


Enhancing urban energy applications
through semantic 3D city models

and open data

The case of the Netherlands





Enhancing urban energy applications
through semantic 3D city models

and open data

The case of the Netherlands

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology

by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,

chair of the Board for Doctorates

to be defended publicly on

Monday 06, October 2025 at 12:30 o’clock

by

Camilo Alexander LEÓN SÁNCHEZ

Master of Science in Information and Communication Sciences,
Universidad Distrital Francisco José de Caldas, Colombia

Master of Science in Geodesy and Geoinformation Science,
Technische Universität Berlin, Germany

born in Bogotá, Colombia



This dissertation has been approved by the promotor and copromotor.

Composition of the doctoral committee:
Rector Magnificus, chairperson
Prof. dr. J.E. Stoter, Delft University of Technology, promotor
Dr. G. Agugiaro, Delft University of Technology, copromotor

Independent members:
Prof. dr. V. Coors, Hochschule Für Technik Stuttgart
Dr. J.H. Kämpf, Idiap Research Institute
Prof. dr. ir. H.J. Visscher, Delft University of Technology
Prof. dr. L.C.M. Itard, Delft University of Technology
Other members:
Prof. dr. A. van Timmeren, Delft University of Technology

Keywords: UBEM, NTA 8800, open data, s3DCM, CityGML, Energy ADE

Printed by: Ridderprint | https://www.ridderprint.nl

Cover by: Luz Adriana Sarmiento Oliveros, Ink on paper & María José León
Garnica, digital design.

Copyright © 2025 by C.A. León Sánchez (ORCID 0000-0002-9696-7229)

ISBN 978-94-6518-115-8

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.

https://www.ridderprint.nl
https://orcid.org/0000-0002-9696-7229
https://repository.tudelft.nl/


to Adriana





CONTENTS
Summary xi

Samenvatting xiii

Resumen xv

Acknowledgements xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research objective and scope . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Personal pronouns . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical Framework–Literature Review 9
2.1 Generalities of Urban Building Energy Modelling . . . . . . . . . . . . 9

2.1.1 Physics-based models . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Reduced-order models . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Current challenges of UBEM . . . . . . . . . . . . . . . . . . . . 17

2.2 Data Sources for UBEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Geospatial data: Semantic 3D city models . . . . . . . . . . . . 19
2.2.2 Non-geospatial data . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Energy Balance Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 NTA 8800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Net heat demand calculation . . . . . . . . . . . . . . . . . . . . 38
2.5.3 Total heat transfer for heating . . . . . . . . . . . . . . . . . . . . 40
2.5.4 Total heat gains for heating . . . . . . . . . . . . . . . . . . . . . 47
2.5.5 Heat gains through incident solar radiation . . . . . . . . . . . . 51
2.5.6 Effective internal heat capacity of a zone . . . . . . . . . . . . . 57
2.5.7 Utilisation factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.8 Hot tap water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6 Existing Dutch models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



viii Contents

3 Aligning UBEM data requirements for national s3DCM 67
3.1 General data considerations . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 Geospatial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.2 Non-Geospatial Data . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Geospatial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.2 Non-geospatial Data . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Data pipeline design 85
4.1 Testbed creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Databases creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Building Physics data . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 EnergyBAG DB: the creation of a dataset for the whole Neth-

erlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.3 Data indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Solutions to enhance data . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.1 Solar analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.2 Building type inferring using machine learning algorithms . . . 114
4.3.3 Calculation of the number of storeys per building . . . . . . . . 119

4.4 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 Implementation 123
5.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Conceptual decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1 C4-model system context . . . . . . . . . . . . . . . . . . . . . . 125
5.2.2 C4-model system container . . . . . . . . . . . . . . . . . . . . . 126

5.3 Implementation of the energy simulation system . . . . . . . . . . . . . 129
5.4 Challenges in the implementation phase . . . . . . . . . . . . . . . . . 132
5.5 Implementation decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.5.2 Implementation workflow . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Focused review: specific building cases . . . . . . . . . . . . . . . . . . 138
5.6.1 Pand ID 1742100000100986 . . . . . . . . . . . . . . . . . . . . 139
5.6.2 Pand ID 1742100000006419 . . . . . . . . . . . . . . . . . . . . 140
5.6.3 Pand ID 1742100000096311 . . . . . . . . . . . . . . . . . . . . 141
5.6.4 Pand ID 0150100000010860 . . . . . . . . . . . . . . . . . . . . 142
5.6.5 Additional inconsistencies . . . . . . . . . . . . . . . . . . . . . . 143
5.6.6 Lessons learnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.7 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Results and Discussion 151
6.1 Case study: Rijssen-Holten . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.1 Processed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.1.2 Computed net heat demand . . . . . . . . . . . . . . . . . . . . 154
6.1.3 Analysis of specific cases . . . . . . . . . . . . . . . . . . . . . . 160



Contents ix

6.1.4 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1.5 Thermal hull refurbishment scenario . . . . . . . . . . . . . . . 168

6.2 The Netherlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2.1 Computed net heat demand . . . . . . . . . . . . . . . . . . . . 173
6.2.2 Analysis of specific cases . . . . . . . . . . . . . . . . . . . . . . 178
6.2.3 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2.4 Thermal hull refurbishment scenario . . . . . . . . . . . . . . . 183

6.3 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7 Conclusions, reflections and future research 187
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.2 Reflections, limitations and contributions . . . . . . . . . . . . . . . . . 192

7.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bibliography 197

List of Publications 211

Curriculum Vitæ 213





SUMMARY
The development of society has led to a dramatic change in urban areas. As of
2025, at least 56% of the world’s population lives in cities, and it is projected to
reach 70% by 2050. Despite occupying only 3% of the Earth’s surface, urban areas
account for 60% to 80% of global ”energy consumption”. This intensifies the need
for accurate and reliable energy demand models to support carbon reduction and
energy transition goals.

Urban Building Energy Modelling (UBEM) provides a structured framework for sim-
ulating building energy performance at multiple spatial scales. However, UBEM
depends heavily on detailed and high-quality data, which is often fragmented or un-
available as open data. Semantic 3D city models (s3DCMs) are one promising data
source. These models offer standardised geometric and semantic representations
of urban elements in a three-dimensional environment. This thesis investigates the
use of s3DCMs and open data to enhance urban energy applications, focusing on
the Netherlands as a case study.

The first part of the thesis addresses the models and data requirements of UBEM,
with an emphasis on the Dutch official method for calculating energy performance.
It evaluates CityGML as a data model for energy-related applications and analyses
the availability and suitability of open datasets in the Netherlands for UBEM use.

The second part focuses on the implementation of the corresponding datasets and
simulation solutions to compute the energy performance of buildings. It describes
the input data sources, their entities, and the relevant attributes, as well as the
enrichment of the s3DCM by linking multiple datasets. A CityGML-based testbed
for energy-related applications was published as part of this work, representing the
municipality of Rijssen-Holten with Buildings, trees and a digital terrainmodel (DTM).
The enriched s3DCM has been used to perform solar analysis.

Subsequently, the thesis outlines the design and implementation of a building en-
ergy simulation (BES) solution for computing the net heat demand of buildings. Due
to data limitations at country level, the focus remains on net heat demand rather than
full primary energy demand. Required parameters for primary energy calculation
were unavailable without introducing additional assumptions.

The simulation results cover two case studies: the municipality of Rijssen-Holten
and the national building stock of the Netherlands. Outputs are classified by building
type and construction period and compared against available Energy Performance
Certificate (EPC) data. Although the comparison must be interpreted with caution,
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xii Summary

it offers a contextual benchmark for the results.

This thesis highlights the value of open data and the procedures required to en-
hance existing s3DCM for energy-related use. It also proposes additional research
directions, including the integration of solar energy simulation results with the cre-
ated BES to implement hybrid approaches that better reflect the current character-
istics of the Dutch building stock.



SAMENVATTING
De ontwikkeling van de samenleving heeft geleid tot dramatische veranderingen
in stedelijke gebieden. In 2025 wonen minstens 56% van de wereldbevolking in
steden, en naar verwachting zal dit aantal stijgen tot 70% in 2050. Deze stedelij-
ke gebieden beslaan slechts 3% van het aardoppervlak, maar zijn verantwoordelijk
voor 60-80% van het energieverbruik. Dit verbruik onderstreept de kritieke behoef-
te aan nauwkeurige modellering van de energievraag op basis van betrouwbare
modellen, zodat aan toekomstige energiebehoeften en CO2-reductiedoelstellingen
voldaan kan worden.

Urban Building Energy Modelling (UBEM) biedt een omvattend kader om te voldoen
aan de behoefte aan betrouwbare modellen door de energieprestaties van gebou-
wen op verschillende analyseschalen te simuleren. Toch is UBEM sterk afhanke-
lijk van gedetailleerde, hoogwaardige gegevens—een uitdaging die wordt versterkt
door de beperkte beschikbaarheid en fragmentatie van open databronnen. Een van
deze databronnen zijn semantische 3D-stadsmodellen (s3DCMs), die gebaseerd
zijn op gestandaardiseerde gegevensmodellen en een geometrisch en semantisch
rijke representatie bieden van de elementen die een stad vormen binnen een drie-
dimensionale omgeving. Het proefschrift bespreekt de verbetering van stedelijke
energietoepassingen door s3DCM en open data, met een focus op Nederland als
case study.

De eerste focus van het proefschrift ligt op UBEM, inclusief de modellen en metho-
den ervan, en op basis daarvan op de gegevensbehoeften. Aangezien de casestudy
in Nederland plaatsvindt, biedt het een overzicht van de officiële methode om de
energieprestatie van gebouwen te berekenen vanuit een gegevensperspectief. Het
onderzoek omvat tevens een analyse van CityGML als gegevensmodel voor het
beheer van energiegerelateerde stadsgegevens. Daarnaast presenteert het onder-
zoek een analyse van de in Nederland beschikbare open data die geschikt is voor
UBEM.

De tweede focus van het proefschrift ligt op de implementatie van de benodigde
datasets en simulatieoplossingen voor het berekenen van de energievraag van
gebouwen. Het onderzoek beschrijft het proces van het creëren van de datasets
die later in het proefschrift worden ingezet voor diverse energietoepassingen. De
beschrijving omvat zowel de specificatie van de gegevensbronnen, hun entiteiten
en relevante attributen als de methoden voor het verbinden van de verschillende
datasets en het vaststellen van de kenmerken van het verrijkte s3DCM die uit dit
proces voortvloeien. Als onderdeel van dit proces is een op CityGML gebaseerd
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3D-stadsmodel, dat als testbed voor energiegerelateerde toepassingen dient, ge-
publiceerd. Dit testbed is een handmatig verrijkt CityGML-model van de gemeente
Rijssen-Holten, met gegevens over gebouwen, bomen en een digitaal terreinmodel
(DTM). Daarnaast presenteert het onderzoek het gebruik van het verrijkte s3DCM
als invoergegevensset voor het uitvoeren van zonne-analyses.

Vervolgens presenteert het proefschrift de overwegingen en beslissingen die zijn ge-
maakt voor het creëren van een energie gebouwsimulatie (BES)-softwareoplossing
die de energievraag van gebouwen berekent. Het proefschrift richt zich op de netto-
warmtebehoefte in plaats van berekeningen van de primaire energievraag vanwe-
ge gegevensbeperkingen op nationaal niveau. Verschillende parameters die vereist
zijn voor de berekening van de primaire energie zijn niet openbaar beschikbaar, en
het overbruggen van deze gegevenskloof zou verdere aannames vereisen.

Het onderzoek presenteert de resultaten van de berekening van de nettowarmte-
behoefte voor twee casestudies. De eerste casestudy betreft de gemeente Rijssen-
Holten, het studiegebied van het gepubliceerde testbed, en de tweede betreft heel
Nederland. De resultaten zijn geclassificeerd per gebouwtype en bouwperiode en
worden vergelekenmet de beschikbare energieprestatiecertificaat (EPC)-gegevens
in het land. Hoewel de uitkomsten van deze vergelijking met de nodige voorzichtig-
heid moeten worden geïnterpreteerd, is dit gedaan om context te bieden ten opzich-
te van de officiële energiegegevens per gebouw in Nederland.

Het proefschrift benadrukt het belang van open data en de stappen die nodig zijn
om bestaande s3DCM’s geschikt te maken voor energietoepassingen. Daarnaast
wordt aanvullend onderzoek en toekomstig werk voorgesteld, zoals de integratie
van zonne-energiesimulatieresultaten met de ontwikkelde BES, om hybride metho-
den te implementeren die de huidige kenmerken van het Nederlandse gebouwen-
bestand beter weerspiegelen.



RESUMEN
El desarrollo de la sociedad ha transformado profundamente las zonas urbanas. En
el año 2025, al menos el 56% de la población mundial vive en ciudades, porcentaje
que podría alcanzar el 70% para el 2050. Aunque ocupan sólo el 3% de la super-
ficie del planeta, concentran entre el 60% y 80% del consumo de energético. Este
contexto exige modelos fiables que estimen con precisión la demanda de energía
primaria y que respalden las metas de descarbonización actuales.

El modelado energético de edificios a escala urbana (UBEM, por sus siglas en
inglés) ofrece un marco para esa necesidad al simular al desempeño energético
de edificios en diversas escalas. No obstante, depende de datos detallados y de
alta calidad, cuya obtención se ve limitada por la escasez y fragmentación de las
fuentes abiertas.

Entre dichas fuentes destacan losmodelos semánticos de ciudades en 3D (s3DCM).
Sonmodelos estandarizados que representan, con riqueza geométrica y semántica,
los elementos urbanos en tres dimensiones. Esta disertación explora cómo los
s3DCM junto con datos abiertos mejoran las aplicaciones energéticas urbanas, con
los Países Bajos como caso de estudio.

En primer lugar, se examina UBEM, sus modelos y métodos, y los consiguientes
requerimientos de datos. Se presenta una visión general del método oficial neer-
landés para calcular el desempeño energético de edificios, desde la perspectiva de
los datos. Por lo cual, se revisan los datos abiertos disponibles en los Países Ba-
jos pertinentes para UBEM. Esto concluye con el análisis a CityGML como modelo
para gestionar información energética urbana.

En segundo lugar, se detalla la implementación de conjuntos de datos y herrami-
entas de simulación para calcular el desempeño energético de edificios. Se de-
scribe el proceso de creación de dichos conjuntos de datos, sus fuentes, entidades
y atributos relevantes. También se detalla la integración a partir demúltiples fuentes
de datos y las características del s3DCM enriquecido resultante. En este marco se
publicó un banco de pruebas basado en CityGML para aplicaciones energéticas, el
cual consiste en unmodelo enriquecido y depurado del municipio de Rijssen-Holten
con edificios, árboles y un modelo digital del terreno (MDT). El banco de pruebas
resultante ha sido empleado como insumo para análisis solares.

Posteriormente, se exponen las decisiones efectuadas para desarrollar una solu-
ción de software de simulación energética de edificios (BES, siglas en inglés). La
tesis se centra en la demanda neta de calor y no en la energía primaria, debido
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a limitaciones de datos a escala nacional. Varios parámetros necesarios para la
energía primaria no están disponibles abiertamente y suponen asumir hipótesis
adicionales.

La investigación presenta demanda neta de energía para dos casos: Rijssen-Holten
y los Países Bajos. Los resultados se clasifican por tipología edificatoria y periodo
de construcción. Se comparan con los datos del certificado de eficiencia energét-
ica (EPC) neerlandés. Esta comparación debe ser interpretada con cautela y sólo
sirve para contextualizar los resultados frente a los datos oficiales disponibles por
edificio.

La tesis subraya la relevancia de los datos abiertos y los pasos para enriquecer
s3DCM aptos para aplicaciones energéticas. Además, propone integrar resultados
de simulación solar con la BES desarrollada. El objetivo es implementar métodos
híbridos que representen mejor el parque edificatorio neerlandés.
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1
INTRODUCTION

1.1. MOTIVATION

S ince the industrial revolution, the place where people live has changed
dramatically from rural to urban areas (Lampard, 1955). Although this

trend started centuries ago, it still occurs; as of today, 56% of the global
population lives in urban areas, and it is expected to increase to 70% by 2050
(The World Bank Group, 2024). Since cities are responsible for 60-80% of all
”energy consumption”1 (United Nations, 2015), the current global political agenda
emphasises enhancing living standards in urban areas, including optimisation of
energy usage.

Accurately quantifying current and expected building energy demand is the
basis to ensure adequate energy supply planning and informed decision-making.
Therefore, the development of scalable and realistic models that consolidate
building energy demand is essential for long-term energy planning. These models
are essential for addressing the challenges of climate change and population
growth. Due to these challenges, governments have implemented new legislation
and incentives to promote building renovations in accordance with the climate
and economic goals.

The variety of buildings, techniques, and methods involved in modelling the
energy demand of the building stock at the urban scale creates a challenging
research context. The limited availability of open measured data to validate these
models further complicates efforts in this area. Thus, a robust building stock
model plays an important role for the correct modelling of the energy performance
of buildings at urban scale.
1The term energy consumption is widely used, even by institutions such as the United Nations
and the International Energy Agency. However, since energy can only be transformed (e.g.,
between potential and kinetic forms) and is always conserved –neither created nor destroyed–
the term is scientifically incorrect. I use it in this document between quotation marks due
to its widespread adoption, and when cited, because it appears in the terminology of the
corresponding authors.

1
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Urban Building Energy Modelling (UBEM) provides a suitable framework for
addressing societal challenges of climate change and growing population needs
by enabling computational analysis and simulation of building energy performance
at the city scale (Davila et al., 2016). UBEM refers to the techniques, methods,
and software tools used to simulate the energy performance of buildings at
several scales.

UBEM utilises physical models of heat and mass flows in and around
buildings. These models can quantify operational energy use and the
environmental conditions (indoor, outdoor) for groups of buildings (Reinhart
and Cerezo Davila, 2016). To enhance the calculation of building energy
performance, the development of UBEM techniques has increasingly centred
on simulation and multi-scale analysis using flexible approaches (Abbasabadi
and Mehdi Ashayeri, 2019). These approaches must be adaptable to various
building characteristics, including size, geometry, economic function, construction
materials, and thermophysical properties.

UBEM follows two main approaches: top-down and bottom-up. The former uses
the whole building sector as one variable in the analysis and, for that reason,
it does not account for differences among buildings when calculating ”energy
consumption”. The latter focuses on individual buildings and their physical
characteristics. Achieving accurate UBEM outcomes through bottom-up methods
relies on comprehensive building stock modelling and detailed representations of
individual structures, often based on building archetypes.

Data dependency in UBEM represents a complex challenge due to the need
for detailed information about buildings, such as construction techniques and
materials. Furthermore, if such data exist, they are often not publicly available.
In addition, the limited open data available come from several sources, requiring
harmonisation processes, so the data are suitable for UBEM. This harmonisation
step adds another layer of complexity for modelling the energy performance of
buildings. In cases where no data are available or accessible, machine learning
techniques have been developed and implemented to address the lack of these
data (Seyedzadeh et al., 2019; R. Wang et al., 2020).

Semantic 3D city models (s3DCMs) have become increasingly relevant over the
past 15 years in bottom-up Urban Building Energy Modelling (UBEM) approaches.
Although the acronym ’s3DCM’ does not commonly appear in the literature –which
typically only uses ’3DCM’ instead– this PhD thesis adopts s3DCM to highlight
the significance of semantics. Specifically, s3DCM refers to standardised data
models (e.g., CityGML), whereas 3D city models denote other data formats (e.g.,
OBJ, BLEND) without semantic information. S3DCMs represent the geometry
and semantic information of city objects in a three-dimensional environment,
providing essential input for physics-based energy simulations. By incorporating
details such as building geometry, occupancy, and the availability of local
renewables, these models facilitate more accurate analyses of building energy
performance.
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1.2. PROBLEM STATEMENT

T he International Energy Agency (IEA) states that in 2023, the total final
”energy consumption” (TFC) was 442 EJ2, which is split between industry

(167 EJ), buildings (133 EJ), transport (116 EJ), and other end-uses (27 EJ)
(IEA, 2023). These values indicate that buildings account for 30% of the total
”energy consumption”. Furthermore, the energy demand is expected to increase,
primarily driven by the rise in households from 2.2 billion in 2023 to 3 billion
in 2050. Figure 1.1 shows the energy demand of the building sector in 2022,
classified by source and by end-use. It also contains several projections of the
energy demand of the building sector by 2030 and 2050, named STEPS, APS,
and NZE. These acronyms correspond to the different transition scenarios, which
are:

• STEPS: Stated Policies Scenario. It is based on the latest policy settings,
including energy, climate, and industry

• APS: Announced Pledges Scenario. It assumes that national governments
meet all national and energy targets in full and on time

• NZE: Net Zero Emissions by 2050, which limits global warming to 1.5ºC,
requiring additional progress by society and industry

Figure 1.1: Buildings sector energy demand by source and end-use, 2022-2050.
Source (IEA, 2023)

2One exajoule (EJ) is equal to 277.8 terawatt-hour (TWh)
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Based on figure 1.1 data, it can be concluded that more effort is needed to
follow the stated policies to decrease the energy demand of buildings. To
achieve meaningful reductions, renovating building envelopes and adopting new
operational technologies are essential. Under the Announced Pledges Scenario
(APS), the energy demand for buildings is expected to decrease by 12% by
2030 compared to the Stated Policies Scenario (STEPS).

Most of the energy consumed in buildings is used for space heating. However,
the increasing demand for water heating is driven by population growth (IEA,
2023). These trends in building energy demand add pressure on the energy
system and have negative environmental impacts.

In response to these challenges, there is a trend towards a sustainable building
sector, employing local renewable energy sources to meet existing energy
demands. One example is photovoltaic (PV) technology in buildings, which
among the rest, is more and more adopting 3D city models as one of the input
data sources (Bensehla et al., 2021; Mohammed et al., 2024; Santhanavanich
et al., 2023).

Other challenges affecting the accuracy of energy predictions include changes
in weather patterns and rising temperatures as a result of climate change
phenomena; the difference in national or local construction codes that introduce
heterogeneity in the thermal characteristics of buildings; occupancy schedules,
and the thermal comfort preferences, as well as the limited access to building
data such as the insulation levels or renovation history. In particular, it is a
significant challenge for governments to collect detailed data on the renovation of
buildings. However, the availability of such data greatly improves the accuracy of
building energy analyses.

To address the challenge of data availability for accurate building energy analysis,
the European Union (EU) in 2024, released the fourth revision of the energy
performance of buildings directive –EPBD IV– (European Parlament, 2024),
aiming to increase the rate of renovation of buildings in the EU. The directive also
supports the digitalisation of energy systems for buildings and allows national
governments to decide on the renovation measurements that best suit their
contexts. At the same time, in the Netherlands, there is a preliminary work by the
Ministry of Internal Affairs (in Dutch ”Ministerie van Binnenlandse Zaken”), which
delegated the task to Kadaster Netherlands to perform an exploration of a National
Facility for Building Data (in Dutch ”Landelijke Voorziening Gebouwgegevens”)
as a support for decision-making in the building sector (Noordegraaf and
van Haaften, 2024).

Building Energy Simulation (BES) tools are essential in assessing the building
energy performance. These tools play a significant role in engineering
and architectural design by providing usage patterns, identifying cost-effective
renovations or calculating payback periods for energy-saving measures, such
as photovoltaic panel installation (van den Brom, 2020). However, these tools
face significant challenges at the city level, pointing to the need for strategies to
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improve the accuracy of energy performance calculations at different scales.

Moreover, previous studies have highlighted that existing BES tools often produce
theoretical consumption values that can diverge significantly from actual measured
values (Glasgo et al., 2017; van den Brom, 2020). This discrepancy suggests
inherent limitations in the approaches followed by the BES tools. Additionally,
these limitations show the need for more detailed information on building physics,
as no national database records city-wide construction techniques, materials, or
changes over their lifespan as Building Information Modelling (BIM) for individual
buildings or projects, except for a few new buildings.

Adopting building archetypes overcomes this data uncertainty partially. For
example, the Netherlands Enterprise Agency (in Dutch ”Rijksdienst voor
Ondernemend Nederland”–RVO–) publishes a brochure of stereotype buildings
for energy analyses (RVO, 2023). These archetypes provide generalised models
that represent common building types, aiding in estimating energy performance
where specific data is lacking. However, RVO states that this classification should
be considered only for characterisation purposes, not individual building energy
analyses. Currently, no research confirms or further elaborates on this statement
from RVO.

The use of a BES tool tailored to the whole Netherlands in tandem with s3DCM
as a data source for the energy performance of buildings has yet to be done.
Moreover, both the method and the reliable open data have limitations that
must be identified and specified in detail. Therefore, there needs to be an
understanding of the data requirements of the tools that can be supplied or
derived from a s3DCM in relation to current open datasets.

1.3. RESEARCH OBJECTIVE AND SCOPE

T he goal of this PhD thesis is to contribute to enhancing urban energy
applications through semantic 3D city models (s3DCM) and open data. The

research focuses on the Netherlands as the primary use case. Accordingly, in
chapter 2, I will review the Dutch Technical Agreement (in Dutch ”Nederlands
Technische Afspraak”–NTA–) 8800 –hereafter referred to as NTA 8800– as the
framework for calculating the energy performance of buildings using an energy
balance method. The scope of analysing this norm is the identification of a
standardised calculation workflow of the energy demand of buildings and their
data requirements.

A s3DCM partially meets the data requirements, as it represents just one of the
available information sources. Therefore, my investigation focuses on leveraging
country-wide open data and evaluating how the s3DCM data model can serve as
a data integration platform. The goal is to simplify and streamline the selection
and integration of multiple datasets for energy applications.

Before using an s3DCM for building energy performance, it is necessary to
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explore the underlying data model and the semantic data.

As a data source for building energy performance, s3DCM involves exploring
the underlying data model and the semantic data according to the level of detail
(LoD). My analysis consequently includes identifying additional data that need to
be collected from other sources. One example is the heat transfer coefficient
(U-value) of the surfaces (roofs, walls) that define the building’s thermal hull.
However, not all required data are available in the desired detail for all buildings.
For example, the size of openings (windows or doors) in the façade of a building
may not always be available. To address these data gaps, I make design
decisions, such as using a ratio (percentage of the surface area) for the size of
openings, which is discussed in detail in chapter 3.

The software, data, and design decisions are tailored to the Netherlands.
Chapter 4 presents the design decisions regarding the data preparation of the
open data available to comply with the data requirements of the NTA 8800;
chapter 5 provides detailed information on the decisions taken when creating
a BES tool with the scope to calculate the net heat demand of buildings in
the Netherlands based on the NTA 8800. The goal is, while giving a detailed
description of the decisions taken during my implementation, is to provide insights
to the opportunities of s3DCM for BES to support the transition to sustainable
urban environments.

This PhD thesis will address the following research questions:

• What are the requirements for UBEM that s3DCM should meet?

• What are the challenges in data preparation for UBEM?

• How could existing s3DCM based on CityGML be improved when to serve
as input data for UBEM?

• How can artificial intelligence methods improve the quality and content of
s3DCM for UBEM?

Finally, I will reflect on the role of s3DCM when it comes to policies for the
building sector.

1.4. OUTLINE OF THE THESIS
1.4.1. STRUCTURE OF THE THESIS

T he thesis is organised into seven chapters and two main parts, as shown
in Figure 1.2. Besides this introduction (chapter 1) and the conclusions

(chapter 7), there are two main sections. The first one refers to the framework
(chapters 2 and 3) and the second one to the implementation part (chapters 4
to 6).

Framework
Chapter 2 provides the main concepts of UBEM, including data-driven, physics-
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1- Introdution

2- Theoretical Framework

3- From semantic 3D city mod-
els to urban energy simulation

tools: country-wide considerations

4- Designing the Pipeline: From Data
Preparation to Energy Demand Analysis

5- How it works: About the design and
simulation decisions to assure accuracy

6- Results & Discussion

7- Conclusions and future work

Framework

Implementation

Figure 1.2: Organisation of the thesis

based, and reduced-order modelling approaches. These concepts form the
theoretical framework for my research. It also contains a literature review
pertinent to my study.

Chapter 3 builds upon the framework defined in chapter 2 to discuss the
requirements of the to-be-developed BES. This chapter contains the general
considerations and data requirements according to the Dutch norm NTA 8800,
which is the method followed in this thesis for computing the energy performance
of buildings.

Chapter 4 details the design of the pipeline for the development of a BES tool for
the Netherlands. This chapter consolidates the framework and concepts from the
previous two chapters, highlighting the integration of multiple public open datasets
and s3DCM. It describes each stage, from data ingestion and transformation to
the computation of the heat energy demand of buildings in the Netherlands.

Implementation
Chapter 5 describes the challenges and decisions taken, as well as the software
diagrams that explain the implemented BES. The chapter includes several
examples of data inconsistencies found during this stage of my PhD research
and the decisions taken to overcome some of such inconsistencies.

Chapter 6 presents the output of the simulations performed using the BES tool
described in chapter 5 at two scales: first, a case study in the municipality of
Rijssen-Holten, then at the country level for the whole Netherlands. It includes a
data comparison against the data available from the energy label dataset and an
example of calculation of a refurbishment scenario for old buildings.
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Chapter 7 discusses the challenges, limitations and contributions of the thesis
on the use of open data and semantic 3D city models to enhance urban energy
applications.

1.4.2. PERSONAL PRONOUNS
In this thesis, the personal pronoun ’I’ is used to refer to the work done by myself
under the supervision of my promotor and copromotor. I use the pronoun ’we’
when referring to work carried out in collaborations in which others were involved.
The respective publications are mentioned and cited in this document.



2
THEORETICAL

FRAMEWORK–LITERATURE
REVIEW

This chapter provides the conceptual framework, context, and definitions of
Urban Building Energy Modelling–UBEM, which will be fundamental to the
upcoming chapters. Additionally, the chapter includes a literature review of UBEM
approaches. Then, it describes the Dutch norm for the calculation of the energy
performance of buildings, which is the main method implemented in this research.

T his chapter is structured into five sections. First, I present an overview of
urban building energy modelling (UBEM), including a literature review and

description of the current challenges (section 2.1). Second, I discuss the data
modelling for UBEM with specifying between geospatial and non-geospatial data
(section 2.2) with a focus on semantic 3D city models (s3DCM) (section 2.2.1).
Third, I present the energy balance method (section 2.4). Fourth, I describe
the NTA 8800, which is the Dutch norm for the calculation of the energy
performance of buildings (section 2.5). The chapter closes with the key findings
of the literature review and their importance in the development of the following
chapters (section 2.7).

2.1. GENERALITIES OF URBAN BUILDING ENERGY
MODELLING

U rban Building Energy Modelling (UBEM) involves the development of
techniques, methods, and software tools aimed at simulating the energy

performance of buildings in urban areas across multiple scales of analysis
(Hong, Chen, X. Luo et al., 2020; Kamel, 2022; Malhotra, Bischof et al., 2022;

9
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Oraiopoulos and Howard, 2022; Reinhart and Cerezo Davila, 2016). UBEM
evaluates individual building characteristics and dynamics within the broader
context of urban microclimate interactions. The goal of UBEM is to provide
detailed and accurate information on energy demand and usage across various
time scales, which can inform sectors such as urban design, building operations,
and energy policy development and implementation.

The performance indicators or scale of analysis depends on the specific use
case, i.e., the questions to be answered by the analysis. For instance, the
timeframe and time resolution (hourly, daily, yearly) may be used to evaluate
the responsiveness to energy demand fluctuations in a few buildings or an
entire district network within a city. Additionally, some applications may need
to fully account for urban microclimate variations, which often rely on weather
data obtained through historical aggregation models. Consequently, the choice
of scale, model, and data quality depends on the questions being addressed
and the available resources. Figure 2.1 shows a general overview of the critical
components of a UBEM system, which can be split into three main components:
datasets, simulation workflow and the analysis of the results from multiple
perspectives such as stakeholder analysis, support for policymakers, metrics
evaluation.

Figure 2.1: Overview of UBEM components

Residential ”energy consumption” modelling techniques can be classified into two
main approaches: top-down and bottom-up. Swan and Ugursal (2009) propose a
widely adopted hierarchical framework that organises these techniques according
to the level and type of input data used, as shown in Figure 2.2. Building
upon this work, Langevin et al. (2020) extended the framework by introducing
a flexible hierarchy that links different approaches through hybrid models,
adds sub-layers for key energy use determinants (e.g., people, building stock,
environment). Furthermore, it incorporates additional descriptive dimensions (e.g.,
system boundary, spatio-temporal resolution, dynamics, uncertainty) that should
be specified alongside the four high-level quadrants (Q1-Q4). The proposed
scheme is shown in figure 2.3.
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Figure 2.2: Hierarchy of modelling techniques for UBEM, from (Swan and
Ugursal, 2009)

Figure 2.3: Updated classification of UBEM models proposed by Langevin et al.
(2020)

Top-down models collectively consider the entire building sector to calculate total
”energy consumption”. While effective for macroscale analysis, these models
offer limited insight into the energy performance of specific buildings or groups
within an urban context (Ali, Shamsi, Hoare et al., 2021). These models can
be classified into econometric and technological. Econometric top-down models
focus on macroeconomic trends and past relationships rather than the physical
factors in buildings that influence energy demand. These models can also
not account for sudden technological changes, leading to a lack of adaptability
when addressing climate change, where future conditions may differ significantly
from historical patterns. Meanwhile, technological top-down models consider
factors such as saturation effects, technological progress, and structural changes
influencing energy use. However, these factors are only sometimes explicitly
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detailed within the models.

In contrast, bottom-up models provide a detailed assessment of energy use in
a building or cluster of buildings, using physics and engineering principles to
address the interactions between buildings and their environment. These models
then extrapolate their findings to larger geographic areas, offering high spatial
and temporal resolution in their analysis. This detailed approach supports a
deeper understanding of energy dynamics at the building and community levels.

Bottom-up UBEM transcends the method of aggregating single building values
to urban scale levels by incorporating the dynamics and influences of buildings
and their environment. This symbiotic relationship between buildings and their
environment is evident in the urban microclimate, encompassing factors such as
shading, radiant heat exchange, and solar reflection, all of which contribute, for
example, to urban heat island effects (Johari, Peronato et al., 2020).

The outcomes of UBEM provide valuable insights into energy demand,
greenhouse gas (GHG) emissions, and the financial implications of building
retrofitting under various scenarios. Given the significance of these results in
policy-making, ensuring their accuracy is paramount. However, this complex
and multidimensional process involves several considerations, including spatial
and temporal resolution, error metrics, and the scale of analysis. For example,
aggregated annual data at the district level may achieve accuracies within 1%
(D. Wang et al., 2018), while monthly data after Bayesian calibration can show
variability of up to 15% (Sokol et al., 2017). Furthermore, the accuracy of hourly
values for individual buildings can reach errors of up to 120% (Kristensen et al.,
2018).

2.1.1. PHYSICS-BASED MODELS

T he physics-based methods, also called engineering or simulation methods,
use simulation techniques, building characteristics, construction, climate,

and system data to calculate end-use ”energy consumption”. Swan and
Ugursal (2009) state that physics-based models may use distribution, sample, or
archetype-based approaches.

The distribution-based approach analyses the regional distribution of building
energy use to calculate end-use energy consumption (Swan and Ugursal, 2009).
Howard et al. (2012) developed a model to estimate building energy end-use
intensity (in kWh/m2) in New York City for space heating, hot water, cooling,
and other electricity uses. Their model focuses on the building function and
is calibrated using ZIP code-level energy data and end-use ratios from U.S.
surveys.

The sample-based approach starts with input data from individual sample
buildings. This method requires an extensive database to represent buildings
accurately (Swan and Ugursal, 2009). Once the sample is established, it is
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the foundation for generating the building stock. The spatial distribution of this
stock is then determined using aggregate datasets and techniques like iterative
proportional updating. Nägeli et al. (2022) use this approach to create synthetic
spatial building stock for the spatial analysis of the energy demand in Ireland and
Austria. Their outcomes indicate that the resulting building stock energy demand
can be analysed for energy planning purposes when no building-level data are
available.

The archetype-based approach categorises buildings by type, size, climate, and
construction year (Lavagna et al., 2018). These categories are used to model
the ”energy consumption” in simulation engines to assess the impact of energy
strategies on a regional or national scale (Ali, Shamsi, Hoare et al., 2021).
This approach, dependent on quantitative building physics data, aggregates
these models to represent the broader building stock. Inputs such as thermal
properties, heating patterns, and occupancy schedules are essential. However,
the approach makes several assumptions about occupant behaviour and requires
significant technical data to produce accurate ”energy consumption” estimates
(Swan and Ugursal, 2009). Energy Plus (Crawley et al., 2001) is a well-known
physics-based BES that several researchers have used due to the quality of its
models and results (Ali, Bano et al., 2024a; Faure et al., 2022; Seyedzadeh
et al., 2019; Souza et al., 2024).

2.1.2. DATA-DRIVEN MODELS

D ata-driven modelling uses statistical and AI methods to analyse building
”energy consumption” based on available data, such as building stock,

billing records, and socio-economic variables (Ali, Shamsi, Hoare et al., 2021).
There are two approaches under this kind of models: statistical and artificial
intelligence (AI). Statistical approaches apply regression to correlate energy use
with design and operational parameters. On the other hand, AI approaches train
on ground-truth data, usually historical datasets, to identify relationships between
”energy consumption” and influential factors like building and urban characteristics
and occupancy patterns. The general method for these models starts with data
collection and preparation. Then, data are used for feature engineering, followed
by data splitting between training and testing purposes. The next step is the
model development and, finally, its performance evaluation.

