tang, A. J. Valocchi, and C. J. Werth, A hybrid pore-scale and continuum-scale
model for solute diffusion, reaction, and biofilm development in porous media, Wa-
ter Resources Research 51, 1846 (2015).

[14] W. Van Wijngaarden, F. Vermolen, G. Van Meurs, and C. Vuik, A mathematical model
and analytical solution for the fixation of bacteria in biogrout, Transport in porous
media 92, 847 (2012).

[15] T. Pintelon, D. Graf von der Schulenburg, and M. Johns, Towards optimum perme-
ability reduction in porous media using biofilm growth simulations, Biotechnology
and Bioengineering 103, 767 (2009).

[16] D. G. von der Schulenburg, T. Pintelon, C. Picioreanu, M. Van Loosdrecht, and
M. Johns, Three-dimensional simulations of biofilm growth in porous media, AIChE
Journal 55, 494 (2009).

[17] R. Rosenzweig, A. Furman, C. Dosoretz, and U. Shavit, Modeling biofilm dynamics
and hydraulic properties in variably saturated soils using a channel network model,
Water Resources Research 50, 5678 (2014).

[18] B. J. Suchomel, B. M. Chen, and M. B. Allen, Macroscale properties of porous media
from a network model of biofilm processes, Transport in porous media 31, 39 (1998).

[19] M. Thullner, J. Zeyer, and W. Kinzelbach, Influence of microbial growth on hydraulic
properties of pore networks, Transport in porous media 49, 99 (2002).

[20] A. B. Cunningham, W. G. Characklis, F. Abedeen, and D. Crawford, Influence of
biofilm accumulation on porous media hydrodynamics, Environmental science &
technology 25, 1305 (1991).



REFERENCES

2

29

[21] S. W. Taylor and P. R. Jaffé, Biofilm growth and the related changes in the physical
properties of a porous medium: 3. dispersivity and model verification, Water re-
sources research 26, 2171 (1990).

[22] M. Peszynska, A. Trykozko, G. Iltis, S. Schlueter, and D. Wildenschild, Biofilm
growth in porous media: Experiments, computational modeling at the porescale,
and upscaling, Advances in water resources 95, 288 (2016).

[23] K. Seki and T. Miyazaki, A mathematical model for biological clogging of uniform
porous media, Water resources research 37, 2995 (2001).

[24] S. Ye, Y. Zhang, and B. E. Sleep, Distribution of biofilm thickness in porous media
and implications for permeability models, Hydrogeology journal 23, 1695 (2015).

[25] Q. Xiong, T. G. Baychev, and A. P. Jivkov, Review of pore network modelling of porous
media: experimental characterisations, network constructions and applications to
reactive transport, Journal of contaminant hydrology 192, 101 (2016).

[26] A. Raoof and S. Hassanizadeh, A new formulation for pore-network modeling of two-
phase flow, Water Resources Research 48 (2012).

[27] J.-Y. Arns, V. Robins, A. P. Sheppard, R. M. Sok, W. V. Pinczewski, and M. A. Knackst-
edt, Effect of network topology on relative permeability, Transport in Porous media
55, 21 (2004).

[28] H. Horn and S. Lackner, Modeling of biofilm systems: a review, in Productive Biofilms
(Springer, 2014) pp. 53–76.

[29] P. S. Stewart, Diffusion in biofilms, Journal of bacteriology 185, 1485 (2003).

[30] M. Thullner and P. Baveye, Computational pore network modeling of the influence
of biofilm permeability on bioclogging in porous media, Biotechnology and Bioengi-
neering 99, 1337 (2008).

[31] A. Cortis and B. Berkowitz, Computing “anomalous” contaminant transport in
porous media: The ctrw matlab toolbox, Groundwater 43, 947 (2005).

[32] A. W. Warrick, Soil water dynamics (Oxford University Press, 2003).

[33] J. Lawrence, G. Wolfaardt, and D. Korber, Determination of diffusion coefficients in
biofilms by confocal laser microscopy, Applied and environmental microbiology 60,
1166 (1994).

[34] K. S. Ro and J. Neethling, Biofilm density for biological fluidized beds, Research jour-
nal of the water pollution control federation , 815 (1991).

[35] R. Bakke, M. G. Trulear, J. Robinson, and W. G. Characklis, Activity of pseudomonas
aeruginosa in biofilms: steady state, Biotechnology and bioengineering 26, 1418
(1984).

[36] H. Kesten, The critical probability of bond percolation on the square lattice equals
1/2, Communications in mathematical physics 74, 41 (1980).





3
CONDITIONS FOR UPSCALABILITY

OF BIOCLOGGING IN PORE

NETWORK MODELS

In order to have a reliable description of MEOR processes at the field scale a proper up-
scaling technique of the effects of biofilm growth on porosity and permeability on the
micro-scale is needed. In some previous continuous biofilm growth models homoge-
neous biofilm growth is assumed and the effects of heterogeneous biofilm growth are
neglected (Taylor et al. 1990). In general using the upscaling processes an equivalent
permeability is obtained via average volume, homogenisation or statistical methods.
However it is not clear whether the assumption of homogeneity is justified.

In this chapter, we obtain a homogeneous upscalable biofilm growth model and we
determine the physical conditions when this model applies. We study the influence of
physical parameters like the size of the network and the inlet concentration of nutrients
on the permeability-porosity relation and we also study the influence of numerical pa-
rameters like the number of nodes on this relation.

In Section 3.1 we present the state of the art of biofilm growth models and up-scaling
techniques. In Section 3.2 we mention the equations that describe the biofilm growth
and transport of nutrients and we describe the numerical method to solve these equa-
tions. After this in Section 3.3 we present the conditions for uniform biofilm growth
and hence up-scalability of bioclogging in pore network models. We use the Damköhler
number to determine whether up-scalability is applicable. Finally we draw some con-
clusions in Section 3.4.

3.1. INTRODUCTION
In primary oil production a wellbore is drilled from the surface to the ground and oil
is extracted from the reservoir by natural mechanisms such as the internal pressure of
the reservoir. When the initial production declines secondary oil recovery techniques
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such as waterflooding or gas injection are implemented. However, two-thirds of the
oil is still trapped in the ground even after primary and secondary recovery [1]. Mi-
crobial Enhanced Oil Recovery (MEOR) is a tertiary oil recovery technique which aims
at increasing the mobility of the remaining oil using the growth of bacteria and the re-
sulting by-products. Bacterial growth enhances oil recovery by increasing the efficiency
of the waterflooding process, by clogging highly permeable layers such that the flow
through the oil-containing regions with low permeability is enhanced. Furthermore,
bacterial growth reduces interfacial tension and changes the rock wettability [2, 3] which
enhances oil mobility.

The development of computational models is of vital importance to design a proper
field strategy for MEOR in oil reservoirs. These models describe bacterial growth and
predict the changes in the characteristics of the porous media like the permeability and
porosity [4]. Among bacterial growth models in porous media there are the Darcy con-
tinuum models [5, 6], bacterially-based models [7], Lattice Boltzmann based simulations
[8, 9] and Pore Network Models (PNM) [10–16]. The secretion of extracellular polymeric
substances (EPS) by bacterial population causes the formation and growth of biofilm
on the walls of the porous media. In biofilm growth models it is usually assumed that
the porous medium consists of three components: the grains, the biofilm and the fluid
which contains the nutrients needed for the biofilm growth. The equations that describe
biofilm growth are written only for the fluid and biofilm since the grains are assumed to
be impermeable to the liquid and the nutrients [8].

Cunningham et al. [17] studied experimentally the effect of biofilm growth on the
porosity, permeability and friction factor of the porous medium. They reported a de-
crease in the porosity between 50% and 96% and a decrease in permeability between
92% and 98% due to the accumulation of biofilm. In the continuum scale Taylor et al.
[18] obtained an analytic expression that describes the relation between porosity and
permeability. However, they assumed that the biofilm grows uniformly through the do-
main of computation which not always occurred according to laboratory experiments
[19]. Therefore, micro-scale biofilm growth models such as Pore Network Models (PNM)
and pore-scale models are used to describe a non-uniform biofilm growth [11, 20]. It is
needed to state the conditions such that the biofilm grows uniformly.

In PNMs the porous medium is usually represented as a two or three-dimensional
lattice of cylindrical interconnected tubes in which water or any fluid can flow [21]. The
biofilm development is caused by the injection of nutrients into the network which are
transported within an aqueous phase. The injection and consumption of nutrients are
described by a convection-diffusion-reaction equation in which the reaction term mod-
els the consumption of nutrients caused by bacteria which results in biofilm growth. The
biofilm grows and it adheres to the walls of the cylinders. Thereby the biofilm changes
the radii of the pores, which consequently leads to porosity and permeability reduction
[10, 14, 15].

Even though the bacterial population and the EPS are two different phases, they are
usually lumped together and are represented as a continuous uniform layer of biomass
attached to the walls of pores [11, 14, 15]. This uniform layer of biomass is referred to as
biofilm.

Biofilm growth models at the micro-scale are needed to account for heterogeneities
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in the biofilm growth, which are typically ignored in large-scale models. In PNMs the
information obtained at micro-scale is averaged over the network to get a macroscopic
description at the continuum scale [22]. The influence of network characteristics such
as the coordination number on macroscopic transport phenomenon has been shown in
[23]. They showed that the dispersivity decreases if the coordination number increases.

In general the purpose of upscaling is to get an effective description on a macro level
when there exists a good description on a small scale level [24]. Hese et al. [24] use up-
scaling methods to obtain an effective one dimensional representation based on a sys-
tem of two dimensional partial differential equations. Their study is focused on the scal-
ing behaviour of Monod-type reaction kinetics. They showed
that the upscaled description of Monod kinetics leads to a concentration dependent
transition between a reaction and a diffusion limited regime. Wu et al. [25] computed the
upscaled grid-block permeability from fine-scale solutions of the flow equation. They
studied the upscaling of single phase flows through media with a periodic small amount
of heterogeneity. They claim that their results are also useful for the understanding of the
upscaling of random media. The equivalent permeability is a constant permeability that
represents a heterogeneous medium. However, it is impossible to obtain a one-to-one
mapping as a complete mapping between the real heterogeneous medium and the ho-
mogeneous upscaled medium. Therefore the equivalence, that is the one-to-one map-
ping, is defined in a limited sense [26]. Battiato and Tartakovsky [27] studied the trans-
port of a solute in a porous medium which is subjected to a nonlinear heterogeneous
reaction. This solute precipitates on the solid matrix to form a crystalline solid. They in-
vestigated the sufficient conditions under which the macroscopic advection-dispersion-
reaction equations provide an accurate description of the pore-scale processes. De-
spite their relevant findings they did not consider any change on the morphology of the
porous medium. In the present study we investigate under which conditions we can up-
scale a small-scale heterogeneous medium to a large-scale homogeneous medium, in
which we can apply models for uniform growth.

In this work we study the effects of biofilm growth on the porosity and permeability
of the network. We use the model for biofilm growth described in [28], which models
incomplete transmigration of nutrients through the biofilm as a result of high bacterial
consumption rate and a low diffusion rate of the nutrients. In particular we study the
process of bioclogging which features inhibition of the flux through the network due
to biofilm growth. We compute the amount of biomass per volume needed to block
the network for different number of nodes in the network, different network sizes and
different inlet concentrations of nutrients in the network. Furthermore, we describe the
conditions for uniformity and upscalability of the pore network biofilm growth model.

As long as the medium, in this case the pore network model, is evolving in a spa-
tially homogeneous manner, upscaling can be performed on the basis of computing an
effective porosity and permeability. In the current paper, however, we are dealing with
the injection of nutrients on the inlet boundary. The nutrients are being consumed by
the bacteria in the porous medium and thereby, effectively, converted into biomass that
clogs the network tubes. If the concentration of the nutrients at the inlet boundary is not
sufficiently high, then, the nutrients will all be consumed and converted before they are
able to reach the regions in the domain that are further away from the inlet. If this hap-
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pens in the current network, then the network cannot be used for upscaling purposes
in which one determines the effective permeability and porosity relation. The current
paper will address this issue in terms of derivation of a relation between permeability
and porosity. For upscalable conditions we will derive a tractable, functional relation
between the effective porosity and permeability of the network, which can be used as
an alternative relation to standard Kozeny-Carman relation. We will analyse the appli-
cability of such a relation by varying the characteristics of the pore network. The current
network provides a more computational approach to classical upscaling that is carried
in more mathematical rigour.

The chapter is organised as follows. In Section 3.2 we describe the equations for
the transport of nutrients and the model used for the biofilm growth. In Section 3.3
we describe the effects of biofilm growth on porosity and permeability when we vary
the number of nodes in the network, the network size and the inlet concentration of
nutrients. Finally, in Section 3.4 we present the discussion, draw the conclusions and
present the outlook.

3.2. MATHEMATICAL MODEL
In this section we present the equations that describe the transport of nutrients and the
biofilm growth in the porous medium. Firstly, the porous medium is represented as a
2D rectangular network composed of interconnected cylindrical tubes whose radii and
length are the same.

We assume that the bacteria and biofilm are lumped together and hence we refer to
them as a single phase: biofilm. The growth of biofilm is initiated by the nutrients which
are injected into the network and transported within a fluid phase. The thickness of the
biofilm in the tube ti j is represented by rbi j , the radius available for water by rwi j and the
total radius of the tube by R (see Figure 3.1). The volumetric flow of the aqueous phase
qi j in the tube ti j is described by a modified form of the Poiseuille equation [29],

qi j = π

8µl
[r 4

wi j
+ (R4 − r 4

wi j
)β−1]∆p, (3.1)

where ∆p is the pressure drop between neighbouring nodes, µ is the viscosity of water
that flows in the bulk, l is the length of the tube and the dimensionless number β is
the ratio between the viscosity of water flowing through the biofilm and the viscosity
of water flowing through the bulk. We use β = 107 which according to [29] is a good
approximation for an impermeable biofilm.

In each of the nodes mass conservation is required. Therefore, for the node ni we
have

∑
j∈Si

qi j = 0, (3.2)

where Si = { j | n j is adjacent to the node ni } and where qi j is the flux through the tube
that connects node n j to node ni .

The transport of nutrients is described by an advection-diffusion-reaction equation.
The concentration of nutrients is denoted by C ,
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∂C

∂t
+u ·∇C −D∇2C =−∂b+

∂t
, (3.3)

where D is the diffusion coefficient of nutrients through water and u is the advection
velocity which is related to the local flux q by u = q/A, where A is the area of the cross-
section of the tube. Additionally, b+ is the concentration of the biofilm produced as a
result of the consumption of nutrients (no detachment of biofilm is taken into account
in this term). The concentration of biofilm b is related to the volume of biofilm by,

b = ρ

VT
Vb f , (3.4)

where ρ denotes the mass density of biofilm VT , the total volume of the tube and Vb f

the volume of biofilm.
The numerical method is based on finite differences and Euler time integration meth-

ods. More details about the numerical procedure can be found in [28].
The equation for the transport of nutrients is solved for the concentration Ci at each

node of the network. The advection part is solved using first order upwind scheme and a
time-implicit method for the time integration. Hence, the discretization of the advection
part reads as, [

∆Ci

∆t

]
ad v

≈ ∑
j∈Ωi

qi j
τ

VT
(C j

τ+1 −Ci
τ+1), (3.5)

whereΩi = { j | qi j is directed towards the node ni }.
The diffusion part is discretized using a time implicit method for the concentration.

