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On the Information Content and Regularisation of 
Lunar Gravity Field Solutions 

Rune Floberghagen and Johannes Bouman 

Abstract 

The quality of the lunar gravity model GLGM-2 is analysed on the basis of the solution bias 
and contribution of the observations to the actual solution. Alternative parameter choices for 
the regularisation of lunar gravity solutions are presented and applied to both GLGM-2 and 
prospective future gravity field solutions from satellite-to-satellite tracking. Finally, the use of 
the mean square error matrix as quality measure is advocated, as opposed to the commonly used 
variance-covariance matrix. 

1 Introduction 

Much progress has been booked in lunar gravity field modelling over the past few years due to 
the availability of new satellite tracking data. The Clementine mission, Nozette et al. (1994), 
and in particular Lunar Prospector, Binder (1998), have added significantly to the data sets 
obtained during the Apollo era of lunar exploration. Although the Clementine orbit was far 
from ideal for gravity modelling purposes, the mission gave the first high-quality near-side and 
high-inclination satellite tracking data since the Apollo missions. Due to the eccentricity of 
the orbit, the spacecraft could also be tracked slightly beyond the poles of the Moon. The 
final gravity field product was the 70 x 70 model GLGM-2, Lemoine et al. (1997). Lunar 
Prospector in turn, through its low, pol ar orbit, has given scientists excellent near-side data, 
and will continue to do so through its extended, very low, mission. The first official gravity 
product is a 75 x 75 expansion called LP75G, Konopliv et al. (1998), which, as does GLGM-2, 
also inc1udes both the Clementine data and data from earlier earlier missions (Lunar Orbiter I -
V, Apollo 15/16 sub-satellites). The final (?) post-Prospector gravity model is expected to be a 
90 x 90 model, due in early 1999 (Konopliv, priv. comm.). Nevertheless, none of these missions, 
or any mission for which only deep space tracking by means of Earth-based stations is available 
is able to overcome the very fundamental problem in lunar gravity modelling: the lack of a fully 
global, high-quality data set giving satisfactory sensitivity to satellite orbit perturbations over a 
large range of orbital frequencies. 

Another problem faced in lunar gravimetry (as in any kind of satellite-based gravity mod
elling) is the fact that observations are made at satellite altitude, which requires a downward 
continuation, to deterrnine the selenopotential at the surface (e.g. in terrns of selenoidal undula
tions or gravity anomalies). Such a downward continuation is known to be an error amplifying 



2 

operation, giving rise to instability in the related inverse problem. Furthermore, gravity field 
modelling suffers from the facts that each measurement type has its own sensitivity depending 
on orbital frequency and that measurement and dynamical rriodelling errors (gravitational and 
non-gravitational) are always present. 

In view of these limiting factors in lunar gravity model1ing and the numerical problems 
faced in the related inverse problems, the scope of this paper is to ánalyse existing models in 
terms of quality and information content. It is aimed to assess the true value of the existing 
satellite trac1cing data for gravity modelling purposes, as wel1 as their lirnitations. Given the 
aforementioned limiting factors, it is c1ear that regularisation (constraints) is a fundamental 
aspect of lunar gravity field model1ing. In lack of an adequate data set, regularisation itself 
becomes an involved issue. A second aim of this paper is therefore to investigate the role of 
regularisation, and in particular the choice of the optimal regularisation parameter. Historically 
spealcing, regularisation of planetary gravity fields has typical1y been a scaled variant of Kaula's 
rule-of-thumb, Kaula (1966). However, the choice of the scaling factor for this rule has been 
(and stil1 is) a matter of discussion, as long as the true power law is not known until the gravity 
field itself is known. 

Applying Kaula's rule inevitably means global smoothing, that is, smoothing is also applied 
where it is not wanted (over-smoothing may take place) . For this reason, variants of the global 
Kaula constraint have been developed, cf. Konopliv and Sjogren (1996), in which fictitious 
measurements are added in areas where the error exceeds the signal. These additional observa
tions are typically based on some a priori power model (e.g. Kaula). Such constraints are known 
to allow higher peak effects and may be viewed as an indirect Kaula-type constraint. A com
pletely different approach is advocated in this paper. Instead of relying on a priori knowledge of 
the selenopotential, it is proposed to disregard the physics of the Moon, and hence not depend 
on largely unknown a priori coefficient power estimates, and rather look at the problem from 
a numerical point of view. Two heuristic methods for regularisation parameter determination 
are proposed and investigated for gravity reduction purposes, being the L-curve and the Quasi
optimality criterion, both of which seek to balance the data error (deduced from the available 
tracking data) and the solution bias (which is introduced by the actual regularisation process). 
Furthermore, one a posteriori parameter choice rule is discussed for comparison, the method of 
Quasi-solutions. 

Final1y, this paper advocates alternative error measures to be used in error assessment studies 
of gravity model1ing. In particular in the case of the Moon, where the current data distribution is 
severely heterogeneous, and a significant bias is introduced by the very fact that regularisation 
is required to enable any extended solution at al1, this bias should be accounted for. The mean 
square error matrix, which is the sum of the propagated error and the squared bias, is therefore 
proposed as an alternative to pure error variance-covariance propagation. 

The first model investigated is GLGM-2, as this is the model currently used by both the lu
nar science community and space mission planners in orbit design. However, in view of the on
going efforts for missions involving inter-satellite tracking, which wil1 enable spacecraft track
ing over the lunar far-side and hence a global set of observations, simulated satel1ite-to-satellite 
tracking solutions wil1 also be used on occasion. An important point is that such missions may 
give nearly self-contained gravity solutions requiring only little amount of regularisation, with 
due benefits for the lunar geosciences and low lunar satellite dynamics. 
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2 The linear model and its solution 

In general the relationship between the observations ye = y + e, with y the 'exact' observation 
and e the data noise, and the unknowns x is non-linear, i.e. E{ye} = E{y} = A(x), where 
A is the functional relationship between the observations and the unknowns. In this paper the 
unknowns are parameterised in terms of global spherical harmonies basis functions. E {} is the 
expectation operator and it is assumed that E{e} = 0 and E{ eeT} = P -l, i.e. model errors are 
not considered in the present analysis. Inversion for the selenopotential is done by linearising 
the relationship between observations and unknowns and sol ving for corrections to the a priori 
model in an iterative fashion. Hence, in practical cases one has 

ye = y + e = Ax + e (1) 

where E{ye} = E{y} = Ax, where A is now the design matrix. The vector of unknowns 
of course contains the corrections to the gravity field coefficients {ëlm , Slm}, other unknowns 
are not considered here. The least-squares solution Xl s is the best linear unbiased estimate of 
the solution. Taking into account a possible weighting of different data sets in the solution, 
represented by the weight matrix P (inverse error covariance ofthe measurements), the familiar 
least-squares solution reads 

(2) 

If the problem at hand is perfectly observable, Xl s may be considered "a stabIe solution to our 
inverse problem. However, the complications of the measurements being inhomogeneously 
distributed in space and in time, as weil as the damping of orbital perturbations with altitude 
causes Xl s to be unstable. That is, small data errors may cause large errors in the solution. In 
theory, this may be handled by either I) limiting the number of unknowns to the ones with large 
singular values (i.e. those for which direct estimation is largely possible), or 2) applying regu
larisation to the normal equation system. While the first method may work for the estimation of 
small spherical harmonies expansions, it is known that the lunar potential is dominated by mass 
concentrations which are impossible to represent in terms of low-degree harmonies. Secondly, 
for gravity solutions with a resolution close to the satellite altitude, the signalof coefficients or 
groups of coefficients (lumped coefficients) will remain below the data noise level and it might 
still not be possible to compute a stabIe (AT P A)-l. This is further illustrated by computing the 
singular value decomposition of the design matrix A = U~VT, where U and Vare orthonormal 
matrices spanning the space of the observations and the measurements, respectively, and ~ is a 
diagonal matrix with elements {(li!(ll ~ (12 ~ ... ~ (In > O} and limHoo(li = O. Let P = I 
(not essential in this context), then 

(V~UTU~VT)-lV~UT ye 
(V~2VT)-lV~UT ye = V~-lUT ye 

V~-lUT(y + e) 

x + V~-lUT e. (3) 

Thus, the least-squares solution consists of the exact solution x from exact observations y and 
a term which depends on the noise e. Because the elements of ~ tend to zero, due to the 
essentially one-hemisphere data coverage and the satellite altitude, the noise is amplified with a 
large number and instability occurs. 
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A priori infonnation on the coefficient power as given by Kaula may be used to increase 
stability. With the elements of the diagonal Kaula matrix K given by 1010 x [4, the regularised 
least-squares solution becomes 

(4) 

where a is the regularisation parameter scaling Kaula's rule. Eq. 4 is equivalent to the least
squares collocation solution, Marsh et al. (1988). However, due to the constraint, it is also 
biased towards zero, which in principle is impossible for acollocation solution. Since in this 
study no assumption is made on the mean value of the estimated parameters, the collocation 
framework for error assessment is considered unsuitable, as the bias should be taken into ac
count. Hence, it is more appropriate to consider Eq. 4 as a biased estimator. The expectation of 
Eq.4is 

(ATpA + aK)-l ATp E{ye} 

(ATpA + aK)-l ATpAx 

i= x, 

and the bias introduced by the constraints is 

(5) 

The bias may become larger than the coefficient value. One difficulty with the bias computation 
is that the true solution x is involved. Obviously, these coefficients are unknown and estimat
ing the bias with biased coefficients will give too optimistic results since the power of these 
coefficients is too low, Xu (1992);Xu and Rumme1 (1994). This is another reason why a pure 
variance-covariance propagation may lead to optimistic estimates of the true solution quality. 
For GLGM-2, which fonns the test case of the present analysis, the coefficient biases are larger 
than 50% ofthe coefficient value for nearly all hannonics beyond degree and order 30, compare 
Section 5.2.1. 

3 Determination of tbe regularisation parameter for biased estimators 

Three methods for the determination of the optimal regularisation parameter a under the pres
ence of a bias are considered, being the L-curve, the Quasi-optimality criterion and the method 
of Quasi-solutions, cf. Hansen and ü'Leary (1993); Morozov (1984); Ivanov (1962). The first 
two methods are so-called heuristic methods while the latter is an a posteriori method. The 
ideas of both heuristic methods are roughly the same. Consider the minimisation of 

J(a ) = IIAx - YII~ + all x ll~ 

which leads to Eq. 4. The nonn on the left is the least-squares problem. Minimisation of this 
term gives the smallest errors, but the nonn of the solution is unconstrained. The second tenn 
controls the solution smoothness; however, this smoothness condition also causes the solution to 
become biased. The parameter a controls the compromise between smoothness of the solution, 
i.e. Il x ilK remains smalI, and data fit, IIAx - yllp smal!. Both the L-curve and the Quasi
optimality criterion aim to find an a such that other a's close to it yield a comparabie solution. 
In other words, the methods seek to balance the data error with the regularisation error. 
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3.1 L-curve 

The L-curve is a plot, for all valid a, of the norm Iliall K of the stabIe solution versus the 
corresponding residual norm IIAia - yllp. It turns out that the L-curve, when plotted in log-log 
scale, has an L-shaped appearance. The vertical part of the curve corresponds to smaller a. 
The emphasis of minimising J(a) is on IIAia - yllp, allowing Iliall K to become large. The 
horizontal part of the L-curve corresponds to solutions where the residual norm IIAia - yllp is 
most sensitive to the scaling parameter because i a is dominated by the bias, compare Hansen 
and O'Leary (1993); Hansen (1997). The corner of the L-curve is optimal in the sen se that 
the change of both norms is equal for changing a. This point may be located by maximum 
curvature. However, it may be shown that the minimum of the function 

(6) 

gives the same scaling parameter, Reginska (1996). Note that Eq. 6 cannot be computed directly 
since the design matrix A is not available. This is generally the case in gravity field estimation 
from satellite tracking data where normal matrices for single arcs are combined to form a final 
norma! equation system. However, the data errors behave Iike CTi1, compare Eq. 3, which can 
be determined by eigenvalue techniques. Hence, real observations ye may be approximated by 
Axe where xe = X + e. The obvious choice for the exact solution x is the GLGM-2 solution 
itself, the errors e are assumed to be given by 3N(O, 1)/ CTi X coefficient sigma, with N(O, 1) the 
standard normal distribution. An upper bound for the second norm in Eq. 6 is now given by 

IIAi~ - yell p = IIAi~ - Axellp < IIAlllli~ - xellK 

~lli~ - xellK 

where >'1 is the largest eigenvalue of ATpA which can easily be obtained with the power method, 
Kreyszig (1988). 

3.2 Quasi-optimality 

The idea of the Quasi-optimality criterion is that if a is too smal!, ia is dominated by the data 
error which is now sensitive to small changes in a. On the other hand, if a is too large, ia is 
dominated by the bias which is now sensitive to small changes in a . The optimal a is obtained 
when the size of both norms is about equal. Hence, the L-curve and Quasi-optimality are alike. 
Morozov (1984) derives the Quasi-optimality equations as follows. Let i al be the solution of 
the minimisation problem 

min IIAx - YII~ + allx - xoll~ 
a 

where Xo is an initial guess, e.g. Xo = O. Furthermore, let i a2 be the solution of 

min IIAx - YII~ + allx - ialll~· 
a 

The two consecutive solutions i al and i a2 are related as 

i al (ATpA + aKt1(ATpy + aKxo) 
i a2 (ATpA + aK)-l(ATpy + aKial) 

i al - a(ATPA + aK)-l(xo - i"J 
A di" 
X"l - ad;; 
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The latter equality can be checked by straightforward ca1culation. The optimal value of a 
is obtained by minimising the change from one solution to the next, that is, alldiajdall is 
minirnised. 

3.3 Quasi-solutioos 

The third parameter choice mIe considered is the method of Quasi-solutions. The regularisation 
parameter a is chosen such that the solution X" satisfies 

Ilx" 11 2 
= c

2
, 

where c is some a priori norm bound on the signal x. Because x" are the potential coefficients, 
c can be determined with Kaula's mIe for the Moon's gravity field. Numerically, the regular
isation parameter can be obtained by Newton iteration, Press et al. (1992). In practice, one 
solves 

z(a) = Ilx,,11 2 
- Rc2 < ê 

with R E 1R+ to sc ale the power and ê same small number. 

4 Quality assessment 

The quality assessment of the computed solution is an important task in gravity field modelling. 
It is, however, also a difficult task since none of the quality assessment methods is capable of 
describing the 'quality' in all circumstances. It matters whether one wants to use the gravity 
field model, for example, for orbit determination or for selenoidJgeoid determination. The latter 
requires global quality measures while the former does not if one is interested in the orbit of 
one specific satellite. Furthermore, quality assessment is hampered by the fact that model errors 
exist and that the solution is biased. 