Ali, Bano et al. (2024a) implement a method that performs the energy
performance of urban residential buildings using ensemble-based machine
learning and end-use demand segregation models that include heating, cooling,
lighting, energy appliances and domestic hot water consumption of buildings.
Their method is evaluated using a synthetic building dataset of one million
buildings through the parametric modelling of 19 key variables for residential
building archetypes (Detached, Terraced, Semi-detached, Bungalow) in Ireland.
The study implemented an end-use demand segregation method, including
heating, lighting, equipment, photovoltaics, and hot water, to predict the energy
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performance of buildings on an urban scale. The results achieve an accuracy of
76% without segregation, which increases to 91% when using end-use demand
segregation.

Mosteiro-Romero, Quintana et al. (2024) propose an agent-based model
of building occupants’ activities and thermal comfort in an urban district in
Singapore. This research explores the influence of district operation strategies
on building energy performance in the context of increased workspace flexibility.
Results show a decrease between 6%-15% of the energy demand for cooling by
implementing occupant-driven ventilation and set points.

Li et al. (2023) propose an energy-flow-based ensemble calibration model
to reduce the discrepancies in building performance simulations to within 6%.
Their model features three layers: input neurons, complex heat and electrical
transfer models, and output neurons. By replacing hidden neurons with these
transfer models, the approach accounts for deep energy retrofit interactions while
minimising computational demands.

Ali, Shamsi, Bohacek et al. (2020) propose an approach that combines bottom-
up, data-driven, and spatial modelling techniques for mapping building energy
performance across multiple scales using a Geographic Information System (GIS).
They use data from approximately 650.000 Irish energy performance certificates.
Their approach predicts the energy performance of over 2 million buildings. Their
results indicate that the model performance obtains 76% for the energy rating
classification in Ireland (A1, A2, …, F, G). In the case of performing an aggregated
classification of labels (A, B, CD, EFG), the model performance increased to 88%
accuracy. In both cases, they use deep-learning algorithms. Their results were
used for spatial modelling with open data for energy planning and to support
decision-making. Additionally, the proposed model identifies clusters of buildings
that could be used for potential energy saving by retrofitting processes.

Van den Brom 2020 investigates the ”energy consumption” in dwellings, its
characteristics and the importance of the occupancy behaviour. In this research,
van den Brom uses data from the social rental sector audit and evaluation
of energy saving results (in Dutch ”Sociale Huursector Audit en Evaluatie van
Resultaten Energiebesparing” –SHAERE”), Dutch statistics data and registry data
from the Netherlands and Denmark. The findings of this research state that
energy efficiency and household behaviour interact in such a complex way that
they cannot be fully explained by occupant characteristics alone.

R. Wang et al. (2020) propose a stacking model to forecast building ”energy
consumption” by combining various base prediction algorithms into meta-features.
This combination allows the final model to analyse datasets from different spatial
and structural perspectives. The model performance is evaluated by comparing
its results with existing prediction models, including K-Nearest Neighbour, Support
Vector Machine, Gradient Boosted Decision Tree, Random Forest, and Extreme
Gradient Boosting. The comparison indicates that the proposed stacking method
outperforms the other models.
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Yoon (2020) proposes a virtual in-situ calibration method that combines Bayesian
inference with an auto-encoder to address sensor errors affecting air handling
units’ operation and energy use (AHUs). The method employs a three-step
process for constructing input variables and introduces a novel distance function
in the auto-encoder to ensure effective calibration under various malfunction
conditions. A case study showed that this approach eliminates a cooling coil
sensor error, reducing energy waste by 38% and demonstrating its potential for
self-repair, diagnostics, and automation in building energy management.

Vázquez-Canteli et al. (2019) present an integrated simulation environment
combining CitySim (Mutani et al., 2018) and TensorFlow (Martín Abadi et al.,
2015). They implement a deep reinforcement learning controller for the HVAC
systems to analyse its response when applying changes in the building energy
model. One of the case studies is about energy savings of a single building,
proposing three scenarios: base case and sensitivity analysis, installation of
photovoltaic PV panels and building retrofitting.

One common characteristic of these models is the requirement of a lot of reliable
data for training of the models including the consumed energy values.

2.1.3. REDUCED-ORDER MODELS

R educed-order models, including resistance-capacitance (RC) methods, are
commonly used for faster assessment of building energy performance

and require fewer inputs compared to fully physics-based or data-driven
methods. These approaches rely on standards set by organisations such as
the International Organization for Standardisation (ISO), which set parameters
and simplify complex physical processes. For instance, ISO 52016-1:2017
(ISO, 2017) provides normative guidelines for calculating the building energy
performance by considering essential physical parameters and system types. In
the European Union, reduced-order methods are widely applied to determine
energy performance ratings, as seen in the Netherlands with the NTA 8800 norm
(NEN, 2024). In the case of the NTA 8800, this is considered as reduced-order
model since it uses monthly average values for most of its calculations (in the
case of hot tap water, it uses yearly values). The norm also applies specific
correction factors to account for dynamic effects, and therefore it cannot perform
hourly or sub-hourly calculations

Examples of reduced-order models Urban Building Energy Simulation tool –BES–
include CitySim (Emmanuel and Jérôme, 2015), SimStadt (Nouvel, Brassel
et al., 2015), City Energy Analyst (CEA) (Fonseca et al., 2016), and TEASER
(Remmen et al., 2018). While these tools provide valuable simulation capabilities,
each presents limitations that affects their direct applicability in the Dutch
context and for large-scale urban energy modelling. For instance, CitySim is
recognised for its accurate physical models, however, its computational cost
remains high—computing even small urban areas (e.g., a 1.2-km-side square)
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can take several days, as experienced in León-Sánchez, Giannelli et al. (2025).
SimStadt incorporates specific archetypes and decisions calibrated for German
municipalities and specific cities like New York or Rotterdam. Therefore, limiting
its generalisability to countries with different building stock compositions and
regulations. CEA adopts a block-based geometry and uses ISO 52016-based
equations, yet its default parameterisation follows Swiss standards, making it less
suitable without substantial reconfiguration.

Guen et al. (2018) use CitySim to evaluate the improvement of the energy
sustainability of the village of Hemberg in Switzerland. In their method, CitySim
is the BES that computes the hourly energy demand of buildings based on
retrofitting according to the Swiss energy labels and the solar potential of the
boundary surfaces of the building envelope. They use three scenarios that
consider the integration of different energy sources, such as PV panels, wind
energy and efficient energy systems.

CitySim has also been used to compute the cooling demand of buildings in hot
regions. Mohammed et al. (2024) use CitySim as the urban energy engine to
assess cooling demand. Their study evaluates the impact of adopting cool roofs
and modifying urban reflectivity in Dubai. The results indicate that increasing
the albedo has a positive correlation with the reduction of the building cooling
demand, demonstrating the effectiveness of these strategies in subtropical desert
areas.

Rossknecht and Airaksinen (2020) evaluate heating demand predictions in
Helsinki using semantic s3DCM based on CityGML and its Energy ADE (see
section 2.2.1.4), with the energy simulation tool SimStadt (Coors et al., 2021).
Their simulation results for heating demand were validated against measured
consumption data from 1915 city-owned buildings in Helsinki. The analysis
revealed a mean absolute percentage error (MAPE) of 25.6% when using default
parameters. However, substituting the heated area (computed by the simulation
tool) with the net floor area data from the Helsinki Energy and Climate Atlas
reduced the error to 19.6%, highlighting the impact of accurate spatial input data
on model performance.

Using a case study approach, Vargova et al. (2023) examines the benefits of
green roofs as part of green transformation processes. The research involved
comparing pre- and post-establishment (roof modification) data with simulations.
Building energy demand simulation models were assessed using SimStadt,
where the software library was adapted, with the roof’s U-value being the most
significant parameter change. The results indicate a 15%-40% reduction in the
roof’s U-value, depending on the type of greening. Consequently, the computed
annual building heat demand of buildings shows an average reduction of 4%.

Oraiopoulos, Hsieh et al. (2023) use CEA as the computational framework
to assess the energy demand of Swiss communities based on their spatial
archetypes (urban, suburban, and rural). They evaluate three urban development
scenarios for these archetypes. Their findings indicate that by 2060, the
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urban archetype will see an increase in space cooling demand, reaching levels
comparable to space heating. The suburban archetype shows an increase in
overall energy demand due to urban development, while the rural archetype
consistently presents high space heating demand across all scenarios.

2.1.4. CURRENT CHALLENGES OF UBEM

T he UBEM uncertainties are based on factors related to inaccurate input
data such as the construction materials of buildings, occupancy behaviours,

equipment and their schedules, energy systems, weather conditions and
refurbishment history of buildings. Some authors have researched and
categorised these sources of uncertainty from different perspectives. In the case
of physics-based models, Ding et al. (2015) identifies two sources, one based
on the researchers’ biases and a second one based on the simulation tools.
Yu et al. (2022) classify building uncertainties into four: specifications, models,
materials and scenarios. In this section, I classify and discuss the uncertainties
from the data perspective. The main factors are humans, buildings and weather.
The hierarchy diagram is shown in figure 2.4 followed by the explanation of each
of the factors ordered from left to right. Other sources of uncertainties such as
the model are shown in gray in figure 2.4. However, they are not discussed here
since this PhD thesis is focused on the use of open data for UBEM.

Figure 2.4: Sources of uncertainties in UBEM

Human behaviour strongly influences uncertainties in UBEM (Faure et al.,
2022). This influence can be classified into occupancy, thermal comfort and the
air change rate. Any variance in those factors leads to variations in energy
consumption (Fu and Miller, 2022). One way to reduce human influence is at the
base of the Energy Performance Certificate (EPC) method (Heidenthaler et al.,
2023), which is based on a “standard behaviour”.

Several building factors influence the UBEM uncertainties, including U-values,
g-value, emissivity, absorption, infiltration rate, material thickness and construction
techniques. Although the U-value of materials has already been defined, they
can vary according to weather conditions (O’Hegarty et al., 2021; Ohlsson
et al., 2022; Y. Wang et al., 2022). In the case of building materials, emissivity
and absorption are physical properties that determine how constructions reflect
or absorb solar energy. Silva and Ghisi (2014) state that these parameters
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significantly influence the energy performance simulations but, conversely, are
very seldom known and available at the city scale; hence, they are available only
for some single buildings.

When it comes to weather data, UBEM methods, specifically physics-based
models, use weather station datasets as input for their models (Ascione et al.,
2022; Eames et al., 2016). For example, Mahdy et al. (2022) simulate the
”energy consumption” of residential buildings using typical meteorological year
(TMY) data in Egypt. They predict an annual ”energy consumption” of 1508 kWh
per flat by 2080. Nevertheless, relying on a single weather dataset leads to
uncertainty since that dataset might not correctly represent the current and future
weather conditions, including conditions such as global warming (Hong, Chang
et al., 2013).

Another challenge that authors face in UBEM projects is the need for more data
standardisation (Kong et al., 2023); multiple data sources lead to using several
data formats for data sharing. Regarding occupant behaviour, sharing between
building performance simulation programs is supported by XML, JSON or YAML
format (Hong, Chen, Belafi et al., 2018). However, these formats still need to
overcome the lack of a standard data model to standardise the representation of
occupant behaviour objects and increase the interoperability between simulation
platforms.

Several governments already have energy-related data available through web
portals, for example, Berlin (Berlin Partner / Senatsverwaltung für Wirtschaft,
2024), Bogotá (IDECA, 2024), the city of New York 2024, the Netherlands
(Kadaster, 2024d). However, there are still discrepancies between government
agencies within the same country in adopting consistent data formats for
those data portals while implementing taxonomies that facilitate access to
UBEM-oriented dataset types.

The scale of analysis raises multiple challenges. The time resolution, spatial
size (of the study area), and the level of detail are only three elements for
consideration when discussing the scale of analysis. Del Ama Gonzalo et al.
(2023) evaluate several BES tools for heating and cooling ”energy consumption”
based on the early stages of the design of a new building. Among their findings,
authors indicate that only aggregated annual values are comparable with the
building codes and energy efficiency standards. Regarding monthly values, their
results surpass discrepancies of 30% compared to the ASHRAE standard.

In large study areas, simulating every building is often impractical. To address
this, researchers aggregate the building stock into a few representative classes
by developing building archetypes that capture the key characteristics of each
group. They then simulate these representative models and extrapolate the
results to calculate the energy performance of the entire building stock. Examples
of these cases include Carnieletto, Bella et al. (2024) for several European cities;
Sood et al. (2023) for Dublin, Ireland; Deng, Chen et al. (2022) for Changsha,
China; Roth et al. (2020) for New York City, USA; Carnieletto, Ferrando et al.
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(2021) for Italy.

2.2. DATA SOURCES FOR UBEM

T he performance of UBEM is dependent on how data from multiple sources is
selected and prepared. Each source plays a critical role in the accuracy of

the model outcome. The following sections discuss key data sources that could
serve as input data for UBEM.

2.2.1. GEOSPATIAL DATA: SEMANTIC 3D CITY MODELS

C reating, manipulating, and using 3D digital representations of real-world
objects, including a mix of geometric, topological, and semantic elements,

are essential aspects of 3D modelling (Arroyo Ohori et al., 2024). Ideally, the
modelling of real-world objects should follow a general approach that satisfies
the information needs of various application fields, even though the modelled
features can be combined arbitrarily. S3DCM facilitate many applications, such
as urban wind and dispersion simulations, energy studies, noise studies, and
various analyses that require a planned architectural design to be placed in its
context (Stoter et al., 2020). All definitions and contextualisation in this section
focus on using s3DCM as standarised source of integrated information to manage
and share data between several stakeholders for energy applications.

In my PhD research, I use the CityGML standard when referring to s3DCM
from the geospatial perspective. In this standard, all concepts are based on
the ontological definition of a city and the elements that compose it. Therefore,
there is semantic consistency across all elements defined by the data model of
CityGML. Additionally, the standard has been widely used for the representation
of cities. Several examples of cities adopting the CityGML data model can
be found in ”awesome CityGML” (Wysocki, Schwab et al., 2024) or ”open
cities” (3D geoinformation group, 2024) for examples around the world about
its adoption. Furthermore, the Infrastructure for Spatial Information in Europe
(INSPIRE) directive bases several elements of data specification of buildings on
the concepts defined by CityGML (Laurent et al., 2024).

2.2.1.1. CITYGML

C ityGML is an OGC standard designed as an open data model for the storage
and exchange of virtual 3D city models, implemented as an application

schema of the Geography Markup Language 3 (GML3) (Gröger, T. Kolbe et al.,
2012). Initially published as an encoding standard in 2008 (CityGML 1.0),
version 2.0 was released 2012

Besides the conceptual data model, several encodings exist CityJSON (Ledoux,
Arroyo Ohori et al., 2019), a JSON-based format for the CityGML data model
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(current version 2.0.1), and cjdb (Powałka et al., 2024) a database solution
for storing CityJSON files into a PostGIS database; 3DCityDB (Yao, Nagel
et al., 2018), a SQL-based 3D geo-database for CityGML-based 3D city models
(supports XML and JSON encodings). In my research, I use CityGML 2.0 since
most of the software tools currently available support this data model.

2.2.1.1.1 Modularisation
In CityGML 2.0, the core module comprises the main components and classes of
the data model. It includes the CityObject class, which is the basic for all thematic
modules. The twelve thematic extension modules that expand the core module
are Appearance, Bridge, Building, CityFurniture, CityObjectGroup, Generics,
LandUse, Relief, Transportation, Tunnel, Vegetation, WaterBody (Gröger, T.
Kolbe et al., 2012).

In particular, the Building module is fundamental to my research because
it represents my research’s main object of study: buildings. The UML
class diagram of this thematic module is shown in figure 2.5. Classes
Building and BuildingPart are specialisations of abstract class AbstractBuilding
AbstractBuilding. Furthermore, the distinction between classes indicates that a
Building can be composed of multiple BuildingParts.

This modelling decision brings flexibility to scenarios where two structures, such
as a house and a shed on the same cadastre plot, can be classified as
BuildingParts of a Building feature, which is a common case in the Netherlands.
Hence, each building part is characterised autonomously, which is relevant,
especially in case of the major differences in geometry, use or year of construction,
to mention some examples.

Regarding the geometric representation of buildings, CityGML utilises the
boundary representation method, which considers only surfaces. Buildings can
have either a Solid or MultiSurface geometric representation, which is not mutually
exclusive. The MultiSurface representation allows additionally the classification
of boundary surfaces into categories such as RoofSurface, OuterCeilingSurface,
WallSurface, OuterFloorSurface, GroundSurface, ClosureSurface, CeilingSurface,
InteriorWallSurface, and FloorSurface.

This detailed semantical classification is unavailable across all Levels of Detail
(LoD); for example, a LoD1 model does not include any thematic surface; a
LoD3 model allows thematic surfaces such as RoofSurface or WallSurface to
contain finer elements such as openings, including Doors and Windows; only
LoD4 supports interior representations.

2.2.1.1.2 Multi-LoD Modelling
CityGML supports the concurrent representation of the same object (CityObject)
using multiple LoDs. This capability allows simultaneous analysis and visualise
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Figure 2.5: UML model representing the CityGML 2.0 Building, from Gröger,
T. Kolbe et al. (2012)

the object at various degrees of resolution. The LoD classification indicates
that the higher the number, the more detailed the geometric and semantic
representation of the feature will be.



2

22 2. Theoretical Framework–Literature Review

Figure 2.6: Example of LoDs specified in CityGML v2.0, from Biljecki, Ledoux
et al. (2016)

The representation of Buildings in CityGML happens across five LoDs (see
figure 2.6). LoD0 represents the most basic form, showing only the footprint or
projected rooftop of the building. LoD1 displays buildings as simple block models.
LoD2 allows buildings to be represented as solids or multisurfaces. LoD3 further
refines the representation by including openings such as doors and windows.
Finally, LoD4 contains all the features of LoD3 while adding internal details, such
as rooms, stairs, and furniture.

This representation model has been extended by Biljecki, Ledoux et al. (2016).
Although it is not officially part of the standard, it is fully supported by CityJSON
(see section 2.2.1.2), and this is the geometric representation implemented by
the 3DBAG (see section 3.2.1.2). However, I stick in my research to the official
LoD concept of the standard since the data model to manage energy-related
is based on the CityGML encodings in XML and SQL that do not support the
extended LoDs (see in section 2.2.1.4).

2.2.1.1.3 Extendability
CityGML provides two different approaches to support the exchange of data that
is not defined by the existing thematic classes (Gröger, T. Kolbe et al., 2012):

1. Generic objects and attributes
Generic Attributes and Generic CityObjects offer a flexible extension
mechanism to the CityGML data model without altering its schema. Generic
CityObjects allow the representation of urban features not specifically
included in the CityGML data model, like for example a windmill. Similarly,
a generic attribute is helpful to add additional data to any feature, such as
the number of occupants of a building or the owner of the windmill, without
modifying the CityGML structure. However, only six types are available:
string, integer, double, date, uri, and measure.

2. Application Domain Extensions (ADE)
The ADE mechanism provides a robust framework for extending the
standard model with explicitly modelled feature types, leading to well-defined
object semantics, attributes, and relationships. This approach enhances
interoperability among various stakeholders by allowing extensions to be
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formally specified in a schema definition file (XSD) created by specific
domain communities that refer to the CityGML XSD.

The ADE mechanism includes additional spatial and non-spatial attributes,
as well as their relations and associations. When defining new feature
types, it is recommended to base them on the CityGML abstract base
class CityObject. To extend existing CityGML classes, the best practice
is to create subclasses using the ”hook” mechanism in its XML schema
definition, ensuring seamless integration and consistency within the model.
Biljecki, Kumar et al. (2018) list in their paper review, 44 published ADEs.

2.2.1.2. CITYJSON

C ityJSON is a JSON-based encoding of a subset of the CityGML data model.
It is an OGC community standard from 2023 (Ledoux and Dukai, 2023).

The CityGML data model has been flattened to reduce its hierarchy, complexity
and storage size. Therefore, there are two kinds of City Objects, 1st-level City
Objects that cannot have a parent, and 2nd-level City Objects that require a
parent to exist figure 2.7.

Figure 2.7: Implemented CityJSON classes

CityJSON 1.x supports a subset of CityGML v2.0, and CityJSON 2.0.0 partially
supports a subset of CityGML v3.0, which is presented as a graphical overview
in figure 2.8. Although this encoding does not modify the definition of LoDs,
CityJSON editors encourage the use of the refined LoDs by Biljecki, Ledoux
et al. (2016) (Figure 2.9).
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Figure 2.8: Graphical summary of the CityGML modules supported by CityJSON
2.0

Figure 2.9: LoDs supported by CityJSON, from Biljecki, Ledoux et al. (2016).
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2.2.1.2.1 Extensions
One of the design philosophies of JSON is being ”schema-less,” meaning that
new properties can be defined for JSON objects without requiring documentation
(Ledoux and Dukai, 2024). However, CityJSON supports a conceptual extension
mechanism that is similar to the one in CityGML. A CityJSON Extension results
in a JSON file that details how the core data model of CityJSON is extended
and is used to validate CityJSON files. Unlike the ADE mechanism, CityJSON
restricts schema extensions to the following cases:

1. Defining new properties at the root of a document
2. Adding attributes to existing City Objects
3. Defining a new Semantic Object
4. Defining a new City Object or extending an existing City Object

According to (Ledoux and Dukai, 2024), an Extension is used to enforce specific
properties, attributes, or CityObjects in CityJSON objects. Just like the case
of ADEs, the authors suggest that Extensions are beneficial in cases of data
exchange between multiple data producers and consumers.

2.2.1.3. SQL ENCODING

T he 3DCityDB consists of a database schema designed for spatially enhanced
relational database management systems (ORACLE Spatial/Locator, Postgr-

eSQL/PostGIS, PolarDB/Ganos). It includes a set of database procedures and
software tools that allow users to import, manage, analyse, visualise, and export
virtual 3D city models according to the CityGML standard (Yao, Nagel et al.,
2018).

The implemented database schema is the result of the manual mapping
of CityGML classes and data types onto tables. This approach reduces
database complexity, improves operating performance, and enhances semantic
interoperability. By following this method, the authors mapped the CityGML class
hierarchy onto tables.

Additionally, the ”3DCityDB Tools”1 is a QGIS plugin designed for connecting to
a 3DCityDB (v. 4.x) instance utilising PostgreSQL/PostGIS. This plugin enables
the importation of all CityGML 2.0 LoDs from multiple 3DCityDB schemas into
a QGIS project. Additionally, it supports editing of feature attributes and offers
functionalities for deleting features and cleaning up database schemas.

2.2.1.4. ENERGY APPLICATION DOMAIN EXTENSION – ENERGY ADE

T he CityGML Energy Application Domain Extension –hereafter referred to as
Energy ADE– extends the CityGML 2.0 data model to support energy-related

data. It provides a standardised data model to allow single-building energy
1It has been published as an MSc thesis in Geomatics at TU Delft titled ”Development of a QGIS
plugin for the CityGML 3D City Database” by Pantelios (2022)
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simulations and country-wide energy assessments focused on the building sector
(Casper et al., 2018). The data model of the Energy ADE is split into
seven functional modules, which are shown (along with their dependencies) in
figure 2.10. The colour code per package of the diagram is followed as well in
following the figures:

Figure 2.10: Colour-coded modular structure of the Energy ADE UML diagram.
From (Bachert et al., 2024)

• Core Module:
It is the foundation module of the entire Energy ADE. It extends CityGML
classes with energy-relevant properties and provides abstract base classes
for the other functional modules. The Core module defines data types,
enumerations, and codelists used across multiple modules. It extends the
CityGML classes _AbstractBuilding and _CityObject with new properties.
Furthermore, it facilitates the connection of city objects with energy demand
parameters (EnergyDemand) and weather data (WeatherData. The UML
diagram is shown in figure 2.11.

• Building Physics module:
This module focuses on providing essential input data for detailed
simulations of a building’s thermal behaviour. It introduces the classes
ThermalZone, ThermalBoundary, and ThermalOpening, which can be
related to CityGML classes like Room, _BoundarySurface, and _Opening.
A ThermalZone represents a reference volume for heating and cooling
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Figure 2.11: Energy ADE core UML diagram. From (Bachert et al., 2024)

demand calculations. ThermalBoundary objects separate thermal zones
from each other and the environment, while ThermalOpening objects model
parts of a thermal boundary that allow radiation energy transfer.

• Occupant behaviour module:
This module enables the modelling of building occupants and their behaviour
relevant to energy simulation. The main class, UsageZone, represents
regions of homogeneous usage and is referenced by a ThermalZone. A
UsageZone can be subdivided into BuildingUnit objects holding ownership
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information.
• Material and Construction module:
This module characterises the physical properties of building construction
parts, detailing their structure and thermal/optical properties. The
central class is construction, which can model a base construction or a
ReverseConstruction involves an inverted order of layers. Each layer can
be further categorised by the physical properties of the materials it is made
of.

• Energy Systems module:
This module represents energy forms and systems for energy demand
and supply analyses. It relates to the Energy ADE and CityGML through
the EnergyDemand class and the AbstractEnergySystem class, which can
be connected to any _CityObject. AbstractEnergySystem serves as the
base for energy conversion systems, distribution systems, storage systems,
and emitters. The module includes special classes for specific conversion
systems like boilers, heat pumps, photovoltaic systems, and solar thermal
systems.

• Supporting Classes module:
In addition to these modules, the Energy ADE includes supporting
classes for representing time series of physical data (AbstractTimeSeries),
schedules (AbstractSchedule), and weather data. These supporting classes
enhance the ability to model dynamic aspects of urban energy systems.

A deeper description of the Energy ADE is beyond the scope of this thesis.
Further details are available in (Agugiaro, Benner et al., 2018). The Energy ADE
has already been used in several national and international projects (Geiger
et al., 2022; Malhotra, Shamovich, Frisch et al., 2019; Rossknecht and Airaksinen,
2020). Due to the completeness of the Energy ADE data model and the several
experiences gathered since its release in 2018, I chose it to manage the data
generated during my PhD research.

2.2.1.4.1 3DCityDB Extension
The 3DCityDB supports CityGML ADE; among the ADEs that are fully supported
by this encoding as well from the Importer/Exporter tool are:

• Energy ADE (Yao and Nagel, 2022). The support is tailored to the
Karlsruhe Institute of Technology (KIT) profile (Benner, 2018, pages 19-29).

• Quality ADE (Nagel, 2024b). It adds support for managing the Quality ADE
version 0.1.4.

• i-UR ADE (Nagel, 2024a). It adds support for managing the i-Urban
Revitalization version 1.4
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2.2.1.4.2 CityJSON Energy Extension2

Tufan et al. 2022 propose a conversion mapping of the Energy ADE KIT profile
(section 2.2.1.4). However, it is not a direct translation due to the structural
differences between the XML and JSON data formats. There are several reasons
behind this difference: first, a simplification of hierarchical structure where
feasible; this means the exclusion of abstract classes since most of them do not
include any attributes to pass on to their subclasses. However, that is not the
case for the AbstractTimeSeries object, which has a variableProperties attribute
to pass on to RegularTimeSeries and RegularTimeSeriesFile objects. Only in this
case do both objects have the same attribute in the Extension schema.

Second, an alignment with data requirements for the energy heat demand
calculation (test case) has influenced the model’s design. The data types were
simplified, including the removal of the units of measurement due to the GML
measure type not being supported, and new attributes were added to comply
with the use test case.

Third, CityJSON extension mechanism is limited to the definition of new
CityObjects, attributes, and root properties. Consequently, non-CityObjects had
to be incorporated under the extraCityObjects property. However, this is a
mechanism intended solely for CityObject-type elements. Our decisions do
not cause validity errors, but the design decision results in less clarity in the
Extension schema since the types of stored objects may not always match the
name of the container property in the Extension.

2.2.2. NON-GEOSPATIAL DATA
2.2.2.1. BUILDING PHYSICS DATA

B uilding physics data are vital for the characterisation of energy-related
aspects of buildings. These data include construction assemblies and details

about Heating, Ventilation, and Air Conditioning (HVAC) systems (Ali, Bano
et al., 2024b). Building physics data provide insights into the thermal properties
of buildings and the characteristics of their systems, all of which are necessary
for accurate ”energy consumption” predictions. For example, information on
the heat transfer coefficient (U-value) of roofs, walls, and windows and the
solar energy transmittance of windows (g-values) directly influence the building’s
energy performance (Malhotra, Shamovich, Raming et al., 2022).

One of the significant challenges in UBEM is data collection and representation
of building physics, particularly given the diverse building compositions within
an urban area (C. Wang, Ferrando et al., 2022). Each building type has
varying construction assemblies and HVAC systems; their variation comes
2This section has been published in the MSc Thesis in Geomatics at the TU Delft titled
”Development and Testing of the CityJSON Energy Extension for Space Heating Demand
Calculation” by Tufan (2022)



2

30 2. Theoretical Framework–Literature Review

from multiple reasons, such as the construction/renovation year, building size,
economic destination, and regulations. This diversity makes data collection
and harmonisation complex and time-consuming since UBEM requires detailed
building information.

Therefore, archetypes are a common ”plan B”, i.e. a fallback when data
are not available for UBEM. Archetypes group buildings with similar properties,
simplifying the data collection by allowing researchers to define the physical
characteristics of buildings for entire classes rather than each building (Ali, Bano
et al., 2024a). The creation of archetypes involves segmentation, where buildings
are divided into classes based on characteristics like age, type, and climate zone,
followed by characterisation, where detailed data such as U-values and HVAC
characteristics are assigned to each group.

For example, the Intelligent Energy Europe (IEE) TABULA project, hereafter
referred to as TABULA, was established to improve the refurbishment of the
European housing sector. The project began by defining uniform European-wide
building archetypes. This classification was extended by elaborating building
stock models to assess the refurbishment process and forecast future ”energy
consumption”. The project performed case studies in 16 countries to track the
implementation of energy-saving measures and their influence on consumption
in practice. One of the project’s outputs is the TABULA WebTool, a web
platform that contains the physical characteristics of the residential building stock
(EPISCOPE Project, 2017).

In the Netherlands, the characterisation of the housing stock for the TABULA
project was in charge of the Ministry of the Interior and Kingdom Affairs (in
Dutch ”Ministerie van Binnenlandse Zaken en Koninkrijksrelaties”) (Agentschap
NL, 2011). In 2022, the Netherlands Enterprise Agency (in Dutch ”Rijksdienst
voor Ondernemend Nederland”–RVO–) published an updated version of this
characterisation to support the improvement of the energy performance of
the Dutch housing stock (RVO, 2023). Both characterisations follow the
same approach and define classes based on the building type and period of
construction. The resulting classes are considered in the example homes for
existing construction (in Dutch ”Voorbeeldwoningen bestaande bouw”) report and
provide an insight into the building stock and the performance of buildings based
on archetypes. Data have been published for each of the building classes,
including U-values, g-values, airflow, ventilation type, heating, and hot water
systems. However, for the latter three ones, these are generic for all building
archetypes and only vary when based on the type of renovation. Furthermore,
neither the TABULA project nor the example homes for existing construction have
proposed or published a standardised data model for managing these types of
data.

In 2013, the SHAERE report was published (Delft University of Technology,
2016). This dataset has been used to evaluate the possible paths to reach
the Dutch targets for TABULA in improving the energy performance of buildings.
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For the national target, the Net Zero Energy Building (NZEB) level has been
considered as the scope for the construction and renovation of buildings.

2.2.2.2. OCCUPANCY DATA

O ccupancy highly influences the energy demand of a building. People’s
behaviour plays a significant role in indoor conditions based on their comfort

preferences (Page, 2007). For example, in an office, people use lightning and
electrical devices for their activities. Furthermore, they add internal heat to the
thermal zone and might consume hot water (Ren et al., 2024). Driven by indoor
preferences, occupants may adjust the ventilation for thermal comfort and health
reasons, and these actions influence HVAC energy use. Additionally, occupants
adjust shadings or lighting appliances for visual comfort.

The most common method to include the occupants’ influence in BES is the
definition of occupancy schedules and patterns that are represented by profiles.
These profiles are usually represented as a time-dependent series of zero to one
(0 to 1) values, representing the variation of a total value of the variation over the
period based on the presence of people. For example, the indication of internal
heat gains from people and the use of appliances and lighting. Schedules
refer to diversity in the usage hours based on the day of the week (working
days, weekends) or the season (winter, summer) (Doma and Ouf, 2023).
However, these schedules and patterns need more detail and accuracy since
they represent, in a general manner, the characteristics of human behaviour.

Dabirian et al. (2023) propose a stochastic archetype modelling of the
building stock on a city level based on occupant-related schedules extracted
from time-series of electricity consumption data of buildings. They used the
data collected from 3053 energy meters from 19 locations in Europe and North
America between 2016 and 2017 with hourly time resolution. The data contains
information such as gross floor area, year of construction, and the building use.
They then clean and standardise the data. Their method derived a plug load
profile for each building type in specific climate zones. The BES uses these
values for the building archetype and district scale.

Samareh et al. 2024 implement a method to create an occupancy model based
on signal data derived from Wi-Fi sensing technology by deriving the number of
people in a building. Their results are used as input parameters in their BES
tool. Their method uses various machine learning techniques and achieves a
test accuracy of 77%. However, they use data augmentation techniques due to
the limited availability and diversity of data in their original dataset. After the
augmentation, their ML models achieved an accuracy of 91%.

Mosteiro-Romero, Hischier et al. (2020) propose a method to evaluate the impact
of building occupants on district-scale energy models. Their population-based
approach (PopAp), inspired by agent-based transportation modelling, draws on
class and employee registers to simulate occupant presence and its effect on
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district-level energy demand. When compared to conventional deterministic and
stochastic approaches, PopAp yielded a 33% higher maximum occupant density
in the studied area. The difference in the annual energy demand values between
models remained within 10% for all demand types, while hourly values increased
up to 15%. This hourly-level discrepancy is particularly significant, given the
critical role of temporal granularity in predicting peak energy demand.

2.2.2.3. WEATHER DATA AND CLIMATE DATA

I n a given location, short-term (minutes, hours, days, seasons) meteorological
state of the atmosphere refers to weather data. Long-term (∽ 30 years))

average weather conditions refer to climate data (Herman and Golberg, 1978).
Weather data are a crucial input for UBEM, and their accuracy influences the
reliability of building-energy simulations. Factors such as outdoor temperature,
relative humidity, wind, and solar radiation directly affect the energy demand of
buildings. Nevertheless, the kind of data used varies according to the scope
of the research. For monitoring, managing, or validating the actual energy
performance of a specific building, researchers employ observed meteorological
data, often called actual meteorological year (AMY files) (Bianchi and Smith,
2019; Hong, Chang et al., 2013). By contrast, baseline studies and typical UBEM
performance assessments generally rely on typical meteorological year (TMY)
datasets (Mohajeri et al., 2016; Romero Rodríguez et al., 2017). The TMY
files are derived from long-term climate records; in the case of the Netherlands,
these files are generated from the observations of the KNMI automatic weather
stations from an average 30 years observations (KNMI, 2024a). Therefore, each
simulation adopts the same “typical” weather data associated with its nearest
station.

Yang et al. (2023) research the impact of using multiple weather datasets and
the urban morphology in urban building energy simulation for a study area of 41
urban blocks. The input weather data was collected from one weather station
and 16 climate sensors, with fewer sensors installed across the study area, which
were later compared to a multi-source TMY dataset (EPW file). The difference
between the measured weather station data and the microclimate in the study
area was 4.9◦C. The weather data performed better than EPW data in reflecting
the urban microclimate and predicting the building ”energy consumption”.

N. Luo et al. (2022) propose a framework to integrate CityBES, a UBEM
platform, and CityFFD and urban microclimate model (UCM) tool to facilitate
data exchange between the two simulation tools. By doing so, they integrate
microclimate parameters into UBEM simulations. Their case study, conducted in
a district of 97 buildings in San Francisco, USA, demonstrates the influence of
using urban microclimate data compared to TMY data. The results show that
using UCM data yields an average building facade temperature difference of
5.3◦C, 8.9◦C higher air temperature, and a 19.5% increase in cooling energy
demand.
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UBEM is a valuable tool to evaluate the impact of climate change in urban
areas; one example is the research of Deng, Javanroodi et al. (2023), which
investigates how climate change will affect the energy performance of buildings
in Geneva, Switzerland. For this purpose, they used a BES tool named
Automated Building Performance Simulation (AutoBPS) to simulate the thermal
”energy consumption” for space heating and cooling. The models were calibrated
using annual heating consumption data available per building and evaluated four
different climate change scenarios for the year 2050. Their results indicate
a space heating consumption decrease of 21%-31%, while the space cooling
consumption increases by 95%-144%.

2.3. DATA QUALITY

P revious sections have discussed the different data requirements in UBEM.
However, there is no mention of data quality and its relevance. Among the

challenges to obtaining accurate and complete datasets at the urban scale are:

• Data acquisition
While geometric information can be captured for individual buildings through
design documents or field measurements (C. Wang, Ferrando et al., 2022),
these techniques are impractical city-wide. A small city in the Netherlands
such as Delft (≈54,594 buildings, of which ≈37,371 are residential, for a
population of ≈110,173 (van Bijsterveld, 2025)) shows the logistical barrier
to manual data collection.

• Impact on model reliability
The usefulness of UBEM for design and policy is based on reliable
simulation results. Inaccuracies in input data propagate through the model:
at hourly resolution, prediction of errors for single buildings can exceed
40%. However, when annual resolution, city-wide errors are acceptable
(Nouvel, Zirak et al., 2017).

• Data completeness
Open databases are available for relatively few countries, leading to a
limited broader applicability. Furthermore, these datasets are not always
complete some reasons include legal restrictions (limited licensing) or data
sensibility.

• FAIR principles
Despite data availability, another element to consider is the following
of the FAIR (Findable, Accessible, Interoperable, Re-usable) practices
(Utrilla Guerrero and Barrera-Coronel, 2025). Not including these practices
adds another layer of complexity on data quality.

• Generalisation of dynamic elements
Simplified occupant schedules and assumed HVAC systems introduce
systematic bias; general-purpose assumptions often diverge from real
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behaviour and installed equipment (C. Wang, Ferrando et al., 2022).
Missing refurbishment status can lead to heating-demand overestimation of
70-100% (Nouvel, Zirak et al., 2017). Similarly, incorrectly managed attics
or basements may cause ≈ 20% error.