However the area used is from the previous time step,[
∆Ci

∆t

]
di f f

≈ Dw

l 2

∑
j∈Si

(Ci
τ+1 −C j

τ+1)
Aτ

wi j

Atot i j

. (3.6)

The reaction rate is described in the following paragraphs. In this work we use the
model for the biofilm growth reported in [28]. Since the reaction rate of nutrients is
higher than the diffusion rate within the biofilm, it is assumed that nutrients interact
with the biofilm only in a thin layer adjacent to the water biofilm interface, Γp . This layer
defines implicitly a volume which is called the penetration volume of the nutrients Vp ≈
2πRΓp l , and it is assumed to be constant during the whole process of biofilm growth. In
general in each of the tubes, there are two different water biofilm interfaces. Therefore,
we consider two modes of biofilm growth: internal biofilm growth and biofilm growth at
the extremes of the tube. The interior biofilm growth takes place within the tube and is
described as follows. If the volume of biofilm is smaller than the penetration volume Vp ,
the nutrients are present in the whole biofilm volume and hence the biofilm growth rate
is proportional to the volume of biofilm (see Figure 3.1 (c) (b)). However, if the biofilm
volume is much larger than the penetration volume, the nutrients are consumed only
within this volume and the biofilm growth rate is proportional to the area between water
and biofilm interface (see Figure 3.1 (c))

The biofilm interior growth rate in the tube ti j , V i
b fi j

can be written as,
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∂V i
b fi j

∂t
= k1

Ai
wb f

Ai
T

Vp
Ci j

Es +Ci j
f (Vb fi j ). (3.7)

In this equation, f (Vb fi j ) ≥ 0 is a sigmoid-like function for Vb fi j that depends on the

penetration volume Vp . Further, Ai
wb f = 2πrw l is the internal interfacial area between

water and biofilm, Ci j is the concentration of nutrients within the tube, Es is a saturation
constant, k1 is a growth rate constant and Ai

T = 2πRl is the external area of the tube. The

ratio between the interior interfacial water biofilm area Ai
wb f and the external area of

the tube Ai
T is a measure of the biofilm growth within the tube. If this ratio is zero then

there is no biofilm in the tube or the tube is full with biofilm. This means that if the tube
is entirely filled with biofilm, then, interior growth stops since there is no more space in
the tube. The sigmoid-like function is defined as,

f (Vb f ) =
Vb f

Vp

1+ Vb f

Vp

. (3.8)

If
Vb f

Vp
< 1 , the sigmoid-like function f tends to

Vb f

Vp
and since Awb f ∼ Ai

T the biofilm

growth rate
∂V i

b fi j

∂t ∼Vb f . On the other hand, if the the ratio
Vb f

Vp
is large, the sigmoid-like

function f ∼ 1 and then the biofilm growth rate
∂V i

b fi j

∂t ∼ Awb f .

Note that the function f̃ = Vp f (Vb fi j ) is an increasing function of Vp . This means
that if Vp increases the biofilm growth rate increases.

We write the area Ai
wb f in terms of the total volume of the pore VT and the volume of

biofilm Vb f , which gives,

∂V i
b fi j

∂t
= k1R

Vp

VT

Ci j

Es +C i j

√
πl (VT −Vb fi j ) f (Vbi j ). (3.9)

If there is no initial biofilm in the tube, the interfacial area between water and biofilm
area is zero, therefore there is no biofilm growth in the interior of the tube.

Note that equation (3.9) represents a continuous relation between the biomass growth
rate and the volume of biofilm V i

b fi j
.

Secondly, we describe the biofilm that grows in the extremes of the tube. Since the
penetration layer in the extremes is very small compared to the whole volume of biofilm,
the biofilm growth rate is approximately proportional to the interfacial area between
water and biofilm in the extremes Ae

wb f (see Figure 3.2). We assume only interactions

between nearest neighbouring tubes. The interfacial area between water and biofilm
Ae

wb f between the tube ti j and the tube t j k can be written in terms of the difference

between volumes of biofilm of these neighbouring tubes. If the volume of biofilm Vb f j k

in the tube t j k (connected to the node n j ) is larger than the volume of biofilm Vb fi j in
the tube ti j , then the biofilm grows in the extreme of the tube t j k and it is given to the



3.2. MATHEMATICAL MODEL

3

37

Tube tij

RT rw 

(b) 

Gp

Vbf

RT

rw 

(c) 

Gp

Awbf

R

rw

l

l

(a) 

Figure 3.1: In Figure (a) a cylindrical tube ti j is shown. Figure (b) and (c) show the side view of the tube ti j .
The volume of biofilm Vb f is shown in green and the penetration volume Vp is shown in red. In Figure (a)
Vb f <Vp . In Figure (b) Vb f >Vp
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Figure 3.2: Biofilm growth in the interior and in the extremes of the tube. In Figure (a) the side view of two
neighbouring tubes is shown. In Figure (b) the cross section of the boundary between the neighbouring tubes
t j k and ti j is shown. The biofilm growth rate from t j k to ti j is proportional to Ae

wb f

neighbouring tube ti j . The biofilm growth in the extreme of the neighbouring tube t j k

is given by

∂V e
b f j k

∂t
= k1

Ae
wb f

Ae
T

VT
C j k

Es +C j k
. (3.10)

Here, Ae
T is the cross-sectional area in the extreme of the tube. The ratio between the

external interfacial water biofilm area Ae
wb f and the cross-sectional area of the tube Ae

T
is a measure of the biofilm growth in the extremes of the tube. This ratio is zero if the
volume of biofilm is the same in both interacting tubes which means there is no biofilm
growth in the extreme of the tube and hence no volume of biofilm is added to either of
them. On the other hand, when this ratio is one, the biofilm grows at a maximal rate and
the accumulated biofilm is added to the tube ti j . Note that there is no biomass exchange
between neighbouring tubes; the biomass is produced in the extreme of the tube and
it is given to the neighbouring one, hence no biomass is lost in the tube. In this way,
this model for the biofilm growth allows the spreading of the biofilm through the whole
network which is consistent with experimental observations. The area Ae

wb f between

the tube ti j and the tube t j k can be written in terms of the volume of the biofilm of the
tubes. Hence the equation for the biofilm growth at the extreme of the tube t j k reads as

∂V e
b f j k

∂t
= k1

Vp

VT

C j k

Es +C j k
(Vb f j k

−Vb fi j ) (3.11)

We take into account all the neighbouring tubes whose volumes of biofilm are larger
than the volume of biofilm in the tube ti j . To this extent we introduce the following in-
dex set notation for the tube ti j which connects nodes ni and n j . Consider node n j then
we define the set of neighbouring nodes of it, except ni by Λ j i . Therefore, the equa-
tion for the biofilm growth in the tube ti j due to biofilm growth in the extremes of the
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neighbouring tubes is written as

∂V e
b fi j

∂t
= k1

Vp

VT

∑
k∈Λ j i

C j k

Es +C j k
(Vb f j k

−Vb fi j )+

+k1
Vp

VT

∑
k∈Λi j

Cki

Es +Cki
(Vb fki

−Vb fi j )+,

(3.12)

where (Vb fki
−Vb fi j )+ = max(0,Vb fki

−Vb fi j ).
We assume that the detachment of biomass is proportional to the area of the inter-

face between water and biofilm, hence, detachment rate can be written in terms of the
volume of biofilm as

∂Vb fi j

∂t det ach
= k2R

√
πl (VT −Vb fi j ), (3.13)

where k2 is the detachment rate coefficient. Finally, when we take into account the in-
terior growth, the growth in the neighbouring tubes and the detachment of biofilm, the
equation for the biofilm growth in the tube ti j can be written as

∂Vb fi j

∂t
= k1R

Vp

VT

Ci j

Es +Ci j

√
πl (VT −Vb fi j ) f (Vb fi j )+k1

Vp

VT

∑
k∈Λ j i

C j k

Es +C j k
(Vb f j k

−Vb fi j )+

+k1
Vp

VT

∑
k∈Λi j

Cki

Es +Cki
(Vb fki

−Vb fi j )+−k2R
√
πl (VT −Vb fi j )H(Vb fi j ).

(3.14)
Further, H(Vb fi j ) is defined as,

H(Vb fi j ) =
0 if Vb fi j = 0

1 if Vb fi j ≥ 0.
(3.15)

We include the function H because detachment occurs only when there is biofilm
within the tube. In case there is no biofilm in the tube, H = 0, which means the de-
tachment rate is zero. In equation (3.14) the first term is the interior biofilm growth, the
second and third term describe the biofilm which grows in the extremes of the neigh-
bouring tubes and the fourth term is a term for the detachment of the biofilm.

The nutrients consumption in the tube ti j is the result of the interior biofilm growth
and biofilm growth in the extremes of the tube.

[∂b+
i j

∂t

]
=

k1

Y

ρVp

VT
2

Ci j

Es +Ci j

[
R

√
πl (VT −Vb fi j ) f (Vb fi j )

+ ∑
k∈Λ j i

(Vb fi j −Vb f j k
)++ ∑

k∈Λi j

(Vb fi j −Vb fki
)+

]
.

(3.16)
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where Y is the yield coefficient and
∂V +

b fi j

∂t is given by,
The new thickness of the biofilm is computed and it is coupled back to the flux equa-

tion (3.1) and to the mass conservation equation (3.2).

3.3. RESULTS
In this section we describe the overall mechanism of biomass growth and its implications
on network characteristics such as the porosity and permeability. In addition, in order
to determine the conditions for upscalability to real reservoir dimensions, we study the
influence of the numerical parameter such as the number of nodes and physical pa-
rameters such as the size of the network and the inlet concentration of nutrients on the
dynamics of transport of nutrients and biofilm growth. At the end we mention the re-
quirements in terms of the Damköhler number for up-scaling this microscopic model to
a continuum-scale model.

Firstly, we present the results of the transport of nutrients and the biofilm growth pro-
cess in the pore network. Initially, there is a biomass concentration b0 = 1×10−4 [kg /m3]
in 4% of tubes (Figure 3.3(a)). When the biomass gets into contact with the nutrients,
biofilm starts growing and spreading to the neighbouring tubes (Figure 3.3 (b) and Fig-
ure 3.3 (c)). Due to a high injection rate, the nutrients are distributed over the whole
network shortly after the beginning of the process. Therefore biofilm grows uniformly
through the network and hence the nutrients are consumed (Figure 3.3 (d)). After several
minutes depletion of nutrients near the outlet of the network is observed. This is because
the consumption of nutrients by the bacteria near the inlet is very high, most nutrients
are unable to reach the outlet. Hence, preferential biofilm growth is observed near the
inlet (Figure 3.3 (e) and Figure 3.3 (d)) and the biofilm developed in this area causes the
plugging of the network. This implies that a heterogeneous end-state is reached if the
inlet concentration of nutrients is not large enough. The heterogeneous or preferen-
tial growth depends on parameters like the size of the network or the number of nodes
in the network, therefore the relation among the fraction of biomass and permeability
varies with these parameters and upscaling is not possible in this case. However if there
is sufficient amount of nutrients, there is no depletion and the biofilm grows uniformly
during the whole process. Therefore the relation between fraction of biomass does not
depend on the size of the domain of computation or the number of nodes and the prob-
lem is upscalable. This scenario is not shown in the Figure 3.3.

3.3.1. VARIATION OF INPUT PARAMETERS

NUMBER OF NODES

In this first set of simulations we study the effect of the number of tubes in the network.
The length in x and y direction and the initial porosity are constant for this simula-
tions. We perform four simulations in which we use four different networks with dif-
ferent number of nodes (25 x 15, 50 x 30, 100 x 60 and 200 x 120). The length of the
tubes decreases as the number of nodes increases. In order to keep the porosity con-
stant throughout all four simulations, the radii of the tubes are adjusted in each of the
simulations. Note that for each simulation the radius of the tubes is constant over the
network. The inlet concentration for these simulations is Ci n = 1[kg /m3]. The value of
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Figure 3.3: Contour plot of the biofilm growth for different times. Figure (a), t = 0 [min]; Figure (b), t = 2[min],
Figure (c), t = 4 [min], Figure (d), t = 35 [min], Figure (e), t = 120 [min]; Figure ( f ), t = 174 [min]
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Figure 3.4: The normalised flux for different number of nodes for a rectangular network
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Figure 3.5: The fraction of biomass for different number of nodes for a rectangular network
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Figure 3.6: The fraction of biomass vs the normalised flux for different number of nodes for a rectangular
network
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the radii and the length of the tubes for this set of simulations are shown in Table 3.1. The
complete list of parameters is shown in Table 3.2. The normalised flux Qn is defined as,
Qn = Q

Q0
, where Q0 is the initial flux in the network (i.e. before biofilm growth). The evo-

lution of the normalised flux through the network for the detachment rate k2 = 0 [1/s]
is shown in Figure 3.4. We observe that there are some deviations among the curves,
however the network is plugged in all the cases around 300 minutes an even an S-shape
is observed for very large number of tubes. The fraction of biofilm volume in the net-

work is given by Sb =
∑

i j Vb fi j∑
i j VT

, where Vb fi j is the volume of biofilm in the tube ti j and

VT is the volume of the tube ti j . In Figure 3.5 we present the results obtained for the
evolution of the fraction of biofilm volume in the network for k2 = 0 [1/s]. At the begin-
ning of the process the biofilm starts growing and spreading through the network, then,
the biomass grows uniformly and in the final stage a preferential growth near the inlet
causes the plugging of the network.

We observe that the fraction of biomass necessary to block the network S̃b decreases
as the number of nodes increases. We can explain this by drawing an analogy with the
minimum fraction of biomass needed to block one column of tubes in y direction. In
order to keep the same initial porosity, if the number of nodes in the x and y direction
doubles then the radii of the tubes and the length reduces approximately to the half.
Therefore, the volume of biomass in one column of the tubes decreases by 1/4 when
the number of nodes in the y direction doubles. The sum of the volume of all the pores
in the network decreases approximately by 1/2 when the number of nodes increases.
Therefore the fraction of biomass needed to block the network decreases by a factor of
1/2. Note that in order to keep the same porosity, the total volume of the network, Vnt =
Lx ×Ly ×2R decreases by 1/2 when the number of nodes increases. Hence the fraction
of biomass needed to block the network decreases when the number of nodes increases.
In our simulations the preferential growth is taken over more than one column, however
a similar argument to explain the decrease of S̃b is valid.

In Figure 3.6 we show the normalised flux versus the fraction of biomass. We ob-
serve that if the fraction of biomass remains small then the curves coincide for the four
cases, however, as the fraction of biomass increases, the curves deviate from the uniform
growth and exhibit a steeper descend as the number of nodes increases.

In order to determine when the preferential growth deviates from uniform growth,
and therefore when upscalability is possible we study the effects of biofilm growth on
the Damköhler number, which is defined as

Da = Reacti on r ate

Ad vecti ve tr anspor t r ate
. (3.17)

In this case, we compute the Damköhler number related to the advective rate be-
cause the transport of nutrients is mainly determined by this process since the Peclet
number is larger than 101 from the beginning to 250 [mi n] approximately.