This paper is concerned with global quality measures. The measures make use of the gravity 
field solution, and the estimated errors of the coefficients are propagated to selenoid errors. The 
contribution of the observations to the solution, signal-to-noise ratio, bias-to-noise ratio, etc. are 
measures for the coefficients themselves and will be briefty discussed hereafter. 

4.1 Meao square error matrix 

The mean square error matrix is introduced as a measure of the error in lunar gravity modeis. 
Since the solution is biased, it has two parts: the propagated error Qx and the squared bias. 
For the same reason, it is also considered a more realistic error measure than the more com
monly used variance-covariance matrix. Nevertheless, effective use of the mean square error 
matrix requires reliable estimation of the solution bias, a problem mentioned in Section 2. Error 
propagation yields, compare Eq. 4, 

(7) 

The mean square error matrix MSEM is therefore 

MSEM = Qx + óxóxT (8) 

with the bias term given by Eq. 5. Identical to the case of error variance-covariance matrices for 
unbiased estimators, the MSEM may be subject to error propagation, for example to selenoid 
height errors or to gravity anomaly errors, cf. Haagmans and van Gelderen (199\). 
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4.2 Ratio measures 

The size of the estimated coefficients with respect to their uncertainty indicates how wel! a 
certain coefficient is resolved. This is called the signal-to-noise ratio (SNR) and is defined as 

SNRlm := IKlml 
(Jlm 

with Klm the estimated coefficients and (Jlm their uncertainty, which is the square root of the 
corresponding diagonal element of the MSEM. Ideally the SNR is larger than one for each 
coefficient, in which case there is more signal than noise. 

A second ratio measure is the bias-to-noise ratio (BNR). One could use 

BNR '= [8x8x
T

llm 
lm · [Qxllm 

or BNR := trace(8x8xT )/ trace(Qx)' Ifthe BNR is smal!, this means the bias can be neglected. 
Finally, it might be interesting to look at the bias-to-signal ratio (BSR): 

l
c5xlm

l 
BSRlm := Klm . 

The larger the BSR, the smaller the signal with respect to the bias. 

4.3 Contribution measures 

It is rather straightforward to derive that the regularised solution, Eq. 4, is also the solution of 

( 
y' ) ( A ) ( y' ) ( p-

1 
0 ) E{ z } = I x, D{ z } = 0 [aKl-l 

with z = 0, that is, zero observations for all unknowns. If E {O} = x holds true, the solution 
is unbiased and the error covariance matrix is Qx = (ATpA + aK)-l. The contribution of the 
observations to the solution of the unknowns is now defined as 

contTy := QxQ;,~ = (ATpA + aK)-l ATpA (9) 

where Q;,~ is the least-squares normal matrix. The diagonal elements of contTy E {O, I}. 
Zero means that the observations do not contribute to the determination of the unknown, i.e. 
all information comes from the constraint, whereas a unit value imp lies that the observations 
completely determine that specific unknown. Eq. 9 equals the gain matrix in Kalman filtering. 
It can be shown that the diagonal elements of Eq. 9 equal 

contTYi = 1 - [Qxlii . [aK]ii, 

compare Bouman (1997). Numerically, this is an easy and stabIe computation. 
A contribution measure for biased solutions has been developed by Bouman (1997): 

contTy := MSEM x MSEM-t,=o (10) 

(ATpA + aK) - l(ATpA + a 2 K xxT K)(ATpA + aK)-l ATpA. 

Eqs. 9 and 10 are equal if K- 1 ~ diag(xxT ) for a = 1 and neglecting the off-diagonal terms 
of xxT . Note that the diagonal elements of Eq. 10 may become larger than one due to the 
bias term. It is, therefore, somewhat more complicated to interpret contTy. Furthermore, three 
matrix multiplications are involved, yielding greater sensitivity to numerical round-off errors. 
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Fig. 1. L-curve results for GLGM-2 nonna! matrix. The minimal 'Ij; is easily found (Jeft), whereas the 
L-shape is less c1early present (right). The optimal a is found to be 0.545 x 10-8 , corresponding to a 
Kaula mie of 13545 x 10-5 /12 . 

5 Results and discussion 

5.1 Parameter choice rules 

5.1.1 GLGM-2 

Quasi-solutions. The method of Quasi-solutions did not give any reasonable regularisation 
parameter. For the GLGM-2 case the method proved to be extremely sensitive to the choice of 
the scaling parameter R . The Newton iteration only converges for a small range of Rvalues. 
Taking R, for example, 10% larger or smaller resulted in divergence. Even when the iteration 
converged, the final regularisation parameter was of the order 1015 or larger, and therefore 
useless. Our conclusion, therefore, is that the method of Quasi-solutions is not suitable for 
GLGM-2 regularisation. Although the method may seem an attractive parameter choice mie 
at first sight, it turns out to be of no value. The problem of selecting a proper (r~gularisation 
parameter shifts to the problem of choosing a proper scaling parameter R for the signal bound. 

L-curve and Quasi-optimality criterion. The regularisation parameter a estimated by the 
L-curve method, Fig. 1, amounts to 0.545 x 10-8 , which corresponds to a Kaula mie of 
{CIm , Slm} rv 0 ± 13545 x 10-5/[2. Clearly, this is a much more relaxed constraint (by a 
factor rv 900) than what has been applied in GLGM-2. The Quasi-optimality criterion, on the 
other hand, predicts an even slightly smaller Ct, but the method fails to produce a clear minimum 
for the di stance (in the functional space) between two neighbouring x'" 's. 

The a as found by the L-curve method has been applied in an inversion of the GLGM-2 
norrnal equation to produce a fictitious new lunar gravity model depicted in terrns of selenoid 
heights and corresponding selenoid height errors from the propagated covariance matrix in Fig. 
2, which are both shown in Hammer projections centered at 2700 longitude, such that the near
side is depicted on the right hand side of the plot, and vice versa, the entire far-side is shown on 
the left hand side of the plot. Fully white areas in the selenoid height plots are oft the scale. 

Two main conclusions may be drawn from these plots: first, the L-curve and Quasi
optima!ity methods are not methods for the prediction of the gravity coefficient power, i.e. 
they are mathematical optimisation methods for the total error based on the observability of 
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Fig. 2. Selenoid heights on the basis of the GLGM-2 nonnal equation, solved by optima! regularisation 
according to the L-curve method (top), and the corresponding selenoid height errors from the propagated 
error covarianee matrix (bottom). The global nns of the errors amounts to 4699 m. 
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each coefficient (which depends primarilyon the data coverage, observation type, orbit charac
teristics, etc.). The methods seek to balance the regularisation error with the Gata error, while 
at the same time remain as close as possible to the true inverse. Such a small a therefore yields 
truly large selenoid errors in areas with no measurements. The fact that lunar gravity solutions 
from Earth-based Doppier measurements depend for a large part on the constraint, implies that 
these methods optimise the recovery of the gravitational potential only in areas largely covered 
with measurements. 

Therefore, while the error plot depicts realistic errors in a modem lunar gravity model, no 
guarantee is given for the global usefulness of the solution obtained in terms of selenophysics or 
satellite orbit modelling. That is, none of these direct methods for the estimation of the optimal 
regularisation parameter is able to ensure solid estimation of global basis function parameters 
based on near-side data only. Evidently, some realistic power constraint, either in the form of I) 
agiobal coefficient Kaula mIe, or 2) some selenographical constraint adding fictitious measure
ments in far-side and high-latitude areas, needs to be applied. The former is the traditional way, 
but it also carries the propertY of smoothing where smoothing is not wanted. For present-day 
solutions, this argues in the favour of the selenographical type of constraint, and this should 
be investigated and compared to the Kaula rule in the near future. Both these latter methods 
will suffer from a truly large bias, but find their merit in the fact that they are able to produce a 
solution suitable for geophysieal interpretation and orbit deterrnination. 

It deserves mentioning that in the Case of GLGM-2 the size of the harmonie expansion is 
extreme compared to the actual information available in the tracking data, compare Section 5.3. 
For a much smaller expansion, e.g. 15 x 15, the overall parameter observability is significantly 
better, and the derived selenoid error will accordingly be much smaller. Moreover, the L-curve 
method and the Quasi-optimality criterion have been tested for cases with reduced data errors, 
or similarly, improved data coverage, Bouman (1998), and have proven their ability. 

5.1.2 SST 

Given the fact that knowledge of the gravity field of the Moon is a necessary tooi and sometimes 
a boundary constraint for a number of other lunar sciences, overcoming the present problems in 
lunar gravimetry remains one of the highest priorities in lunar science, Lemoine et al. (1997). 
Currently, one satellite mission to the Moon is intended to carry a instrument for inter-satellite 
tracking between a mother spacecraft and a sub-satellite, SELENE Project Team (1996). In 
view of these on-going mission preparations, the L-curve method has furthermore been applied 
in the analysis of the required regularisation for gravity field solutions derived from satellite
to-satellite tracking data. The gravity field solutions investigated here are all 70 x 70 spherical 
harmonics expansions. 

To this end, several cases of 2-way low-low SST have been studied, all flying at 100 km 
altitude, but with varying inclination, and, hence, pol ar gaps. The investigated inclinations are 
90°, 85° and 80° . Tandem configurations, i.e. configurations with purely a separation in mean 
anomaly of 3°, or a spacing of rv 100 km are chosen, although it may be proven that so-called 
en echelon, or butterfly, configurations will outperform the more simple tandem in terms of esti
mation error. The assumed tracking precision is 0.1 mmls range-rate. Relatively sparse ground 
tracking, range and range-rate from two ground stations, at 3 mand 0.3 mmls weights is further 
necessary for orbitdetermination. The gravity field solutions, however, are largely dominated 
by the SST link. All solutions, i.e. one for each inclination, are combined solutions from 4 
one-week arcs, with one state-vector and one solar radiation pressure coefficient estimated per 
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Fig. 3. L-curve results for an SST-based gravity field solution at 85° inclination. No obvious minimum 
is found for 'l/J, and the L-curve remains flat. 

week, in addition to the potential coefficients. 
Fig. 3 shows that with respect to the pure least -squares solution the reduction in data error by 

regularisation does not compensate for the increase in bias. The 1jJ(a) curves exhibits no clear 
minimum, and the L-curve remains in the flat region. Hence, from an L-curve point of view, 
regularisation is not required in this case. Nevertheless, it is expected that further expansion of 
the harmonic series, e.g. up to degree and order 120, wil! show an increase in data error, and 
hence increase the demand for regularisation. This work is stil! on-going. 

5.2 Bias computations 

5.2.1 GLGM-2 

In biased estimation one is confronted with the problem of determining the true value of the 
coefficient biases. The aim is evidently to establish some sort of measure for the true effect of 
regularisation on the estimated spherical harmonics expansion. When, as in the present case 
of GLGM-2, the coefficient solutions are significantly biased, applying these solutions in bias 
computations wil! lead to severe underestimation of the bias. This is il!ustrated here, where the 
GLGM-2 bias is computed for two cases: one in which the coefficient bias is directly applied, 
and one in which the bias is computed based on the sign of the GLGM-2 coefficients, but the 
amplitude is based on Kaula's rule, 15 x 10- 5/ [2, a case further referred to as the case of 
synthetic bias. 

For GLGM-2, it is seen from Fig. 4 that the case of a synthetic bias, which is considered 
a realistic bias estimate, by far exceeds the coefficient solution for a vast range of harmonics. 
This may be seen as yet another proof that the satellite tracking data incorporated in GLGM-2 
do not contain enough information to determine such a large spherical harmonics expansion as 
GLGM-2. In the case of simple coefficient biases, the bias-to-signal ratio wil! tend to unity for 
the higher orders, simply because the coefficients are ful!y determined by the Kaula constraint. 

5.2.2 GLGM-2 regularised by the L-curve metod 

The bias-to-coefficient ratios have also been determined for the fictitious solution of the GLGM-
2 normal equation system, with the regularisation parameter a as determined by the L-curve 
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eSR for GLGM-2, coefficlent bias 
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Fig. 4. Bias-to-signa! ratios for the ëlm parameters in the GLGM-2 normal matrix. The coefficient biases 
are on the left, and the synthetic biases on the right. The BSR of the Slm coefficients are similar. 

eSA for GLGM-2, l-curve a, coefficient bias eSR for GLGM-2, L-curve a, synthetic bias 

10 20 30 40 50 60 70 w m ~ 40 50 60 m 
degree degree 

Fig. 5. Bias-to-signal ratios for the ë1m parameters in the GLGM-2 norma! matrix, with the regulari
sation parameter a determined by the L-curve method. The coefficient biases are on the left, and the 
synthetic biases on the right. The BSR of the Slm coefficients are similar. 

method, i.e. a = 0.545 x 10-8 . 

Figure 5 shows that, because the bias is very smal!; both for the case of pure coefficient 
biases as weIl as for the case of synthetic biases, the bias-to-signal ratios remain smal!, and 
effectively, the effect of the bias on the gravity field solution remains small. Nevertheless, also 
in this case, there is a substantial difference, up to several orders of magnitude, between the 
coefficient bias case and the synthetic bias case. 

5.3 Information content 

5.3.1 GLGM-2 

Signal-to-noise ratio, no bias. Assuming that the solution is unbiased, the square root of the 
diagonal elements of (ATpA + aK)-l are the standard deviations of Klm. Their ratio is plotted 
in Fig. 6, the power indicates the number of significant digits aspecific coefficient has. It is 
c1ear that most of the coefficients are weIl bel ow the measurement noise. 
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70 10 70 10 

, 

60 60 

50 
10 ' 

50 
10' 

~ 40 
i' 

40 
~ ~ 
t! .. ' t! 
0 0 

30 30 

10 
, 

10 ' 

" .. ~'\. ... '" 20 

10 "re":; 
.1"'\,"" 

10 
0 ~~'" 

10
0 o ' 

50 60 70 10 20 30 40 50 60 70 
degree 

Fig. 6. Signal-to-noise ratio for GLGM-2, no bias (left) and L-curve 0' (right). Shown is the SNR of the 
ëlm coefficients. 
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Fig. 7. Signal-to-noise ratio for GLGM·2, coefflcient bias (left) and synthetic bias (right). Shown is the 
SNR of the ëlm coefficients. 

This situation is even worse for the L-curve 0', Fig. 6. Although the coefficients have more 
power compared to the original GLGM-2 solution, the error increases as weIl, and this increase 
apparently overwhelms the coefficient power increase. The bias has been neglected since it is 
smal!, Fig. 5. 

Signal-to-noise ratio, bias. The expected errors of Klm are the diagonal elements of Eq. 8. 
The ratio I Klm I/alm has been plotted in Fig. 7 for the coefficient and synthetic bias respectively. 
One sees that the synthetic bias approximately yields the same results as the unbiased case, 
while the coefficient bias seems to be too optimistic. 

