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Abstract

Sand nourishments are increasingly applied as adaptive coastal protection mea-

sures. Predictions of the evolution of these nourishments and their impact on

the surrounding coastline contain many uncertainties. The sources that add to

this uncertainty can be delineated between intrinsic and epistemic uncertainty,

i.e. inevitably in the system or related to knowledge limitations. Effects of

intrinsic uncertainty (e.g. due to wave climate variability) on coastal evolution

can be significant. In studying these effects, it has often been assumed that

intrinsic uncertainty is dominant over epistemic uncertainty (e.g. introduced by

the model), yet the magnitude of both contributions have not been explicitly

quantified to assess the validity of this assumption. This paper examines the

relative importance of intrinsic and epistemic uncertainty in coastline modeling

of a large-scale nourishment. It uses a probabilistic framework in which sedi-

ment transport is considered to be a function of random wave forcing (intrinsic)

and model (epistemic) uncertainty, calculating transport using a one-line model.

The test case for this analysis is the mega-nourishment, the Sand Engine, lo-

cated in the Netherlands. The applied wave climate variability is obtained from

long term wave observations, whereas model uncertainty is quantified using
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the Generalized Likelihood Uncertainty Estimation (GLUE) method relying on

monthly observations. We find that the confidence intervals on predicted vol-

ume losses increase substantially when including both intrinsic and epistemic

sources of uncertainty. A global sensitivity analysis shows that ignoring model

uncertainty would underestimate the variance by at least 50% after a 2.5-year

simulation period for the Sand Engine, hence producing significant overconfi-

dence in the results. These findings imply that for coastal modelling purposes

a dual approach should be considered, evaluating both epistemic and intrinsic

uncertainties.

Keywords: Large-scale nourishment, Model uncertainty, Wave climate

variability, Generalized Likelihood Uncertainty Estimation (GLUE), Coastline

modeling, Sensitivity Analysis

1. Introduction1

Coastal sections around the world are increasingly protected with sand nour-2

ishments. Yet, using natural dynamics and materials in coastal protection is3

intrinsically associated with increased uncertainties of the coastal state with re-4

spect to more traditional hard protection measures. Recent nourishments along5

the Dutch coast such as the Sand Engine (de Schipper et al., 2016) and the6

Hondsbossche Dunes (Kroon et al., 2017) show a significant increase of nourish-7

ment volume compared to the more regular beach and foreshore nourishments8

(Stive et al., 2013). As intervention scales grow and natural variabilities are in-9

creasingly incorporated in these designs, the demand for predictions increases,10

while predictability of the state of the coast at any given time has decreased.11

In addition to this uncertain response to variable natural forces, many model12

related uncertainties are present, which are not always included in predicting13

these coastline changes.14

In general, distinction is made between two types of uncertainty, intrinsic15

and epistemic uncertainty (e.g. Van Gelder, 2000; Van Vuren, 2005). The first16

is related to the random occurrence of processes in time and space and is irre-17
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ducible. The second is related to the present state of our process knowledge,18

models and methods and is in theory reducible given appropriate resources.19

In Fig. 1 the types of uncertainty in morphological coastline predictions are20

schematized, adapted from the schematic subdivision of types of uncertainty in21

design of civil structures by Van Gelder (2000).22

In morphological coastline response on a yearly to decadal time-scale intrin-23

sic uncertainty can manifest in both space and time. For instance, the spatial24

variability in the cross-shore bed levels can have significant influence on the25

alongshore transport (Mil-Homens, 2016). Likewise, coastal morphology is very26

sensitive to temporal variability such as the chronology and year to year vari-27

ability in wave forcing (Southgate, 1995).28

Epistemic uncertainty is typically introduced by uncertainties in observa-29

tions and models. Model uncertainty can be attributed to model inadequacy,30

parameter uncertainty (e.g. Ruessink, 2005; Simmons et al., 2017) and numerical31

limitations (e.g. de Vriend, 1987). Model inadequacy can be caused by miss-32

ing processes (e.g. beach recovery, long waves, sediment sorting; Huisman et al.,33

2016) or reduced complexity of processes, such as 1D or 2D models and sediment34

transport formulae. Ruessink and Kuriyama (2008) show that unpredictability35

of cross-shore sandbar migration during major wave events originates largely36

from model inadequacy. Parameter uncertainties arise from limited knowledge37

on actual values of model parameters (e.g. grainsize, bed roughness or wind38

shear). For instance, Villaret et al. (2016) show that model results are most39

sensitive to settling velocity and grain size, which are often only locally known.40