• Automated validation
Both geometries and attributes require validation to ensure their usability.
For 3D geometries, high geometrical accuracy leads to good solids, which
lead to geometrical validity. Tools such as CityDoctor (Pries et al., 2021),
FME (Safe Software, 2024), and val3dity (Ledoux, 2018) detect and, in
some cases, repair geometric errors in 3D city models. Their diagnostic
reports aid in prioritising data-cleaning efforts before energy simulation.
For attributes,

• Geometric detail and solar gains
LoD1 or LoD2 geometric representation and uncertain window-to-wall ratios
affect solar-gains computations and transmission losses, directly influencing
heating-demand calculations.

• Scarcity of high-resolution validation data
Hourly measured energy data are rarely available (C. Wang, Duplessis
et al., 2024), hindering rigorous validation. Techniques such as multivariate
imputation or weighting schemes can improve robustness when survey data
are partial.

• Sensitivity, error propagation, and continuous improvement
Sensitivity analyses identify which input parameters most affect simulation
accuracy and therefore merit targeted data collection (Nouvel, Zirak et al.,
2017). Ongoing assessments of error propagation support systematic
correction of outdated or inconsistent datasets (Geske et al., 2023).

2.4. ENERGY BALANCE METHOD

T he energy balance method for the computation of the energy demand of
buildings is based on the law of conservation of energy, which states that,

for a closed system, the total energy inflow equals the total energy outflow
(Britannica, 2024). In UBEM, a building is treated as a closed system: energy
entering must match energy leaving. If net energy outflow is negative, the
building requires additional heat to maintain the set-point temperature; if it is
positive, excess heat must be removed by cooling (Van Bueren et al., 2012, p.
123).

The system boundary is defined by the building’s external walls, roof, and ground-
floor surfaces. Where detailed zoning data are unavailable, the entire building
is assumed to behave as a single thermal zone with uniform temperature and
humidity. All conduction, convection, and radiation processes are consolidated
into four principal heat flows (presented in figure 2.12): solar gains, infiltration
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and ventilation, internal gains and transmission through the envelope. For
analyses using coarse time steps (monthly or longer), short-term heat storage
and release within building elements can be treated in a more simplified way, as
they are ”high-frequency”, circadian phenomena that are hard to model with the
low-frequency monthly computations.

Figure 2.12: Energy balance of a building related to the main energy transfer
processes

Energy performance calculations for buildings using this method are conducted
over discrete time intervals, such as an hour, month, heating/cooling season, and
year. For example, processes like domestic hot water are computed for an entire
year, using fundamental constants defined for a typical year (ISO, 2017).

The total energy exchange for space heating QH,nd of a building is the difference
between heat losses (transfers) and heat gains (Figure 2.13) and is computed
using equation (2.1).

Figure 2.13: Graphical overview of the energy balance method

QH,nd = (QH,tr + QH,e) − ηH,g · (Qnt + Qso) (2.1)

Where:

• Calculation of heat losses

– Through the boundary surfaces (QH,tr)
Heat flows from areas of higher temperature to areas of lower
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temperature until they reach equilibrium. This movement occurs
through three methods: convection, radiation and conduction. In
the case of convection, heat transfers via liquids or gases. For
radiation, any object with a temperature above 0 K emits heat through
electromagnetic waves. When these waves reach another object, they
are converted into heat.

The amount of heat radiated depends on the temperature of the
emanating object. Finally, heat conduction occurs as molecules vibrate
in solids. As the temperature rises, molecular vibrations become faster,
transferring heat to the neighbouring colder molecules. Due to the
poor conductivity of gases, solids and liquids are the major means of
transportation.

– Periodical airing (QH,e)
Van der Linden et al. (2018) highlight that ventilation is essential
for maintaining good indoor air quality, which directly impacts
occupant health. Therefore, building regulations indicate minimum
ventilation requirements. Ventilation can be provided either naturally or
mechanically, and it is designed to ensure an adequate exchange of
indoor and outdoor air.

In contrast, infiltration refers to unintentional air exchange through
leaks in the building envelope. Furthermore, it can result in irregular
air distribution, causing draughts and energy waste. The extent of
infiltration depends on the air permeability of the building’s outer walls,
ground and roof surfaces. While ventilation systems are controlled,
infiltration is a consequence of construction quality and materials.

• The calculation of heat gains is based on the solar irradiation of the building,
its internal heat sources and the utilisation factor for the heat sources.
These elements are explained as follows:

– Solar irradiation (Qso)
Several factors influence the amount of solar gains in a building,
including the orientation of the outer wall and the shading resulting
from the building itself and the surrounding objects. Other factors that
influence the potential for solar gains are the physical characteristics
of the walls and the use of protection elements such as sunscreens
(Van der Linden et al., 2018).

– Internal heat sources (Qnt)
Heat gains are internal loads of sensible heat. Among the internal heat
sources are lighting, occupants, machines, equipment, and all kinds
of processes in the room (Etheridge, 2010; Moser et al., 2001). For
simulation purposes, the time-dependent energy released from these
sources is defined by schedules.

– Utilisation factor for heat gains (ηH,g)
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It is a reducing factor of the total heat gains in the monthly calculation
method to obtain the resulting reduction of the building energy needed
for heating. The inclusion of this reducing factor considers the
dynamic effects of the gain utilisation factor for heating and the heat
transfer utilisation factor for cooling. In the case of the cooling
mode, if the losses are negative, there is no utilisation. Norm-based
computations such as the NTA 8800 define this factor as a function of
the heat-balance ratio of the heat gains Hgn (NEN, 2024). However,
the effect of inertia in the case of intermittent heating or cooling or the
case of switch-off is taken into account separately.

More details about each one of the above-mentioned items will be provided in
the following section, with particular attention to how the NTA 8800 prescribes
the computation of each item.

2.5. NTA 8800
2.5.1. INTRODUCTION

A s of 1st January 2021, all new buildings in the Netherlands are required to
comply with the Almost Energy Neutral Buildings directive (in Dutch ”Bijna

Energie Neutrale Gebouwen” – BENG–) (RVO, 2024). BENG provides a
foundation for the principles that define the Dutch Technical Agreement (in Dutch
”Nederlands Technische Afspraak” –NTA–) 8800. The NTA 8800 norm embodies
the official method for determining the energy performance of dwellings in the
Netherlands. Since its first release in July 2020 (NEN, 2020), the norm has
been updated annually, with the current version, at the time of writing, being the
NTA 8800:2024, published on 1st January 2024 (NEN, 2024).

For the calculation of the energy performance of a building, the norm first defines
how to compute the net energy demand and then how to obtain the primary
energy demand, which is eventually used to assess the energy performance of
the building.

According to the NTA 8800, the net energy demand is heat that must be supplied
to a calculation zone to maintain the desired temperature during a specific period
and depends on the physical characteristics of the building. The primary energy
demand is defined as the energy used to produce the power supplied to a
building that has not been subjected to any conversion or transformation process.
Also, It depends on the quantities of energy purchased and exported by the
energy carriers, using conversion factors. The following requirements have been
stated by the norm for the calculation of the primary energy demand of buildings:

• ”Energy consumption” per building function

• Energy delivered by each energy carrier, e.g. gas, oil, electricity

• Energy collected [solar, wind] on-site (location of the building)
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• Renewable energy used for heating, cooling and hot tap water

• Primary energy factors (fixed values by the norm) per energy carrier,
including the produced on-site

Although the NTA 8800 presents the method for the calculation of the primary
energy demand of buildings, in my PhD research, I focus on the net heat demand
mainly due to the lack of data at the country level, which affects the calculation
of the net energy demand and, even more, of the primary energy demand. In the
following sections of this thesis, I discuss the reasons for my decision. However,
no modifications of the method presented by the norm have been done during my
PhD research. I have taken the simplifications presented by the norm for those
cases in which there is no access to detailed data of the building, i.e., access to
the clean energy sources such as solar panels, the number of calculations zones
inside a building or the number of tabs (for water) per calculation zone.

As a remark, several of the parameters mentioned above are not open and
available at the country level. I am using figure 2.14 as a visual guidance to
facilitate the navigation through the workflow and formulas in section 2.5.2.

Figure 2.14: Simplified hierarchical diagram of the NTA8800

2.5.2. NET HEAT DEMAND CALCULATION
According to the NTA 8800, a calculation zone z is a building or part of
a building that is considered as one entity for the calculation of ”energy
consumption” for heating, cooling, humidification, dehumidification and ventilation.
Figure 2.15 shows some examples of calculation zones for the same building.
Each section begins with a colour-adjusted version of figure 2.14 highlighting
its correspondence with the NTA 8800 net energy demand overview to provide
better context of the complete workflow.
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Figure 2.15: Examples of calculation zones in a building. (a) No calculation
zones; (b) one calculation zone for the first two storeys; (c) one
calculation zone for the whole building; (d) multiple calculation zones,
each differentiated with a different colour

For each calculation zone z and month m, the monthly energy requirement for
heating, QH;nd;z;m , in kWh, is calculated using equation (2.2):
If:

QH;nd;z;m =

¨
0, if γH;z;m ≤ 0 and QH;gn;z;m > 0
0, if γH;z;m ≤ 2 (2.2)

QH;nd;z;m Monthly energy required for heating for the calculation zone z
and monthm as defined below, in kWh

γH;z;m Dimensionless heat balance ratio for heating, see equa-
tion (2.37)

In other cases:

QH;nd;z;m = QH;ht;z;m − ηH;gn;z;m ·QH;gn;z;m − ΔηH;gn;z;m ·QH;gn;z;m−
ηH;gn;z;m ·
�
QH;s;rb;z;m − QC;s;rb;z;m

�
+ QW;nd;z,m (2.3)

With the lower limit as: QH;nd;z;m ≥ 0
QH;ht;z;m Total heat transfer for heating in kWh, see section 2.5.3
ηH;gn;z;m Dimensionless utilisation factor for the heat gain, see sec-

tion 2.5.7
QH;gn;z;m Total heat gain for heating in kWh, see section 2.5.3
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ΔηH;gn;z;m Difference in utilisation factor for the heat gain when calculated
with and without taking into account the internal heat gain due to
recoverable losses from or to the space heating system. Simpli-
fied as 0

QH;s;rb;z;m Sum of all recoverable losses from or to the space heating sys-
tem in calculation zone z, and monthm. Simplified as 0

QC;s;rb;z;m Sumof all recoverable losses from or to the space cooling system
in calculation zone z, and monthm. Simplified as 0

QW;nd;z,m Sum of the net heat demand for hot tap water, see section 2.5.8

European norms use the term heat transfer instead of heat loss when heat loss
is negative due to a higher average outdoor temperature than the set point
temperature for heating for the calculation zone. The following sections will
provide the details on each of the terms of equations (2.2) and (2.3).

2.5.3. TOTAL HEAT TRANSFER FOR HEATING
The main elements of the total heat transfer for heating are shown in figure 2.16.
Additionally, the heat transfer through heating is defined in equation (2.4).

Figure 2.16: Heat transfer through transmission

QH;ht;z;m = QH;tr;z;m + QH;e;z;m (2.4)

Where:

QH;tr;z;m Total heat transfer by transmission for heating in kWh, determ-
ined using equation (2.5)

QH;e;z;m Total heat transfer through ventilation for heating in kWh, determ-
ined using equation (2.15)
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2.5.3.1. HEAT TRANSFER THROUGH TRANSMISSION
The total heat transfer by transmission for heating QH;tr;z;m in kWh is determined
by equation (2.5).

QH;tr;z;m =
��
HH:tr(excl.gf);z;m + Hg;n;z,m

��
θnt;cc;H;z;m−
θe;g;m

�� · 0.001 · tm

(2.5)

In which:

HH;tr(ec.gƒ ;m);z;m = HH;D;z;m + HH;U;z;m + HH;A;z;m + HH;p;z (2.6)

Where for each calculation zone z and month m:

HH;tr(ec.gƒ ;m);z;m Total heat transfer coefficient by transmission for heat-
ing except for the ground floor, in W/K

Hg;n;z,m heat transfer coefficient for building elements in thermal con-
tact with the ground in W/K, determined using equation (2.7)

HH;D;z;m Direct heat transfer coefficient between the heated space
and the outside air in W/K according to equation (2.10)

HH;U;z;m Heat transfer coefficient via adjacent unheated spaces in
W/K

HH;A;z;m Heat transfer coefficient via adjacent heated spaces in W/K
HH;p;z Heat transfer coefficient of zone z through vertical pipes

passing through the thermal envelope and in direct com-
munication with outside air in W/K, determined using equa-
tion (2.13)

θnt;cc;H;z;m Calculation temperature of the calculation zone for heating
in ◦C. Available at table 2.1

θe;g;m Average outdoor temperature in month m in ◦C. Available
at table 2.1

tm Calculation value for the length of the month under consid-
eration in h. Available at table 2.1

The climate data for computations is presented in Table 2.1. Additionally, The
norm states the following simplifications: HH;U;z;m = 0, HH;A;z;m = 0.

Table 2.1: NTA 8800 climate data
Month tmi

h
θe;vg;mi◦C

θe;rg;mi◦C
site;mi

m/s
θODA;preh;WTWC;mi◦C

January 744 2.61 - 3.04 -

Continued on next page
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Table 2.1 – continued from previous page

Month tmi

h
θe;vg;mi◦C

θe;rg;mi◦C
site;mi

m/s
θODA;preh;WTWC;mi◦C

February 672 4.82 13.97 4.15 -
March 744 5.91 13.00 2.99 -
April 720 9.32 13.70 3.06 -
May 744 14.73 14.56 2.97 25.63
June 720 16.12 15.62 2.78 27.49
July 744 18.05 16.17 2.63 26.34
August 744 18.48 16.90 2.51 27.29
September 720 15.63 15.11 2.71 25.30
October 744 10.40 15.04 2.78 -
November 720 7.99 13.43 2.83 -
December 744 4.00 - 2.83 -

Where:

tm Length of the month
θe;g;m Monthly average outdoor air temperature
θe;rg;m Monthly average outdoor air temperature for ventilated

cooling
ste;m Monthly average wind speed
θODA;preh;WTWC;z;m Monthly average temperature of the supply air before the

heat recovery system during the period that there is cold
recovery via the heat recovery system

2.5.3.1.1 Heat transfer coefficient for building elements in thermal contact with
the ground
Hg is computed when the ground surface of the building lies directly to the terrain
or when the ground surface is above crawl spaces or unheated basements. It is
computed using equation (2.7).

Hg = Aƒ  · Uƒ  +
∑
j

(ℓj · ψgr;j) (2.7)

Where:

Aƒ  Surface area of the floor directly on the ground in m2

Uƒ  Heat transfer coefficient of the floor surface, in W/(m2K)
ℓj Length of the linear thermal bridge of the floor perimeter, j, in m
ψgr;j Linear heat transfer coefficient of part j of the floor perimeter to the ground,

inW/(m · K)

A simplified method, flat-rate allowance, is possible for the linear thermal bridges
of the building, making the output stationary heat transfer coefficient through the
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ground surfaces, Hg;ƒor , in W/K:

Hg;ƒor = Aƒ  · Uƒ  + 0.5 · P (2.8)

Where: P is the length of the perimeter in m. In the case of buildings with a
basement, Hg;ƒor shall be computed using:

Hg;ƒor = Aƒ  · Uƒ  + 0.5 · P +∑A;T;b · (Ub;j + ΔUƒor) (2.9)

Where:

AT;b Total area of the basement walls in m2

Ub;j Stationary heat transfer coefficient of the area below ground level wall part
j inW/(m2 · K), e.g. thermal transmittance

2.5.3.1.2 Direct heat transfer coefficient between the heated space and the out-
side air
The direct heat transfer coefficient between the heated space and the outside air
HD is computed as in equation (2.10).

HD =
∑


(AT, · UG,) +
∑
k

(ℓk · ψk) +
∑
j

χj (2.10)

Where:

AT, Surface area of the opaque element  of the external separation construc-
tion in m2

UC, Heat transfer coefficient of the flat element  of the external separation
construction in W/(m2K)

ℓk Length of the linear thermal bridge, k, in m, e.g. the length size of the
surface sides

ψk Linear heat loss coefficient of the thermal bridge, k, in W/(mK)
χj Heat loss coefficient of the point thermal bridge, j, in W/K

However, the norm states a simplified flat-rate allowance for linear thermal
bridges can be computed using equation (2.11).

HD,ƒor =
∑


�
AT,j · (UC,j + ΔUƒor)

�
(2.11)

In which:

ΔUƒor =mx
�
0; 0.1 − 0.025 ·

�∑
(AT,ntr; · UC,ntr;)∑

 AT,ntr;
− 0.4
��

(2.12)

Where:
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AT,ntr; Surface area of the non-transparent element , not being a floor above
a crawl space or directly on the ground or a roof in m2

UC,ntr; Heat transfer coefficient of the non-transparent element , not being a
floor above a crawl space or directly on the ground or a roof inW/(m2 ·
K)

ΔUƒor may only be applied when done for the whole building. Furthermore,
mixing methods between flat-rate and non-flat-rate is not allowed. Except for the
building ground surface, all surfaces are included. Table 2.2 shows an example
of values of ΔUƒor .

Average U-value of building envelope not touching the
ground [W/(m2K)]

ΔUfor [W/(m2K)]

0.8 0.00
0.6 0.05
0.4 0.10

Table 2.2: Example values for standardised addition for the calculation of linear
thermal bridges (NEN, 2024)

2.5.3.1.3 Heat transfer coefficient through vertical pipes
The heat transfer coefficient through vertical pipes HH;p;z is computed as
equation (2.13).

HH;p;z =
∑
j

Nstoreys;j ·HH;p;spec;j (2.13)

Where:

HH;p;z Heat transfer coefficient of zone z through vertical pipes passing
through the thermal envelope and in direct communication with out-
side air, in W/K

j Number of vertical pipes in the calculation area that pass through
the thermal envelope and are in direct communication with outside
air

Nstoreys;j Number of storeys of the calculation zone where vertical pipe j is
located.

HH;p;spec;j Heat transfer coefficient per building layer for vertical pipe j, accord-
ing to table 2.3 in W/K
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Table 2.3: Fixed values for the heat transfer coefficient via vertical pipes per building
layer

Type of pipe HH;p;spec;j

Uninsulated vertical pipe through thermal shell 1.8
Insulated vertical pipe through thermal shella 0.5
No penetrations through thermal shell 0

aA pipe may only be considered insulated if it is over its entire length isolated.

In the case of residential buildings, It is assumed that there is at least one
uninsulated fictitious vertical pipe per residential unit.

Nstoreys;j =
H

3
(2.14)

Where:

Nstoreys;j number of storeys assumed for the fictitious vertical pipe j
H External building height measured in m

The number of storeys is rounded down to an integer with a minimum of 1.

2.5.3.2. HEAT TRANSFER THROUGH VENTILATION
The heat transfer through ventilation is defined by equation (2.15).

QH;e;z;m = HH;e;z;m ·
�
θnt;cc;H;z − θe;g;m

� · 0.001 · tm (2.15)

Where:

HH;e;z,m Total heat transfer coefficient through ventilation for heating inW/K,
determined using equation (2.16)

θnt;cc;H;z Calculation temperature of the calculation zone for heating in ◦C,
according to table 2.1

θe;g;m Average outdoor temperature in month m in ◦C, according to
table 2.1

tm Calculation value for the length of the month under consideration
in h, determined using table 2.1
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2.5.3.2.1 Heat transfer coefficient for ventilation
The heat transfer coefficient for ventilation HH;e;z;m is defined by equa-
tion (2.16).

HH;e;z;m = ρA · cA ·
∑
k

�
q;k;H;z;m · b;k;H;z;m · ƒ;dyn;k;z;m

�
3600

(2.16)

Where for each calculation zone z and month m:

ρA · cA Heat capacity of air per volume, in J/(m3 · K)
ρA Density of air = 1.205kg/m3

cA Heat capacity of air = 1005J/kgK
b;k;H Supply temperature correction factor for air volume flow k, as determ-

ined by equation (2.17)
ƒ;dyn;k Dynamic correction factor for air volume flow k, = 1
q;k;H Air volume flow k, inm3/h, as determined by table 2.5

2.5.3.2.1.1 Supply temperature correction factor
The correction factor for supply temperature for air flow k is defined by
equation (2.17).

b;k;H;m =

�
θnt;set;H;stc;z;m − θsp;k;H;m

��
θnt;set;H;stc;m − θe;g;m

� (2.17)

Where for each month m:

θnt;set;H;z;m Set-point temperature for the thermally conditioned zones
of the adjacent calculation zone z for heating, in ◦C,
according to table 2.4

θsp;k;H;m Supply temperature of airflow k for heating, in ◦C
θe;g;m Average outside temperature per month in ◦C, according

to table 2.1

The supply temperature correction factor has a value other than one (1) if the
temperature of the air supplied to the calculation zone θsp;k;H;m is not equal to
the outdoor temperature.

Table 2.4: Set-point temperature for thermally conditioned zones

Calculation zone function θint;set;H;stc;zi◦C
θint;set;C;stc;zi◦C

Childcare facility 21

24

Continued on next page
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Table 2.4 – continued from previous page

Calculation zone function θint;set;H;stc;zi◦C
θint;set;C;stc;zi◦C

Other meeting facility 21
Prison 21
Healthcare function with beds 22
Other healthcare facility 21
Offices 21
Lodging 21
Educational 21
Sports 16
Retail 21
Residential 20

2.5.3.2.1.2 Determining Air Volume Flow
The calculation values for the specific air permeability q10;spec;c and the
correction factor ƒtype are defined per building type in table 2.5. The Dutch
building types are described in detail in section 3.2.2.1 with graphical examples
in figures 3.8 and 3.12.

Table 2.5: Calculation value for the specific air permeability per building type and
their corresponding correction factor
Building Type q Version variant ƒtype

Ground-based buildings

Single family house with a pitched
roof and one-storey non-residential
buildings with a pitched roof

1.0

Intermediate location 1.0
End, edge, or corner location 1.2
Detached building, sloped roof 1.4
Detached building, partially flat roof 1.2
Detached building, partially flat roof 1.2

Single family house with a flat roof
and other one-storey non-residential
buildings

0.7
Intermediate location 1.0
End, edge, or corner location 1.2
Detached building, partially flat roof 1.4

Multi-storey buildings

Living unit in multi-storey non-
residential and apartment buildings 0.5

Intermediate location on ground or
intermediate floor

1.0

End, edge, or corner location on ground or
intermediate floor

1.3

Intermediate location on the top floor 1.2
End, edge, or corner location on the top floor 1.4

2.5.4. TOTAL HEAT GAINS FOR HEATING
The hierarchical workflow for the calculation of the heat gains for heating are
presented in figure 2.17. This parameter is based on the internal gains and solar
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gains as expressed in equation (2.18).

Figure 2.17: Total heat gains

QH;gn;z;m = QH;nt;z;m + QH;so;z;m (2.18)

Where:

QH;nt;z;m Total internal heat gain for heating in kWh, determined either
by equation (2.19) for residential buildings or equation (2.23) for
non-residential buildings

QH;so;z;m Total solar gain for heating in kWh, determined using equa-
tion (2.29)

2.5.4.1. INTERNAL HEAT GAINS

T he Internal heat gain concerns the contribution to the heat management by
internal sources other than the deliberate supply of heat for space heating,

space cooling or hot tap water (HTW) preparation. Only the internal heat gains in
the calculation zone itself are included in the calculation. The norm separates the
calculation for residential (equation (2.19)) and non-residential (equation (2.23))
buildings.

2.5.4.1.1 Residential Building

QH;nt;dr;z;m = 180 ·Nres;z ·NP;res;z · 0.001 · tm (2.19)

Determine the number of residents per calculation zone per residential building
NP;res;z based on the average usable area per dwelling as follows:

If:

Ag;z
Nres;z

≤ 30m2 : NP;res;z = 1 (2.20)
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30m2 <
Ag;z
Nres;z

≤ 100m2 : NP;res;z = 2.28 − 1.28

70
×
�
100 − Ag;z

Nres;z

�
(2.21)

Ag;z
Nres;z

≥ 100m2 : NP;res;z = 1.28 + 0.01 × Ag;z
Nres;z

(2.22)

Where:

Nres;z Number of residential units in calculation zone z
NP;res;z Average number of residents per calculation zone per residen-

tial building
Ag;z Usable area of the calculation zone in m2

tm Calculation value for the length of the month under considera-
tion in h, according to table 2.1

2.5.4.1.2 Non-Residential Building

QH;nt;dr;z =
�
H;nt;oc;z;m + H;nt;A;z;m + H;nt;L;z;m + H;nt;W;z;m

+ H;nt;V;z;m + H;nt;proc;z;m

� · 0.001 · tm (2.23)

Where:

H;nt;oc;z;m Heat flow as a result of heat production by people for heating in
W, determined using equation (2.24)

H;nt;A;z;m Heat flow due to heat production by equipment for heating in W,
determined using equation (2.25)

H;nt;L;z;m Heat flux through recoverable losses from lighting in W determ-
ined using equation (2.26)

H;nt;W;z;m Heat flow through recoverable losses of the HTW system for
heating in W, determined using equation (2.28)

H;nt;V;z;m Heat flow through recoverable losses of the ventilation system
in W. Set to 0

H;nt;proc;z;m Heat flow through recoverable losses from or to processes and
goods for heating in W. Set to 0

tm Calculation value for the length of the month under considera-
tion in h, using table 2.1

2.5.4.1.2.1 Heat flow through people
The heat flow through people nt;Oc;z is defined by equation (2.24).

nt;Oc;z = qOc;s × ƒτ;usi × Ag;z (2.24)
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Using qOc;s, ƒτ;usi fixed values from table 2.6.

qOc;s Specific internal heat production by people inW/m2, weighted accord-
ing to the usable area. From table 2.6

ƒτ;usi Correction factor for the occupancy time. From table 2.6
Ag;z Usable area of the calculation zone in m2

2.5.4.1.2.2 Heat flow through equipment
The heat flow through equipment nt;A;z is defined by equation (2.25).

nt;A;z = qA;s × Ag;z (2.25)

Where:

qA;s Specific internal heat production due to the average power of equipment.
From table 2.6

Ag;z Usable area of the calculation zone in m2

2.5.4.1.2.3 Heat flux through lighting
The heat flow through lighting H;nt;L;z;m is defined by equation (2.26).

H;nt;L;z;m = qL;s × Ag;z (2.26)

Where:

qL;s Specific internal heat average production due to lighting. From table 2.6
Ag;z Usable area of the calculation zone in m2

Table 2.6: Specific internal heat production value per function

Calculation zone function
qOc
W/m2 fτ;si

qA
W/m2

qL;si
W/m2

Childcare facility 10 0.30 1 2.5
Other meeting facility 10 0.15 1 2.5
Prison 3 0.80 2 2.25
Healthcare function with beds 5 0.80 4 2.5
Other healthcare facility 5 0.30 3 1.25
Offices 5 0.30 2 1.25
Lodging 3 0.40 4 1.75
Educational 10 0.30 2 1
Sports 3 0.30 1 3
Retail 3 0.40 3 3
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2.5.4.1.2.4 Heat flow through recoverable losses from lighting
The heat flow through recoverable losses from lighting nt;L;z is defined by
equation (2.27).

nt;L;z =
ƒL

×Wt × 1000 · tn (2.27)

Where:

ƒL

Dimensionless reduction factor whose value is:
• 0.3 if the total installed power (Pn) is determined for lighting
(flat-rate)
• 0.5 if at least 70% of the luminaires, weighted by the total
installed power (Pn), is extracted
• 1.0 in other cases

Wt ”energy consumption” for lighting to provide the necessary lighting levels
per year in kWh;

tn Calculation value for the total length of the year in h. Determined using
table 2.1

2.5.4.1.2.5 Heat flow through recoverable losses of the hot tap water system

The heat flow through recoverable losses of the hot tap water system nt;W;z;m

is defined by equation (2.28).

nt;W;z;m =

∑
s
QW;s;rb;s;z;m · 1000

tm

(2.28)

Where:

nt;WA;z;m Heat flow through recoverable losses from or to the HTW system
in calculation zone z and monthm in W;

QW;s;rb;s;z;m Recoverable loss of HTW system s in calculation zone z, in month
m in kWh

tm Calculation value for the length of the month under consideration
in h, determined using table 2.1

2.5.5. HEAT GAINS THROUGH INCIDENT SOLAR RADIATION

T he method is derived from NEN-EN-ISO 52016-1:2017 (ISO, 2017). Heat
gains due to solar radiation result from the solar radiation received by the

surfaces that define the thermal envelope of the building. The radiation is
influenced by the orientation, inclination, sun shading and solar transmission,
solar absorption, and the heat transfer properties of the surfaces. The solar heat
gains are defined by equation (2.29).
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QH;so;dr;z;m =
∑
k

QH;so;,k;m +
∑
k

QH;so;op,k;m (2.29)

Where, for each element k and month m:

QH;so;dr;z;m Monthly solar gain of the calculation zone in kWh for heating
QH;so;,k;m Monthly solar heat gain through transparent element, k in kWh

for heating. Determined using equation (2.30)
QH;so;op,k;m Monthly solar heat gain by non-transparent element op, k in kWh

for heating. Determined using equation (2.34)

2.5.5.1. HEAT FLUX DUE TO INCIDENT SOLAR RADIATION THROUGH TRANSPARENT
PARTS

The heat flux due to incident solar radiation through transparent parts of the
building envelope (from now on called windows)  for heating, QH;so;,k;m in
kWh, is calculated for each element k using equation (2.30):

QH;so;,k;m = gg;,k;H;m ·A,k ·
�
1 − Fƒ r;,k
� ·Fsh;obst;,k;m · so;,k;m ·

0.001 · tm − Qsky;,k;m (2.30)

Where, for each window  and month m:

QH;so;,k;m Solar heat gain through transparent element , k in kWh, for
heating

gH;so;op,k;m dimensionless average effective total solar factor of window, k,
per month m, for heating, determined using 2.5.5.1.2, where all
glazing is calculated using the method for non-diffusing glazing

The transparent element can consist of clear glazing but also (permanent)
diffusing glazing, glass bricks or (permanent or movable) sun protection.
However, the dimensionless mean effective total solar gain factor, gg;,k;H;m ,
is also determined for diffusing glazing or glass bricks according to the method
for non-diffusing glazing.

A,k Area of window , k, inm2

Fƒ r;,k Frame fraction of window , k, the ratio of the frame area to
the total area of the glazed portion of window , k, determ-
ined using 2.5.5.1.3

Fsh;obst;,k;m Dimensionless shading reduction factor for external impedi-
ments of window , k, determined using table 2.9

so;,k;m Monthly average total incident solar radiation per m2 area of
window , k, at a given angle of inclination β and orienta-
tion γ inW/m2 determined using table 2.8
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tm Calculation value for the length of the month under considera-
tion in h, determined using table 2.1

Qsky;,k;m Monthly extra heat flow due to heat radiation to the sky from
window , k in kWh, determined using 2.5.5.1.1

External obstructions are nearby obstructions of building parts on the own lot,
such as grooves, side ribs, overhangs or adjacent building parts.

2.5.5.1.1 Heat radiation to the sky
The heat radiation to the sky Qsky;k;m is defined by equation (2.31).

Qsky;k;m = 0.001 · Fsky;k · Rse;k · Uc;k · Ac;k · hr;e;k · Δθsky;m · tm (2.31)

Where, for each element k and month m:

Qsky;k;m Extra heat flow due to heat radiation from building envelope element
k to the sky, in kWh

Fsky;k Visibility factor between building envelope element k and the sky,
determined using table 2.10

Rse;k Heat transfer resistance on the outside of element k in m2K/W, as
determined using table 2.11

Uc;k Heat transfer coefficient of element k in W/(m2·K)
Ac;k Area of element k
hr;e;k Heat transfer coefficient for long-wave radiation on the outside of the

structure, for which the following numerical value applies: hr;e =
4.14W/(m2 · K)

Δθsky;m Average difference between the apparent sky temperature and the
outside temperature, for which the following numerical value applies:
Δθsky;m = 11K

tm Length of the month under consideration in h. Determined using
table 2.1

2.5.5.1.2 Sun access factor: Windows with non-diffusing glazing
The total solar access factor depends on the angle of incidence (height and
azimuth) of the incident solar radiation. The (time-weighted average) value
required for the calculations is lower than the solar accession factor for radiation
perpendicular to the glazing, gg;n. The total solar gain factor (corrected for the
angle of incidence) is calculated according to equation (2.32):

gg; = F · gg;n; (2.32)

Where:
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F Correction factor for non-scattering glazing: 0.90
gg;n; Sun factor with a perpendicular incidence of solar radiation, determ-

ined using NEN-EN 410 or according to table 2.7

The numerical value for gg;n; must be rounded down to a multiple of 0.05.

Table 2.7: Standard values for the total solar factor at perpendicular incidence,
gg;n, for common types of glazing

Type ggl;n 

Only glass 0.85
Double glass 0.75
Double glass with spectral (low) selective and low emissive coating (HR++) 0.60
Triple glazing without or with one spectrally (low) selective and low emissiv-
ity coating

0.50

Triple glass with two spectrally (low) selective and low emissivity coatings 0.40
Single glass with single glass front window or rear window without coating 0.75
aAssuming a clean surface and normal, clear and non-scattering glass.

2.5.5.1.3 Frame fraction
The area of the glazing can be determined with the geometric data or window
dimensions (Method A) or derived from a fixed frame fraction (Method B). The
same choice must be made for all windows in a building.

• Method A: The frame fraction of window , Fƒ r; , should be calculated
according to the following formula:

Fƒ r; = 1 − Ag;

A

(2.33)

Symbol Description

Fƒ r; Frame fraction
Ag; Area of the glazed part of window  inm2

A Area of window  inm2

• Method B: If the frame fraction is unknown when determining the
transmission losses, e.g., because fixed values for the heat transfer
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coefficient are used for windows, the following numerical value must be
used for the frame fraction:

Fƒ r; = 0.25

2.5.5.2. HEAT FLUX DUE TO INCIDENT SOLAR RADIATION THROUGH
NON-TRANSPARENT PARTS

For each non-transparent surface of the thermal envelope of the building (op;k),
the heat flux for heating QH/C;so;op,k;m in kWh, in month m, is calculated using
equation (2.34):

QH;so;op,k;m = αso · Rse · Uc;op,k · Ac;op,k · Fsh;obst;op,k;m · so;op,k;m ·
0.001 · tm − Qsky;op,k;m (2.34)

Where, for every non-transparent element k and month m:

QH;so;op,k;m Solar heat gain by non-transparent element op, k for heating, in
kWh

αso Dimensionless absorption coefficient for solar radiation. Fixed
value = 0.6

Rse Heat transfer resistance on the outside in m2K/W. Defined by
table 2.11

Uc;op,k Heat transfer coefficient of non-transparent element op, k in
W/(m2 · K)

Ac;op,k Area of non-transparent element op, k inm2.

The remaining variables are described for equation (2.30) (replacing index  by
index op). Additionally, the dimensionless shading reduction factor for external
impediments of a non-transparent element op, k is Fsh;obst;,k;m = 1.

Table 2.8: Excerpt of the monthly average total incident solar radiation, so;m, av-
eraged over all hours; ground reflection coefficient ρ = 0.2. Taken from
(NEN, 2024)

β 0◦ 30◦

γ - 180
◦

(Z)
225◦
(SW)

270◦
(W)

315◦
(NW)

360◦
(N)

45◦
(NE)

90◦
(E)

135◦
(SE)

Month sol;mi

January 28.0 50.5 44.4 29.0 16.2 14.9 15.8 26.9 42.2
February 49.3 69.1 61.2 46.2 32.9 27.2 34.5 49.4 63.7

March 96.6 122.5 109.3 87.7 66.7 56.4 72.8 97.6 117.7

Continued on next page
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Table 2.8 – continued from previous page

β 0◦ 30◦

γ - 180
◦

(Z)
225◦
(SW)

270◦
(W)

315◦
(NW)

360◦
(N)

45◦
(NE)

90◦
(E)

135◦
(SE)

Month sol;mi

April 160.5 189.5 174.5 146.5 115.6 104.6 125.1 158.9 184.1
May 197.0 211.1 201.5 179.9 155.8 148.5 160.6 186.3 206.3
June 209.3 211.2 210.7 199.4 180.6 171.0 173.0 189.7 204.4
July 191.0 196.1 193.2 180.2 162.1 153.0 156.9 175.0 190.0

August 177.2 197.9 198.3 178.4 147.6 125.8 127.5 152.8 179.3
September 123.9 154.0 146.2 121.1 91.6 73.7 86.5 113.7 140.1

October 73.2 102.4 91.5 68.8 47.3 36.3 48.9 71.6 93.6
November 34.3 54.8 47.7 32.9 20.5 18.6 20.9 33.8 48.6
December 21.0 38.3 32.6 20.6 12.5 12.2 12.5 21.2 33.1

Table 2.9: Excerpt of shading reduction factor (Fsh;obst;m) for heat demand calcu-
lation with complete obstruction. Taken from (NEN, 2024)

Orientation
South

Vert. Diagonally turned up Hor. Diagonally turned down
Tilt compared to horizontal

Month 90◦ 75◦ 60◦ 45◦ 30◦ 15◦ 0◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

Month sol;mi

January 0.19 0.20 0.22 0.25 0.30 0.39 0.55 0.18 0.19 0.23 0.33 0.82 1.00
February 0.30 0.31 0.32 0.36 0.40 0.47 0.58 0.30 0.33 0.42 0.69 0.99 1.00

March 0.35 0.33 0.34 0.35 0.38 0.42 0.49 0.38 0.46 0.67 0.98 1.00 1.00
April 0.36 0.32 0.30 0.30 0.31 0.33 0.36 0.44 0.62 0.98 1.00 1.00 1.00
May 0.46 0.39 0.35 0.33 0.32 0.33 0.34 0.61 0.92 1.00 1.00 1.00 1.00
June 0.56 0.47 0.41 0.38 0.37 0.37 0.37 0.75 1.00 1.00 1.00 1.00 1.00
July 0.56 0.47 0.43 0.40 0.39 0.39 0.41 0.72 0.98 1.00 1.00 1.00 1.00

August 0.42 0.37 0.34 0.33 0.33 0.35 0.37 0.53 0.77 1.00 1.00 1.00 1.00
September 0.34 0.32 0.32 0.32 0.34 0.38 0.43 0.39 0.50 0.77 1.00 1.00 1.00

October 0.28 0.27 0.29 0.31 0.34 0.39 0.48 0.29 0.34 0.45 0.82 0.99 1.00
November 0.24 0.25 0.27 0.30 0.35 0.43 0.56 0.24 0.25 0.30 0.46 0.95 1.00
December 0.19 0.19 0.19 0.25 0.30 0.39 0.55 0.18 0.19 0.23 0.33 0.82 1.00
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Table 2.10: Form factor values between the structure k and the sky Fsky;k
Value Condition

1 Horizontal structure, the angle of inclination from the horizontal of which
is less than or equal to 5◦

0.75 Inclined structures with an angle of inclination from the horizontal less
than or equal to 75°, but greater than 5◦

0.5 Vertical structure with an angle of inclination from the horizontal greater
than 75◦

0 External partition structures adjacent to the outside that lean over (facing
the ground)

0 Partition constructions between a calculation zone and an adjacent
unheated greenhouse

Table 2.11: Heat transfer resistances at different heat flow directions

Heat transfer resistance Direction of the heat flow

m2 ·K/W Up Horizontal Down

Rs 0.10 0.13 0.17
Rse 0.04 0.04 0.04

2.5.6. EFFECTIVE INTERNAL HEAT CAPACITY OF A ZONE

T he effective internal heat capacity of the calculation area (air, furniture and
building elements) represents the total heat capacity seen from the inside.