The Damköhler number for the entire network, is obtained by dividing the average
of the reaction rate by the average of the advective rate,
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Number of nodes in the
network

Radius of the tube Length of the tube

25×15 4.5933×10−5 [m] 3.8×10−4 [m]
50×30 2.3563×10−5 [m] 1.9×10−4 [m]
100×60 1.1937×10−5 [m] 9.5000×10−5 [m]
200×120 6.0078×10−6 [m] 4.7500×10−5 [m]

Table 3.1: Network parameters values for the first set of simulations. All configurations have the same initial
porosity

Name Symbol Value
Global pressure gradient ∆P 1.6 Lx [kPa/m]
Viscosity of water µ 0.001/60 [Pa ·mi n]
Density of water ρw 1000 [kg /m3]
Density of biofilm ρb f 20 [kg /m3] [30]
Diffusion coefficient of water D 9 × 10−8 [m2/mi n] [31]
Yield coefficient Y 0.34 [32]
Half saturation constant for
biofilm

Esb 2×10−3 [kg /m3] [32]

Initial biomass concentration b0 1×10−6 [kg /m3]
Biofilm / bulk water viscosity
ratio

β 107 [29]

Table 3.2: Physical parameters for all the simulations

Da =
k1ρ
Y Σi j

1
VT

1
Ci j +Es

G(Vb fi j )

Σi j ui j

Lx

. (3.18)

Here the sum is taken over all the tubes in the network. In Figure 3.7 the Damköhler
number for a various number of nodes in the network is shown. We plot two horizontal
lines that enclosed the Damköhler number at which a transition from uniform growth to
preferential growth occurred. The transition from uniform growth to preferential growth
occurs at different times for different number of nodes. However the Damköhler num-
ber of the transition ranges between the two horizontal lines for all the cases. For a
Damköhler number less than 101 the biofilm grows uniformly for all the cases. Further,
for Damköhler number greater than 103 there is no uniform growth and upscalability is
not possible.
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Figure 3.8: The normalised flux for different sizes of the domain of computation
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Figure 3.9: The fraction of biomass for different sizes for a rectangular network

SIZE OF THE NETWORK

In the second set of simulations we study the effect of the size of the network on the
porosity and permeability. We perform four simulations with different sizes of the net-
work. The ratio between the number of nodes in the x direction and the number of
nodes in the y direction is constant. In order to keep the same initial porosity the radius
increases slightly while we increase the size of the network. In Table 3.3 the size of the
network and the radius for each network are shown. For each simulation the radius of
the tubes is constant. In Figure 3.8, the normalised flux as a function of time for each
simulation is shown. We observed that the network is plugged after 300 minutes for all
the cases. In Figure 3.9 the fraction of biomass as a function of time is shown for various
sizes of the computational domain. We observe that when the size of the computational
domain is larger the fraction of biomass needed to block the network decreases, see Fig-
ure 3.10. Note that the total amount of biomass increases when the size of the network
increases. The minimal amount of biomass required to block the network is the volume
of all the tubes in one column. When we increase the size of the computational domain,
the amount of tubes in one column is doubled while the total amount of tubes is four
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Figure 3.10: The fraction of biomass vs normalised flux for different sizes for a rectangular network
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Network Number of
nodes in the
network

Size of the network
Lx

Size of the network
Ly

Radius of the tube

L1 25×15 9.5×10−3 [m] 5.7×10−3 [m] 4.5933×10−5 [m]
L2 50×30 1.9×10−2 [m] 1.114×10−2 [m] 4.7126×10−5 [m]
L4 100×60 3.8×10−2 [m] 2.28×10−2 [m] 4.7746×10−5 [m]
L8 200×120 7.6×10−2 [m] 4.56×10−2 [m] 4.8063×10−6 [m]

Table 3.3: Network parameters values for the second set of simulations

times higher, hence the relative contribution to the volume from one column decreases
when we increase the size of the network. The minimal amount of biomass to block the
network tends to zero as the size of the network increases and it is lower than the per-
colation threshold for a rectangular network. On the other hand, there is a maximum of
biofilm growth when there is uniform growth because in that case all the tubes have to
be filled with biofilm in order to plug the network completely. A transition from uniform
growth to preferential growth is observed as we increase the size of the network.

In Figure 3.11 the Damköhler number is shown for different sizes of the network. We
observe that there is uniform growth and therefore upscalability when the Damköhler
number is less than approximately 101. Above 103 there is a preferential growth and
upscalability is not possible.

INLET CONCENTRATION OF NUTRIENTS

In the third set of simulations we study the effects of the inlet concentration on the
biofilm growth. In this set of simulations the size of the network is 100×60 nodes and we
use five different inlet concentrations, Ci n , 1 [kg /m3], 5 [kg /m3],10 [kg /m3],25 [kg /m3],
50 [kg /m3]. In Figure 3.12 the normalised flux is shown. We observe that the network is
plugged at around 300 minutes for all the cases. In Figure 3.13 the evolution of the frac-
tion of biomass is shown. It is shown that the biomass saturation value increases as the
inlet concentration increases. When the concentration Ci n = 1 the biomass saturation
value is around Vs = 0.70 however if the inlet concentration is Ci n = 50, then the fraction
of biomass necessary to block the network is Vs = 1. Therefore when we increase the
concentration, the nutrients can reach the region near the outlet of the network and no
preferential growth is observed, hence the model predicts a uniform biofilm growth for
concentrations larger than 25 [kg /m3], see Figure 3.14.

In Figure 3.15 the Damköhler number is shown for different inlet concentrations of
the network. We observe that there is uniform growth and therefore upscalability when
the Damköhler number is lower than 101. Further, we observe that when the inlet con-
centration Ci n = 25 and Ci n = 50 there is always uniform growth and hence upscalability.

3.3.2. UNIFORM BIOFILM GROWTH
In the uniform biofilm growth, the biomass grows at the same rate in all the tubes of the
network. Using a similar process as the equivalent resistance in electric circuits, we can
easily obtain a relation between the total flux in the network and the fraction of biomass.
Since the radii are reduced in all the tubes at the same rate and assuming that initially the
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Figure 3.12: The normalised flux for different inlet concentration of nutrients, with network size L4
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Figure 3.13: The fraction of biomass for different inlet concentration of nutrients, with network size L4
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Figure 3.14: The fraction of biomass vs the normalised flux for different inlet concentration of nutrients, with
network size L4
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Figure 3.15: The Damköhler number for different inlet concentration of nutrients, with network size L4

radii are equal in all the tubes of the network, it follows that during the whole uniform
biofilm growth process the radius remains the same in all the tubes of the network. This
implies that there is only flux in the horizontal tubes of the network. Hence the total flow
in the network can be written as,

Q = Ny

Nx

π

8µl
[r 4

wi j
+ (R4

i j − r 4
wi j

)β−1]∆P, (3.19)

in which Ny is the number of tubes in the y direction and Nx is the number of tubes
in x direction. This expression is equivalent to consider the whole network as a single
tube.

If we disregard the second term in equation (3.19) and we express r 4
wi j

as the fraction
of volume of biomass, the normalised flux for uniform growth is given by,

Qn = (1−Vpb f )2

(1−Vpb f0 )2 . (3.20)

In which Vpb f0 is the initial fraction of volume of biomass in the network. In terms of
porosity, the normalised flux is given by the following equation,

Qn =
[ φ
φ0

]2
, (3.21)

where φ0 is the initial porosity.
We use Darcy’s Law to relate the permeability K with the flux Q,

K =QLµ/∆PA. (3.22)

If the pressure drop ∆P , the cross-sectional area of the network A, the length in the
flux direction L and the viscosity µ are constant we have that K

K0
= Q

Q0
=Qn . In which K0

is the initial porosity and Q0 is the initial flux. Therefore we can express equation (3.21)
as,
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K

K0
=

[ φ
φ0

]2
, (3.23)

which relates the porosity and the permeability for the uniform biofilm growth.

3.4. DISCUSSION AND CONCLUSIONS
In this work we study the conditions for upscalability of bioclogging using a pore net-
work model. We use a biofilm growth model that takes into account the spreading of the
biofilm through the network and assumes that the consumption of nutrients is taken
only in a small layer of biofilm adjacent to the water biofilm interface since the con-
sumption of nutrients is faster than the diffusion of them through the biofilm in each
tube. The biofilm growth requires the injection of nutrients through the network which
are transported within a fluid phase. In general it is shown that initially the biofilm grows
uniformly across the network but afterwards there is a preferential growth near the inlet
of the network, due to depletion of nutrients in the back of the network. This causes the
plugging of the network and blocks the nutrient inflow. The amount of nutrients needed
to clog the network depends on factors like the size of the network, the number of nodes
and the inlet concentration of nutrients. Therefore the analytical relation between the
fraction of biomass and normalised flux may not be unique and upscalability is not al-
ways possible. However if the inlet concentration of nutrients is about 25 [kg /m3] there
is no preferential growth and the biofilm grows uniformly through the network. This an-
alytic relation does not depend on the size of the network, the number of nodes, or the
inlet concentration, therefore upscalability is possible. In the case of uniform growth
there is a unique relation between the fraction of biomass or porosity and the perme-
ability of the network.

We use the Damköhler number to determine when the biofilm grows uniformly
through the network and therefore when upscalability is possible. We found that if Da <
101 the biofilm grows uniformly through the network. However if the Da > 103 there is
preferential growth and therefore no upscalability is possible. If 101 < Da < 103 there is
a transition between uniform and preferential growth.

We performed three sets of simulations to determine the conditions for upscalability
of bioclogging. In the first set of simulations we vary the number of nodes in the net-
work, we observe that at early stages the biofilm growth is mostly uniform for Nx = 25
and Nx = 50. However at the end of the process a heterogeneous biofilm growth in the
network is observed. This phenomenon does not allow upscalability for the whole pro-
cess. For Nx = 100 and Nx = 200 the preferential growth is more significant than in the
previous case. For this set of simulations, it is shown that if the Damköhler number is
lower than 101 approximately uniform growth is still observed in all the cases. However,
if the Damköhler number is larger than 103 the biofilm growth model starts to deviate
from uniform growth and upscaling is not possible. Note that increasing the number
of nodes leads to a decrease in velocities and hence to a increase in the Damköhler, see
equation (3.18).

In the second set of simulations we vary the size of the network. We observe that
the fraction of biomass needed to block the network decreases when the size of the net-
work increases. In this case, similar to the first one, there is no unique relation between



REFERENCES

3

51

the fraction of biomass and the permeability of the network for the entire process. The
Damköhler number predicts uniform growth below 101 approximately and preferential
growth above 103. We see from equation (3.18) that if we increase the size of the network
the Damköhler number also increases.

Finally for the third case of simulations we vary the inlet concentration of nutrients.
We observe that for inlet concentrations Ci n = 25 [kg /m3] and Ci n = 50 [kg /m3], the
fraction of biomass needed to block the network is approximately equal to one. For larger
inlet concentration of nutrients there is no depletion and hence upscaling is possible
since there is uniform biofilm growth. In this case if we increase the inlet concentration
the Damköhler number decreases.

We performed three sets of simulations in which we vary the number of nodes in
the network, the size of the network and the inlet concentration of nutrients. For the
first two cases, upscalability is not possible since there is no unique relation between the
amount of biofilm and the permeability of the network. However for the third case when
we vary the inlet concentration of nutrients, we observe that for concentrations larger
than 25 [kg /m3] the model describes uniform biofilm growth in the network, which al-
lows upscalability of these results, since in uniform biofilm growth the relation between
the fraction of biomass and the permeability does not depend on the volume of the net-
work. In addition, we show that if the Damköhler number is less than approximately
101 the biofilm evolves similarly to uniform growth and that if it is above 103 preferential
growth is observed, therefore we can use the Damköhler number to determine whether
upscaling is possible. For the first two cases the Damköhler number is not always below
this limit and therefore upscalability is not possible in these cases. However, for the third
set of simulations we observe that the Damköhler number is below this limit for the en-
tire process for an inlet concentration of Ci n = 25 [kg /m3] and Ci n = 50 [kg /m3]. For the
upscalable case, we obtain a relation between the permeability and the porosity, K ∼φ2.
This formula can be seen as an alternative to the classical Kozeny-Carman equation in
the case of gradually clogging of the network.

Interesting research may be the extension of this model to 3D networks with different
topologies to determine the effects of biofilm growth on the relation between porosity
and permeability. This relation could differ from K ∼ φ2. In addition, it might be in-
teresting to verify the relation between porosity and permeability, K ∼ φ2, in laboratory
scale and obtain an appropriate Damköhler number regime for uniform growth. Forth-
coming research might be the extension of this model to two phase flow for studying the
possibility of flow diversion for MEOR. Finally, this model can be used in other problems
like pore-elasticity.
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4
BIOFILM GROWTH MODEL IN A 3D

CUBIC NETWORK

4.1. INTRODUCTION
In this chapter we study a three-dimensional biofilm growth pore network model. We
investigate the influence of biofilm growth on the porosity-permeability relation. In this
introduction, we will first give a short overview of the literature on 3D pore network mod-
els. Secondly we will address the problem in what aspects the 2D and 3D models are
different and yield different results. Finally we will give an overview of the organisation
of the chapter.

Biofilm growth has been modelled in 3D on the micro-scale [1]. They simulate the
biofilm roughness, surface shape and porosity via a differential-discrete mathematical
model [1]. According to their findings biofilm grows like a ’finger-like" or "mushroom"
shape in a substrate-transport-limited regime. On the other hand, dense biofilm is found
in systems where the biomass growth rate is the limiting factor. Despite the relevance of
the biofilm morphology on the micro-scale, in this work we model the biofilm growth at
the meso-scale. Therefore we assume that the biofilm is a uniform layer attached to the
wall of the cylindrical pores.

[2] used a pore network model to describe the biofilm growth in a porous medium.
They use a variable mass exchange coefficient which is a function of the biofilm volume
fraction and the Damköhler number. They found that in the case of insufficient solute
supply biofilm clogging occurs at the inlet of the network. In case of a higher water flow
rate the biofilm accumulates away from the inlet. They also found that if the nutrient
supply is sufficient the biofilm grows uniformly through the network.

In this chapter we extend the previous 2D model to three dimensions. We use a cubic
network, which it could be seen as a set of 2D quadrangular networks (layers) joined by
vertical tubes in the z direction. We describe the influence of bioflim growth on the
porosity and the permeability of the network. Intuitively it seems to be easier to block a
2D network than a 3D network since in 3D it is easier to circumvent a blockage. This is
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quantified by the percolation threshold.

The percolation threshold is associated with the existence of connecting paths be-
tween opposite sites in the network. To all tubes in the network we can associate a
probability p of being full or empty. The percolation threshold is the critical value of
the probability p such that a connecting path between opposite nodes in a network "al-
ways" exists... (with probability 99% ). This means that above the percolation threshold
a connecting path "always" exists. The percolation threshold for a 3D cubic network is
approximately 0.2475. Meanwhile, the percolation threshold for a 2D quadrangular net-
work is 0.5. This illustrates that it is easier to have a connecting path in 3D than in 2D.

In the 2D case we observed that we could replace the whole network by one effective
tube in the uniform growth case. If we have uniform growth in the 3D case a similar
argument might apply which could lead to similar permeability-porosity relations. In
this case the Damköhler number could also be used to determine whether we are in the
uniform (upscalable) regime.

In Section 4.2 we describe the mathematical model for the biofilm growth in 3D and
the numerical method used. In Section 4.3 we present the results we obtained of the
effects of biofilm growth on the porous medium characteristics. Finally we draw some
conclusions in Section 4.4.

4.2. MATHEMATICAL MODEL AND NUMERICAL METHOD

In this section we present the equations used for the biofilm growth model in a porous
medium in 3D. This model is an extension of the 2D model. We use a 3D cubic network
to represent the porous medium in 3D (see Figure 4.1). The network is formed of inter-
connected cylindrical tubes. The number of neighbouring nodes for the interior nodes
is 6. We assume that bacteria and biofilm form a single phase and we refer to them as a
biofilm. Furthermore we assume that the nutrients are injected within a fluid to stimu-
late biofilm growth.

