
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Efficient Query Estimation
by Vector Averaging in
Dual-Encoder Re-Ranking
Estimating Query Embeddings as Weighted Average of
Document Embeddings and Lightweight Query Encoding

Master Thesis (IN5000)
Bo van den Berg

Efficient Query Estimation by
Vector Averaging in

Dual-Encoder Re-Ranking
Estimating Query Embeddings as Weighted

Average of Document Embeddings and
Lightweight Query Encoding

by

Bo van den Berg

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday March 11, 2025 at 10:00 AM.

Information:
Project duration: February 13, 2024 – March 11, 2025
Program: Master Computer Science
Track: Software Technology
Special program: Information Architecture
Student number: 4534867

Thesis Supervision:
Thesis Chair, Supervisor: Prof. Dr. Avishek Anand, TU Delft
Daily co-supervisor: Dr. Jurek Leonhardt, TU Delft
Committee Member: Dr. Julián Urbano, TU Delft

Initial credits:
Cover: Generated on https://chatgpt.com/
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.
The source code is available at https://github.com/BovdBerg/fast-forward-indexes [6].

https://chatgpt.com/
http://repository.tudelft.nl/
https://github.com/BovdBerg/fast-forward-indexes

Abstract

A central problem in information retrieval (IR) is passage ranking, where the task is to retrieve passages
from a corpus and order them in decreasing relevance to an arbitrary search query. Traditional lexical
retrieval methods are susceptible to the vocabulary mismatch problem, where relevant passages are
overlooked if they do not contain the exact query terms (e.g., synonyms), despite being semantically
relevant. A recent trend in IR is to address this issue by utilizing neural network models (dense rankers)
which embed text sequences into dense vector representations that effectively capture their semantics
through complex attention mechanisms. For efficiency, dense rankers are often employed in a retrieve-
and-re-rank setting, where a lexical ranker initially retrieves a subset of candidate passages, which are
then reordered more accurately by a dense ranker.

In this thesis, we focus on the task of passage re-ranking. We employ a dual-encoder architecture as
re-ranker that employs a two independent query and document encoders, allowing document embed-
dings to be pre-computed. Dense query-passage similarity is computed as a dot product between their
representations. We then combine scores from both stages using score interpolation.

We identify query encoding latency as a bottleneck and propose an Average Embedding (AvgEmb)
estimator. This novel model can efficiently predict an accurate query representation, without requir-
ing any attention-based encoding. It operates solely on looking up embeddings and computing their
weighted average representation. Our model is distilled from a TCT-ColBERT and achieves 98.6%
of its teacher’s accuracy while being 13.4X more efficient in query latency and 1.6X better in the full
interpolated passage re-ranking pipeline on CPU.

Our code is publicly available [6].

i

Preface

When I began my Master’s in Computer Science, I was blown away by the vast amount of elective
courses available. Narrowing it down to only a few courses felt like such an overwhelming task. I
decided to first choose a research group and master track, and choose the recommended courses
accordingly. The Web Information Systems group immediately stood out to me, with its focus on the
connections between data, information, and humans. This aligned perfectly with my interests in ef-
ficient software and Information Architecture. These courses prepared me really well for this thesis.
Additionally, trying to keep up with the rapid growth of AI models, I wanted to form a deep understand-
ing of how to train, utilize, and control such models and their capabilities. I hadn’t explored AI in such
depth before, but I willingly embraced this extra challenge for my final study project.

This past year has been the most challenging period of my academic life. I have felt completely lost,
struggling with the concepts of machine learning to the point where I lost almost all motivation to con-
tinue with my studies. These thoughts shocked me so much that I reached out to anyone that could
help: my supervisors, academic counselor, and even a therapist. These conversations turned every-
thing around. My parents gave me the excellent mental support I needed at the time. Jurek patiently
revisited the basics with me, and together with him and Avishek, we decided to pivot to an alterna-
tive, novel approach. This new approach instead focuses on estimating the query vector based on its
relevant vectors, removing the need for regular query encoding. My enthusiasm, motivation, and confi-
dence quickly returned after this shift, and only grew increasingly stronger. Quickly after, I trained and
completely comprehended my first AI model. This realization of my newfound potential felt incredible,
and rekindled my passion for the topic. What I had struggled so much for six months ago, I was now
able to do within three days. Good results led to better discussions, which brought even greater results.
I am finally confident in my work, and even excited to present this research to you.

I am deeply grateful to my supervisors. Your excellent help has been the very foundation of my thesis.
I overheard plenty peers complain about unsupportive supervisors, but my experience has been the
opposite. Jurek Leonhardt: your unwavering support, personal guidance, and the weekly meetings
with insightful discussions and research ideas have always made me feel motivated and inspired. You
showed an actual interest in what and how I was doing. Thank you for being so understanding. You
have been the best mentor I could have ever wished for. Avishek Anand: I am really glad I chose to
concludemy study with you as supervisor. Your understanding and encouragement duringmy struggles
were invaluable. You have been a great motivator for my thesis, always providing great new insights.
The follow-up message after hearing about my progress after pivoting showed me you also really cared.

My success would also not have been possible without the amazing support of my family, friends, and
supervisors. Your belief in me during moments of self-doubt kept me going. This project has been the
most challenging, but also definitely the most rewarding I have ever completed. Looking back, I am
incredibly proud of my growth, perseverance, and resilience. This thesis is not only an embodiment
of my academic efforts, but also a testament to the resilience and determination I have developed. It
showed me how rewarding it can be to push through emotional distress. Thank you to everyone who
has been part of this journey — I could not have done it without you.

Bo van den Berg
Delft, March 2025

ii

Contents

Abstract i

Preface ii

Prelude iv
List of Figures . vi
List of Tables . vii
Nomenclature . viii

1 Introduction 1

2 Background and Related Work 4
2.1 Passage Re-Ranking . 4
2.2 Sparse Ranking Models . 5
2.3 Transformer Models and Attention . 7
2.4 Dense Ranking Models . 8

2.4.1 Cross-Encoders . 9
2.4.2 Dual-Encoders . 11

2.5 Training AI Models . 13
2.5.1 Knowledge Distillation . 14

3 Average Embedding Query Estimation 16
3.1 Model . 17

3.1.1 Averaging over Top-Ranked Document Embeddings 17
3.1.2 Adding Query Semantics . 20
3.1.3 Refining the Architecture . 22

3.2 Training . 23
3.3 Alternative Choices . 24

3.3.1 Training Alternatives . 24
3.3.2 AvgTokEmb Exploration . 26

4 Experimental Setup 27
4.1 Datasets and Benchmarks . 27
4.2 Evaluation Metrics . 27
4.3 Baselines . 29
4.4 Evaluation Details . 29
4.5 Training details . 29
4.6 Implementation Details . 30

5 Results 31
5.1 General Architecture . 31

5.1.1 Overall Performance and Efficiency . 31
5.1.2 Query Encoding Latency . 34
5.1.3 Correlation to Lexical Performance . 35

5.2 Exploration of Alternatives . 36
5.2.1 Number of Documents . 36
5.2.2 Alternative Weighting Methods . 37

iii

Contents iv

6 Conclusion 39

References 42

A Overview of Architectures 49
A.1 Fast-Forward . 50

A.1.1 Original . 50
A.1.2 Quantized . 50

A.2 Combined (AvgEmb + AvgTokEmb) . 51
A.2.1 Initial . 51
A.2.2 Refined . 51

A.3 Training . 52

B Examples with actual variables 53
B.1 AvgEmb Query Estimation . 53

List of Figures

1.1 Breakdown of homogeneous TCT-ColBERT dual-encoder re-ranking runtime; measured
with 10 CPU cores, 128 sampled queries from the MS MARCO [62] development set, re-
trieval depth kS = 1000, encoder batch size 32, and an in-memory document embedding
index [45]. 2

2.1 Retrieve and re-rank pipeline. Green means relevant, red non-relevant. 5
2.2 Transformer architecture (using attention). Partly copied from Vaswani et al. [81], but

adjusted and extended to increase interpretability. 7
2.3 Cross-encoder computes similarity score ϕD(q, d) via cross-attention. 9
2.4 BERT [15] architecture. Partly copied from Vaswani et al. [81] but adjusted and extended

to increase interpretability. Differences to regular Transformer architecture (Figure 2.2):
[CLs] and [SEP] tokens are added to the input; no decoder layers; final representation
comes from the output embedding vector e[CLS]. 10

2.5 Dual-encoder computes similarity score ϕD(q, d) as distance between vector represen-
tations. 11

2.6 ColBERT’s late interaction architecture, copied from the original paper [37]. 12
2.7 AvgTokEmb query encoder; defined by Leonhardt et al. [45] as ”embedding-based query

encoder”. 12
2.8 Knowledge distillation architecture, copied from Ganesh [22]. 14

3.1 Original architecture of neural re-ranking using Fast-Forward Indexes 16
3.2 Simplified 2D vector dual-encoder index, introducing the AvgEmb estimator approach.

The query q is ”What is the top speed of Jaguar F-Type”, an instance of the vocabu-
lary mismatch problem [21]. Relevant documents are green, non-relevant documents
are red. The green cloud contains relevant documents (about Jaguar cars). The

orange cloud contains documents (about Jaguar animals) that have high lexical scores
ϕS(q, d) but low semantic scores ϕD(q, d). The numbered documents represent the lex-
ical ranking for q, with numbers i representing the ranking of document di. Figures b-e
include a weight table denoting weight wi for the listed embeddings. 18

3.3 Performance-Efficiency comparison of different lightweight encoders on 3 test datasets.
The left-most measurements are from an embedding-based transformer architecture.
The others represent transformer-based architectures with varying amounts of hidden
dimensions, encoder layers, and attention heads. 20

3.4 AvgEmb query encoding architecture after adding (weighted) lightweight query-encoding
from AvgTokEmb. 21

3.5 Initial architecture after combining AvgTokEmb and AvgEmb encoders. 22
3.6 Refined architecture after combining AvgTokEmb and AvgEmb encoders. 23
3.7 AvgEmb estimator training architecture (MSE loss) . 24

5.1 Re-ranking latency distribution measured in milliseconds per query on 128 sampled
queries of MSM-Psg dev set [62], using batch size 32. First graph shows full re-ranking
runtime, second focuses on the query encoding latency per query. Performance is mea-
sured on TREC-DL-Psg ’19. 33

v

List of Figures vi

5.2 Re-ranking latency distribution measured in milliseconds per query on 128 sampled
queries of MSMARCO-Passage development set [62], using batch size 32. Speedup
against TCT-ColBERT re-ranking is shown above each bar. Query encoding percent-
age is shown below. 34

5.3 Query-encoding latency distribution of AvgEmb Estimator, measured in milliseconds per
query on 128 sampled queries of MSM-Psg dev set [62], using batch size 32. 35

5.4 nDCG10 performances of the models on queries from the MSM-Psg TREC 2019 dataset,
sorted on increasing BM25 performance. 35

5.5 Learned embeddings weights at each lexical rank for different number of documents n);
qlight is excluded. 36

5.6 Comparing performance against efficiency using different n_docs against baselines TCT-
ColBERT re-ranking and AvgTokEmb. Latency is measured in milliseconds per query on
128 sampled queries of MSM-Psg dev set [62], using batch size 32. First graph shows
full re-ranking runtime, second focuses on the query encoding latency per query. . . . 37

5.7 Comparison of different weight distribution methods for 10 documents, ignoring the query
encoding weight. Softmax scores is calculated from average score at rank di for 1024
validation queries. The first graph shows weight approximations for n_docs=10, the
second for n_docs=50. 38

A.1 Original architecture of neural re-ranking using Fast-Forward Indexes 50
A.2 Quantized architecture of neural re-ranking using Fast-Forward Indexes. Product quan-

tization is highlighted in yellow. 50
A.3 Combined architecture of AvgEmb and AvgTokEmb encoders. 51
A.4 Combined architecture of AvgEmb and AvgTokEmb encoders. 51
A.5 Training architecture of AvgEmb estimator. 52

B.1 Simplified example pass through the AvgEmbq,3-docs query encoder. A batch of 2 queries
is used which have a maximum length of 3. Only 1 top-ranked document is retrieved for
q2, which is highly exceptional in practice. 54

List of Tables

5.1 Re-ranking performance measured on different MSM-psg testsets at retrieval depth ks =

1000. AP and RR use a minimum relevance of 2. † indicates that the model performs
significantly worse on the metric than the interpolated re-ranking TCT-ColBERT baseline,
as determined by a paired t-test (p ≤ 0.05) [16]. 32

5.2 Latency measured in milliseconds on 128 sampled queries of MSM-Psg dev set [62],
using batch size 32. Speedup is compared against TCT-ColBERT re-ranking. 32

vii

Nomenclature

Abbreviations

Abbreviation Definition

AI Artificial intelligence
BeIR Benchmarking IR dataset [80]
DPR Dense passage retrieval
FF Fast-Forward indices [45]
FiQA Financial Question Answering dataset [80]
KD Knowledge distillaton
MSM MSMARCO dataset [62]
MSM-Psg MSMARCO dataset for passage retrieval
NQ Natural Questions dataset [40]
QA Question Answering
RNN Recurrent neural network
SOTA State of the art
ST Small transformer
TAS Topic-aware sampling
Dev Development

Notations

Symbol Definition

D Document set, corpus
d Document, or passage (equivalent in this context)
Q Query set
q Query

Model size:
H Amount of hidden dimensions
L Amount of encoder layers

Evaluation metrics:
AP Average precision
MAP Mean average precision
MRR Mean reciprocal rank
nDCG Normalized discounted cumulative gain
P Precision
R Recall
RR Reciprocal rank

Sampling:
d− Negative sample

viii

List of Tables ix

Symbol Definition

d+ Positive sample

Scoring:
ϕ Score
ϕD Dense score
ϕS Sparse score

Synonyms

Synonyms Explanation

{document, passage, doc} BERT-like models often require a maximum length
of input tokens, and thus require larger documents
to be split into multiple passages. Within the scope
of this thesis, we assume that all input is processed
atomically and we do not distinguish between docu-
ments and passages.

{corpus, document set, pas-
sage set}

Using the reasoning of the [document, passage] syn-
onyms above, the sets are also used interchange-
ably.

{encoding, embedding (emb),
representation (rep), vector}

The vectors created by encoder models to numer-
ically represent the meaning of a document or a
query.

{sparse retrieval, lexical re-
trieval}

Retrieval based on exact term matching, e.g. BM25

{retrieval set, sparse rank-
ings}

Top-k ranked documents from sparse retrieval, e.g.,
results from retrieval stage in retrieve-and-re-rank
setting

{dense retrieval, semantic re-
trieval, dense passage re-
trieval (DPR)}

Retrieval using neural ranking models where docu-
ments and queries are used as inputs

{encoder, model} Artificial Intelligence model used to encode queries
or documents in the context of neural ranking

{dual-encoder (model),
bi-encoder (model)}

Retrieval using neural ranking models where docu-
ments and queries are encoded into a vector space
and retrieval is done based on (approximate) near-
est neighbor search

{cross-attention encoder
(model), cross-encoder}

Retrieval using neural ranking models where docu-
ments and queries are used as inputs and a similar-
ity score comes out

{inference, online} Runtime between user entering a search query and
returning the list of ranked documents.

1
Introduction

Information retrieval (IR) is the field dedicated to retrieving data from large collections [58]. We con-
sider the domain of ad-hoc information retrieval, where the predominant task is to retrieve a list of k
documents from a corpus ordered by their relevance to an input query q [58]. For example, web search
engines such as Google perform this task by presenting the most relevant websites and a highlighted
passage. Low inference latency (efficiency) and accurate results (performance) are paramount in this
scenario, as users expect prompt responses that satisfy their information needs.

Traditional lexical retrieval methods [78, 72] rely on exact matching between terms (e.g. words) in
queries and documents. However, they are susceptible to the vocabulary mismatch problem [21] in
which documents are not retrieved if they do not contain the exact query terms (e.g. synonyms), even
though they are semantically relevant.

In recent years, the use of neural networks has become increasingly prevalent in information retrieval
[46]. These dense rankers leverage complex attention mechanisms [81] to capture the meaning (se-
mantics, context) of text sequences into dense vectors [15, 60], leading to highly accurate results in
natural language processing tasks such as ranking [46]. The primary limitation of these models is their
quadratic time complexity in respect to the input length [51]. In response, the input is often shortened
by splitting all documents into shorter passages [46]. Throughout this report, we use the terms passage
and documents interchangeably. However, this approach substantially increase the corpus size, and
inference latency remains impractical when computing similarities for all query-passage pairs. Many
approaches circumvent this problem by employing a retrieve-and-re-rank telescoping setting, where
an initial lexical retrieval step efficiently identifies a subset of candidate documents, which are then
reordered more accurately in a second stage using advanced ranking methods.

One efficient approach to dense ranking is dense passage retrieval (DPR, subsection 2.4.2) [36], which
employs a dual-encoder architecture consisting of two independent models that respectively embed the
queries and documents into a common vector space and compute their relevance based on similarity
metrics between those vector representations. These models are particularly efficient because the
documents are known in advance and their representations can be pre-computed and indexed. Recent
research by Leonhardt et al. [45] show that can also be employed as efficient and accurate re-rankers.
They also show that the lexical and dense scores reveal complementary information [8] and linear score
interpolation (Equation 2.2) further boosts the performance at negligible latency cost.