The method is derived from NEN-EN-ISO 52016-1:2017 (ISO, 2017) and
calculated using equation (2.35).

Cm;nt;eƒ ƒ ;z = Dm;nt;eƒ ƒ ;z · 1000 · g;z (2.35)

Cm;nt;eƒ ƒ ;z Effective internal heat capacity of the calculation zone, in J/K;
Dm;nt;eƒ ƒ ;z Specific internal heat capacity of the calculation zone, determined

using tables 2.12 to 2.14, in kJ/m2K;
g;z Usable area of calculation zone z in m2.
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Table 2.12: Fixed values for the specific internal heat capacity

Type of
construction

Floors

Type of
construction

Walls

Dm;int;eff;zi�
kJ/(m2K)
�

Close ceilinga None or open
ceilingb

Light Light 55 80

Light Heavy
110 180Heavy Light

Very heavy Light

Heavy Heavy 180 360Light Very heavy

Heavy Very heavy
250 450Very heavy Heavy

Very heavy Very heavy

aIn non-residential buildings, the column ”closed or lowered ceiling” should be
used unless at least 15% net of the ceiling surface of a free-hanging ceiling in
the occupied area, evenly distributed over the ceiling, is open.
bFor residential buildings, the column ”no or open ceiling” should be used as a
starting point.

Table 2.13: Specification of the type of floor construction for the determination of
the specific internal heat capacity

Type of
construction Flooring

Light

Wooden floors
Timber frame construction (hsb) floors
Steel frame construction (sfb) floors
Floors of any type that are insulated on the inside

Heavy Steel-concrete floors
Non-solid concrete floors, such as hollow core slab and cassette
floors

Very heavy Massive concrete floors
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Table 2.14: Specification of the type of wall construction for the determination of the
specific internal heat capacity

Type of
construction Walls

Light

Timber frame construction (hsb)
Steel frame construction (sfb)
Steel skeleton construction
Walls of any type that are insulated on the inside

Heavy Load-bearing masonry
Concrete column-girder skeleton construction

Very heavy Concrete wall-floor skeleton construction

2.5.7. UTILISATION FACTORS

F actors reducing the total monthly heat gains in the monthly calculation method
are used to obtain the resulting reduction of the building energy needed for

heating. The method is derived from ISO 52016-1:2017 (ISO, 2017). The
dimensionless utilisation factor for heat gain, ηH,gn, is a function of the heat
balance ratio for heating, γH;z;m , and a numerical parameter, αH;z;m , which
depends on the thermal inertia of the building. Figure 2.18 highlights this section’s
focus areas.

Figure 2.18: Utilisation factors

The utilisation factor is calculated for each zone and month using equation (2.36):

ηH;gn;z;m =



1−
�
γH;z ;m

�H;z ;m

1−
�
γH;z ;m

�H;z ;m
+1 , γH;z;m > 0 and γH;z;m ̸= 1

H;z ;m
H;z ;m+1

, γH;z;m = 1
1

γH;z ;m
, γH;z;m ≤ 0 and QH;gn;z;m > 0

1, γH;z;m ≤ 0 and QH;gn;z;m ≤ 0
(2.36)
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Whereby:

γH;z;m =
QH;gn;z;m

QH;ht;z;m

(2.37)

Where:

ηH;gn;z;m Dimensionless utilisation factor for heat gain
γH;z;m Dimensionless heat balance ratio for heating
αH;z;m Dimensionless numerical parameter. Determined using equa-

tion (2.38)
QH;gn;z;m Total heat gains for heating, in kWh. Determined using 2.5.4
QH;ht;z;m Total heat transfer for heating, in kWh. Determined using sec-

tion 2.5.3

The dimensionless numerical parameter αH;z;m is calculated by the following
formula:

αH;z;m = αH;0 +
τH;z;m

τH;0
(2.38)

αH;0 Dimensionless numerical reference parameter, which has the following
number value: H;0 = 1.0

τH;z;m Time constant of the heat requirement in h. Determined using equa-
tion (2.39)

τH;0 Reference time constant, for which the following number value holds:
τH;0 = 15, in h

2.5.7.1. CALCULATION ZONE TIME CONSTANT

The calculation zone time constant, τ, characterises the internal thermal inertia
of the calculation zone. The time constant can be different for heating and
cooling calculations. It can vary from month to month depending on the variation
of the two variables on which the time constant depends, namely Htr and He.
The time constant, distinguished for heat demand (H) and cooling demand (C) in
hours, is calculated as follows:

τH;z;m =

Cm;nt;eƒ ƒ ;z

3600
HH;tr(ec.grƒ );z;m + HH;g;dj;z + HH;e;z;m

(2.39)

Where:
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τH;z;m Time constant of calculation zone z for the heat demand
and the cooling demand calculation respectively in h

Cm;nt;eƒ ƒ ;z Effective internal heat capacity of the calculation zone in
J/K. Determined using equation (2.35)

HH;tr(ec.grƒ );z;m Total heat transfer coefficient by transmission for heating
excluding the ground floor in W/K. Determined using equa-
tion (2.6)

HH;g;dj;z Seasonal average of the total heat transfer coefficient by
transmission through the ground floor in W/K

HH;e;z Total heat transfer coefficient through ventilation, for month
m in W/K. Determined using equation (2.16)

2.5.8. HOT TAP WATER

T he net heat demand for hot tap water (HTW) for the residential buildings
is determined based on a prescribed demand per resident in kWh per year,

where the number of residents is dependent on the usable floor area. For the
utility buildings category, the net heat demand for hot tap water is determined by
a prescribed demand per calculation zone in kWh per m2 of usable floor area
per year. Figure 2.19 highlights this section’s focus areas.

Figure 2.19: Hot tap water

2.5.8.1. RESIDENTIAL

QW;nd;z,m = Noon;z ·NP;oon;z ·QW;nd;spec;p · tm

tn
(2.40)

The number of occupants per calculation zone NP;oon;z based on the average
usable floor area per residential unit per calculation zone as determined using
equations (2.20) to (2.22). Heat demand for HTW for residential buildings is
856 kWh/person, with a specific usage of HTW of 60◦C water of 40.29
l/d/person. The distribution of HTW between the kitchen and bathroom are fixed
values as 0.2 for kitchen (CW;nd;k) and 0.8 for bathroom (CW;nd;b).
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2.5.8.1.1 Utility Buildings

QW;nd;z,m = QW;nd;spec;s × Ag;z ×
tm

tn
(2.41)

Where:

QW;nd;spec;s Monthly heat demand for HTW weighted according to the func-
tion in kWh/m2 per year. Determined using table 2.15

Ag;z Usable floor area of calculation zone z inm2

tm Length of monthm in h. Determined using table 2.1
tn Length of the year in h

The calculation value for QW;nd;spec per unit of usable floor area for utility
buildings is given in table 2.15.

Table 2.15: Annual specific QW;nd;spec fixed values per usage function

Calculation zone function
QW;nd;spec

kWh/m2/yer
VW;nd;spec;dy

/m2/dy

Childcare facility 2.8 0.131
Other meeting facility 2.8 0.131
Prison 4.2 0.196
Healthcare function with beds 15.3 0.719
Other healthcare facility 2.8 0.131
Offices 1.4 0.065
Lodging 12.5 0.588
Educational 1.4 0.065
Sports 12.5 0.588
Retail 1.4 0.065

2.6. EXISTING DUTCH MODELS
There are several datasets and data models currently available in the Netherlands,
in this section I will discuss the most relevant ones. SAWEC (Vethman et al.,
2019), the Simulation and Analysis model for the Explanation and Prediction of
Housing-Related Energy Use and CO2 Emissions ”Dutch Simulatie en Analyse
model voor verklaring en voorspelling van het Woninggebonden Energieverbruik
en CO2-emissie”. Its scope is to simulate the building-energy-related energy use
of living units for future projections and monitoring of energy systems. It is used
to produce the annual estimates within the building stock of the Climate and



2.6. Existing Dutch models

2

63

Energy Outlook, in Dutch Klimaat-en Energieverkenning –KEV– Hammingh et al.
(2024).

Vesta MAIS (PBL, 2025), this spatial energy model has been used since 2011
for the calculation of the energy use and CO2 emissions of the built environment
for the period up to 2050. It evaluates the potential and cost of building-level
measures, analysing their impact on emissions reduction, energy use, investment
costs and financial returns. It supports national and regional decision-making.
Since 2017, it has been open source, allowing it to be used by municipalities and
private companies.

Currently, Hestia 1.0 (van der Molen, Poorthuis et al., 2023) is the open-source,
spatially-explicit energy model for every dwelling in the Netherlands, which has
been developed to replace SAWEC and Vesta MAIS. Its results have been used
already for the annual Climate and Energy Exploration, in Dutch Klimaat- en
Energieverkenning –KEV– (Hammingh et al., 2024) as well as the municipal
heat transition vision, in Dutch Transitievisie Warmte –TVV– (van der Molen,
Langeveld et al., 2023). Hestia is a multi-source platform since it combines data
modelling, simulations engines and forecasting of the energy demand of the
Dutch building stock. Figure 2.20 shows the schematic representation of the
different components of Hestia.

Figure 2.20: Schematic representation of the different components of Hestia. Adap-
ted and translated from van der Molen, Poorthuis et al. (2023), colours
follow the same pattern as in the mentioned report

The building stock is defined by the cadastre Netherlands (Kadaster) INSPIRE
database Kadaster (2025). This dataset corresponds to the Basic Registration
Addresses and Buildings –BAG– (see section 3.2.1.1). However, in this case,
the dataset is structured according to the European INSPIRE guidelines. The
data from new buildings are defined by using predefined building archetypes (see
section 3.2.2.1), including average floor area and HVAC systems. According
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to the authors, building geometric data are extracted from the 3DBAG (see
section 3.2.1.2). However, no clear details are available in the documention about
the use of this dataset. The physics data of the surfaces that define the thermal
envelope of buildings are provided by the WoON 2018 dataset Stuart-Fox et al.
(2022) (see section 3.2.2.1). The data collected from the WoON dataset have
been extrapolated to find the distribution of building areas for each building
type-year-of-construction combination (see table 3.5). The energy performance
certificate data is taken from ep-online (see section 3.2.2.2); authors indicate that
for The building stock is defined by the cadastre Netherlands (Kadaster) INSPIRE
database Kadaster (2025). This dataset corresponds to the Basic Registration
Addresses and Buildings –BAG– (see section 3.2.1.1). However, in this case,
the dataset is structured according to the European INSPIRE guidelines. The
data from new buildings are defined by using predefined building archetypes (see
section 3.2.2.1), including average floor area and HVAC systems. According
to the authors, building geometric data are extracted from the 3DBAG (see
section 3.2.1.2). However, no clear details are available in the documention about
the use of this dataset. The physics data of the surfaces that define the thermal
envelope of buildings are provided by the WoON 2018 dataset Stuart-Fox et al.
(2022) (see section 3.2.2.1). The data collected from the WoON dataset have
been extrapolated to find the distribution of building areas for each building
type-year-of-construction combination (see table 3.5). The energy performance
certificate data is taken from ep-online (see section 3.2.2.2); authors indicate the
development of a simplified NTA 8800 method for the computation of the energy
performance of buildings. However, no documented details are available.

2.7. CONCLUSION REMARKS

T he literature review in this chapter leads to the following conclusions. UBEM
approaches require a lot of data from multiple sources, that could be

feasible to obtain for specific buildings but impractical when thinking of city- or
country-wide analyses. Therefore, archetypes are being used for those scales of
analyses.

Machine learning in energy simulations is used primarily to identify the relationship
between building parameters and actual ”energy consumption” data. Also, it is
used to predict future consumption patterns based on statistical and historical
energy data. Data-driven approaches for energy simulation typically classify
buildings into well-defined archetypes based on their function and year of
construction. This approach allows for the classification of most buildings based
on these representative archetypes.

In several researches, when authors discuss multi-scale or city-scale analyses,
building-scale simulations are performed on selected buildings that best represent
defined archetypes. The results of these representative simulations are then
applied to all other buildings in the corresponding categories. This strategy
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significantly reduces the computational time compared to the simulation of every
building in the study area.

The literature also indicates that most UBEM approaches are file-based,
which can limit data accessibility, scalability, and performance. Incorporating
database management systems (DBMS) enhances data storage, retrieval, and
processing, especially when dealing with large datasets, which is typical of UBEM.
Furthermore, integrating DBMS improves the interaction between the data and
BES.

Finally, The NTA 8800 specifies the energy balance method tailored to
the Netherlands. This method depends on the geometrical and semantical
representation of buildings, including their physical characteristics.

The analysis of the NTA 8800 carried out in this chapter lays the foundation for
the analysis on data requirements characteristics (availability, quality) carried out
in chapter 3, and that will also influence the second part of this PhD Thesis
regarding the implementation (chapters 4 to 6).

Other Dutch initiatives have been implemented to compute the energy demand
of the building stock. However, their work relies on official statistical data that is
not open access and therefore has not been considered in this PhD research.





3
ALIGNING DUTCH OPEN

SPATIAL AND NON-SPATIAL
DATA WITH UBEM

REQUIREMENTS
The introduction and theoretical framework chapters have provided the knowledge
to discuss the data requirements for Urban Building EnergyModelling. They provided
the conceptual reasoning for the data collection based on the scope of using open
spatial and non-spatial data at the country level using the Netherlands as a concrete
case study.

T he theoretical framework presented in chapter 2 indicates that Urban
Building Energy Modelling (UBEM) requires extensive data from multiple

heterogeneous sources. However, these requirements are not standardised and
can vary depending on factors such as the scale of analysis. The chapter
is structured around two primary data types: geospatial and non-geospatial
sources. First, I discuss general data considerations for UBEM and demonstrate
how semantic 3D city models (s3DCM) and open data in the Netherlands can
address these requirements (section 3.1). Then, I describe the country-wide open
datasets available in the Netherlands that will be used in the following chapters
(section 3.2). The chapter closes with the key findings of the data requirements
of UBEM (section 3.3).

3.1. GENERAL DATA CONSIDERATIONS

U BEM requires lots of coherent spatial and non-spatial data. However, the
characteristics of the data may vary depending on the location, the scope,

67
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and the method used in the case study. In an ideal scenario, all necessary data
would be available, including all building characteristics (cadastral, geometric, and
physics), localised weather data, ”energy consumption” records, and information
on occupants’ behaviour. In practice, however, data collection limitations,
access restrictions, or incomplete datasets often prevent such an ideal scenario.
Figure 3.1 outlines the essential data required for UBEM, which fall into three
major categories: building, climate, and energy. Data types are classified as
discussed in section 2.2. Therefore, Buildings are the essential element of UBEM,
and their data requirements vary depending on the type of data.

Figure 3.1: General overview of UBEM data requirements, from (León-Sánchez,
Agugiaro et al., 2025)

3.1.1. GEOSPATIAL DATA
3.1.1.1. BUILDING DATA
Geometric data encompass all data about the building that has a spatial
relationship with the earth; these data define the shape of the building while
having a spatial connotation, including an associated coordinate reference
system. The scope of this PhD thesis is to enhance energy applications using
semantic 3D city models (s3DCM). Therefore, s3DCMs are the most prominent
and convenient geometric data source. As explained in section 2.2.1, buildings
are modelled using the boundary representation method. This approach is
appropriate for energy applications such as quantifying the solar potential or
simulating the energy performance of buildings. When following the CityGML
standard, information such as surface area, inclination, and orientation can
be computed from the ThematicSurfaces that define the building’s envelope.
Furthermore, inclination and orientation are required for processes such as solar
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irradiance simulation of the surfaces of the building.

Information that is relevant for UBEM may be included in the s3DCM. For
example, neighbouring buildings that share boundary surfaces (PartyWalls) with
other buildings have shared surface areas that are essential when performing
heat transfer calculations. That is also the case when there are multiple
thermal zones inside the building. However, this information is not present in
all 3DCMs. Furthermore, not all LoDs are a perfect fit for energy applications
since the thermal envelope of a building shall be classified between opaque and
glazed due to their corresponding physical properties. However, LoD1 and LoD2
building representations in CityGML do not support this data. Therefore, ratios
like window-to-wall or window-to-roof (or, more generally, opening-to-surface) are
required instead to account for this distinction, which is also the case for window
frames. The GroundSurface of a building or its footprint (in cases such as the
3DBAG the roof’s print figure 3.6) details the area touching the ground and the
linear thermal boundary of the building on the ground.

3.1.1.2. CLIMATE AND WEATHER DATA

W hen it comes to climate data, two main climate parameters are crucial for
UBEM: the incident solar irradiation on the thermal envelope surfaces and

the outside temperature. The most accurate method to measure solar irradiance
over a surface is through pyranometers; however, this is impractical at urban
scale as the sensor only measures the irradiance at specific locations. Other
options are satellite remote sensing observations, simulations-based approaches
using geospatial and weather data, and statistical data. According to NTA 8800,
a shading reduction factor must be included when using statistical climate data.

The Royal Netherlands Meteorological Institute (KNMI) serves as the Dutch
national weather service. It operates a comprehensive nationwide observation
network, a key component of which includes 48 automatic weather stations—34
on land and 14 at sea (KNMI, 2024a). These stations are equipped to measure
various meteorological variables such as air temperature, humidity, air pressure,
wind speed and direction, precipitation amount, type of precipitation (rain or
snow), cloud height and quantity, solar radiation, and horizontal visibility. Hourly
observations are available to download as open data in the KNMI website (KNMI,
2024b).

However, these stations record global solar radiation. It is necessary to consume
the typical year data sets when requiring diffuse and direct solar radiation
measurements, as well as data on solar elevation and azimuth, which are derived
from scientific models and consolidate the average of observed data collected
over a minimum period of 30 years (Klement, 2024).

A source of open dataset is the climate.OneBuilding.Org project (Lawrie and
Crawley, 2023), a repository of building simulation climate data. This platform
offers climate data specifically designed to support building simulations, including
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EnergyPlus files (EPW) from various organisations and countries. In the
Netherlands, this dataset includes data from the same weather stations as the
KNMI.

3.1.2. NON-GEOSPATIAL DATA
3.1.2.1. BUILDING DATA
Non- geometric data encompass all data that characterise the building, and
these are independent of or do not vary based on the geometric representation
of the buildings. In UBEM, the building’s function is essentially non- geometric
information, and several parameters depend on this attribute. In the case
of NTA 8800, these parameters have standard values per square meter, as
shown in table 2.6. Occupancy data correspond to the human activities that
influence energy consumption, such as opening hours for offices or educational
buildings. Information about heating, ventilation, and air conditioning (HVAC)
systems, which include water pumps, heaters and boilers, is fundamental due to
the ”energy consumption” of these systems, as well as their operational capacity,
which is crucial for maintaining occupant health and comfort inside buildings.

The number of storeys affects the total floor area, influencing the internal
loads due to occupancy, lighting, and equipment. Knowing the number of
living units within a building is equally important; for example, a residential
building with multiple living units will have specific characteristics, such as the
number of kitchens and bathrooms, which vary depending on the building usage.
The building type and construction characteristics significantly affect its energy
performance. For example, the physical properties of a two-storey residential
house differ from those of a twelve-storey apartment block, as the construction
materials and techniques vary. Similarly, the year of construction influences
the construction methods used, as these are characterised by regulations and
state-of-the-art of construction techniques that were in place at the time of the
construction (Neufert et al., 2021; Rijksoverheid, 2024a).

3.1.2.2. PHYSICS DATA
The performance of a building strongly affects its use in terms of indoor climate,
thermal comfort, air quality, and lighting, which directly influence its ”energy
consumption”. Therefore, knowing the construction materials and techniques used
for each part of the building is essential. This information, for example, includes
critical data on thermal transmittance (U-value), the solar energy transmittance
(g-value) for windows of the surfaces that form the thermal envelope, and the
building’s infiltration rate. Additionally, factors like the building’s infiltration rate,
colour, and surface reflectance play a significant role when determining heat
absorption, heat loss, and overall energy demand.
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3.1.2.3. ENERGY DATA

E nergy data on theoretical energy demand or actual data on ”energy
consumption” serve two primary purposes: input for data-driven UBEM

models and as ground truth for accuracy assessment of the UBEM results. These
data can be obtained from energy performance certificates and actual ”energy
consumption” values, typically disaggregated into electricity, gas, and heating.
Due to privacy restrictions, direct access to detailed ”energy consumption” data
is often limited. As a result, aggregated data at the postal code, district, or city
level is commonly used as an alternative.

In the case of the Netherlands, these data are published by the Dutch Central
Bureau of Statistics (CBS). However, these are aggregated at the postcode-6
level (the highest spatial resolution by postcode in the Netherlands). This dataset
contains average supplies of natural gas and electricity to homes and businesses
(CBS, 2023).

3.2. DATA AVAILABILITY

T he analysis of the data requirements identified the data that are needed for
UBEM for my thesis. However, some datasets have a multipurpose usage

(i.e., the s3DCM) and, therefore, may contain different information than is required
for UBEM. Hence, I discuss only those entities and attributes that directly relate
to the research questions from section 1.3, with the scope of using open data.

3.2.1. GEOSPATIAL DATA
3.2.1.1. BAG

T he basic registration addresses and buildings (in Dutch ”Basisregistratie
Adressen en Gebouwen”–BAG), contains information on all addresses and

buildings in the Netherlands, such as year of construction, footprint gross floor
area, purpose and their location. Municipalities are source owners of the BAG
and are responsible for data quality and registration. Kadaster publishes the
National Address Data System (in Dutch ”Landelijke Voorziening BAG” –LV BAG),
as open data available to the public (Kadaster, 2024c).

This dataset is updated monthly, among the available data formats, including
OGC services, APIs, and ATOM services published by Kadaster (2024b). I use
the XML format ATOM service since it provides the complete dataset. The BAG
is a concurrent dataset, meaning that its tables contain historical records. For
the dataset updated to 8th August 2024, table verblijfsobject contains 22’956.576
records corresponding to 10’234.487 unique living units (in Dutch ”verblijfsobject
”) –hereafter referred to as vbo–. A graphical summary of the data available in
the BAG is shown in figure 3.4. Table 3.1 presents the attributes available in all
entities of the BAG. A package diagram of the entities available in the BAG is
shown in figure 3.2. A simplified Entity Relation diagram of the BAG is shown in
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figure 3.5; the attributes highlighted in colour indicate those that relate entities to
each other.

Table 3.1: Description of common BAG attributes among its entities
Attribute Description Data type Unit

ogc_fid Unique database identifier serial -
identificatie Cadastre identifier text -
status This attribute indicates the situation of the element for the cor-

responding mutation. Examples of this attribute include: permit
granted; in use; renovation; demolished; out of use

text -

voorkomen
identificatie

Sequential number that increases for any mutation that happens
to a cadastre element. This value is unique per identificatie

serial -

wkb_geometry It contains the geometry representation of the element geometry -

Figure 3.2: Overview of the BAG entities

Where:

Ligplaats Places in the water. Floating objects suitable for residential, commercial, or
recreational purposes

Standplaats Designated piece of land intended to place an element not directly connec-
ted to the ground permanently, e.g., a camp. It is suitable for residential,
commercial, or recreational purposes

Verblijfsobject (vbo) The smallest unit of use located within one or more buildings and suitable for
residential, commercial, or recreational purposes, accessed via its lockable
entrance from the public road, a yard, or a shared traffic area, can be the
subject of property rights transactions and is functionally independent

Nummeraanduiding Address indicator assigned by the municipality to Verblijfsobject, Standp-
laats or Ligplaats

Openbare ruimte Outdoor space located within a single residential area
Pand Building, it is an independent unit connected to the ground, accessible and

lockable
Woonplaats Part of the territory of a municipality designated as a residential area

The distribution of buildings based on their construction period is presented in
figure 3.3, 73.78% of the building stock was constructed before the 21st century,
indicating a high potential for renovation. Furthermore, only 12.54% of buildings
have been built since 2012, meaning they comply with the latest construction
regulations in the Netherlands (Rijksoverheid, 2024a). However, the building
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dataset is incomplete; for instance, function data is missing for 41% of buildings.
Among the 59% with available function data, figure 3.4b shows the distribution
across vbos. The detail attributes per entity are defined in table 3.2.

Figure 3.3: Properties by the year of construction

(a) Distribution of function per Pand (b) Distribution of function per vbo

Figure 3.4: Basic characteristics of the BAG data
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Table 3.2: Description of the attributes kept by BAG entity
Attribute Description Data type Unit

Pand
oorspronkelijk
bouwjaar

year of construction Date -

vbo
gebruiksdoel Function. It is a categorization of the purpose of use of the vbo as

included in the permit or determined by survey (Kadaster, 2024e)
text -

oppervlakte Usable area. In terms of the BAG, a vbo is first delineated, then
its usable area is determined (Kadaster, 2024e). It uses the NEN
2580:2007 standard to measure it. This method is also used for
the “Valuation of immovable property” (WOZ in Dutch). Among the
indications, it consists of the sum of the usable living area and the
usable area of other indoor spaces. It applies if the other indoor
space is an internally accessible indoor area of a vbo; Indoor spaces
that are not internally accessible must be reachable from outdoors;
it is considered a usable area if the indoor area has a ceiling higher
than 1,5m (NEN, 2007)

Real m2

hoofd adres
nummer
aanduiding ref

main address number indication reference. This attribute is the for-
eing key of the nummeraanduiding entity

text -

pandref This attribute is the foreing key of pand entity. However, in this case
it is an array of values since one vbo can be located in multiple
buildings, that is the case of 224.521 vbos

array -

Nummeraanduiding
huisnummer building number integer -
huisletter building letter text -
huisnummer
toevoeging

building number addition, a further addition to a building number or
a combination of building number and building letter

text -

postcode post code text -
openbareruimte

naam Street name text -
type Street tyupe text -

woonplaats
naam Name of the residential area text -
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Figure 3.5: BAG Entity Relation diagram
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3.2.1.2. 3DBAG
In 2021, the 3D Geoinformation Group at TU Delft published a country-wide
s3DCM dataset, called 3DBAG, containing all buildings in the Netherlands in
three different levels of detail (LoD1.2, LoD1.3 and LoD2.2) (Peters et al., 2022).
It combines two main datasets, the BAG and the current elevation dataset of the
Netherlands (in Dutch ”Actueel Hoogtebestand Nederland”), hereafter referred to
as AHN, which is the digital height map of the Netherlands that contains detailed
and precise height data (point clouds lidar) with an average of at least 8 points
per square meter (Rijkswaterstaat, 2024). A sketch of the representations
available in the 3DBAG is shown in figure 3.6. It is important to mention that the
building’s footprint in the 3DBAG represents the area covered by the projected
roof on the ground since the 2D BAG building polygons, on which the 3DBAG
is based, represent the outer lines of building roofs as seen from above and not
the footprint. The attributes available from the 3DBAG, as detailed in table 3.3,
are kept for the processes discussed in the following chapters of this PhD thesis.
Some of these attributes come from the BAG, while others are added during the
3D reconstruction process.

Figure 3.6: LoDs available in the 3DBAG. Sample images from (Biljecki, 2017)

(a) 3D mesh ©2024 Apple Inc. (b) 3DBAG LoD1.2

(c) 3DBAG LoD1.3 (d) 3DBAG LoD2.2

Figure 3.7: Several 3D representations of the TU Delft Architecture Faculty building
(BK)
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Table 3.3: Description of the 3DBAG attributes keep for the energy applications
Attribute Description Data type Unit

identificatie* ID of a building text -
oorspronkelijk
bouwjaar*

Year of construction of the building date YYYY

b3 bouwlagen An estimation of the number of floors in the building. Estimates
are only available for buildings with up to 5 estimated floors

Integer -

b3 dak type Roof type of the building. Values:
• slanted: Roof with at least one slanted surface
• multiple horizontal: Roof with multiple, only horizontal
surfaces

• single horizontal: Roof with a single horizontal sur-
face

• no points: No point was found for the building
• could not detect: Could not detect a roof surface, even
though points were found

categorical -

b3 h dak 70p The 70th percentile elevation on roof surface based on recon-
structed 3D model in LoD2.2. Given as elevation above sea
level (Amsterdam Ordnance Datum)

Real m

b3 h maaiveld Elevation above sea level at the ground level of the building.
Calculated as the 5th percentile of the ground points found
within a 4-meter radius of the building

Real m

b3 kas
warenhuis

The building is greenhouse or warehouse (according to
TOP10NL) or has an area of over 70000m2

categorical true/false

b3 opp
buitenmuur

Total area of the exterior walls Real m2

b3 opp dak plat Total area of the flat parts of the roof Real m2

b3 opp dak
schuin

Total area of the sloped parts of the roof Real m2

b3 opp grond Total ground floor area Real m2

b3 opp
scheidings-
muur

Total area of the party walls Real m2

b3 val3dity
lod22

Val3dity error codes for the LoD2.2 3D model. Empty list
means valid geometry

list -

b3 volume
lod22

Volume of the LoD2.2 model Real m3

3.2.1.3. BAG-PLUS

T his is a suggested complementary dataset to the existing BAG data for the
whole Netherlands. However, only the municipality of Amsterdam publishes

the BAG-plus as open data to support its processes (Gemeente Amsterdam,
2022). The additional attributes include information on the building type and the
number of storeys of the building. The published dataset contains the data from
the municipalities of Amsterdam and Weesp; however, data from Weesp are
limited, as it was incorporated into Amsterdam on 24th March 2022. Relevant
attributes are listed in table 3.4.
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Table 3.4: BAG-plus Additional Attributes
Attribute Data Type Description

ligging_omschrijving string Property type
type_woonobject string Type of residential unit: One, multiple
aantal_bouwlagen Integer Number of floors of the property
hoogste_bouwlaag Integer The Highest storey of the property
laagste_bouwlaag Integer The Lowest storey of the property

As of September 2024, it contains records of 1.212.214 vbos, corresponding to
555.079 buildings.

3.2.2. NON-GEOSPATIAL DATA
3.2.2.1. PHYSICS-RELATED DATA
Currently, no open dataset contains detailed physics-related data of buildings
in the Netherlands. The only dataset that I am aware that keeps a record of
the renovation of buildings is the Nederland Housing under research (in Dutch
”WoonOnderOnderzoek”–WoON), which is a large-scale survey performed by
CBS. This survey provides data on several components of housing conditions,
including energy-related building characteristics such as HVAC systems, solar
panels, and building materials (e.g., insulation and windows). Conducted between
August 2020 and September 2021, the survey collected responses from 46,700
participants (Stuart-Fox et al., 2022). However, due to privacy regulations, these
data are only accessible via CBS servers, and only aggregated values can be
exported to protect respondents’ data. Therefore, these data will not be used in
this research due to access restrictions, which is out of the scope of this thesis.

Therefore, the alternative is to use physics-related data based on building
archetypes, that is the case of the Episcope TABULA, and the example buildings
report (in Dutch ”Voorbeeldwoningen”). One of the products of the TABULA
project, as discussed in section 2.2.2.1, is the definition of building typologies
across Europe. The project defines four main building types for the participating
countries: Single-Family House (SFH), Terraced House (TH), Multi-Family House
(MFH), and Apartment Block (in Dutch ”Flatwoning”) (FW).

In the Netherlands, this classification is extended with six additional types:
detached (in Dutch ”Vrijstaand”, VW), semi detached house (in Dutch ”Twee-
onder-één-kap”, TOEK), Middle-row (in Dutch ”Tussenwoning”, TW), End-row
(in Dutch ”Hoekwoning”, HW), common staircase without galleries (in Dutch
”Portiek”, PW), and common staircase with galleries (in Dutch ”Galerij”, GW), and
Mansionnette (MW).

Building types can be described as follows:

• Vrijstaand (single family house): Detached buildings with 2 to 4 storeys
that do not share walls with neighbouring buildings
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• Twee-Onder-Een-Kap (semi detached house): Buildings that share a
common wall with one neighbour; the literal translation from Dutch is ”two
under one roof.” These buildings typically have 2 to 4 storeys

• Tussenwoning (middle-row house): Buildings constructed in a row of
joined houses, sharing at least two common side walls with neighbouring
units. These buildings typically have 3 to 5 storeys

• Hoekwoning (end-row house): Buildings located at the end or corner of a
row of joined houses. These buildings typically have 3 to 5 storeys

• Maisonnette: living units spread across several storeys within multi-storey
residential buildings

• Portiek (common staircase without galleries): One-storey living units
within multi-storey residential buildings, accessible through a closed porch

• Galerij (common staircase with galleries): One-storey living units in
multi-storey residential buildings with elevator access, where units are
accessible via an open gallery

• Flatwoning (other apartment building): A broad category for apartment
blocks that do not fit into the other described categories

The definitions and specifications per building type are based on the example
buildings report (in Dutch ”Voorbeeldwoningen”) 2022 (RVO, 2023). Oddly, it
does not specify the cases for 1-storey buildings. A hierarchical diagram of these
building types classes is shown in figure 3.9.

TABULA contains building physics data for three refurbishment scenarios: existing
state, typical refurbishment, and Net Zero Energy Building (NZEB). These data
correspond to walls, roofs, windows, and doors and have an associated U-value
per each refurbishment scenario. Additionally, TABULA includes data on HVAC,
ventilation, and DHW systems for each scenario. These data are used in the
implementation described in chapter 5. The classification of building types is
further refined by construction year as building regulations — particularly those
related to energy performance — have evolved. This distinction is shown in
table 3.5.
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(a) Vrijstaand (b) Twee-Onder-Een-Kap

(c) Tussenwoning (d) Hoekwoning

(e) Flatwoning (f) Maisonnette

(g) Portiek (h) Galerij

Figure 3.8: Examples of the building types extracted from (RVO, 2023)

The TABULA classification of buildings in the Netherlands is based on the
“Example buildings” report–Voorbeeldwoningen 2011– (Agentschap NL, 2011) by
the Ministry of Royal and Internal Affairs (in Dutch ”Ministerie van Binnenlandse
Zaken en Koninkrijksrelaties”) RVO (2023) has updated this report, incorporating
significant changes. The updated version includes the use of the Energy
section of the WoON database, the adoption of the NTA 8800 as a method for
computation of the Energy performance of buildings and the addition of two new
construction year categories: 2006-2014 and 2015-2018 as shown in table 3.5.
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Dutch Building
Stock

Terraced HouseSingle-Family House Multi-Family House

Vrijstaand
Detached

Twee-onder-één-kap
Semi-Detached

Middle-row
Tussenwoning

End-how
Hoekwoning

Apartment Block
Flatwoning (FW)

common staircase
without galleries

Portiek

common staircase
with galleries

Galerij

Mansionnettes
Mansionnette

Figure 3.9: Dutch building types according to TABULA. Blue boxes indicate generic
types; Orange boxes indicate the Dutch specific types

Table 3.5: Classification of the building types by year of construction

Building Type up to 1945 1946-1964 1965-1974 1975-1991 1992-2005 2006-2014 after 2015

Vrijstaand X X X X X X
Twee-Onder-Een-Kap X X X X X X

Tussenwoning X X X X X X X
Hoekwoning X X X X X X X
Maisonnette X X X X X X

Galerij X X X X X X
Portiek X X X X X X X

Flatwoning X X X X X X

3.2.2.2. ENERGY DATA

S ince 1st January 2008, it is mandatory for sale/renting or to hand over any
vbo in the Netherlands (not only for residential units) to have a registered

energy performance certificate (EPC) (Rijksoverheid, 2024b). These data are
collected by ep-online, which is the official Dutch database that contains the
EPC and energy performance indicators of buildings. Furthermore, ep-online
offers public access. This access is offered by Rest API and file formats: XML,
CSV and XLSX. Due to the nature of the database, it is constantly updated, so
file-based updates are available daily, and every first day of the month, RVO
publishes a total consolidation of the database to download.