Numerical uncertainties can be introduced by the spatiotemporal model resolu-41

tion, the order of the numerical schematization and the acceleration technique42

(Luijendijk et al., 2019). Finally, observation uncertainty is a result of accuracy43

of the instruments and data processing used. For instance, sampling limitations44

and measurement errors can significantly contaminate variability at resolved45

scales, and may lead to errors in the representation of the scales of interest46

(Plant et al., 2002; Kasprak et al., 2019).47

In the last decades, large advances have been made to model and predict48
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Figure 1: Types of uncertainty in the forecasting of morphological coastline response. Adapted

from: Van Gelder (2000)

the morphological processes governing the changes of the coastal zone (Hanson,49

1988; Ashton and Murray, 2006; Lesser, 2009; Warner et al., 2010). Thereby50

making a significant contribution to the accuracy and skill of morphodynamic51

models, and thus reduction of model uncertainty. However, as focus has been on52

improvements and strenghts of the model, less detail is presented on the residual53

uncertainty. Recently, several of these tools have successfully been applied to the54

modeling of large-scale nourishment evolution (Luijendijk et al., 2017; Arriaga55

et al., 2017; Tonnon et al., 2018). Although, Arriaga et al. (2017) do acknowledge56

the sensitivity of the results to different wave climate scenario’s, in general, only57

limited attention is paid to the uncertainties within the predictions.58

On a track adjacent to model development and improvement, several of these59

deterministic models have been applied within probabilistic frameworks to allow60

for the effects of intrinsic uncertainty (Baquerizo and Losada, 2008; Ruggiero61

et al., 2010; Ranasinghe et al., 2012; Callaghan et al., 2013; Baart, 2013). The62

implicit assumptions underlying the focus on intrinsic uncertainty are that cli-63

mate variability is the most important source of uncertainty and that model64
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forcing and reliability are independent. That the validity of these assumptions65

is debatable, is indicated by the results of Callaghan et al. (2013), who show66

that model uncertainties have a significant influence on probabilistic estimates67

of storm erosion: the predicted mean erosion and 95% confidence interval vary68

greatly for each of the models presented and all models overestimate erosion for69

higher return periods. For the long, climate change time scale, Le Cozannet70

et al. (2019) show that model uncertainty can indeed be a significant contribu-71

tion to variance in coastal recession predictions under a rising sea level.72

Explicit quantification of model (parameter) uncertainty (epistemic uncer-73

tainty) in morphological computations is possible, albeit at a large computa-74

tional cost (e.g. Kroon et al., 2019; Simmons et al., 2017; Ruessink, 2005).75

Similarly, it is possible to quantify intrinsic uncertainty in morphological model76

applications in the coastal zone on a time scale of years (Baquerizo and Losada,77

2008; Payo et al., 2008). Yet, combining these to assess the relative importance78

of epistemic versus intrinsic uncertainty has not been investigated so far.79

In coastal engineering the deterministic approach might dominate and proba-80

bilistic approaches focus on intrinsic uncertainty, uncertainty analysis in climate81

change predictions is common practice. In general, three main sources of un-82

certainty in climate projections are identified: due to future emissions (scenario83

uncertainty), due to internal climate variability, and due to inter-model differ-84

ences (IPCC Working Group I, 2013; Hawkins and Sutton, 2011, 2009). Hawkins85

and Sutton (2011) show clearly that for climate projections the dominant source86

of uncertainty depends on lead time, climate indicator and spatial scale. Ex-87

tending these results to coastal morphology, it seems unlikely that intrinsic88

uncertainty or wave climate variability can be beforehand considered to be the89

primary source of uncertainty for both short and long time scales. Therefore,90

this paper includes both intrinsic and epistemic uncertainty in a probabilistic91

framework to examine the relative importance of these uncertainties in coastline92

modeling of a large-scale nourishment over time.93

For this purpose, sediment transport and volume change are considered to94

be a function of both intrinsic and epistemic uncertainty. As the principal95
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source of intrinsic uncertainty we choose the variability in wave climate and96

as the principal source of epistemic uncertainty we assume model uncertainty.97

The random wave forcing is based on the observed wave climate variability98

whereas the distribution of the calibration settings for a simple one-line model99

are quantified using observations of the Sand Engine nourishment. With a100

comparison of the observed volume changes and several probabilistic forecasts101

that include wave climate variability and/or model uncertainty, we show that102

model uncertainty becomes dominant over wave climate variability for medium-103

term time scales (years).104

2. Sand Engine nourishment105

The Sand Engine is a well measured nourishment project, and its large scale106

results in a distinct and unique coastline response with a high signal to noise107

ratio. The Sand Engine nourishment was placed between April and June 2011,108

along the Dutch South Holland coast, as a hook shaped peninsula of 17 million109

m3 sand (Stive et al., 2013). The nourishment is exposed to a wind wave110

climate with a predominant South-West and North-West direction. The spring-111

neap tidal range varies approximately between 1.5 and 2 m and the local tidal112

velocities around the peninsula can range up to 1 m/s (Radermacher et al.,113

2017), but the main driver of the morphological evolution is the alongshore114

sediment transport by oblique wave incidence (Luijendijk et al., 2017). The115

bathymetric evolution has been monitored with a 1 to 3 month interval until116

the end of 2016 and with a 3 to 6 month interval after that (Roest et al., 2017).117