Many applications do not reach sufficient traffic to encode queries in batches, disallowing paralleliza-
tion hardware such as GPUs/TPUs and necessitating to encoding on a CPU, which increases latency
overhead [9]. Additionally, specialized parallelization hardware generally comes with monetary costs

1

2

[45] and negative environmental impacts [75].

Considering all of the above, our research is thus aimed at improving inference efficiency in the pas-
sage retrieval task on CPU without compromising accuracy. To achieve this, we consider an interpo-
lated retrieve-and-re-rank approach and utilize dual-encoders as re-rankers. We compute the dense
similarity score as a dot product between the query vector and document vector (Equation 2.8).

During re-ranking inference, our setup involves these components: creating query vectors, retrieving
document vectors from an in-memory index, computing query-document relevancy scores using dot
products and score interpolation, and rearranging the candidate documents. Many dual-encoders are
homogeneous, employing the same architecture for both encoders [45]. Figure 1.1 illustrates the dis-
tribution of re-ranking latency when employing TCT-ColBERT as re-ranker on CPU.

Figure 1.1: Breakdown of homogeneous TCT-ColBERT dual-encoder re-ranking runtime; measured with 10 CPU cores, 128
sampled queries from the MS MARCO [62] development set, retrieval depth kS = 1000, encoder batch size 32, and an

in-memory document embedding index [45].

This figure identifies query latency as a bottleneck, making up 39.1% of the runtime. Based on this
observation, we shift our research focus towards efficiently finding an accurate query representation.
Bruch, Gai, and Ingber [8] reveal that queries are often shorter and more concise than documents.
Consequently, Leonhardt et al. [45] propose a lightweight embedding-based query encoder without
any complex attention mechanisms [81] (Figure 2.7).

This thesis is driven by the following research questions:

RQ1. Is it possible to achieve an efficient and accurate estimation of a query embedding in neural re-
ranking by leveraging the lexically most relevant document embeddings?

RQ2. How can this approach be extended with semantic query information to improve performance
without significantly compromising efficiency?

RQ3. What alternative approaches and settings could further boost the model performance or effi-
ciency?

In our research, we extend on the embedding-based query encoder by integrating learned tokenweights
and additionally leveraging the query’s n lexically most relevant documents, their embeddings, and
weighted average computations. The intuition behind the token weights is to assign higher weights
to context-defining tokens (e.g. ”why”, ”capital”) and lower weights prevalent and general words (e.g.
stop words such as ”the”).

Central to this thesis, we propose the Average Embedding (AvgEmb) query estimator (Figure 3.4, Equa-
tion 3.4). This novel method relies solely on efficient operations: retrieving token embeddings from a

3

matrix, retrieving document embeddings from an in-memory index, and transforming them into a 1-
dimensional vector based on their weighted average representation. Employing this query estimator
into our dual-encoder architecture results in a re-ranking pipeline consisting of only efficient operations
(Equation 3.5).

Our model comes in two variants, AvgEmbn-docs that operates only on the document embeddings, and
AvgEmbq,n-docs that also incorporates lightweight query encoding. We argue that the first variant is
vulnerable to the vocabulary mismatch problem [21] and our experiments confirm the latter model to be
strictly superior. Continuing, we explore various model settings and conclude that n = 10 is the most
effective variant. Documents at higher ranks seem to incur noise, making the final query estimation
prediction less accurate. We therefore adopt the AvgEmbq,10-docs variant as our default and refer to it
as just AvgEmb.

Our model is trained as a distilled version of TCT-ColBERT [48] using MSE loss [82] (Figure 3.7). In this
training setup, the teacher’s performance serves as an upper boundary on the student’s performance.
We demonstrate that our proposed estimator achieves 98.6% of its teacher while being 13.4X more
efficient in query latency and 1.6X more efficient in the full interpolated passage re-ranking pipeline
on CPU. We deduce that query latency could be reduced by 40% if document vectors are re-used
throughout the re-ranking pipeline. Reflecting on our original problem: our efficient query estimator
significantly enhances ranking efficiency without compromising accuracy, leading to a more satisfactory
information retrieval overall.

The remainder of this report is structured as follows. Starting off, chapter 2 summarizes the background
information and related work required to fully comprehend our research, while iteratively deducing our
research focus. Building forth on this knowledge, chapter 3 then formally illustrates the reasoning and
methodology behind our proposed approach. Moving on from theory to practicality, chapter 4 describes
the experimental specifics including the data, metrics, baselines, and details about evaluation, training,
and implementation. We then present our experiments and results in chapter 5. Finally, chapter 6
presents our discussions, conclusions, limitations, and provides directions for future work.

For reproducibility, transparency, and validity, we made our code publicly available [6].

2
Background and Related Work

This chapter introduces the task of passage re-ranking and provides an overview of the current state of
neural ranking models. First, the families of sparse, dense, and hybrid retrieval methods are introduced.
The baseline methods for our research are explained in further detail. The final section introduces the
required concepts of AI training, specifically knowledge distillation.

2.1. Passage Re-Ranking
In the domain of Ad-Hoc Information Retrieval (IR), the task of document retrieval involves ranking a set
of documents based on their relevance to an arbitrary search query [46]. Given an input query q, the
task is to retrieve a list of k documents from a corpus C, ordered by their relevance to q. For instance,
when entering a query into Google, it aims to return the most relevant information and websites. The
queries are unknown in advance, and the task needs to be executed with high efficiency (low latency)
and high performance (accuracy). To address computational constraints of neural ranking models [51]
and reduce contextual noise, documents are often split into passages, which are ranked individually
in a task called passage ranking. A popular choice is to then compute the document scores as the
maximum score of its passages by the maxP approach [13]:

ϕ(q, d) = max
pi∈d

ϕ(q, pi), (2.1)

where ϕD(q,X) denotes the relevancy score between query q and X ∈ {document, passage}.

Retrieve-and-Re-Rank
This thesis is focused on inference efficiency in passage ranking. In ranking, accuracy and efficiency
are generally a trade-off. It is generally infeasible to apply highly accurate ranking models to an entire
corpus. Therefore, a popular efficient approach is retrieve-and-re-ranking [46, 45], which involves two
stages: lexical retrieval and semantic re-ranking. First-stage retrieval is the act of retrieving a small
set of high-recall candidate passages from a corpus, often performed by lexical sparse retrievers for
efficiency. These passages are then reordered in the re-ranking phase, generally by more expensive
dense models for high accuracy. These families of models are described in section 2.2 and section 2.4,
respectively. This pipeline is visualized in Figure 2.1. This research focuses on the re-ranking phase.
Nguyen et al. [62] describes the task of passage re-ranking as ”Given a candidate top 1000 passages
as retrieved by BM25 [72], re-rank the passages by relevancy.” In this case, the sparse retrieval depth
kS = 1000.

4

2.2. Sparse Ranking Models 5

Figure 2.1: Retrieve and re-rank pipeline. Green means relevant, red non-relevant.

Score Interpolation
Sparse and dense scores reveal complementary information from the passages [8], and combining
them has been shown to boost re-ranking performance while barely compromising efficiency [45]. A
common classical approach is score interpolation [83]:

ϕ(q, d) = α · ϕS(q, d) + (1− α) · ϕD(q, d), (2.2)

where ϕ is the final score; ϕS is the sparse score; ϕD is the dense score; and α is a hyperparameter
that decides the impact of either component; q and d represent a query and document, respectively.

The sparse scores ϕS are already computed before re-ranking and can be re-used without additional
costs. Our research is therefore focused on efficiently computing the dense scores ϕD, which can be
computationally expensive as complex neural models are applied to 1000 passages for each query.

2.2. Sparse Ranking Models
The traditional ranking approach is sparse retrieval, in which the relevancy score is computed based on
exact term matching between query-document pairs, counting the overlapping terms and their frequen-
cies [58]. These lexical methods rely on inverted indexes that store information for each document term.
These indexes are pre-computed offline and loaded into random access memory (RAM) before infer-
ence. The efficiency of online sparse retrieval stems from its sole reliance on index look-up operations
and simple mathematical computations. This concept is fundamental to our research as well.

These methods are referred to as sparse methods because they operate on a sparse matrix of query
and document terms, which predominantly contains zeros. Many legacy search engines were pow-
ered by sparse retrieval [46], making them sensitive to search engine optimization techniques such as
keyword stuffing [91] and hidden texts [27].

Many lexical sparse retrievers are bag-of-words (BoW) models [29], which disregard term order and
term context. BoW models and other lexical retrievers [43] lack accuracy because they suffer from the
vocabulary mismatch problem [21, 71, 46]; that is: semantically relevant documents are not retrieved
when they do not contain exact terms from the search query. For instance, document that contain
synonyms or related information rather than the exact terms are ignored. This problem forms one
of the central challenges in lexical IR [46]. Neural models are generally successful in address this
problem by contextualizing the context in which the terms appear. Families of such models include
learned sparse retrieval models such as SPLADE [18] and dense rankers [15, 37], both of which are
presented in the following sections.

2.2. Sparse Ranking Models 6

TF-IDF
A foundational sparse ranker is the Term Frequency-Inverse Document Frequency (TF-IDF) method
[78], which is slightly adjusted for sparse retrieval here:

ϕTF−IDF
S (q, d) =

∑
t∈q

tft,d × log

(
|C|
dft

)
, (2.3)

where tft,d describes the amount of times term t appears in document d (term frequency); |C| is the
corpus size; and dft is the number of documents in which term t appears (document frequency).

Both of these term attributes tft,d and dft are pre-computed for all terms in the corpus and stored as
inverted indexes. The TD-IDF model is designed to retrieve passages in which the query terms occur
often, adjusted for the frequency in which those terms occur overall. For instance, stop words such as
”the” are not likely to reveal important information about the query so its impact is reduced by IDF.

BM25
The most popular variation on TF-IDF is Okapi Best Matching 25 (BM25) [72, 71]:

ϕBM25
S (q, d) =

∑
t∈q

tft,d · (k1 + 1)

tft,d + k1 ·
(
1− b+ b · |d|

avgdl

) · log(|C| − dft + 0.5

dft + 0.5

)
, (2.4)

where most terms are repeated from the TF-IDF model above; |d| is the length of document d; avgdl
is the average document length in the corpus; and k1 and b are hyperparameters controlling term
saturation and the impact of document length on term saturation, respectively.

Due to its effectiveness and simplicity, BM25 remains a widely used scoring function for sparse retrieval.
It is an integral part of the MS MARCO passage re-ranking task definition [62]. Most IR research
considers BM25 as a baseline, and so do we.

SPLADE
The SParse Lexical AnD Expansion model (SPLADE) [18] is a learned approach for sparse ranking.
It enhances sparse document representations using a transformer model and explicit sparsity regular-
ization on term weights, resulting in highly sparse contextually-expanded representations [5, 53]. Addi-
tionally, the model employs a log-saturation effect on term weights that prevents terms from becoming
overly dominant in the representation.

SPLADE inherits the desirable properties from BoW models [29], including their interpretability and
compatibility with inverted indexes. The learned representations mitigate the vocabulary mismatch
problem [21] and enable SPLADE to substantially outperform BM25, although this performance boost
comes with significantly increased latency for both indexing and online query processing. However,
dense dual-encoder re-rankers reach similar performance with reduced overall latency [46]. These are
introduced in the next section.

The research on SPLADE has since been extended with an efficiency study [41] and various newer
models [20, 19, 42]. The SPLADE++ model [19] serves as one of our baselines and is described in
more detail in subsection 2.5.1.

2.3. Transformer Models and Attention 7

2.3. Transformer Models and Attention
Transformer models were introduced in a foundational paper by Vaswani et al. [81]. The complete
architecture of Transformers is very complex, but I made an effort to illustrate it completely in Figure 2.2.

Figure 2.2: Transformer architecture (using attention). Partly copied from Vaswani et al. [81], but adjusted and extended to
increase interpretability.

Note that a Transformer model consists of arbitrary amounts of L encoder layers andD decoder layers,
which mainly influence their computational performance-efficiency tradeoff. Especially the decoder is
not relevant, since BERT-based models [15] (subsection 2.4.1) do not employ any decoder layers. For
our contributions, it suffices to understand the embeddings layer and that attention mechanisms are
inherently complex and computationally demanding (slow).

Starting from the bottom left, a textual input sequence (e.g. ”What is the capital of France”) is provided to
the Transformer model. This sequence is then tokenized into tokens t1 · · · tN . In the input embedding
layer, these tokens are transformed to token embeddings, by retrieving their representations from a
token embedding matrix ET following the mapping E : N 7→ RH , such that E(t) is the embedding
vector et of token t.

For the sake of thoroughness, we still describe the complicated attention mechanism [81, 2] and trans-
former encoding layers here. Attention-based dense encoders such as BERT-based [15] (i.e. most)
models use Transformer encoder layers [81] to transform the embedding vectors et into contextual out-
put vectors. BERT models consider the context bidirectionally [15], while GPT models [7] such as the

2.4. Dense Ranking Models 8

popular ChatGPT1 only consider previous sequence tokens.

Each encoder layer has two main components: multi-head attention and a feed-forward sub-layer.
Attention accepts three input matrices as inputs: queries Q, keys K, and values V . Since Transformer
encoders compute self-attention, Q, K, and V are projections from the output of the previous encoder
layer. Attention is computed as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dK

)
V. (2.5)

Multi-head attention computes attention for each A attention head hi and concatenates the results:

MultiHead(Q,K, V) = (h1 ◦ · · · ◦ hA) · WO,

hi = Attention(QWQ
i ,KWK

i , V WV
i),

(2.6)

where matrices WQ
i ∈ RH×dk , WK

i ∈ RH×dk , WV
i ∈ RH×dv , WO ∈ RADv×H are trainable parameters;

H denotes the dimension of hidden representations in the model; and dk = H
A is a scaling factor.

2.4. Dense Ranking Models
Dense neural ranking models [15, 37, 48] address the vocabulary mismatch problem by leveraging
neural networks to capture the contextual meaning of queries and documents, facilitating semantic
matching through representation learning [46]. All terms in a query, document, or query-document pair
are transformed into low-dimensional dense vector representations by the model using self-attention
mechanisms [81, 15, 2]. section 2.3 illustrates the details and computational complexity behind these
attention mechanisms. Dense vector means that most dimensions are represented with non-zero val-
ues. The input is often prepended by a classification token [CLS] that aggregates information about
the entire input sequence into a single dense vector [15]. Two common architectures of dense ranking
models are cross-encoders and dual-encoders, introduced in subsection 2.4.1 and subsection 2.4.2,
respectively.

Dense ranking models can be used directly for dense passage retrieval (DPR) [36] or in the re-ranking
setting. Neural ranking typically employs large BERT-based transformer models [15, 37] making it
computationally expensive and significantly slower than traditional sparse retrievers such as BM25
[72], but also highly accurate. Dense retrieval models generally have lower recall than term-matching
sparse models at higher retrieval depths [45]. One approach to reduce computational complexity is
knowledge distillation, described in subsection 2.5.1.

One significant limitation of transformer-based architectures for dense encoders is their quadratic time
complexity concerning input length, restricting the number of input tokens [46]. Strategies to address
this limitation include document truncation [52] and chunking documents into passages [73, 13]. How-
ever, chunking significantly increases the corpus size, leading to varied negative latency concerns for
the different types of dense ranking models. Training and inference on large corpora are infeasible for
many due to computational costs, often necessitating expensive parallelization hardware like GPUs/T-
PUs, accompanied by high emissions that negatively impact the environment [75].

1ChatGPT: https://chatgpt.com

https://chatgpt.com

2.4. Dense Ranking Models 9

2.4.1. Cross-Encoders
One approach to dense ranking exhibits cross-attention models, which take a concatenated query-
document pair as input and compute their relevance score ϕD(q, d) directly into the classification token
via cross-attention, as illustrated in Figure 2.3. An example input is ”[CLS] q1 · · · qN [SEP] d1 · · · dM [SEP]”.

Figure 2.3: Cross-encoder computes similarity score ϕD(q, d) via cross-attention.

Traditional re-rankers employed cross-encoders with large contextual models [46, 45]. The compu-
tational costs for re-ranking inference are proportional to the sparse retrieval depth kS , because the
model has to process each query-document pair. Chunking documents into passages enlarges the
number of pairs even further. Low inference latency is essential to many applications; we therefore
focus on the more efficient dual-encoders instead (subsection 2.4.2).

BERT
In 2018, Google published the Bidirectional Encoder Representations from Transformers (BERT)model
[15]. It uses a WordPiece tokenizer [87], and as a Transformer (section 2.3), it employs advanced
techniques such as self-attention and multi-head attention [81, 2] to capture relationships between
words by bidirectionally considering their preceding and succeeding words. This open-source large
language model revolutionized neural model research in IR and NLP [46, 63, 76]. Most dense ranking
models today are BERT-based [46, 45]. The full BERT architecture is visualized in Figure 2.4

BERT is trained on masked language modeling (MLM) and next sentence prediction (NSP) [15]. In
MLM, some words are masked with [MASK] tokens and the model learns to predict those words. In
binary NSP, the model learns whether a sentence logically follows from another.

Reflecting on the name, ”Bidirectional Encoder Representations from Transformers (BERT)”:
We explained the model’s bidirectional attention above. Furthermore, BERT adopts a Transformer
architecture (Figure 2.2) without any decoder layers varying parameters for: L encoder layers,H hidden
dimensions, and A attention heads. These variables are also included in Figure 2.4. The main BERT
variants are BERTBASE (L = 12,H = 768, A = 12) and BERTLARGE (L = 24,H = 1024, A = 16).