The volumetric flow of water within each tube is described by a modified Poiseuille
equation [3],

qi j = π

8µl
[r 4

wi j
+ (R4 − r 4

wi j
)β−1]∆p. (4.1)

Mass conservation is imposed in each node ni ,

∑
j∈Si

qi j = 0,∀ni . (4.2)

This condition leads to an equation for the pressure in each node. The boundary
conditions for the pressure are given by,



4.2. MATHEMATICAL MODEL AND NUMERICAL METHOD

4

57

x 

y 

z 

Tube 
Node 

Figure 4.1: Cubic network used for the 3D simulations

p(0, y, z; t ) = 1600Lx ,

p(Lx , y, z; t ) = 0,

∂p

∂y
(x,0, z; t ) = 0,

∂p

∂y
(x,Ly , z; t ) = 0,

∂p

∂z
(x, y,0; t ) = 0,

∂p

∂z
(x, y,Lz ; t ) = 0.

(4.3)

The transport of nutrients is described by the advection-diffusion-reaction equation
in 3D; the concentration of nutrients is denoted by C :

∂C

∂t
+u ·∇C −D∇2C =−∂b+

∂t
. (4.4)

In this equation D is the diffusion coefficient of nutrients through water and u is
the advection velocity which is related to the local flux q by u = q/A, where A is the
area of the cross-section of the tube. Additionally, b+ is the concentration of the biofilm
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produced as a result of the consumption of nutrients (no detachment of biofilm is taken
into account in this term).

The initial and boundary conditions for the concentration are:

C (x, y, z, t0) = 0,

t0 = 0,
(4.5)

C (0, y, z, t ) = 1,

∂C

∂x
(Lx , y, z, t ) = 0,

∂C

∂y
(x,0, z, t ) = 0,

∂C

∂y
(x,Ly , z, t ) = 0

∂C

∂z
(x, y,0, t ) = 0,

∂C

∂z
(x, y,Lz , t ) = 0.

(4.6)

The concentration of biofilm b is related to the volume of biofilm by

b = ρ

VT
Vb f . (4.7)

In this model we assume that biofilm and nutrients can meet in the interior of the
tube and in the extremes of the tube. For this reason there are two kinds of biofilm
growth: biofilm growth in the interior of the tube and biofilm growth in the exterior of
the tube. The biofilm growth in the interior of the tube is given by

∂V i
b fi j

∂t
= k1

Ai
wb f

Ai
T

VT
Ci j

Es +Ci j
f (Vb fi j ). (4.8)

The biofilm growth in the extreme of the neighbouring tube t j k is given by

∂V e
b f j k

∂t
= k1

Ae
wb f

Ae
T

VT
C j k

Es +C j k
. (4.9)

Finally, taking into account the interior growth, the growth in the neighbouring tubes
and the detachment of biofilm, the equation for the biofilm growth in the tube ti j can
be written as

∂Vb fi j

∂t
= k1R

Ci j

Es +Ci j

√
πl (VT −Vb fi j ) f (Vb fi j )+k1

∑
k∈Λ j i

C j k

Es +C j k
(Vb f j k

−Vb fi j )+

+k1
∑

k∈Λi j

Cki

Es +Cki
(Vb fki

−Vb fi j )+−k2R
√
πl (VT −Vb fi j )H(Vb fi j ),

(4.10)
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where H(Vb fi j ) is defined as

H(Vb fi j ) =
0 if Vb fi j = 0

1 if Vb fi j ≥ 0.
(4.11)

The coupled system of equations 4.4 and 4.10 is solved via a finite difference scheme
in space. To solve the equation 4.4 a time-implicit method for the concentration is used
and a finite difference scheme in space. To solve equation 4.10 an explicit Euler time in-
tegration method was used. The details of the numerical approach to solve the transport
of nutrients and the biofilm growth are shown in Section 2.3.

4.3. RESULTS
In this section we present the results obtained for the biofilm growth model in a 3D cubic
network. The number of nodes in the x direction is Nx = 50 and the number of nodes in
y direction is Ny = 30. The number of nodes in the z direction, Nz , was varied depending
on the numerical experiment.

First we vary the number of nodes in the z direction to study the influence of the
number of nodes on the porosity-permeability relation. The inlet concentration of nu-
trients was set constant and the radius is the same for all the tubes in the network.

Secondly we study the influence of the inlet concentration of nutrients on biofilm
growth in the network. We set different inlet concentrations we set Nz = 32 1. Finally
we study the biofilm growth evolution with a log-normal distribution for the radii of the
network. In this case we vary the variance of the distribution; the inlet concentration
and Nz were set constant.

4.3.1. CASE 1:A DIFFERENT NUMBER OF NODES IN THE z DIRECTION, EQUAL

RADII AND EQUAL INLET CONCENTRATIONS
Firstly, we studied the effects of the number of nodes in the z direction on the dynamics
of the system. For this purpose we performed five simulations with a different number
of nodes in the z direction, Nz = 3, Nz = 5, Nz = 9, Nz = 17 and Nz = 33. We compare
these results with the results of our 2D network model (Nz = 1).

In Figure 4.2 the normalised flux as a function of time is shown. We observe that the
flow through the network ceases after approximately 300 minutes for all the cases.

In Figure 4.3 the evolution of the fraction of biomass in the network Sb is shown.
If the network is blocked, then S̃b is around 0.7 for the 2D case. For the 3D cases this
fraction is larger: if Nz = 2 then S̃b is around 0.8 and as the number of nodes in the z
direction increases, this fraction converges to 0.85 approximately.

Figure 4.4 shows the relation between the normalised flux and the fraction of biomass,
Sb , for the 2D case, the 3D cases and the case of uniform biofilm growth in 2D. Note that
the uniform biofilm growth in 2D and 3D yield similar results because there is no flux
in the z direction. The biofilm growth in the 2D case deviates from uniform growth at
around Sb = 0.5. For the 3D cases the deviation from uniform growth occurs at around
Sb = 0.7. We also observe this behaviour in Figure 4.5 where the average Damköhler

1Alfredo I also did this for various N z, shall we mention this in the document?
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number is plotted as a function of time. In Figure 4.5, it can be seen that there is a tran-
sition going on between Damköhler numbers of approximately Da ≈ 2 and Da ≈ 102.
This transition marks the event between having uniform growth in the upscalable regime
(Da ≤ 1) and non-uniform growth (Da ≥ 102) in the non-upscalable regime. It can be
seen that the Damköhler values are of the same order of magnitude as in Figures 3.11
and 3.15. For the 2D case there is a transition between uniform growth and preferen-
tial growth between 70 and 100 minutes. For the 3D cases this transition is between
120 minutes and 160 minutes. This implies that in the 3D simulations the flow remains
upscalable during a longer period, which may be attributed to the larger ability of the
’3D-flow’ to get around plugged sections and to the fact that there are more tubes to be
filled so that the flow velocity stays larger during a larger period. A large flow velocity
gives a lower Damköhler number.

In Figure 4.6, we show the normalised permeability versus the normalised poros-
ity, which is an important relationship in porous media that is often modelled through
Kozeny-Carman like relations. The figure that we propose here is an alternative to the
Kozeny-Carman relation taking into account the gradual filling up of the pore. The re-
sults that we get are similar to the previous 2D results (see Figure 2.8), however, it can be
seen that the permeability only becomes zero at a lower porosity. This effect becomes
more pronounced if the number of nodes in the z-direction increases. This observation
suggests that one needs more biomass to shut off the 3D-region than the 2D region. This
may be caused by a combination of a larger number of tubes in 3D and a higher capabil-
ity for flow diversion in 3D compared to 2D.

Figure 4.2: normalised flux vs time for different number of nodes in z direction
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Figure 4.3: Fraction of biomass vs time for different number of nodes in z direction

Figure 4.4: normalised flux vs Fraction of biomass for different number of nodes in z direction
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Figure 4.5: Damkohler number for different number of nodes in z direction

Figure 4.6: normalised permeability vs Porosity
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4.3.2. CASE 2: DIFFERENT INLET CONCENTRATIONS, SAME RADII AND EQUAL

Nz
Secondly we study the effects of the inlet concentration of nutrients on the biofilm growth
in the cubic network. We performed three set of simulations in which we vary the inlet
concentration of nutrients ci n . The values for the inlet concentration of nutrients are
ci n = 0.001, ci n = 0.01 and ci n = 0.1.

In Figure 4.7 the normalised flux as a function of time is shown for the three different
inlet concentrations used in this simulation, ci n = 0.01, ci n = 0.1, ci n = 1. It is shown that
after 400 minutes the network is blocked due to biofilm growth for all the cases. However
if the inlet concentration is ci n = 0.01 the curve that represents the relation between the
normalised flux and time exhibits an inflection point. Figure 4.8 shows the fraction of
biomass in the network Sb . For ci n = 0.01 Sb is about 0.1, for ci n = 0.1 Sb is about 0.3 and
for ci n = 1 Sb = 0.8 approximately. It is shown that if the inlet concentration of nutrients
is larger then the nutrients will be distributed over the network, including the regions
near the outlet of the network. Therefore the depletion of nutrients will take longer and
more biomass will grow through the network. This phenomenon is similar in the 2D
case (see Figure 3.14. However for the 3D case lower initial concentration is needed to
obtain a more uniform growth. This is because in a 3D network there are more paths in
which the fluid with nutrients can flow, therefore the nutrients can reach the areas near
the outlet even though the inlet concentration is low.

In Figure 4.9 the relation between the fraction of biomass and the normalised flux is
shown for the three inlet concentrations used. In addition, the relation between the frac-
tion of biomass and normalised flux for the uniform biofilm growth is shown. It is shown
that for ci n = 0.01 and ci n = 0.1 the biofilm growth deviates from uniform growth fast, i.e.
at a low fraction of biomass. On the other hand for ci n = 1 the biofilm growth stays longer
in accordance with the uniform growth. The Damköhler number as a function of time
is shown in Figure 4.10. For ci n = 0.01 the Damköhler number is initially around 102.
This Damköhler number already corresponds to heterogeneous biofilm growth, see for
example Figure 4.9 and Figure 4.10. For ci n = 0.1 the Damköhler number is initially less
than 101. However after approximately 20 minutes the Damköhler number increases un-
til 102 approximately. This means that the biofilm grows initially uniformly through the
network; however after 20 minutes the biofilm starts to grow preferentially near the inlet
of the network. Finally for ci n = 1 the Damköhler number is lower than 101 for the first
150 minutes. After that the Damköhler number increases dramatically to 102 approxi-
mately. During the first 150 minutes the biofilm grows uniformly through the network
according to Figure 4.9, where we observe that the biofilm growth overlaps with the uni-
form growth. In Figure 4.11 the normalised flux as function of the porosity is shown for
the inlet concentration of nutrients, ci n = 0.01, ci n = 0.1, ci n = 1.
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Figure 4.7: Different inlet concentrations Nz=32

Figure 4.8: Different inlet concentrations Nz=32
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Figure 4.9: Different inlet concentrations Nz=32

Figure 4.10: Different inlet concentrations Nz=32
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Figure 4.11: Different inlet concentrations Nz=32

4.3.3. CASE 3: LOG-NORMAL DISTRIBUTION FOR THE RADII DIFFERENT

VARIANCE; A CONSTANT NUMBER OF NODES IN Z DIRECTION AND A

CONSTANT INLET CONCENTRATION

In Figure 4.12 the normalised flux as a function of time is shown for the four variances
σ: σ= 0, σ= 1/2, σ= 1/4, σ= 1/8. It is shown that after 250 min the network is blocked
for variances σ = 1/2, σ = 1/4, σ = 1/8 due to biofilm growth. However for σ = 0 the
blocking of the network occurs later: at 300 minutes approximately. Figure 4.13 shows
the fraction of biomass in the network. We observe that if the variance tends to zero the
curves tends to the case in which all the tubes are equal σ= 0.

In Figure 4.14 the relation between the fraction of biomass and the normalised flux is
shown for the variances used. If the variance isσ= 1/2 the fraction of biomass needed to
block the network is around 0.7, if the variance isσ= 1/4 the fraction of biomass needed
is about 0.8. and if σ= 1/8 the fraction of biomass needed is about 0.82.

In Figure 4.15 the Damköhler number for the different variances is shown. We ob-
serve that there is a sudden increase of Damköhler number for the four cases. This in-
crease occurs for different times. However the value of the Damköhler number when
this sudden increase occurs is between Da = 101 and Da = 103) for all the cases.

4.4. DISCUSSION AND CONCLUSIONS
In this chapter we performed several numerical experiments in which we varied the
number of nodes in z direction. In the first set we performed 6 simulations with a dif-
ferent number of nodes in the z direction: z = 1 (2D case), z = 3, z = 5, z = 9, z = 17,
z = 33. We studied the dependence of the results on the number of nodes in the z direc-
tion to determine whether it is possible to describe the biofilm growth with a 2D network
model, i.e. whether a 2D simulation is sufficient.
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Figure 4.12: Different simulations

We obtained that for the z = 1 (2D case) the depletion of nutrients occurs faster. This
implies that the biofilm growth deviates from uniform growth earlier in the 2D case than
in the 3D case. The depletion occurs faster in 2D since in 3D there are more ways in
which the water can flow, hence, the nutrients are able to travel further in a 3D network
and depletion takes longer. The amount of biomass needed to block the network is larger
for the 3D cases than for the 2D case. However, as the number of nodes in the z direction
increases, the amount of biomass needed to block the network converges to a limit value.

Even though the depletion of nutrients occurs faster for the 2D case, the transition
between uniform growth and preferential (or heterogeneous) growth occurs for the same
values of the Damköhler number, which is between Da = 101 and Da = 103. Therefore
we conclude that the criteria for uniform growth and therefore up-scalability in 3D are
similar to the criteria used for the 2D network.

In addition the inlet concentration needed to obtain uniform growth is lower for
the 3D case than for the 2D case. The lower inlet concentration of nutrients needed
to obtain uniform biofilm growth in 3D is due to the lower percolation threshold. It is
harder to block a part of the network which means that depletion sets in later. When
the inlet concentration of nutrients decreases heterogeneous biofilm growth occurs at
early stages. However this dependence on the inlet concentration is also incorporated in
the Damköhler number; the transition from uniform growth to preferential growth takes
place within the same Damköhler regime (i.e. between Da = 101 and Da = 103).

Finally we studied the effects of a log normal distribution for the radii on the
permeability-porosity relation. We observed that as the variance tends to zero the frac-
tion of biomass needed to block the network tends to the fraction of biomass needed
when the radii are all equal. However if the variance of the distribution is larger then
the amount of biomass needed to block the network is lower, because in the latter case
only a few "big channels" are needed to block the network. But also in this case we ob-
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Figure 4.13: Different simulations

Figure 4.14: Different simulations
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Figure 4.15: Different simulations

Figure 4.16: Different simulations
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serve that the transition from uniform growth to preferential growth takes place within
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5
A NETWORK MODEL FOR THE

KINETICS OF BIOCLOGGING FLOW

DIVERSION FOR ENHANCED OIL

RECOVERY

A micro-scale model that describes the sweep efficiency of a water-flood process when
biofilm is growing in the porous media is useful to provide an insight of MEOR applica-
bility at larger scales. The development of micro-scale models of flow diversion due to
biomass accumulation is not available in the literature as far as we known. In this chap-
ter we investigate the effects of biofilm growth on the direction of the water flow. For this
purpose we assume that the porous medium has two regions with different permeabil-
ities and we investigate the impact of biofilm growth on the flow rate through the low
permeability region.

In section 5.1 we describe the MEOR process and some previous works of biofilm
growth in porous media. In section 5.2 we explain the model used for the biofilm growth
which differs from the previous biofilm growth model used in this thesis and the transport-
diffusion equation. In this section we also describe the numerical approach used to solve
the transport equation and the biofilm growth equations. In the following section 5.3 we
present the results obtained for the effect of biofilm growth in permeability and poros-
ity. In addition we present the results of the flow diversion when the network consists of
two areas of different permeability. Finally in section 5.4 we mention some conclusions
about the effects of biofilm growth on flow diversion of water.