Therefore, it is concJuded that using the unbiased assumption does not influence the SNR 
compared to the unbiased case, as long as the bias estimate is 'correct' . The tme bias is un
known, however, which one should realize interpreting any statement concerning the quaJity. 

Contribution, unbiased case. The contribution of the observations to the original GLGM-2 
solution is depicted in Fig. 8. The results for the Slm coefficients are not shown since they are 
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contribution for GLGM-2. a = 1/15' contributlon tor GLGM-2, a = 1/135452 

Fig. 8. Contribution of the.. observations to the original GLGM-2 solution, a = 1/152 (left) and the L
curve solution, a = 1/135452 (right). Shown are the Gim coefficients, the Slm coefficients are similar. 

similar to the Gim coefficients. It is clear that only the coefficients up to degree and order 15 
have an observation contribution larger than 50%. With the exception of the sectorial terms, 
the contribution quickly drops to low levels. This means that these cOefficients can hardly be 
recovered from the measurements and are likely to be biased. 

As the regularisation parameter determined with the L-curve is much smaller than the orig
inal a , the contribution of the observations is expected to be much larger. This holds true 
indeed, Fig. 8. The minimum contribution is 35%, and approximately 68% of the coefficients 
has a contribution larger than 50%. 

Contribution, biased case. Using the contribution measure, Eq. 10, for the biased case is for 
several reasons not trivial: I) The bias has to be estimated, which is not straightforward, i.e. the 
choice of the ~ias will affect the computation; 2) The contribution can become both larger than 
100% and also negative, which is difficult to interpret. On the theoretical side, the bias term of 
Eq. 10 destroys the symmetry of the matrix. Furthermore, for the same reason, it is not trivial 
to prove that the diagonal elements are necessarily positive, nor that the overall contrymatrix is 
positive (semi-)definite. Numerical round-off errors, due to the involved matrix multiplications 
mayalso play a part. 

Therefore, it is concluded that although the contribution measure (10) for biased estimates 
is equivalent to Eq. 9 for unbiased estimators, further research is required to understand its 
behaviour and interpretation. Results are therefore not shown. 

5.3.2 SST 

Signal-to-noise ratio. The signal-to-noise ratio for a satellite-to-satellite tracking mission with 
an inclination of 85 degrees is shown in Fig. 9. Compared to the GLGM-2 solutions, the 
improvement is dramatic. Almost all coefficients can be determined. The current solution is a 
least-squares solution, there is therefore no bias. These results show that from an SST mission, 
coefficients above degree and order 70 may be determined as weil, as the SNR still is greater 
than one. However, sol ving for higher degrees yields unstable solutions and again regularisation 
will be necessary. 
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10 20 30 40 50 60 70 
degree 

Fig. 9. Signal-to-noise ratio for SST, inclination is 850
• Shown is the SNR of the Cim coefficients. 

Contribution. Obviously, the contribution is 100% for all coefficients of a l.s. solution. 

5.4 Error propagation 

Error variance-covariances as weil as mean square error matrices are propagated to formal errors 
in se1enoidal undulations for both GLGM-2 and the SST-based solution .. 

5.4.1 GLGM-2 

The propagated error covariance for GLGM-2 in terms of selenoid heights is shown in Fig. 10, 
yielding an overall rms value of 15.59 m. Taking the bias contribution into account as weil, 
one obtains Fig. 11. For the coefficient bias case, the overall rms error amounts to 8.35 m, 
notably smaller than what results for the pure covariance propagation, while the synthetic case 
yields an rms value of 11.97 m. On the other hand, the synthetic bias, likely to represent a 
more realistic measure of the true bias, yields a larger error extremes in the selenoid than does 
the error covariance, with differences up to a factor of 3.5. The overall rms value remains 
lower, however, due to the fact that a large portion of the far-side exhibits smaller errors. Such 
behaviour is explained by the bias term. For some coefficients the bias is positive, while for 
others it is negative. It is therefore not evident that the use of the MSEM instead of the error 
covarianee necessarily leads to larger formal selenoid errors. Xu (1992) reports similar results 
for geopotential estimation from satellite gravity gradiometry, and also shows that the degree
wise contribution to the error may increase or decrease depending on the choice of the bias. 

Furthermore, the similarity between covariance-based and MSEM-based selenoid errors is 
less evident from the synthetic bias. In this case, the error appears more scattered, which may be 
explained from the use of sign according to the model, but amplitudes coming from the Kaula 
rule. 

5.4.2 SST 

The L-curve results for the SST-based solutions, Section 5.1.2, all showed that no regularisation 
is necessary for incIinations in the range of 900 ± 100

, when Iimiting the spherical harmonies 
expansion to 70 x 70. As an example, the L-curve was depicted for the 850 incIination case, Fig. 
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Selenoid Height Errors From GLGM-2 Covariance (m) 

O' O' 

_'I i i i i i i i i i 
10 12 14 16 18 20 22 24 26 

Fig. 10. Fonnal errors in selenoidal heights based on the GLGM-2 error covarianee matrix. 

3. For the same case, the error covariance is here propagated to se1enoid errors, Fig. 12. As no 
model errors are considered in the present research, this represents the limit case of the achiev
able accuracy from 4 weeks of satellite-to-satellite tracking, i.e. roughly two global sweeps 
of the Moon surface (ground track spacing is only about 10 due to the slow lunar rotation). 
The overall rrns error amounts to 0.48 m, which proves the enorrnous benefit of the SST-based 
solutions above solutions derived from more conventional DoppIer observations collected by 
deep space antennae. Compared to the current situation, SST may improve our knowledge of 
the lunar potential by several orders of magnitude and also relieve lunar science from its strict 
dependence of a priori power estimates. Furtherrnore, the quality dichotomy between the far
side and the near-side is reduced to simply the small additional contribution of the Earth-based 
DoppIer observations. 

6 Conclusions 

The fundamental problem in lunar gravity field modelling - the lack of agIobal satellite tracking 
data set - seriously affects the quality of the solutions derived till date. Downward continuation 
appears to be Ie ss of a problem for spherical harmonics expansion up to degree and order 70 x 70, 
since the SST-based solutions do not require much regularisation and because the orbits of Moon 
orbiting spacecraft may be very low, down to 50 - 100 km. 

Solving for a full 70 x 70 solution from the tracking data of the GLGM-2 model is only 
possible through the use of a true coefficient power constraint. The altemative methods pro
posed in this paper, the L-curve method and the Quasi-optimality criterion predict a very small 
regularisation parameter, and hence yield gravity field solutions with km-level selenoid errors in 
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Selenoid Height Errors trom GLGM-2 MSEM (m) 

O· O· 

i i i i i 

Selenoid Height Errors From GLGM-2 MSEM (m) 
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,- , i i i 

Fig. 11. Fonnal errors in selenoidal heights based on the GLGM-2 MSEM, using the coefficient biases 
(top), and using a synthetic bias, where the sign is taken according to the GLGM-2 solution, but the 
amplitude from Kaula's rule (bottom). 
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Selenoid Height Errors From SST-based Solutlon (m) 
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Fig. 12. Formal errors in selenoidal heights based on the error covarianee matrix of the SST-based gravity 
field solution at i = 850

• 

areas not covered with spacecraft observations. The heuristic regularisation parameter estima
tion algorithms are cIearly not intended to predict the realistic power in gravity field solutions 
extended far beyond what is available in the tracking data, but merely balance the observation 
error with the bias the analyst introduces by regularisation. The L-curve solution moreover 
shows that the derived selenoid is selenophysically meaningful in areas covered by measure
ments only, which leads to the concIusion that the estimation of fully global basis functions, up 
to such high degree and order, is not possible. 

The mean square error matrix is advocated as a more realistic quality measure than the sim
ple error covariance matrix, as it also contains the bias contribution. A problem is, however, 
the estimation of the true solution bias, as a bias estimate on the basis of the biased coefficient 
solution always is too optimistic. The use of synthetic biases, based on a Kaula rule, neverthe
less appears to give more realistic formal errors, and exceed those coming from the pure error 
covariance by a factor of two in the case of GLGM-2. 

7 Further work 

The heuristic regularisation parameter estimation methods will be applied to gravity models 
derived from Lunar Prospector tracking, for example LP75G. Moreover, it will be interesting to 
apply the L-curve and Quasi-optimality methods to extended SST-based gravity field solutions, 
for example a solution up to degree and order 120. Finally, it might be worthwhile to investigate 
iterative methods for regularisation parameter estimation, as a complement to the heuristic and 
a posteriori methods investigated thus faro 
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boundary value problems * 
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Abstract 

Current high resolution geopotential models of the Earth are based on a combination of satellite 
and terrestrial data. Satellite data are well-suited to recover the long-wavelength features of the 
geopotential up to some degree N, whereas terrestrial gravity and height data fix the medium 
and short wavelengths. Usually, the recovering of the medium and short-wavelengths from 
terrestrial data is fonnulated as a boundary value problem (BVP) for the difference between the 
Earth's geopotential and the long-wavelength geopotential model as derived from satellite data 
commonly referred to as the disturbance potential. Since a number of geopotential coefficients 
of the satellite model cannot be improved by terrestrial data, we should fix them when sol ving 
the BVP. Then we are faced with a constrained (overdetermined) BVP for the Laplace equation. 

This has implications for the representation formula and/or the choice of the trial & test space 
in Galerkin boundary element methods. 

We con si der multipole representation , modified kemel functions, and modified trial spaces. 
The latter are the best choice for theoretical and numerical reasons. We propose a general 
method to construct a system of base functions that fix an a priori given set of geopotential 
coefficients. In addition, we address the problem of compression rates and stability, which 
implies the use of multiscale base functions. Various implementations are tested and compared 
for the altimetry-gravimetry 11 BVP. 

1 Introduction 

The recovery of the geopotential from terrestrial data is usually formulated as a geodetic bound
ary value problem (GBVP). After linearization around a suitable approximate solution, the 
problem is fonnulated in tenns of the disturbing potential as a linear exterior boundary value 

• Presented at the IV Hotine-Marussi Symposium, 14-17 September, Trento, Italy, 1998 
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problem (BVP) for the Laplace equation: 

6.U(x) = 0 x E ext r 

(BU)(x) = g(x) xE r 
U(x) = O(lxl-1

) lxi ~ 00 

(1) 

(2) 

(3) 

U denotes the disturbing potential, B a linear differential operator of order::; 1, and g is a 
given function on the boundary r. See (Heek 1997) for details. The long wavelength part of 
the geopotential, however, cannot be precisely deteemined from terrestrial data mainly due to 
the inhomogeneous data distribution. This part of the spectrum is much better inferred from 

satellite data, and the result is usually expressed in teems of a series expansion in outer solid 

spherical harmonies of the geopotential up to a maximum degree and order. In teems of the 
boundary value problem foemulation with terrestrial data this means that at least a subset' of 
the expansion coefficien~s describing the long wavelength part of the geopotential cannot be 
improved, and any contribution of the solution of the BVP to these teems is likely to be purely 
noise or reftects discretization and approximation errors. Therefore, these coefficients should 

better be fixed to their values derived from satellite data. 

Fixin~ to zero of certain expansion coefficients is also necessary in order to guarantee ex
istence and uniqueness of the solution of some GBVPs. For instanee, the vector Moloden
sk:,r problem requires that no teems of order 1 are present in the disturbing potential, and the 
altimetry-gravimetry I, 11 BVPs require that the zero-order term is not present (Sacerdote & 
Sanso 1987). 

For this reason, we have to impose additional contraints to the solution of the BVP, which 

ensures that the disturbing potential is orthogonal to a set of in total M surface spherical har

monies on a Brouillon sphere with radius R: 

6.U(x) =0 xEextr 

(BU)(x) = g(x) x E r 

1. U(x) Yijffij (x/R)dSR(x) =0 j=l. .. M 
XESR 

U(X) = O(lxl-1
) lxi ~ 00 

(4) 

(5) 

(6) 

(7) 

If the set is complete up to degree L, equations (6)-(7) simplify to the stronger decay condition 
U = O(lxl-L- 2). 

The usual practice in geodesy is to solve the constrained BVP (4)-(7) locally by ignoring 
far-field data and implicitly assuming that these data do not violate any solvability condition. 

This may cause a bias in the solution with a long-wavelength pattem. 
The aim of this contribution is to include in one way or another constraints of this type in 

the Boundary Element Method (BEM) approach to GBVPs. This would all ow (i) to include 
satellite geopotential modeis, and (ii) to ensure well-posedness of the BVP and the numerical 
scheme. 
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2 Generalized BEM setting 

In order to reformulate the BVP as integral equation over the boundary we first of all have 

to choose a proper representation of the solution of the BVP in terms of layer potentials with 

density u: 

U(x) = r K(x, y)u(y)df(y) , x Eextf 
lYEr 

(8) 

Af ter inserting the representation into the boundary condition and observing the corresponding 

jump relations we usually end up with a second kind integral equation for the layer density u: 

Au := À(x) u(x) + Ir u(y) k(x, y) dr(y) = f(x), xE f (9) 

The Galerkin method is the proper discretization method to (9). It provides an approximation 
to the weak form of the integral equation Au = f: Given a den se sequence {VN }~=o of finite 
dimensional subspaces of L 2 (f), we solve 

(AuN, v) = (1, v), \j v E VN (10) 

More details on BEM can be found in (Hackbusch 1995), special topics relevant to geodesy are 
treated in (Klees 1997, Lehmann 1997). 

l.From the standard theory of BEM it is known that continuity, Garding inequality, and 
injectivity of the operator A ensure the unique solvability of this system, provided that N is 
sufficiently large. However, in our case the standard theory is not applicable to the weak form, 

since the operator assigned to the constrained BVP (4)-(7) wil! not be injective on L2 (f). There 

are various possibilities how to solve this problem: 

(i) We choose a representation formula that fulfils by definition the constraints (6). For instanee, 

if the set of constraints is complete up to degree and order L , a multipole representation 
of order L fulfils the constraints, which in this case are equivalent to the stronger decay 

condition U(x) = O(lx l- L
-

2
) as lx i --t 00: 

1 r 8L+I ( 1 ) 
U(x) = 47r lyEr u(y) 8n(y)L+I Iy _ x l df(y) (11) 

(ii) We modify the kemel of a classical representation formula such that the constraints (6) are 

fulfilled. When applied to the Stokes' kemel this procedure is known in geodesy as the 

modified Stokes ' kemel approach. For instanee, when assuming that the set of constraints 

is complete up to degree L we may modify the single layer kemel by subtracting the first 

L+ 1 terms of a series expansion in outer solid spherical harmonies of the inverse distance. 

1 r (1 ~ Iyll ((X, y))) 
U(x) = 47r lyEr u(y) Iy _ xl - "'20 lx iI+! PI Ixllyl dr(y) (12) 
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(iü) We incorporate the constraints (6) into the weak formulation by penalization with a La
grange multiplier. This approach is discussed by (Klees et al., these proceedings) in 
another context and will not be considered here. 