Given a BERT-based encoder and a query q, the query representation is computed as:

ζBERT (q) = BERTCLS([CLS] t1 · · · t|q| [SEP]), (2.7)

where BERTCLS(x) indicates a forward pass through the BERT model using input x and returns the
vector corresponding to the [CLS] classification token in the output layer; and the [CLS] and [SEP]

tokens are appended to the input tokens.

2.4. Dense Ranking Models 10

Figure 2.4: BERT [15] architecture. Partly copied from Vaswani et al. [81] but adjusted and extended to increase
interpretability. Differences to regular Transformer architecture (Figure 2.2): [CLs] and [SEP] tokens are added to the input; no

decoder layers; final representation comes from the output embedding vector e[CLS].

MonoBERT
A popular BERT adaptation for cross-encoding is MonoBERT [64], which fine-tunes BERT on a binary
text classification problem. The model input is a query-document pair where q and d are truncated to 64
and 512 tokens respectively and concatenated as ”[CLS] q1 · · · qN [SEP] d1 · · · dM [SEP], where N

andM denote the query and document lengths. The relevancy score is computed by parsing the BERT
[CLS] token through a multi-layer perceptron (MLP) [67] into a float score between 0 (not relevant) and
1 (relevant). Finally, the pairs are ranked according to their scores.

2.4. Dense Ranking Models 11

2.4.2. Dual-Encoders
A second approach to neural ranking is dense passage retrieval (DPR) [36], which employs a dual-
encoder architecture in which two independent semantic models respectively embed the queries and
documents into a common vector space [60], and the similarity scores ϕD(q, d) are then computed
based on similarity metrics between those vector representations. This approach is visualized in Fig-
ure 2.5. These encoder models often employ BERT-based models, resulting in 768-dimensional vector
spaces [36, 37, 88, 46].

Figure 2.5: Dual-encoder computes similarity score ϕD(q, d) as distance between vector representations.

The dual-encoder structure is efficient because the document embeddings can be pre-computed and
indexed in an offline phase called indexing [34]. This index is then loaded into RAM before runtime
[46], trading memory space for efficiency and making it a viable option for both retrieval and re-ranking.
Passage ranking requires larger indexes to store all passage embeddings.

Dense retrieval is performed as k-nearest neighbor search (kNN), which is made more efficient with
approximate nearest neighbor search (ANN) [57], GPUs [34], or reducing the overall index size [59, 33,
25]. Our research is focused on re-ranking the provided query-passage pairs at kS = 1000 instead.

A common similarity score function is the dot product [46]:

ϕDual−encoder
D (q, d) = ζ(q) · ed, (2.8)

where ζ is the query encoder and ed is the indexed document vector.

Most dual-encoders are either homogeneous [37, 36, 69] or Siamese [70, 50], utilizing symmetric query
and document models or even sharing model weights. Queries are usually short [35] and can be
computed on CPUs [45], provided that sufficient memory is available. They may not require the same
complex models. Other approaches are distilled models (subsection 2.5.1), semi-Siamese models [35],
or diverging from dense query representations altogether [90, 89], though homogeneous BERT-based
models remain the most common choice.

Our research employs a dual-encoder architecture for passage re-ranking. Dual-encoders are more
efficient and allow a much higher retrieval depth kS than cross-attention models; our scoring consists
entirely of index look-ups, query encoding, and dot product computation. The arbitrary search queries
are unknown in advance and must be encoded online, forming a latency bottleneck; our research is
focused on lightweight query encoding.

ColBERT
A widely popular dual-encoder is the model Contextualized Late Interaction over BERT (ColBERT) [37],
which adapts a homogeneous BERT architecture. The query encoder receives an input ”[Q] q1 · · · qN ”
and the document encoder ”[D] d1 · · · dM ”. In both encoders, these inputs are linearly processed by
BERT, propagated through a convolutional neural network (CNN) [65], and normalized.

Furthermore, ColBERT introduces the late interaction architecture, illustrated in Figure 2.6, which com-
bines the efficiency of representation learning dual-encoders with the accuracy from cross-attention in
cross-encoders. In this paradigm, most of the query-passage interaction remains separated, though

2.4. Dense Ranking Models 12

the scoring function MaxSim still computes a token-level fine-grained similarity between the two:

ϕMaxSim
D (Eq, Ed) =

∑
eq∈Eq

max
ed∈Ed

(
eq · eTd

)
, (2.9)

where Eq and Ed denote all embedded q and d tokens in the final BERT layer.

Figure 2.6: ColBERT’s late interaction architecture, copied from the original paper [37].

All document token embeddings are pre-computed and indexed. Inference consists of: query encod-
ing, computing the dot products between all query tokens and document tokens, and summing their
similarities. All online computations except for the query encoding are lightweight and efficient. More
recent research introduced TCT-ColBERT, a distilled ColBERT model that replaces its late interaction
with representation learning. This model is described in subsection 2.5.1 and used as our baseline.

AvgTokEmb
A more recent study by Leonhardt et al. [45] introduces another lightweight approach to query encod-
ing. In the re-ranking setting with score interpolation and a representation learning dual-encoder, they
introduce an efficient embedding-based query encoder accompanied by a BERT-based document en-
coder.

Figure 2.7: AvgTokEmb query encoder; defined by Leonhardt et al. [45] as ”embedding-based query encoder”.

The embedding-based query encoding architecture originates from a Transformer architecture (Fig-
ure 2.2) [81] but is much simpler, and visualized in Figure 2.7. The queries are first traditionally trans-
formed by a WordPiece tokenizer [87] into BERT input sequences: ”[CLS] q1 · · · qN [SEP]”. They
are then only parsed through the BERT input embedding layer, skipping any self-attention transformer
encoder layers, hence the name. The query representation is computed as the average of all query

2.5. Training AI Models 13

token embeddings:
ζAvgTokEmb(q) =

1

|q|
∑
t∈q

et, (2.10)

where et is the embedding vector of a token t, retrieved by a look-up in the token embeddingmatrixET ∈
Rvocab_size×emb_dim; vocab_size is the tokenizer vocabulary size, i.e. 30522 for BERT’s WordPiece
tokenizer [87, 15]; and emb_dim is the document embedding dimension, i.e. 768 for BERT-based
models [15].

The similarity score is a dot product between the query and document embeddings, as described in
Equation 2.8. This encoding disregards any computationally expensive self-attention and relies solely
on efficient token embedding look-ups et and simple calculations for averaging and dot products. This
lightweight approach allows faster computations even on CPUs.

To avoid naming confusion with our proposed model, and because it relates specifically to averaging
token embeddings, we refer to their embedding-based encoder as average token embedding encoder
(AvgTokEmb). Our proposed model is designed in the same re-ranking setting and integrates Avg-
TokEmb query encoding as an integral part of its architecture. Consequently, AvgTokEmb serves as
one of our baselines for performance and efficiency.

2.5. Training AI Models
An early stage in an artificial model timeline is training, where the model learns to adjust its weights to
perform better at a task [26]. Afterwards, these trained models can be applied to their respective tasks,
such as indexing and passage re-ranking.

AI models are initialized with random or pre-trained parameters [15, 46]. Training is then performed in
a training loop [17], consisting of:

1. A forward pass where the input data is passed through all model layers to generate predictions.

2. Loss calculation in which the model performance is evaluated against actual target values using
a loss function [82].

3. Backpropagation [85, 4] where the computed loss is propagated backwards through the model
and loss gradients with respect to the model’s parameters are calculated using the chain rule.

4. Updating the model parameters using an optimization algorithm such as stochastic gradient de-
scent (SGD) [4] or Adam [39]. This makes the model predictions more accurate.

The model is periodically evaluated during training in a process called validation, checking the predic-
tions based on a label representing the truth. This helps identify underfitting [32], where a model fails to
capture the underlying data patterns because it is either too simple or incorrectly designed. The stop-
ping condition is either a defined number of passes through the dataset (epochs) or an early stopping
criterion to prevent overfitting [32] on the training data and losing its general reasoning capabilities.

Effective machine learning models are typically trained in two phases: pre-training and fine-tuning. In
pre-training, a model learns a general language understanding from a vast and diverse dataset. It is
infeasible for most individuals due to the immense data and computational power requirements. The
most popular pre-trained model is Google’s BERT [15], which instigated many other neural IR research
[64, 36, 37, 46]. Fine-tuning, on the other hand, takes a pre-trained model and adapts it for a specific
task or domain using a smaller, more focused dataset. This phase updates the model’s weights to
enhance its performance in specific contexts, such as passage ranking, where models are often fine-
tuned on large labeled datasets like MS MARCO [62]. Together, pre-training and fine-tuning allow
models to leverage general knowledge and apply it effectively to specialized tasks, creating versatile
and powerful AI systems.

2.5. Training AI Models 14

2.5.1. Knowledge Distillation
An example of a related process to fine-tuning is knowledge distillation (KD) [28, 46], a technique
where a student model is trained to replicate the behavior of a powerful teacher model. This process,
illustrated in Figure 2.8, encourages the student model to make high-quality predictions that mimic the
teacher model outputs while being more efficient overall.

Figure 2.8: Knowledge distillation architecture, copied from Ganesh [22].

The primary goals of KD are reducing inference latency or index storage space or increasing perfor-
mance. For instance, techniques like recurrent neural networks (RNNs) are suitable for handling short
queries incrementally as they are being typed [9]. Notable examples of distilled IR models include the
general-purpose DistilBERT [74] and EmbedDistill [38].

Techniques like the Margin-MSE loss [31] optimize the margin between relevant and non-relevant pas-
sages, addressing cross-architectural issues and allowing an ensemble of teachers [30]. Furthermore,
RocketQA [69] introduces a unified distillation method to simultaneously train for DPR and passage
re-ranking.

Hard negative samples play an important role in effective model training. These are challenging non-
relevant examples that are difficult to distinguish from relevant examples. Such techniques include
in-batch negatives [49] and Balanced Topic Aware Sampling (TAS-B) [30, 84], in which passages are
clustered on relevancy and sampled balanced on their pairwise margins.

SPLADE++ (CoCondenser-SelfDistil)
The original SPLADE model [18], described in section 2.2, was trained end-to-end in a single retrieval
stage with in-batch negatives. In 2022, SPLADE++ [19] extended this research with alternative meth-
ods that include knowledge distillation, hard negative sampling, and initialization from a pre-trained
CoCondenser [23], making the sparse neural model training more effective.

The SPLADE research has since been extended with an efficiency study [41] that achieves similar
latency to BM25 with <10% performance loss. Additionally, SPLADE-v3 [42] extended training with
KL-Div [77] and MarginMSE [31].

We compare our model against the SPLADE++ CoCondenser-SelfDistil model as a learned sparse
retrieval baseline, as it achieves the highest performance among sparse retrieval methods in Pyserini
[47].2 We abbreviate this model to SPLADE++ CC-SD.

2Pyserini reproductions: https://castorini.github.io/pyserini/2cr/msmarco-v1-passage.html

https://castorini.github.io/pyserini/2cr/msmarco-v1-passage.html

2.5. Training AI Models 15

TCT-ColBERT
ColBERT, introduced in subsection 2.4.2, has the main disadvantage of high memory requirements
because each passage token embedding is stored individually. TCT-ColBERT [48] attempts to mitigate
this by returning to representation learning and dot product similarity as described in Equation 2.8, while
distilling the late-interaction performance using an approach called tightly coupled teachers (TCT). In
2021, Lin, Yang, and Lin [49] improved TCT-ColBERT training with in-batch negatives.

In traditional distillation methods, the scores for queries and documents are pre-computed by the
teacher model [31]. In the proposed TCT approach, the teacher model itself is incorporated in the
student model training to provide real-time guidance. It defines two probability functions, respectively
computed by the ColBERT teacher and TCT-ColBERT student, and trains the student on KL-Div [77]
between the probabilities. This method enables more flexible distillation strategies, leading to better
learned representations and reduced query encoding latency. Additionally, it greatly reduces storage
requirements and removes the need for periodic index refreshes during representation learning [88]. A
practical consequence of this setup is that the teacher model itself must be reasonably efficient, ruling
out cross-encoders.

Our model is distilled on query representations encoded by TCT-ColBERT. Additionally, we use TCT-
ColBERT as a baseline in three settings: dense retrieval, re-ranking, and interpolated re-ranking.

3
Average Embedding Query Estimation

As introduced in chapter 2, this research is focused on the efficiency and performance of the neural
re-ranking. The starting point for this thesis is the recently published paper by Leonhardt et al. [45].
Their research employs a dual-encoder as a re-ranker, which uses two individual query document
encoders, allowing document embeddings to be pre-computed and stored as indexes. These indexes
are loaded into random access memory (RAM) before inference. The re-ranking scores are computed
as a simple score interpolation between the lexical sparse scores ϕS(q, d) from first-stage retrieval
and the semantic dense scores ϕD(q, d) from re-ranking (Equation 2.2). The score interpolation is
validated with a hyperparameter α, ranging from 0 to 1, which determines the impact of each score. In
turn, ϕD(q, d) is computed as the dot product between the query and document vectors (Equation 2.8).
This initial architecture is visualized in Figure 3.1.

Figure 3.1: Original architecture of neural re-ranking using Fast-Forward Indexes

Our foundational insight is that the query vector resembles its most relevant document embeddings.
Those query-document pairs achieve the highest similarity scores from dot products, meaning that
their representation vectors are similar, which allows us to approximate this vector using low-latency
operations while removing the need for neural query encoding via attention mechanisms [15, 81].

16

3.1. Model 17

To reiterate, our research focus applies to efficiently creating a query representation in dual-encoder
re-ranking. This section provides a detailed examination of our methodology and approaches. These
methods are clarified and motivated through various visualizations and algorithms, enhancing the com-
prehensibility and interpretability of each concept. section 3.1 introduces our proposed query encoder
model and explains the reasoning and intuition behind the model design choices. The training architec-
ture is discussed in section 3.2. section 3.3 concludes the chapter by addressing some shortcomings
and suggesting alternative approaches.

3.1. Model
The intuition behind the model design is best explained by an iterative reasoning example, guided by a
visualization. This oversimplified example is introduced in Figure 3.2a, please read the caption carefully
before continuing. Note that this is a simplified 2-dimensional example with only 13 documents, though
this intuition behind dot product similarity scales perfectly to vectors of large dimensions [3] and many
documents, such as an index of 768-dimensional BERT-based passage embeddings [46, 45].

3.1.1. Averaging over Top-Ranked Document Embeddings
In order to retrieve all green documents in Figure 3.2a, the query vector ζ(q) would be estimated some-
where between all green documents. Initially during re-ranking, the encoder is only provided with a
lexical ranking. Therefore, research question 1 excludes any semantics and focuses solely on the
lexically most relevant documents. We propose a novel initial model named the Average Embedding
(AvgEmbn-docs) query estimator, which assigns a weight to the vectors of the n lexical top-ranked doc-
uments according to their rank, and then predicts the query vector ζ(q) as the weighted average repre-
sentation of these vectors:

ζAvgEmbdocs(q) =
∑

di∈R(q)

ωi · edi
, (3.1)

where R(q) denotes the lexical ranking for query q; di represents the document at rank i; edi
is the

embedding of di as retrieved from the index; and wi denotes the weight assigned to the i-th embedding,
normalized such that

∑
di∈R(q) wi = 1.

In this specific re-ranking setting with dual-encoders and pre-computed in-memory document embed-
dings, both the lexical ranking and all document vectors are available without additional computational
costs. The proposed estimation method only involves embedding look-ups and weighted averaging. It
does not require any complex self-attention encoder layers or expensive calculations. In theory, this
leads to an extremely fast query encoding during inference.

This model definition raises 2 important sub-questions to optimize model efficiency and performance:

• ”How should the embedding weights be distributed?”
This will mostly be answered in our continuous example. Alternative weighting methods such as
probability distributions are explored in subsection 5.2.2.

• ”What is the optimal amount of documents to average over?”
This is most effectively answered by experiments, explored in subsection 5.2.1.

3.1. Model 18

(a) No estimation

(b) Uniform weights (c) Optimal weights for specific query

(d) Learned weights (e) Learned weights with lightweight query-encoding

Figure 3.2: Simplified 2D vector dual-encoder index, introducing the AvgEmb estimator approach. The query q is ”What is the
top speed of Jaguar F-Type”, an instance of the vocabulary mismatch problem [21]. Relevant documents are green,

non-relevant documents are red. The green cloud contains relevant documents (about Jaguar cars). The orange cloud
contains documents (about Jaguar animals) that have high lexical scores ϕS(q, d) but low semantic scores ϕD(q, d). The

numbered documents represent the lexical ranking for q, with numbers i representing the ranking of document di. Figures b-e
include a weight table denoting weight wi for the listed embeddings.

3.1. Model 19

Uniform Averaging
A simple and intuitive method for distributing weights across documents involves assigning uniform
weights and computing the average vector representation ζ(q), equivalent to Equation 2.10:

ζuniform(q) =
1

|q|
∑
t∈q

et, (3.2)

where et denotes the embedding of token t in q.

Consequently, the query vector is approximated as the exact centroid of its n lexically most relevant
documents, as depicted in Figure 3.2b. The corresponding weights for each vector are illustrated in
the table on the left. The magnifying glass icon indicates the query vector estimation.

A quick assessment of the example already reveals that this method is overly simplistic and does not
yield an accurate query estimation, as the non-relevant documents from the lexical ranking impact the
outcome prediction too heavily.