5.1. INTRODUCTION
Microbial Enhanced Oil Recovery (MEOR) is a technique in which the growth of bacte-
ria and the resulting by-products are used in order to increase residual oil production
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ENHANCED OIL RECOVERY

in a tertiary oil recovery method. MEOR techniques involve the use of indigenous mi-
croorganisms or the injection of selected external bacteria into the reservoir to produce
the desired by-products. Typically in MEOR techniques, bacterial population growth is
supported by the injection of nutrients into the reservoir [1].

Microbes enhance oil displacement by different processes: interfacial tension reduc-
tion, rock wettability change and increment of the waterflood sweep efficiency caused
by selective plugging [2]. Among these mechanisms, interfacial tension reduction and
selective plugging are thought to have the greatest impact on recovery [1]. During selec-
tive plugging, bacteria grow and adhere, within a self produced matrix of extra cellular
polymeric substances (EPS), to the walls of the pores of high permeability zones. The
bacteria adhered and the self produced matrix is referred as biofilm. Biofilm growth
leads to the plugging of the pores in high permeability zones, causing the diversion of
the water-flood from the thief zones towards oil-rich areas.

The applicability of MEOR techniques to increase oil extraction has been shown in
laboratory experiments [3–5] and field trials [5]. In laboratory experiments, it has been
shown that biofilm accumulates in high permeability zones, diverting the water flood to-
wards oil trapped zones [6]. Field trials have been implemented in order to verify the ef-
fectiveness of microbial processes predicted in laboratories. The Alton field in Australia
showed that the net oil production increased 40% and it continued after 12 months of
treatment [7]. A field study in Canada showed that selective plugging is one of the most
promising processes in MEOR techniques [8]. The extent of success in oil recovery using
MEOR techniques depends on several factors such as individual reservoir characteris-
tics: lithology, porosity, permeability, temperature and oil composition. Additionally,
microbial activity, bacterial composition and concentration of nutrients determine the
performance of MEOR. Therefore, the prediction of the failure or success of the MEOR
techniques is limited by the lack of measures in microbial activity [1]. However, it is
possible to describe quantitatively the relationships between reservoir characteristics,
microbes and operating conditions [9].

The development of mathematical and numerical models predicting the bacterial
population growth, nutrients transport and in situ production of by-products is of vi-
tal importance to develop a proper field strategy [1]. Several numerical models have
been developed to describe biofilm growth. There exist continuum Darcy models [10],
bacterially-based models [11], Lattice Boltzmann based simulations [12, 13] and Pore
Network Models (PNM) [14–17]. Frequently, in biofilm growth models, the porous me-
dia consists of three components: the grains, the biofilm which grows on the walls of the
solid grains and the liquid in the pore space. The grains are assumed to be impermeable
for the liquid and the nutrients, therefore hydrodynamic model equations are written
only for the liquid and biofilm [12]. In the flow regimes that we are considering now, we
also assume that the grains are non-deformable.

In PNMs, pores are considered as cylindrical interconnected tubes in which the wa-
ter can flow. The dynamics of the problem is described by transport of nutrients through
the network, bacterial population growth and biofilm development. Transport of nutri-
ents is carried out within an aqueous phase and is described by a convection diffusion
equation with a reaction term that considers the consumption of nutrients caused by
bacterial population growth. Bacterial population will determine the development of
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biofilm in the pores of the medium. This biofilm will grow and will change the radii of
the pores, leading to a modification in the dynamics of the fluid that carries the nutrients
through the network [14–17]. The geometric properties of the network such as connec-
tivity, coordination number or coordination number distribution have an influence on
the transport of solute and in multiphase flow in porous systems [18].

Among PNMs different approaches have been used to study the evolution of the fluid
dynamics of the system and biofilm growth. Commonly, the biofilm is treated as an
impermeable layer [15, 16, 19]. However, the assumption that nutrients can flow through
the biofilm produces a better match with laboratory experiments [20]. Thullner et al.
[20] considered that the flow in each of the tubes is described by a modified form of the
Poiseuille flow where the flux through the biofilm and through the void space is taken
into account. Considering that nutrients can also flow through the biofilm phase, Ezeuko
et al. [14] used two different diffusion coefficients, one for diffusion through the water-
water interface and another for the water-biofilm interface.

The Monod kinetics equation is usually used to describe the growth of bacteria in the
pores [14, 16, 17, 20], this equation relates the growth rate of bacteria with the concen-
tration of nutrients available in the network.

Even though the biofilm phase and the bacteria phase are two different phases, the
distinction in PNM’s between biofilm and bacteria has not been made explicit in the
literature. In Thullner et al. [20] no distinction between biofilm and bacteria is taken into
account while Ezeuko et al. [14] consider the biofilm as an attached phase of bacteria.

In this work, we model the growth of biofilm, the growth of the bacteria population
and the transport of nutrients in a porous medium. As in the previous works of Thullner
[20] and Ezeuko [14], we consider the biofilm phase as a permeable layer which means
nutrients can travel through the biofilm phase due to advection. However, diffusion was
considered only in the water phase. Note that we consider the bacteria and the biofilm
separately. Additionally, we consider that the excess volume of biofilm can be spread
to the neighbouring tubes. Finally, we study the possibility of flow diversion from thief
zones to areas of low permeability by means of bioclogging. We model two regions with
different permeabilities and we compute the flow out of the low permeability region,
since this flow mimics the amount of oil that can be produced from the low permeability
zone.

This chapter consists of four sections. In Section 5.2, in the Mathematical model sub-
section, we describe the physical, mathematical and biological considerations that are
involved in the process of bioclogging in a porous medium. We illustrate how we model
the porous medium, the injection of nutrients, the growth of bacteria, and the growth
and development of biofilm. In Section 5.2, in the Numerical method subsection, the
numerical method used is described and the computational steps are explained. In Sec-
tion 5.3 the results and discussion are presented. Finally, in Section 5.4 the conclusions
are drawn and the outlook to other problems are presented.
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5.2. METHOD AND THEORY

5.2.1. MATHEMATICAL MODEL
We represent the porous medium as a 2D network composed of interconnected cylindri-
cal tubes. The point where these tubes are connected is called a node of the network and
is indexed as node ni . The tube between the node ni and n j is indexed as the tube ti j . A
Rayleigh distribution for the radii was used. In addition, it is assumed that all the tubes
have the same length l . The number of tubes connected in each node is four for interior
nodes, three for boundary nodes and two for the nodes in the corner of the network (see
Figure 2.1).

We assumed that the initial concentration of bacteria is necessary for the biofilm
growth, therefore we consider that 4% of the tubes have an initial concentration of bac-
teria b0. Initially nutrients are not present in the network, hence nutrients need to be
injected through the network and transported within a fluid.

In this work we consider the biofilm as a permeable layer in which nutrients are able
to be transported as well. Additionally, we consider a single concentration in each tube,
hence no distinction between the concentration in the biofilm phase and the concentra-
tion in the water phase was made.

We define the thickness of the biofilm in the tube ti j as rbi j , the radius of the tube
available for water by rwi j and the total radius of the tube by Ri j (see Figure 2.1).

The volumetric flow of the aqueous phase qi j in the tube ti j is described by a modi-
fied form of the Poiseuille equation [20],

qi j = π

8µl
[r 4

wi j
+ (R4

i j − r 4
wi j

)β−1]∆p, (5.1)

where ∆p is the pressure drop between the neighbouring nodes ni and n j , µ is the
viscosity of water that flows in the bulk, β is the ratio between the viscosity of water flow-
ing through the biofilm and the viscosity of water flowing through the bulk and l is the
length of the tube. According to [20]β= 103 is a good approximation for an impermeable
biofilm.

Mass conservation is imposed in each of the nodes. For the node ni we have∑
j∈Si

qi j = 0, (5.2)

where Si = { j | n j is adjacent to the node ni } and further qi j is the flux in the tubes
connected to node ni .

The transport of nutrients is described by an advection diffusion reaction equation.
We denote the concentration of nutrients as C [kg /m3],

∂C

∂t
=−u ·∇C +D∇2C − λ+

b

Y

C

Ebs +C
b, (5.3)

where b is the biomass concentration, λ+
b is a microbial specific consumption rate,

Y is the yield coefficient, Ebs is a saturation constant, D is the diffusion coefficient and
u is the velocity which is related to the flux q by u = q/A, where A is the area of the cross
section of the tube.
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Figure 5.1: Pore Network and tubes
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Figure 5.2: Order of the nodes in the network
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The growth of the biomass concentration b [kg /m3] is given by

∂b

∂t
= λ+

b

Y

C

Ebs +C
b, (5.4)

in which the growth rate is given by Monod Kinetics. In this equation λ+
b is a micro-

bial specific growth rate, Y is the yield coefficient and Ebs is a saturation constant. We
consider the biofilm as an adsorbed phase on the walls of the tubes. We describe the
growth and development of the biofilm by its concentration Φ expressed as mass per
pore volume unit.

The evolution of the concentrationΦ is described by,

∂Φ

∂t
=λ+

Φ

C

EΦs +C
Φ−λ−

ΦΦ, if Vb f <V (5.5)

∂Φ

∂t
= 0, if Vb f ≥V (5.6)

in this equation λ+
Φ is a microbial specific growth rate, EΦs is a saturation constant

and λ−
Φ is a decay rate for the biofilm due to shear stress, Vb f is the volume of biofilm

and V is the total pore volume. If the volume of the biofilm is equal or larger than the
volume of the tube, we consider that the biofilm can not grow anymore. The concentra-
tion of biofilm can be converted into volume of biofilm, assuming constant density of
the biofilm and constant pore volume in each tube.

The volume of the biofilm Vb fi j in the tube ti j is determined by

Vb fi j =
Φi j

ρb f
Vi j , (5.7)

where Φi j is the concentration of biofilm, V the total pore volume and ρb f is the
density of the biofilm.

In this model we take into account that biofilm can spread to the neighbouring tubes
when an excess volume of biofilm is produced. For example, if for the tube ti j we have
that V t

b fi j
< Vi j equation (5.5) is used to compute the biofilm concentration Φt+1

i j at the

next time step. The volume of biofilm at time t+1 for the tube ti j can be computed using
equation (6), if V t+1

b fi j
>Vi j and excess volume of biofilm is produced in the tube ti j ,

Vexi j =Vb fi j −Vi j . (5.8)

The excess volume of biofilm is distributed to the neighbouring tubes according to
the spreading potential, defined for each neighbouring tube ti jk as [14],

wi jk = qi jk Ci jk

ρb f Vi jk

, (5.9)

where qi jk is the volumetric flow, Ci jk is the concentration of nutrients, Vi jk is the
total pore volume in the neighbouring tube ti jk and ρb f is the density of the biofilm.
The biofilm is spread only to the downstream tubes. The volume excess given to the
tube ti jk is defined as,
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Vexi jk
=

Vexi j wi jk∑
jk

wi jk

, (5.10)

the sum is over all the neighbouring downstream tubes.
The total concentration of biofilm Φtot

i jk
in the neighbouring tube that received the

excess volume will be adjusted according to,

Φtot
i jk

=Φi jk +ρb f

Vexi jk

Vi jk

. (5.11)

in which the first term in the right hand side is the concentration computed using
equation (5.5) and the second term is the concentration due to the spreading of the
biofilm. The total volume of biofilm V tot

b fi jk
in the neighbouring tubes is computed as,

V tot
b fi jk

=
Φtot

i jk

ρb f
Vi jk . (5.12)

Additionally, the concentration of the tube ti j where the excess volume is produced
is adjusted such that Vb fi j =Vi j , therefore for the next time step equation (5.6) holds and
no more biofilm grows in the tube ti j . Following equation (5.5) and (5.6) spreading of the
biofilm from the tube ti j to the neighbouring tubes happens only once per tube.

The thickness of the biofilm can be computed from equation (5.12) and is coupled
back to equation (5.1) and (5.3).

5.2.2. NUMERICAL METHOD
In this section we are going to outline the numerical procedure used in the model and
the computational steps followed in this paper.

Substitution of equation (5.1) into (5.2) for each node ni leads to a linear system for
the pressure at the nodes, pi , as unknowns. This system is solved assuming Dirichlet
boundary conditions for the left and right boundary of the network and considering that

there is no flow through the upper and lower boundary, therefore ∂p
∂n = 0 is used in this

part of the boundary.
After solving the nodal pressures pi , we can substitute their values into equation (5.1)

to obtain the flux in each tube of the network.
The solution to equation (5.3) is approximated by the use of the finite differences

scheme. Then, for each node, ni , the advection diffusion reaction equation can be writ-
ten as,

∆Ci

∆t
=

[
∆Ci

∆t

]
ad v

+
[
∆Ci

∆t

]
di f f

+
[
∆Ci

∆t

]
r eacti on

. (5.13)

The advection part can be written as,[
∆Ci

∆t

]
ad v

=
[

Ci
t+1 −Ci

t

∆t

]
ad v

= ∑
j∈Ωi

qi j
t

Vi j
(C j

t+1 −Ci
t+1), (5.14)
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whereΩi = { j | qi j is directed towards the node ni and j is a neighbor of ni

connected through the tube ti j } and Vi j is the total volume of the tube.
The diffusion of nutrients through the water phase can be written as,[

∆Ci

∆t

]
di f f

=
[

Ci
t+1 −Ci

t

∆t

]
di f f

= Dw

l 2

∑
j∈Si

(Ci
t+1 −C j

t+1)
At

wi j

Atot i j

, (5.15)

where Dw is the diffusion coefficient of the water in the free space available for the
bulk water. Further Awi j is the area of the cross section of the bulk water in the tube ti j

and Atot i j is the total area of cross section of the tube ti j .
In this model, the reaction takes place in the tubes, therefore we describe the growth

of bacteria bi j , in the tube ti j , as,

∆bi j

∆t
=

[
bi j

t+1 −bi j
t

∆t

]
= λ+

b

Y

[
Ci j

t

Ebs +Ci j
t

]
bi j

t+1, (5.16)

where Ci j = Ci+C j

2 is the average concentration of the nodes ni and n j and represents
the concentration in the tube ti j .

However, in order to give an expression for the last term of equation (5.13) we need to
know the concentration of bacteria in each node, bi , then we average the concentration
of bacteria of the tubes connected by the node ni ,∑

j∈Si
bi j Vi j∑

j∈Si
Vi j

= bi , (5.17)

Now the reaction term can be written as,[
∆Ci

∆t

]
r eacti on

=
[

Ci
t+1 −Ci

t

∆t

]
r eacti on

= λ+
b

Y

C t+1
i

EBs +C t
i

bt
i . (5.18)

The thickness of the biofilm is determined by the bacteria consumption as well as by
the nutrients concentration. The change of biofilm concentration is given by

∆Φi j

∆t
=

[
Φi j

t+1 −Φi j
t

∆t

]
=λ+

Φ

[
Ci j

t

EΦs +Ci j
t

]
Φt+1

i j −λ−
ΦΦ

t+1
i j . (5.19)

The computational procedure used in this work is as follows. Firstly, the external
pressure is imposed in the left and right boundary of the network. Subsequently, the
pressure in each node is computed from the linear system resulting from the mass con-
servation in each node. For solving this system, we consider Dirichlet boundary condi-
tions in the left and right boundaries and homogeneous Neumann boundary condition
for the upper and lower boundary. The pressures in each node are used to compute the
flux in each tube by means of equation (5.2). After this step, we proceed to solve the
transport diffusion equation for the nutrients and we compute the concentration of nu-
trients in each node as well as the concentration of bacteria and the concentration of
biofilm in the tubes. Subsequently, the volume of the biofilm is computed using equa-
tion (5.7). If an excess volume is produced in one of the tubes, the biofilm will spread to
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Figure 5.3: Flow chart for each time step

the neighbouring tubes. The volume of biofilm will be computed taking into account the
spreading volume. The thickness of the biofilm and the radius of the void space available
for water is updated and this process starts again at the next time step (See Figure 2.3).