(iv) We directly impose the constraints to the trial space VN resulting in, what we eaU, the 

modified trial space VNo This approach is not trivial, since we first have to express the 
constraints on U into corresponding constraints on u, which, of course, results in a kind 
of orthogonality condition for u w.r.t. some globaUy supported functions on f, which 
span a linear space, say, N. Then, we have to construct a basis of the modified trial space 
VN := VN n N 1. , which, due to the dimension of VN, is not trivial from a numerical point 

of view. Moreover the basis should be stabie. This is the approach we want to focus on 

in the next section. 

3 The modified trial space approach 

The modified trial space approach is based on a proper weak formulation of the integraI equation 
and a Galerkin discretization. In order to do that we first have to find an equivalent formulation 

of the constraints on U in terms of the layer density U. For the single layer density we can 

easily show that the constraints on U are equivalent to the orthogonality of the single layer 
density u to the restrictions to the boundary of the set of homogeneous harmonie polynomials, 
{H1jmj : j = 1 .. . M}: 

(13) 

Therefore, a proper weak formulation of the integral equation Au = f must be given in terms 

of a subspace of codimension M of L2 (f), namely the space L2 (f) nN 1., where N is the linear 

space spanned by the set {Hljmj Ir : j = 1 .. . M}. The corresponding approximate solution is 

uN E VN nN1. (AuN,v) = (f,v) v V EVN nN1. 

In order to construct a basis of VN we remember the definition of the modified trial space: it 
consists of functions from VN that are orthogonal to N . Therefore, if the set {bi: i = 1 ... N} 
span VN , and the set {H1jmj Ir : j = 1 . .. M} span N, and if H is the matrix defined by 

H = (Hji) with Hji = (bi, H1jmj Ir)' i = 1 ... N , j = 1 . . . M, (14) 

then a basis of VN is given by a basis of the nullspace of H. That means we have to find a 
N x N - M matrix B such that HB = O. The solution B is by far not unique, and we may 
use the degrees of freedom in order to choose a B with some desirabie properties such as easy 
computability, sparsity, i.e., small support of the base functions, optimal compression rates, and 

stability. In the foUowing we outline the construction of various special solutions to HB = 0, 
which have different properties: 

(i) We apply a Gauss-Jacobi elimination to H, which transforms H into its Hermitian normal 
form 
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where K is a M x N - M matrix and I is the N - M x N - M identity matrix. Since 
BHN is obviously sparse the base functions spanning VN have local support. However, 

the supporting panels do not border each other, which lowers the compression rate during 

the matrix assembly considerably. 

(ii) By predefining the sparsity pattern of B, we can force the new base functions to have 
contiguous support, which is important from a numerical point of view in order to all ow 
compression of the system matrix by truncation. We have designed an algorithm, which 
provides such a basis automatically, but we want to skip the details. We call this basis a 

single scaJe basis, and denote the corresponding matrix with Bss. 

(iii) Instead of a single scale basis we may use a multiscale basis, which is likely to behave 
more stabie than a single scale basis, which would provide better condition numbers for 
the system matrix as the discretization becomes finer. For instance, second generation 
wavelets may be used as base functions (see Schneider 1995, Kleemann et al. 1996). The 
associated matrix is called B M S . 

4 Numerical study 

We tested and compared the methods described before for the altimetry-gravimetry TI BVP in 
spherical and constant radius approximation: 

6U(x) = 0 

au 
-ar(x) = Óg(x ) 

(
au 2) -- - -u (x) = 6g(x) ar R 

U(x ) = O(lxl-2
) 

xE ext SR 

x E S~ 

lxi -+ 00, 

(15) 

(16) 

(17) 

(18) 

where SR is the sphere with radius R, S~ is the sea part and S~ the land part. However, we 
want to stress that our numerical approach does not take any advantage of this simplification. 
Note the stronger decay condition (18), which forces mass conseration, and, at the same time, 
ensures uniqueness, but in general not existence. We assume that a reference field up to degree 
zero is known, i.e., we force the disturbing potential to have no zero order term, which means 
physically mass conservation. We use a single layer representation formula for the disturbing 

potential. The sphere is triangulated into an equiangular grid with N paraBels. On each grid 

cell we use a piecewise constant approximation to the single layer density, which implies that 
the (unmodified) trial space VN consists of piecewise constant functions defined on the trian
gulation; its dimension is N = 2N2• The modified trial space VN then consists of piecewise 
constant functions that are orthogonal to the restriction to the sphere of the zero order homo
geneous harmonic polynomial, i.e., to the surface spherical harmonic of degree zero. It has 

dimension N - 1. The weak form of the integral equation has been discretized by the Galerkin 

method. The following methods have been investigated: 
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Table 1. Condition number of the stiffness matrix 

stiffness matrix N=8 N = 16 N =32 
N= 128 N = 512 N = 2048 

ordinary single layer kemel 

A: R N -t R N 34 2016 143 
modified single layer kemel 
Á: R N -t R N 3.0 3.1 3.1 
modified single scale trial 

ABss : RN
-

1 -t R N 125 481 1870 
modified multiscaIe trial 
ABMS : RN

-
1 -t R N 3.0 3.2 3.1 

modified multiscaIe trial & test 
B1sABMS : RN

-
1 -t R N

-
1 3.2 3.4 3.3 

(i) Unmodified trial space (ignoring the constraint!): 

A: RN -t RN AUN =f 

(ii) Unmodified trial space with posterior removal of the mass term: 

and afterwards mass conservation is forced by replacing UN with ÛN = UN- (UN, Hoolr). 

(iii) Modified trial space with single scale (B = Bss) and multiscale (Haar-) base functions 

(B = B MS ): 

B: RN
-

1 -t R N 

AB : RN
-

1 -t RN 

ABûN = f 
UN = BÜN 

(iv) Modified trial & test space with multiscale (Haar-) base functions (B = BMS): 

5 Results and discussions 

(B
T 

AB)üN = B T f 
UN = BÜN 

In a first test we investigated the condition number of the system matrix expressed as the ratio 

of the maximum and minimum non-zero singular value (TabIe 1). Obviously only the modified 

kemel approach and the modified multiscale basis systems seem to guarantee stability of the 
linear system. However, for the modified kemel this is only because the boundary surface is 

spherical. For non-spherical surfaces we expect a bad conditioning due to an almost zero sin

gular value. The modified single scale basis seems not to be stable since the condition number 
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Table 2. Sparsity of the truncated stiffness matrix in tenns of percentage of zero elements (5 valid 
decimal digits of the solution are guaranteed af ter truncation 

stiffness matrix N=8 N = 16 N =32 
N = 128 N = 512 N = 2048 

ordinary single layer kemel 
A: RN -t RN 0% 0% 0% 

modified single layer kemel 

Ä: RN -t RN 0% 0% 0% 

modified single scale trial 

ABss : RN
-

1 -t RN 0% 0% 1% 

modified multiscale trial 
ABMS : RN

-
1 -t RN 1% 11% 36% 

modified multiscale trial & test 
BItsABMS : RN

-
1 -t RN

-
1 5% 21% 56% 

becomes worse with finer discretization. This is what has to be expected for a single scale basis 

spanning the modified trial space. The relative1y large condition number for N = 16 in case of 

the unmodified single layer approach may reftect the non-uniqueness of the altimetry-gravimetry 

TI BVP if the zero-order term is still present. 

Next we investigated the sparsity of the system matrix after truncation, i.e., after replacing 

small entries by zeros such that about five valid decimal digits for the solution is guaranteed 

(TabIe 2). The sparsity is expressed in the percentage of zero elements of the truncated stiffness 

matrix. Obviously only the modified multiscale trial & test space (Haar wavelets) yields a 

significant sparsity of about 56% for N = 32. 
We also computed solutions of the altimetry-gravimetry 11 BVP and compared them with 

true values. In order to do so we did a simple numerical simulation: the sample potential is gen

erated by two point masses inside the sphere; the data have been computed without any noise. 

The linear system of equations have been ca1culated and solved for all methods. Thereafter, 

potential values at the centers of the grid cells have been computed from the approximated sin

gle layer density by integration over the boundary surface, and these potential values have been 

compared with their true values. 

Table 3 shows the maximum absolute, the mean absolute and the rms error for all tested 

methods. They are evaluated in terms of relative potential differences (true-computed) at the 

cènters of the grid cells. By far the best results are obtained by the modified trial space ap

proach. They are about one order of magnitude better than for the unmodified single layer 
approach. Surprisingly is that a simple posterior removal of the zero-order term improves the 

result by only a factor of two. Single scale and multiscale trial and trial & test space yieId 

comparable results. This is due to the rather coarse resolution (N ::; 32), which implies that the 

instability of the single scale basis does not show up yet in the results. For finer discretizations 

we expect a significant loss of decimal digits for the single scale basis. Conceming the numeri

cal test we want to emphasize that there are no short wavelength features in the boundary data 
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Table 3. Error statistics: re1ative potential residuals on the boundary surface (N = 32, N = 2048) 

linear system of equations maxi' I meanl'l rms 

ordinary single layer kernel 

AUN=f 0.0468 0.0186 0.0211 
posterior removal 

AUN = f , ÛN = UN - (UN, Hoolr) 0.0289 0.0081 0.0101 

modified single layer kern el 

ÄÜN =f 0.0184 0.0023 0.0041 

modified single scale trial 

(ABss)ÜN = f, UN = BSSÜN 0.0177 0.0008 0.0017 
modified multiscale trial 
(ABMS)ÜN = f, UN = BMSÜN 0.0177 0.0008 0.0017 
modified multiscale trial & test 

(BtsABMS)ÜN = Btsf , UN = BMSÜN 0.0179 0.0010 0.0018 

since the gravitational field is generated by two mass points in the deep interior of the sphere. 
Unmodelled short wavelength features may propagate differently into the solution for the var
ious methods we investigated. This can be one reason why the results for the various methods 
are that pronounced. 

6 Conclusions 

The most important conc1usion is that the benefit of using agiobal reference field in terms of 
accuracy is significant, even when a very low degree field is used. Not only discretization errors 
and far-field effects are suppressed, but also the well-posedness of the BVP can be guaranteed 
in some cases. Therefore, the method developed so far, e.g., the Haar multiscale basis, although 

by no means perfect, is already sufficient to guarantee well~posedness of some real GBVPs. 

As the various methods are concerned, we conc1ude that modified multiscale basis systems 
are superior to all other methods in terms of stability and accuracy. However, the construction 
of suitable multiscale base functions spanning the modified trial space is far from being trivia!. 
Currently, we have to limit to mass conservation for conceptual reasons, which is the most trivial 
constraint. The use of higher degree reference geopotential models requires the construction of 

multiscale bases that are orthogonal to the restrietion to the boundary of a set of homogeneous 

harmonie polynomials. This has still to be done. 
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problem* 
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Abstract 

When standard boundary element methods (BEM) are used in order to solve the linearized 
vector Molodensky problem we are confronted with two problems: (i) the absence of O(lxl-2) 

terms in the decay condition is not taken into account, since the single layer ansatz, which is 
commonly used as representation ofthe disturbingpotential, is ofthe order O(lxl-1) as x -+ 00. 

This imp lies that the standard theory of Galerkin BEM is not applicable since the injectivity of 
the integral operator fails; (ii) the N x N stiffness matrix is dense, withN typically of the order 
105. Without fast algorithms, which provide suitable approximations to the stiffness matrix by 
a sparse one with O(N . log" N), s ?: 0, non-zero elements, high-resolution global gravity field 
recovery is not feasible. 

We propose solutions to both problems. (i) A proper variational formulation taking the 
decay condition into account is based on some closed subspace of co-dimension 3 of L 2 (r). 
Instead of imposing the constraints directlyon the boundary element trial space, we incorporate 
them into a variational formulation by penalization with a Lagrange multiplier. The conforming 
discretization yields an augmented linear system of equations of dimension N + 3 x N + 3. 
The penalty term guarantees the well-posedness of the problem, and gives precise information 
about the incompatibility of the data. (ii) Since the upper left submatrix of dimension N x N 
of the augmented system is the stiffness matrix of the standard BEM, the approach allows to 
use all techniques to generate sparse approximations to the stiffness matrix such as wavelets, 
fast multipole methods, panel clustering etc. without any modification. We use a combination 
of panel clustering and fast multipole method in order to solve the augmented linear system of 
equations in O(N) operations. The method is based on an approximation ofthe kemel function 
of the integral operator by a degenerate kemel in the far field, which is provided by a multipole 

expansion of the kemel function. 
We demonstrate the potentialof the method by solving a Robin problem on the sphere with 

a nullspace of dimension 3. For N = 65538 unknowns the matrix assembly takes about 600 s 
and the solution of the sparse linear system using GMRES without any preconditioning takes 
about 8 s. 30 iterations are sufficient to make the error smaller than the discretization error . 

• Presented at the IV Hotine-Marussi Symposium, 14-17 September, Trento, Italy, 1998 
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1 Introduction 

The determination of the exterior gravity field of the Earth from terrestrial observations is usu

ally formulated in terms of a boundary value problem (BVP) for the Laplace-Poisson equation. 
Depending on the type of observations several boundary value problems can be defined. How

ever, af ter linearization around a suitable approximate solution all problems are more or less 

special cases of the exterior oblique derivative BVP for the Laplace operator; the boundary sur

face is either the Earth's surface, a suitable approximation to it like a telluroid or an ellipsoid of 
revolution. Numerical solutions of the linearized BVP are usually based on various additional 
approximation steps like, e.g. , spherical approximation and constant radius approximation. 

Here we consider Galerkin methods for integral equation formulations of the linearized 

BVP which avoid any of the aforementioned approximations. The price to pay for this is that 

the kemel functions are non-isotropic and the boundary surface is non-spherical. Therefore, 
the assembly of the linear system of equations becomes more elaborate; moreover, since the 
system matrix is dense, sparse sol vers cannot be used any more to solve for the huge number of 
unknowns. 

There is another aspect which has to be taken into account in the formulation of geodetic 

BVPs. Usually, the low frequency components of the geopotential are accurately obtained by 

satellite measurements. That means that a number of coefficients in the spherical harmonies 

series expansion of the geopotential is determined with a precision that cannot be improved by 
terrestrial data. This is accounted for in the formulation of the geodetic BVP in the form of 
additional constraints to the perturbation problem. The same holds if the geodetic BVP lacks 

well-posedness. For instanee, the vector Molodensky BVP requires the first order terms in the 

expansion of the geopotential in spherical harmonies to vanish in order to ensure uniqueness 

of the solution; for the same reason the Altimetry-Gravimetry 1 & 11 BVPs require that no zero 

order term is present. Finally, if the measured data is not in the range of the operator the problem 
may even not have any solution at all. 