Weighted Averaging
In reality, the query exhibits greater resemblance to semantically relevant documents than others. For
instance, the example query only concerns cars, and documents on the Jaguar animal are irrelevant.
To address this, we propose employing weighted averages rather than uniform weights:

ζweighted(q) =
∑
t∈q

ωt · et, (3.3)

where et again represents the embedding of token t; and ωt denotes the weight assigned to query
token t, normalized such that

∑
t∈q ωt = 1.

As demonstrated in Figure 3.2c, weights can be distributed optimally for the query by assigning weights
of 0 to semantically non-relevant documents d3 and d5. The remaining weights are allocated to gen-
uinely relevant documents.

Learned Weights
The primary limitation of the preceding example is that such exact optimization is only possible for a
specific query alone. It does not generalize well to a search engine designed to handle arbitrary search
queries.

This necessitates a model capable of learning a weight distribution that performs consistently well
across diverse inputs. These learned weights are expected to diminish as the query-document rele-
vancy decreases. Therefore, we hypothesize that the learned weights naturally decrease along the
document ranks, given that the first document is generally more relevant than the second, and so on.
A detailed training description for the embedding weights is provided in section 3.2.

Figure 3.2d illustrates that such learned weights on the lexical ranking alone do not produce an ideal
estimation. However, the approach only leverages lexical information so far, leaving it vulnerable to
the vocabulary mismatch problem [21]. We therefore speculate that incorporating semantical informa-
tion about the query is essential for accurate predictions. subsection 3.1.2 explores our approach for
integrating semantics into the model.

3.1. Model 20

Insufficient Embeddings Problem
Although more importantly, this framework raises an issue that should be addressed: The provided
BM25 ranking does not consistently retrieve at least n_docs documents for each query. This issue
arises due to BM25’s exact-term matching nature and is further accelerated by stopword removal prior
to this matching. For instance, the query ”what is theraderm used for” is reduced to just ”theraderm”,
which is an uncommon term and only occurs in five documents, causing problems for an AvgEmb10-docs
model. Our initial model addresses this problem by only considering the retrieved documents and
normalizing their accompanied weights.

However, a more severe issue arises when certain queries retrieve no documents at all. This would
result in division by zero, which is mathematically impossible [61]. Luckily, this issue is indirectly ad-
dressed by the addition in the next subsection, which guarantees that at least 1 embedding exists.

3.1.2. Adding Query Semantics
The previous subsection introduced the importance of query semantics for accurate query represen-
tations. The query vector simply correlates more to semantically relevant documents, though lexical
retrieval falls short in providing such information.

We propose a final estimator model, termed AvgEmbq,n-docs, or simply AvgEmb. This model concate-
nates the document embeddings with a lightweight query vector qlight, which is assigned its own weight.
Given that the lightweight query encoding integrates semantic information, we hypothesize that the
training process will inherently assign it a large, significant weight. This new prediction is highlighted
in Figure 3.2e, and demonstrates promising accuracy.

Achieving accurate encoding involves a balance between enhanced accuracy at the cost of increased
latency. Integrating a regular query encoder into our model would substantially increase latency and
render the document embeddings redundant. Consequently, we adopt a lightweight query-encoding
approach instead.

Figure 3.3: Performance-Efficiency comparison of different lightweight encoders on 3 test datasets. The left-most
measurements are from an embedding-based transformer architecture. The others represent transformer-based architectures

with varying amounts of hidden dimensions, encoder layers, and attention heads.
This figure is copied from Leonhardt [44], corresponding to the Fast-Forward indexes paper [45].

Prior research [45] has already explored some lightweight query-encoding options. The key findings are
summarized in Figure 3.3. We are particularly interested in the left-most measurements in this graph,
as they indicate the most significant efficiency gains with minimal performance loss. This model reflects
the AvgTokEmb encoder outlined in subsection 2.4.2. The AvgTokEmb query-encoding framework is
depicted in Figure 2.7.

Each query in the encoding batch is first transformed into query tokens. Shorter queries are padded
with [PAD] tokens to match the lengthmax_len of the longest query in the batch. The embedding layer
is a quick embedding lookup in a matrix ∈ Rvocab_size×emb_dim, yielding one embedding of emb_dim
elements for each individual token in the vocabulary. The padding token embeddings are masked, and
the remaining token embeddings are uniformly averaged over. This model is fast due to its absence of

3.1. Model 21

transformer encoder layers (and hence self-attention). It only consists of embedding look-ups and an
averaging operation, similar to our AvgEmb model. Thus, our model maintains its high efficiency, even
with the inclusion of the AvgTokEmb query-encoding.

Integrating the lightweight encoder into our AvgEmb model results in the query encoding algorithm
depicted in Figure 3.4.

Figure 3.4: AvgEmb query encoding architecture after adding (weighted) lightweight query-encoding from AvgTokEmb.

Our updated estimator thus computes a query representation ζ(q) with this formula:

ζAvgEmb(q) = ωq ·
∑
t∈q

ωt · et +
∑

di∈R(q)

ωi · edi
, (3.4)

where operations related to qlight are highlighted in violet; R(q) denotes the lexical ranking for query
q; di represents the document at rank i; ex is the embedding of x ∈ {document di, query token t};
and wz denotes the embedding weight assigned to z ∈ {query q, document di at rank i, query token t},
normalized such that ωq +

∑
di∈R(q) wi = 1 and

∑
t∈q wt = 1.

Remember that we incorporate this encoder into our dual-encoder with score interpolation. The result-
ing final similarity score ϕ(q, d) is thus computed as:

ϕ(q, d) = α · ϕS(q, d) + (1− α) · ϕD(q, d), ← Equation 2.2

ϕBM25
S (q, d) =

∑
t∈q

tft,d · (k1 + 1)

tft,d + k1 ·
(
1− b+ b · |d|

avgdl

) · log(|C| − dft + 0.5

dft + 0.5

)
, ← Equation 2.4

ϕDual−encoder
D (q, d) = ζ(q) · ed, ← Equation 2.8

ζAvgEmb(q) = ωq ·
∑
t∈q

ωt · et +
∑

di∈R(q)

ωi · edi
, ← Equation 3.4

(3.5)
where all notation rules from the original equations still apply.

Note that the (weighted) averaging approaches both require masking and normalization of the weights.
The complete pseudocode for the query encoder is presented in Algorithm 1. In an effort to make the
mathematical concepts more comprehensible, a simplified example iteration of the forward method is
provided in Figure B.1.

3.1. Model 22

Algorithm 1 AvgEmb Estimator class [code]
1: Function compute_query(embs, weights, mask):
2: weights← softmax(weights)

3: weights← weights ∗mask

4: weights← normalize(weights)

5: return weighted_sum(embs ∗ weights)

6: Function forward(queries):
7: q_tokens← tokenize(queries) ▷ Gives input_ids, attention_mask, max_len
8: q_tok_embs← get_tok_embs(input_ids) ▷ Shape (batch, max_len, dim)
9: q_tok_weights← tok_embs_weights[input_ids] ▷ Shape (batch, max_len)
10: qlight ← compute_query(q_tok_embs, q_tok_weights, attention_mask)

11: top_docs_ids← sparse_index.transform(queries)

12: top_docs_embs← index.get_vectors(top_docs_ids) ▷ Shape (batch, n_docs, dim)

13: embs← qlight :: top_docs_embs

14: embs_weights← embs_weights ∀queries ▷ Shape (batch, n_embs)
15: embs_mask ← mask_top_docs() ▷ Shape (batch, n_embs)
16: q_estimation← compute_query(embs, embs_weights, embs_mask)
17: return q_estimation

3.1.3. Refining the Architecture
An initial architecture combining the AvgEmb and AvgTokEmb encoders is illustrated in Figure 3.5. The
key limitation of this design is that the AvgTokEmb encoder is fine-tuned separately from the AvgEmb
estimator, in an independent dual-encoder training setup. This necessitates its own document encoder
and index combination. This results in double the index storage space, index operations, re-indexing,
and score interpolation.

Figure 3.5: Initial architecture after combining AvgTokEmb and AvgEmb encoders.

https://github.com/BovdBerg/fast-forward-indexes/blob/main/fast_forward/encoder/avg.py

3.2. Training 23

In an improved architecture, the AvgEmb estimator integrates the AvgTokEmb encoder, and the com-
bination is trained to predict the same document vectors. This reduces the architecture complexity
significantly to the design illustrated in Figure 3.6.

Figure 3.6: Refined architecture after combining AvgTokEmb and AvgEmb encoders.

3.2. Training
The previous section described the necessity of learning optimized model weights through rigorous AI
model training. The fundamental principles of AI model training are detailed in section 2.5.

The model architecture incorporates three variables that require training or fine-tuning:

• ET ∈ Rvocab_size×emb_dim:
A matrix that provides embeddings for each query token, indexed by the token ID. vocab_size
denotes the tokenizer vocabulary size, e.g. 30522 for BERT’s WordPiece [87, 15]; and emb_dim
represent the document encoder’s embedding dimension, e.g. 768 for BERT [15]. For instance,
e101 ∈ ET yields an embedding for the [CLS] token with ID 101.

• Wtok_embs = {ωt | t ∈ vocabulary}:
A 1-dimensional vector of uniformly initialized weights, to assign weights ωt to each token embed-
ding in the qlight computation, intended to distinguish reward context-defining tokens (e.g. ”why”,
”capital”) and reduce the impact of less important tokens (e.g. stopwords such as ”the”).

• Wembs = {ωi | i ∈ {0 (query), lexical rank i}}:
Another 1-dimensional vector of uniformly initialized weights, to assign weights (ωq, ωdi

to each
embedding during the final weighted averaging computation.

The forward method of any (BERT-based) query encoder model processes batches of queries and
returns a batch of query encodings. The employed loss function is mean squared error (MSE) loss
[79]:

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2, (3.6)

where yi represents the teacher encoding; ŷi is the teacher encoding; and n is the number of (yi, ŷi)
pairs over which the summation is computed.

This training regime aims to accurately predict similar representations as the teacher encodings, effec-
tively establishing a knowledge distillation framework where the AvgEmb estimator acts as the student
model, and TCT-ColBERT serves as the teacher model.

The training architecture is depicted in Figure 3.7. The student model is essentially guided to create
query representations that resemble the teacher’s encodings. Since each training iteration requires the

3.3. Alternative Choices 24

same data, it is beneficial to pre-compute the teacher encodings and store them in a reusable Query
Embedding Index. Additionally, the lexical ranking over all training and validation data can also be
pre-computed and stored.

Figure 3.7: AvgEmb estimator training architecture (MSE loss)

Unfortunately, further refinements were not possible due to time constraints. Therefore subsection 3.3.1
outlines the existing limitations and proposes more complex improvements for future work.

3.3. Alternative Choices
The third research question delves into the limitations of this research and explores alternative methods
and settings that could potentially boost the model performance and efficiency. Specifically, it aims to
identify approaches that address shortcomings in the current methodology and provide a comprehen-
sive analysis of said potential improvements. By examining these alternatives, the research endeavors
to contribute valuable insights that could pave the way for more robust and efficient information retrieval
systems.

subsection 3.3.1 discusses the most noteworthy shortcoming, namely the trivial and restrictive model
training. subsection 3.3.2 examines the AvgTokEmb lightweight query encoder in more detail.

3.3.1. Training Alternatives
Different training approaches may yield better results. This subsection describes some downsides to
the current training setup and suggests some alternatives to reach the full potential of the model. Unfor-
tunately, these proposed improvements for training could not be carried out within the thesis timeframe,
partly due to my novelty with these subjects. Consequently, I outline the theoretical framework for future
research endeavors to address these limitations.

One minor downside to our model design is that our approach only assigns weights to document ranks
di for the final weighted averaging, and does not directly exploit differences in lexical scores between
documents di and di+1 for a specific query. This is only relevant when the lexical ranking exhibits an
unusually large relevancy gap between scores in subsequent documents. For instance, the relevancy
scores 30, 29, 15, 14, 13 contain a relatively big gap between d2 and d3 which would be ignored in the
current approach. Though we are unsure how often such inconsistencies appear in practice.

However, the primary issue is that the existing training configuration (described in Figure 3.7) essentially
teaches the AvgTok estimator to predict a vector that resembles the teacher encoding. The model
is trained using Mean Squared Error (MSE) loss between the student and teacher query encodings.
Consequently, the teachermodel’s performance sets a ceiling on the optimal performance of the student
model. The following subsections detail iterative improvements to the training setup.

3.3. Alternative Choices 25

Dual-encoder training
The first suggestion is to train a query encoder in parallel with a corresponding document encoding, alas
a dual-encoder training approach. This configuration allows validation on (re-)ranking loss or other re-
trieval metrics. Themodel weights can be initialized from pretrainedmodels such as bert_base_uncased
[15], and both encoders can be fine-tuned in tandem. Because the document encoder now also un-
dergoes fine-tuning, it is no longer feasible to index the document encodings. Instead, the top-ranked
document texts must be encoded on the fly.

This training architecture is similar to Figure 3.1. The model is fine-tuned on the RetrievalMAP metric
during validation, with a maximum of 50 epochs and early stopping after 5 validations without any
improvement in this metric.

This more sophisticated setup allows more advanced negative sampling and loss functions, resulting
in more computationally efficient training. Dual-encoders for information retrieval typically leverage a
contrastive loss function [36]:

L(q, d+, D−) = −log

(
exp(ϕ(q, d+; θ)/τ)∑

d∈D−∪{d+} exp(ϕ(q, d; θ)/τ

)
, (3.7)

where a training instance consists of a query q, a relevant document d+, and a set of irrelevant docu-
ments D−; and τ is a hyperparameter controlling temperature.

The MSMARCO training set [62] contains only one document labeled as relevant per query. Therefore,
negative samples can be created using in-batch negatives, which form D− by incorporating all docu-
ments from other queries in the sampled set. The downside of this approach is that MSMARCO might
have many false negatives that are relevant but labeled as such [69]. In-batch negative training with a
false negative fn ∈ D− could adversely affect model performance.

Balanced Topic Aware Sampling (TAS-B)
Sampling hard negatives is important to enhance training efficiency for neural models. Hard negatives
are non-relevant documents that share similar traits with relevant ones. By learning from hard negatives
instead of randomly sampled negatives, the model is encouraged to identify more complex distinguish-
ing features, thereby improving its general knowledge and performance. This method is particularly
beneficial for effective training resource utilization, as it ensures consistent exposure to challenging
scenarios, refining the model to make accurate predictions and reducing the need for large training
batches.

Topic aware sampling (TAS) [30] generates hard negatives by clustering semantically similar queries
together and sampling a batch from within one cluster. These query clusters are created once before
training. The same paper introduces TAS-Balanced (TAS-B), which extends this idea with balanced
margin sampling. In this approach, pairs of relevant/non-relevant passages are balanced by binned
margins per query, mainly to down-sample large margin pairs without discarding any training data.

Teacher Ensemble
The third training suggestion is to optimize the margin between relevant and non-relevant sampled
passages [31]. This alternative does not require the dual-encoder training setup and could be applied
directly to the current training. For this to become feasible, a set of (preferably hard) negative docu-
ments should be created for each query in a batch. Scoring ranges do not matter when optimizing on
MSE loss between encodings, only the relative differences. The loss function would be Margin-MSE
loss [31]:

L(Q,P+, P−) = MSE(Ms(Q,P+)−Ms(Q,P−), Mt(Q,P+)−Mt(Q,P−)), (3.8)

where batches contain triples of (queries Q, relevant passage P+, and non-relevant passages P−);
Ms represents the student model and Mt the teacher model.

3.3. Alternative Choices 26

This loss function does not impose any assumptions on the model architectures, enabling the swapping
in of various neural ranking models as teachers. These teacher scores can be pre-computed once and
reused throughout training runs.

This framework enables training the student models on multiple teacher signals. The paper demon-
strates that this further boosts model performance, without compromising efficiency since the underly-
ing model architectures are not altered.

3.3.2. AvgTokEmb Exploration
Focusing on the model architecture again, the following improvements are proposed specifically for the
AvgTokEmb encoder.

Stop Word Removal
Excluding semantically less significant query tokens before averaging these embeddings might be ben-
eficial. Due to the arbitrary nature of queries, it is challenging to identify irrelevant tokens on a per-query
basis. However, we can infer that common stop words like ”the” frequently occur in queries and should
likely not have a significant influence on the retrieved documents.

Because these words are prevalent, they are likely trained as a general average embedding of all
contexts they appear in. Stop word removal can be implemented by replacing stop words with padding
tokens [PAD] and adjusting the corresponding entries in the attention mask to zeros, excluding them
from weighted averaging over the token embeddings. The PyTerrier Stopwords class1 can serve as an
example for such an implementation.

Additionally, it can be argued that stop word removal is partially achieved by learning distinct weights
for each token embedding, as those tokens should ideally receive a low weight during fine-tuning.

Non-Fine-Tuned Token Embeddings
Understanding the concept of back-propagation in machine learning is essential for this alternative
approach. Each training instance exclusively activates the tokens from queries within the batch and
padding tokens. Consequently, tokens not present in the training data will not be fine-tuned, retraining
their pre-trained model embeddings. Comparing a fine-tuned AvgTokEmb encoder with its pre-trained
model initialization shows significant performance differences. This implies that non-fine-tuned token
embeddings might negatively impact vector representations.

Our proposal was to track which tokens exist in the MSMARCO training data, and assign a lower weight
to untrained tokens before weighted averaging. A preliminary experiment revealed that 26.249 tokens
were encountered in the training data out of 30522 tokens in the BERT vocabulary size, amounting to
a total of 86%. However, only the TREC DL 2020 [11] contained a single untrained token. Therefore,
this experiment was discontinued as its impact on the test sets would not justify further pursuit.