5.3. RESULTS
First, we investigate the robustness of our results. The evolution of the concentration of
nutrients through the network is studied without the presence of biofilm. We solve the
advection-diffusion equation for the concentration of nutrients with our model using a
mesh with 200 x 10 elements and assuming that all the tubes in the network have the
same radius. Under these conditions for the size of the mesh and the uniform size of
the radii in all the tubes, we can compare the results with a model based on Continuous
Random Walk Theory (CRWT) and with an analytic solution in one dimension [21]. The
analytic solution of the advection diffusion equation (equation (5.4) without reaction
term) in 1-D is given by:

c(x, t ) = Ci n

2
[er f c

( x − v tp
4Dt

)
+er f c

( x + v tp
4Dt

)
exp

( v x

D

)
] (5.20)

in which erfc is the complementary error function, v the velocity and D the diffusion
coefficient.

Figure 5.4 shows the results for the concentration of nutrients in one of the tubes
closest to the outlet of the network for our model, a model based on continuous time
random walk (CTRW) and the analytic solution given by equation (19). We observe a
good agreement between, the CTRW model, the analytic solution and our model.
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Figure 5.4: Comparison of the solution of the advection-diffusion equation of our model, CTRW and an analytic
solution.

The next step was to study the effects of the growth of biofilm on the dynamics of
the system. For this second set of simulations we used a mesh with 100 x 60 elements. A
Rayleigh distribution for the radii of the tubes of the network was used.

Additionally, only 4% of the tubes were seeded with initial concentration of bacteria
b0 = 1×10−6 kg /m3 and initial concentration of biofilm φ0 = 1×10−6 kg /m3 in each of
the tubes of the network. The complete set of parameters for this second set of simula-
tions is listed in table 2.

Subsequently, we study the evolution of the flux over time. In Figure 5.5 the nor-
malised flux is shown.

The normalised flux is defined as

Qn = Q

Q0
(5.21)

where Q is the flux and Q0 is the initial flux. We observe a decrease of the normalised
flux due to the accumulation of biomass in the network. The injection of nutrients
through the network and the bacterial conversion of them leads to the clogging of the
pores and consequently to the reduction of the normalised flux of the network.

In Figure 5.6 we observe the average concentration of nutrients in the network, Cav .
This concentration is defined as,

Cav =
∑

i j Ci j V i j∑
i j Vi j

, (5.22)

in which Ci j is the concentration in the tube ti j and Vi j is the total volume of the
tube ti j . The sums are over all the tubes in the network. We observe that the injection of
nutrients is very fast, after approximately 50 minutes the nutrients are distributed over
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Figure 5.5: Evolution of the normalised flux through the network.

the whole network. The network is full of nutrients for approximately 700 min, hence the
biofilm grow uniformly across the network. After 600 minutes we observe a decrease in
the average concentration of nutrients in the network due to the consumption by bacte-
ria and biofilm.

Next, we examine the evolution in time of the volume of biofilm in the network. In
Figure 5.7 the fraction of volume of biofilm is shown. The fraction of volume of biofilm,
Vpb f , is defined as,

Vpb f =
∑

i j Vb fi j∑
i j Vi j

, (5.23)

where Vb fi j is the volume of biofilm in tube ti j and Vi j is the total pore volume of the
tube ti j . After 3000 minutes, we observe that approximately 70% of the void space of the
network is occupied by the volume of biofilm. Since the biofilm growth in the network is
distributed uniformly over the network, there is no preferential growth of the biofilm at
the inlet of the network and hence more biomass is necessary to reduce the flux through
the network.

For this set of simulations we used 400 time steps, with the size of the time step d t =
10 [mi n].
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Figure 5.6: Average concentration of nutrients in the network

Figure 5.7: Evolution of the biomass in the network



5.3. RESULTS

5

83

Figure 5.8: Low and high permeability regions, r2mean < r1mean

Figure 5.9: Flux measure out of the low permeability region, for different values of the diffusion coefficients in
water, realisation 1
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Volume through the low permeability region
Diffusion Coeffi-
cient [m2/mi n]

Time Interval
[min]

Volume [m3]
Vlow

Volume without
biofilm [m3]

Increment
[%]

9×10−8 710 - 2480 4.69×10−15 3.29×10−15 27
9×10−11 720 - 1940 3.01×10−15 2.27×10−15 32.5
9×10−14 740 - 2310 4.68×10−15 2.92×10−15 60.2
0 740 - 2920 6.1×10−15 4.06×10−15 50.2

Table 5.1

Figure 5.10: Low and high permeability regions, r2mean < r1mean

In order to study the possibility to redirect the flux of water to the low permeability
regions, we simulate two areas of different permeability in the network. In both regions,
a Rayleigh distribution is assumed for the radius but in the low permeability region, the
mean radius is smaller than the mean radius of the high permeability region. Two sets
of simulations with different geometries are performed. The first geometry is shown in
Figure 5.8 and the second geometry is shown in Figure 5.10. As shown in Figure 5.8 the
low permeability region is placed at the centre of the network. In the second geometry
the low permeability region is placed parallel to the high permeability layer.

In Figure 5.9 the flux out of the low permeability region is shown for the first geometry
and for different diffusion coefficients of the nutrients in the water. We observe that the
flux out of the low permeability region increases for a period between 800 minutes and
2500 minutes approximately. However to have a better understanding of the effect of
selective plugging in flow diverted to low permeability region, the volume of water out
of the low permeability region is computed.

The volume out of the low permeability region is computed as follows,

Vlow =
∫ t f

t0

Qlow d t . (5.24)

The initial time limit t0 was set as the time for which the normalised flux started to
change and the final time limit was set as the last time for which the flux was above
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Figure 5.11: Flux measure out of the low permeability region, for different values of the diffusion coefficients
in water, realisation 2

the initial value.
In order to compare the results with the case of the absence of biofilm, the volume

out of low permeability region when no biofilm is present is computed within the same
time limits.

In Table 1 the results for the volume of water out of the low permeability region
for different diffusion coefficients with biofilm growth and without biofilm growth are
shown. We observe that the volume of water flowing out of this region increases (com-
pare to the case when no biofilm is present) for all the cases within a period which de-
pends on the diffusion coefficient. We observe an increase between 27 % for a diffusion
coefficient of 9×10−8 and 60% for a diffusion coefficient of 9×10−14 .

We observe that if the diffusion coefficient decreases then the increase in the volume
of water is more significant. This is because when the diffusion coefficient decreases
the transport of nutrients is dominated by the advection term, then nutrients are mainly
located in the high permeability regions, which makes selective plugging more efficient.

In Figure 5.11 the results for the second geometry are shown. As we can see, for this
geometry there is no increase in the flux through the low permeability region. Since the
region of low permeability region is half of the network, when the bacteria starts growing
in the high permeability region, there is a large tendency to plug the inlet of the high
permeability region and hence the flux through the whole network (including the flux
through the low permeability region) will decrease faster than in the first case.
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Parameters for the simulations without growth of biofilm
Name Symbol Value
Pore length l 95 × 10−6 [m]
Network size in the x direction Lx 0.019 [m]
Network size in the y direction Ly 0.00095 [m]
Number of tubes in the net-
work

Na 4210

Mean pore radius rmean 3.5339 × 10−6 [m] [14]
Global pressure gradient ∆P 1.6 [kPa/m]
Viscosity of water µ 4.7 × 10−5 [Pa ·mi n]
Density of water ρw 1000 [kg /m3]
Diffusion coefficient of water Dw 3.9710 × 10−8 [m2/mi n] [22]
Inlet reservoir concentration Ci n 1 [kg /m3]

Table 5.2

Parameters for the second series simulation
Name Symbol Value
Mean pore radius rmean 12.2×10−6 [m] [14]
Pore length l 95 ×10−6 [m]
Global pressure gradient ∆P 1.6 [kPa/m]
Viscosity of water µ 0.001/60 [Pa ·mi n]
Density of water ρw 1000 [kg /m3]
Density of biofilm ρb f 20 [kg /m3] [23]
Yield coefficient Y 0.34 [24]
Biomass specific growth rate
for bacteria

λ+
b 60×1.1×10−4 [mi n−1] [24]

Biomass specific decay rate for
bacteria

λ−
b 60×1.1×10−6 [mi n−1] [14]

Half saturation constant for
bacteria

Esb 2 [kg /m3] [24]

Biomass specific growth rate
for biofilm

λ+
b f 60×1.1×10−4 [mi n−1]

Biomass specific decay rate for
biofilm

λ−
b f 60×1.1×10−6 [mi n−1]

Half saturation constant for
biofilm

Esb f 2 [kg /m3]

Inlet reservoir concentration Ci n 1 [kg /m3]
Initial biomass concentration b0 1×10−6 [kg /m3]
Biofilm / bulk water viscosity
ratio

β 103

Table 5.3
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Parameters for the third series simulation
Name Symbol Value
Mean pore radius 1 r1mean 12.2 x 10−6m [14]
Mean pore radius 2 r2mean 1.2 x 10−7m

Table 5.4

5.4. CONCLUSIONS

In this work we studied the biofilm growth in porous media using a two dimensional
pore network model. We assumed that the bacteria, necessary for the biofilm growth,
were present in 4% of the tubes. The injection of nutrients for the bacteria population
growth was described by an advection diffusion equation. Additionally, in our model
we consider that the biofilm is able to spread to the neighbouring tubes according to a
spreading potential which takes into account the direction of the flux, the velocity and
the amount of nutrients available. We studied the hydrodynamic changes caused by
biofilm growth using three different geometries for the pore network. In the first geom-
etry a Raleigh distribution was used for the whole network. In the second geometry, we
simulate two areas of different permeability, the area of low permeability was placed in
the middle of the network. Finally, we used a layered geometry in which the low per-
meability region is placed parallel to the high permeability region. For the first case, a
decrease in the normalised flux of 90% was observed when 70% of the void space in the
network was occupied by biofilm.

In the second case, where two regions of different permeability were simulated, the
model shows flow diversion to the low permeability region, and an increase of 60% of
the flow volume was observed (compared to the flow out of the low permeability region
without biofilm growth). This result might indicate an increase in the sweep efficiency in
waterflood techniques, however a two phase flow model has to be developed addition-
ally in order to adequately model the production of oil from heterogeneous reservoirs.
However, after some time the flux through the low permeability region starts to decrease.
Therefore, the injection of nutrients has to be stopped in order to prevent clogging of the
low permeability regions. For the third case the total flux through the low permeability
region does not increase, since there is more tendency to plug the inlet in the network.
For the second and third geometry diffusion coefficient for water was varied. For the
second geometry, it was observed that the flux through the low permeability region was
larger when the diffusion coefficient was smaller. It could be of greatest interest to inves-
tigate the dependence of the sweep efficiency on other parameters such as the pressure
drop in the network, the coefficient of bacterial growth or the concentration of nutri-
ents in the network. Finally, the results obtained in this work can be used for a future
up-scaling technique to the real reservoir scale in oil reservoir simulations.

We observed that the porosity does not change significantly, it does not depend on
the permeability-porosity relation. The permeability is affected more, however the cou-
pling of the velocity field back to the porosity change is not strong enough apparently to
cause significant changes in the porosity field. But we expect changes if we increase the
contribution of the velocity term in equation (1b), which is achieved by the increase of
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6
THE POROSITY-PERMEABILITY

RELATION FOR PORE-ELASTICITY

PROBLEMS

6.1. INTRODUCTION
The porosity of a porous medium may change over time in some physical problems. For
example if a fluid is injected at high flow rate in a porous medium, the grains that formed
the porous medium will be pushed from the region near the inlet towards the region near
the outlet. This displacement of the grains might cause a local change of the porosity (an
increase near the inlet and a decrease near the outlet). This porosity change might cause
a decrease or a blockage of the flow through the whole medium. This means that the
permeability of the medium would be almost zero even though the global porosity is
non zero. This phenomenon is not taken into account in usual porosity-permeability
relations such as the Kozeny-Carman relation.

The problem mentioned above is studied on the scale of meters. In this chapter we will
look into the problem of a much finer scale (in the order of centimetres). We will then
translate these results to the meter scale.

We investigate two physical problems in which the blockage of the flow through a porous
medium is observed even though the porosity is different from zero. This means that
we will need to use a porosity-permeability relation that exhibits this feature. We use a
porosity-permeability relation that was obtained when we allowed the biofilm to grow
randomly in pore networks. We will call this kind of relation a random growth porosity-
permeability relation.

Whenever the porosity coincides with the percolation threshold pc for a particular net-
work topology the flow through the network is completely blocked. Furthermore, our
permeability-porosity relation exhibits a linear decrease from (φn = 1,Kn = 1) to (φn =
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pc ,Kn = 0), where φn is the normal porosity defined as φn = φ/φ0 with φ0 the initial
porosity of the network.

6.2. GOVERNING EQUATIONS
The model provided by Biot’s theory of linear poroelasticity with single-phase flow [1] is
used in this study to determine the local displacement of the grains of a porous medium
and the fluid flow through the pores, assuming that the deformations are very small.
The fluid-saturated porous medium has a linearly elastic solid matrix and is saturated
by an incompressible Newtonian fluid. Let Ω ⊂ R2 denote the computational domain
with boundary Γ, and x = (x, y) ∈ Ω. Furthermore, t denotes time, belonging to a half-
open time interval I = (0,T ], with T > 0. The initial boundary value problem for the
consolidation process of an incompressible fluid flow in a deformable porous medium
is stated as follows [2, 3]:

equilibrium equations: −∇·σ′+∇p = 0 onΩ× I ; (6.1a)

continuity equation:
∂

∂t
(∇·u)+∇·v = 0 onΩ× I , (6.1b)

where σ′ and v are defined by the following equations

Biot’s constitutive equations: σ′ =λ(∇·u)I+µ(∇u+∇uT ); (6.2)

Darcy’s law: v =−K

η
∇p. (6.3)

In the above relations, σ′ denotes the effective stress tensor, p the pore pressure, u the
displacement vector, v Darcy’s velocity, λ and µ the Lamé coefficients; K the permeabil-
ity of the porous medium and η the fluid viscosity. In addition, appropriate boundary
and initial conditions are specified in Section 6.4.

6.2.1. THE POROSITY-PERMEABILITY RELATIONS
In order to investigate the interaction between the mechanical deformations and the
fluid flow after injection of water into the inlet, we consider in this study the spatial de-
pendency of the porosity and the permeability of the porous medium. The porosity φ is
computed from the displacement vector using the porosity-dilatation relation (see [4])

φ(x, t ) = 1− 1−φ0

exp(∇·u)
, (6.4)

with φ0 the initial porosity. Subsequently, the permeability can be determined using the
Kozeny-Carman equation [5]

K (x, t ) = d 2
s

180

φ(x, t )3

(1−φ(x, t ))2 , (6.5)

where ds is the mean grain size of the soil.