Therefore, a numeri cal approach has to be designed that can handle these peculiarities of 
geodetic BVPs. As far as Galerkin methods to integral equations are concemed this implies the 

following questions: (i) how to properly handle the conditions that ensure well-posedness of 

the problem, (ii) how to properly include satellite-derived.geopotential modeis, and (iii) how to 

design a fast algorithm which is suitable for high resolution global geopotential recovery with 

a performance that is almost independent of (i) and (ii)? 

Our solution to (i) and (ii) is based on a new saddle point formulation which avoids to 

modify the trial and test spaces. The solution to (iii) is a fast algorithm that combines ideas of 

panel clustering and fast multipole methods, and which is easy to combine with the saddle point 

formulation . 
The outline of the paper is the following: We start with the formulation of our model prob

lem, which in terms of the problems (i)-(iii) is closely related to the geodetic situation. Then, 

we will briefly discuss its integral equation formulation and the proper weak formulation and 

conforming approximation in a modified trial space, see also Klees & Lehmann (cf. these pro

ceedings). Finally, we discuss the fast algorithm and demonstrate its performance based on a 

simple numeri cal study. 
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2 The mathematical model 

Our model problem reads as follows: Given a function f on the surface of the unit sphere 
r C ]R3; let n denote the unit norrnal vector field on r pointing into the exterior to r. We wish 
to solve the boundary value problem 

6 U(x) = 0 x E ext r 
U(x) + ('ï7U(x), n(x)) = f(x) xE r (1) 

U(x) = I ~ I + O(lxl-3
), lxi ~ 00 , c E ]R\{O} 

The homogeneous problem with f = 0 admits 3 eigensolutions which span the nullspace N. 
Since (1) is a regular elliptic boundary value problem, Fredholm's alternative holds. Thus, 
uniqueness implies existence, and the forrner requires that the data f satisfies 3 compatibility 
conditions, i.e., the data f must be orthogonal to the nullspace of the homogeneous adjoint BVP 
which, due to Fredholm's altemative, has dimension 3 as weil. Moreover, the problem has a 
unique solution U 1.. N if f satisfies this compatibility condition. 

The main difference between the model (l) and the linearized vector Molodensky problem is 
the spherical geometry and the boundary operator which involves the norrnal derivative instead 
of the oblique derivative. However, our approach does rely neither on the norrnal derivative 
nor on the spherical geometry of the boundary surface. In fact, the saddle point forrnulation 
and the fast algorithm are applicable without any modification for oblique derivative problems 
and non-spherical geometries, as weil. The decision to use the model (1) has been done for 
simplicity reasons. 

In order to reforrnulate the BVP (1) as an integral equation, we choose the single layer 
ansatz with kemel k(z) = (47l'I zl)-1: 

U(x) = 1 k(x - y) u(y) dr(y) , x E ext r 
yEr 

(2) 

where u is the unknown density function. Inserting (2) into the boundary condition (1) yields a 
weakly-singular boundary integral equation for the unknown density u: 

Au:= ~u(x) + Ir a~~(:)y) u(y)df(y) + Ir k(x - y)u(y)df(y) = f(x), x E f (3) 

The principal symbol of the integral operator A is positive definite, which implies that A is 
strongly elliptic. Moreover, it can be shown (Mikhlin and PröBdorf, 1986) that A is bijective 
from L2 (f) ~ L2 (f) . Notice, however, that the absence of the O(lxl-2)-terrns in the decay 
condition is not taken into account by (2) since the single layer potential is of order O(lxl-1) as 

lxi ~ oo . 

3 Weak formulation and approximation 

We use the Galerkin method in order to discretize the boundary integral equation (3). Note 
that we could use collocation as weil, but this would hot be the proper discretization method 
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for the linearized geodetic BVPs, where we usually have to deal with Cauchy-singular and 
hypersingular operators A. We consider the weak form of the integral equation (3): 

(Au , v) = (1, v) Vv E L 2 (r) , (4) 

where (-,.) denotes the L 2 (r) -inner product. The Galerkin method in abstract form reads: 
Given a dense sequence {VN }lY=o of finite dimensional subspaces of L2 (r) , find 

(5) 

Hence, for a given basis {bi , . .. , bN } of VN , we have to solve the linear system of equations 
Au = f where the stiffness matrix A and the right-hand side f are defined by 

(A) ij := (bi, Abj ), and (f)i := (bi , J), i , j = 1 .. . N. (6) 

It is known that continuity, Garding inequality, and injectivity of the operator A ensure the 
unique solvability of this system, provided that N is sufficiently large (Hildebrandt and Wien
holtz, 1964). However, in our case the standard theory is not applicable to the weak form, since 
the latter does not take into account the constraint U ...L N which means that the injectivity 
fails. Therefore, in order to make the standard theory applicable, the proper weak formulation 
of Au = f must not be based on L 2(r) but on some c10sed subspace of co-dimension 3 of 

L2 (r): 

(Au, v) = (J,v) Vv E L2(r) nN1. (7) 

The corresponding conforming approximate solution is 

(8) 

Therefore, we need the subspace N. In our case it is easy to show that the condition of van
ishing O(lxl - 2)-terms in the expansion of U is equivalent to the orthogonality of the density 
u to the restrietion to the boundary r of the homogeneous harmonie polynomials of degree 
1. This implies that N is the linear space spanned by the restriction to the boundary of the 3 
homogeneous harmonie polynomials of degree 1: 

N = span{Hi ,m lr: m = -1,0, I} (9) 

4 The saddle point formulation 

The conforrning Galerkin discretization (8) is difficult to realize in practice. The reason is that 
the homogeneous harmonie polynomials of degree 1 which span Nare globally supported, 
and for the computations a basis of VN n N 1. must be generated. Since the dimension of VN 

is typically very large (in the experiments be\ow about 105 gravity field parameters have to 
be solved for) , it is a non-trivial matter how to do that stably and efficientJy. Moreover, the 
support of the base functions spanning VN n N 1. will be Jarger than the support of the base 
functions spanning V N which increases the computational effort. (KJees & Lehmann 1998) 
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have discussed this problem in another context, and have proposed the method of modified 
multiscale triAl & test spaces. However, this solution strategy is currently lirnited to constraints 

involving homogeneous harmonic polynomials of degree O. 

Here, we propose a different approach: We reformulate (7) as a saddle point problem anal

ogous to what is done in incompressible fluid flow. The constraint u ..1. N will not be imposed 

directlyon the boundary element space VN , but will rather be incorporated into the variational 
formulation by penalization with a Lagrange multiplier p. This leads to an augmented system 
which reads: 

(u,p) E L2 (r) X N: (Au, v) + (Ap, v) 
(u, q) 

and the conforming Galerkin approximation to (10) is: 

(AUN, v) + (ApN, v) 
(UN,q) 

(t, v) \Iv E U(r) 
o \Iq EN 

(f , v) 

o 
\Iv E VN 

\lqEN 

(10) 

(11) 

(u , p) is called the saddle point of the variational system. The conforming approximation defines 

a linear system of equations of dimension N + 3. The upper left matrix is the usual N x N 
stiffness matrix of the unconstrained problem, the upper right and the transposed of the lower 

left matrix have dimension N x 3; their elements are inner products of the bases of AN and of 

N, respectively, with the basis of VNo 
A major advantage of the saddle point formulation is that all techniques to generate sparse 

approximations to the matrix (AUN , v) such as wavelets, fast multipole methods, panel cluster

ing etc. can be used here without any modification. Moreover, if the data happen to be in AN 1., 

then, of course, p = O. In practice, however, f is not exactly in AN 1. due to various data and 

approximation errors. Then, the saddle point formulation (10) is still well-posed and the size 

of p gives precise information about the degree of incompatibility of the data f. Note that the 

proper weak formulation (7) would not have a solution if f f/. AN 1. . Finally, the assembly of 

the matrices (ApN, v) and (UN, q) is of order O(N), and therefore, does not make the numerics 

much more elaborate. 

5 The fast algorithm 

In BEM the stiffness matrix is a dense N x N-matrix, since the kemel function k(x - y) links 

every point x E r to every point y Er. Hence, storage and time consumptions of the method 

are of order O(N2 ) provided that iterative solvers could be applied efficiently which limits 

the application of BEM in practice. In the eighties Hackbusch and Nowak (Hackbusch and 

Nowak, 1989) developed the panel clustering method in order to overcome this grave drawback. 

Independently, Rokhlin proposed the fast multipole method (Rokhlin, 1985). Both methods 
are based on an approximation of the kemel factorizing the x, y-dependency. By this, the x

integration is separated from the y-integration reducing the amount of work substantially. 

In our approach, we use a blend of panel clustering and fast multipole method. Suppose that 
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the kemel k may be replaced by a degenerate kemel km 

k(x, y) ~ km(x, Yi Xo, Yo) = L II:JLII(XO, Yo)XJL(Xi Xo)YII(Yi Yo) (12) 
(JL,II)EIm 

with parameters mEN, xo, Yo E ]R3 such that the error bound 

Ik(x, y) - km(x, Yi xo, Yo)1 S; C", 'TJm Ik(x, y)1 (13) 

is valid for 0 < 'TJ < 1 and all x, Y E ]R3 satisfying 

Iy - Yol + Ix - xol S; 'TJ Iyo - xol· (14) 

Here, 'Im denotes a finite index set. 

There are several possibilities to choose an approximation by degenerate kemels (Lage, 
1998). In our experiments described in Section 6 approximation (12) was obtained by applying 
a truneated multipole expansion, i.e., 

( ) ._ ( ) ._ 1 yJL2+112 ( Yo - Xo ) 6 
"'JLIIXO,YO ·-"'JL+IIXO,YO ·-4 CJL2+1121 1"+11+1 JLI+III I I (1) 

7r JLI +111 Yo - XO .. I 1 Yo - Xo 

(17) 

with 

(18) 

for x = (cos cP sin (), sin cP sin (), cos ()) T E ~h The funetions X JL and YII are solid spherieal har
monies of positive degree whereas the expansion eoefficients II:JLII are homogeneous harmonie 
polynomials of negative degree. Note that the multipole expansion is nothing else but an effi
cient representation of the Taylor expansion of Iy - Xl-I. While for arbitrary kemel functions 

k, the index set Jm of a truneated Taylor expansion eontains O(m3) indices, only O(m2) coef
fieients must be stored to evaluate the Taylor expansion of Iy - xl- 1 using the multipole ansatz 
according to (15)-(17). The expansion for the adjoint kemel of the double layer potential is 
obtained from (15)-(17) by applying the tn -Operator to X JL (., xo). 

In order to derive an efficient approximation of the stiffness matrix A from the approxima
tion of the kemel, we have to define appropriate regions on the bóundary surface f, such that 
the approximation error could be controlled by (13),(14). Let P(f) denote the set of all subsets 
of f and C C P(f) x P(f) a finite set defining a partition of f x f. The elements of the first 
and second component of C, i.e., 

x .- Xc:={acf: :3Tcf,(a,T)EC} 

Y .- Yc:={Tcf: 3acf,(a,T)EC}, 

(19) 

(20) 
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are called clusters. A pair of clusters (a, T) E C is 1]-admissible, iff 

(21) 

where TM and CM denote for M C ]R3 the Cebysev radius and center, respectively. Using this 

property we split the partition C into afar field 

F := Fc(1]) := {(a, T) E C: (a, T) is 1]-admissible} (22) 

and a near field 

N := Nc(1]) := C\Fc(TJ) (23) 

which imp lies a corresponding splitting of the stiffness matrix A into a near field contribution 

N and a far field contribution F: 

(N)i,j:= L 1 bi(x) 1 k(x, y) bj(y) dydx 
(",T)EN " T 

(24) 

(F)i,j:= L 1 bi(x) 1 k(x, y) bj(y) dydx 
(" ,T)E.r " T 

(25) 

Since the domains of integration of the far field part are well-separated, i.e., satisfy (14) with 

Xo := c" and Yo := CT' the kemel k can be replaced by its approximation km which in tum 
yields an approximation of F: 

F:::::;; L X"F"TYTl 
(",T)E.r 

where the matrices X"' Y Tl and F "T are defined by 

(26) 

In other words, the stiffness matrix is approximated by a near field matrix N and a finite 

sum of rank -I Jm 1 modifications corresponding to the approximation of the kemel by degenerate 

kemels. The matrices X" only depend on x, the matrices Y T only on y, and the matrices F "T 

contain the expansion coefficients "';til' 

Essential for the efficiency of the algorithm is (i) the construction of a partition C such that 
the near field matrix N is a sparse matrix, i.e., contains only O(N) entries, and (ii) the fast 

evaluation of the approximate far field contribution (26), in particular the fast evaluation of the 

matrix vector product 

v = L X"F"TYT u. 
(",T)E.r 

(29) 
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The key is a hierarchical organization of clusters. Let P denote the given panelization of r. We 
subdivide P into two about equally large sets recursively until the subsets contain 0(1) pfVlels. 

This ' defines a binary tree with root P. Each node of the tree represents a subset of P which 

in turn implies a subset of r, i.e. the binary tree defines a hierarchical decomposition of r into 

clusters. 

By traversing the tree a suitable partition C = F U N is constructed: 

partition( 0',7, F , N){ 

} 

it (0' is a !eaf) or (7 is aleaf) th en 

N +- {(O', 7)} U N 
else it ((0' ,7) 1]-admissible) then 

F +- {(O' , 7)} U F 

else it (1'0' < fT) then 

tor all children 7' of 7 partition (0' , 7' , F , N) 

else 

tor all children 0" of 0' partition(O" , 7, F,N) 

The matrix vector product (29) is evaluated in th ree steps: 

1. evaluate u,. := Y TU for all 7 E Y, 

{
F UT UT for (0',7) E F, 

2. evaluate v 0' := 0 
otherwise 

3. evaluate v = L:u Xuvu· 

for all 0' E X, 

The first and the last step could be accelerated by using so-called shift operations. We find 

with matrices DH' , i.e., 

Y T = L DTT,YT" 
T ' child ofT 

for 7 a !eaf, 

otherwise. 

(30) 

(31) 

Hence, to evaluate UT for all 7 E Y we only have to assembie matrices Y T if 7 is a leaf. 

These matrices are sparse with O(I.Jml) = 0(m2) entries. The products DTT,uT, are handled 

by efficient algorithms without assembling DH' explicitly (Greengard and Rokhlin, 1997). The 

same holds for step 3. With matrices Cuu' defined by 

X u' = L XuCuu" 
u child of u' 

and vectors y u := v u + C uu' y u', 0' child of 0", it follows that 

v = LXuvu = L Xuyu' 
u ualeaf 

(32) 

(33) 
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Again, only matrices X u for leaves (J E X must be assembied. 
An analysis of the complexity (cf. (Hackbusch and Nowak, 1989), (Rokhlin, 1985» shows 

that the number of operations necessary to perform the matrix vector product (29) is of order 

O(m4N), with N the number of unknowns. 1 The storage consumptions are of order O(m2 N). 
To ensure that the error of the far field approximation is asymptotically equal to the order of the 
discretization error, we have to choose m = O(log N). 