The open access dataset follows a simplified data model, one registry per row
and when available or required, the corresponding attribute is filled. Currently,
it contains 42 attributes (February 2025), and it will grow if future versions
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require it. Furthermore, it contains information on several energy performance
computation methods. Therefore, multiple attributes from the ep-online dataset
are empty since the computation method does not require them; one example
is the attribute Energende (performance index), which is not required for
registration using the NTA 8800 method. As of September 2024, the ep-online
dataset contains 5,587,693 records, corresponding to 981.940 buildings. The
distribution of the EPC by vbo is shown in figure 3.10 and the distribution of the
EPC by building type is shown in figure 3.11.

Figure 3.10: Distribution of the energy performance certificates by the vbo

Figure 3.11: Distribution of the energy performance certificates by building type

Although the main purpose of this dataset is the EPC-related data, it offers a
second purpose of my research as it contains the building type and subtype of
the vbos; this only applies to flats shown in figure 3.8. Furthermore, in the
2022 report, the building type categories for Apartment Blocks (flatwoningen)
were simplified by stopping classifying living units into Portiek, Mansionnette or
Galerij. For the subtype of vbo, the classification is based on its location inside
the apartment block as shown in figure 3.12.

Figure 3.12: Building subtypes. Text colour is used for visual distinction and has no
interpretative significance
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Table 3.6: Excerpt of the attributes used in the ep-online dataset
Attribute Description

Gebouwklasse The type of building: residential or utility building.
Gebouwtype Type of dwelling.
Gebouwsubtype Dwelling subtype: the location of the apartment in the res-

idential building.
Gebruiksoppervlakte_thermische_zone Usable area of the thermal zone in m2.
Energieklasse The letter of the energy label (label class).
Energiebehoefte The energy requirement in kWh/(m2 · y)
PrimaireFossieleEnergie The primary fossil energy use in kWh/(m2 · y)
Aandeel_hernieuwbare_energie The share of renewable energy in %.
Warmtebehoefte Net heat demand for the energy performance compensa-

tion (EPV) in kWh/m2 · y
BerekendeCO2Emissie The calculated CO2 emission in kg/(m2 · y)
BerekendeEnergieverbruik The calculated total ”energy consumption” in kWh/(m2 ·

y)

A summary of the open datasets available in the Netherlands and used in this
research is shown in figure 3.13, the figure follows the same colour scheme as in
figure 3.1. The lowest level (the darkest colour) indicates the attribute used from
the corresponding dataset (mentioned at the fourth level).

Figure 3.13: Graphical summary of the open datasets available in the Netherlands,
from (León-Sánchez, Agugiaro et al., 2025)
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3.3. CONCLUSION REMARKS
The extensive data requirements of Urban Building Energy Modelling (UBEM),
as outlined in chapter 2, served as the foundation for identifying and
presenting relevant open datasets available in the Netherlands. While specific
requirements–such as geometric representations of buildings–are partially met by
existing datasets, critical gaps remain. For instance, 3D building models lack
classifications of boundary surfaces (e.g., glazed vs. opaque), limiting their utility
for detailed energy simulations.

Regarding physics-related data, no nationally comprehensive datasets exist for
building characteristics or renovation histories. Therefore, I will use standardised
archetype-based data (e.g., construction periods, typologies), as discussed in
chapter 4. This chapter details the method and workflow to enrich semantic
3D city models (s3DCM) with the purpose of enhancing energy applications by
integrating geospatial and non-geospatial data sources.



4
DESIGNING THE PIPELINE:

DATA PREPARATION FOR
ENERGY DEMAND ANALYSIS

This chapter describes the processes to prepare the data required for urban building
energy modelling for my case study. First, the data preparation is detailed, focusing
on compliance with the minimum UBEM requirements while dealing with the issues
faced during data curation (e.g., inconsistencies, missing attributes, and scalability
constraints). Second, some examples of computational solutions to resolve iden-
tified data gaps are introduced; these examples show some of the steps towards
how several datasets can be integrated into a cohesive workflow.

T his chapter presents the data pipeline of my PhD research. First, I describe
the creation of the testbed for energy applications, which serves as the

city-level case study (section 4.1). Next, I detail the development of country-level
databases, including the definition of entities and their attributes (section 4.2).
Third, I highlight key findings from various academic projects and studies
conducted during my research (section 4.3). These projects focus on evaluating
solar energy potential using enriched s3DCMs and implementing solutions to
address data gaps identified in section 4.2. Finally, I close the chapter with the
key findings this chapter, including reflections on the testbed, the EnergyBAG DB
and the implemented energy-related solutions (section 3.3).
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4.1. TESTBED CREATION1

The geographical scope of this PhD thesis is the Netherlands. It could
be considered a big dataset since the Dutch building stock has more than
10.000.000 buildings. Therefore, we created a small dataset in the municipality
of Rijssen-Holten, which is located in the eastern part of the Netherlands
(figure 4.1); it has approximately 38,000 inhabitants and around 23,000 buildings.
The creation of this dataset required the consolidation of multiple data sources
with manual work to guarantee the quality of the dataset, enabling its use in
various follow-up applications. The resulting dataset is the case study of several
sections of this PhD thesis since I have stricter control of the data available than
the country-wide dataset.

Figure 4.1: Rijssen-Holten, thick red line, location in the Netherlands

The sole source of geospatial information on buildings is the 3DBAG using its
LoD2.2 geometric representation. I processed the data from the 3DBAG, including
the following considerations: Buildings with more than one part are hierarchically
organised using CityGML classes, such as Building and BuildingPart. The
unique building ID is assigned only to the root Building object containing the
parts. The former contains the general semantic information for the whole
Building, while the latter contains the detailed data as well as the geometries.
Buildings(Parts) contain the address objects according to the BAG. The coplanar
surfaces from the same object (Building or Building Part) and thematic definitions

1This section has been published in ”Testing the New 3D BAG Dataset for Energy Demand Estimation
of Residential Buildings”. In ISPRS Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, XLVI-4/W1-2021:69-76. 2021; by (León-Sánchez, Giannelli et al., 2021) and
”Creation of a CityGML-Based 3D City Model Testbed for Energy-Related Applications”. In Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48:97-
103. 2022; by (León-Sánchez, Agugiaro et al., 2022)



4.1. Testbed creation

4

87

are merged to reduce the number of surfaces. Further tests were carried out
regarding the thematic surfaces composing the LoD2 model (i.e. GroundSurfaces,
WallSurfaces, RoofSurfaces). Some errors were found (and corrected), such as:

• Missing GroundSurfaces in a (very) limited number of Building(Parts). The
missing geometries were generated and added by projecting and dissolving
the sloped roof surfaces of the affected Building

• Thematic surfaces missing a classification or being classified incorrectly
(e.g. as InteriorWallSurfaces instead of WallSurfaces). (Re)classification
rules were defined based on the normal vector of each surface.

After the geometrical computations and adjustments, we joined the s3DCM with
a survey done by the municipality of Rijssen-Holten that included the number
of storeys per building (parts). From the dataset joins, only 60% of buildings
obtained function information; in the case of the number of storeys, only around
50% of buildings were surveyed. Therefore, the remaining data required manual
collection using Google Street View (Google, 2022) and Mapillary (Mapillary,
2022). Those platforms offer street-level-based imagery. Figures 4.2a and 4.2b
show a sample of the exact location at the municipality of Rijssen around the
EPSG:4326 coordinates ϕ = 52°18′40.1′′ λ = 6°31′42′′ for both datasets.

(a) Google Street View sample (b) Rijssen Mapillary sample

Figure 4.2: Excerpt of the street view data

The building reconstruction method of the 3DBAG does not split or subdivide
each Building into smaller BuildingParts since there is no open data available for
all buildings that support such process. Therefore, we collect the highest value
of the number of storeys of a building, both above and below the ground.

Figure 4.3 shows an example of a residential building in Rijssen with two methods
for determining its number of storeys. Figure 4.3b presents Rijjsen-Holten’s
survey approach: the building is split into parts according to each part’s storey
count, with the part outlined in magenta representing one storey and the section
outlined in green indicating two. Figure 4.3a shows our approach. Because we
rely on the 3DBAG as our source for building geometry, we do not subdivide the
model; instead, we assign a single storey count equal to the maximum value
across all parts, which is in this case 2. Although this is a simplification for the
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workflow, it may lead to an overestimation of any energy-related calculations,
which is the case of the building’s energy demand when using reduced-order
models because the attribute is affectively over-assigned and a close to reality
value would be a decimal between 1 and 2.

(a) Single-part classification (b) Multi-part classification

Figure 4.3: Example of a 2-storey building

For the building type classification, we used simplified rules to speed up the
classification process, e.g. a Building(Part) without adjacent ones and one vbo
can be classified as Single Family House. However, when trying to use the
attribute available in the ep-online dataset, we found classification inconsistencies
as the example in presented in figure 4.3 in which an apartment block has
associated three different building type categories: galerij, portiek, flatwonig
(apartment block).

(a) Google Street View
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(b) Energy label dataset

Figure 4.3: Example of a multi familiar residential building with several classification
types

Therefore, only in the case of buildings assigned with one building type
class were assumed correct, and for the remaining ones, this attribute was
collected manually. These time-consuming and manual processes allowed me
to get a deeper insight and understanding of the issues that characterise the
to-be-integrated datasets.

We created this dataset to test heterogeneous Building Energy Simulation –BES–
tools with a reference dataset that is sufficiently rich and reliable in terms
of attributes, semantics, and geometries. In this process, we also applied
manual edits. However, for the EnergyBAG DB, manual data collection is not
feasible, given the size of the Dutch building stock (circa 10 million buildings).
Consequently, data cleaning processes have been automated based on the
lessons learnt during the testbed creation in Rijssen-Holten. For example, we
do not perform validations on the input geometries of the 3DBAG since they
are already validated using val3dity (Ledoux, 2013, 2018) and its result is
already available as a generic attribute per BuildingPart. Nevertheless, the same
pre-processing steps are applied to the whole Netherlands.

The software tools used in the design of the pipeline include:

• DuckDB2 : The current version does not support 3D geospatial data. I
2This is a fast open-source and multi-platform database system. I used version 1.0; further details at
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used it for alphanumeric and 2D geospatial data operations, such as
reading and aggregating the data from BAG, BAG-Plus, and ep-online and
assigning the H3 index to each building3

• PostgreSQL and PostGIS 4: It is used for data management of all
databases

• FME Form5 : It is used to read and post-process the 3DBAG CityJSON-
based files, including adding Building(Part) and thematicSurfaces feature
extraction.

• Python6 It is used for data cleaning and preparation from the resulting
process from DuckDB and FME and for updating the data stored in the
3DCityDB.

4.2. DATABASES CREATION
4.2.1. BUILDING PHYSICS DATA

A s specified in chapters 2 and 3, the physical properties of the building
thermal envelope are essential for conducting energy performance analyses.

While such data may be accessible for individual buildings, compiling detailed
information for all buildings at a national scale remains unfeasible. To address
this challenge, I have created a Building Physics Library Database (LibraryDB)
containing standardised building physics parameters for predefined archetypes.
These archetype-specific values can then be applied in workflows such as
energy performance certification, retrofit planning, or large-scale energy demand
simulations.

The TABULA project (section 3.2.2.1) serves as the foundational source of data
for this work, from which the initial data model is derived. In developing the
library data model, I emphasise ensuring compatibility with heterogeneous data
sources and multiple geographical contexts. However, this approach means the
generalisation of buildings according to the archetypes defined by the TABULA
project ( figure 3.9). The three main schemas of the LibraryDB are presented in
figure 4.4 followed by a description of the tables per schema in table 4.1.

The entity relationship diagram resulting from the creation of the LibraryDB is
presented in figure 4.5. I designed the data model to support the storage of
data from multiple sources. For instance, data available from voorbeeldwoningen
(RVO, 2023) has been incorporated into the database I use for my implementation.

(Raasveldt and Muehleisen, 2024)
3This is done using the duckdb h3 extension (Brodsky and Piovesan, 2022)
4I used versions 16.4 and 3.5, respectively. Further details at (PostGIS Project Steering Committee,
2023; PostgreSQL Global Development Group, 2024)

5I used version 2024.1.0. Further details at (Safe Software, 2024)
6I used version v3.11.5. However, I tested it using versions from v3.10.X to v3.12.X. Further details at
(Python Software Foundation, 2024)
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Figure 4.4: Schemas of the LibraryDB

Table 4.1: Description of the schemas and tables of the LibraryDB
Name Type Description

shared schema Contains the root tables that define the basic parameters for the
database

libraries table Contains the definition parameters of the data sources (libraries)
stored in the database, for example, EPISCOPE TABULA (EPI-
SCOPE Project, 2017), Voorbeeldwoningen (RVO, 2023)

orientation_class table Contains the orientation classes for surfaces based on the azimuth
parameter_info table Defines the type of elements available in the database

building schema This schema deals with the building-related data
age_class table Contains the classification parameters of buildings based on the

year of construction
building_class table Contains the classification parameters of buildings based on the

building type
building_function table Contains the classification parameters of buildings based on the

function
element table Contains the elements to which the parameter (i.e., U-value) is as-

signed, for example, a Whole building, Ground shell, Outer wall,
Inner Wall, and inner wall

energy_class table Contains the definition parameters of the energy label classes. The
table includes the range of values of the class and an RGB colour
definition for visualisation purposes. It is based on the Dutch reg-
ulation (Rijksoverheid, 2024c), with classes specified according to
the building’s function

layer_material table Describes construction layers composed of multiple materials
layer table Contains the different materials that define the building envelope

(Wall, Roof, Ground)
material table Contains the data on construction materials
opening table Contains the data regarding windows and doors
parameter table A consolidation table that relates the following: age_class, build-

ing_class, building_function, refurbishment, element, parameter,
layerred_material, opening

profile table Contains the occupancy profiles of buildings
refurbishment table Stores parameters describing refurbishments
type_class table Contains the building type classes

weather schema It deals with the weather-related data
climate_parameter table Contains typical statistical climate parameters
weather_station table Stores descriptive attributes of weather stations
weather_parameter table Contains the time series data for a given weather station



4

92 4. Data pipeline design

Figure 4.5: Entity relationship of the LibraryDB



4.2. Databases creation

4

93

4.2.2. ENERGYBAG DB: THE CREATION OF A DATASET FOR THE
WHOLE NETHERLANDS

T he pipeline shown in figure 4.6, is a further development of the work
described in section 4.1. It includes the software tools used to enhance the

existing semantic 3D city model with the open datasets to create the database
used in this research: the CityGML+Energy ADE dataset (hereafter referred to
as the EnergyBAG DB), which is managed by a 3DCityDB instance. Figure 4.7
shows a simplified entity relationship diagram linking all datasets and having the
buildings in the 3DBAG as the reference object of integration of data.

Figure 4.6: Data pipeline for the EnergyBAG DB creation

Figure 4.7: Entity relation diagram of the multiple datasets used in my research

The various input datasets may contain overlapping data for the same building,
most notably in the building type and the number of storeys. Both attributes
are available in the energy-tested dataset and in BAG-plus, while ep-online do
not provide storey-related data. To resolve data conflicts, I applied the following
hierarchy criteria when assigning these attributes:

1. Testbed dataset, because it was manually collected and verified.
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2. BAG-plus, which is continually updated according to a consistent set of
criteria

3. ep-online, in which new records are appended, but existing entries are not
modified

The hierarchy indicates that in those cases when more than one dataset is
available, it follows the strict order. Additionally, since the primary source of this
PhD research is the BAG, I only fall on the other datasets in cases where an
attribute is not available from the BAG.

Figure 4.8: Workflow for assigning the building type attribute

A summary of the attributes available for the Building CityObject is shown in
table 4.2. This table describes the additional generic attributes. The table also
includes extra attributes extracted from the geometries of the s3DCM (shown in
figure 4.10), which are required for my research. In the case of BuildingParts,
this CityObject is present if the Building contains more than one construction.
For my PhD thesis, I use the term Building(Part)s when referring to either both
Building(s) and BuildingPart(s). The attributes available for the BoundarySurface
of the Boundary(Part)s are shown in table 4.3.

Table 4.2: Building(Parts) attributes available in the resulting CityGML dataset
Attribute Description Unit Data Type

Building
pand_id Pand identifier String
3dbag_tile Name of the 3DBAG tile String
lod_max Maximum level of detail of the building Integer
is_single_part Indicate if the building is single- or multi-

part
String

list_adjacent_buildings List of the gml_id of the adjacent buildings String
n_adjacent_buildings Number of adjacent buildings Integer
property_area This attribute corresponds to the Pand

area. Extracted from BAG
m2 Measure

usable_area Usable area of the building m2 Measure
vbos number of vbos registered in the building Integer

Continued on next page
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Table 4.2 – continued from previous page

Attribute Description Unit Data Type

(function)_vbos Number of vbos per function. The text
(function) shall be replaced by the corres-
ponding function defined in the BAG. This
attribute only appears when the building
has a vbo with the corresponding function

String

(function)_area Total usable area per function. It is
defined as the (function)_vbos attribute

m2 Measure

is_greenhouse Indicates if the building is a greenhouse String
status Property status. Extracted from the BAG String
roofArea Area of the roof surfaces of the building m2 Measure
compactness Relation between the volume and the en-

veloped area: volume/envelope
Real

roof_envelope_ratio Ratio between the roof and envelope
areas

Real

usable_area Total usable area of the building m2 Measure
building_type Building type according to the TABULA

specification
String

dutch_building_type Building type according to the Voorbeeld-
woningen specification

String

energy_class Energy labels of the building according to
ep-online

String

envelope_area Enveloped area of the building m2 Measure
ExteriorWalls_area Exterior walls area m2 Measure
footprint_area Area of the footprint of the building m2 Measure
footprint_height Height of the footprint of the building m Measure
footprint_perimeter Perimeter of the footprint of the building m Measure
PartyWalls_area Area of the party-walls (shared surface)

between adjacent buildings
m2 Measure

roof_footprint_ratio Ratio between the roof and footprint areas Real
RoofFlatPart_area Area of the flat parts of the roof m2 Measure
RoofSloppedPart_area Area of the slopped parts of the roof m2 Measure
val3dity Code according to val3dity of the recon-

structed geometry of the building
String

3dbag_storeys number of storeys of the building accord-
ing to the 3DBAG

Integer

volume Gross value of the building m3 Measure
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Table 4.3: BoundarySurface attributes available in the resulting CityGML dataset
Attribute Description Unit Data Type

inclination Inclination angle of the surface measured
upwards from the horizontal plane

degrees Measure

azimuth Azimuth angle of the surface measured
clockwise from North; -1 is NULL

degrees Measure

surf_normal Normal surface value, as a comma separ-
ated value of n, ny, nz

String

direction Direction of the surface. Possible values
are: N, NE, E, SE, S, SW, W, NW

String

lod2_area 3D area of the surface m2 Measure

The presence of ThermalZone, an Energy ADE CityObject, indicates that the
corresponding Building(Part) has registered at least one vbo. The number of
ThermalZones corresponds to the distinct functions present in the respective
Building(Part). However, these CityObjects lack geometrical representation, as
there is no open dataset in the Netherlands providing the interior representation
of buildings. Therefore, a ThermalZone contain only alphanumeric data, which
are shown in table 4.4. In the case of the ThermalZone UsageZone Energy
ADE CityObjects, I only store data if they are coming from actual data sources.
Other values are not used even if they may be set at runtime. When it comes
to the thermal hull of the ThermalZone, I assume only one thermal zone per
Building(Part). The infiltrationRate attribute is not set, as it will be assigned at a
running time from the libraryDB.

Table 4.4: ThermalZone attributes available in the resulting CityGML dataset
Attribute Description Unit Data Type

floorArea Total usable area for that function in the
Building(Part)

m2 Measure

isHeated This attribute characterises the thermal
zone condition, indicating if it should be
processed (when isTrue)

Boolean

As with the ThermalZone, the presence of UsageZone Energy ADE CityObject
exits in the resulting dataset when the Building(Part) contains at least one vbo.
Its importance lies in its relationship to an occupied ThermalZone, which must
connect to a UsageZone that defines the boundary conditions for the calculation
of the heating and cooling demands (Agugiaro, Benner et al., 2018). The
attributes available are shown in table 4.5. The attributes available for the
BoundarySurfaces of the Building(Part)s are shown in table 4.3. The consolidated
values of the produced dataset are shown in table 4.6.
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Table 4.5: UsageZone attributes available in the resulting CityGML dataset
Attribute Description Unit Data Type

floorArea Total usable area for that function in the
Building(Part)

m2 Measure

usageZoneType Indicates the usage of the corresponding
part of the Building(Part)

String

Despite the use of multiple data sources, ∼90% of the resulting dataset does not
contain information regarding the building type, as shown in figure 4.9. These
values correspond to buildings; thus, the values per class remain low. Later in
this chapter I will show, how this issue can be addressed.

However, Object Vision (2023a), a company based in the Netherlands,
published its GeoDMS framework for modelling geographic datasets (Object
Vision, 2023b), ehich includes the estimation of the residential type of buildings
(woonpand_type) based on neighbouring buildings (Pand) and the number of
registered residential living units (vbos). The classification categories in the
method include: Vrijstaand, Twee-Onder-Een-Kap, Tussenwoning, Hoekwoning,
multi-family building. Additionally, Esri Netherlands offers an online feature layer
with the classification of the residential buildings based on the BAG (esri, 2025).
This feature service is offered as suscriber content. The classes available in this
dataset include: Vrijstaande, Twee-Onder-Een-Kap, Tussenwoning, Hoekwoning,
Appartement.

The reasons for not using the aforementioned datasets twofold. First, the
PBL/TNO Hestia dataset was unknown to us at the time we began our experiments
to calculate this attribute in 2022-2023, which led to the developement of the
MSc thesis by Chris Poon (see section 4.3.2). Second, the data published by
Esri is subject to licensing restrictions, which is against of the scope of this PhD
thesis about the use open access data.

Table 4.6: Summary of the s3DCM created in my research
CityObject Count

Building 10,413,738
BuildingPart 28,099
GroundSurface 10,422,993
RoofSurface 29,641,949
WallSurface 104,895,065
Energy ADE ThermalZone 6,454,421
Energy ADE UsageZone 6,454,421
Surface geometries 299,139,932
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Figure 4.9: Buildings from 3DBAG classified by type

(a) Building (b) Surface

Figure 4.10: Graphical examples of the features extracted from theCityObjects geo-
metries

4.2.3. DATA INDEXING

T he EnergyBAG DB cannot be used as a single piece in UBEM due to its large
size, as summarised in table 4.6. Managing such a vast amount of geospatial

data is a common challenge in the geospatial community, and it is geometrically
taken care of by splitting the data into smaller regions, which makes handling the
data more feasible. That is also the case of the 3DBAG, which is shared using
a quadtree data structure to index its dataset (Samet, 1984), facilitating data
sharing and processing. Figure 4.11 shows the Netherlands covered by 3DBAG
tiles.
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Unlike the 3DBAG, I decided to use an indexing method that is not affected by
the number of neighbours, and global indexes meet this criterion. These types of
indexes have been studied since the 1960s.

The proposal of Sadourny et al. (1968) divide the globe into 20 spherical triangles
that form a spherical icosahedron7 figure 4.12(A). Their goal is to represent the
globe in nearly equal areas and shapes. Each of these faces is further subdivided
into smaller triangles, as shown in figure 4.12(B).

Figure 4.11: Provinces of the Netherlands overlaid with the boundary of the 3DBAG
tiles in purple

(a) Icosahedron (b) Representation of the
icosahedron-hexagonal
grid split into 6 equal arcs

Figure 4.12: Examples of an icosahedron (a) and an icosahedral-hexagonal grid (b)
covering the sphere. From (Sadourny et al., 1968).

7A polyhedron with 20 faces
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A current method that follows a similar approach is the H3 index, which is a 2D
hierarchical global index developed by Uber to index the planet into a hexagonal
grid (Uber Technologies, 2018). This index supports sixteen resolutions, from
level 0 to 15. In this method, the higher the level number, the finer the hexagon
cell size. Furthermore, each finer resolution corresponds to one-seventh the area
of its coarser resolution. However, a significant disadvantage of this algorithm
is that finer cells are only partially contained within a parent cell. Nevertheless,
additional reasons for the selection of this tiling method include:

• Projection independence: It does not require cartographic projections to
process the data, allowing its application in several locations.

• A uniform border-to-centre distance: The consistent distance from tile
borders to cell centre points ensures reliability in horizon analyses, a critical
factor for solar potential calculations (section 4.3.1).

• Consistent neighbouring distances: The distance between the centre point
of one tile and its neighbours remains uniform, which is a feature not
available in other tiling geometries such as square or triangular.

Therefore, the use of this hierarchical index allows a more balanced representation
of the study area. Table 4.7 shows a summary of the indexes for the EnergyBAG
data.

Table 4.7: Statistical summary of Building(Part)s per H3 tiling level

Level Average edge
Length (km)

Number of
Hexagons

Number of Building(Part)s

Avg. Min. Max.

1 483.057 3 1.477.938 3.474.331 7.299.004
2 182.513 5 249 2.084.599 6.952.998
3 68.979 12 314 868.583 3.846.589
4 26.072 43 3 242.395 902.822
5 9.854 235 1 44.353 239.095
6 3.725 1.353 1 7.704 67.289
7 1.406 8.382 1 1.243 19.086
8 0.531 48.812 1 214 4.745
9 0.201 204.943 1 51 1.024
10 0.076 711.024 1 15 215

Figure 4.13 shows two examples of the Netherlands covered by three hierarchical
levels of the H3 index represented by black lines in which the coarser the level,
the darker the line. The whole Netherlands is shown in figure 4.13a, and the
study area of the testbed is shown in figure 4.13b. To ensure the efficiency of the
execution of the EnergyBAG BES, I computed the H3 tile per index level for all
Building(Part)s. Finally, I stored this relation in the EnergyBAG DB.
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(a) The Netherlands (in blue) covered by
H3 indexes in levels 4,5,6

(b) Rijssen-Holten (in orange) covered by
H3 indexes in levels 6,7,8

Figure 4.13: Example of geographical areas covered by three levels of H3 tiles from
bigger to smaller

Figure 4.14 shows an excerpt of Rijssen 3DCM filtered by five (5) H3 tiles at level
7; the resulting dataset contains 15.777 Building(Part)s (red) corresponding
to 240.007 ThematicSurfaces, 398 tiles of Relief (light green), and 25.358
SolitaryVegetationObject (dark green).

Figure 4.14: Excerpt of Rijssen 3DCM using H3 index tiles level 7, base map BGT
OpenBasisKaart
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To define the location of vegetation CityObjects, we followed the approach of
Voortman (2021), which is based on the use of the AHN3 point cloud dataset to
identify vegetated areas in Rijssen-Holten. The method filters vegetation points
higher than 2m above ground level to exclude small shrubs and hedges. The
remaining points are buffered by 50cm and dissolved to aggregate the green
areas. From these regions, we extract a location every 5m and use the average
height at each location to assign this parameter to the FME transformer. This
is used to model the implicit geometry of trees, without incorporating semantic
information such as species or age. As a result, we do not distinguish trees by
leaf density or shading capacity across different weather seasons.

Voortman (2021) published the methodology implemented by the municipality
of Rijssen-Holten for the identification of the vegetation areas in their jurisdiction
using the AHN3 point cloud dataset Rijkswaterstaat (2024). We use Voortman
work as the starting point for our trees modelling approach. Voortman’s calculation
is done using FME and removes all points from the ANH3 point cloud that were
not both vegetation and their height difference compared to the ground level is
higher than 2m so small shrubs and hedges are not included; The remaining
points are buffered 50cm and dissolved. The result is a projection of the green
volumes of the municipality in 2D. A final step in their process correspond to
the clean up by cheking it against the high resolution aerial photo available by
the Dutch Kadaster services Kadaster (2024d). We decided to use a simplified
geometrical representation of trees based by using the ImplicitGeometry8 defined
by the CityGML standard Gröger, T. Kolbe et al. (2012).

4.3. SOLUTIONS TO ENHANCE DATA
The first section focuses on solar analysis in urban areas with a comparison of
solar simulation tools section 4.3.1.1 and the presentation of a solar simulation
tool based on s3DCM section 4.3.1.2. These projects are followed by an
exploration of the use of machine learning to classify buildings into predefined
archetypes, which could address the lack of openly available building physics
data for the Dutch building stock section 4.3.2. Sections 4.3.1.2 and 4.3.2
correspond to MSc theses in Geomatics at TU Delft. Finally, section 4.3.3
summarises the findings from an MSc Thesis in Geomatics to infer the number
of storeys in the Dutch building stock.

8”Type for the implicit representation of a geometry. An implicit geometry is a geometric object, where
the shape is stored only once as a prototypical geometry, e.g. a tree or other vegetation object, a
traffic light or a traffic sign. This prototypic geometry object is re-used or referenced many times,
wherever the corresponding feature occurs in the 3D city model.” Gröger, T. Kolbe et al. (2012, p.
159)
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4.3.1. SOLAR ANALYSIS

T he scope is to report on research work that has developed with topics that are
relevant for my thesis: How to enhance existing data, e.g., solar irradiance

values and how to scope of this section is the development of a computational
tool that performs accurate simulations of solar radiation on building surfaces.
From the methodological point of view, the work is divided into two phases:

1. Evaluation of existing tools: An assessment of current solar irradiation tools,
focusing on data requirements, usability, and output accuracy.

2. Tool development and implementation: The design and implementation of
a simulation tool that calculates solar irradiation using semantic 3D city
models (s3DCM) in CityGML format.

4.3.1.1. ANALYSIS OF SOLAR SIMULATION TOOLS9

Obtaining solar irradiance measurements on a building surface presents several
challenges due to its complexity. This task is possible at an urban scale using
remote sensing. However, satellites capture data mostly from roofs. Hence, solar
irradiation simulation tools offer a possible alternative to overcome the lack of
solar irradiance data over the building’s facade at the city scale. As a first step,
we have performed a qualitative and quantitative analysis of GIS-based software
simulation tools for solar potential via solar irradiation on roofs to evaluate the
quality of these simulation tools to overcome the lack of solar irradiation on the
boundary surface of buildings.

A total of seven simulation tools have been evaluated. We have compared them
in terms of input and output data, as well as their accuracy, based on local
weather data as ground truth. The tools, listed in alphabetical order, are ArcGIS
Pro v3.1 (Esri, 2024), CitySim v2023.06 (Mutani et al., 2018), GRASS GIS
v7.8.7 (Hofierka et al., 2007), Ladybug v1.6.33 (Sadeghipour Roudsari and Pak,
2013), SAGA GIS v8.5.1 (Conrad, 2010), SimStadt v0.10.0 snapshot 20230307
(Duminil et al., 2022), and Urban Multi-scale Environmental Predictor v4.0.2
(UMEP) (Lindberg et al., 2023). Due to the variety of the simulation tools used,
the input datasets for this research include raster and vector data. Our method,
shown in figure 4.15, is designed to analyse and compare the GIS software tools
in a way as standardised as possible despite their different characteristics or data
requirements.

Our case study is located at the weather station of Heino in the municipality of
Raalte in the Netherlands. Table 4.8 shows a summary of the input datasets used

9This section presents a shorter version of publications ”Comparative analysis of geospatial tools for
solar simulation” (León-Sánchez, Giannelli et al., 2025) in Transactions in GIS vol. 29, no. 1 (2025).
Data, results and analyses are shown only the study area in the Netherlands. ”Comparison and
Evaluation of Different GIS Software Tools to Estimate Solar Irradiation”. ISPRS Annals of the Photo-
grammetry, Remote Sensing and Spatial Information Sciences 5, no. 4 (2022): 275–82. (Giannelli
et al., 2022)
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Start
Test site
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Data collection
Santana | Heino

Weather data preparation
Solar irradiation
Temperature
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Horizon
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Raster-based simulation
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Simulation results
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Data preparation

Solar simulation

Simulation results and analysis

Figure 4.15: General workflow of the comparative method described in this article

in our research. Incorporating Linke Turbidity data influences the computation of
the solar potential. Both GRASS GIS and SAGA GIS employ clear-sky models
for their computations. Buildings in the study area are extracted from the 3DBAG.
To model the vegetation, we represent trees as CityGML implicitGeometry.
Vegetation is used as shadowing objects.

Table 4.8: Summary of the input data sets in our research
Raalte, Netherlands

Geospatial

3DBAG: 3D Buildings
Dutch elevation database (AHN3): Aerial point cloud
Raster-based DSM:
• AHN3: 0.5m, 5m

Weather
Royal Netherlands Meteorological Institute (KNMI) Heino weather station: Typical yearly values
of global, direct, diffuse solar irradiation, ambient and ground temperature, wind speed, cloud
coverage, pressure, and rainfall.
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In figure 4.16, we present the results of all simulation tools applied to the case
study. From a user’s perspective, superimposing the results from all simulation
tools in a single graph represents the magnitude of differences that can be
expected when using one software tool over another. This visual comparison
illustrates the variations in simulation outputs for the same dataset.

Although all simulation tools tend to follow the same pattern as the ground
data–which is expected since the ground data serves as the source for the
computations–it is meaningful to mention that raster-based simulation tools
implement a clear-sky model, which means that the simulated results are
expected to differ from the weather station data used as ground truth, generally
producing higher values. Nevertheless, this was only the case for some simulation
tools; only SAGA GIS and GRASS GIS produced higher solar irradiance values
than the ground truth data.

Figure 4.16: Time series of the simulation results and the weather data for Heino

The differences between the various software tools are likely due to the specific
solar radiation models they implement. Some tools, particularly ArcGIS Pro,
act as a sort of black box because the details of their models are not publicly
disclosed due to commercial restrictions. This absence of transparency limits
the ability to tune further or adjust the models to match ground truth data
better, making it challenging to understand the reasons for discrepancies in the
simulation results.

It is relevant to remember that direct comparison of results coming from between
raster-based and vector-based models can be misleading since the former adopts
a clear-sky model. In contrast, the latter does not, although, in both cases, the
results are expressed in Wh/m2/d.

Table 4.9 and figure 4.17 contain the yearly aggregated values of the global
irradiation. Ladybug produces the closest value, with a difference of −19.75%,
and the lowest RMSE of 0.63. The former is followed by CitySim, with
−21.88% and 0.726, respectively. On the other hand, SAGA GIS produces the
furthest results, with a difference of 131.58% and a RMSE of 3.972, followed
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by SimStadt, with a −48.82% and 1.614, respectively.

Although clear-sky models should consistently deliver higher values compared
to ground truth, it is interesting to note that this is not the case for the
results presented in our research. The output values of ArcGIS Pro output
are consistently lower, while the ones from GRASS GIS have the opposite
behaviour. Vector-based simulation results offer better results than raster-based
ones. Ladybug and CitySim can produce accurate results, although they require
more extended data preparation and computational time. However, the results
indicate the importance of adding ground-truth weather data to calibrate the
simulation results to achieve greater accuracy.

Figure 4.17: Yearly global irradiation values obtained from the simulation results
and the ground truth at Heino. The cyan dotted line indicates the ref-
erence yearly value

Table 4.9: Heino, yearly global irradiation values from the simulation results com-
pared to the ground truth [kWh/m2/]

Raster-based Vector-based

ArcGIS
Pro

GRASS
GIS

SAGA
GIS UMEP CitySim Ladybug SimStadt

Total 798.16 1,639.84 2,384.68 1,046.28 804.42 826.34 547.61
Diff. -22.49% 59.25% 131.58% 37.30% -21.88% -19.75% -46.82%
RMSE 0.904 1.875 3.972 0.726 0.63 1.614

A comparison overview of all parameters we considered for our qualitative
analyses is shown in table 4.10. We evaluate not only the accuracy of the
simulation’s output. Except for SimStadt, a terrain model is fundamental input
data for all simulation tools.
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Table 4.10: Comparison of the tested simulation tools for solar irradiation. Run-
ning times were calculated using a desktop computer with the following
hardware specifications: Windows 11, Intel i7-9700K CPU, 64 GB RAM,
AMD Radeon VII GPU and NVMe PCIe M.2 2280 SSD

Raster-based Vector-based

ArcGIS Pro GRASS GIS SAGA GIS UMEP CitySim Ladybug SimStadt

Raster-based Vector-based

ArcGIS Pro GRASS GIS SAGA GIS UMEP CitySim Ladybug SimStadt

License Commercial FOSS FOSS FOSS FOSS FOSS but
Rhinoceros
3D/Grasshopper

FOSS

Minimum
input data
require-
ments

Raster-
based DSM

Raster-
based DSM

Raster-
based DSM

Raster-
based DSM,
Weather
data

Vector-
based 3D
scene

(Buildings,
relief,

vegetation),
weather
data

Vector
geometries
as Brep /
Mesh,
weather

Vector-
based 3D
scene

(Buildings in
CityGML
LoD1/2),
weather

Optional
input files

N/A Slope,
aspect, Linke
turbidity,

albedo maps

Sky View
Factor,
Water
Vapour
Pressure,
Linke
turbidity

Vegetation
Canopy,

Vegetation
Trunk zone
albedo
value

Horizon file N/A N/A

Interaction GUI /
Python

GUI / Python
/ shell

GUI/shell GUI /
Python

GUI/shell GUI /
Python

GUI/shell

Urban
features

All features
represented
in the DSM

All features
represented
in the DSM

All features
represented
in the DSM

Buildings,
trees and
ground

represented
in DSM

Buildings,
Relief,

Vegetation

Buildings,
Relief,

Vegetation

Buildings

Santana.
Timing
(HH:MM)

03:18 08:40 00:12 00:11 16:44 00:26 00:06

Heino.
Timing
(HH:MM)

31:34 17:19 11:51 30:24 268:45 00:18 00:11

Results:
Type

2.5D
surfaces

2.5D
surfaces

2.5D
surfaces

2.5D
surfaces

3D surfaces 3D surfaces 3D surfaces

Output Raster file Raster file Raster file Raster file TSV file Data tree out file
Continued on next page
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Table 4.10 – continued from previous page

Raster-based Vector-based

ArcGIS Pro GRASS GIS SAGA GIS UMEP CitySim Ladybug SimStadt

Minimum
temporal
resolution

Hourly Second /
daily

Hourly Yearly Hourly Hourly Hourly

4.3.1.1.1 Lessons learnt Here are the lessons learnt from this research:

• Raster-based simulation tools are preferred when there are data access
restrictions since they only require a Digital Surface Model.