The grain size (d50) of the Sand Engine varies over the cross-shore profile and118

in time between approximately 200 and 400 µm (Huisman et al., 2016), and119

morphological changes can be observed between -8 and 3 m+MSL (de Schipper120

et al., 2016).121

Our analysis starts with the bathymetrical survey of December 2012 because122

the coastline curvature is too sharp for a one-line model to be stable prior to this123

date. The remaining 5 year period between December 2012 and January 2018 is124
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Figure 2: Morphological evolution of the Sand Engine since December 2012. Coastline posi-

tion, y0m, with respect to a reference coastline, y0m,pre, prior to construction of the nourish-

ment (a) and profile integrated volume change since December 2012 (b). The green shaded

areas denote net sedimentation and the red shaded area denotes net erosion.

split in two 2.5-year periods: a calibration period and a validation period. The125

coastline is defined as the position of the most seaward 0 m+MSL depth contour,126

ignoring the lagoon. The resulting coastline positions since December 2012 are127

depicted in Fig. 2a. For each of the surveys the profile integrated volume128

change with respect to the bathymetry of December 2012 is calculated (Fig.129

2b). The total volume change (∆Vtot) of the nourishment since December 2012 is130

calculated as the sum of the net eroding center part of the nourishment (shaded131

red in Fig. 2b) and shows a negative trend of approximately 500,000 m3/yr132

(Fig. 3a). The volume changes between consecutive surveys (∆V ) vary between133

100,000 ± 160,000 m3 (Fig. 3b). A large volume gain of 8,000 m3/d, influenced134

by an observational error, is reported in August 2013. This volume gain is not135

excluded, exemplifying the effect of measurement errors in the analysis.136

To derive model boundary conditions, offshore waves at nearby wave stations137
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Figure 3: Total volume change (∆Vtot) since December 2012 (a) and volume change (∆V )

between consecutive surveys (b) of the central, net eroding area of the Sand Engine. Orange

crosses are used for model calibration and green crosses are used for validation. The positive

volume change in August 2013 is influence by measurement errors.
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Figure 4: Wave height at the -10 m+MSL depth contour at the Sand Engine for the quantifi-

cation period (1986-2011), the validation period (December 2012-June 2015) and the forecast

period (June 2015-January 2018). Gray dotted lines depict the survey dates. The wave data

from January 2011 to December 2012 are not used in the analysis (shown in gray).

are transformed to the -10 m+MSL depth contour with a SWAN model using138

a transformation matrix derived for the Sand Engine by Deltares (2011) in a139

similar way to Ly and Hoan (2018). A description of the mesh and a validation140

for a nearby measurement station can be found in Huisman et al. (2019). The141

resulting wave height time series (Fig. 4) are separated into three periods: a full142

25-year period to quantify the wave climate variability, (January 1986 - January143

2011), a 2.5-year calibration period (December 2012- June 2015) and finally a144

2.5-year forecasting period (June 2015-January 2018).145

3. Methodology146

3.1. Probabilistic approach147

To examine the relative importance of model uncertainty versus the effects of148

wave climate variability in predicting coastline change a probabilistic simulation149
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procedure is followed (Fig. 5). For the morphological computations a one-line150

model is chosen, to facilitate the large number of computations required to151

achieve a high statistical accuracy.152

The first step in the procedure is to quantify uncertainty. The variation in153

wave climate is quantified using the statistics of 25 years of wave observations154

(Fig. 5, left side of blue dotted box). Model uncertainty is quantified using155

Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley,156

1992) that seeks a distribution of appropriate model settings for the 2.5-year157

calibration period, given a set of observations (Fig. 5, right side of blue dotted158

box). The next step is to sample from the established distributions of wave159

climate variability and model uncertainty. So, with a bootstrapping procedure160

N model time series are generated that meet the observed wave statistics (Fig.161

5 left orange box). Whereas N model settings are derived by Monte Carlo162

sampling (Fig. 5 right orange box) from the derived distribution of model163

settings. After the deduction of N wave time series and N model calibration164

factors the uncertainty is propagated trough the one-line model by running it165

N times for the 2.5-year forecast period (Fig. 5, green box). For each of these166

runs the volume change in the eroding part of the nourishment is determined,167

and combining these results provides a probability density function of volume168

change. We choose N = 12, 000 samples, this means that we can be 95% sure169

that the 50% fractile is located between the estimates of the 49% and 51%170

fractile (Morgan et al., 1990).171

In the next part of this section the details of the one-line model and the un-172

certainty quantification steps are further elaborated upon. Finally, the relative173

importance of wave climate variability and model uncertainty in this probability174

density function of volume change is assessed with a global sensitivity analysis175

(see paragraph 3.5).176

3.2. One-line model177

Many one-line models can be found in literature with a varying range of178

complexity (e.g. Arriaga et al., 2017; Payo et al., 2002; WL—Delft Hydraulics,179
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Figure 5: Schematic overview of probabilistic simulation steps: 1) uncertainty quantification,