6 Numerical experiment 

We did some numerical test computations in order to demonstrate the performance of the 
method. The "true" potential is given by 

(34) 

We approximated the unit sphere by planar triangles. Piecewise linear polynomials have been 
used as trial and test functions. The linear system of equations (LSE) was solved using a GM
RES solver without any preconditioning. About 30 iterations were necessary to keep the error 
lower than the discretization error, independent of the number of unknowns. For our cluster 
algorithm the matrix-vector operations for the ca1culation of the far field contribution have been 
done in every iteration step. The necessary information about the X u , Y Tand FUT matrices 
have been stored in core on the workstation. The quality of the solution has been checked at a 
grid of points with di stance 0.5 to the surface of the unit sphere. 

The results were obtained on a SUN Ultra-Enterprise 4000/5000 on a single processor 
(UltraSPARC, 248MHz), 2 GB RAM using the SUN C++ 4.2 Compiler and the class library 
Concepts-l.3 for boundary elements. 

Figure 1 shows the CPU-time for the matrix assembly for the standard BEM (dashed line) 
and our fast algorithm (solid lines). The latter depends on the order m of the multipole expan
sion. The computations have been done for m = 3 ... 7. The results are shown as function 
of the number of unknowns, i.e., of the resolution. The finest resolution (65538 unknowns, 
131072 panels) is equivalent to 0.5 degrees. The dependency on m is minor, because N dom
inates. Compared with the standard method a speed-up of up to 3 orders of magnitude can be 
expected for the finest resolution. 

Figure 2 shows the relative mean absolute error in the potential in exterior points located 
at a distance of 0.5 from the surface of the unit sphere. The solid lines represent the cluster
BEM solution for m = 3 ... 7, the dashed line represents the standard-BEM solution. Only 
for .m = 6, 7 we observe an almost monotone decreasing error with increasing number of 
unknowns. This indicates that small values of m corresponding to low expansion orders produce 
approximation errors that dominate the total error budget if the discretization becomes finer. At 
a certain discretization level m = 5 gives a better accuracy than m = 7. This can be explained 
by the influence of the discretization error which dominates at this discretization level the total 
error budget. Therefore, variations in order of the discretization error can be expected. 

I With a new approach to evaluate the products FUT UT using exponential expansions this could be reduced to 
O(m3 N) (Green gard and Rokhlin, 1997). 
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Fig. 2. Relative mean absolute error in a set of points with distanee 0.5 from the surface of the unit 
sphere: standard BEM (dashed line) versus fast algorithm for m = 3,4,5,6,7 (solid lines) 
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Figure 3 shows the compression rate as a function of the number of unknowns. A compres
sion factor of 0.01 means that the total of entries to store the necessary information of the X u , 

FUT' Y T matrices is equal to 1 % of the entries of the dense stiffness matrix A . 
In Figure 4 we show the number of necessary matrix entries for the cluster-BEM and the 

standard-BEM as a function of the potential error in exterior points. It clearly shows that the 
higher the accuracy requirements are the more storage could be saved with the cluster-BEM. 

7 Summary 

The saddle point formulation and the fast algorithm are well-suited for sol ving geodetic BVPs. 
The former guarantees not only the well-posedness of the problem but also allows to properly 
include a priorily given geopotential model. The fast algorithm has the potential to speed up 
the assembly and solution of the linear system by 2,- 3 orders of magnitude, and to reduce the 
storage requirements by about the same amount. Therefore, it will make high resolution global 
gravity field recovery feasible. The ftexibility and efficiency of our method does not degrade 
significantly if oblique derivatives and more complex boundary surfaces are taken into account, 
and if higher order gravity fields have to be recovered from terrestrial data. Currently, we are 
working on the convergence analysis including the existence and uniqueness ofthe saddle point 
(u ,p) . Besides, we want to apply our algorithm to the lAG test data set which is currently being 
developed within subcommission 2 of the lAG Section IV special commission 1. 
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Stabilization of global gravity field solutions by 
combining satellite gradiometry and airborne 
gravimetry* 

Johannes Bouman and Radboud Koop 

Abstract 

The expected high resolution and precision of agIobal gravity field model derived from satellite 
gradiometric observations is unprecedented compared to nowadays satellite-only modeIs. How
ever, a dedicated gravity field mission will most certainly fly in a non-pol ar (sun-synchronous) 
orbit, such that small pol ar regions will not be covered with observations. The resulting inhomo
geneous global data coverage, together with the downward continuation problem and coloured 
noise, leads to unstable global solutions and regularization is mandatory. Regularization gives 
rise to a bias in the solution, mainly in the polar areas. 

Undoubtedly, the combination with gravity related measurements in pol ar areas, like air
borne gravimetry, will improve the quality of the solution. Open questions are, for example, 
how accurate gravity anomalies must be, what spatial sampling is required, and how large the 
area with observations should be. 

In order to answer these questions, a gravity field solution from gradiometry-only will be 
compared with a solution from gradiometry combined with several airborne gravimetric sce
narios. Special attention is given to the quality improvement and bias reduction relative to the 
gradiometry-only solution. The coefficients of a spherical harmonic series are the unknowns 
and their errors are propagated to, for example, geoid heights. 

1 Introduction 

An accurate and high resolution knowledge of the earth's global gravity field is needed in 
geosciences. In geodesy, for example, the gravity field is needed for levelling with GPS, in 
oceanography it is important for studying ocean circulation and last but not least in geophysics 
a better knowledge of the earth's gravity field yields better boundary conditions in the study of 
the earth's interior. 

The determination of the earth's gravity field is very convenient using satellite methods 
since a satellite orbiting the earth samples practically the whole globe within a relative short 
time span. A very promising satellite technique for global gravity field determination is satellite 
gravity gradiometry. With this technique one can in principle determine all frequencies up to 

• Presented at the IV Hotine-Marussi Symposium, Trento, Ita1y, 1998 
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high degree and order, typically L = 180 - 250. Due to certain constraints on the satellite 
(power supply and disturbances due to heat f1uctuations), the orbit of a gradiometric mission 
will most likely be a sun-synchronous dawn-dusk orbit, leading to numerical instability of the 
global gradiometric inversion due to the polar gaps. Combining the gradiometric data with 
gravimetrie data in the. pol ar regions, for example obtained with airbome gravimetry, should 
give more stabIe solutions. 

In general the determination of the earth's gravity field at the earth's surface from satellite 
observations is unstable, and therefore ill-posed, because of the downward continuation prob
Iem. A stabIe solution can be obtained by regularizing the solution. This is well known and 
often Kaula's rule is used, which can be interpreted as a constraint on the signa!. Inherent to 
the regularization is the regularization error or bias, Louis (1989); Xu (1992). A proper quality 
description takes into account this bias, and it is reasonable to expect that the bias decreases for 
a combined gradiometric-gravimetric solution compared to a gradiometric-only solution. 

The purpose of this paper is to compare the quality of the different gravity field models. In 
particular we are interested in the effect of varying the precision, resolution and coverage of the 
additional gravimetrie data. 

The description of the gradiometric missions, the gravity anomaly data, and the observation 
model in Section 2 is followed by a summary of the method of regularization and the related 
errors in Section 3. Section 4 lists the results and Section 5 presents the conclusions. 

2 Model and mission description 

2.1 Observation model 

The unknowns to be solved for are the normalized harmonic coefficients Ölm , Slm of a (trun
cated) spherical harmonic expansion of the gravitational potential: 

GM L (R)l+l I _ 
V = RL -;: L Ytm(O, À) , 

1=0 m=- l 
(1) 

with 
y, (0 À) = { qlmCos mÀPl~ (cOSO) , m ~ 0 

lm , Sllml sinlm IÀPllml(coSO) , m < 0 ' 
(2) 

where GM is the gravitational constant times mass of the earth, R the radius of a reference 
sphere enclosing all masses, I, m degree and order, Plm (cos 0) the fully normalized Legendre 
functions and r, 0, À the geocentric polar coordinates. For the maximum degree and order to 
be resolved we take L = 180, corresponding to a spatial resolution of ~ 10, which is a typical 
resolution to be achieved from a gradiometry mission. 

Gradiometry. The observations we consider are gravity anomalies and gravity gradients, i.e. 
the second order derivatives of the gravitational potentia!. The latter could for example be the 
change in distance between two falling proof masses around the earth. Alocal satellite coor
dinate system is x , y, z with x along-track, y cross-track and z radial. Observing the distance 
changes in these three directions yields the observables Vxx , Vyy and v.z. By a proper coordinate 
transformation these values can be re1ated to (1), see e.g. Koop (1993). 

In particular we do not use the gradiometric observations themselves, the actual gravity 
gradients, but their along track Fourier spectrum. Let's assume that the orbit is circular, that 
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there are no data gaps and that after a number of revolutions the ground-track of the satellite 
repeats exactly. Considering the observations Vxx etc. as a time series along the orbit one 
may compute the Fourier coefficients of these observations, the lumped coefficients. These 
lumped coefficients are linear combinations of the potential coefficients CIm, Slm. Due to the 
assumptions (circular orbit etc.), the normal matrix becomes block-diagonal, e.g. Koop (1993); 
Schrama (1990). The above approach is the time-wise in the frequency domain method, with the 
advantage that for example coloured noise can easily be accounted for Rummei et al. (1993), 
compare Section 2.2. 

Gravimetry. The most likely technique to observe gravity in the polar areas is airborne 
gravimetry. In our error propagations we do not use the actual airborne gravimetry observations 
directly, but we assume that after data processing a grid of point values of gravity anomalies at 
the earth's surface is available, compare Schwarz and Li (1997). 

The unknowns and observations are connected by the linear model 

E{g} = Af, D{g} = p-l (3) 

with g the observations, f the unknowns, A the design matrix and p-l the error covariance 
matrix of the observations. The linear model (3) is used for the satellite gradiometric as weil 
as the airborne gravimetric observations. The unknowns are the corrections to the initialor 
reference potential coefficients, compare Section 4.1. 

2.2 Input specifications 

Two satellite gradiometric missions are considered. One with only Vzz observed and one with 
the three diagonal components Vxx , Vyy , 1'.z observed. For the gradiometric missions we have 
chosen a satellite height of 250 km, a miss ion duration of six months and coloured noise with 
a PSD which is fiat at the level of 10- 3 E / .,fHZ for frequencies between 0.005H z and O.lH z , 
and which behaves as 1/ f for the low frequencies below 0.005H z. Frequencies below 2 cpr 
(cyc1es per revolution) are not taken into account. Effectively, the lower order blocks of the 
normal matrix become unstable because of the coloured noise. The high pass filtering of the 
spectrum affects the lower orders for all degrees, Koop (1993). 

The gravity anomalies are assumed to have uncorrelated errors with a standard deviation 
of 5, 10, or 20 mgal. Although a standard deviation of 2 mgal is an accuracy obtainable with 
nowadays airborne gravimetry, Schwarz (1998); Tscheming (1998), we used a minimum of 5 
mgal. The errors of the gravity anomalies are correlated along-track, and a more pessimistic 
error assumption might compensate for the neglection of the correlation. Conceming airborne 
gravimetry one is referred to Schwarz and Li (1997). The anomalies are located in the pol ar 
areas and cover circular are as (polar caps) with radii 0.125°, 2.5° or 5° from the poles. The 
gravity anomalies are given as point values in a grid with a spacing of 0.125°. The anomalies 
will be denoted with dg. 

Amission like GOCE, apart from SGG observations, wil! make use of SST observations 
too, but such observations are not considered here. The polar gaps have less infiuence on these 
measurements, and only lower degrees up to e.g. 70 will be estimable from SST measurements. 
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3 Regularization 

3.1 Least-squares solution 

Usually the unknowns Jean be solved by a least-squares approach minimizing the observation 
error 

min lig - Afll~ 
f 

(4) 

whieh leads to the estimate j of f 

(5) 

This approach, however, is no longer suitable here because ATpA is badly conditioned. The 
instability reflects the fact that we are deaIing with an inverse problem which is ill-posed. There 
are four reasons for this: 

• Satellite height. The observation noise is amplified due to the dQwnward continuation, 
since we solve for the gravitational potential at the earth's surface. 

• Orbit inclination. Every inclination not equal to 90° results in two pol ar gaps without 
observations. Hence, agIobal solution has to be derived from 'local' measurements. 

• Type of observation. Every kind of observation related to the gravity potential (like grav
ity, satellite position or gravity gradients) will have, in the frequency domain, a different 
sensitivity for different frequencies. For instanee, for Vzz the sensitivity decreases with 
increasing l, whereas it is constant for all orders m per degree. Or Vyy which has an 
increasing sensitivity for increasing order m. Sometimes a particular observation is not 
sensitive to a certain gravity field parameter at all , like Vyz and Vxy in apolar orbit which 
are not sensitive to the zonal harmonies or Vyy from which the zonal harmonies can only 
poorly be determined, in partieular at the equator. 

• Noise characteristic. The errors of the gradiometer can be characterized as coloured 
noise, compare Section 2.2. Consequently, the low order blocks of the normaI matrix are 
unstable. 

Note that the downward continuation does not have any effect, because we only solve for coef
fcients up to degree 180. For v'z, for example, the term {R/r)l+1 is compensated by the term 
(l + l)(l + 2), with the given height and maximum degree. The degree truncation itself acts as 
regularization or stabilization. The major cause of the instability is the pol ar gap. 

3.2 Tikhonov regularization 

Least-squares does not provide a stabIe solution, several other methods do. One of these meth
ods is Tikhonov regularization Tikhonov and Arsenin (1977). Instead of minirnizing (4) we 
use 

min lig - Afll~ + allfll~· 
f 

(6) 

One sees that in this case the solution j has to satisfy the constraint that the totaI power of the 
signal is finite. The positive real number a is the compromise between the constraint and the 
minimization of the observation error. The solution of (6) yields 

(7) 
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10 

In this case K is a diagonal matrix with elements 1010[4 which is the inverse ofthe well-known 
Kaula mIe for degree-order variances. 

The combination of gradiometry, gravimetry and regularization simply is 

(8) 

where sgg and ga stand for satellite gravity gradiometry and gravity anomalies respectiveIy. 
Thus, the combined solution is regularized as weil. 