• Vector-based simulation tools offer better results than raster-based ones
but have more complex data requirements. Furthermore, this type of data
is less commonly available, which increases data preparation time.

• There is no single tool that consistently produces the most accurate results
across all locations. Nevertheless, all simulation tools follow the same
pattern as the ground truth.

• In our study areas, Ladybug, CitySim, UMEP, and ArcGIS Pro provide good
accuracy against the ground truth. However, simulation results should be
calibrated to achieve better accuracy.

4.3.1.2. SOLAR IRRADIANCE COMPUTATION10

Section 4.3.1.1 explains the data requirements to perform a solar simulation.
This knowledge is the starting point for the design of a workflow to compute
solar irradiance at the city level at hourly temporal resolution using s3DCM. We
use the 3DBAG LoD2.2 as the input dataset, although the workflow supports
any CityJSON-encoded dataset. Therefore, we avoid assumptions about urban
morphology.

4.3.1.2.1 Method
Our proposed method for the computation of the solar irradiance at a given
location is shown in figure 4.18. The workflow starts by extracting the centre
coordinates of the input s3DCM. These coordinates are required to calculate the
position of the sun over a typical year. To reduce the computational load, we
keep only the records when the position of the sun is above the horizon since

10This section consolidates the MSc thesis in Geomatics at TU Delft titled “High-resolution, large-scale,
and fast calculation of solar irradiance with 3D City Models” by Xu (2024), partial results were pub-
lished in Recent Advances in 3D Geoinformation Science, 31-47 (2024) (Xu, León-Sánchez et al.,
2024b) and in International Archives of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences - ISPRS Archives, 167-174 (2024) (Xu, León-Sánchez et al., 2024a)
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they will be used in the following steps. The four key components of our method
are:

1. Point grid generation: Generate sampling points on CityObject surfaces
via recursive triangle splitting. The split level depends on target density
(e.g., 16m2 = one split, 18m2 = two splits). Non-uniform sampling occurs
due to area-based split logic.

2. Viewshed calculation: For each grid point, trace a hemisphere of rays
to compute the Sky View Factor (SVF). The results are stored as (N, M)
vectors for reuse in reflective calculations. Where N represents the azimuth
steps and M represent the elevation steps.

3. Shadow calculation: Compute binary shadow masks using sun position
rays. Optimized with Bounding Volume Hierarchy (BVH) to reduce
complexity from O(NM) to O(N logM).

4. Solar irradiance calculation: Solar irradiance is split into several elements:

• Direct beam: S,dr,β = Mshdo ·DN · cos δ
Here, Mshdo represents the binary shadow mask, and δ represents
the angle between the surface normal and the solar vector.

• Sky diffuse: It uses an isotropic model using S,dƒ ƒ ,β = DH · SVF
with Ground View Factor–GVF as GVF = 1 − SVF

• Reflective irradiance: Out method uses a cached semantic viewsheds
and a voxelized irradiance field to reduce the computational complexity
from exponential to linear

– Semantic scene voxelization: We aggregate the previously
calculated direct beam and sky diffuse solar irradiance through
voxelization to create a light field within the scene. We treat the
reflective irradiance from urban objects as irradiance emitted from
the voxels.

– Iterative irradiance propagation: Using the voxelized irradiance
field and the constructed viewshed map for each grid point, we
begin simulating reflective solar irradiance. For each grid point, we
reference all pixels in its stored viewshed map, where the voxel
IDs and incident angles are recorded, allowing us to identify the
three visible faces of each voxel.
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Figure 4.18: Implemented Solar irradiance workflow. Based on (Xu, 2024)

4.3.1.2.2 Results

This study uses two ground truth datasets. The first one corresponds to Heino,

while the second dataset corresponds to the data of two monitoring stations (S1
and S2) with solar irradiance measurements collected by TU Delft’s Photovoltaic
Materials and Devices (PVMD) group on a campus building Andres et al. (2023)
and Calcabrini (2023). Simulations are conducted for four dates—21 March, 21
June, 22 September, and 22 December (equinoxes and solstices)—using hourly
KNMI weather data. Scenarios with 0, 1, and 2 light bounces are evaluated
alongside two simplified baseline cases.

A comparison of results from CitySim, Ladybug, and SimStadt versus our tool
for 2 February is shown in figure 4.19. The line plot colours for the simulation
tools match those used in section 4.3.1.1. Our results indicate a general
underestimation of our solution compared to the weather data and the other
simulation tools. Furthermore, the difference is higher from 10:30 am to 2:30 pm.

Figure 4.19: Heino weather station at 2 February

The results of the PVMD stations on 2 February 2020 are shown in figures 4.20
and 4.21. For sensor S1 (figure 4.20), the computed values closely follow the
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observed data pattern with minimal differences. However, this consistency is
not visible in sensor S2 (figure 4.21), which shows significant discrepancies that
grow as the number of bounces increases. This is a sign that while the direct
beam follows the rules, the bouncing part needs further investigation due to some
possible errors.

Figure 4.20: Line plot of the results obtained in PVMD monitoring station S1 on 21
August 2020

Figure 4.21: Line plot of the results obtained in PVMD monitoring station S2 on 21
August 2020

The computation times for solar irradiance simulation in the study areas are
presented in table 4.11. The total computational time varies based on the number
of the simulation time steps. These values correspond to a hemisphere sampling
resolution of 5 degrees and around a million of sample points. Due to the
implemented method, the computation time increases linearly according to the
time steps and the number of sample points. Also, the shadowing and direct
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solar irradiance calculation requires less than 1% of the computational time while
the remaining is spent on the reflective solar irradiance calculation.

Date Epochs Shadow
computation

SVF
computation

Direct +
Diffuse Reflective Total Reflective

ratio

2024/08/21 80 0.62 51.03 1.47 12319.02 12372.14 99.57
2024/02/01 45 0.22 26.76 0.68 8017.02 8044.68 99.66

Table 4.11: Computation time for PVMD monitoring station with the proposed
method, all values are in seconds

Additionally, we conducted further testing of our model on a larger area in
Rijssen-Holten to evaluate its scalability and robustness figure 4.22. We
generated a CityJSON file containing buildings, terrain, and vegetation, covering
an area of a ∼ 35km2. We use the H3 tiling index discussed in section 4.2.3 to
split the study area. Details of the study area are provided in table 4.12.

Figure 4.22: Rijssen input dataset Sample

(a) Overview (b) Zoomed in

Figure 4.23: General visualization solar irradiance results in Rijssen
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Attribute Value

Geographic center 6.52E, 52.31N
H3 indexes 871f16cf1ffffff, 871f16cf5ffffff,

871f16cc4ffffff, 871f16ce6ffffff,
871f16ce2ffffff

Spatial extent 6100 * 6200 * 50
Buildings 15,744
ThematicSurfaces 717,747
RoofSurfaces 49827
WallSurfaces 174436
Trees objects and Surfaces 25,358/608,592
Terrain objects and Surfaces 398/100,091
Total Surfaces 1426430
Number of sample points 6457,806

Table 4.12: Dataset details for four different cities

Without simulating reflective solar irradiance, the entire simulation would take less
than 7 minutes, a summary of the computational time is shown in table 4.13.

Epochs Shadow
computation

SVF
computation

Direct +
Diffuse Reflective Total Reflective

ratio

54 1.02 151.44 5.97 42941.12 43093.58 99.65

Table 4.13: Computation time for Rijssen with the proposed method, all values are
in seconds

4.3.1.2.3 Lessons learnt
Here are the lessons learnt from this research:

• The incorporation of BVH in our method removes the need for geometrical
assumptions. BVH handles complex urban landscapes by integrating digital
terrain models. Moreover, it allows precise shadow calculations on minor
features, such as corners

• Our method requires further refinement. The calculation results for the
direct element of the solar irradiance are sufficiently in line with the ground
truth. However, the results obtained from the first and second light bounces
are worst since they increase at each bounce which should not be the case.

• A more detailed representation of the building stock in terms of physical
properties of the CityObjects, directly influences the calculation of the
solar irradiance in buildings, as these are affected by the albedo of the
surrounding environment.
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• The current implementation requires refactoring in the bouncing section to
support large study areas. We planned to compute the solar irradiation of
buildings in Rijssen-Holten, which covers an area of approximately 20km
by 20km. However, this was not feasible because the model would require
approximately 1.5TB of data storage and about 400 hours of computation
time on personal computers.

4.3.2. BUILDING TYPE INFERRING USING MACHINE LEARNING
ALGORITHMS11

T his section summarises the MSc thesis in Geomatics, ”Inferring the residential
building type from 3DBAG”. This research was carried out to evaluate the

use of 3DBAG as an input dataset for the classification of the Dutch building
stock into the existing building archetypes defined by RVO (2023). The
classification of the Dutch building stock is still an issue because this information
is not always available. Poon (2024) combines feature engineering (attributes
extraction and selection) and several machine learning algorithms to infer the
building type classes for the Dutch building stock, according to TABULA. The
proposed method involves attribute extraction from the BAG and 3DBAG while
using ep-online as the ground truth. The classification algorithms selected are
support vector machine (SVM) (Cristianini and Shawe-Taylor, 2000) and random
forest (RF) (Breiman, 2001). SVM is effective in high-dimensional spaces and is
valuable when dealing with many attributes12. Furthermore, these algorithms do
not require heavy hyperparameter tuning. Figure 4.24 shows in a general way
the implemented method for inferring the building types from the 3DBAG using
machine learning.

Data collection and
preparation

Feature extraction
and selection

Modelling and
Prediction

Accuracy
assessment

Figure 4.24: Flowchart of the implemented method

The first case study is based on the testbed section 4.1. We evaluate the
extracted attributes of buildings from the 3DBAG to eliminate redundancy while
keeping an accurate prediction. For the modelling and prediction part, 80% of
the data are used for training the classifiers, and the remaining 20% serves for
model evaluation. The method was applied in several case studies. The attribute
of the building type available in the testbed is used as ground truth since the
building type data was manually collected, requiring no further data preparation.
However, there is a severe class imbalance, with four classes representing each
11This section has been published in the MSc Thesis in Geomatics at TU Delft titled ”Inferring the resid-

ential building type from 3DBAG” by Poon (2024).
12In data science and artificial intelligence, the correct term is ”feature”. However, I use in this PhD the

term attribute to avoid confusion with the term ”feature” from the geospatial point of view
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of them less than 1% of the dataset: Flatwoning 0.38%, Maisonnette 0.02%,
Portiek 0.05% and Galerij 0.03%.

Table 4.14: Rijssen-Holten dataset classification by building type
Building type count percentage

Vrijstaand (VW) 12,746 48.99%
Twee-Onder-Een-Kap (TOEK) 6,414 24.65%
Tussenwoning (TW) 3,738 14.37%
Hoekwoning (HW) 2,997 11.52%
Flatwoning (FW) 99 0.38%
Maisonnette (MW) 5 0.02%
Portiek (PW) 12 0.05%
Galerij (GW) 7 0.03%

Due to this imbalance, Poon chose seven additional case studies. All of these
cases consider ep-online data as ground truth. However, the dataset requires
further preprocessing (data cleaning). The second case study corresponds to
Delft. Delft’s housing characteristics differ from with Rijssen-Holten, with 33%
of buildings containing one dwelling and 67% containing more (AlleCijfers.nl,
2024). Although Delft’s class distribution is also imbalanced, minority classes are
better represented (table 4.15).

Rijssen-Holten’s and Delft’s case studies correspond to urban areas delimited
by the municipalities. However, both datasets present a high imbalance
with Maisonnette, Galerij, and Portiek. Therefore, additional six case
studies focus on specific building types were chosen. Case Study 3 at
Duivendrecht/Venserpolder focuses on Flatwoning; Case Study 4 at Bijlmer-
Oost focuses on Galerij; Case Study 5 at Borneo-Sporenburg focuses on
Maisonnette; Case Study 6 at Laakkwartier focuses on Portiek; Case Study 7 at
Oud-Diemen/Steigereiland focuses on Twee-Onder-Een-Kap and Terrace houses
(Tussenwoning, Hoekwoning); and Case Study 8 at Laren focuses on Vrijstaand.
Table 4.15 summarises the case studies; it is fundamental to point out the
discrepancy in the classification of buildings.

Table 4.15: Building type classification datasets
Case Study VW TOEK TW HW FW GW PW MW

Delft 253 552 5,999 1,437 1,476 63 118 681
3 9 5 621 196 420 17 3 24
4 8 1 331 64 38 12 - 9
5 4 19 376 28 236 - 4 69
6 4 - 86 5 649 5 6 96
7 88 69 287 103 49 - - 6
8 163 25 2 2 7 - - -
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Two methods are used for attributes selection for each of the ML algorithms:
ANOVA-F and Mutual Information (MI) for SVM and impurity-based and
permutation-based methods for Random Forest (RF). Using these approaches,
he applied four models to each municipality-based case study based on the
ML algorithm and the attribute selection method. We consider Rijssen-Holten
and Delft as the primary case studies because their sampling is not biased by
balancing the input dataset.

4.3.2.1. RESULTS
A summary of the performance of the training models of Rijssen-Holten and Delft
respectively are presented in tables 4.16 and 4.17. In the case of Rijssen-Holten,
the accuracy of the models is higher than 91%. However, that is not the case
with balanced accuracies. The accuracy of Delft models is considerably lower,
although the RF models have higher balanced accuracies.

Table 4.16: Summary of Rijssen-Holten case study

Model Tuning
time (s)

Training
time (s) Accuracy Balanced

accuracy

SVM ANOVA-F 25.2 1.42 0.918 0.583
SVM MI 20.43 0.35 0.917 0.571
RF impurity 426.31 2.87 0.911 0.741
RF permutation 344.27 2.48 0.918 0.652

Table 4.17: Summary of Delft case study

Model Tuning
time (s)

Training
time (s) Accuracy Balanced

accuracy

SVM ANOVA-F 112.9 7.04 0.672 0.395
SVM MI 240.39 8.75 0.389 0.330
RF impurity 996.91 14.16 0.711 0.737
RF permutation 1,105.94 17.31 0.733 0.737

Table 4.18 shows the accuracy of the models. The first row shows the values
obtained using 20% of the input datasets (80% used for training). The second
row corresponds to the results when using the entire input dataset in the other
case study. The class distribution imbalance influences the models’ low accuracy.
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Table 4.18: Overview of Model Performances on Case Studies 1 and 2 Applied to
Various Datasets

Case
Study

Building
Type

Case Study 1 Models Case Study 2 Models
SVM

ANOVA-F
SVM
MI

RF
Impurity

RF
Perm.

SVM
ANOVA-F

SVM
MI

RF
Impurity

RF
Perm.

Test
dataset
20%

Accuracy 91.8% 91.7% 91.1% 91.8% 67.2% 38.9% 71.1% 73.3%
Balanced
accuracy 58.3% 57.1% 74.1% 65.2% 39.5% 33.0% 73.7% 73.7%

Other
dataset

Accuracy 55.3% 55.6% 56.6% 56.1% 60.3% 38.3% 81.2% 84.0%
Balanced
accuracy 42.0% 40.4% 40.4% 44.7% 47.6% 23.8% 58.0% 62.5%

3 Accuracy 75.8% 79.5% 87.9% 82.1% 85.4% 43.7% 80.2% 90.4%
Balanced
accuracy 49.2% 50.6% 53.9% 51.6% 36.7% 24.9% 74.9% 66.7%

4 Accuracy 85.5% 86.0% 87.7% 87.3% 80.3% 30.0% 90.3% 89.4%
Balanced
accuracy 59.6% 60.4% 64.5% 60.5% 32.3% 11.3% 78.2% 81.5%

5 Accuracy 60.1% 59.9% 63.5% 61.1% 75.0% 53.4% 67.5% 69.8%
Balanced
accuracy 54.7% 49.6% 62.3% 65.5% 39.6% 26.0% 60.5% 60.6%

6 Accuracy 17.0% 18.1% 26.7% 63.1% 82.1% 34.0% 68.5% 71.2%
Balanced
accuracy 42.8% 43.0% 44.8% 51.6% 40.2% 33.0% 68.6% 62.6%

7 Accuracy 89.4% 83.2% 89.2% 89.0% 60.8% 27.9% 80.2% 86.0%
Balanced
accuracy 71.8% 62.8% 67.7% 67.4% 35.4% 23.9% 74.9% 78.9%

8 Accuracy 98.0% 98.5% 81.9% 98.5% 86.9% 83.4% 93.0% 93.0%
Balanced
accuracy 90.6% 94.2% 66.6% 91.4% 43.4% 28.6% 72.0% 64.2%

RF performs better than SVM in classifying building types despite case study 8,
which is flatwoning-focused. However, the lower accuracy values in case study 6
(Portiek-focused) emphasise the importance of reliable ground truth. This case
dataset has no manual correction from the data extracted from ep-online, leading
to mislabelling issues. Energy labelling of dwellings in the Netherlands is not an
automatic or systematic process but a manual task initiated by specific situations,
such as when properties are rented or sold. The specialist who computes the
energy labelling must assign a building type classification to the construction of
the dwelling. However, the criteria for classifying buildings vary depending on
the agent in charge. These multiple criteria characterise the challenge of the
classification of a building type. Therefore also having an impact on the reliability
of the training data. From figure 4.25 it can be seen that, in general, buildings
can have multiple classes assigned .

Figure 4.25a shows two Flatwoning buildings with the same situation; both of
them can be classified as Galerij due to the galleries in the facade or apartment.
However, the former class is a specification of the latter two. Figure 4.25b
shows several examples of Flatwoning located over Schieweg in Rotterdam.
Although no differences can be observed from the facade, dwellings are labelled
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Flatwoning, Portiek, and Maisonnette.

Figure 4.25c shows two examples in Amerongenstraat in The Hague. The
building in the corner with Tenswoudelaan (upper right part of the 2D map) is
labelled Twee-Onder-Een-Kap and Hoekwoning. Both labels are logical since the
building shares one thermal envelope with another; however, both buildings are
in a row, so they should actually be considered Terrace Houses.

These multiple labelling raise challenges when performing accuracy assessments,
pointing out the importance of having a precise and clean dataset as ground
truth, which we do not have. Based on the results obtained and the hit-and-miss
analysis, collecting additional attributes per building will increase the correct
classification of the input data: number of storeys per vbo for Maisonnette, open
porch presence for Portiek, or presence of galleries in the facade for Galerij.
Only the number of storeys per vbo is available for these three attributes in the
BAG-plus (Gemeente Amsterdam, 2022).

The results indicate a high potential in using ML methods to overcome this data
gap with an accuracy of > 51.6%. However, the results are not accurate enough
to be used to classify complex buildings as Galerij, Maisonnette, or PK. This
misclassification happens due to the unclear classification rules of the buildings
like the building in The Hague figure 4.25c.

(a) Delft

(b) Rotterdam

(c) The Hague

Figure 4.25: Examples of buildings assigned with multiple building type classes
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4.3.2.2. LESSONS LEARNT
The lessons learnt from this project are:

• The topic is relevant since there is no open data available at the Dutch
national level about the building types.

• Attributes such as adjacency to other buildings, building width, and LoD2.2
volume have a strong correlation with Dutch residential building types.
These attributes can be extracted from s3DCM. However, other critical
attributes–such as the number of storeys and the presence of open porches
or galleries, which directly relate to the definition of specific building
types–are available as open data, nor can they be extracted from s3DCM.

• There is significant variation in the accuracy of the implemented models.
These also exhibit different performances in the selected case studies when
distinguishing between single-vbo and multi-vbos buildings. Furthermore, in
most cases, Random Forest models outperform Support Vector Machine
models in both suitability and accuracy.

• The classification rules of buildings are ambiguous, and this leads to
misclassification by both humans and AI models. For example, in the
results shown in figure 3.11, none of the buildings that have a vbo classified
as Galerij are uniquely classified as such (figure 4.9). This ambiguity
indicates a significant challenge and adds complexity to the process.

• There are limitations on the ground truth. All AI methods rely heavily on
labelled data for training, so discrepancies in classification rules across
several datasets impact negatively the model performance.

• The uncertainty found in the results does not allow us to choose a single
model that is accurate enough to be applied to the whole building stock of
the Netherlands. Therefore, this is an unsolved data gap for the use of
CityGML-based s3DCM for UBEM.

Nevertheless, in I section 5.5.1.3 present a workaround to reduce the impact of
this lack of data.

4.3.3. CALCULATION OF THE NUMBER OF STOREYS PER BUILDING

I briefly summarise the research done by Roy et al. (2023), which investigates
inferring the number of storeys in buildings in the Netherlands using CityJSON-

based s3DCM data due to the importance of the results for my PhD thesis. Their
research uses machine learning models trained on features derived from the
BAG, 3DBAG, census data from the Dutch Central Bureau of Statistics (CBS),
and training datasets from municipalities, including Amsterdam (BAG-Plus),
Rotterdam, and Rijssen-Holten. The prediction models used were Random
Forest (RF), Gradient Boosting (GB), and Support Vector Regression (SVR).

The study categorised 25 attributes into four groups:
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• Cadastral: Construction year, building function, net internal area, number of
units, and building type

• 2D geometric: Attributes derived from building footprints, such as area,
perimeter, number of vertices, and neighbouring buildings

• 3D geometric: Attributes derived from 3D models, including building height
(at various percentiles), roof shape, ridge-eave height difference, roof and
wall areas, and building volume

• Census-based: Population density, percentage of multi-household buildings,
and the average number of cafés within a specific radius

The Gradient Boosting (GB) model outperformed the common geometric approach
of dividing building height by a predefined storey height. Building height was
identified as the most influential predictor, while the study found no significant
improvement in using LoD2 over LoD1 building geometries, suggesting that
complex 3D models are unnecessary for storey predictions.

However, the model’s accuracy decreases significantly for buildings with more
than five storeys, from 94.5% for buildings up to five storeys to 52.3%. Another
limitation of this model is the “half-floor,” which is commonly found for example
in old buildings in historical city centre Amsterdam. Following its publication, the
model has been refined. Since February 2024, its output has been incorporated
as an additional attribute in the 3DBAG, keeping the limitation to reliable data
outcomes for buildings with up to five storeys. Therefore, I will introduce in
section 5.5.1.3 a workaround to overcome this data gap.

4.4. CONCLUSION REMARKS

T he pipeline implemented in this chapter prepares the data for energy
analyses. It involves multiple steps and several decision-making processes

using various software tools. In the case of the testbed, I performed lots
of manual data collection that is not feasible to replicate when creating the
country-wide dataset. Additionally, the data indexing method used to classify the
Dutch building stock proved its functionality when used to filter the data in the
computation of solar irradiance (see section 4.3.1.2).

The results of the machine learning projects to classify the Dutch building
stock (see section 4.3.2) and to infer the number of storeys per building
(see section 4.3.3) underscore the importance of high-quality input data for AI
approaches. For the former, due to variability in the accuracy of the results, these
values could not be reliably used as input data for future simulation processes
chapter 5. For the latter, the use of the calculation results is restricted to buildings
up to five storeys.

As a final remark, despite basic data cleaning processes (e.g., removing negative
years of construction of the buildings), no additional comparisons or validations
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were performed so that I remove as little as possible the data provided by
the input datasets. Further analyses into the input datasets will take place in
chapter 5.





5
IMPLEMENTATION

In this chapter, I provide more details on the software-side workflow of the urban
Building Energy Simulation I have developed; here, I focus on the system design,
the computations and tests to meet the objectives of my research. The chapter
describes the underlying software processes that support my modelling and simu-
lation decisions. It contains the details of the implemented software components,
some of the challenges encountered, and some solutions to overcome them.

This chapter outlines the context and key decisions made for the implementation
of the EnergyBAG Building Energy Simulation (BES). First, I introduce the
general considerations for developing this BES (section 5.1). Next, I describe the
software-based conceptual decisions, including C4 diagrams and corresponding
tables that define the system components (section 5.2). Then, I present
the software-side UML diagrams that illustrate the required processes for the
EnergyBAG BES (section 5.3). Following this, I discuss the challenges related
to data availability and the NTA 8800 requirements (section 5.4), along with
the implementation decisions taken to address dataset limitations and regulatory
constraints (section 5.5). Additionally, I review specific building cases with illogical
results in early stages of the implementation; these cases result in adjustments
in the implementation (section 5.6). This section also details a data validation
check introduced as a result of these findings. Finally, the chapter concludes with
reflections on the implementation process and key takeaways (section 5.7).

5.1. GENERAL CONSIDERATIONS

T he main goal of this implementation is to develop and validate a
methodological framework rather than to produce a polished software product.

All decisions concerning data handling, model structure, and computational
routines focus on Urban Building Energy Modelling (UBEM) in conjunction with
semantic 3D city models (s3DCM). The code thus serves as a means to test the
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viability of open datasets for computing building heat demand at various scales,
from city to country level.

The scope of this chapter is to investigate the feasibility of implementing the
design decisions based on the data requirements. Consequently, the code serves
as a proof of concept rather than a user-focused tool for end users. My priority is
to confirm that the logical workflow can produce consistent outcomes, which are
then evaluated in chapter 6.

As a proof of concept, the software will demonstrate the applicability of the
proposed method at different scales of analysis. The software is written to handle
input data from multiple data sources from individual buildings to the entire Dutch
building stock, as discussed in chapter 3. Although the following sections in this
chapter do not explicitly track the iterative cycle of coding, testing, validation, and
refinement, they detail the rationale behind the choices made during this phase
of the research.

Since the goal is to validate design decisions and compute heat demand for the
Dutch building stock, neither code optimisation nor robust software architecture
became a priority for the implementation. Instead, the scope is to ensure that
real-world datasets yield meaningful results under operational constraints.

I selected Python as the programming language for my implementation, although
it has known performance limitations (Pereira et al., 2021). Execution speed
or resource usage inefficiencies were considered acceptable trade-offs, allowing
more time to concentrate on the theoretical issues of my method and unexpected
data gaps that require further work. Thus, the user interface remains minimal.

I calculate several parameters in advance, such as the building footprint areas
and gross volume, surface areas, and number of storeys. The reason for these
pre-calculations is to distribute the computational load and to minimise repetitive
operations each time a simulation is run. It thereby increases the consistency
across multiple executions and reduces the likelihood of discrepancies based on
code updates.

For flexibility, intermediate results are stored so that only specific sections of the
code can be executed to perform particular analyses (e.g., testing the influence
of different air exchange rates on the net heat demand). This approach originates
from my experience with SimStadt and CitySim, where any data change
requires repeating the entire workflow, which is a computationally expensive and
time-consuming process independent of the size of the study area.

Finally, the definitions given in section 2.1 and section 2.5 form the conceptual
theoretical framework for my implementation. The data requirements explained
in chapter 3 guide each element of the pipeline design, indicating the need
to integrate s3DCM with building and usage archetypes, weather data, and
occupancy characteristics. Since the goal extends to country-level analyses,
assumptions from the NTA 8800 (NEN, 2024) are fully adopted to ensure
consistency and completeness of my method according to Dutch regulations.
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5.2. CONCEPTUAL DECISIONS

T he theoretical framework presented in chapter 2, the reflections based on
the data requirements from chapter 3, and the design decisions made in

chapter 4 are consolidated here through the implementation of a building energy
software tool based on the BAG, which is therefore named EnergyBAG BES.

I use the C4 model to represent the architecture and functionalities of the
EnergyBAG BES. C4 stands for (System) Context, Containers, Components,
and Code (Brown, 2023). This model provides a hierarchical set of diagrams
that represent the software system at multiple levels of abstraction. Specifically,
I use the system context and system container diagrams to introduce my
implementation.

5.2.1. C4-MODEL SYSTEM CONTEXT

T he system context diagram serves as a starting point by showing the software
system within its environment. It helps to understand the scope of the system,

who uses it, and what the critical system dependencies are. Figure 5.1 shows the
EnergyBAG BES context diagram; the description of its components is available
in table 5.1.

Table 5.1: Description of EnergyBAG BES system context diagram
Element Definition

Data Preparation This system is in charge of the data collection for the energy simula-
tion. It could involve the calculation of missing parameters from the
corresponding source

Data Manipulation This system takes care of data necessary for the energy simulation. It
deals with several data sources and interacts with the other systems
in EnergyBAG BES

Energy Simulation This system takes care of the energy simulation

The design decision of the EnergyBAG BES allows users to compute the net
heat demand of buildings based on three main processes: data preparation,
energy simulation and data management. A user communicates with the
data preparation and energy simulation systems when they want to perform a
calculation. The data preparation system checks whether all the data required for
a specific energy simulation are available.

If any data are missing, it performs the necessary calculations to generate the
missing data. Then, the energy simulation system uses these data to perform the
requested calculations. Both the data preparation and energy simulation systems
read from and write to the data manipulation system, which manages data across
multiple data sources.
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Figure 5.1: C4-model system context diagram for EnergyBAG BES

5.2.2. C4-MODEL SYSTEM CONTAINER

A simplified definition of the system containers indicates that it is a zoom to
the software system in scope. This diagram shows the high-level technical

components (containers) and their interactions. Therefore, it serves as a detailed
specification of the systems defined in the system context and provides a more
granular view of the system’s architecture. Table 5.2 describes the elements
of the system container diagram for the EnergyBAG BES that are shown in
Figure 5.2.

Table 5.2: Description of EnergyBAG BES system container diagram
Element Definition

Business Rule It defines the business rules to perform the energy simulations, for ex-
ample, solar irradiance model, shadowing conditions, refurbishment
scenario

Study Area It deals with the definition of the area of interest for the calculations.
In the case of big areas, it split them into tiles

Continued on next page
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Table 5.2 – continued from previous page

Element Definition

Transmission Deals with the computation of the heat transfers by transmission
Ventilation Deals with the computation of the heat transfers through air flows from

outside
Internal gains It deals with the computation of the energy gains values by people

and appliances
Solar gains It provides the solar gains of the building
Solar irradiance Calculates the solar irradiance for a given study area
Parameters creation Calculates the necessary parameters for the available energy simu-

lations, i.e., the number of storeys of a building part according to the
NTA 8800 (equation (2.14))

Parameters collection Allows the users to query the data available for the energy simulation
Data Manipulation This base system provides the data manipulation methods and deals

with the interaction with several databases
3DCityDB Database management system (DBMS) for the s3DCM. Described in

section 2.2.1.3
LibraryDB DBMS for the building physics data. Described in section 4.2.1
EnergyBAG DB It contains the business rules, user parameters and results

The user interacts with two containers: business rule and study area. Business
rule sets the rules and configuration parameters for the energy simulation.
Examples of business rules include the selection of refurbishment conditions, the
solar irradiance method, or how to proceed when a building(part) has no or
insufficient vbos data. The study area handles the definition of the area of interest
for the calculation and splits it into tiles for better efficiency of the simulation tool.

The core of the energy simulation system is composed of several containers that
perform specific calculations according to the energy balance method defined by
NTA 8800 section 2.5. However, the design decisions of the energy simulation
system do not follow a hierarchical approach as shown in figure 2.14 since the
user can directly execute the computation of the solar irradiance at the study
area. For example, the solar irradiance values might come from an external data
source, as the computation performed in section 4.3.1.2 or CitySim, Ladybug –to
mention some– instead of the NTA 8800 standard values.

As already mentioned, the energy simulation system interacts with the Data
Preparation system. However, the energy simulation system is split into
Parameters Creation and Parameters Collection, which, as their names indicate,
are in charge of either creating the corresponding parameters required for the
computation of the energy simulation or collecting them from the corresponding
data sources by means of the Data Manipulation system. All these containers
communicate through API(s).
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Figure 5.2: C4-model system container diagram for the EnergyBAG BES

The remaining system corresponds to Data Manipulation. It is responsible for
managing the interaction with the several databases used in the process. The
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communication between the systems and the data is done using the Python
Database API specification (Lemburg, 1999). Data are stored in multiple
databases as already introduced in chapter 4.

The data manipulation system, shown in figure 5.2 is split into two main
components: data manipulation and the databases. For the data manipulation,
I use Python v3 and the librariy SQLAlchemy, which is a Python toolkit and
Object Relational Mapper (ORM) that provides a suite of well-known persistence
patterns (Bayer, 2012); and psycopg which is the PostgreSQL adapter for Python
(Varrazzo, 2023).

The data manipulation system is crucial for the energy simulation since it retrieves
the necessary data from the databases. Therefore, it is in charge of storing the
computing energy simulation results in both the 3DCityDB and EnergyBAG DB.
Grouping all the application data manipulation processes into this system enables
efficient data management and retrieval from the other systems.

5.3. IMPLEMENTATION OF THE ENERGY SIMULATION
SYSTEM

T he Unified Modelling Language (UML) sequence diagram of the Energy
Simulation System is shown in figure 5.3. The sequence flows from left

to right. The main components are Python and the databases LibraryDB,
EnergyBAG DB and 3DCityDB. The application is initiated by the Python script,
which is the central orchestrator of the system. It starts by validating the
connection to all databases. In case of a non-working connection, the application
will not continue. After the connection to the databases is validated, the Python
script queries the physical data, e.g., U-values and g-values, based on the
building type. The following step corresponds to the query of the NTA 8800
parameters. Among these parameters are set point temperature per function,
length of the month, standard climate data, and internal heat gains values per
building function. These data are queried at the beginning since they are used
in the following processes and values and never vary. The EnergyBAG DB also
contains business rules that the user can customise. Some examples of them
are the refurbishment scenario of the computation and the management of data
inconsistencies between the input datasets. The latter is explained in detail in
section 5.6.6.

After receiving the response of the EnergyBAG DB for the NTA 8800 parameters
and business rules, the implementation loop starts. The following parts are
repetitive and correspond to:

• Spatial Filter: As mentioned in section 4.2.3, I chose the H3 Indexing
to split the study area into equal size smaller chunks, which are more
manageable in terms of data flow and data processing between the DB
servers and the computer that performs the calculations. This filter obtains
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Figure 5.3: Sequence diagram of EnergyBAG BES

the Building(Part)s inside the corresponding tile with their corresponding
attributes and thermal envelope data.

• Data Validation: The scope is to guarantee that the data comply with the
minimal requirements to perform the corresponding calculations based on
the established business rules.

• Heat demand calculation: The resulting data are used for the computation
of the net heat demand of buildings according to the NTA 8800 and the
selected business rules.

• Tile results storage: The final step corresponds to the storage of the



5.3. Implementation of the energy simulation system

5

131

calculation results, which is managed per H3 tile. Results are first stored
in external files to avoid the saturation of the DB server when executing
multiple loops simultaneously. Then, the data from the output files are
aggregated into a single file. Finally, computation results are stored in the
input 3DCityDB instance.

The remaining processes correspond to the consolidation of the results per tile
into one, which is stored in the 3DCityDB instance using the Energy ADE (KIT
profile) data model.

Figure 5.4 shows the activity diagram of the EnergyBAG BES. It starts by
establishing the connection to the databases mentioned in the Data Manipulation
System (figure 5.1). After validating the database connections, data are filtered
by the corresponding H3 index that covers the study area. The filtered data from
the Building(Part)s, and their corresponding ThematicSurfaces are handled by
Pandas DataFrames (McKinney, 2010), which are two-dimensional tabular data
with mutable size.

The following process consists of the Basic Calculations, which compute the
parameters necessary for the net heat demand calculation. The resulting data
are merged to create a single DataFrame that contains all the data required for
the final simulation steps. Based on the data requirements, I first calculate the
number of occupants per residential zone using equations (2.20) to (2.22). This
value is later used to calculate the internal gains and the heat demand for hot
tap water, implementing the respective formulas given in section 2.5.1.

Figure 5.4: Activity diagram of EnergyBAG BES



5

132 5. Implementation

The remaining decision is on the solar irradiance model to use for the calculation
of solar gains. The default parameter is the statistical data available in
the NTA 8800; the other possibility is the use of values (if available or
already precomputed) computed by external simulation tools as discussed in
section 4.3.1.2, which are stored in a 3DCityDB+Energy ADE (KIT profile)
instance. The remaining processes follow the logic introduced in section 2.5. The
final process is to store the results in the databases using the Data Manipulation
system.

5.4. CHALLENGES IN THE IMPLEMENTATION PHASE

T he most persistent problem encountered during the research is the lack of
data. In chapter 4, I discuss this issue and propose a some strategies to

overcome it based on the experience gathered on the preliminary tests. However,
during the implementation of EnergyBAG BES, those data gaps became more
significant. One example is the absence of usable area data. As already shown
in figure 3.4, 59% of buildings lack vbo information, meaning that they do not
have information on function and usable area. As a consequence, it is not
possible to compute the net heat demand since the NTA 8800 specifies several
of its parameters based on this attribute. Currently, the only way to solve this
challenge is to make assumptions that introduce additional uncertainties to the
calculations.

Additional challenges come from the specifications of the NTA 8800. The norm
has no indications for processing industrial buildings. Therefore, buildings with
this function cannot be processed at the moment in my implementation, or it is
required to include additional data sources or methods. In the case of healthcare
buildings, for example, the norm distinguishes between healthcare facilities with
beds and healthcare facilities without beds. These classes have different values
for specific parameters, that is, the case of the set-point temperature with values
of 22◦C and 21◦C, respectively. However, such granularity is not present in the
BAG and can not be identified geometrically from a LoD2 model as the 3DBAG.
Hence, these mismatches in categorising buildings lead to an approximation in
which all healthcare buildings will be associated with the same parameter values.