2) sampling, and 3) uncertainty propagation in a 2.5 yr forecast of volume loss.
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1994; Hanson, 1988). In this study a one-line model is used which updates180

the cross-shore coastline position based on the alongshore sediment transport181

gradient and neglects any sources or sinks:182

δys
δt

+
1

D

δQ

δx
= 0 (1)183

in which x is the alongshore coastline position, ys is the cross-shore coastline po-184

sition, Q is the alongshore sediment transport, and D is the active profile height185

between closure depth and top of the berm. In this approach the alongshore186

sediment transport rate is calculated with the Kamphuis formula (Kamphuis,187

1991):188

Q = K tan(β)0.75d−0.2550 H2
brT

1.5
p sin0.6(2θbr)︸ ︷︷ ︸

wave climate component (wbr)

, (2)189

where Q is expressed as kg immersed mass per second, K is the model calibration190

factor, Hs,br, Tp and θbr are the significant wave height, peak period, and angle191

of wave incidence at the point of breaking relative to shore normal, tan(β) is the192

beach slope and d50 is the median particle size in the surf zone. For the purpose193

of this study we denote the term that is affected by varying wave forcing as the194

wave climate component, wbr.195

To obtain volume change, ∆Vtot the coastline change is integrated over the196

active profile height, D, and the alongshore grid size, ∆x, and then summed197

over the alongshore central section of the nourishment (Fig. 2, dashed lines).198

We discretize the coastline of the Sand Engine in non-uniform spaced sections199

in the x-direction that vary between 200 and 225 m width. Hbr and θbr are200

calculated using linear wave theory from waves at a location beyond the closure201

depth, the -10 m+MSL depth contour. The wave conditions at the -10 m+MSL202

depth contour are assumed to be constant over the model domain. In addition,203

we assume d50=300 µm, a beach slope of 1/50 and an active profile height D=11204

m. Note that, assuming these specific values may introduce uncertainty in time205

and space which will be accounted for via calibration of the model calibration206

factor K as a probability density distribution.207

The model calibration factor K as originally proposed by Kamphuis (1991)208
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has a value of 2.33, assuming a sea water density of ρ = 1029kg/m3. Later,209

Schoonees and Theron (1996) use an extensive data set to find a value of K =210

3.6 for exposed sites. In addition, Schoonees and Theron (1996) also reveal211

significant uncertainty in the exact value of K. The re-calibrated formula still212

shows deviations from observed transports up to a factor 5 and K values 50%213

higher or lower only have a marginally higher standard error. Exemplifying that214

K can be regarded a stochastic variable rather than a deterministic one.215

3.3. Quantification of wave climate variability216

To force the one-line model with varying wave time-series that follow local217

wave statistics, the wave climate variability is quantified using available his-218

torical wave time series for a 25 year period. This period precedes both the219

model calibration period and the forecast period (Fig. 4). To maintain sea-220

sonal fluctuations and the observed joint probability between Hs, Tp and θ,221

the time series is separated into monthly sections, providing 25 observations of222

each month of the year. A bootstrapping procedure (Efron, 1979) is followed223

to generate a 60-month time series (2.5 years). The forecast time series is built224

as a sequence of a randomly selected January, followed by a randomly selected225

February, etc., similar to the method used by Davidson et al. (2017). Using226

this approach, 2560 possible sequences can be constructed. Climate fluctuations227

such as El Nino and the North Atlantic Oscillation are neglected, meaning that228

observed extreme months can occur in any year and after any other month. In229

literature several more elegant, sophisticated but also more complex methods230

are available to generate synthetic wave time series (e.g. Callaghan et al., 2008;231

Antoĺınez et al., 2016; Jäger and Nápoles, 2017). Our forecast period is rela-232

tively short and the average wave climate component for both the calibration233

and the forecast period are comparable to the long term average. Indicating234

that the wave climate behaves ergodic for the period of our interest, supporting235

the approach followed.236
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3.4. Quantification of model uncertainty237

The calibration uncertainty is estimated with GLUE (Beven and Binley,238

1992; Ruessink, 2005; Simmons et al., 2017) for the 2.5-year calibration period.239

GLUE was developed as a calibration method which, in contrast to traditional240

statistical inference, recognizes that the same result can be obtained with dif-241

ferent model settings and calls this ‘equifinality’. Equifinality is introduced242

because the model description of the real world is limited and thus contains243

errors of some extent. Therefore, a parameter set found by calibration can only244

be assumed to be a likely estimator. GLUE exploits this reasoning by search-245

ing within a large parameter space and appointing a non-zero likelihood to all246

parameter sets that have a prediction skill higher than a certain threshold.247

The first step in GLUE is to decide on a likelihood measure and rejection248

criterion (Beven and Binley, 1992). In this study the Nash-Sutcliffe skill score249