Equivalent task as AvgEmb
An interesting observation is that the AvgTokEmb part of the model alone tries to predict the teacher
representations as well. Therefore, when training AvgEmb, the weights Wtok_embs could be trained
independently by returning qlight directly after computing it.

1PyTerrier Stopwords Class: http://terrier.org/docs/current/javadoc/org/terrier/terms/Stopwords.html

http://terrier.org/docs/current/javadoc/org/terrier/terms/Stopwords.html

4
Experimental Setup

This chapter provides an overview of all details, requirements, and choices for the experiments in this
thesis, which are presented in chapter 5. The first three sections introduce the datasets, evaluation
metrics, and baselines that the models will be evaluated on. The fourth and fifth sections provide de-
tailed information on how to reproduce the results and training, respectively. The last section describes
the most important implementation details and dependencies.

4.1. Datasets and Benchmarks
MS MARCO Passage Ranking [62]. The Microsoft MAchine Reading COmprehension (MS MARCO)
corpora are very popular benchmarks for information retrieval (IR) and web information systems (WIS)
tasks. It is among the largest relevance datasets ever, with enough data to sufficiently train a ranking
model for web search. This dataset contains 8.8 million passages extracted from web documents and
is designed specifically to rank passages on relevance to queries. It has one passage human-labeled
as relevant on average for over one million queries. These labels are binary, and the data contains
many false negatives where a relevant passage is not labeled as such. The MS MARCO dataset is
used for everything in this research, including training, validation, indexing, and evaluation.

TREC DL Track [12]. The MS MARCO dataset is complemented by the text retrieval conference
(TREC) deep learning (DL) track, organized by the U.S. National Institute for Standards and Technology
(NIST) [14]. Following similar IR research and community guidelines [46], we focus on the TREC DL
2019 [10] and TREC DL 2020 [11] benchmarks for our evaluation. These contain sets of 43 and 54
queries respectively accompanied by 9k (query, passage) pairs which are graded on a 0-3 relevancy
scale provided by NIST. These labels are richer in information than the binary labels in the general
dataset, enabling evaluation for deep learning models. Additionally, we evaluate our results on the
DL-hard benchmark [56] which is constructed from the 25 most challenging topics from the DL ’19 and
’20 and 27 additional queries with new sparse judgments.

4.2. Evaluation Metrics
Passage ranking is a thoroughly researched field with a large community and well-established stan-
dards for evaluation metrics [46, 62]. To ensure comparability of our results with existing studies, we
adapt these standard metrics where applicable. This section outlines these metrics along with their
mathematical details.

As introduced in chapter 2, the passage ranking task is to sort passages in a corpus according to their
relevance to a query. The terms document and passage are used interchangeably. This relevancy

27

4.2. Evaluation Metrics 28

rel(q, d) between a query-document pair is made quantifiable with the binary labels in Equation 4.1,
commonly referred to as qrels. However, the TREC DL tracks [10, 11] apply more sophisticated labels
on a four-point scale: perfectly relevant (3), highly relevant (2), related (1), and irrelevant (0). Related
passages are on the same topic, but do not answer the question. To compute the binary judgments
required for some measures, only labels 2 and 3 should be considered relevant. These minimum
relevancy scores are adhered to throughout my experiments.

rel(q, d) =

{
1 document d is above the minimum relevancy threshold for query q

0 otherwise
(4.1)

Two foundational performance metrics for information retrieval from a corpus are Precision P (Equa-
tion 4.2) and Recall R. Where R is a ranked list of passages, with (i, d) denoting that document d is
ranked at position i. Both of these metrics assume binary qrels and are often evaluated at a cutoff
k, denoted as P@k, meaning that only passages up until k are considered. k = 1000 for first-stage
retrieval in the MS MARCO passage re-ranking task. Precision increases as false positives decrease,
while recall improves as false negatives decrease.

P@k(R, q) =

∑
(i,d)∈R rel(q, d)

k
(4.2)

Precision and recall are mostly important for first-stage retrieval, which we assume to be provided.
Re-ranking is primarily concerned with ranking the most relevant passages before non-relevant ones.
Therefore, we need metrics that highlight the order of the top-ranked passages more.

The primary evaluation metric adopted in our research is normalized Discounted Cumulative Gain
(nDCG), described in Equation 4.3. This metric stems from Discounted Cumulative Gain (DCG), which
is is specifically intended to capture gradient relevancy labels. It measures user satisfaction by re-
warding the most-relevant (gradient) results to appear first. nDCG compares the DCG from the actual
ranking against an ”ideal” ranking, in which the passages are perfectly sorted by decreasing relevance.
More specifically, nDCG@10 is reported in the TREC DL ’19 [10] and TREC DL ’20 [11] guidelines,
and also in our research.

nDCG@k(R, q) = DCG@k(R,q)
IDCG@k(R,q)

DCG@k(R, q) =
∑

(i,d)∈R,i≤k
2rel(q,d)−1
log2(i+1)

(4.3)

Our secondary metric is the simple and common (Mean) Reciprocal Rank RR, Equation 4.4. RR is
computed as the inverse rank of the first binary relevant document. This metric enforces a relevant
result to appear near the ranking top, which is crucial for user satisfaction in web search.

RR(R, q) = 1
rank(R,q)

rank(R, q) = min(i | (i, d) ∈ R ∧ rel(q, d))

(4.4)

Our third measurement is (Mean) Average Precision AP, Equation 4.5. Precision is only calculated
on one binary relevant (query, passage) pair. AP computes the average precision across each qrel and
more accurately measures that relevant passages are ranked before non-relevant ones. The official
evaluation measures for DL-HARD dataset [56] exclude AP, and we follow this convention.

AP (R, q) =

∑
(i,d)∈R P@i(R, q) · rel(q, d)∑

d∈C rel(q, d)
(4.5)

Finally, the re-ranking latency is reported in milliseconds on CPU.

4.3. Baselines 29

4.3. Baselines
Our models are compared against the following baselines:

• Sparse retrievers rely on exact term matching between queries and documents. The first base-
line is BM25 [71], which applies term frequency and inverse document frequency directly to the
queries and documents. The second baseline is SPLADE++ SelfDistil [19], which is a more
efficient version of the sparse neural retriever SPLADE [18]. This model contextualizes the terms
before retrieval.

• All re-ranking pipelines adopt BM25 with cutoff 1000 as first-stage retrieval, as described in
the MS MARCO passage re-ranking task [62]. We consider TCT-ColBERT [48] as an efficient
dual-encoder baseline in three settings: dense retrieval, re-ranking, and interpolated re-ranking.
Our models were trained as distilled TCT-ColBERT models, making it an upper bound for the
efficiency-performance trade-off of our results.

• The final baseline is a fine-tuned heterogeneous dual-encoder consisting of a BERT-based docu-
ment encoder and the AvgTokEmb query-encoder [45], which is proposed as embedding-based
transformer in the cited paper. This query encoder is very efficient, leaving out self-attention com-
pletely. It mainly provides interesting insights on achievable efficiency and is partly integrated in
our model designs.

4.4. Evaluation Details
Evaluation will be performed on the DelftBlue supercomputer from TU Delft [1], using 10 cores of the In-
tel XEON E5-6248R 24C 3.0GHz CPU. Enough RAM is required to store the indexes. The experiments
are performed on TREC DL ’19 (judged), TREC DL ’20 (judged), and TREC DL-hard test datasets intro-
duced in section 4.1. The query-encoders use batch sizes of 32. In the default passage re-ranking task
[62, 46], a candidate top 1000 passages as first retrieved by BM25, and then re-ranked by relevance.

The latency results are averaged over multiple iterations, ignoring the first run because caches may
not have been properly warmed up yet. Any pre-processing is ignored. This includes creating the
document embedding indexes, loading it into memory, and creating the lexical ranking from first-stage
retrieval. Experiments on query-encoding latency report the entire process from a batch of text queries
to their query-encodings. This includes tokenization and query-encoding. It also includes document
retrieval for AvgEmb models. Experiments on full end-to-end re-ranking latency include: tokenization,
query-encoding, in-memory retrieval of document vectors, computing their relevancy scores as dot-
products (Equation 2.8), score interpolation (Equation 2.2), and sorting.

All pre-trained encoders originate from the HuggingFace Hub [86]. The Pyserini toolkit [47] provides
most of the corresponding indexes for the sparse and dense retrieval experiments in Table 5.1 and
Table 5.2. The BM25 index is provided by PyTerrier [55]. PyTerrier also provides the framework for
our hyperparameter tuning and re-ranking experiments. These tools are described in more detail in
section 4.6.

The interpolation hyperparameter α is fine-tuned on MAP using the same 512 samples of the MS-
MARCO development set. For the baselines, we set α = 0.03 for TCT-ColBERT, α = 0.11 for Avg-
TokEmb. Our models use α = 0.09 for AvgEmb10-docs, α = 0.39 for AvgEmb10-docs + AvgTokEmb, and
α = 0.02 for AvgEmbq,10-docs.

4.5. Training details
The various AvgEmb models are trained using knowledge distillation with TCT-ColBERT as its teacher
model. Training is performed on all training queries from the MSMARCO passage corpus [62], accesed
via ir_datasets [54]. Each training instance consists of a single query and its teacher’s encoding. These
(query, encoding) input pairs are precomputed and stored. The training data is split to adhere to stan-

4.6. Implementation Details 30

dard training etiquette [26], ensuring no overlap between training and validation data, thus preventing
the model from memorizing the ”test answers”.

The loss function is the MSE loss (Equation 3.6) between the student and teacher embeddings. We use
an Adam optimizer [39] with a learning rate of 0.001. Each validation is performed on the same 1000
sampled queries from the MSMARCO development set. The model is trained on a maximum of 50
epochs over the entire training dataset. Early stopping is implemented after 3 consecutive validation
rounds without any improvement, which typically occurs within 2 epochs. The resulting models are
evaluated on the datasets from section 4.1.

Our models are trained on the DelftBlue supercomputer from TU Delft [1], using two NVIDIA A100
Tensor Core GPUs. The smaller models with less than 10 documents were trained on 10 cores of the
Intel XEON E5-6248R 24C 3.0GHz CPU. The training duration currently scales linearly with the amount
of documents and becomes infeasible on a CPU for models with more documents.

Our models and training pipeline were implemented using PyTorch [66], PyTorch-Lightning [17], and
Huggingface’s Transformers [86]. These are described in more detail in section 4.6.

4.6. Implementation Details
First-stage lexical retrieval involves transforming the queries using the BM25 ”terrier_stemmed” index,
hosted by PyTerrier [55]). This index uses Terrier’s default Porter stemming [68] and removes stop-
words from the query. This model provides the lexical rankings at cutoff 1000 for our re-ranking stage.
The MS MARCO development set is used to determine the optimal values for the α hyperparameter
for score interpolation.

Our model applies a dual-encoder architecture, with BERT-based document encoder and AvgEmb es-
timator as query encoder. This query-estimator maps queries to arbitrary 768-dimensional vector rep-
resentations, similar to a regular query-encoder. TCT-ColBERT also serves as our teacher model for
distillation training, providing the target query embeddings. The code for training and inference is made
available [6]. Additionally, an initial setup for the dual-encoder training described in subsection 3.3.1 is
made available as well.1

Many useful tools and libraries have been published by related research before. The main dependen-
cies of this thesis are listed below.

• Fast-Forward Indexes [45]: an implementation of interpolated dual-encoder re-ranking. Our
code relied heavily on this library, and extended it to include our estimator and various scripts for
training, re-ranking inference, pre-computation, and data plotting.

• PyTerrier [55]: Python package for retrieval, hyperparameter tuning, and evaluation experiments.
PyTerrier also hosts some indexes, such as BM25 variants for MS MARCO passage.

• HuggingFace Transformers [86]: Popular and widely adopted hub for pretrained neural models.
This library provided us with any pretrained models, including BERT [15], TCT-ColBERT [48], and
SPLADE++ SelfDistil [19].

• PyTorch Lightning [17]: PyTorch [66] is a popular framework for AI model creation and training.
PyTorch Lightning makes PyTorch code more readable, scalable, reproducible, and easier to
apply. We use these libraries to create and train our models.

• ir_datasets [54]: Provides a common interface to many IR ranking datasets. Used to easily
access the MS MARCO and related TREC DL datasets.

• Pyserini [47]: toolkit for reproducible information retrieval research, used for our sparse retrieval
and dense retrieval baselines.

1Training AvgEmb as dual-encoder, forked from J. Leonhardt, et al. [45]: https://github.com/bovdberg/dual-encoders

https://github.com/bovdberg/dual-encoders

5
Results

This chapter presents the findings of this study, and is structured to address the research questions
outlined in chapter 1. Each section corresponds to one or more research questions, presenting exper-
iments in a visually appealing manner, followed by a detailed analysis of those results. The evaluation
setup for these experiments is detailed in chapter 4.

This chapter commences with section 5.1, which presents the primary experiments related to the
AvgEmb model architecture. section 5.2 then explores various model settings and alternative meth-
ods, including the number of documents and the distribution of document weights.

5.1. General Architecture
RQ1. Is it possible to achieve an efficient and accurate estimation of a query embedding in neural
re-ranking by leveraging the lexically most relevant document embeddings?

RQ2. How can this approach be extended with semantic query information to improve performance
without significantly compromising efficiency?

As outlined in chapter 3, our final model architecture addresses both initial research questions simul-
taneously. The main (initial) results present both approaches independently, though the latter results
focus solely on the final model design to avoid redundant information and experiments.

5.1.1. Overall Performance and Efficiency
This subsection examines the two primary interesting aspects: the re-ranking latency (efficiency) and
accuracy (model performance). These two metrics often negatively correlate and present a trade-off;
hence why they are discussed together. The re-ranking efficiency and performance of the baseline
models and our models are detailed in Table 5.1 and Table 5.2, respectively.

The AvgEmb estimator models are trained as distilled versions of TCT-ColBERT, as described in sec-
tion 3.2. Therefore, the performance of this teacher model represents the upper limit (ceiling) for
the AvgEmb performance. The results demonstrate that the AvgEmbq,10-docs estimator, referred to
as AvgEmb, indeed achieves performance comparable (99.4%, 97.6% nDCG10) to its teacher model
on the first two datasets while reaching a speed-up of 13.4X. However, there are slightly bigger dif-
ferences (93.0%) on the other datasets. Similar differences also exist in the comparison between the
TCT-ColBERT and AvgTokEmb baselines on which the model is based. Our model outperforms the
AvgTokEmb on all metrics and datasets except RR on TREC ’19, indicating that it is more powerful in
capturing the semantics than averaging over tokens alone.

31

5.1. General Architecture 32

TREC-DL-Psg ’19 TREC-DL-Psg ’20 TREC-DL-Hard
nDCG10 RR AP nDCG10 RR AP nDCG10 RR

Sparse Retrieval:
BM25 0.480 0.642 0.286 0.494 0.619 0.293 0.274 0.422
SPLADE++ CC-SD 0.736 0.901 0.5 0.728 0.836 0.514 - -
Dense Retrieval:
TCT-ColBERT 0.670 0.823 0.391 0.668 0.815 0.284 - -
Re-Ranking (no int.):
BM25 0.480 0.642 0.286 0.494 0.619 0.293 0.274 0.422↰

TCT-ColBERT 0.679 0.828 0.430 0.676 0.822 0.452 0.369 0.534
Interpolated Re-Ranking:
BM25 0.480 0.642 0.286 0.494 0.619 0.293 0.274 0.422↰

TCT-ColBERT 0.694 0.822 0.438 0.695 0.832 0.465 0.385 0.537↰

AvgTokEmb 0.677 0.884 0.404 0.610 0.752 0.394 0.337 0.492↰

AvgEmb10-docs 0.571† 0.716 0.382† 0.581† 0.677† 0.388† 0.319 0.483↰

AvgTokEmb 0.694 0.852 0.428 0.641† 0.806 0.421† 0.346 0.484↰

AvgEmbq,10-docs 0.690 0.832 0.439 0.679 0.815 0.449 0.356 0.522

Table 5.1: Re-ranking performance measured on different MSM-psg testsets at retrieval depth ks = 1000. AP and RR use a
minimum relevance of 2. † indicates that the model performs significantly worse on the metric than the interpolated re-ranking

TCT-ColBERT baseline, as determined by a paired t-test (p ≤ 0.05) [16].

Query-Encoding Full Re-ranking
Total Query Batch Speedup Q-Encoding Total Speedup
128q 1q 32q X % 128q X

Interpolated Re-Ranking:
BM25↰
TCT-ColBERT 1021 7.97 31.89 1 39.12 2609 1↰

AvgTokEmb 7.09 0.06 0.22 143.9 0.43 1634 1.6↰

AvgEmb10-docs 64.8 0.51 2.03 15.8 3.96 1636 1.6↰

AvgTokEmb 68.59 0.54 2.14 14.9 2.05 3350 0.8↰

AvgEmbq,10-docs 75.98 0.59 2.37 13.4 4.55 1671 1.6

Table 5.2: Latency measured in milliseconds on 128 sampled queries of MSM-Psg dev set [62], using batch size 32. Speedup
is compared against TCT-ColBERT re-ranking.

We first evaluate the performance table Table 5.1. The SPLADE++CoCondenser-SelfDistil [19] learned
sparse model baseline reaches the highest performance on all measurements. However, this model
was not created for efficiency. Although research on the SPLADE model variants has since been
extended by an efficiency study [41].