Further challenges and the steps taken to resolve them or minimise their
impact are outlined in section 5.6. They mainly involve data issues, such
as mismatched data epochs (section 5.6.1) or inconsistencies within the input
datasets (sections 5.6.1 and 5.6.6). Moreover, specific NTA 8800 parameters can
introduce errors if not handled correctly. One example is the set-point temperature
per function compared to the monthly average outdoor air temperature values.
Sports buildings, for instance, have a heating set-point of 16°C (table 2.4), which
is below the monthly average temperature from June (16.12°C) through August
(18.48°C). Overlooking these data will lead to inconsistencies in the calculation
results.
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5.5. IMPLEMENTATION DECISIONS

T he following implementation decisions were made based on the empirical
knowledge acquired in the course of this research. They are based on the

input s3DCM and the calculation zone approach on which the NTA 8800 is
based. As mentioned in section 5.1, the scope of this research is to perform the
calculations at the country level. Therefore, data handling should be sufficiently
simplified and generalised to enable the management of large datasets.

5.5.1. MODELLING
5.5.1.1. THERMALZONE(S)

T he 3DBAG, like many other 3D city models, provides the geometrical
representation of buildings. There is no information about their interior.

Consequently, any internal division introduces additional assumptions. Figure 5.5
shows the decision taken for my implementation. The input building (figure 5.5a)
is represented as a LoD2 MultiSurface geometry (figure 5.5b). I decided to use,
for the moment, a single ThermalZone per building as it is common also in other
similar cases found in literature (Johari, Shadram et al., 2023; Nutkiewicz et al.,
2021). Therefore, the ThematicSurfaces of the LoD2 geometrical representation
of Buildings are the same as the ThermalBoundaries of the ThermalZone
figure 5.5b. However, my implementation supports multiple ThermalZones per
building (as figure 5.5c) by querying from the input s3DCM all ThermalZones per
building including their ThermalBoundaries (when present). All computations are
already done separately up to the ThermalZones level and later aggregated to
the Building(Part).

(a) Building (b) One ThermalZone with
ThermalBoundaries (blue)
as the building ThematicSur-
faces (red)

(c) Multiple ThermalZones
defined by ThermalBoundar-
ies in blue

Figure 5.5: Energy ADE ThermalZone approach of my implementation

5.5.1.2. OPENINGS

T he input geometries derived from the 3DBAG LoD2 representation do not
have openings (e.g., needed for windows). To address this gap, I adopted

a window-to-wall ratio of 0.3 and a window-to-roof ratio of 0.1 based on data
exploration conducted during my research and are in line with similar values
found in literature. These parameters can be adjusted and further refined as
necessary for subsequent simulations, for example, by using typical values per
building type when available.
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5.5.1.3. NUMBER OF STOREYS

A nother decision in modelling relates to the number of storeys, a required
parameter for several processes in the NTA 8800. However, as mentioned in

section 4.3.3, this attribute is not available for the entire country. Consequently,
as a fallback, I use the NTA 8800 specification (equation (2.14)). The workflow
for creating this parameter is shown in figure 5.6.

Figure 5.6: Logical workflow for defining the number of storeys in the EnergyBAG

The workflow includes an orange step representing a dataset created by the
Data Science Team (DST) of Kadaster Netherlands. This team processed

the entire 3DBAG to compute the number of storeys per building (Kadaster,
2022). The used method developed by (Roy et al., 2023), briefly presented
in section 4.3.3 predictors classify results into two categories: 1 to 5 storeys
(accuracy: 91.94%) and 6 to 47 storeys (accuracy: 42.99%), highlighting the
lower reliability of results for taller buildings.

Additionally, the online dataset was actually inaccessible for an extended
period during my research (2023–2024). Given the indicated data quality and
accessibility challenges, I decided not to include this dataset. Instead, I used the
NTA 8800 specification as a fallback to assign the number of storeys to buildings
lacking this data. From December 2024 onwards, the number of storeys is
available as a GenericAttribute in the 3DBAG, and therefore, this can be resolved
in future developments of my workflow.

5.5.1.4. BUILDING TYPE

A s already written in section 4.3.2 a major issue due to lacking data is the
building type since ∼ 90% of buildings do not have this information. Due to

the low accuracy of the classifiers in the method developed by Poon (2024),
I could not use the results as input data for the EnergyBAG BES. Therefore,
I defined simplified classification rules for building types using the current data
available to increase the number of buildings that can be processed. This method
is also used by other software solutions, such as SimStadt, to fill similar data
gaps.

The rules that classify the building types consider factors such as the number
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of vbos registered to the Building(Part), the number of storeys, and the number
of adjacent Building(Part)s (see figure 5.7 for the adjusted workflow). The
”function” attribute is used to categorise Building(Part)s into non-residential (when
none of the ”function” values in the Building(Part) is residential); in the case of
Mixed-used buildings, these are categorised into the remaining classes. However,
the resulting classes do not include the Dutch-specific types shown in figure 3.9.

Figure 5.7: Adjusted Workflow for assigning the building type attribute

Figure 5.8 presents the aggregated results of the EnergyBAG dataset by building
type. For comparison, it also includes the previous classification of the Dutch
building stock based on the input datasets as shown in figure 4.9. The decrease
in the number of semi-detached houses can be attributed to the computed
number of storeys. According to RVO (2023), these buildings should have up to
four storeys, leading to fewer Building(Part)s being classified in this category.

Figure 5.8: Distribution of classes before (yellow) and after (purple) my classifica-
tion method

5.5.1.5. HEAT TRANSFERS THROUGH VENTILATION

C alculating the air volume flow presents another challenge, as it is fundamental
to determine heat transfers by ventilation. Due to the input data available,

I decided to use the method based on the building type, this method bases the
values for the Air volume flow (q) and Dynamic correction factor (ƒ) on the
building type categories, the number of storeys of the building and the roof type
of the building. However, this approach still has uncertainties since the values
are specified for one-storey buildings and the location of the vbo (dwelling) inside
the apartment block as presented in figure 3.12. Based on this, I consider all
buildings with more than one storey as corner locations on the top floor table 2.5
since this category assigns the highest dynamic correction factor (ƒ = 1.4).
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Consequently, it leads to higher values of the net heat demand through ventilation
losses.

5.5.1.6. HEATING PERIOD

T he NTA 8800 specifies that the winter period, or heating season, spans
212 days (NEN, 2024, p. 1084), corresponding to the interval from 1st

October to 30th April, inclusive. While my scripts can perform computations for
all twelve months of the year, the yearly aggregated values used in my research
and presented in chapter 6 focus specifically on the winter period, as NTA 8800
specifies.

5.5.1.7. WEATHER DATA

I use the climate parameters defined by the NTA 8800 for my computations.
Therefore, solar irradiance and shading conditions are assigned based on the

inclination and orientation of the thermal boundary surfaces. For the shading
conditions, I use the values named as ”full obstruction conditions” (NEN, 2024,
table 17.13).

5.5.2. IMPLEMENTATION WORKFLOW

T he implemented workflow is divided into several functionalities, each with
a specific purpose. The software-based processes required for the pipeline

design (chapter 4) are consolidated into the first main section of my solution. The
second section correspond to the Energy Simulation. To facilitate the processing
and deal with large datasets, I use Pandas Dataframes for data manipulation. All
custom functions are vectorised, following Python data management principles,
to enhance performance.

I implemented an interactive menu using the Python library Simple Terminal
Menu1. The hierarchical menu of EnergyBAG BES is shown in figure 5.9. The
workflow is split into two main elements: Database set-up and Energy simulation.

Figure 5.9: EnergyBAG BES main menu

1Version 1.6.4. Further details in (Meyer, 2023)
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Data preparation and preprocessing activities focuses on data preparation and
preprocessing tasks that are not required for every simulation run. By
precomputing static variables (e.g., number of storeys, heated area per building,
building volume) and reusing them across simulations, computational efficiency is
significantly enhanced. These variables remain unchanged between simulations
and are configured once prior to execution. The available preprocessing options,
shown in figure 5.10, include:

Figure 5.10: EnergyBAG BES options

• Data load: Loads the multiple input datasets to the centralised EnergyBAG
DB

• Data cleaning: It applies basic data cleaning methods to remove logical
inconsistencies in the input datasets.

• Data preprocessing: It corresponds to the data preparation to perform the
net heat demand calculation based on the NTA 8800. Its scope is to
guarantee that the minimum data requirements are met. Therefore, it
includes the number of storeys and building type classification as described
in section 5.5.1.3, usable area validator section 5.6.6 and the assignation of
the corresponding H3 index tiles to each of the Building(Part)s in the input
dataset.

• Database enrichment: It stores the computed parameters into the
corresponding 3DCityDB instance.

• Data quality checks: It performs validations to the input datasets among
the several sources. One example is the validation of the usable area as
described in section 5.6.6

The options available for the Energy simulation are presented in Figure 5.11.
These include Net heat demand calculation, Results consolidation and Results
analysis. Each option in the menu performs the following tasks respectively:



5

138 5. Implementation

Figure 5.11: EnergyBAG BES options

• Heat demand calculation: It contains all scripts to compute the net heat
demand per Building(Part). It follows the sequence diagram presented in
figure 5.3. The script is structured for multi-threading execution; the number
of threads that perform the computation is based on the number of physical
cores of the hosting computer. Each thread processes the Building(Part)s
within its assigned H3 tile.

The output per thread is a CSV file with all calculations aggregated by
Building(Part). This approach ensures interoperability with database users
who have read-only access permissions. Furthermore, CSV files are a
handy way to analyse data locally, including for people with less database
experience.

• Results consolidation: It consolidates the results of all tiles of the input
dataset into a single file that is used in the following options of the menu. It
contains the scripts to store the aggregated results into a 3DCityDB+Energy
ADE (KIT profile) instance.

• Results post-processing: It contains all the scripts to generate the figures
and tables that are presented in chapter 6.

5.6. FOCUSED REVIEW: SPECIFIC BUILDING CASES

H ere, I present a small selection of problematic cases found when
preprocessing the data prior the calculation of the net heat demand of

buildings. These examples highlight common patterns that lead to noticeable
incorrect calculations without requiring direct comparison to ground truth data.
That is the reason for having additional data quality checks in the implementation
workflow prior to processing a building to deal with such cases. All samples
included in this section are related to the usable area (in Dutch ”gebruiksdoel”)
attribute



5.6. Focused review: specific building cases

5

139

5.6.1. PAND ID 1742100000100986

A ccording to the BAG (Kadaster, 2024a), this single family house residential
building was constructed in 2023 and has a usable area of 595m2

(figure 5.12). The computed yearly heat demand for this building is 5.3
kWh/(m2·a), which is a very low value even for a new building. The features
extracted from the EnergyBAG DB provide the data available in table 5.3:

Table 5.3: Summary data for Pand ID 1742100000100986

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

65.4m2 1 14.5m 152.8m3 1 1924m2

Figure 5.12: BAG viewer data for building with Pand ID 1742100000100986

Although no inconsistencies are evident when each dataset is evaluated
independently, they may emerge when the datasets are combined. For example,
it is unrealistic for a building with a footprint area of 65.4m2 and 1 storey to have
a usable area of 595m2. Furthermore, figure 5.13 highlights the discrepancy
between the geometric representation from the BAG dataset (black outline) and
the footprint from the 3DBAG dataset (red polygon). Both figures 5.12 and 5.13
use the official map from the Basic Registry of Large-Scale Topography (BGT)
as their base, which closely aligns with the footprint from the 3DBAG. These
observations highlight the need for additional validation steps before conducting
any computation if such a case happens.
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Figure 5.13: Geometrical representation of Pand ID 1742100000100986 at Decem-
ber 2024

5.6.2. PAND ID 1742100000006419

T his industrial building, constructed in 1989 (Kadaster, 2024a), is two storeys
above ground and contains one vbo, as shown in figure 5.14b. The properties

extracted from the EnergyBAG database are summarised in table 5.4. The
computed yearly heat demand is 9.5 kWh/(m2·a), which is remarkably low for a
building from this construction period, even if it was purely residential.

Table 5.4: Summary data for Pand ID 1742100000006419

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

215.5m2 2 20.72m 1950.7m3 1 5835m2

(a) BAG Viewer (b) 2023 Google Street View©

Figure 5.14: Basic visualisation of building 1742100000006419

However, the values in table 5.4 show evident inconsistencies for the usable area
(5835m2) since there is no physical space for such a value: the usable area,
according to the BAG, is 27 times the size of the footprint area of the building,
which is not in line with the two storeys that can be identified in figure 5.14b.
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5.6.3. PAND ID 1742100000096311

T he BAG dataset (Kadaster, 2024a) indicates that the building was constructed
in 2015 with an industrial function; therefore, its building type is non-residential.

The basic description of the BAG is shown in figure 5.15. The features extracted
from the EnergyBAG DB provide the data available in table 5.5:

Table 5.5: Summary data for Pand ID 1742100000096311

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

526.7m2 2 16.59m 3591.8m3 2 1924m2

(a) Nijverheidsstraat 50

(b) Nijverheidsstraat 52

Figure 5.15: BAG viewer data for building with Pand ID 1742100000096311

Although the building height may suggest more than two storeys, Google Street
View (figure 5.16) confirms that the building has only two storeys. Furthermore,
based on the collected data, this building has a usable area of more than 3,5
times the area of the building footprint, which seems unlikely.
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Figure 5.16: 2023 Google Street View© Pand ID 1742100000096311

The computed yearly net heat demand for this building is 8.9 kWh/(m2·a), which
would be a very low value if it was a residential building. The year of construction
is almost a decade old compared to the current legislation for the construction
of new buildings, which means that it does not follow the latest construction
specifications in the Netherlands for this type of building.

5.6.4. PAND ID 0150100000010860

T he computed yearly heat demand for this residential building is 11
MWh/(m2·a), which is a very high value for a building with one registered vbo

and a usable area of 72m2 figure 5.17. Furthermore, its 3DBAG footprint area
is significantly larger, i.e. 1,994m2. The features extracted from the EnergyBAG
DB provide the data available in table 5.6:

Table 5.6: Summary data for Pand ID 0150100000010860

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

1993.9m2 2 16.64m 10373.3m3 1 72m2

Figure 5.18 shows the Google imagery of Pand ID 0150100000010860. It is
visible that the data from the BAG do not correspond to the ground. Furthermore,
based on figure 5.18b, it can be concluded that the BAG data corresponds to the
building highlighted by the red circle.
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Figure 5.17: BAG viewer data for building with Pand ID 0150100000010860

(a) Aerial view (b) Street view

Figure 5.18: Google imagery for building with Pand ID 0150100000010860. Taken
from https://www.google.com/maps

The previous examples serve to illustrate the widely erroneous results after
data integration processes. These errors not only reveal the impact of data
inconsistencies but also serve as indicators of the underlying building typology.

5.6.5. ADDITIONAL INCONSISTENCIES

O ut of 10,553,631 buildings, 3,578 have a registered usable area of 1m2,
while their 3DBAG footprint is at least 48% larger. This discrepancy

highlights possible issues with the data. One example is the building with ID
0160100001372603. As detailed in section 3.2.1.1, I use the BAG data from
epoch 8th August 2024; it records this building with one vbo and a usable area
of 1m2 but the 3DBAG has a footprint area of 12,890.66m2. However, historical
records (now expired) show different usable area values, as shown in figure 5.19.
Furthermore, as of December 2024, the BAG viewer figure 5.20 lists this building
with a usable area of 13,370m2 (Kadaster, 2024a).

https://www.google.com/maps
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Figure 5.19: BAG historical data for building with Pand ID 0160100001372603

Figure 5.20: BAG viewer data for building with Pand ID 0160100001372603 at
December 2024

5.6.6. LESSONS LEARNT

B ased on the typologies of errors for which examples have been shown before,
I implemented a data quality checker focused on the usable area per building.

This validator calculates a theoretical usable area by considering 80% of the
building’s footprint area and the number of storeys. The remaining 20% factor
accounts for non-heated spaces (e.g., stairwells, attics) to avoid overestimation
(Dochev et al., 2020; Johari, Shadram et al., 2023). The computed value is then
compared to the BAG usable area, and buildings with discrepancies exceeding
30% are flagged as shown in equation (5.1). These flagged buildings are
subsequently excluded from the analyses2

sbe_recc = ƒootprnt_re · 0.8 · nm_storeys (5.1)

If:

0.7 · sbe recc ≤ sbe reBAG ≤ 1.3 · sberecc
Then:

s comptbe? = Fse

2This is a heuristic decision based on the data exploration I have done during my PhD research. Addi-
tionally, the rationale is that the usable area means those areas of a building that are heated. Using
a percentage of the footprint provides a logical and systematic approach at the city level. Moreover,
a deviation exceeding 30% between the official usable area and the calculated value suggests incon-
sistencies in the data sources for the corresponding building or indicates the need for an alternative
approach.
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The resulting EnergyBAG DB indicates that 4,184,177 Building(Part)s (40.2%)
have no vbos, therefore cannot be considered as residential, and 1,726,288
buildings (16.6%) should be excluded from the analysis due to inconsistencies in
the usable area data. One of the reasons for the discrepancy of values between
datasets, could be related to the epoch of the input datasets; for example,
3DBAG is derived from AHN lidar data (section 3.2.1.2), which is collected over
multiple years using aerial surveys. The upcoming AHN5 is scheduled for data
collection between 2023 and 2025, with Rijssen-Holten expected to be scanned
in 2025 (Rijkswaterstaat, 2023). In contrast, the registry data, from which the
BAG is updated and released monthly, is updated on a daily basis. Figure 5.21
shows the distribution of the EnergyBAG DB, the processed 43.2% of the BAG
corresponds to 4,502,969 Building(Part)s.

Figure 5.21: Suitability of Dutch building stock for EnergyBAG BES processing

Additionally, the processed 4,502,969 Building(Part)s can be further categorised
based on their class (an aggregation derived from their function). Among these,
40% are residential buildings, while 1.2% (128,354 buildings) are classified as
mixed-use. The distribution is presented in figure 5.22.

Figure 5.22: Processed building stock classified by class in the Netherlands
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The spatial distribution of the computable Building(Part)s in the Netherlands is
shown in figure 5.23, where darker shades of blue indicate a lower number of
processed elements. The spatial distribution of the Building(Part)s with no vbos
data in the Netherlands is shown in figure 5.24. Also, the spatial distribution in
the Netherlands of the flagged Building(Part)s from section 5.6.6 are shown in
figure 5.25.

Figure 5.23: Spatial distribution of unprocessed Building(Part)s in the Netherlands
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Figure 5.24: Spatial distribution of Building(Part)s with no vbos data in the Nether-
lands
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Figure 5.25: Spatial distribution of flagged Building(Part)s in the Netherlands

5.7. CONCLUSION REMARKS

T his chapter documents the decisions made during the implementation of the
EnergyBAG BES in alignment with the NTA 8800. As outlined in chapters 3

and 4, UBEM requires extensive input data. However, not all data requirements
could be met using available open datasets, necessitating strategic decisions to
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address these gaps.

During the implementation, the need for robust data validation became clear
to ensure consistency across datasets. While the Netherlands exemplifies
strong open data practices–such as the use of unique identifiers to facilitate
cross-dataset integration–opportunities for improvement remain. These include
resolving inconsistencies in semantic classifications and enhancing metadata
completeness, as shown in figures 5.23 to 5.25.

The simulation results are presented in chapter 6, which are separated for the
testbed and the Netherlands. The analyses of the results are based on light of
what have been discussed in chapter 4 and this chapter.





6
RESULTS AND DISCUSSION

In this chapter, I present and discuss the results of the implemented EnergyBAG
BES. The following sections provide a description of the results. The results are
compared against ep-online values since this dataset offers country-wide building
level energy open data.

This chapter is divided into two main sections: Rijssen-Holten (section 6.1) and
the Netherlands (section 6.2). Both case studies follow the same structure. First,
I describe the input dataset, including basic statistical analyses of the results.
Then, each case study is analysed in the following subsections:

• Computed net heat demand: This section presents and discusses the
computed heat demand results for Rijssen-Holten (section 6.1.1) and the
Netherlands (section 6.2.1).

• Analysis of specific cases: Here, I examine buildings with extreme values,
providing a description and discussing possible reasons for the calculated
results. The corresponding sections are Rijssen-Holten (section 6.1.3) and
the Netherlands (section 6.2.2).

• Results comparison: This section compares the computed results with the
energy data available from the energy performance certificate database.
The corresponding sections are Rijssen-Holten (section 6.1.4) and the
Netherlands (section 6.2.3).

• Thermal hull refurbishment scenario: This section evaluates a refurbishment
scenario and its impact on heat demand. The corresponding sections are
Rijssen-Holten (section 6.1.5) and the Netherlands (section 6.2.4).

The chapter concludes with final remarks in section 6.3. The computer used for
all calculations has the following specifications:

• CPU: AMD Ryzen 9 7950X (16 cores @ 4,5GHz)

• GPU: Inno3D GeForce RTX 4070 Twin X2 (12GB GDDR6X)
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• RAM: 128GB DDR5 @ 5.600MT/s

• Storage: 1TB M.2 @ 3.500MB/s

Although this is a high-end personal desktop computer, it is not a mainframe
or supercomputer. Despite not having cutting-edge hardware (by 2025
standards), the results demonstrate the practicality of the designed pipeline and
implementation.

6.1. CASE STUDY: RIJSSEN-HOLTEN

T his section presents the computed values for Rijssen-Holten extracting the
data from the EnergyBAG DB chapter 4 and the computed model based on

the NTA 8800 detailed in section 2.5, and implemented in chapter 5.

6.1.1. PROCESSED DATA

F or Rijssen-Holten, the results of the usable area check indicate that 5,053
Building(Part)s (20.94% of the building stock) are not computed due to

discrepancies higher than the 30% rule as explained in the previous chapter (i.e.
when the official usable area and the calculated usable area differ more than
30%). Therefore, only 9,430 Building(Part)s (39.09%) are processed. Figure 6.1
shows the distribution of the building stock in Rijssen-Holten for computing the
net heat demand based on the NTA 8800 and it is detailed in table 6.1.

Figure 6.1: Processing distribution of the building stock in Rijssen-Holten

The basic statistics for the computed annual net heat demand per m2 are shown
in table 6.2. The values in this section, tables, and figures correspond to the
refurbishment scenario “as-built”, which corresponds to the physical conditions
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of the archetype building during the construction period and as if it was never
refurbished.

Table 6.1: Rijssen-Holten EnergyBAG dataset

Building(Part)s

Full dataset 24,170
Usable area discrepancy1 5,138 21.26%
Non-processed (no vbos)2 9,544 39.49%
Processed3 9,430 39.26%

Residential4 8,054 33.32%
1 Usable area discrepancy indicates differences beyond tolerance
thresholds.
2 ABuilding(Part)without vbos lacks function data, requiring assumptions
for computations.
3 Includes both residential and non-residential functions.
4 Refers to Building(Part)s containing at least one residential vbo.

From table 6.1, the processed Building(Part)s that are further classified as
residential, indicate that the Building(Part) has at least one vbo as residential. I
evaluate the influence of the PartyWalls in the calculation of the net heat demand
because, for Rijssen-Holten, I have this information (Agugiaro, Zwamborn et al.,
2022). This is useful to get a feeling of what it will be for the Netherlands, since
we do not have detailed PartyWalls information for all buildings in the Netherlands.
The basic statistics of the results for Rijssen-Holten are shown in table 6.2; this
table is complemented by figure 6.2. These figures present the heatmaps of the
mean values of the results classified by building type and construction period.
Except for the single family house class (as expected), all other classes are
influenced by the inclusion of the PartyWalls in the calculation of the net heat
demand of the building. This influence is higher for older construction periods,
with the highest difference between classes for apartment blocks constructed in
the period 1965-1974 with an average of 99.9 kWh/(m2·a), almost 50% lower
when including this parameter into the calculations.

Table 6.2: Rijssen-Holten computed annual net heat demand basic statistics. All
values are expressed in kWh/(m2·a).

Minimum Mean Median Std Deviation Maximum Mode

Processed 28.8 304.2 303.2 158.3 1835.5 144.2
Residential

PartyWalls as exterior walls 21.2 252.8 251.0 126.7 1478.5 284.1
PartyWalls as abadiatic walls 1.9 196.0 208.8 100.3 734.0 172.4
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(a) Input s3DCM with PartyWalls as exterior walls

(b) Input s3DCM with PartyWalls as abadiatic walls

Figure 6.2: Annual mean net heat demand per building type and construction period
classes in Rijssen-Holten

6.1.2. COMPUTED NET HEAT DEMAND

T he distribution of the computed net heat demand by building type (refer to
figure 5.8) and construction period (refer to table 3.5) is shown in figure 6.3

using a letter-value plot. The results indicate high variability, particularly for
non-residential building(Part)s, with outliers exceeding 1,400 kWh/(m2·a) in the
1946–1964 construction period. Non-residential buildings encompass a wide
range of functions, each requiring different assumptions about heating, ventilation,
and operational hours. Therefore, these results must be taken with particular
care.

Although I compute also non-residential buildings, I focus on Building(Part)s
classified as residential in table 6.1 (residential and mix-use) Restricting the
dataset of analysis to the residential buildings reduces the uncertainties by
the additional assumptions mentioned above. The computed net heat demand
of Rijssen-Holten is shown in figure 6.4, values are aggregated by building
type and construction period classes. The figure is further complemented by
tables 6.3 and 6.4, which provide the mean net heat demand by building type
and construction period, respectively.
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Figure 6.3: Letter-value plot of the computed net heat demand by building type and
construction period in Rijssen-Holten

Figure 6.4: Computed total net heat demand in Rijssen-Holten aggregated by build-
ing type classes and construction periods

Table 6.3: Mean annual net heat demand per building type class

Building
type class

No.
Building(Part)s

Building
stock % kWh/(m2·a)

Single Family House 2476 30.74% 266.2
Semi Detached House 946 11.75% 266.3
Terraced House 4523 56.16% 215.2
Apartment Block 109 1.35% 179
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Table 6.4: Mean annual net heat demand per construction period

Construction
period

No.
Building(Part)s

Building
stock % kWh/(m2·a)

< 1945 1,004 12.5% 389.4
1946–1964 1,063 13.2% 389.4
1965–1974 1,959 24.3% 276.9
1975–1991 1,935 24.0% 176.3
1992–2005 988 12.3% 120.7
2006–2014 688 8.5% 100.5
> 2015 417 5.2% 64.6

Among all construction periods in Rijssen-Holten, buildings constructed before
1964 show the highest annual net heat demand of 389.4 kWh/(m2·a). This
category aggregates two classes that account for 25.7% of the local building
stock, thereby indicating a pronounced effect on the aggregated results. As
expected, newer construction periods show lower net heat demand values, which
could indicate the use of modern building materials with enhanced thermal
properties.

Using figures 6.5 to 6.9, I conducted an initial evaluation of the results. Figure 6.5
shows the distribution of net heat demand across all residential building type and
construction period classes using a letter-value (boxen plot) graph. Buildings
constructed before 1945 have the highest mean net heat demand in most building
type classes.

Figure 6.5: Distribution of the computed mean net heat demand in Rijssen-Holten
by building type and construction period

Semi Detached Houses and Single Family Houses show the highest mean values,
on the opposite Terraced Houses and Apartment Blocks show lower mean values
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across all construction periods. For these two building type classes, buildings
constructed between 1946 and 1974 show reduced mean heat demand compared
to pre-1945 buildings. Post-1975 construction periods reveal a notable decline in
annual heat demand variability across all building types, with further reductions
in variability observed in newer periods. Buildings constructed after 2015 display
minimal value ranges and few outliers.

Across all periods, Semi Detached Houses consistently record the highest median
heat demand, while, Apartment Blocks present the lowest means and reduced
variability compared to other building types. Outliers are more prevalent in older
periods (< 1945 and 1946–1964 classes), particularly among terraced houses,
which frequently show anomalously high values.

The mean net heat demand by building type and construction period classes is
shown in figures 6.6 and 6.7. In these figures, Single Family Houses and Semi
Detached Houses indicate the higher net heat demand across all construction
periods, with the < 1945 period having the peak value (368.2 kWh/(m2·a)). As
expected, the computed net heat demand decreases significantly for more recent
construction periods. Furthermore, in figure 6.7, the error bar of apartment blocks
in the period 1945-1964 indicates a very high variability of the computed net heat
demand.

Figure 6.6: Heatmap of the computed mean net heat demand by building type class
and construction period in Rijssen-Holten

Figure 6.7: Distribution of computed annual net heat demand across building types
and construction periods in Rijssen-Holten, including their associated
standard deviation (error bars) for variability
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Additional insights into the computed net heat demand across building type
classes are provided by Figures 6.8 and 6.9. The scatter plot in Figure 6.8
relates usable area (m2) to net heat demand (kWh/(m2·a)), indicating a high
concentration of smaller buildings with relatively low heat demand. In addition,
several Semi Detached and Terraced Houses show unusually high demand values
given their size, some examples of high values are presented in section 6.1.3.

Figure 6.8: Distribution of the mean computed annual net heat demand and the
building usable area per building type in Rijssen-Holten

Most Building(Part)s have computed net heat demand values between 100 and
500 kWh/(m2·a) as shown in Figure 6.9. Terraced house buildings(Part)s have
the highest frequency, with a sharp density peak around 180 kWh/(m2·a). Single
Family House class shows two main peaks around 120 and 300 kWh/(m2·a).

Figure 6.9: Histogram of the computed annual net heat demand by building type
class in Rijssen-Holten

The spatial distribution of the computed net heat demand for Rijssen and Holten
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is shown in figures 6.10 and 6.11 respectively. Building(Part)s in gray indicate
they were not processed, either due to missing function data or being flagged for
discrepancies in the usable area data. In Rijssen-Holten, several non-processed
buildings are located within urban blocks without direct street access with small
footprint size. These locations suggest they are likely barns or storage rooms,
which are typically unheated and used for storage purposes.

Figure 6.10: Spatial distribution of the computed net heat demand in Rijssen

Figure 6.11: Spatial distribution of the computed net heat demand in Holten
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6.1.3. ANALYSIS OF SPECIFIC CASES

T his section discusses cases with extreme high values to explore the
underlying causes of these outcomes. I analyse the buildings with the

extreme values of the computed annual net heat demand per square meter.
Finally, I assess potential outliers to determine whether they represent genuine
peculiarities or methodological artefacts.

6.1.3.1. PAND ID 1742100000008646

T his mix-used building, has a computed annual net heat demand of
734kWh/(m2·a). The basic data of the building is shown in table 6.5. BAG

data indicates that it has one vbo with two functions, residential and industrial.
However, the data available are not explicit about the corresponding area per
function (as shown in figure 6.12); this situation leads to errors since the only
possible standardised solution is to divide the total usable area of the vbo by the
number of functions registered to it (as I did in my PhD research). This building is
located in the rural area of Rijssen-Holten, where several agricultural businesses
are located, as can be seen from the 3DBAG viewer in figure 6.13.

Table 6.5: Summary data for Pand ID 1742100000008646

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

312.4m2 1 18.96m 1850.1m3 1 201m2

Figure 6.12: BAG viewer data for building with Pand ID 0150100000010860
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Figure 6.13: 3DBAG viewer for building with Pand ID 0150100000010860

6.1.3.2. PAND ID 1742100000014961

T his mix-used building, has a computed annual net heat demand of
670.7kWh/(m2·a). The basic data of the building is shown in table 6.6.

This building has two vbos, one is residential, the other vbo has two function
registered: residential and industrial (as shown in figure 6.14). As previously
mentioned, it is not explicit the area of the multi-function vbo. Also, it is located
in the rural area of Rijssen-Holten as shown in figure 6.15.

Table 6.6: Summary data for Pand ID 1742100000014961

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

304.1m2 1 18.61m 1613.3m3 2 177m2

Figure 6.14: BAG viewer data for building with Pand ID 1742100000014961
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Figure 6.15: 3DBAG viewer for building with Pand ID 1742100000014961

6.1.3.3. PAND ID 1742100000010671

T his mix-used building, has a computed annual net heat demand of
655.2kWh/(m2·a). The basic data of the building is shown in table 6.7.

This building has the same characteristics as the building with Pand ID
1742100000014961: two vbos, one residential and the other vbo has two
funcions registered, residential and industrial (as shown in figure 6.16). This
building is also located in the rural area of Rijssen-Holten as shown in figure 6.17.

Table 6.7: Summary data for Pand ID 1742100000010671

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

386.1m2 1 24.57m 1909m3 2 217m2

Figure 6.16: BAG viewer data for building with Pand ID 1742100000010671
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Figure 6.17: 3DBAG viewer for building with Pand ID 1742100000010671

6.1.3.4. PAND ID 1742100000096511

T his mix-used building, has a computed annual net heat demand of
1.9kWh/(m2·a). The basic data of the building is shown in table 6.7.

This building has the same characteristics as the building with Pand ID
1742100000010671: two vbos, one residential and the other industrial (as shown
in figure 6.18). This building is also located in the rural area of Rijssen-Holten as
shown in figure 6.19.

Table 6.8: Summary data for Pand ID 1742100000096511

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

1185.5m2 3 21.13m 12165.4m3 2 2571m2

Figure 6.18: BAG viewer data for building with Pand ID 1742100000096511
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Figure 6.19: 3DBAG viewer for building with Pand ID 1742100000096511

The examples presented in this section prompted a review of the input BAG
dataset. The analysis revealed that 273,118 out of 10,234,487 vbos (2.6%)
have multiple registered functions. The inability to determine the usable area
distribution across these functions introduces uncertainty, as the allocation of this
attribute could be inaccurate. To mitigate this data gap, the total usable area
was divided equally among the registered functions; for example, a vbo with two
functions assigned 50% of the total area to each. While pragmatic, this approach
risks errors in cases of imbalanced distributions (e.g., 30%–70% splits or greater).

Additionally, buildings classified as semi-detached or terraced houses may be
misrepresented. Although these structures are adjacent to neighbouring buildings,
the physical connections are often minimal (e.g., shared walls at limited points).
Current classification rules account for adjacency (binary presence/absence) and
not the extent of shared surfaces.

6.1.3.5. PAND ID 1742100000000155

T his mix-used building has a calculated annual net head demand of
30.3kWh/(m2·a) for its residential zone. The basic data of the building is

shown in table 6.7. I checked this building due to its big usable area since it
looks like an outlier in figure 6.8. However, this value seems to be correct based
on the information available from the BAG viewer figure 6.20.

This building, constructed in 1982, has 75 vbos registered with several functions,
including residential and business. Additionally, none of the vbos has multiple
functions registered to them. Although, most the facts seems correct, the results
are very low compared to the mean values presented in figures 6.6 and 6.7.
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Table 6.9: Summary data for Pand ID 1742100000000155

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

6714.7m2 3 23.16m 57804.4m3 75 16168m2

Figure 6.20: BAG viewer data for building with Pand ID 1742100000000155

6.1.4. RESULTS COMPARISON
Ep-online is the only open energy-related data source at the building level in the
Netherlands, making validation of the computed net heat demand challenging,
because this dataset contains the primary energy demand per vbo and not the
net heat demand, which is the value I calculated. Therefore, a direct comparison
between the primary energy demand and the net heat demand is not correct.
Although it can be expected that ”ceteris paribus” a vbo will have a value with
primary energy demand bigger than the net demand. I perform this comparison
to assess my results using the official open data values in the Netherlands.

Since ep-online stores information per vbo, the comparison can include only
those buildings where the number of vbos matches the ones in BAG. Additionally,
I keep for the analysis only those buildings in which the usable area value
from the two datasets is within 30%, to align with section 5.6.6. From the
processed 9,430 Building(Part)s, 1,661 (17.6%) match both criteria. I compare
the percentage difference between the computed net heat demand per building
and the values available in ep-online, using the ep-online data as the ground
truth following equation (6.1).
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Dƒ ƒerence =
�
ComptednHD − ep-onnepED

ep-onnepED

�
· 100 (6.1)

where:

• nHD: net heat demand

• pED: primary energy demand

In theory, the difference should be negative, as it results from subtracting the
primary energy demand from the net heat demand. The distribution of these
differences is shown in figure 6.21 and detailed in table 6.10. The pie chart
categorises the differences by percentage, with each slice representing the
proportion of buildings within a given class.

As can be seen from figure 6.21 and table 6.10, the results are rather different
from what one would expect. The percentage difference classes in figure 6.21
indicate that my implementation generally overestimates the net heat demand
compared to ep-online, with 77.28% of the buildings showing higher values. A
more detailed breakdown is presented in figure 6.22, which shows the mean
percentage difference by building type and construction period. Except for
apartment blocks, the net heat demand for buildings constructed before 1991
is higher. One of the reasons is that my implementation does not account
for renovations or refurbishment of the buildings, which typically reduces heat
demand. Instead, it is based on ”as-built” conditions. Consequently, the
computed values tend to be higher than those recorded in ep-online, which uses
the conditions of the vbo at the time of performing the analysis. For this reason
the results of the comparison must be interpreted with caution.

Figure 6.21: Distribution of Building(Part)s based on the percentage difference
between ep-online values and computed net heat demand
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Table 6.10: Distribution of Building(Part)s based on the percentage difference
between ep-online values and computed net heat demand

Difference No. Buildings

< - 50% 14
-50% – 0% 313
0% – 50% 478
50% – 100% 208

>100% 426

Figure 6.22: Variation in computed net heat demand to ep-online reference values
by building class and construction period

Nevertheless, as shown in figure 6.23, newer buildings have a lower computed
net heat demand compared to the ep-online data. This behaviour which is more
in line with the expected values, also indicates that, as expected, the building
archetypes of TABULA better represent newer buildings than old buildings if no
refurbishment information is included in the analysis.