(Nash and Sutcliffe, 1970) is used which divides the residual variance between250

model and observation by the variance in the observations as:251

NS = 1−

n∑
i=1

(dVi − dV ′i )2

n∑
i=1

(dVi − d̄V )2
(3)252

in which dV and dV’ are the observed and model predicted volume changes in253

between surveys, respectively, and n is the number of observations. NS is the254

skill score, a score of one represents a perfect model, whereas a negative score255

means that the mean square error (MSE) is larger than the observed variance.256

In this paper all calibration parameters that result in a prediction with a257

score higher than zero are included, accepting predictions with a MSE equal or258

lower than the observed variance. Demanding a positive skill criterion guaran-259

tees that our model is behavioral, capturing the overall trend in the observations.260

The second step is to decide which model parameters and input variables are261

considered uncertain. Here, we illustrate model uncertainty with the calibration262

parameter K.263

The third step of the GLUE method is to decide on a prior distribution for264
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the uncertain parameter(s). In this case we choose a uniform distribution with265

a wide range, U(0− 9.32), to minimize subjectivity of the procedure.266

Finally, M = 200 equally spaced samples of K are drawn from the uniform267

distribution and used to run the one-line model M times for the 2.5-year calibra-268

tion period (Fig. 5, right side of blue dotted box), varying the K value for each269

run while forcing the model with the observed waves of this period (orange line270

in Fig. 4). The resulting posterior distribution of K will be a uniform distributed271

PDF but with a reduced range. From this posterior distribution, N = 12, 000272

samples are drawn with a Monte Carlo procedure, and combined with the N273

synthetic wave time series of 2.5 years to make a probabilistic forecast with the274

one-line model.275

Note that, by assuming K as the only stochastic variable and calibrating276

to (uncorrected) field observations we do not limit ourselves to parameter un-277

certainty only, but we include model inadequacies, numerical uncertainties and278

observation errors in the posterior distribution of K.279

3.5. Ranking Uncertainty Sources280

The probabilistic procedure results in a distribution of predicted volume281

change which varies in time. As a first step to achieve the objective of rank-282

ing the relative contribution of both uncertainty sources, we perform a local283

sensitivity analysis in which we compare the magnitude of the variance of the284

volume change for the wave climate contribution or model uncertainty individ-285

ually. That means that we pick two locations in the entire range of variables286

K and wbr, the parameter space, at which we compare the variance of ∆V and287

∆Vtot. We do this for the points with maximum model skill (V ar(Y |K = 2.73))288

and with an average wave climate contribution, V ar(Y |wbr = w̄br) in which289

Y = (∆V,∆Vtot).290

The location with maximum model skill and average wave conditions is a291

point of high interest in the parameter space, but conclusions based on this292

local comparison are not necessarily true for the entire parameter space. With293

a global sensitivity analysis (Saltelli et al., 2008) we quantify the fraction of294
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the variance that can be attributed to a certain input variable for each value295

in the parameter space. This is described by Sobols’ indices which rank the296

contribution of model uncertainty and wave climate variability to the variance297

of total volume change. In contrast with a local sensitivity analysis, the global298

sensitivity analysis takes into account the complete range of the inputs, and299

attempts to apportion the output uncertainty to the uncertainty in the input300

factors (Jacques et al., 2006), and this can be done for every output time step.301

As a result the relative importance can be monitored over time.302

The first order Sobol’ indices describe the importance of each input variable303

(Xi = (wbr,K)) as the contribution of this variable to the total variance of304

output ∆Vtot, and can be calculated with:305

Si =
V ar(E(∆Vtot|Xi))

V ar(∆Vtot)
(4)306

Si = 1 means that all the variance of output variable ∆Vtot can be attributed to307

input variable Xi, contrarily a Si = 0 means that variability in input variable308

Xi does not translate to variance of ∆Vtot. Because our model (Eq. 2) is non-309

additive, i.e. is a product of two uncertain terms, both uncertainty sources also310

interact with each other. The interaction term, in case of two uncertain inputs,311

is given by:312

S12 =
V ar(E(∆Vtot|X1, X2))

∆Vtot
− S1 − S2 (5)313

3.6. Probabilistic forecasts314

Five sets of computations are examined, one calibration set and four differ-315

ent forecasts (Table 1). The calibration set is required to quantify the model316

uncertainty. The first forecast set includes the quantified distributions of both317

K and wbr. The second forecast includes only the distribution of wbr with fixed318

K as part of the local sensitivity analysis. Similarly, the third forecast includes319

only the distribution of K with fixed wbr. Finally, to examine the effect of a320

potential dependence between model uncertainty and wave climate variability321

on the total variance of our prediction, a set of computations is run in which K322

and wbr are correlated with ρ = 0.5, according to the findings and procedure of323
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Description Calibration Probabilistic

Forecast

Wave cli-

mate com-

ponent only

Model un-

certainty

only

Correlated

Probabilistic

Forecast

Run name wbr +K wbr K wbr&K

Number of

runs

400 12,0001 12,000 12,000 12,000

Period 2012/12 -

2015/06

2015/06 -

2018/01

2015/06 -

2018/01

2015/06 -

2018/01

2015/06 -

2018/01

Wave condi-

tions

Observed

2012/12 -

2015/06

Generated

time series

Generated

time series

wbr = w̄br Generated

time series

K U(0, 9.32) U(2.18, 3.26)2 K = 2.732 U(2.18, 3.26)2 U(2.18, 3.26)2

Correlation

ρ

0 0 0 0 0.5

Table 1: Model settings of different model runs.