3.3 Propagated error and bias 

The tota! error or Mean Square Error Matrix MSEM consists of the propagated error 

(9) 

and the regularization error (bias), Xu (1992), 

(10) 

i.e.: 

(11 ) 

An optimal a can be found by minimization of the trace of the MSEM. Other choices for an 
optimal a probably exist, the present one is the expected distance (2-norm) from f to Jr, Hoeri 
and Kennard (1970). The trace of the propagated error has the form 1/(1 + a)2, which is a 
decreasing function for increasing a. The bias squared has the form a 2 /(1 + 0:)2 which is an 
increasing function for increasing 0: . The sum of the two gives a function with one minimum: 
the optimal 0:, compare Fig. 1. 
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Remarks. 

• The bias is usually neglected or said to be 100% maximum Marsh et al. (1988). The 
latter is not true, since the bias in a single coefficient does not only depend on the size of 
the coefficient but, due to correlation, also on the si ze of other coefficients, cf. Eq. (10). 
The bias may therefore become smaller or larger than 100% for specific coefficients. 

• As can easily be seen, the same solution (7) is obtained by adding zero observations for 
all coefficients with weight matrix uK:' 

(12) 

This would change the propagated error to Qfo = (AT PA + UK)- l and reduces the bias 
to zero since one would have E{O} = J or EU} = O. However, as Kaula's rule already 
shows, E{O} =I J, and accordingly it is not allowed to write Eq. (12). That is why the 
above approach has not been used. 

• To avoid confusion it has to be mentioned that for error propagation no observations 
are needed. Only ATpA, uK and Jare required. Consequently, the results should be 
considered as an approximation of the actual feasible accuracy using realor simulated 
measurements. 

4 Results 

4.1 Assumptions 

The resu\ts to be presented here are obtained applying a number of assumptions. First of all 
we have to assume that f is known, OSU9lA (truncated at degree and order 180) is taken as 
our 'ground truth' for that purpose. The results are presented with respect to the reference field 
GRS80. Note that the choice of the reference field influences the bias computation. Using a 
higher degree and order reference field, for example JGM3, yields lower bias values. In practice, 
of course, we don't know the bias and a conservative estimate, like the application of GRS80 is 
giving, seems to be appropriate in our opinion. 

The results presented wil! be optimistic because we did not take into account model errors, 
aliasing or the fact that the errors of the gravity anomalies are correlated. Furthermore, we are 
forced to use a block-diagonal Mean Square Error Matrix due to computer constraints, although 
the bias term really yields a full MSEM. In the Appendix it is explained what consequences this 
has for the error propagat1""®l . The main effect is that there is al most no east-west variation for 
geoid errors and that the errors tend to be symmetrie with respect to the equator. 

4.2 Combination with anomalies in areas of variable size 

4.2.1 Resultsfor Vzz 

First we look at the combination of the second radial derivative of the gravitational potential 
combined with gravimetrie data located in two polar caps of equal and increasing size, Fig. 

I Limiting the regularization to those coefficients that are not weil delermined leads 10 truncated singular value 
decomposition methods, compare for example Bouman (1998). 
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2. The th ree sizes of the caps are 0.125°,2.5° and 5.0°. The effect of the gravity data is most 
noticeable in the polar areas but the MSEM propagated to geoid heights decreases at other 
latitudes as weiL This is mainly caused by the bias reduction in those areas. Since the east-west 
variation of the geoid height errors is negligible, one meridian is shown only. The geoid error 
decrease towards the poles is probably due to the increase of the number of measurements per 
square km. An equi-angular grid is assumed, and therefore the measurement density increases 
towards the poles. Although this may be an unrealistic assumption, it is considered satisfactory 
for our tirst results. 

The bias is not only reduced for geoid heights. Comparing the bias in the ëlm coefticients 
for the Vzz case and the combination with dg (5 .0° cap size) one sees a dramatic reduction, 
Fig. 3. (Results for the Slm coefticients are similar and thus not shown.) Without the gravity 
anomalies there is a large bias in the low orders (as expected), where regularization is needed. 
The combined solution has an al most homogeneous bias error. 

A further extension of the area were gravity is measured is unnecessary. On the one hand 
the global basis functions have been constrained by the gravity data in the polar regions, on the 
other hand the accuracy of the gravity data is not enough to expect much improvement at lower 
latitudes. Compare Fig. 4 where the geoid height errors for the combination of Vzz with dg on 
a global basis and dg (5.0° cap size) are displayed. The geoid improvement is negligible. 

4.2.2 Results for Vdiag 

The combination of Vxx , Vyy , Vzz, or Vdiag for short, with gravity anomalies in the polar areas 
only has local effect, Fig. 5. However, looking at the bias with respect to the size of the . 
coefticients a substantial improvement comes from the combination, compare Fig. 6. Again, 
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the combined solution yields a homogeneous error, the bias is several orders smaller than the 
signa!. The bias in the gradiometry-only solution, in contrast, may become up to two orders 
larger than the signal for the low order coefficients (small m), 

4.3 Combination with anomalies of variabie measurement accuracy 

The combination of gravity anomalies in both polar caps with a size of five degrees and for 
different dg measurement accuracy is illustrated in Fig. 7. A decrease in precision of a factor 
two means a decrease of weight of the normal matrix [ATpA]ga with respect to [ATpA]sgg of a 
factor four. When a homogeneous geoid precision over the whole earth is required, an anomaly 
precision of 5-10 mgal is sufficient. Note that in our approach a decrease of precision is equiv
alent to a decrease of resolution. For example, a grid spacing of a quarter of a degree instead 
of 0.125°, yields four times less measurements which, in our approach, corresponds to a weight 
decrease of a factor four. 

4.4 Summary 

In summary, the bias in the coefficients is greatly reduced by adding gravity data in the pol ar 
regions to gradiometric observables. Moreover, if the accuracy of dg is chosen "correctly", a 
homogeneous geoid height precision is obtained. Looking at Table I, one notices that the size 
of the regularization parameter decreases going from a less favourite configuration to a better 
configuration. The third column lists the quotient of the diagonal elememts of the bias part of 
the MSEM and the diagonal elements of the propagated error. The bias is negligible with respect 
to the propagated error when gravity anomalies at both poles in a den se grid with an area size of 
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Table 1. Summary of some combinations. 

Combination Ct Bias w.r.t. Error w.r.t. 

prop. error Vzz + 5.0 

Vzz 1.49 4.0 245 

Vzz + ~g(5.00) 0.70 10- 5 

Vzz + ~g(5.00) a = 20 mgal 0.86 10- 4 1.14 

Vzz + ~g(5.00) ~() = 0.50 0.86 10-4 1.14 

Vdiag 7.57 1.4 2.17 

Vdiag + ~g(5.00) 0.72 10-5 0.61 

five degrees are available. In column four, the trace of the MSEM has been compared with that 
of the reference case: Vzz combined with anomalies in a 50 cap. The improvement with respect 
to the gradiometry-only case is impressive, while the other cases yield comparabie errors. 

5 Conclusions 

An anomaly precision of 5-10 mgal is sufficient, and therefore airborne gravimetry data seems 
usefu!' The areas where dg and Vij are known do not have to overlap, specifically for apolar 
gap of 6.60

, the measurement of gravity anomalies in polar caps of 50 or even less is sufficient. 
When only Vzz gradiometric observables are available, there is precision improvement for geoid 
heights at 10wer latitudes, outside the caps, due to the combination with dg. Moreover, the bias 
in the lower orders for all degrees is substantially reduced. When all three diagonal elements 
of the gravity potential tensor have been measured, Vdiag , there is no improvement for geoid 
heights at lower latitudes. However, the bias in the lower order coefficients for all degrees is 
substantially reduced, the polar gap is hardly noticeable anymore. 

In summary: the addition of gravity in the polar regions to gradiometric observables makes 
the polar gap problem disappear for the SGG only case! 
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A Error propagation with a block-diagonal matrix 

It is shown under what conditions the propagation of a block-diagonal Mean Square Error Ma
trix to for example geoid heights results in symmetry with respect to the equator and/or no 
east-west variation. Since gradiometric measurements have a homogeneous precision this is 
also what one would expect. The only variation is due to the polar gaps and the decrease of the 
number of observations for each latitude towards the equator. 

The error propagation of the MSEM, which is the error matrix of gravity potential coeffi-
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cients, to linear functionaIs of the potential in general has the form, cf. Haagmans and van 
Gelderen (1991) 

with 

where 

L L 

cov(p, q) L L [Amk cos m).p cos k).q + Bmk sin m).p cos k).q 
m=Ok=O 
+ Cmk cos m).p sin k).q + Dmk sin m).p sin k).q] 

L L 

Amk L L ).1).nCOV(Ölm, Önk)Ftm(cos (Jp) ?nk (cos (Jq) 
l=m n=k 

L L 

Bmk L L ).1).nCOV(Slm, Önk)Ftm( cos (Jp)?nk( cos (Jq) 
l=mn=k 

L L 

L L ).1).nCOV(Ölm, Snk)Ftm(COS(Jp)?nk(COS(Jq) 
l=mn=k 

L L 

Dmk = L L ).1).nCOV(Slm, Snk)Ftm(COS(Jp)?nk(COS(Jq) 

Z,n 
m,k 
p,q 
).t, ).n 

Amk , etc. 

l=mn=k 

degree, 
order, 
points on the earth's surface, 
eigenvalues, e.g. R for geoid heights, 
Fourier coefficients of a two dimensional series. 

(13) 

(14) 

Let's consider point variances only, that is, p = q, and assume that the MSEM has a block
diagonal structure, that is, Bmk = Cmk = 0 and m = k. The propagated error, which now is 
denoted as cov((J,).) since it is a function of one point only, then is 

L 

cov((J,).) = L [Am cos2 m). + Dm sin2 m).] 
m=O 

(15) 

with 
L L 

Am L L ).1).nCOV(Ölm, Önm)Ftm(COS (J) ?nm (cos (J) 
l=mn=m 

(16) 
L L 

Dm = L L ).1).nCOV(Slm, Snm)Ftm(cos (J) ?nm (cos (J) . 
l=mn=m 

The normal matrix, (ATpA + aK)-l, becomes block-diagonal when observing gravity gra
dients in a circular orbit with exact repeat and no data gaps. Moreover, cov( Ö1m , Önm) = 
COV(Slm, Snm) for m = 1, ... , L . The normal matrix for the gravity anomalies obtains the same 
structure when the anomaly distribution and precision is symmetrie with respect to the equator. 
Then Eq. (15) becomes 

L 

cov((J) = L Am 
m=O 

(17) 

with Am as before, Eq. (16). There is, therefore, no east-west variation, the propagated error is 
independent of longitude. In our case there is some minor dependence on longitude because the 
bias term, 60f 60fT, yields unequal C and S covariances. The variation, however, is negligible. 
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A further eonsequenee of the aforementioned data distribution is the separation of even and 
odd degrees, that is, the error eovarianee is zero when IZ - nl is odd. Reealling the property 

(18) 

the following four cases oeeur: 

1. m is even, Z, n are even; P1m ( -t) = Ptm(t) and Pnm( -t) = Pnm(t), 

2. m is even, Z, nare odd; P1m ( -t) = -P1m(t) and Pnm( -t) = -Pnm(t), 

3. mis odd, l, n are even; P1m ( -t) = -P1m(t) and Pnm( -t) = -Pnm(t), 

4. mis odd, l, nare odd; Ptfn( -t) = P1m(t) and Pnm( -t) = Pnm(t). 

Beeause Zand n have the same parity, the Legendre funetions for a speeifie m are always 
simultaneously symmetrie or anti-symmetrie with respect to the equator. The eombiriation 
of two of these funetions, as in Am and Dm, is therefore always north-south symmetrie: 
cov((J, À) = cov(1r - (J, À). Again the bias term does destroy the exact north-south symme
try. For the eombination solutions we also eomputed the bias for the degrees not having the 
same parity. However, when the bias is smal! compared to Qf' Eq. (9), north-south symmetry 
wil! oeeur as is evident from the figures. 
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The shift operators and translations of spherieal 
harmonies 

Martin van Gelderen 

Abstract 

Solid and surfaee spherieal harmonies funetions have very simple transformation properties 
with respeet to the gradient and angular momentum operators. These properties ean be utilized 
for the derivation of translation relations of the spherieal harmonie funetions. 

1 Introduction 

Already many papers have been published about the transformational properties of the spherieal 
harmonies funetions. To eite a few: Hobson (1955), Rose (1957), Aardoom (1969), Giaeaglia 
(1980) and Epton and Dembart (1994). The formulas presented in this paper are not new, but 
they are derived in a partieular straightforward manner whieh we believe to be mueh simpier 
than often found in other literature. 

First we give some definitions, then we show the properties of the operators applied and 
finally we show how they ean be used to derive translation relations for spherieal harmonie 
funetions and their eoeffieients. 

2 General properties 

Sinee many definitions ean be found for the spherical harmonie funetions, we first start with the 
definitions used in this paper. For simplicity, the eomplex spherieal harmonies are used; defined 
as in e.g. Edmonds (1957) . We start with the assoeiated Legendre funetion: 

1 dl+m 
__ ( _ 2)m/2 __ ( 2 _ )l 

Pl,m(t) - 2lt'! 1 t dtf+m ti. 

It has the following symmetry with respeet to order m 

m (f - m)! 
Pl,-m(t) = (-1) (f + m)! Pl,m(t). 

The spherieal harmonies are defined as 
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Often we will write 

with x E ]R3 and where IIxll is the Eucledian norm of x. For the spherical harmonies a normal
isation 

Yt,m = (J1,mYl,m with (Jl,m = (_l)m 
(2e + 1)(e - m)! 

47f(e + m)! 

can be used such that the spherical harmonies are ortho-normal: 

! 1 ~,m(X) Vg;,m' (x) dx = Ón Óm'm· 

(1) 

The asterix * denotes the complex conjugate; the integration is taken over the (unit) sphere. For 
the regular solid spherieal harmonies IlxWYt,m(x) and the irregular solid spherieal harmonies 
IIxlt1+1 Yl,m(x) the following abbreviations are introduced: 

Se,m(X) = (-l)m(e - m)! Ilxl~l+1 Yt,m(x) 

RI,m(X) = (_l)m (e +1 m)! Ilxlll}f,m(x). 
(2) 

With respect to the sphere, they are only orthogonal; but the 'normalisation' used here will ren
der very simple formulas. From the definitions it is easily derived that the following symmetry 
relations hold: 

Y,* ()m(e+m)! y; 
l,m = -1 (e _ m)! l,-m 

Vg~m = (_l)m Yt,-m 

S;,m = (-l)mSI,_m 

Ri,m = (-l)mRe,_m 

Yt,m(X) = (-l)eYt,m(-x) 

Yt,m(x) = (-l/Yt,m(-x) 

Se,m(x) = (-l)eSe,m(-x) 

RI,m(X) = (-l)IRe,m(-x). 