Figure 6.24 shows the distribution of percentage differences between the
computed net heat demand and ep-online data, grouped by building type. As
previously shown, Single Family Houses have the highest number of buildings
with lower computed net heat demand values compared to ep-online. This class
shows as well a high variability with percentage difference values from -100%
to 250% values. Semi Detached Houses and Terraced Houses show a large
range, indicating a higher variability in the physical characteristics or renovation
status for these building type classes. In conclusion, these histograms reinforce
the need for refined specification of buildings characteristics, for example, their
refurbishment status.
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Figure 6.23: Comparison of the computed net heat demand to ep-online reference
values by building type and construction period

Figure 6.24: Distribution of the variation of the computed net heat demand to ep-
online reference values by building type

6.1.5. THERMAL HULL REFURBISHMENT SCENARIO

A nother test to the EnergyBAG BES is the execution of a fictitious renovation
scenario. For this case, all buildings are treated as renovated to the physical

characteristics of building archetypes built after 2015 following a net zero energy
building (NZEB) approach. Note that this, it is just a hypothetical case that
we use to evaluate the approach. The basic statistical values of the results of
the refurbishment scenario are presented in table 6.11 and further classified by
building type (table 6.12) and construction period (table 6.13). The classified
computation results according to the building type and construction period classes
are shown in figures 6.25 and 6.26 using a heatmap and a letter-value plot graph
respectively.
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Table 6.11: Refurbishment scenario computed annual net heat demand basic stat-
istics in Rijssen-Holten, all values are expressed in kWh/(m2·a).

Minimum Mean Median Std Deviation Maximum Mode

1.7 46.2 45.75 11.4 129.7 35.7

Table 6.12: Refurbishment scenario computed mean annual net heat demand per
building type class in Rijssen-Holten

Building
type class

No.
Building(Part)s

Building
stock % kWh/(m2·a)

Single Family House 2476 30.74% 52.9
Semi Detached House 946 11.75% 47.8
Terraced House 4523 56.16% 42.3
Apartment Block 109 1.35% 45.8

Table 6.13: Refurbishment scenario computed mean annual net heat demand per
construction period in Rijssen-Holten

Construction
period

No.
Building(Part)s

Building
stock % kWh/(m2·a)

< 1945 1,004 12.5% 51.5
1946–1964 1,063 13.2% 48.4
1965–1974 1,959 24.3% 43.1
1975–1991 1,935 24.0% 45.3
1992–2005 988 12.3% 46.7
2006–2014 688 8.5% 45.0
> 2015 417 5.2% 48.1

Figure 6.25: Heatmap of the computed mean net heat demand by building type
class and construction period in Rijssen-Holten for the refurbishment
scenario
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Figure 6.26: Letter-value plot of the computed net heat demand by building type and
construction period in the Netherlands for the refurbishment scenario

The comparison of the computed net head demand values under the refurbishment
scenario to ep-online values are presented in figure 6.27. This comparison is
classified according to the building type and construction period categories. For
all building types, the computed net heat demand values are lower than ep-online
values. However, the difference reduces significantly as the construction period is
more recent which is reasonable. This is an expected behaviour since the current
renovation status of each building in the ep-online database is better represented
for the recently built buildings compared to older construction periods.

Figure 6.27: Comparison of computed net heat demand under the refurbishment
scenario to ep-online reference values

The spatial distribution of the calculated net heat demand for the mentioned
refurbishment scenario is shown in figure 6.28.
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Figure 6.28: Spatial distribution of the computed net heat demand in Rijssen for the
refurbishment scenario

6.2. THE NETHERLANDS
As a final test of the implementation, in order to test the scalability and overall
simulation time, I compute the net heat demand for the entire EnergyBAG
database, covering the whole of the Netherlands. Therefore, I split the
Netherlands into smaller, manageable areas using the H3 index at level 6. This
subdivision results in 1,353 tiles (table 4.7). However, not all tiles are processable
due to the exclusion of buildings for the circumstances mentioned previously: the
lack of vbos data (section 5.4) or the discrepancies in the usable area between
datasets (section 5.6.6).

The computation time for the 1353 tiles of the EnergyBAG DB is 05h 03.
However, processing time varies at each execution as stated in section 5.1. The
implementation was done in Python and followed a multithreaded approach in
which a different thread treats each H3 index tile. Furthermore, Python does not
optimize host resources and is limited in multiprocessing, resulting in threads
executed in parallel in the same CPU’s core. Nevertheless, when summing the
execution time per H3 tile, the resulting time is 157,5h. Despite these limitations,
the results demonstrate the feasibility of performing country-wide analyses for
the Netherlands in terms of needed computation time and required hardware
specifications. As an indicator, table 6.14 shows an excerpt of the execution time
per H3 tile, showing the 20 slowest and 20 fastest tiles.
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Table 6.14: Excerpt of the H3 tiles processed with their number of processed Build-
ing(Part)s and execution time
Tile Index Number of Building(Part)s Execution time

861969537ffffff 29,777 1:30:26
86196b85fffffff 35,127 1:28:53
86196b84fffffff 28,843 1:16:52
861969527ffffff 25,729 1:08:54
861968257ffffff 29,866 1:08:12
861969497ffffff 27,072 1:05:26
861969c9fffffff 20,215 1:00:53
861969087ffffff 23,605 0:56:05
86196b847ffffff 14,455 0:55:08
86196bb17ffffff 25,969 0:53:10
86196bb57ffffff 22,229 0:52:44
86196dccfffffff 23,025 0:50:39
861969697ffffff 29,801 0:50:30
86196d85fffffff 22,961 0:50:22
861969197ffffff 19,290 0:48:48
86196ba27ffffff 22,559 0:48:13
86196832fffffff 24,690 0:47:55
86196822fffffff 24,100 0:47:40
861969507ffffff 19,975 0:46:48
861fa4847ffffff 21,058 0:45:48

...
...

...
861fa5467ffffff 6 0:00:05
861f164cfffffff 13 0:00:05
86196b367ffffff 25 0:00:05
861968b67ffffff 48 0:00:05
861969a0fffffff 5 0:00:04
861fa4a87ffffff 2 0:00:04
861969137ffffff 49 0:00:04
86196d78fffffff 7 0:00:04
861968ba7ffffff 6 0:00:04
86196c22fffffff 71 0:00:04
86196d61fffffff 12 0:00:03
861fa554fffffff 6 0:00:03
86196dc9fffffff 1 0:00:03
861f16457ffffff 18 0:00:03
86196b147ffffff 3 0:00:02
86196892fffffff 4 0:00:02
861f14c07ffffff 4 0:00:02
86196c35fffffff 5 0:00:02
86196b167ffffff 1 0:00:02
86196b2b7ffffff 1 0:00:02

Basic statistics of the normalised timing per-tile are shown in table 6.15
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and figure 6.29. Additionally, the normalised timing per-building are shown in
table 6.15 and figure 6.29

Table 6.15: Basic statistics of the execution time per tile in seconds

Minimum Mean Median Std Deviation Maximum Mode

1.94 426.1 226.2 600.5 5425.6 1.94

Figure 6.29: Distribution of the execution time per tile in seconds

Table 6.16: Basic statistics of the execution time per Building(Part)s in seconds

Minimum Mean Median Std Deviation Maximum Mode

0.005 7.13 7.01 4.7 104.8 0.005

Figure 6.30: Distribution of the execution time per building in seconds

6.2.1. COMPUTED NET HEAT DEMAND

T he computed net heat demand values for buildings in the Netherlands are
summarised in table 6.17, which provides basic statistical metrics. In addition,

the computed annual net heat demand values for processed buildings in the
Netherlands are shown in figure 6.31.
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For granular analysis, mean values classified by building type and construction
period are available in table 6.18 and table 6.19, respectively, with additional
insights provided by the bar plot in figure 6.32. Finally, it is important to note
that these values are higher because there are no data regarding shared walls in
the EnergyBAG DB for the whole the Netherlands–a limitation discussed earlier–
which also impacts the thermal performance of the Building(Part).

Table 6.17: Computed annual net heat demand basic statistics in the Netherlands,
all values are expressed in kWh/(m2·a)

Minimum Mean Median Std Deviation Maximum Mode

0.7 260.9 238.6 125.5 2,461.1 194.9

Table 6.18: Mean annual net heat demand per building type class in the Nether-
lands

Building
type class

No.
Building(Part)s

Building
stock % kWh/(m2·a)

Single Family House 773,048 18.16% 222.4
Semi Detached House 670,009 15.74% 289.2
Terraced House 2,696,494 63.34% 265.8
Apartment Block 117,658 2.76% 241.5

Table 6.19: Mean annual net heat demand per construction period in the Nether-
lands

Construction
period

No.
Building(Part)s

Building
stock % kWh/(m2·a)

< 1945 797,752 19% 393.5
1946–1964 609,059 14% 405
1965–1974 736,005 17% 298.3
1975–1991 1,074,842 25% 193.5
1992–2005 594,259 14% 131.6
2006–2014 242,886 6% 121.3
> 2015 202,406 5% 73.8
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Figure 6.31: Computed annual net heat demand in the Netherlands aggregated by
building type and construction periods

Based on figures 6.7 and 6.32, the Dutch building stock behaves differently
compared to Rijssen-Holten. In the Netherlands, Apartment Block class shows
the lowest net heat demand values across most periods (with the exception of
pre-1945 constructions, where Single Family House class is lower), with mean
values below 300 kWh/(m2·a) for older constructions. In contrast, the Terraced
House class consistently has the highest net heat demand values, with buildings
constructed pre-1964 peaking at around 400 kWh/(m2·a). Additionally, this class
exhibits the highest variability on the computation results as shown in figure 6.33
particularly in buildings constructed before 1945.

Figure 6.32: Distribution of computed annual net heat demand across building types
and construction periods in the Netherlands, including their associated
standard deviation (error bars) for variability
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Figure 6.33: Letter-value plot of the computed net heat demand by building type
and construction period in the Netherlands

The frequency distribution of the computed annual net heat demand grouped by
building type in the Netherlands is shown in figure 6.34. Single family houses
show two distinct peaks, one centred around 150 kWh/(m2·a) and another at
approximately 300 kWh/(m2·a), which is in line with the results of Rijssen-Holten
(Figure 6.9). Semi detached houses indicate a broader range of computed values,
with the two highest peaks near 170 and above 200 kWh/(m2·a). Terraced
houses present multiple peaks, most notably around 200 kWh/(m2·a). Apartment
blocks have the lowest computed net heat demand, with a central peak near
1900 kWh/(m2·a).

Figure 6.34: Distribution of computed annual net heat demand across building types
and construction periods in the Netherlands, including their associated
standard deviation (error bars) for variability
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Finally, figure 6.35 shows a heatmap of the computed mean net heat demand
by building type and construction period in the Netherlands. Compared to
Rijssen-Holten, Semi Detached Houses and Terraced Houses exhibit the highest
discrepancy with higher values for the Dutch building stock. Additionally, the
newest construction period exhibits higher values in the Netherlands and in
the case of Apartment Blocks, the values of the Netherlands are double the
mean value of Rijssen-Holten. However, this building type hardly occurs in
Rijssen-Holten which indicates that it is not representative in this municipality.

Figure 6.35: Heatmap of the computed mean net heat demand by building type
class and construction period in the Netherlands

Figure 6.36 shows the computed mean net heat demand per m2 in the
Netherlands aggregated at the H3 index level 6.
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Figure 6.36: Mean net heat demand by H3 Tile

6.2.2. ANALYSIS OF SPECIFIC CASES
6.2.2.1. PAND ID 0599100000672213

T his residential building has a computed annual net heat demand of 2.4
MWh/(m2·a). The basic data for the building is provided in table 6.7.

Inconsistencies become apparent when comparing the building data from the
EnergyBAG DB with that from the BAG (see figure 6.37), the 3DBAG (see
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figure 6.38), and Google Street View imagery (see figure 6.39). Based on the
Google Street View image, this is a five-storey building.

Table 6.20: Summary data for Pand ID 0599100000672213

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

35.8m2 1 15.48m 552.6m3 1 33m2

Figure 6.37: BAG viewer data for building with Pand ID 0599100000672213

Figure 6.38: 3DBAG viewer for building with Pand ID 0599100000672213

Figure 6.39: Google street view for building with Pand ID 0599100000672213
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Most likely, I assumed that it is a one-storey vbo within a Terraced House;
however, based on the information available from the BAG clearly indicates that
this hypothesis is incorrect, since there is no overlap in the building footprints
with the adjacent buildings.

6.2.2.2. PAND ID 0599100000756485

T his residential building has a computed annual net heat demand of 1,6
MWh/(m2·a). The basic data for the building is provided in table 6.7.

This building has the same pattern as the case of building with Pand ID
0599100000672213 in section 6.2.2.1. Inconsistencies become apparent when
comparing the building data from the EnergyBAG DB with that from the BAG
(see figure 6.40), the 3DBAG (see figure 6.41), and Google Street View imagery
(see figure 6.42). Based on the Google Street View image, this is a five-storey
Terraced House.

As in the case of section 6.2.2.1 there is a data inconsistency between in the
input data of the EnergyBAG, the number of storeys attribute is provided by the
3DBAG. If I had followed the NTA 8800 simplification, this would be a five-storey
since the norm indication for buildings without the number of storeys is to divide
the height of the building by 3 (see equation (2.14)).

Table 6.21: Summary data for Pand ID 0599100000756485

Footprint
area

Number
storeys

3DBAG
height

3DBAG
volume

Number
vbos

Total usable
area

58.8m2 1 15.56m 977.3m3 1 58m2

Figure 6.40: BAG viewer data for building with Pand ID 0599100000756485
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Figure 6.41: 3DBAG viewer for building with Pand ID 0599100000756485

Figure 6.42: Google street view for building with Pand ID 0599100000756485

Although the examples show the same pattern, this was not intentional but rather
the result of exploring the computation outcomes based on their magnitude.
However, these cases highlight the need to define additional validators to
minimise the occurrence of such errors. A simple validator could involve
comparing the number of storeys from the 3DBAG and the computed value
according to the NTA 8800 (Bdng heght

3 ). Building(Part)s with a difference
greater than 2 storeys should adopt the value derived from the NTA 8800. The
selection is based on the official regulations in the Netherlands for calculating the
energy performance of buildings.

6.2.3. RESULTS COMPARISON

T o compare the implementation results for the Netherlands, I follow the same
approach used for Rijssen-Holten. However, it should be noted that, even

more than in Rijssen-Holten, the results must be interpreted with caution because
the data have not been polished or manually verified as in the case study,
which would have been impossible given the high number of buildings. From
the processed Dutch building stock dataset, only 601,626 buildings (14.13%) are
used for this comparison against the ep-online dataset. Figure 6.43 shows the
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distribution of computed energy demand relative to ep-online values, categorised
by percentage difference, and this is further detailed in table 6.22.

Figure 6.43: Distribution of Building(Part)s based on the percentage difference
between ep-online values and computed net heat demand in the Neth-
erlands

Table 6.22: Distribution of Building(Part)s based on the percentage difference
between ep-online values and computed net heat demand

Difference No. Buildings

< - 50% 9,793
-50% - 0% 30,794
0% - 50% 110,857

50% – 100% 188,560
100% 261,622

The implementation results are poorer at the country level compared to
Rijssen-Holten. This discrepancy is not surprising, as I had greater control over
the testbed set during its preparation. Attributes such as the number of storeys
and building type are two examples of possible inconsistencies. Additionally,
I computed the PartyWalls per surface for adjacent buildings in Rijssen-Holten
but not for the whole Netherlands, directly influencing the net heat demand
calculations. Figure 6.44 shows a bar plot with the comparison of the computed
net heat demand classified by the building type.
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Figure 6.44: Comparison of the computed mean net heat demand against ep-online
at country level

The variation in computed net heat demand against ep-online by building type
and construction period is shown in figure 6.45. At the country level, Single
Family Houses have lower overestimation compared to the other building types,
particularly for pre-1991 buildings. However, the differences between ep-online
values are slightly lower than those of Rijssen-Holten. Semi Detached Houses
show higher differences at the country level for all construction periods compared
to the values of Rijssen-Holten; in the case of buildings pre-1945, the difference
is more than double that of the case study.

Figure 6.45: Variation in computed net heat demand with the reference values(ep-
online) by building class and construction period

6.2.4. THERMAL HULL REFURBISHMENT SCENARIO

S imilar to Rijssen-Holten refurbishment scenario, I perform the calculation of
the net heat demand for the Netherlands following the same criteria as of

Rijssen-Holten (section 6.1.5). The basic statistics of the results are presented in
table 6.23.
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Table 6.23: Computed annual net heat demand basic statistics of the Netherlands
for the refurbishment scenario, all values are expressed in kWh/(m2·a).

Minimum Mean Median Std Deviation Maximum Mode

0.3 59.1 70.4 10.8 420 57.2

The comparison of the computed net head demand values under the renovation
scenario to ep-online values are presented in figure 6.46. This comparison is
classified according to the building type and construction period categories. Like
in Rijssen-Holten, the computed net heat demand values are lower than ep-online
values and is according to what one would expect.

Figure 6.46: Comparison of computed net heat demand under the refurbishment
scenario to ep-online reference values

The computed mean net heat demand per m2 for the refurbishment scenario in
the Netherlands aggregated at the H3 index level 6 is shown in figure 6.36.
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Figure 6.47: Mean net heat demand by H3 Tile

6.3. CONCLUSION REMARKS
This chapter presented the adaptability of the EnergyBAG BES for several use
cases. The first case study corresponds to the use of the testbed for energy
applications as the input dataset for the calculation of the net neat demand. After
presenting the results, I discussed some cases with extremely high values of the
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computed net heat demand, trying to identify the reasons for such cases. The
pattern for these examples is vbos with multiple functions associated without
information about the distribution of the usable area per ”function”.

I continue the analysis by comparing the results with the energy data available
from ep-online. As already mentioned, this comparison should be taken with
caution since I am comparing net heat demand and primary energy demand
values. The EnergyBAG BES showed a lousy performance for old buildings,
which is logical since the input physics-related data is based on archetype ”as
built” conditions. That is not the case with the ep-online dataset since the
energy performance certificate is calculated based on the current conditions of
the building at the time of processing.

I use the BES to simulate a thermal hull refurbishment scenario in which
the physical conditions of the buildings were updated following the current
specifications for new constructions. The results, as expected, show a dramatic
reduction of the computed net heat demand, indicating the usability of BES to
apply customised renovation scenarios, e.g. renovating all the windows to triple
glazing.

The second case study corresponds to the whole of the Netherlands. I followed
the same approach as in Rijssen-Holten. However, the input datasets differ since
the Netherlands does not have manually cured data. Also, the PartyWalls data
available for the Netherlands is a value per building. Consequently, this attribute
cannot be used in the calculation without making additional assumptions. As
expected, the country-wide results are worse than in Rijssen-Holten. However, it
is also an indicator of the potentiality of the EnergyBAG BES to support different
input datasets without hardcoding parameters or tailored to specific data.

Finally, the comparison of the simulation results against the energy data available
country-wide (ep-online) shows research paths to follow to improve the quality of
the implementation, on the one hand, but also provide insight on some issues on
the input data and then the effect on the overall pipeline results.

The final remarks and reflections about my PhD research are discussed in
chapter 7.



7
CONCLUSIONS, REFLECTIONS

AND FUTURE RESEARCH

This chapter presents the conclusions of the thesis on the use of semantic 3D city
models to enhance urban energy applications based on open data. It contains
my reflections to answer the research questions presented in the chapter of this
document. Then I discuss the challenges, limitations and contributions of my work,
followed by reflections on future perspectives on the use of semantic 3D city models
in urban building energy modelling.

T his chapter reflects on the key findings of my PhD research. Its content
is split into the conclusions (section 7.1), which is organised to answer the

research questions presented in section 1.3. First, I reflect about urban building
energy modelling (UBEM), its data requirements and challenges that open data
through semantic 3D city models (s3DCM) can fulfil. This is followed by the
reflections on the improvement of s3DCM to support energy applications. Then, I
discuss on the influence of artificial intelligence methods on the quality s3DCM
for energy applications. This section closes with my reflections on the role of
s3DCM data models in facilitating European and Dutch directives that are related
to the energy efficiency of the building stock.

The second part chapter (section 7.2) focuses with the description of the
limitations, my contributions and future work of my implementation. In the final
section (section 7.3), I discuss future perspectives and how my research work
align with to them.

187
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7.1. CONCLUSIONS
The principal objective of this thesis was to enhance urban energy applications
through s3DCM, using the Netherlands as the case study. To achieve this,
I enriched these s3DCM with open geospatial and energy-related open data
to support the characterisation of the building stock. Therefore, I analysed
UBEM, its scope, and its challenges, leading to the identification of critical data
requirements for using and integrating multiple country-wide open datasets.

WHAT ARE THE REQUIREMENTS FOR UBEM THAT S3DCM SHOULD
MEET?

F rom my research, it can be concluded that UBEM requires a clear and coherent
spatial and semantic representation of urban features. A fundamental aspect

of this is the hierarchical decomposition of space. For example, a door is part of a
wall, a wall is part of a building, and a building is located in a city. This hierarchy
not only defines the relationships among individual components but also ensures
that each element is integrated into a more extensive system. For example, in
the EnergyBAG Building Energy Simulation (BES), knowing the surfaces that
define the thermal envelope of a thermal zone (or computation zone in terms of
the NTA 8800) is essential to computing its net heat demand and, subsequently,
the corresponding building. Without a formal data model, it would not be
feasible to link well-defined geometric elements with their physical properties, and
consistency in data interpretation–such as unambiguously recognizing a wall as
a thermal boundary–would be compromised.

Based on the work carried out during my PhD research, CityGML data-model
has been proven to be a reliable framework to support the data requirements
of UBEM. It offers a well-defined semantic and geometric representation of
urban entities, with structured relationships that ensure, for instance, that a
BuildingPart cannot exist independently of a Building and all of them are linked
unequivocally by a set of unique IDs. Furthermore, CityGML does not only model
buildings but allows the representation of other entities (spatial and non-spatial)
with the required properties for UBEM, e.g., a WallSurface can be associated
with WeatherData such as solar irradiance values or a Building(Part) can be
further decomposed into several ThermalZone(s) with specific parameters such
as infiltration rate.

WHAT ARE THE CHALLENGES IN DATA PREPARATION FOR UBEM?

F or this research question, several conclusions can be drawn. Firstly, in
the case of the Netherlands, the open Basic Registration Addresses and

Buildings (BAG) dataset provides the basis for data collection and centralisation.
This dataset contains essential characteristics—such as building footprints, usage
functions, registered living units (vbos) with unique IDs, and private areas—and
has been instrumental in the semantic 3D reconstruction of buildings (the 3DBAG).
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The differences in the scope, update frequency, and quality of each dataset
require the creation of basic validators to maintain consistency. For example,
the BAG is updated daily and released monthly, whereas the 3DBAG is updated
approximately twice a year. These differences might lead to discrepancies and
errors, such as changes in the usable area of a vbo, as discussed in chapter 5.

Additional challenges were identified within the BAG dataset. Approximately
40.2% of Dutch buildings lack information on registered living units, and 16.6%
show possible errors in their private area attribute (called ”usable area” in this
PhD thesis). These issues emphasise the requirement of rigorous data quality
checks across the data pipeline process (upon data input, during the data
preparation alone and when verifying against other available sources) and, ideally,
to reduce redundancy.

From the data requirement analysis, the basic building geometry and registry
attributes, as well as energy applications such as solar irradiance and heating
demand simulations, require further data. For solar analyses, additional
information about the 3D urban scene on trees, terrain, and the reflectivity
(albedo) of surfaces is essential. Heating demand calculations further depend
on detailed data regarding thermal zones, physical characteristics of building
envelopes (including construction materials, thickness, U-values, and g-values),
heating, ventilation, and air conditioning HVAC systems, occupancy, and energy
sources. The lack of open data on building renovation history hinders the
computation of the status quo and advanced refurbishment scenarios.

In light of the building renovation data gaps, I adopted the building archetypes
defined by the Dutch government via the TABULA project. Although pragmatic,
this approach leads to misclassifications due to the unclear classification rules
regarding the generalisation of building characteristics. These archetypes
categorise buildings based on type, construction period, and–for apartment
blocks–the location of the vbo within the building. However, this limited
classification oversimplifies building characteristics and still is not free from errors.
For example, the maisonnette category is intended for vbos with more than one
storey. In practice, several Terrace Houses are multifamily buildings with one vbo
on the ground floor and another spanning the first and second floors, suggesting
the vbo on the first and second floor should be classified as maisonnette, which is
a challenge since from the vbo perspective, the classification is correct. However,
from the building perspective, it should be aggregated into a more general
category. Therefore, the misclassification of buildings emphasises the need for
a classification framework underpinned by clear classification rules to ensure
(cross-dataset) consistency, particularly for parameters like renovation histories,
which are critical for energy simulations but remain largely inaccessible or, even
worse, undocumented at all.

Standardised values about the renovations in buildings play a significant role in
energy performance calculation. As presented in chapter 6, the computation
results for old buildings have less accurate values since the ”as built” building
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physics properties available from the building archetype have a higher discrepancy
with the current status of the buildings. Therefore, detailed records of building
renovations are critical to ensure the accuracy of the simulation results.

The NTA 8800 defines standardised usage profiles for buildings, assigning
predefined values to occupancy, operating hours, and hot water consumption
to perform asset rating energy analyses. Consequently, the norm does not
use actual occupant behaviour and the specific characteristics of the energy
appliances; for example, HR boilers are categorised into fixed classes to limit
variation. This simplification facilitates the computation of the energy performance
of the building, but it might not represent the actual conditions, which is pertinent
when performing building-scale analyses.

HOW COULD EXISTING S3DCM BASED ON CITYGML BE IMPROVED TO
SERVE AS INPUT DATA FOR UBEM?

T he Energy Application Domain Extension (Energy ADE) already provides a
comprehensive schema for managing and sharing energy-related data within

CityGML-based 3DCMs, which is the reason why I chose this approach instead of
”pure” CityGML and for the reasons that were given to answer the first question in
section 7.1. However, the current version (EnergyADE v1.0) dates back to 2018
and could be improved. Based on my PhD research, I propose the following
improvements to the current version.

First, the model does not natively support urban areas based on functionality.
Although my work primarily groups buildings using the H3 spatial indexing
tile system for computational efficiency, the addition of standardised classes
for energy districts, e.g., geographic clusters of buildings with shared energy
systems or policies–could benefit interoperability for collaborative planning and
district-scale simulations.

Second, the Energy ADE omits the opening-to-surface ratio attribute, a proxy
metric essential for approximating façade areas (e.g., windows, doors) when
detailed geometric representations are unavailable. This value has a direct
influence on multiple parameters for the energy demand calculation, such as
solar gains, heat transfer through ventilation and heat loss. Therefore, since it
is indispensable for urban-scale energy simulations based on LoD1 and LoD2
building models, I would propose adding it to the classes that represent the
thermal hull.

Third, Energy ADE does not provide the number of living units attribute, which
serves as a pragmatic alternative when detailed interior subdivision information
(e.g., individual apartments) is absent. This parameter is critical for applying
standardised energy balance methods such as the Dutch NTA 8800, where
predefined values for occupancy and heat demand rely on residential unit
counts. By adding this attribute, the calculation of the energy performance of
residential buildings could be more accurate, especially in national contexts like



7.1. Conclusions

7

191

the Netherlands, where multi-dwelling buildings such as Terrace Houses and
Apartment Blocks dominate the building stock.

Finally, CityGML 3.0 introduced fundamental changes to the data model—including
modularisation and enhanced semantics— which require a comprehensive
revision of the EnergyADE data model to adjust it to the new data model. In
2024, we published the journal article ”Mapping the CityGML Energy ADE to
CityGML 3.0 Using a Model-Driven Approach” (Bachert et al., 2024). In this
publication, we tested a method to map the existing data model of the Energy
ADE for CityGML 2.0 to CityGML 3.0 by following the ”integrate as much as
possible” approach with guidelines for uniform logical and conceptual alignment.

By leveraging CityGML v3.0’s refined space and geometry concepts, our approach
reuses geometries directly from other CityObjects rather than explicitly defining
them in the ADE classes. Thus, it enables a multi-geometry representation with
different LoDs for the Energy ADE classes derived from AbstractCityObject or its
subclasses while expanding geometric applicability to other Energy ADE classes.

HOW CAN ARTIFICIAL INTELLIGENCE METHODS IMPROVE THE
QUALITY AND CONTENT OF S3DCM FOR UBEM?

A rtificial intelligence (AI) is driving a technological revolution across virtually
every discipline, including urban building energy modelling (UBEM). For

my PhD research, AI serves as a data provider, as discussed in section 4.3.
However, no matter how sophisticated AI becomes, its effectiveness is limited by
the quality of the input data, which is needed for training the models. High-quality,
well-labelled data are essential for reliable outcomes.

In my research, we used machine learning to infer residential building types
from 3DBAG data, mapping them to building archetypes defined in the Example
building (in Dutch ”voorbeeldwoningen”) report (RVO, 2023). During this process,
inconsistencies in the ground truth (ep-online) and the fuzzy definitions of the
building type classes adversely affected model performance and complicated
result analysis. The observed variation in model accuracy, from 61.1% to 98.5%
according to the building type class and case study, affects both the potential
of AI in UBEM and its strong dependency on reliable input data. Therefore, It
was not a reliable classifier to replicate country-wide and use its results for other
calculations.

Another example from my research is the cases presented in section 6.2.2;
both of them followed the same pattern with unrealistic values for the number
of storeys of the building, which is an attribute generated from a machine
learning project (Roy et al., 2023). Therefore, It is necessary to adopt validation
frameworks to ensure the quality of the input datasets.
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7.2. REFLECTIONS, LIMITATIONS AND CONTRIBUTIONS

T he implementation of the EnergyBAG, both its database (DB) and the building
energy simulation (BES), demonstrates the feasibility of leveraging open

datasets and s3DCM to compute building net heat demand at a national scale
based on the NTA 8800. In this section, I discuss the relevance of my work in the
context of the governmental initiatives in Europe and the Netherlands. Followed
by the limitations and contributions of my work.

THE ROLE OF S3DCM WHEN IT COMES TO POLICIES FOR THE BUILDING
SECTOR

T he latest revision of the Energy Performance of Buildings Directive –EPBD
IV–(EU/2024/1275) mandates that EU member states achieve a fully

decarbonised building stock by 2050 (European Parlament, 2024). The directive
defines several aspects as crucial: standardised data collection, the creation
of logbooks to keep a digital record of the history of the building, and building
renovation passports.

The EPBD IV further aims to accelerate energy efficiency and sustainable
building practices by promoting faster renovations of the existing building stock
and updating requirements for new constructions. Although the directive calls for
digital building logbooks and renovation passports, it provides little guidance on
the management methods, data models and formats to use. In the Netherlands,
the Ministry of Housing and Urban Planning advocates a consolidated national
building data framework that serves as an effective data hub for building data.

For this reason, Kadaster Netherlands carried out some preliminary work
on the National Facility for Building Data (in Dutch ”Landelijke Voorziening
Gebouwgegevens” (Noordegraaf and van Haaften, 2024)), which in its goals
has plans to operationalise the EPBD IV through a national digital building
logbook. This logbook should act as a centralised repository for building-related
data, including energy performance certificates, renovation records, smart meter
data, and energy ratings, similar to what the woningpas in Belgium (Vlaamse
overheid, 2025).

However, implementing both the European and the national initiatives raise critical
concerns regarding data security and governance. Key open questions include:
Where will private-sensitive data be stored? Who will manage access and be
responsible, reliable for? How will citizen anonymity be preserved? These are
questions that should be answered in a joint effort between the government, the
private sector and academia. For example, the WoonOnderOnderzoek Nederland
(WoON) dataset, managed by the Dutch Central Bureau of Statistics (CBS), is
not accessible at the building level to protect the residents’ privacy, which in turn
limits the availability of valuable granular data for UBEM.

One potential approach is to ensure that sensitive data remains under state
control rather than being managed by private entities. This concept is based on
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the belief that privacy and fair data usage are public goods best safeguarded
by regulations by the legislative power rather than by voluntary guidelines. My
research does not provide specific answers, but the geospatial community is
already involved in providing standards and techniques to deal with some of
the challenges in terms of data management, including integration and storage,
access management, and preserving citizens’ anonymity. Also, geospatial data
enables the spatial contextualisation of buildings, their energy performance
metrics, and lifecycle information. As shown in this PhD thesis, s3DCM shows
a valid starting point of a reliable and mature data model that supports complex
geometric and semantic data and serves as an effective interchange format
among stakeholders.

RENEWABLE ENERGY SOURCES CADASTRE

Two of the significant challenges that our society is facing (energy transition
and climate change) have driven the adoption of renewable energy sources,

for example, solar photovoltaic panels or geothermal heat pumps. However, there
are only local initiatives to consolidate records of renewables information, that is
the case of The Hague or Rotterdam, which have municipality records of green
roofs and installed solar panels. Extending these records into a single national
cadastre repository, ideally with real-time monitoring of system status, provides
a better understanding of the territory and therefore to support more accurate
modelling.

7.2.1. LIMITATIONS

A lthough the results show expected patterns regarding net heat demand, the
results are still questionable. However, these are limited to the input data.

One example is the PartyWalls data, which was available for the Rijssen-Holten
dataset; some building classes showed a reduction of up to 35% of the mean net
heat demand. However, the EnergyBAG BES is suffering from a lack of data,
e.g., no renovation record of buildings or no data about openings. The BES is
not restricted to a specific dataset. Hence, it will work based on the provided
data, which is demonstrated in the two test cases documented in this PhD thesis:
Rijssen-Holten and the Netherlands.

The second limitation is that I only compute the net heat demand instead of
the primary energy demand due to a lack of data. As I have already pointed
out in section 2.5, the lack of refurbishment information directly influences the
calculation of the net heat demand and, consequently, further computations
based on this value. Other physics-related data that is missed is the energy
systems available per building; the operation of such systems has a direct impact
on the energy performance of a building. Additionally, data about the connectivity
to supply networks allows the use of the correct conversion factors according to
the energy supplied by each provider and reflects the environmental impact of
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the ”energy consumption” of the building. Closely related is the applicability of
energy renewables such as solar panels, thermal collectors, wind turbines, and
geothermal. When available, they offset the demand for conventional fossil-based
energy and, consequently, reduce the primary energy demand due to the lower
conversion factor of renewables compared to fossil fuels. Therefore, it will
support an accurate calculation of the potential for decarbonisation in the built
environment.

Another limitation of my implementation is the lack of validation possibilities for
the output of my calculations. Using the ep-online values to perform a data
comparison can only provide a simplified or qualitative indication of computed
values. However, I decided to use this dataset to compare the output of the
EnergyBAG BES because it follows the same calculation method in a controlled
scenario that collects the input data for the calculation directly from the vbo.

Despite the mentioned limitations of the implementation and the datasets, my
research has shown the feasibility, opportunities and challenges of open data
for energy calculations, testing their completeness and accuracy. Additionally, to
avoid additional assumptions, I did not use aggregated statistical data like energy
supply per postcode (CBS, 2023). This decision has a direct influence on the
final results. Since I could only compute the net heat demand instead of the
primary energy demand of buildings.

7.2.2. CONTRIBUTIONS

T here are several contributions from my research. First, the EnergyBAG DB
consolidates multiple open datasets into a reliable s3DCM with energy-related

data, which support energy applications such as the solar irradiance simulation
(see section 4.3.1.2). This process includes the definition of data checks to
ensure data consistency across multiple datasets (see sections 5.6.5 and 6.1.4).

Second, I created a data model for the storage of the physics-related data of
buildings when there is no detailed information (the LibraryDB, see section 4.2.1).
Although my case study is the Netherlands, this database support multiple input
datasets and I was tested already with the data from several data sources like
the TABULA project and the ”example homes for existing construction” (in Dutch
”Voorbeeldwoningen bestaande bouw”).

Finally, although my proof-of-concept approach prioritised a functional workflow
over polished software, the EnergyBAG BES was successfully implemented. A
key principle of my PhD research was to adopt a simplified approach that can
effectively cope with common data limitations. The design decisions include the
definition of single thermal zones per building or the use of ratios to overcome
the absence of detailed data about openings. However, these decisions do not
indicate that my implementation is tailored to a specific dataset, but they provide
a scalable framework for large-scale energy simulations.
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7.3. FUTURE WORK

M y research could be extended and improved in several ways. First, the
implementation of a more elaborated system for the identification of data

inconsistencies, as I have developed for checking the usable area between
datasets, could automate error detection and suggest corrections based on
multi-source cross-referencing.

I base my analyses on the case study in Rijssen-Holten. It exemplifies
the designed and implemented method of my PhD research. However, the
EnergyBAG BES should be tested with different cities and ideally using other
datasets, even if the 3D representation of buildings is not watertight.

The scope of the EnergyBAG BES was a proof of concept based on Python’s
programming flexibility. Future versions should adopt compiled languages such
as C++ or Rust and parallel multi-core computing frameworks to enhance
performance for country-scale analyses. Additionally, the modularisation of
the codebase and the implementation of rigorous unit tests would improve the
maintainability and reproducibility of the BES. This modularisation could be
implemented to support a finer and more advanced scenario mechanism, such
as decarbonisation pathways and retrofit prioritisation policies.

From the geomatics point of view, geospatial data gaps require further work and
integration with other datasets that provide additional information. Geomatics can
provide the methods and techniques required to perform such integration. For
example, remote sensing can be applied to extract elements of the facade such
as windows or doors (Wysocki, Xia et al., 2023; Xia, 2023). S3DCMs will move
towards automatic LoD3 representation of buildings in the future. Hence, one of
the major limitations and simplifications will be reduced, and the energyBAG BES
tool is already ready for that.

Although it will be rare, indoor information from BIM data is expected to be
integrated with city models (El Yamani et al., 2023; van der Vaart et al., 2024).
Therefore, there will be an improvement of the models of the building stock, and
based on this, a multi-thermal zone approach could be followed, for which the
EnergyBAG BES already brings support.

Furthermore, it is feasible to go beyond the scope of the NTA 8800 by using
solar simulation tools, as we have developed, to compute the solar irradiance
values of the boundary surfaces of the building. Therefore, the solar gains will
represent the situation in the building more accurately.

My work has shown that UBEM can enhance urban energy applications through
semantics 3D city models and open data that can be extended to a country
level. However, there are still several challenges that need to be resolved. It
is reasonable to assume that the current trend and developments that we are
observing in the digitalisation of the built environment - at all scales - will further
develop solutions to address the opportunities and limitations I have shown in
this thesis.
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