Kroon et al. (2019). The marginal distributions of both variables remain equal324

to the uncorrelated procedure, the only difference is that they are now partially325

correlated. This means that in case the wave climate component is larger than326

average in a sample, the probability of a K value larger than average increases.327

4. Results328

4.1. Uncertainty Quantification329

As a first step of the probabilistic assessment, the uncertainty in the wave330

climate component and the model uncertainty were quantified. The empirical331

distribution of the wave climate component has a mean of 10 m2s1.5 and a stan-332

dard deviation of 19 m2s1.5 and is highly asymmetrical with a large probability333

1For the global sensitivity analysis this number of runs is extended to 84,000.
2This distribution is the result of the uncertainty quantification procedure, presented in

paragraph 4.1.
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of lower than average wave climate components. The distribution of the wave334

climate component (wbr) of the generated wave time series perfectly resembles335

the empirical distribution of wbr,obs of the 25 years of observed waves (Fig. 6).336

The PDF of all generated years (red dashed line) has no bias and deviates only337

locally (max. 4%) from the long term average observed distribution of wbr (black338

line). Not only the average generated series compare well to the observed series339

but also more energetic realizations of the wave climate. To exemplify this we340

compare observed and generated wbr,10 (green lines). In which wbr,10 is defined341

as the generated series or the (consecutive) 2.5-year observation period of which342

the average has 10% exceedence probability. Compared to the average values343

(black line), the generated time series with wbr,10 (green dashed line) has a lower344

probability of low values (wbr/wbr < 0.5) and a higher probability of wbr values345

above average (wbr/wbr > 1). This change in distribution is similar to the ob-346

served 2.5-year period (green line) with 10% exceedence. This realization of the347

wave climate with wbr,10 is also unbiased and deviations are local and limited348

to 20%. This means that our approach does not only represent the long-term349

average wave climate component well but also gives a realistic distribution of350

wbr for energetic realizations of the wave climate.351

The model uncertainty has been quantified assessing the skill of the 400352

calibration computations with random K ∼ U(0 − 9.32). A comparison of the353

predicted and observed volume change between consecutive surveys (∆V ) for354

the calibration period indicates that the one-line model is able to predict the355

global observed trend, except for some outliers, Fig. 7. Next, based on the356

NS > 0 criterion, many of the prior calibration values are rejected, resulting in357

a significantly reduced posterior range of K to U(2.18, 3.26), Fig. 8, while the358

maximum NS skill is found at K = 2.73. The range of K is reduced on both359

sides of the prior distribution, indicating that the range of the prior was chosen360

properly.361
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Figure 6: Probability density distribution of normalized wave climate component in Kam-

phuis formula. Observed (continuous lines) and generated (dashed lines) 2.5-year average

(black/red) and 10% exceedence (green).
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Figure 7: Volume change between consecutive surveys (a) and total volume change since

June 2015 (b) for GLUE calibration procedure. The prior distribution (light grey area), the

posterior distribution of all runs with NS > 0 (dark grey area), and the run with the highest

skill score (black line) compared to observed volume change.

Figure 8: Probability density distribution of model calibration factor K, prior to the GLUE

calibration procedure (light grey) and posterior (dark grey). The black line indicates K = 2.73,

the value with the highest NS skill score.
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4.2. Uncertainty propagation362

This subsection presents the results of the probabilistic forecasts in which the363

distributions of K and wbr, as derived in the previous section, are propagated364

through the one-line model to come to a distribution of volume change. Four365

different forecasts are examined (Table 1). Following the calibration of the366

model, the adopted model settings are K ∼ U(2.18 − 2.36) and wbr similar to367

the empirical distribution of wbr,obs .368

The probabilistic forecast (wbr +K), predicts a loss of almost 1.000.000 m3
369

in 2.5 years with a standard deviation of 15% (Fig. 9b). The observed volume370

change between consecutive surveys shows a clear summer/winter pattern that371

is reproduced by the probabilistic forecast (Fig. 9a). The width of the confi-372

dence intervals, e.g. the distance between the 5% and the 95% percentile level373

(Fig. 9a, light grey shade), is a measure for the variance of the distribution.374