Moving on, the interpolated re-ranking TCT-ColBERT baseline takes second place on almost all mea-
surements. This was expected to outperform our models, as this is their teacher.

Continuing on to our models, the AvgEmb10-docs model alone lacks semantical insight and does not
achieve competitive performance with only 0.571 nDCG10. The highest performance on the first dataset
is instead reached by the combinatorial pipeline of ”BM25 + AvgEmbdocs + AvgTokEmb”, essentially
computing the similarity score ϕ as:

ϕCombo(q, d) = α1 · ϕS(q, d) + α2 · ϕAvgEmbdocs
D (q, d) + (1− α1 − α2) · ϕAvgTokEmb

D (q, d), (5.1)

where score interpolation hyperparameter α is split into three parts, such that 0 ≤ α1 + α2 ≤ 1.

5.1. General Architecture 33

This pipeline outperforms both of its individual components AvgEmb10-docs and AvgTokEmb on almost
all metrics. It even exceeds the interpolated TCT-ColBERT baseline on TREC ’19 reciprocal rank (RR),
possibly because the AvgTokEmb is trained and applied independently. It does not learn to simulate
TCT-ColBERT encodings, but it is trained on re-ranking loss independently. Its performance across
the different metrics relies partly on TCT-ColBERT and partly on AvgTokEmb. Though this pipeline still
performs significantly worse on nDCG10 and AP on TREC DL ’20. Although seemingly promising, it
must be stressed that this approach requires two indexes, doubling the re-ranking time as dense scores
must be calculated independently on either index and combined. This shortcoming was also addressed
in chapter 3. However, the performance of this setup partly served as an intermediate motivation to
integrate AvgTokEmb in our AvgEmb model design.

Most importantly, these results show that our final AvgEmbq,10-docs model does not perform significantly
worse (†) [16] than its teacher model on any measurement. It also outperforms the combinatorial
pipeline described above on all metrics across the TREC DL ’20 and DL-Hard datasets.

We continue by analyzing the efficiency in Table 5.2. It becomes immediately clear that the baseline
AvgTokEmb encoder remains the fastest solution, which is expected as it is completely integrated in
the AvgEmb estimator.

It may seem odd that there exists a relatively big difference between the query encoding latency be-
tween these models. This difference is further analyzed and explained in subsection 5.1.2. The full
re-ranking pipeline shows that query encoding is reduced from 39.12% of the total runtime to less than
4.55% in all proposed models. This results in a 1.6X speed-up compared to TCT-ColBERT in all cases
with one index.

Figure 5.1: Re-ranking latency distribution measured in milliseconds per query on 128 sampled queries of MSM-Psg dev set
[62], using batch size 32. First graph shows full re-ranking runtime, second focuses on the query encoding latency per query.

Performance is measured on TREC-DL-Psg ’19.

The trade-off space between latency and performance is illustrated more clearly in Figure 5.1. The left
graph relates to the full re-ranking latency, while the right graph focuses on query encoding latency. The
query encoding latency is addressed independently because this research leaves all variables except
the query encoding unchanged and constant.

The key insights from these graphs are: 1) The differences between AvgEmb and TCT-ColBERT sug-
gest that mayor efficiency improvements are made with only marginal sacrificed performance. 2) The

5.1. General Architecture 34

vertical difference between AvgEmb and AvgTokEmb indicates that while our query-encoding is not
as efficient as this extremely lightweight approach, the latency differences when comparing the full
re-ranking runtime are negligible.

Re-ranking Latency Distribution
The distribution of the re-ranking latency is depicted in Figure 5.2 in a similar fashion to Figure 1.1, the
latency is segmented vertically into its three primary components: query encoding, retrieval of docu-
ment vectors from the index, and similarity score computation. Any remaining latency is categorized
as other.

Figure 5.2: Re-ranking latency distribution measured in milliseconds per query on 128 sampled queries of
MSMARCO-Passage development set [62], using batch size 32. Speedup against TCT-ColBERT re-ranking is shown above

each bar. Query encoding percentage is shown below.

This plot shows that only the query encoding latency varies between models, while other operations
remain constant in latency. This is expected, as the focus of this research is specifically on reducing re-
ranking latency by improving query encoding latency. The exception to the above is the AvgEmbdocs +

AvgtokEmb pipeline, which consists of two re-ranking pipelines, each with its own index and associated
operations, thereby doubling the latency for index-related operations.

An ambiguity in this graph concerns the retrieval of top-ranked document vectors for AvgEmb pipelines,
which can be included under either ”Retrieve doc vectors” or ”Encode queries”. We chose to include
it in the query encoding latency because these vectors are required for query estimation. This will be
further be discussed in subsection 5.1.2.

5.1.2. Query Encoding Latency
The in-depth query-encoding latency distribution for each part of the new AvgEmb Estimator architec-
ture is visualized in Figure 5.3. The latency is again vertically divided into primary components: 1)
Creating the lightweight semantic AvgTokEmb query-encoding qlight as the weighted average of the
token embeddings. 2) Retrieving the embeddings of the n_docs top-ranked documents from the index.
3) Estimating the query vector q̂ as the weighted average of its embeddings.

In theory, AvgEmb should be able to reach a much higher efficiency. The top-ranked document embed-
dings are a requirement to calculate the dense scores, so they are also already retrieved outside the

5.1. General Architecture 35

Figure 5.3: Query-encoding latency distribution of AvgEmb Estimator, measured in milliseconds per query on 128 sampled
queries of MSM-Psg dev set [62], using batch size 32.

query encoding. If these vectors could be passed directly to the query encoder on initialization, then
this step becomes obsolete, reducing the query encoding latency by a major 40%.

A second observation is that Table 5.2 shows that AvgTokEmb can encode 128 queries in just 7.09
milliseconds. Both query-encoding steps should each be able to reach similar efficiency as this encoder,
since they essentially apply the sameweighted average computation. This could potentially improve the
encoding with another 18.14%, resulting in just 7.09+7.09+0.09 = 14.27milliseconds total. This would
make query estimation merely 0.89% of re-ranking time. This speculative query-encoding reaches a
speed-up of 72.5X over the TCT-ColBERT baseline, remaining at a total of 1.6X re-ranking speed-up.

5.1.3. Correlation to Lexical Performance
We hypothesize that the algorithm’s performance in part relies on BM25 performance, as the top-
ranked documents originate directly from the sparse ranking. This should be especially evident for
our AvgEmbdocs variant which disregards the semantics of the qlight lightweight query encoding and
solely considers the lexical document weights. To this end, Figure 5.4 highlights the correlation between
NDG10 performances of BM25, AvgEmb10-docs, and AvgEmbq,10-docs.

Figure 5.4: nDCG10 performances of the models on queries from the MSM-Psg TREC 2019 dataset, sorted on increasing
BM25 performance.

The data confirms that the model without query encoding indeed depends on the BM25 performance.
This dependence on the BM25 ranking is the clearest in the first three examples, where their perfor-
mance is equivalent. The full model correlates more with the TCT-ColBERT performance than with
BM25. In almost all cases, the performance fluctuates between its lexical and semantical parts, which
aligns with the theoretical given the nature of the model architecture and training.

5.2. Exploration of Alternatives 36

5.2. Exploration of Alternatives
RQ3. What alternative approaches and settings could further boost the model performance or effi-
ciency?

This section provides an ablation study on various model variable settings that have been assumed
as defaults in earlier chapters. These experiments are conducted to investigate some alternatives to
these variables and approaches.

In subsection 3.1.1, the AvgEmb model design raised two topics that set the grounds for further explo-
ration: the optimal number of documents to average over, and how the embedding weights should be
distributed. These topics are analyzed in subsection 5.2.1 and subsection 5.2.2, respectively.

5.2.1. Number of Documents
”What is the optimal amount of documents to average over?”

Impact on Weight Distributions
Figure 5.5 presents the learned document weight distributions across different AvgEmb models with
different n_docs settings. Each mark on the X-axis represents the weight at the corresponding lexical
rank.

Figure 5.5: Learned embeddings weights at each lexical rank for different number of documents n); qlight is excluded.

The model learns that the qlight encoding alone is already an appropriate estimation, allocating it a
significant portion of the total weight, ranging from 0.83 to 0.86 across all models. However, this weight
is excluded from the graph to focus on the document embedding weights.

The remaining weight is distributed among the document embeddings. The weight assigned to each
document at rank di decreases proportionally to an increase of n_docs as expected, because a similar
amount of remaining weight has to be distributed among more vectors.

The graph reveals a negative correlation between the weights and their lexical document ranks di, which
highlights the BM25 model’s effectiveness in ranking the documents according to their relevance.

Another interesting observation is that the AvgEmb50-docs model demonstrates that the learned docu-
ment weights approach zero after rank 10. Embeddings with near-zero weight will barely impact the
final query estimation, suggesting that 10 or fewer document embeddings might be sufficient.

5.2. Exploration of Alternatives 37

Impact on Performance and Efficiency
To further substantiate this claim, it is important to revisit the performance-efficiency trade-off and
demonstrate how models with varying numbers of documents perform. This analysis is represented in
Figure 5.6, structured similarly to Figure 5.1 and incorporating the same baselines.

Figure 5.6: Comparing performance against efficiency using different n_docs against baselines TCT-ColBERT re-ranking and
AvgTokEmb. Latency is measured in milliseconds per query on 128 sampled queries of MSM-Psg dev set [62], using batch

size 32. First graph shows full re-ranking runtime, second focuses on the query encoding latency per query.

Firstly, it is noteworthy that the horizontal performance scale displays little variation, ranging from 0.663
(q_only) to 0.695 (TCT-ColBERT). This indicates that the majority of models achieve comparable per-
formance levels.

Even though the q_only model only considers the token averaging part of the model, it demonstrates
lower performance than AvgTokEmb. The reasoning behind this is that it was trained via distillation with
TCT-ColBERT, whereas AvgTokEmb was trained as an independent dual-encoder setting on ranking
loss.

The estimations become more accurate by integrating the document embeddings. This increase be-
comes most evident when comparing the models q_only, n_docs = 1, and n_docs = 10. The perfor-
mances increase linearly from 0.663 to 0.673 to 0.690.

With the improvements suggested in subsection 5.1.2, the document embeddings can be reused through-
out re-ranking without any additional latency. However, it is not advisable to set n_docs equal to the
sparse cutoff of 1000, as embeddings at lower ranks (even with near-zero weights) may negatively im-
pact the final query estimation. This is marginally evidenced by AvgEmb50-docs achieving slightly inferior
performance compared to the model trained on 10 documents. Given that the model with 10 trained
documents marginally outperforms the other configurations, we adopt this as the default setting.

5.2.2. Alternative Weighting Methods
”How should the embedding weights be distributed?”

This final question concerns the weight distribution of the learned models, aiming to determine whether
these weights align closely with a standardized weight distribution method. Such approximated weights
might be even more optimal given our somewhat trivial training setup, improving the performance with-
out compromising efficiency. A standardized distribution could improve the results by slightly correcting

5.2. Exploration of Alternatives 38

the learned values; for instance, the learned weight for d11 has a higher weight than d10 in AvgEmb50-docs
which would be corrected.

If a particular method shows perfect alignment with our data, it could instigate a pivoted version of
our model design. In this revised design, a hyperparameter ranging from 0 to 1 would determine the
weight of the lightweight query encoding qlight, while the remaining weight would be distributed over
the document ranks according to the selected standard weight distribution.

Figure 5.7 compares the learned weights Wd_embs : {ωi | i ∈ lexical ranks} against various probability
distributions. These weights act as a baseline measurement in this experiment (blue — line).

Figure 5.7: Comparison of different weight distribution methods for 10 documents, ignoring the query encoding weight.
Softmax scores is calculated from average score at rank di for 1024 validation queries. The first graph shows weight

approximations for n_docs=10, the second for n_docs=50.

A trivial method is uniform distribution, assigning equal weights to all embeddings (red - - line):

ωuniform
i =

1

kS
, (5.2)

where kS represents the retrieval depth.

This uniform method clearly does not match the learned weights. Instead, the decrease in document
weights appears to decay exponentially, with lesser decreases at higher ranks. Consequently, we
introduce an exponential decay function (orange - - line):

ωexp_decay
i = 0.52e−0.42·i, (5.3)

The constants were gathered through trial and error. This line indeed closely approximates the learned
weights, suggesting it as a viable option for AvgEmbq,10-docs. We introduce a third method that
involves the sparse scores themselves by normalizing them and rescaling (green - - line):

ωBM25
i = scale(norm(avg(ϕBM25

s , i))) (5.4)

In the upper graph, this version also closely resembles the baseline. However, the bottom graph indi-
cates that this approach does not hold up when applied to the variant with 50 top documents. Nonethe-
less, reaching the same conclusion as in subsection 5.2.1, designing the weights to appropriate 10
documents again seems to be sufficient.

6
Conclusion

Efficiency and accuracy are critical factors in the domain of information retrieval and search engines.
Our research is focused on efficiency in the task of passage re-ranking. In this thesis, we consider
a dual-encoder architecture with representation learning and score interpolation. Dual-encoders are
known for their inference efficiency because they allow their document embeddings to be pre-computed
and indexed. The first stage employs the classical sparse retrieval method BM25 [72] at retrieval depth
kS = 1000 (Equation 2.4), resulting in lexical scores ϕS(q, d). This is followed by a re-ranking step
consisting of: creating query representations, retrieving kS passage representations for each query,
computing similarity scores ϕD(q, d) for all query-passage representation pairs as their dot products
(Equation 2.8), interpolating the sparse and dense scores (Equation 2.2) and re-ranking them according
to their interpolated scores.

In this chapter, the research questions are repeated and answered in linear order. We then discuss the
limitations of this research and propose several ideas for possible improvements.

RQ1: ”Is it possible to achieve an efficient and accurate estimation of a query embedding in
neural re-ranking by leveraging the lexically most relevant document embeddings?”
In response to RQ1, we propose a novel method to estimate an accurate query vector representation.
This approach is characterized by its efficiency; it relies solely on retrieving document embeddings from
an in-memory index and simple mathematical operations. Our initial proposed AvgEmbn-docs query
estimator model (Equation 3.1) leverages the embeddings of the query’s n top-ranked passages from
first-stage retrieval, assigning weights according to their lexical ranks, and transforming them into a
1-dimensional vector representation via weighted averaging over the document embeddings.

We show that n = 10 is the most effective setting, although it performs significantly worse compared to
its teacher model TCT-ColBERT in the same setting. We conclude that this approach is very efficient
but does not achieve competitive performance on its own. Most likely because it does not take semantic
information into account, leaving it vulnerable to the vocabulary mismatch problem [21].

RQ2: ”How can this approach be extended with semantic query information to improve perfor-
mance without significantly compromising efficiency?”
The second research question is specifically aimed at mitigating this problem. To address RQ2, we
extend our estimator with an additional vector qlight that is generated by a lightweight query encoding
approach. We refer to this new model as AvgEmbq,n-docs (Figure 3.4, Equation 3.4, Equation 3.5),
abbreviated to just AvgEmb.

39

40

To compute qlight, we integrate an efficient query encoder AvgTokEmb, proposed by Leonhardt et al.
[45] as an embedding-based encoder. This encoder operates by retrieving query token embeddings
et from a token embedding matrix ET and computing their average representation. ET is initialized
from the BERT embedding layer [15]. We extend this encoder with learned weights for each token in
the vocabulary, suggesting that this would assign lower weights to prevalent general tokens such as
stop words and higher weights to context-defining tokens. This qlight is simply concatenated to the n

document embeddings and assigned its own learned weight. Since qlight already estimates the query
embedding somewhat accurately, it is assigned a substantially larger weight than the documents.

The resulting AvgEmb model, visualized in Figure 3.4, still relies on only efficient operations (Equa-
tion 3.4): retrieving token embeddings from a matrix, retrieving document embeddings from an in-
memory index, and computing weighted averages. Moreover, our model is trained as a distilled version
of TCT-ColBERT [48] using MSE loss [82]. In this training setup, the teacher’s performance serves as
an upper boundary on the student’s performance.

We argue that n = 10 is again the most effective setting. The AvgTokq,10-docs estimator achieves a query
encoding speed-up of 13.4X over its TCT-ColBERT teacher while retaining 98.6% of its performance
on the TREC-DL-Psg ’19 and ’20 datasets [10, 11] and 93.0% on more complex queries from DL-HARD
[56]. Overall, this results in a 1.6X efficiency gain in the full interpolated passage re-ranking pipeline
on CPU.

The current query estimation latency distribution is elucidated in Figure 5.3. This graph shows that 40%
of query-encoding is spent on retrieving the document embeddings. These same document embed-
dings are retrieved for the final dot product computation. These embeddings could be shared between
the estimator and similarity score computation, greatly improving efficiency without any performance
loss. Additionally, this transformation would ensure that increasing the number of top-ranked docu-
ments does not result in a significant delay.

RQ3: ”What alternative approaches and settings could further boost the model performance or
efficiency?”
Regarding the third research question, we first consider how many top-ranked documents should be
used for the best performance. Figure 5.6 highlights that AvgEmbq,10-docs model marginally outperforms
other configurations. We therefore employ n = 10 as the default setting as seen above.

Figure 5.5 showcases that the AvgEmb50-docs model learns to assign near-zero weights to documents
at rank di > 10. Consequently, these document embeddings barely impact the final representations.
We argue that these documents at higher ranks would otherwise incur noise, making the final query
estimation prediction less accurate.