The Kozeny-Carman relation assumes that the permeability becomes zero if and only if
the porosity also becomes zero. A new approach for the relation between the porosity
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and the permeability is inspired by the fluid flow into a network, where the fluid flows
through the edges (channels) of the network. We describe this phenomenon as the ran-
dom closing of pores. This means that we can use the permeability-porosity relations for
random growth that we are going to obtain in this chapter. The poro-elasticity problem
on the meter scale is solved in sub-domains of the order of square centimetres. Each cell
of the square centimetre has its own porosity. This porosity is changed due to the fast in-
jection of water. This injection causes some pores to close. In a square shaped network,
the network-inspired relation will look like:

K (x, t ) =
0 φn < 0.4935

(−0.9743+1.9743φn)K0 φn ≥ 0.4935
, (6.6)

where K0 is the initial permeability computed using the Kozeny-Carman relation and
φn is the normal porosity defined as φn = φ/φ0. The network-inspired relation takes
into account the case that channels in the porous medium are blocked in such a way
that there are no connected paths any more. In this case, the fluid will stop flowing and
the permeability will be expected to become zero. While for a random topology, the
network-inspired relation states:

K (x, t ) =
0 φn < pc
φn−pc
1−pc

K0 φn ≥ pc
, (6.7)

where the percolation threshold pc , which represents the minimal porosity needed to
have connection via voids or channels from one end to the other, depends on the topol-
ogy of the network. In the coming section we will derive the permeability-porosity rela-
tion using a network model.

6.3. NETWORK COMPUTATION OF POROSITY-PERMEABILITY RE-
LATIONS

In this section we investigate the random growth of biofilm in the network. We use three
different networks in 2D: quadrangular, triangular and triangular unstructured and in
3D we study a cubic network.

In the random growth problem solving the equation for the transport of nutrients is not
needed. The tubes in the network are assumed to be filled with biofilm completely or to
be entirely empty. The tubes which are filled are chosen randomly; the number of tubes
filled with biofilm goes from 1% to 100%. The normalised permeability for the network is
computed for each percentage of the number of filled tubes. For each configuration, 500
sample simulations have been performed. This yields a relation between the porosity
and the permeability of the network.

6.3.1. QUADRANGULAR NETWORK
First we describe the results obtained for the quadrangular network. In this case we use
a network with Nx = 100 and Ny = 60. We compute the fraction of biomass Sb needed to
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Figure 6.1: The histogram for a normalised permeability 0.85 < Ki < 0.95 for a rectangular network. The frac-
tion of biomass follows a distribution, with average around Sb = 0.0777 and standard deviation 0.0012

Kn Average value of Sn Standard deviation σ
0.85 < Kn < 0.95 0.0777 0.0012
0.75 < Kn < 0.85 0.1273 0.0014
0.65 < Kn < 0.75 0.1760 0.0016
0.55 < Kn < 0.65 0.2240 0.0018
0.45 < Kn < 0.55 0.2717 0.0019
0.35 < Kn < 0.45 0.3195 0.0022
0.25 < Kn < 0.35 0.3678 0.0023
0.15 < Kn < 0.25 0.4188 0.0026
0.05 < Kn < 0.15 0.4789 0.0037

Table 6.1: Average and standard deviations for the fraction of biomass Sn for the quadrangular network

obtain a normalised permeability Kn such that Ki −0.05 < Kn < Ki +0.05, where Ki = 0.9,
Ki = 0.8, ... , Ki = 0.1. In Figure 6.1 to Figure 6.3 the histograms for Ki = 0.9, Ki = 0.5 and
Ki = 0.1 are shown. The means and the standard deviations of the distributions of Sb

depend on the normalised permeability Kn ; see Table 6.1.

6.3.2. TRIANGULAR NETWORK
In this section we present the results obtained with a triangular network which is shown
in Figure 6.4. The number of nodes in the x direction Nx = 100 and the number of nodes
in y direction Ny = 60. The coordination number of the interior nodes is six or four (See
Figure 6.4). We perform the same simulations as in the quadrangular network. In Figure
6.5 to Figure 6.7 the histograms for Ki = 0.9, Ki = 0.5 and Ki = 0.1 are shown. Since the
number of tubes filled with biomass are chosen from one per cent to hundred per cent
some fractions of biomass are not allowed in the network therefore some bins in the
histograms are empty as seen in Figure 6.7. The means and the standard deviations of
these distributions depend on the normalised permeability Kn ; see Table 6.2.
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Figure 6.2: The histogram for a normalised permeability 0.45 < Ki < 0.55 for a rectangular network. The frac-
tion of biomass follows a distribution, with average around Sb = 0.2717 and standard deviation 0.0019

Figure 6.3: The histogram for a normalised permeability 0.05 < Ki < 0.15 for a rectangular network. The frac-
tion of biomass follows a distribution, with average around Sb = 0.4789 and standard deviation 0.0037

Kn Average value of Sn Standard deviation σ
0.85 < Kn < 0.95 0.1052 0.0103
0.75 < Kn < 0.85 0.1687 0.0104
0.65 < Kn < 0.75 0.2333 0.0111
0.55 < Kn < 0.65 0.2975 0.0108
0.45 < Kn < 0.55 0.3604 0.0105
0.35 < Kn < 0.45 0.4240 0.0102
0.25 < Kn < 0.35 0.4882 0.0099
0.15 < Kn < 0.25 0.5522 0.0086
0.05 < Kn < 0.15 0.6226 0.0077

Table 6.2: Average and standard deviations for the fraction of biomass Sn for the triangular network
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     Tube      Node

Figure 6.4: Triangular Network

Figure 6.5: The histogram for a normalised permeability 0.85 < Ki < 0.95 for a triangular network. The fraction
of biomass follows a distribution, with average around Sb = 0.1052 and standard deviation 0.0103
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Figure 6.6: The histogram for a normalised permeability 0.45 < Ki < 0.55 for a triangular network. The fraction
of biomass follows a distribution, with average around Sb = 0.3604 and standard deviation 0.0105

Figure 6.7: The histogram for a normalised permeability 0.05 < Ki < 0.15 for a triangular network. The fraction
of biomass follows a distribution, with average around Sb = 0.6226 and standard deviation 0.0077
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     Tube      Node

Figure 6.8: Unstructured triangular network

6.3.3. TRIANGULAR UNSTRUCTURED NETWORK

In this section we present the results obtained with a triangular unstructured network
which is shown in Figure 6.8. The total number of nodes in this network is 6921. We
perform the same simulations as in the quadrangular network. In Figure 6.9 to Figure
6.11 the histograms for these normalised permeabilities are shown. The means and the
standard deviations depend on the normalised permeability Kn ; see Table 6.3.

6.3.4. CUBIC NETWORK

In this section we present the results obtained with a cubic network in 3D which is shown
in Figure 4.1. The number of nodes in the x direction Nx = 25 and the number of nodes
in y direction is Ny = 25 and the number of nodes in the z direction is Nz = 25. The co-
ordination number of the interior nodes is 6. We perform the same simulations as in the
quadrangular network. In Figure 6.12 to Figure 6.14 the histograms for the histograms
for Ki = 0.9, Ki = 0.5 and Ki = 0.1 are shown. Since the number of tubes filled with
biomass is chosen from one per cent to hundred per cent some fractions of biomass are
not allowed in the network and hence some empty bins are observed in these figures.
The averages and the standard deviations depend on the normalised permeability Kn ;
see Table 6.4.

Finally we compare the results obtained for the relation between the permeability and
the porosity for the quadrangular network, triangular network and triangular unstruc-
tured network. We observe that the permeability becomes zero at the porosities cor-



6.3. NETWORK COMPUTATION OF POROSITY-PERMEABILITY RELATIONS

6

99

Figure 6.9: The histogram for a normalised permeability 0.85 < Ki < 0.95 for a triangular unstructured network.
The fraction of biomass follows a distribution, with average around Sb = 0.1024 and standard deviation 0.0049

Figure 6.10: The histogram for a normalised permeability 0.45 < Ki < 0.55 for a triangular unstructured net-
work. The fraction of biomass follows a distribution, with average around Sb = 0.3555 and standard deviation
0.0062
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Figure 6.11: The histogram for a normalised permeability 0.05 < Ki < 0.15for a triangular unstructured net-
work. The fraction of biomass follows a distribution, with average around Sb = 0.6030 and standard deviation
0.0066

Kn Average value of Sn Standard deviation σ
0.85 < Kn < 0.95 0.1024 0.0049
0.75 < Kn < 0.85 0.1667 0.0059
0.65 < Kn < 0.75 0.2308 0.0061
0.55 < Kn < 0.65 0.2938 0.0063
0.45 < Kn < 0.55 0.3555 0.0062
0.35 < Kn < 0.45 0.4168 0.0063
0.25 < Kn < 0.35 0.4773 0.0059
0.15 < Kn < 0.25 0.5385 0.0062
0.05 < Kn < 0.15 0.6030 0.0066

Table 6.3: Average and standard deviations for the fraction of biomass Sn for the unstructured triangular net-
work

Kn Average value of Sn Standard deviation σ
0.85 < Kn < 0.95 0.1011 0.0023
0.75 < Kn < 0.85 0.1671 0.0026
0.65 < Kn < 0.75 0.2326 0.0027
0.55 < Kn < 0.65 0.2984 0.0028
0.45 < Kn < 0.55 0.3639 0.0029
0.35 < Kn < 0.45 0.4300 0.0027
0.25 < Kn < 0.35 0.4978 0.0029
0.15 < Kn < 0.25 0.5700 0.0026
0.05 < Kn < 0.15 0.6558 0.0029

Table 6.4: Average and standard deviations for the fraction of biomass Sn for the cubic network
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Figure 6.12: The histogram for a normalised permeability 0.85 < Ki < 0.95 for a cubic network. The fraction of
biomass average is around Sb = 0.1052 and standard deviation 0.0103

Figure 6.13: The histogram for a normalised permeability 0.45 < Ki < 0.55 for a cubic network. The fraction of
biomass average is around Sb = 0.3555 and standard deviation 0.0062
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Figure 6.14: The histogram for a normalised permeability 0.05 < Ki < 0.15 for a cubic network. The fraction of
biomass average is around Sb = 0.6030 and standard deviation 0.0066

Network pc Kn

Quadrangular 0.4935 1.6×10−3

Triangular unstructured 0.3438 1×10−3

Triangular structured 0.3232 1.6×10−3

3D Cubic 0.2621 1.2×10−3

Table 6.5: Percolation threshold for different network topologies

responding to the different percolation thresholds. We also observe that the relation
between permeability and porosity exhibits an almost linear decrease for all four net-
works. Hence the slope of these lines depends on the network topology via the percola-
tion threshold.

The different percolation thresholds for different topologies yield different values for the
slope of the lines. In general the exact configuration or topology of the porous medium is
not known explicitly. This means that we use an average slope with a certain uncertainty.
We can both quantify the slope and the uncertainty by our numerical results. In Table
6.5 the percolation threshold for the different network topologies used in this chapter is
shown. In addition the normalised permeability for these values of porosity is shown.

6.4. PROBLEM FORMULATION
The following numerical experiments are designed to study the different relations for the
porosity and the permeability.

6.4.1. PROBLEM WITH HIGH PUMP PRESSURE
In this numerical experiment, the infiltration of a fluid through a filter into a 2D area is
shown in Figure 6.16. During the infiltration a high pump pressure is used to inject water
into the porous medium.
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Figure 6.15: Permeability vs Porosity

Ω

Γ1

Γ2

Γ3

Γ4
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Figure 6.16: Sketch of the setup for the 2D problem with high pump pressure.

The computational domain Ω is a two-dimensional surface with Cartesian coordinates
x = (x, y), as depicted in Figure 6.16. In order to solve this problem, Biot’s consolidation
model, as described in Section 6.2, is applied on the computational domainΩwith width
L and height H . The fluid is injected into the soil through a filter placed on the bound-
ary segment Γ2. More precisely, the boundary conditions for this problem are given as
follows:

K

η
∇p ·n = 0 on x ∈ Γ1 ∪Γ3; (6.8a)

p = ppump on x ∈ Γ2; (6.8b)

p = 0 on x ∈ Γ4; (6.8c)

(σ′n) · t = 0 on x ∈ Γ1 ∪Γ3 ∪Γ4; (6.8d)

u ·n = 0 on x ∈ Γ1 ∪Γ3 ∪Γ4; (6.8e)

σ′n = 0 on x ∈ Γ2, (6.8f)

where t is the unit tangent vector at the boundary, n the outward unit normal vector and
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ppump is a prescribed high pump pressure due to the injection of the fluid. Figure 6.16
shows the definition of the boundary segments. Initially, the following condition is ful-
filled:

u(x,0) = 0 for x ∈Ω. (6.9)

6.4.2. SQUEEZE PROBLEM
The infiltration of a fluid through a filter into a 2D area is shown in Figure 6.17. In this
numerical experiment, the porous medium is squeezed by applying a vertical load on
the middle of the top and bottom edges of the domain.

+

+

+

+
Ω

Γ1Γ2 Γ2

Γ3

Γ4 Γ4Γ5

Γ6

L

H

x

y

Figure 6.17: Sketch of the setup for the 2D problem.

This problem is solved using Biot’s consolidation model, that is applied on the compu-
tational domainΩ with width L and height H . The fluid is injected into the soil through
a filter placed on the boundary segment Γ3. More precisely, the boundary conditions for
this problem are given as follows:

K

η
∇p ·n = 0 on x ∈ Γ1 ∪Γ2 ∪Γ4 ∪Γ5; (6.10a)

p = ppump on x ∈ Γ3; (6.10b)

p = 0 on x ∈ Γ6; (6.10c)

σ′n = (0,−σ′
0)T on x ∈ Γ1; (6.10d)

σ′n = 0 on x ∈ Γ2 ∪Γ3 ∪Γ4; (6.10e)

σ′n = (0,σ′
0)T on x ∈ Γ5; (6.10f)

u = 0 on x ∈ Γ6, (6.10g)

where t is the unit tangent vector at the boundary, n the outward unit normal vector,
ppump is a prescribed pump pressure due to the injection of the fluid and σ′

0 is the in-
tensity of a uniform vertical load. Figure 6.17 shows the definition of the boundary seg-
ments. Initially, the following condition is fulfilled:

u(x,0) = 0 for x ∈Ω. (6.11)
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6.5. NUMERICAL RESULTS FOR THE UPSCALED PROBLEM
The Galerkin finite element method, with triangular Taylor-Hood elements [6, 7], is adopted
to solve the discretised quasi-two-dimensional problem (6.1). The displacements are
spatially approximated by quadratic basis functions, whereas a continuous piecewise
linear approximation is used for the pressure field. For the time integration, the back-
ward Euler method is applied. The numerical investigations are carried out using the
matrix-based software package MATLAB (version R2015a).

The computational domain is a rectangular surface with width L = 2.0m and height H =
1.0m. The domain is discretised using a regular triangular grid, with ∆x =∆y = 0.02. In
addition, values for some model parameters have been chosen based on literature (see
Table 6.6).

Table 6.6: An overview of the values of the model parameters.

Property Symbol Value Unit
Young’s modulus E 35 ·106 Pa
Poisson’s ratio ν 0.3 -
Fluid viscosity η 1.307 ·10−3 Pa · s
Initial porosity φ0 0.4 -
Mean grain size ds 0.2 ·10−3 m
Pump pressure ppump 50 ·105 / 5 ·105 Pa
Uniform load σ′

0 3 ·106 N/m2

Furthermore, the Lamé coefficients λ and µ are related to Young’s modulus E and Pois-
son’s ratio ν by [2]

λ= νE

(1+ν)(1−2ν)
, µ= E

2(1+ν)
. (6.12)

The impact of the porosity-permeability relation on the water flow is defined in this
study as the impact on the time average of the volume flow rate Qout at a distance L
from the injection filter. In the generations of the simulation results, the time step size is
chosen to be ∆t = 0.5.