This forecasted variance is higher in winter than in summer. This is an effect of375

the monthly bootstrapping procedure, which forces the model to have a smaller376

variance in summer and a larger variance in winter, similar to the observed377

wave climate. The model bias is negligible, but the variance is much lower than378

observed. Only 50% of observations fall within the 90% confidence interval,379

whereas this should be approximately 90%. Similarly only 8% of observed vol-380

ume changes fall within the 50% confidence interval and no observations fall381

within the 10% confidence interval (Table 2).382

On the other hand, the total volume change is predicted very well by the383

model (Fig. 9b). The model shows no bias in predicting the total volume change,384

and the variance of the total volume change is more accurately represented.385

Hence, 85% of the observations fall within the 90% confidence interval which386

is very close to the expected 90%. Similarly, 70% and 15% of the observed387

volume changes fall within the 50 and 10% confidence intervals, respectively388

(Table 2). The total volume change and the corresponding confidence intervals389

are predicted remarkably well considering the small number of observations.390

Looking at the effects of K and wbr individually, we see that the conditional391

variance of the volume change between consecutive surveys is significantly lower392
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Figure 9: Predicted and observed volume change between consecutive surveys (a) and since

June 2015 (b). The mean (red line), median (black line), and the 90, 50 and 10% confidence

interval (light gray, dark gray and blue shaded areas) of the probabilistic forecasts are pre-

sented together with the observed volume change (black dots). Winter months October to

April are indicated with the turquoise background.

when conditioned on the average wave climate component (V ar(∆V |wbr =393

w̄br)), than conditioned on the model calibration parameter with the high-394

est skill (V ar(∆V |K = 2.73)) (Fig. 10b and f ). However, the variance395

of the total volume change conditioned on average wave climate component,396

V (∆Vtot|wbr = w̄br), is increasing over time, whereas V (∆Vtot|K = 2.73) in-397

creases initially but becomes stable over time (Fig. 10d and h). As a result,398

the variance of total volume change conditioned on K = 2.73 is ,after 2.5 years399

(Fig. 10d), approximately equal to the variance of the total volume change400

conditioned on the average wave climate component (Fig. 10h), meaning that401

the variance of total volume change is equally sensitive to both inputs at these402

two locations in the parameter space.403

Using Sobol’s sensitivity index to quantify this change of relative importance404

over time globally (Fig. 11), we see that the contribution of K to the total405

variance of ∆Vtot is indeed only 20% at the start of the simulation. However,406
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Figure 10: Comparison of predictions with model uncertainty (a-d) and wave climate vari-

ability (e-h) only . Predicted and observed volume change between consecutive surveys (a/e),

variance of volume change between consecutive surveys (b/f), total volume change since June

2015 (c/g) and variance of total volume change (d/h) . The mean (red line), median (black

line), and the 90, 50 and 10% confidence interval (light gray, dark gray and blue shaded areas)

of the probabilistic forecasts are presented together with the observed volume change (black

dots). Winter months October to April are indicated with the turquoise background.

23



Figure 11: Fraction of the total variance of ∆Vtot, of model uncertainty K (blue), wave climate

component wbr (orange) and interactions between both uncertainty sources (green).

by the end of the simulation this has increased significantly and amounts over407

50% of the total variance. wbr on the other hand constitutes 60% of the total408

variance at the start of the simulation but less than 40% after 2.5 years, due409

to the increasing contribution of model uncertainty to the total variance. In410

addition, both terms interact explaining another 15-20% of the variance. So, in411

the case of the sand engine, assessing the effect of wave climate variability only412

would give a significantly overconfident estimate which neglects more than half413

the variance.414

Sobol’s indices cannot be determined for correlated uncertainty sources.415

Therefore, the effect of a potential correlation between K and wbr is assessed416

by comparing the total variance of the uncorrelated runs (wbr and wbr + K)417

with the total variance as predicted by the correlated runs (wbr&K). Positively418

correlated uncertainty sources increase the variance of both ∆V and ∆Vtot, Fig.419

12. Neglecting this correlation results in an additional underestimation of the420
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Figure 12: Variance of predicted volume change against time for ∆V (a) and ∆Vtot (b).

Confidence interval ∆V ∆Vtot

90 % 0.50 0.85

50 % 0.08 0.69

10 % 0.0 0.15

Table 2: Fraction of points within confidence interval.

variance by 40% after 2.5 years. So, not attributing for model uncertainty would421

at least underestimate the variance by 50% in a 2.5-year forecast, but in case of422

a positive correlation this will be significantly more.423

5. Discussion424

The probabilistic predictions show that the uncertainty in the volume change425

at the sand engine nourishment is considerable. We expect a loss of almost426

1.000.000 m3 in 2.5 years with a standard deviation of 15% when including both427

wave climate variability and model uncertainty. Model uncertainty explains428

over 50% of the total variance after 2.5 years. These results stress that, for429

the assessment of large scale nourishments it is not only important to look at430

variations in wave forcing but also to account for uncertainty in the model(s)431

used. This conclusion is based on an assessment of a large scale nourishment,432

yet it is likely that these results are applicable to any sandy solution in the433

coastal zone.434

Evidently, not in all cases the contribution of model uncertainty will be over435