Secondly, we evaluate the learned weights against different weight distribution methods. We are able
to closely approximate the learned weights of AvgEmbq,10-docs with an exponential decay function. This
function could be used to further smooth out the learned weights, though we have not yet explored this.

Future Directions
Regarding efficiency, as speculated above in RQ2, re-using the document representations between the
query estimator and the similarity score computation could result in a 40% decrease in query latency.

Secondly, the validity of our approach could be further increased by evaluating on different datasets and
scenarios. Some suggestions include the BeIR benchmark [80] that contains various datasets for zero-
shot evaluation, Google’s Natural Questions (NQ) dataset [40] for open-domain question answering
(QA) to test longer complex queries, and applying the estimator directly in dense passage retrieval.

The following future research suggestions revolve around improving prediction accuracy. In RQ3 above,
we propose to smooth out the learned weights with an exponential decay function approximation. Fur-
thermore, the main limitation of our training setup is that the teacher model performance serves as an

41

upper bound for student effectiveness. We explore ideas for more complex training in subsection 3.3.1.
These include a dual-encoder setup [48, 45], mining hard negatives with TAS-B [30], and an ensemble
of teachers [31].

Finally, our method might also be extended by retrieval augmented generation (RAG) [24]. One of my
peers is exploring currently exploring the possibility to include RAG in the Fast-forward setting [41] we
also employed.

Acknowledgments
The current training setup, while seemingly simple, marks a significant personal milestone in my journey
with AI model training. Despite having no prior experience in this domain, I successfully developed a
functional, efficient, and effective framework.

First and foremost, I would like to express my deepest gratitude to my supervisors Jurek Leonhardt and
Avishek Anand for their continuous support, guidance, and encouragement throughout my research.
Their expertise and insight have been invaluable in shaping this work. I am also grateful to TU Delft for
providing the necessary resources for my research. I have thoroughly enjoyed the active and encourag-
ing Web Information Systems research group for their information sharing, presentations, discussions,
and feedback. Lastly, a special thanks to my family and friends for their unwavering support, comfort,
and patience throughout this journey.

In full transparency, much text in this thesis has been rephrased using various AI tools powered by
ChatGPT, these generated texts have been checked for validity. I am obliged to disclose this according
to TUD policies.1

1TU Delft publishing policies: https://www.tudelft.nl/library/actuele-themas/open-publishing/about/policies

https://www.tudelft.nl/library/actuele-themas/open-publishing/about/policies

References

[1] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 2). https:
//www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2. 2024.

[2] 3Blue1Brown. Attention in Transformers, Step-by-Step | DL6. Accessed: 2025-03-03. 2023. URL:
https://www.youtube.com/watch?v=eMlx5fFNoYc.

[3] 3Blue1Brown. Dot products and duality | Chapter 9, Essence of linear algebra. https://www.
youtube.com/watch?v=LyGKycYT2v0. Accessed: 2025-03-02. 2016.

[4] Shun-ichi Amari. “Backpropagation and stochastic gradient descent method”. In: Neurocomput-
ing 5.4-5 (1993), pp. 185–196.

[5] Yang Bai et al. “SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval”.
In: CoRR abs/2010.00768 (2020). arXiv: 2010.00768. URL: https://arxiv.org/abs/2010.
00768.

[6] Bo van den Berg. AvgEmb GitHub repository: Efficient interpolation-based ranking on CPUs.
https://github.com/BovdBerg/fast-forward-indexes. 2025.

[7] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: CoRR abs/2005.14165
(2020). arXiv: 2005.14165. URL: https://arxiv.org/abs/2005.14165.

[8] Sebastian Bruch, Siyu Gai, and Amir Ingber. “An Analysis of Fusion Functions for Hybrid Re-
trieval”. In: ACM Trans. Inf. Syst. 42.1 (Aug. 2023). ISSN: 1046-8188. DOI: 10.1145/3596512.
URL: https://doi.org/10.1145/3596512.

[9] Nachshon Cohen, Yaron Fairstein, and Guy Kushilevitz. “Extremely efficient online query en-
coding for dense retrieval”. In: NAACL 2024. 2024. URL: https : / / www . amazon . science /
publications/extremely-efficient-online-query-encoding-for-dense-retrieval.

[10] Nick Craswell et al. “Overview of the TREC2019 deep learning track”. In: arXiv preprint arXiv:2003.07820
(2020).

[11] Nick Craswell et al. “Overview of the TREC 2020 deep learning track”. In: CoRR abs/2102.07662
(2021). arXiv: 2102.07662. URL: https://arxiv.org/abs/2102.07662.

[12] Nick Craswell et al. “TREC Deep Learning Track: Reusable Test Collections in the Large Data
Regime”. In: Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’21. <conf-loc>, <city>Virtual Event</city>, <coun-
try>Canada</country>, </conf-loc>: Association for Computing Machinery, 2021, pp. 2369–2375.
ISBN: 9781450380379. DOI: 10.1145/3404835.3463249. URL: https://doi.org/10.1145/
3404835.3463249.

[13] Zhuyun Dai and Jamie Callan. “Deeper Text Understanding for IR with Contextual Neural Lan-
guage Modeling”. In: Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR’19. Paris, France: Association for Computing
Machinery, 2019, pp. 985–988. ISBN: 9781450361729. DOI: 10.1145/3331184.3331303. URL:
https://doi.org/10.1145/3331184.3331303.

[14] USA Department of Commerce. National Institute of Standards and Technology. URL: https:
//webbook.nist.gov/chemistry/.

[15] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. URL: http://arxiv.org/abs/
1810.04805.

42

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.youtube.com/watch?v=eMlx5fFNoYc
https://www.youtube.com/watch?v=LyGKycYT2v0
https://www.youtube.com/watch?v=LyGKycYT2v0
https://arxiv.org/abs/2010.00768
https://arxiv.org/abs/2010.00768
https://arxiv.org/abs/2010.00768
https://github.com/BovdBerg/fast-forward-indexes
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3596512
https://doi.org/10.1145/3596512
https://www.amazon.science/publications/extremely-efficient-online-query-encoding-for-dense-retrieval
https://www.amazon.science/publications/extremely-efficient-online-query-encoding-for-dense-retrieval
https://arxiv.org/abs/2102.07662
https://arxiv.org/abs/2102.07662
https://doi.org/10.1145/3404835.3463249
https://doi.org/10.1145/3404835.3463249
https://doi.org/10.1145/3404835.3463249
https://doi.org/10.1145/3331184.3331303
https://doi.org/10.1145/3331184.3331303
https://webbook.nist.gov/chemistry/
https://webbook.nist.gov/chemistry/
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

References 43

[16] Rotem Dror et al. “The Hitchhiker‘s Guide to Testing Statistical Significance in Natural Language
Processing”. In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Ed. by Iryna Gurevych and Yusuke Miyao. Melbourne, Aus-
tralia: Association for Computational Linguistics, July 2018, pp. 1383–1392. DOI: 10.18653/v1/
P18-1128. URL: https://aclanthology.org/P18-1128/.

[17] William Falcon and The PyTorch Lightning team. PyTorch Lightning. Version 1.4. Mar. 2019. DOI:
10.5281/zenodo.3828935. URL: https://github.com/Lightning-AI/lightning.

[18] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. “SPLADE: Sparse Lexical and
Expansion Model for First Stage Ranking”. In: Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. New York, NY, USA: As-
sociation for Computing Machinery, 2021, pp. 2288–2292. ISBN: 9781450380379. URL: https:
//doi.org/10.1145/3404835.3463098.

[19] Thibault Formal et al. “From Distillation to Hard Negative Sampling: Making Sparse Neural IR
Models More Effective”. In: Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’22. Madrid, Spain: Association for
Computing Machinery, 2022, pp. 2353–2359. ISBN: 9781450387323. DOI: 10.1145/3477495.
3531857. URL: https://doi.org/10.1145/3477495.3531857.

[20] Thibault Formal et al. SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval.
2021. DOI: 10.48550/ARXIV.2109.10086. URL: https://arxiv.org/abs/2109.10086.

[21] G. W. Furnas et al. “The vocabulary problem in human-system communication”. In: Commun.
ACM 30.11 (Nov. 1987), pp. 964–971. ISSN: 0001-0782. DOI: 10.1145/32206.32212. URL:
https://doi.org/10.1145/32206.32212.

[22] Prakhar Ganesh. “KnowledgeDistillation: Simplified”. In: TowardsData Science (2019). Accessed:
2025-02-28. URL: https://towardsdatascience.com/knowledge-distillation-simplified-
dd4973dbc764.

[23] Luyu Gao and Jamie Callan. “Unsupervised Corpus Aware Language Model Pre-training for
Dense Passage Retrieval”. In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Ed. by Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio. Dublin, Ireland: Association for Computational Linguistics, May 2022,
pp. 2843–2853. DOI: 10.18653/v1/2022.acl-long.203. URL: https://aclanthology.org/
2022.acl-long.203/.

[24] Yunfan Gao et al. Retrieval-Augmented Generation for Large Language Models: A Survey. 2024.
arXiv: 2312.10997 [cs.CL]. URL: https://arxiv.org/abs/2312.10997.

[25] Tiezheng Ge et al. “Optimized product quantization”. In: IEEE transactions on pattern analysis
and machine intelligence 36.4 (2013), pp. 744–755.

[26] Varun Godbole et al. Deep Learning Tuning Playbook. Version 1.0. 2023. URL: http://github.
com/google-research/tuning_playbook.

[27] Google. Spam Policies for Google Web Search. 2025. URL: https://developers.google.com/
search/docs/essentials/spam-policies.

[28] Jianping Gou et al. “Knowledge distillation: A survey”. In: International Journal of Computer Vision
129.6 (2021), pp. 1789–1819.

[29] Zellig S Harris. “Distributional structure”. In:Word 10.2-3 (1954), pp. 146–162.

[30] Sebastian Hofstätter et al. “Efficiently Teaching an Effective Dense Retriever with Balanced Topic
Aware Sampling”. In: Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’21. Virtual Event, Canada: Association for
Computing Machinery, 2021, pp. 113–122. ISBN: 9781450380379. DOI: 10.1145/3404835.346
2891. URL: https://doi.org/10.1145/3404835.3462891.

https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://aclanthology.org/P18-1128/
https://doi.org/10.5281/zenodo.3828935
https://github.com/Lightning-AI/lightning
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.48550/ARXIV.2109.10086
https://arxiv.org/abs/2109.10086
https://doi.org/10.1145/32206.32212
https://doi.org/10.1145/32206.32212
https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764
https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764
https://doi.org/10.18653/v1/2022.acl-long.203
https://aclanthology.org/2022.acl-long.203/
https://aclanthology.org/2022.acl-long.203/
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
http://github.com/google-research/tuning_playbook
http://github.com/google-research/tuning_playbook
https://developers.google.com/search/docs/essentials/spam-policies
https://developers.google.com/search/docs/essentials/spam-policies
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891

References 44

[31] Sebastian Hofstätter et al. “Improving Efficient Neural Ranking Models with Cross-Architecture
Knowledge Distillation”. In: CoRR abs/2010.02666 (2020). arXiv: 2010.02666. URL: https://
arxiv.org/abs/2010.02666.

[32] H Jabbar and Rafiqul Zaman Khan. “Methods to avoid over-fitting and under-fitting in supervised
machine learning (comparative study)”. In: Computer science, communication and instrumenta-
tion devices 70.10.3850 (2015), pp. 978–981.

[33] Herve Jegou, Matthijs Douze, and Cordelia Schmid. “Product quantization for nearest neighbor
search”. In: IEEE transactions on pattern analysis and machine intelligence 33.1 (2010), pp. 117–
128.

[34] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-Scale Similarity Search with GPUs”. In:
IEEE Transactions on Big Data 7.3 (2021), pp. 535–547. DOI: 10.1109/TBDATA.2019.2921572.

[35] Euna Jung, Jaekeol Choi, andWonjong Rhee. “Semi-Siamese Bi-encoder Neural Ranking Model
Using Lightweight Fine-Tuning”. In: CoRR abs/2110.14943 (2021). arXiv: 2110.14943. URL: htt
ps://arxiv.org/abs/2110.14943.

[36] Vladimir Karpukhin et al. “Dense Passage Retrieval for Open-Domain Question Answering”. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Ed. by Bonnie Webber et al. Online: Association for Computational Linguistics, Nov.
2020, pp. 6769–6781. DOI: 10.18653/v1/2020.emnlp-main.550. URL: https://aclanthology.
org/2020.emnlp-main.550.

[37] Omar Khattab and Matei Zaharia. “ColBERT: Efficient and Effective Passage Search via Con-
textualized Late Interaction over BERT”. In: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR ’20. Virtual Event,
China: Association for Computing Machinery, 2020, pp. 39–48. ISBN: 9781450380164. DOI:
10.1145/3397271.3401075. URL: https://doi.org/10.1145/3397271.3401075.

[38] Seungyeon Kim et al. “EmbedDistill: A geometric knowledge distillation for information retrieval”.
In: arXiv preprint arXiv:2301.12005 (2023).

[39] Diederik P Kingma and Jimmy Ba. “Adam: Amethod for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[40] Tom Kwiatkowski et al. “Natural Questions: a Benchmark for Question Answering Research”. In:
Transactions of the Association of Computational Linguistics (2019).

[41] Carlos Lassance and Stéphane Clinchant. “An Efficiency Study for SPLADE Models”. In: Pro-
ceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’22. Madrid, Spain: Association for Computing Machinery, 2022,
pp. 2220–2226. ISBN: 9781450387323. DOI: 10.1145/3477495.3531833. URL: https://doi.
org/10.1145/3477495.3531833.

[42] Carlos Lassance et al.SPLADE-v3: New baselines for SPLADE. 2024. arXiv: 2403.06789 [cs.IR].
URL: https://arxiv.org/abs/2403.06789.

[43] Victor Lavrenko and W. Bruce Croft. “Relevance based language models”. In: Proceedings of the
24th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’01. New Orleans, Louisiana, USA: Association for Computing Machinery, 2001,
pp. 120–127. ISBN: 1581133316. DOI: 10.1145/383952.383972. URL: https://doi.org/10.
1145/383952.383972.

[44] J. Leonhardt. Efficient and Explainable Neural Ranking | PhD thesis defense. 2023. URL: https:
//mrjleo.github.io/slides/2023-phd/#/fast-forward (visited on 12/13/2023).

[45] Jurek Leonhardt et al. “Efficient Neural Ranking using Forward Indexes and Lightweight En-
coders”. In: ACM Trans. Inf. Syst. (Nov. 2023). Just Accepted. ISSN: 1046-8188. DOI: 10.1145/
3631939. URL: https://doi.org/10.1145/3631939.

https://arxiv.org/abs/2010.02666
https://arxiv.org/abs/2010.02666
https://arxiv.org/abs/2010.02666
https://doi.org/10.1109/TBDATA.2019.2921572
https://arxiv.org/abs/2110.14943
https://arxiv.org/abs/2110.14943
https://arxiv.org/abs/2110.14943
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3477495.3531833
https://doi.org/10.1145/3477495.3531833
https://doi.org/10.1145/3477495.3531833
https://arxiv.org/abs/2403.06789
https://arxiv.org/abs/2403.06789
https://doi.org/10.1145/383952.383972
https://doi.org/10.1145/383952.383972
https://doi.org/10.1145/383952.383972
https://mrjleo.github.io/slides/2023-phd/#/fast-forward
https://mrjleo.github.io/slides/2023-phd/#/fast-forward
https://doi.org/10.1145/3631939
https://doi.org/10.1145/3631939
https://doi.org/10.1145/3631939

References 45

[46] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. Pretrained Transformers for Text Ranking:
BERT and Beyond. 2021. arXiv: 2010.06467 [cs.IR]. URL: https://arxiv.org/abs/2010.
06467.

[47] Jimmy Lin et al. “Pyserini: A Python Toolkit for Reproducible Information Retrieval Research
with Sparse and Dense Representations”. In: Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR ’21. Virtual Event,
Canada: Association for Computing Machinery, 2021, pp. 2356–2362. ISBN: 9781450380379.
DOI: 10.1145/3404835.3463238. URL: https://doi.org/10.1145/3404835.3463238.

[48] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. “Distilling Dense Representations for Rank-
ing using Tightly-Coupled Teachers”. In: CoRR abs/2010.11386 (2020). arXiv: 2010.11386. URL:
https://arxiv.org/abs/2010.11386.

[49] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. “In-Batch Negatives for Knowledge Distilla-
tion with Tightly-Coupled Teachers for Dense Retrieval”. In: Proceedings of the 6th Workshop on
Representation Learning for NLP (RepL4NLP-2021). Ed. by Anna Rogers et al. Online: Associa-
tion for Computational Linguistics, Aug. 2021, pp. 163–173. DOI: 10.18653/v1/2021.repl4nlp-
1.17. URL: https://aclanthology.org/2021.repl4nlp-1.17/.

[50] Wenhao Lu, Jian Jiao, and Ruofei Zhang. “Twinbert: Distilling knowledge to twin-structured com-
pressed bert models for large-scale retrieval”. In: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 2020, pp. 2645–2652.

[51] Yi Luan et al. “Sparse, Dense, and Attentional Representations for Text Retrieval”. In: Trans-
actions of the Association for Computational Linguistics 9 (2021). Ed. by Brian Roark and Ani
Nenkova, pp. 329–345. DOI: 10.1162/tacl_a_00369. URL: https://aclanthology.org/2021.
tacl-1.20/.