6.5.1. NUMERICAL RESULTS FOR THE PROBLEM WITH HIGH PUMP PRES-
SURE

In order to obtain some insight into the impact of a high pump pressure on the water
flow, we present an overview of the simulation results in Figures 6.18 - 6.20. In these sim-
ulations, water is injected into the soil at a constant pump pressure of 50.0bar. The simu-
lated pressure, fluid velocity, permeability and porosity profiles that have been obtained
using the Kozeny-Carman relation are provided in Figure 6.18, while the simulated re-
sults that have been obtained using the network-inspired relation with pc = 0.3232, cor-
responding with a triangular structured network, are provided in Figure 6.19. In Fig-
ure 6.20, the simulated results that have been obtained using the network-inspired rela-
tion with pc = 0.4935, corresponding with a quadrangular network, are depicted.
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Figure 6.18: Numerical solutions for the pressure, the fluid velocity, the permeability and the porosity, at time
t = 300 using a constant time step size ∆t = 0.5, obtained using the Kozeny-Carman relation.

As shown in Figure 6.18a, the water pressure has a larger curvature in the direction of the
pressure gradient, than the pressure profiles in Figures 6.19a and 6.20a, that are almost
linear. In all three cases, the injected water flows in the horizontal direction through the
domain from the inlet to the outlet. Furthermore, the magnitude of the velocity |v | in the
inlet is larger than in the outlet. This change in |v | can be explained by the permeability
profiles shown in Figures 6.18c-6.20c. In these figures we observe that the permeability
decreases almost linearly from the inlet to the outlet. In addition, the permeability ob-
tained using Kozeny-Carman exhibits a larger decrease than the permeabilities obtained
with the network-inspired model. The normalised permeability using Kozeny-Carman
decreases from 1 to 0.4659, while the permeabilities for the network-inspired relation
decrease from 1 to 0.7519 and from 1 to 0.6684 for the triangular structured and the
quadrangular network respectively. This behaviour is clarified by Figure 6.15 and Fig-
ures 6.18d-6.20d. Due to the boundary condition (6.8e) and the fact that the values in the
displacement vector are small near the outlet, the porosities in all three cases are almost
the same in the outlet and they are equal to 0.8321. In Figure 6.15, we see that for this
value of the porosity, the normalised permeability is the lowest in Kozeny-Carman rela-
tion and the highest in the network-inspired relation derived from the triangular struc-
tured network. This explains the difference in decrease in the permeability profiles.

In Figure 6.21 the time average of the volumetric flow rate Qout is depicted for differ-
ent values of the percolation threshold. As expected from Figure 6.15, for low percola-
tion thresholds the network-inspired relation results in higher flow rates than Kozeny-
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Figure 6.19: Numerical solutions for the pressure, the fluid velocity, the permeability and the porosity, at time
t = 300 using a constant time step size∆t = 0.5, obtained using the network-inspired relation with pc = 0.3232.

Carman relation. Furthermore, the flow rate changes significantly as a function of the
percolation thresholds. Hence the water flow depends on the topology of the network.

The negative values of Qout for the network-inspired relation for large percolation thresh-
olds are caused by numerical instabilities. To demonstrate this, the problem is solved for
a coarser grid as shown in Figure 6.22. In this figure we observe spurious oscillations for
the network-inspired relation for percolation thresholds larger than 0.85 approximately.

6.5.2. NUMERICAL RESULTS FOR THE SQUEEZE PROBLEM

The impact of the imposed vertical load on boundary segments Γ1 and Γ5 is shown in
Figures 6.23 - 6.25, using the Kozeny-Carman relation and the network-inspired rela-
tion respectively. In these simulations, water is injected into the porous medium at a
constant pump pressure equal to 5.0bar. The simulated pressure, fluid velocity, per-
meability and porosity profiles that are obtained using the Kozeny-Carman relation are
provided in Figure 6.23, while the simulated results that are obtained using the network-
inspired relation with pc = 0.3232, corresponding with a triangular structured network,
are provided in Figure 6.24. In Figure 6.25, the simulated results that are obtained us-
ing the network-inspired relation with pc = 0.4935, corresponding with a quadrangular
network, are depicted.
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Figure 6.20: Numerical solutions for the pressure, the fluid velocity, the permeability and the porosity, at time
t = 300 using a constant time step size∆t = 0.5, obtained using the network-inspired relation with pc = 0.4935.
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Figure 6.23: Numerical solutions for the pressure, the fluid velocity, the permeability and the porosity, at time
t = 300 using a constant time step size ∆t = 0.5, obtained using the Kozeny-Carman relation.
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Figure 6.21: The time average of the volume flow rate Qout as a function of the percolation threshold pc
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Figure 6.22: The time average of the volume flow rate Qout as a function of the percolation threshold pc
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Figure 6.24: Numerical solutions for the pressure, the fluid velocity, the permeability and the porosity, at time
t = 300 using a constant time step size∆t = 0.5, obtained using the network-inspired relation with pc = 0.3232.
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Figure 6.25: Numerical solutions for the pressure, the fluid velocity, the permeability and the porosity, at time
t = 300 using a constant time step size∆t = 0.5, obtained using the network-inspired relation with pc = 0.4935.
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In Figure 6.23a there is an obvious transition between the stress free region and the re-
gion with the imposed load, while in Figures 6.24a and 6.25a the transition between
these regions is smoother. In Figures 6.23b-6.25b, the impact of the imposed vertical
load on the computational domain is shown. The velocity magnitude is low near the
boundary segments where the vertical load is applied and high in the middle near the
symmetry axis y = H/2. In the outlet, the velocity magnitude is the highest near the
upper and lower boundary segments and decreases towards the symmetry axis. In all
three cases, the fluid flows mainly in the horizontal direction. In the region where the
load is imposed, the domain is squeezed, resulting in a larger density of the grains. This
leads to a lower porosity in this region, with minimum values 0.8809, 0.8811 and 0.8810
for the Kozeny-Carman relation, the triangular structured network-inspired relation and
the quadrangular network-inspired relation respectively. The change in the boundary
condition for the stress tensor in the upper and lower boundaries (6.10d)-(6.10f) causes
numerical instabilities. As expected from Figure 6.15 and the minimum values for the
porosities, the decrease in permeability by the Kozeny-Carman relation, as shown in
Figure 6.23c, is larger than the decrease in the porosities obtained using the network-
inspired relation, Figures 6.24c and 6.25c.
In Figure 6.26 the time average of the volumetric flow rate Qout is depicted for different
values of the percolation threshold. Similarly to the high pump pressure problem, the
flow rates for low percolation thresholds obtained using the network-inspired relation
are higher than the flow rates obtained using the Kozeny-Carman relation. In addition,
we observe that the flow rate depends significantly on the percolation threshold and
hence on the topology of the network for large percolation thresholds.
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Figure 6.26: The time average of the volume flow rate Qout as a function of the percolation threshold pc for
the squeeze problem

6.6. CONCLUSIONS
In this chapter, the network-inspired porosity-permeability relation obtained via the
random biofilm growth model, is applied on two poroelasticity problems. This numeri-
cal experiment is designed in order to analyze the applicability of this microscopic rela-
tion on the macro-scale. Furthermore, we compare the results obtained with the network-
inspired relation to the Kozeny-Carman relation which is often used for these physical
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problems. In the first problem a high pump pressure is imposed in the inlet of a porous
medium package. This high pressure forces the grains to move towards the outlet. In
the second problem the package is squeezed by applying a load on the middle of the top
and bottom edges of the domain. The purpose of considering these poroelasticity prob-
lems is to create a large density of the grains in the computational domain which results
in a decrease of the porosity. In these problems Biot’s model for poroelasticity is used
to determine the water pressure and the displacements of the grains that are needed to
compute the porosity. From the porosity the permeability is determined either by the
network-inspired relations or by the Kozeny-Carman relation. Depending on the topol-
ogy, three different percolation thresholds, corresponding with a quadrangular network
(pc = 0.4935), triangular structured network (pc = 0.3232) and triangular unstructured
network (pc = 0.3438), are distinguished. However, since the topology of macro-scale
porous media is not known, computations are performed with percolation thresholds in
the interval [0,0.9] to investigate the influence of the percolation thresholds (and hence
the topology of the medium) on the flow velocity displacements and porosity. First,
the problems are solved with the Kozeny-Carman relation, the network-inspired relation
based on the triangular structured network and the relation based on the quadrangular
network. From the numerical results we conclude that the permeability obtained using
the Kozeny-Carman relation exhibits a larger decrease than the permeabilities obtained
with the network-inspired relations, which is clarified by Figure 6.15. In contrast, the
porosity profile is not affected significantly by the selected porosity-permeability rela-
tion. Second, the time average of the volumetric flow rate was computed for percolation
thresholds in the interval [0,0.9]. For low percolation thresholds the network-inspired
relation results in higher flow rates than the Kozeny-Carman relation, as expected from
Figure 6.15. In addition, it is shown that the flow rate changes significantly as a function
of the percolation thresholds which means that the water flow depends on the topology
of the network. For large percolation thresholds spurious oscillations appeared due to
numerical instabilities, the results for these percolation thresholds could be improved
by using a finer grid.

For the studied problems and the set of parameters chosen, we noticed that the applied
porosity-permeability relations result in small changes in the porosity while a major
change is realised in the permeability profiles. A possible explanation for this behaviour
can be that the relation, between the velocity field and the change of the displacements
in time as stated in Equation (6.1b), is not strong enough to lead to significant changes
in the porosity profile.
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7
CONCLUSION

In this work, we presented a new model of biofilm growth that takes into account that
the nutrients do not entirely penetrate the biofilm because the consumption is faster
than the diffusion of nutrients within the biofilm. Additionally we incorporate a con-
tinuous spreading of biofilm from one tube to the neighbouring ones which results into
spreading of biofilm through the whole network. The goal of this thesis is to give a de-
scription of biofilm growth at the micro-scale in order to study its effects on the porous
medium characteristics and thereby on enhanced oil recovery. In particular we studied
the changes in porosity and permeability due to the accumulation of biofilm. Further-
more, we related these changes in porosity and permeability to the flow diversion of
water to low permeability regions. Finally we derived a relation between porosity and
permeability that can be used as an alternative to the Kozeny-Carman relation.
Our numerical simulations showed that the nutrients are present in the whole network
just after the beginning of the process. The presence of the nutrients causes the growth
and the spreading of the biofilm over the whole network. Subsequently biofilm grows
uniformly through the whole network for a certain period of time. After this, depletion
of nutrients is observed and preferential growth near the inlet of the network occurs un-
til the flow through the network is blocked. We compared our model to the uniform
biofilm growth model and to a random biofilm growth model which blocks the tubes in
the network randomly. We obtained that our model shows a transition between uniform
biofilm growth and heterogeneous biofilm growth. We conclude that is possible to avoid
the clogging near the inlet of the network, so that high permeability regions are partially
blocked. Therefore biofilm accumulation in porous media can be beneficial for MEOR,
especially during the uniform biofilm growth stage.
We studied the conditions needed to upscale our microscopic model to larger scales.
We investigated the influence of the number of nodes per unit area, the size of the do-
main of computation and the inlet concentration on the permeability-porosity relation.
The simulations show that there is a transition between homogeneous and heteroge-
neous biofilm growth. We used the Damköhler number to determine whether upscaling
is possible. We obtain that the transition occurs between Da = 101 to Da = 103 ap-
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proximately for all the cases studied. If the Damköhler number stays under Da = 101

during the whole process of biofilm growth then there is uniform growth and upscaling
is possible. On the other hand if the Damköhler is larger than Da = 103, then the biofilm
grows heterogeneously and upscaling is not possible. Our simulations revealed that up-
scaling is not possible if the inlet concentration is not large enough. In these cases the
permeability-porosity relation depends on the number of nodes per unit area and on the
size of the domain of computation.

We extended our 2D model to a 3D biofilm growth model. In this case we used a cu-
bic 3D network. The influence of the number of nodes in the z− direction was studied.
In addition we incorporated a log-normal distribution for the radii of the tubes in the
network. Further we derived a criterion for upscalability using this model and we com-
pared it to the criterion obtained using the 2D network model. We concluded that there
are two possibilities; heterogeneous growth and homogeneous biofilm growth. In the
case of heterogeneous growth the amount of biomass needed to block the network, S̃b

increases as the number of nodes in the z− direction increases. However, S̃b converges
to S̃∗

b = 0.85 as the number of nodes in the z− direction tends to infinity. The amount
of biomass needed to block the network increases with the number of nodes in the z−
direction because then there are more paths available for water flow. Therefore it takes a
larger fraction of biomass to block the network. We observe that the transition between
homogeneous and heterogeneous growth occurs between Da = 101 to Da = 103 which
is approximately the same range as in the 2D model. Furthermore, the influence of the
statistical parameters of the log-normal distribution for the radius on biofilm growth was
studied. We obtained that S̃b decreases if the variance of the distribution increases. How-
ever, also in this case the transition between homogeneous and heterogeneous growth
occurs within the same Damöhler number regime as in Chapter 3.

We used a 2D network model to study the influence of biofilm growth on the flow di-
version of water. For this reason we divided the domain of computation into two re-
gions with different permeabilities. The region with the lower permeability was placed
in the centre of the domain of computation. Since we are interested in the production
of oil from low permeability regions we computed the outflow of water from the low
permeability region. We obtained that during the biofilm growth process the outflow
from the low permeability region increased by around 60 per cent during about 30 per
cent of the total simulation time. However, in the final stage the flux of water through
the whole network, and hence also from the low permeability region, decreases as a re-
sult of biofilm accumulation. Therefore it is suggested that the injection of the nutrients
has to be stopped in order to avoid blocking of the network. The increase of the out-
flow through the low permeability region may indicate successful flow diversion which
is characterised by an increase of the efficiency of the waterflood.

The network-inspired porosity-permeability relation obtained via the random biofilm
growth model was used to describe two poroelasticity problems. This new porosity-
permeability relation depends on the percolation threshold and hence on the topol-
ogy of the network. We obtained the porosity-permeability relation for three differ-
ent networks in 2D (a rectangular network,a triangular network and a triangular un-
structured network) and cubic network in 3D. The results obtained using the porosity-
permeability relation for the 3 different networks were compared to the results obtained
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via the Kozeny-Carman relation. From the numerical results we conclude that the per-
meability decreases larger using the Kozeny-Carman relation than the permeability ob-
tained via the network models. On the other hand, the porosity is not affected signifi-
cantly by the selected porosity-permeability relation. Probably this behaviour is because
the relation between the velocity and the displacement field is not strong enough to lead
significant changes in the porosity profile. In addition the average volumetric flow was
computed for percolation thresholds from 0 to 0.9. For low percolation thresholds the
network-inspired relation results in higher flow rates then the Kozeny-Carman relation.
In this thesis we presented a new biofilm growth model that describes some phenomena
that have not been dealt with in literature; like the likelihood of a non-homogeneous
distribution of nutrients within the biofilm and the spreading of biomass to the neigh-
bouring tubes. Since we consider a 2D rectangular pore network model consisting of
cylindrical tubes with the same radii, this model could be too simplified to describe a
real reservoir field. Interesting further research is to find the representative elementary
volume in order to upscale these results to the macroscale. In addition, future plans
entail the study of the effects of biofilm growth in porosity and permeability in more
complex topologies in 2D and 3D.
In addition it might be interesting to verify the relation between porosity and permeabil-
ity, K ∼ φ2, in laboratory scale and obtain an appropriate Damköhler number regime
for uniform growth. Forthcoming research might be the extension of this model to two
phase flow for studying the possibility of flow diversion for MEOR. Finally, this model
can be used in other problems like pore-elasticity.
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