50%. For instance, using a more sophisticated model or applying a sandy so-436
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lution in an environment with a very high variation in wave conditions could437

reduce the relative importance of model uncertainty. Likewise, predicting a438

more event driven parameter or process, such as depth of closure, storm re-439

treat or spit breaching, could increase the relative importance of wave climate440

variability. Also, after the design has been made and a sandy solution has been441

implemented, the relative importance of model uncertainty in the prediction can442

in theory be reduced by updating the model uncertainty with new observations443

once they come available (Vitousek et al., 2017).444

Contrarily, the relative importance of model uncertainty will likely increase445

for smaller nourishments with a less pronounced signal, or in environments with446

a very narrow distribution in wave forcing (e.g. swell dominated environment).447

Thus, it is unlikely that in any case model uncertainty (beyond a monthly time448

scale) can be considered negligible beforehand, without further analysis.449

Looking at a slightly longer time scale, the decreasing relative importance of450

wave climate variability justifies the established use of wave climate reduction in451

morphological modeling (e.g. Benedet et al., 2016). This is also in line with the452

findings of Luijendijk et al. (2019), who show that simulations with a reduced453

wave climate and with brute force time series give a similar prediction of bulk454

morphometrics such as total volume change after 5 years at the sand engine.455

If we extend the time horizon further, other factors, such as sea level rise,456

can become important contributors to uncertainty. Le Cozannet et al. (2019)457

use a global sensitivity analysis to show that coastline recession is initially dom-458

inated by seasonal, inter-annual and decadal variations, but that the relative459

importance of model uncertainty increases quickly. Variations in sea level rise460

scenarios only start to gain importance after half a decade. Although assessing461

morphological effects of sea level rise, their conclusion is alike: model uncer-462

tainty cannot be neglected.463

Callaghan et al. (2013) predict beach erosion, a more event driven process,464

with three different models. The envelope of their multi-model ensemble, is465

70-150 % wider than the 95% confidence interval of each model individually.466

Therewith indicating that in their case, model uncertainties contribute signifi-467
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cantly to the prediction uncertainty. For comparison, the 95% confidence inter-468

val width of our prediction increases with 70% if we include model uncertainty469

in the analysis.470

The underestimation of the observed variance of monthly volume changes471

(e.g. Fig. 9a) indicates that residual uncertainty remains. Our application of472

the GLUE method with one free variable, focused on deriving a realistic estimate473

of model uncertainty, but one can possibly give an improved representation474

of the observed variance and exploit the full strength of GLUE by assuming475

more variables to be stochastic. This could be done within the model (e.g.476

the powers in the Kamphuis formula or the median grain size) but also by477

including observation uncertainty or adding more processes in the model. So,478

a straightforward next step is to differentiate between observation and model479

uncertainty and applying a more advanced model.480

In this article, we concentrated on determining the importance of intrinsic481

versus epistemic uncertainty by distinguishing between wave climate variability482

and model uncertainty. We found that assessing wave climate uncertainty only,483

can result in significantly overconfident predictions. Still, in our analysis resid-484

ual intrinsic and epistemic uncertainty remains, meaning that we might still485

present an overconfident prediction. Nevertheless, these results clearly show486

how important it is to be aware of the uncertainties in our models and to be487

cautious with presenting (un)confidence intervals.488

6. Conclusion489

This paper includes both intrinsic and epistemic uncertainty in a probabilis-490

tic framework, to investigate the relative importance of these uncertainties in491

the evolution of a sandy solution. To this end, we assess a large scale nourish-492

ment case with a one-line model in a probabilistic framework. In this framework,493

transport and volume loss are considered to be a function of random wave forc-494

ing (intrinsic uncertainty) and calibration settings (epistemic uncertainty). The495

variance of both stochastic variables are based on observations using the Sand496
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Engine nourishment.497

We show that confidence interval width and variance of predicted volume loss498

increase when allowing for model uncertainty. The confidence interval width and499

variance increase further (40%) if we not only recognize uncertainty in our model500

but also include a correlation (of ρ = 0.5) between model parameter settings and501

wave forcing. For the Sand Engine nourishment examined here, the contribution502

of model uncertainty to the variance of total volume loss is of the same order503

of magnitude as the contribution of wave climate variability after a 2.5-year504

simulation period, indicating that accounting for wave climate variability only505

will produce significant overconfidence in the results. Nevertheless, on a monthly506

time scale the fraction of variance attributed to wave climate variability is three507

times larger than that of model uncertainty, thus reducing the importance of508

model uncertainty in predicting initial nourishment development.509

For multi-year time scales, model uncertainty will become the dominant con-510

tribution: more wave energy in one year is compensated by less wave energy511

in another, whereas model uncertainty is a cumulative effect that grows with512

each time step. Naturally, the relative importance of model uncertainty over513

wave climate variability depends on the complexity and skill of the model. In514

general, probabilistic frameworks rely on less complex models to reduce com-515

putation time, thereby possibly increasing the relevance of model uncertainty516

assessment within the framework.517

These findings imply that for coastal modelling purposes a dual approach518

should be considered, evaluating both epistemic and intrinsic uncertainties. Es-519

pecially when forecasting large scale projects, with simplified models on a multi-520

year time scale, the uncertainty in model settings may be the principal source521

of uncertainty.522
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