[52] SeanMacAvaney et al. “CEDR: Contextualized Embeddings for Document Ranking”. In:Proceed-
ings of the 42nd International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. SIGIR’19. Paris, France: Association for Computing Machinery, 2019, pp. 1101–
1104. ISBN: 9781450361729. DOI: 10.1145/3331184.3331317. URL: https://doi.org/10.
1145/3331184.3331317.

[53] Sean MacAvaney et al. “Expansion via Prediction of Importance with Contextualization”. In: Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’20. Virtual Event, China: Association for Computing Machinery,
2020, pp. 1573–1576. ISBN: 9781450380164. DOI: 10.1145/3397271.3401262. URL: https:
//doi.org/10.1145/3397271.3401262.

[54] Sean MacAvaney et al. “Simplified Data Wrangling with ir_datasets”. In: Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’21. Virtual Event, Canada: Association for Computing Machinery, 2021, pp. 2429–2436.
ISBN: 9781450380379. DOI: 10.1145/3404835.3463254. URL: https://doi.org/10.1145/
3404835.3463254.

[55] Craig Macdonald and Nicola Tonellotto. “Declarative Experimentation inInformation Retrieval us-
ing PyTerrier”. In: Proceedings of ICTIR 2020. 2020.

[56] Iain Mackie, Jeffrey Dalton, and Andrew Yates. “How Deep is your Learning: the DL-HARD Anno-
tated Deep Learning Dataset”. In: Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’21. Virtual Event, Canada: Asso-
ciation for Computing Machinery, 2021, pp. 2335–2341. ISBN: 9781450380379. DOI: 10.1145/
3404835.3463262. URL: https://doi.org/10.1145/3404835.3463262.

[57] Yury A. Malkov and Dmitry A. Yashunin. “Efficient and robust approximate nearest neighbor
search using Hierarchical Navigable Small World graphs”. In: CoRR abs/1603.09320 (2016).
arXiv: 1603.09320. URL: http://arxiv.org/abs/1603.09320.

https://arxiv.org/abs/2010.06467
https://arxiv.org/abs/2010.06467
https://arxiv.org/abs/2010.06467
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://arxiv.org/abs/2010.11386
https://arxiv.org/abs/2010.11386
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://aclanthology.org/2021.repl4nlp-1.17/
https://doi.org/10.1162/tacl_a_00369
https://aclanthology.org/2021.tacl-1.20/
https://aclanthology.org/2021.tacl-1.20/
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3397271.3401262
https://doi.org/10.1145/3397271.3401262
https://doi.org/10.1145/3397271.3401262
https://doi.org/10.1145/3404835.3463254
https://doi.org/10.1145/3404835.3463254
https://doi.org/10.1145/3404835.3463254
https://doi.org/10.1145/3404835.3463262
https://doi.org/10.1145/3404835.3463262
https://doi.org/10.1145/3404835.3463262
https://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320

References 46

[58] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008. ISBN: 0521865719.

[59] YusukeMatsui et al. “A survey of product quantization”. In: ITE Transactions onMedia Technology
and Applications 6.1 (2018), pp. 2–10.

[60] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”. In: arXiv
preprint arXiv:1301.3781 (2013).

[61] Michael J. Neely. Why we cannot divide by Zero. URL: https://ee.usc.edu/stochastic-
nets/docs/divide-by-zero.pdf.

[62] Tri Nguyen et al. “MSMARCO: A HumanGenerated MAchine Reading COmprehension Dataset”.
In: CoRR abs/1611.09268 (2016). URL: http://arxiv.org/abs/1611.09268.

[63] Rodrigo Nogueira and KyunghyunCho. “PassageRe-ranking with BERT”. In:CoRR abs/1901.04085
(2019). arXiv: 1901.04085. URL: http://arxiv.org/abs/1901.04085.

[64] Rodrigo Nogueira et al. “Multi-stage document ranking with BERT”. In: arXiv preprint arXiv:1910.14424
(2019).

[65] Keiron O’Shea and Ryan Nash. “An Introduction to Convolutional Neural Networks”. In: CoRR
abs/1511.08458 (2015). arXiv: 1511.08458. URL: http://arxiv.org/abs/1511.08458.

[66] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–
8035. URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[67] Marius-Constantin Popescu et al. “Multilayer perceptron and neural networks”. In:WSEAS Trans.
Cir. and Sys. 8.7 (July 2009), pp. 579–588. ISSN: 1109-2734.

[68] Martin F Porter. “An algorithm for suffix stripping”. In: Program 14.3 (1980), pp. 130–137.

[69] Yingqi Qu et al. “RocketQA: An Optimized Training Approach to Dense Passage Retrieval for
Open-Domain Question Answering”. In: Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies.
Ed. by Kristina Toutanova et al. Online: Association for Computational Linguistics, June 2021,
pp. 5835–5847. DOI: 10.18653/v1/2021.naacl-main.466. URL: https://aclanthology.org/
2021.naacl-main.466/.

[70] Nils Reimers and Iryna Gurevych. “Sentence-bert: Sentence embeddings using siamese bert-
networks”. In: arXiv preprint arXiv:1908.10084 (2019).

[71] Stephen Robertson and Hugo Zaragoza. “The Probabilistic Relevance Framework: BM25 and
Beyond”. In: Foundations and Trends® in Information Retrieval 3.4 (2009), pp. 333–389. ISSN:
1554-0669. DOI: 10.1561/1500000019. URL: http://dx.doi.org/10.1561/1500000019.

[72] Stephen E. Robertson et al. “Okapi at TREC-3”. In: Proceedings of The Third Text REtrieval
Conference, TREC 1994, Gaithersburg, Maryland, USA, November 2-4, 1994. Ed. by Donna K.
Harman. Vol. 500-225. NIST Special Publication. National Institute of Standards and Technology
(NIST), 1994, pp. 109–126. URL: http://trec.nist.gov/pubs/trec3/papers/city.ps.gz.

[73] Koustav Rudra and Avishek Anand. “Distant Supervision in BERT-based Adhoc Document Re-
trieval”. In: Proceedings of the 29th ACM International Conference on Information & Knowledge
Management. CIKM ’20. Virtual Event, Ireland: Association for ComputingMachinery, 2020, pp. 2197–
2200. ISBN: 9781450368599. DOI: 10.1145/3340531.3412124. URL: https://doi.org/10.
1145/3340531.3412124.

[74] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter”. In:
CoRR abs/1910.01108 (2019). arXiv: 1910.01108. URL: http://arxiv.org/abs/1910.01108.

https://ee.usc.edu/stochastic-nets/docs/divide-by-zero.pdf
https://ee.usc.edu/stochastic-nets/docs/divide-by-zero.pdf
http://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/2021.naacl-main.466
https://aclanthology.org/2021.naacl-main.466/
https://aclanthology.org/2021.naacl-main.466/
https://doi.org/10.1561/1500000019
http://dx.doi.org/10.1561/1500000019
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
https://doi.org/10.1145/3340531.3412124
https://doi.org/10.1145/3340531.3412124
https://doi.org/10.1145/3340531.3412124
https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108

References 47

[75] Harrisen Scells, Shengyao Zhuang, and Guido Zuccon. “Reduce, Reuse, Recycle: Green Infor-
mation Retrieval Research”. In: Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’22. Madrid, Spain: Association for
Computing Machinery, 2022, pp. 2825–2837. ISBN: 9781450387323. DOI: 10.1145/3477495.
3531766. URL: https://doi.org/10.1145/3477495.3531766.

[76] Rayyan Shaikh.Mastering BERT: A Comprehensive Guide from Beginner to Advanced in Natural
Language Processing (NLP). Medium. 2023. URL: https://medium.com/@shaikhrayyan123/a-
comprehensive-guide-to-understanding-bert-from-beginners-to-advanced-2379699e2b
51.

[77] Jonathon Shlens. “Notes on Kullback-Leibler Divergence and Likelihood”. In:CoRR abs/1404.2000
(2014). arXiv: 1404.2000. URL: http://arxiv.org/abs/1404.2000.

[78] Karen Sparck Jones. “A statistical interpretation of term specificity and its application in retrieval”.
In: Document Retrieval Systems. GBR: Taylor Graham Publishing, 1988, pp. 132–142. ISBN:
0947568212.

[79] Juan Terven et al. Loss Functions and Metrics in Deep Learning. 2024. arXiv: 2307 . 02694
[cs.LG]. URL: https://arxiv.org/abs/2307.02694.

[80] Nandan Thakur et al. “BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of Informa-
tion Retrieval Models”. In: Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2). 2021. URL: https://openreview.net/forum?
id=wCu6T5xFjeJ.

[81] Ashish Vaswani et al. “Attention is all you need”. In: Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran
Associates Inc., 2017, pp. 6000–6010. ISBN: 9781510860964.

[82] Qi Wang et al. “A comprehensive survey of loss functions in machine learning”. In: Annals of Data
Science (2020), pp. 1–26.

[83] Shuai Wang, Shengyao Zhuang, and Guido Zuccon. “BERT-based Dense Retrievers Require
Interpolation with BM25 for Effective Passage Retrieval”. In: Proceedings of the 2021 ACMSIGIR
International Conference on Theory of Information Retrieval. ICTIR ’21. Virtual Event, Canada:
Association for Computing Machinery, 2021, pp. 317–324. ISBN: 9781450386111. DOI: 10.1145/
3471158.3472233. URL: https://doi.org/10.1145/3471158.3472233.

[84] Shuai Wang and Guido Zuccon. “Balanced Topic Aware Sampling for Effective Dense Retriever:
A Reproducibility Study”. In: Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’23. Taipei, Taiwan: Association for
Computing Machinery, 2023, pp. 2542–2551. ISBN: 9781450394086. DOI: 10.1145/3539618.
3591915. URL: https://doi.org/10.1145/3539618.3591915.

[85] Paul J Werbos. “Backpropagation through time: what it does and how to do it”. In: Proceedings
of the IEEE 78.10 (1990), pp. 1550–1560.

[86] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing”. In: Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. Online: Association for Computational Linguistics, Oct. 2020, pp. 38–45. URL:
https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[87] Yonghui Wu et al. “Google’s Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation”. In: CoRR abs/1609.08144 (2016). arXiv: 1609.08144. URL:
http://arxiv.org/abs/1609.08144.

[88] Lee Xiong et al. “Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text
Retrieval”. In: International Conference on Learning Representations. 2021. URL: https://ope
nreview.net/forum?id=zeFrfgyZln.

https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3477495.3531766
https://medium.com/@shaikhrayyan123/a-comprehensive-guide-to-understanding-bert-from-beginners-to-advanced-2379699e2b51
https://medium.com/@shaikhrayyan123/a-comprehensive-guide-to-understanding-bert-from-beginners-to-advanced-2379699e2b51
https://medium.com/@shaikhrayyan123/a-comprehensive-guide-to-understanding-bert-from-beginners-to-advanced-2379699e2b51
https://arxiv.org/abs/1404.2000
http://arxiv.org/abs/1404.2000
https://arxiv.org/abs/2307.02694
https://arxiv.org/abs/2307.02694
https://arxiv.org/abs/2307.02694
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.1145/3471158.3472233
https://doi.org/10.1145/3471158.3472233
https://doi.org/10.1145/3471158.3472233
https://doi.org/10.1145/3539618.3591915
https://doi.org/10.1145/3539618.3591915
https://doi.org/10.1145/3539618.3591915
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln

References 48

[89] Shengyao Zhuang andGuido Zuccon. “Fast Passage Re-ranking with Contextualized Exact Term
Matching and Efficient Passage Expansion”. In: CoRR abs/2108.08513 (2021). arXiv: 2108.085
13. URL: https://arxiv.org/abs/2108.08513.

[90] Shengyao Zhuang and Guido Zuccon. “TILDE: Term independent likelihood moDEl for passage
re-ranking”. In: Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2021, pp. 1483–1492.

[91] Herbert Zuze and Melius Weideman. “Keyword stuffing and the big three search engines”. In:
Online Information Review 37.2 (2013), pp. 268–286.

https://arxiv.org/abs/2108.08513
https://arxiv.org/abs/2108.08513
https://arxiv.org/abs/2108.08513

A
Overview of Architectures

See the following pages.

49

A.1. Fast-Forward 50

A.1. Fast-Forward
A.1.1. Original
See Figure A.1, which is described in chapter 2.

Figure A.1: Original architecture of neural re-ranking using Fast-Forward Indexes

A.1.2. Quantized
See Figure A.2. The document vectors are clustered and averaged into codewords, resulting in a
significantly smaller index to fit in-memory at the cost of slightly lower performance.

Figure A.2: Quantized architecture of neural re-ranking using Fast-Forward Indexes. Product quantization is highlighted in
yellow.

A.2. Combined (AvgEmb + AvgTokEmb) 51

A.2. Combined (AvgEmb + AvgTokEmb)
A.2.1. Initial
See Figure 3.5, which is described in subsection 3.1.2. This architecture combines the efficient en-
coders AvgEmb and AvgTokEmb into a multi-stage re-ranking architecture.

Figure A.3: Combined architecture of AvgEmb and AvgTokEmb encoders.

A.2.2. Refined
See Figure A.4, which is again described in detail in subsection 3.1.2. The combined architecture
is refined to a simpler architecture with one shared document embedding index between the query
encoders.

Figure A.4: Combined architecture of AvgEmb and AvgTokEmb encoders.

A.3. Training 52

A.3. Training
See Figure A.5, described in section 3.2. Its limitations and alternative approaches are described in
subsection 3.3.1.

Figure A.5: Training architecture of AvgEmb estimator.

B
Examples with actual variables

B.1. AvgEmb Query Estimation
See Figure B.1 on the next page.

53

B.1. AvgEmb Query Estimation 54

queries :
[
q1 : ”what is life”, q2 : ”what now”

]

q_tokens :


input_ids :

[
q1 : ta tb tc
q2 : ta td t[PAD]

]
∈ N2×3 (=batch×max_len)

attention_mask :

[
q1 : 1 1 1

q2 : 1 1 0

]
∈ N2×3 (=batch×max_len)

q_tok_embs :


q1 :

 ta : −0.0013 · · · 0.0145

tb : −0.0358 · · · −0.0293
tc : −0.0255 · · · 0.0245


q2 :

 ta : −0.0013 · · · 0.0145

tb : 0.0241 · · · −0.0397
t[pad] : −0.0103 · · · −0.0266




∈ R2×3×768 (=batch×max_len×dim)

q_tok_weights :


Init:

[
q1 : 0.33 0.33 0.33

q2 : 0.33 0.33 0.33

]
Masked and normalized:

[
q1 : 0.33 0.33 0.33

q2 : 0.5 0.5 0

] ∈ R2×3 (=batch×max_len)

qlight :

[
q1 : (0.33 ∗ −0.0013 + 0.33 ∗ −0.0358 + 0.33 ∗ −0.0255 = −0.0207) · · ·
q2 : (0.5 ∗ −0.0013 + 0.5 ∗ 0.0241 = 0.0114) · · ·

]
=

[
q1 : −0.0207 · · · 0.0032

q2 : 0.0014 · · · 0.0126

]
∈ R2×768 (=batch×dim)

embs :



q1 :


qlight −0.0207 · · · 0.0032

d1 : −0.0013 · · · 0.0145

d2 : −0.0358 · · · −0.0293
d3 : −0.0255 · · · 0.0245



q2 :


qlight 0.0014 · · · 0.0126

d1 : −0.0013 · · · 0.0145

d2 : 0 · · · 0

d3 : 0 · · · 0




∈ R2×4×768 (=batch×n_embs×dim)

embs_mask :

[
q1 : 1 1 1 1

q2 : 1 1 0 0

]
∈ N2×4 (=batch×n_embs)

embs_weights :


Init:

[
q1 : 0.7699 0.1039 0.0634 0.0628

q2 : 0.7699 0.1039 0.0634 0.0628

]
Masked and normalized:

[
q1 : 0.7699 0.1039 0.0634 0.0628

q2 : 0.8811 0.1189 0 0

] ∈ R2×4 (=batch×n_embs)

q̂ :

[
q1 : −0.0191 · · · 0.0021

q2 : 0.0011 · · · −0.0109

]
∈ R2×768 (=batch×dim)

Figure B.1: Simplified example pass through the AvgEmbq,3-docs query encoder. A batch of 2 queries is used which have a
maximum length of 3. Only 1 top-ranked document is retrieved for q2, which is highly exceptional in practice.

	Abstract
	Preface
	Prelude
	List of Figures
	List of Tables
	Nomenclature

	Introduction
	Background and Related Work
	Passage Re-Ranking
	Sparse Ranking Models
	Transformer Models and Attention
	Dense Ranking Models
	Cross-Encoders
	Dual-Encoders

	Training AI Models
	Knowledge Distillation

	Average Embedding Query Estimation
	Model
	Averaging over Top-Ranked Document Embeddings
	Adding Query Semantics
	Refining the Architecture

	Training
	Alternative Choices
	Training Alternatives
	AvgTokEmb Exploration

	Experimental Setup
	Datasets and Benchmarks
	Evaluation Metrics
	Baselines
	Evaluation Details
	Training details
	Implementation Details

	Results
	General Architecture
	Overall Performance and Efficiency
	Query Encoding Latency
	Correlation to Lexical Performance

	Exploration of Alternatives
	Number of Documents
	Alternative Weighting Methods

	Conclusion
	References
	Overview of Architectures
	Fast-Forward
	Original
	Quantized

	Combined (AvgEmb + AvgTokEmb)
	Initial
	Refined

	Training

	Examples with actual variables
	AvgEmb Query Estimation