(3) 

Apart from the usual geocentric cartesian frame eXl eYl ez a new frame e_ l eOl e+ is used 
(Van Gelderen, 1999) with: 

All eovariant vector components VXl vYl V z of the vector v transform in the same way: 

(4) 
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For the radial distance r == Ilxll we then obtain 

From the well-known recursion relations of the Legendre functions, see e.g. 11k (1983), the 
following relations for the solid spherical harmonies are derived: 

(.e + m)xORf.m = r 2 Rf - l .m + (f - m + l)V2x+Rf.m-l 

(.e + m)V2x-Rf.m = (.e - m + l)xoRf.m-l - r
2 
Rf - l .m- l 

2mxoRf.m = (.e - m + l)V2x+Rf.m-l - (.e + m + l)V2x-Rf.m+l 

(.e - m + l)XOSf.m = r2Sf+1.m - (.e + m)V2x+Sl.m-l 

(.e + m + l)xoSf.m = r2Sf+1.m - (f - m)V2x-Sf.m+1 

2mxOSf.m = (.e + m)V2x+Sf.m-l - (.e - m)V2x-Sf.m+1' 

3 The ladder operators 

(5) 

In this section operators are introduced which change the spherical harmonies by one degree or 
order. Two differential operators are used: the gradient operator V and the angular momentum 
operator L. The gradient operator with respect to the cartesian basis reads: 

af af af 
V f = ex ax + ey ay + e z az 

== (ex Vx + ey Vy + ez Vz)f; 

f is a funtion in ]R3. The gradient operator can be split up into a radial and a surface part: 

1 
V = er Vr + -Vsurf 

r 

The operator L is a tangential vector operator, i.e. the vector Lf is tangential to the sphere, 
defined as 

L = -ier X V = -irer X Vsurf ~ 

1 i 
V = er Vr + -Vsurf = er Vr - -(er xL), 

r r 

(6) 

with er the radial basis vector. The vector Lf is always perpendicular to er and V f, which can 
directly be seen from its definition; see e.g. Jackson (1967) for more definitions and properties 
ofthese operators. The components ofboth operators with respect to the {e_, eo, e+} are defined 
as (4) since always covariant differentiation is used: 

First the operators L_ .o.+ are applied to the spherical harmonies. Their action on the Ye.m is 
straightforward; this is re1ated to the fact that they are the joint eigenfunctions of the operators 
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L2 and Lo; see Edmonds (1957). Sinee L is a pure tangential operator, also the relations for the 
solid harmonies are found direetly: 

L y; =_(f +m)(f -m+1) y; 
- l ,m J2 l,m-l 

LoYi,m = m }'f,m 
1 

L + }'f,m = J2 }'f,m+! 

L y; _. ({f + m)(f - m + 1) y; 
- l,m - V 2 l ,m-l 

LoYi,m = m Yt,m 
L Y; _ _ /'""'"( f---m----,--,)(-f +-m-+----:-1) y; 

+ l,m - V 2 f,m+l 

f +m 
L _Sl,m = J2 S l ,m- l 

LoSl,m = m Sl,m 

f -m 
L+Sl,m = - J2 S t,m+! 

f -m+1 
L_Rl,m = J2 R f,m - l 

LoRt,m = m R f,m 

f +m+ 1 
L+Rt,m = - J2 R t,m+! 

(7) 

(8) 

(9) 

(10) 

Now the V operator is applied to the surface spherieal harmonies. It is deeomposed into a 
radial and surface component (6). In eomponents, see Van Gelderen (1999), 

The action of the first part on spherieal harmonies is straighforward; for the seeond part the 
equations (9-10) are used. By applying the reeurrenee relations (5) the outeome ean be redueed 
to very simple expressions: 

\loSt,m = -St+! ,m 
1 

\l+St,m = - J2SH 1,m+! 

(11) 
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and 

1 
'l_Re,m = - j2Re- l ,m-1 

'loRe,m = Re-l,m (12) 

1 
'l+Re,m = - y'2Re- l ,m+l 

With (1-2) we then find 

V' _1_ y; = (e - m + l)(e - m + 2) 1 y; 
- r HI e,m j2 r H2 HI,m-1 

1 1 
'lo r HI Yi,m = -(e - m + 1) rH2 Yl+l,m (13) 

111 
'l+ r HI Yl,m = y'2 rH2 Yi+l ,m+l 

(2e+1){e-m+1){e-m+2) 1 V, 
2(2e + 3) rH2 HI,m-1 

(2e + 1) (e + m + 1) (e - m + 1) 1 V, 
(2e + 3) rH2 HI,m 

(14) 

(2e+1)(e+m+1)(e+m+2) 1 y; 
2(2e + 3) rH2 HI,m+l 

(15) 

e- (2e + l)(e + m){e + m - 1) Hy; 
'lJ Yi,m = - 2(e _ 1) r e- l,m-l 

e- (2e + l)(e + m)(e - m) e-Iv, 
'lor Yi,m = (2e _ 1) r e- l,m (16) 

i- (2e + 1){e - m)(e - m - 1) e-I-y; 
'l+r Yi ,m = - 2(e _ 1) r e-l,m+l 

The eomponents of the operators 'l and L are sometimes ealled ladder operators sinee they 
relate a spherical harmonie function to another of one degree andJor order higher or lower. The 
L± are real ladder operators for the surfaee spherical harmonies in the sen se that they only 
make one step in the m (order) for a fixed degree. This is related to the fact that all the surfaee 
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f-l f+l 

m+l 

Y'+ 
L+ 

Y'+ 

m 
Y'o 

Y'_ Y'_ 

m-l 

rl-IYt_I,m rlYt,m 
Ytm 
1 ' Iy; ;:z:trYt,m ;:r-F2 Hl, m 

Fig. 1. The ladder operators of spherieal harmonies funetions 

spherical harmonies of fixed degree e form a basis for a 2e + 1 dimensional representation of 
the Lie algebra s03; ef. Hamermesh (1964). The Y' ± also go one step up or down in the m
direetion, but always inerease (irregular solid spherieal harmonies) or deerease (regular solid 
spherieal harmonies) the degree. 

The spherieal harmonies linked up to eaehother by the ladder operators are depieted in 
Figure l. 

As 80,0 = Yo,o = ~, all irregular solid spherieal harmonies ean be obtained from the iterative 
use of the Y' -operators using (11,13,14): 

8 l ,m = (_I)l2Iml/2 Y'± lmlY'/-lml~ 
r 

_1_y; = (_l)e-m 21ml /2 1 'V Iml\7 l-Iml~ 
r H l l,m (f-m)! ± 0 r' 

_1_y; = (_I)l2ImI/2 
r Hl l,m 

(2f + 1) 'V Iml\7l- Iml 1 
47r(f + m)!(f - m)! ± 0 ;:' 

(17) 

(18) 

(19) 

where Y'± denotes Y'+ for m 2: 0 and Y'_ for m < O. Sinee 8 l ,m is a harmonie function we have: 

This property ean be used to reduee eombination of powers of Y'_ and Y'+: 

(20) 



4 Translation relations 

The inverse distanee is expanded into spherieal harmonies as (Hobson, 1955) 

Ilx ~ yll = LR;,m(y)Se,m(X) = LRe,m(y)S;,m (x) 
l,rn f,rn 

Ilyll < Ilxll· 

Translated spherical harmonies ean be obtained easily from this expansion with (17): 

S (x _ y) = (_1) l 2Iml /2 -y: Iml~ Hml 1 
e,m ± 0 IIx _ yll 

00 l' 

= L L R;',ml(y)(-1)l2Iml/2 V'±lmIV'oe-lmISll,ml(X). 
['=0 m'=-l' 

With, using (20), 

(_1)l2Iml/2 -y: Iml~ l -lmlS I(X) = (_1)l+l'2{1m+m' I) /2 -y: Im+mll~ l+l'-Im+m'l_l_ 
± 0 l' ,m ± 0 Ilxll 

= Sl+l' ,m+ml(x) 

this ean be written as 

00 l' 

Se,m(x - y) = L L Rêl,ml(y)Sl+l' ,m+m'(x). 
l'=Om'=-l' 

63 

(21) 

(22) 

This is the translation relation for the irregular solid spherieal harmonies. For the translation of 
the regular spherieal harmonies it is less straightforward to find the relation direetly; see Rose 
(1958) or Epton and Dembart (1994). Mueh easier is to start from the expansion of the inverse 
distanee and apply (22): 

IIX ~ yll = L Rê,m (y)Sl ,m(X) = L Rê,m(y - ~)Sl,m(X -~) 
f,rn f,rn 

= L R;,m(y -~) L Rê' _l,ml _m(~)Sl',ml(X) 
l,m i' ,m' 

Sinee the spherieal harmonies are a set of independent basis vectors, the expansion eoeffieients 
of a funetion with respect to them are unique. Confrontation of the last with the first line of the 
equation above gives: 

f./,m' 

Re,m(x + y) = L Rl' ,m' (y)Rl-l',m-m' (x). (23) 
i',m' 
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Using the symmetry relations (3), the following set of relations ean be derived from (22-23): 

00 l 

St,m(x - y) = L L Rê',m' (y)SeH' ,m+m' (x) (24) 
f'=0 m'=-f' 

00 l 

= L L (-l)m'Rl',m,(y)SlH',m_m'(x) 
l'=Om'=-l' 

00 e 
= L 2: Rê'_e,m'_m(y)St' ,m' (x) 

if=t.m'=-,f' 

00 t 

= L L (-l)m'-mRt'_l,m_m,(y)St',m'(x) 
l'=l m'=-t' 

l l 

Re,m(x - y) = 2: 2: (-l( Rt',m' (y) Rl-t' ,m-m' (x) (25) 
i'=Om'=-i' 

e l 

= 2: 2: (-l)l'+m'Rê',m,(y)Rl_t',m+m'(X). 
f'=Om'=-l' 

or 

00 l 

St,m(x+y) = 2: 2: (-l(Rê',m,(y)SlH',m+m'(X) (26) 
l'=Om'=-f' 

00 t 

= L L (-l)l'+m'Rt',m,(y)SlH',m_m'(x) 
t'=0 m'=-t' 

00 l 

= L L (-l)l'Rê'_l,m'_m(y)St',m'(x) 
t'=l m'=-t' 

00 l 

= 2: 2: (-l)l'+m'-mRt'_l,m_m,(y)Sl',m'(x) 
l'=l m'=-t' 

l l 

Rl,m(X + y) = L L Rf',m' (y)Rl-f',m-m' (x) (27) 

t'=0 m'=-l' 
l l 

= L L (-1)m'R;' ,m' (y)Re-f' ,m+m' (x). 
f'=0 m'=-t' 

From the relations above, the equivalent relations for the Ye,m and the Ye,m are found direetly 
with (1) and (2). The inverse distanee reads 

1 ~ ~ (e - m)! II lil • () 1 ( ) 
Ilx - yll = ~ ~ (e + m)! y ll,m y IIxlIl+1 Yt,m x 

l=O m=- l 

~ ~ 41f l-' 1-
= ~ ~ 2e + 1 Ilyll Ye,m(y) IlxW+1 Ye,m(x). 

e=o m=-l 
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Translation of the irregular solid harmonies: 

1 ~ (f! + f!' - m - mi)! l' * 1 
Ilx - ylll+1 Ye,m(x - y) = f:;:, (f! - m)!(f!I + mi)! Ilyll lé' ,m'(y) Ilxllf+l'+1 YlH',m+m'(x). 

and for the normalized Yt,m 

1 - " 41l"(2f!+ 1) 
Ilx - yllf+1 Yl,m(x - y) = f:;:, (2f! + 2f!' + 1)(2f!' + 1) 

(f! - m)!(f!' + m')!(f! + f!' + m + mi)! 1'=-=* 1-
(f! + m)!(f!' - m')!(f! + f!' - m - mi)! Ilyll Yf',m'(Y) IlxlllH'+l YlH',m+m'(x). 

And for the regular solid harmonies we have 

Ilx - Illy; (x _ ) - "(_I)l' (f! + m)! 1 . 
y e,m Y - f;:" (f!' + mi)! (f! - f!' + m - mi)! 

IlyW'Yl',m' (y) IlxW-l'Yl-f1,m-m' (x) 
and for the normalized Yt,m: 

41l"(U + 1) 

l',m' 
(2f! - U' + 1) (2f!' + 1) 

1 (f! - m)!(f! + m)! 
J(f! - f!' - m + m')!(f! - f!' + m - mi)! (f!' - m')!(f!' + mi)! 

Ilylll'Yt',m' (y) Ilxl!l-I'Yt-I' ,m-m' (x). 

Translation relations for coefficients 

Often a spherieal harmonie expansion is used to represent a function in 3D space. If the origin of 
the expansion is shifted, all its eoeffieients change. This is direetly derived from the properties 
of the spherieal harmonies. We take the following example. For a mass density p eontained in 
a volume V, the total potential is 

r p(y) 
G Jv Ilx _ yll dy. 

We define the potential funetion cP and apply (21): 

cP(x) = G r p(y - xo) dy 
Jv Ilx - yll 

= G 1 p(y - xo) L R;,m(y)SI,m(X) dy 
v l,m 

= L G 1 p(y - xo)R;,m(y) dy SI,m(X) 
I,m V 

= L G i p(y - xo)R;,m(y - xo) dy SI,m(X - xo), 
I,m , .. ' 

(28) 

== M1,m(xo) 
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where Xo is a point of reference. The coefficients Mt,m(xo) are the multipole coefficients of the 
potential due to the mass distribution p(x) with respect to the origin xo. It is actually a Laurent 
series. If there is no mass outside a sphere of radius a around Xo then convergence is guarenteed 
for Ilxll > a. Likewise we obtain the Taylor expansion 

cf>(x) = L G i p(y - XO)S;,m(Y - xo) dy Rt,m(x - xo); 
l,m, .". , 

== Lt,m(xo) 

where the Lt,m (xo) are the local expansion coefficients of the potentialof the mass distribution 
p(x) with respect to the origin xo. If there is only mass outside the sphere of radius b around 
Xo, then we have convergence for Ilxll < b. 

The translation relations for the coefficients are obtained by inserting (from (26» 

St,m(x - xo) = L( _l)t' Rê'-l,m'_m(~)Sl',m'(x - Xo -~) 
l' ,m' 

into (28) 

l',m' t,m , 

Likewise the translation relations for local coefficients and the relation for the multipole to local 
expansioncoefficients are obtained: 

Ilxll > II~II + a 
l' ,m' 

Ilxll < b - II~II 

Lt,m(xo +a) = Z)-l(+m' Ml' ,m' (xO)S;H',m-m' (a) Ilxll > lIall - a. 
l' ,m' 

The translation of the center of expansion is only allowed if the convergence criteria for the new 
expansion are fulfilled. This leads to the criteria indicated above. 

With the translation (26) also a double expansion of the inverse di stance can be constructed: 

Ilx ~ yll = L Rê,m(y)St,m(Y) 
t,m 

= L Rê,m(Y - Yo)St,m(Y - Yo) 
t,m 

t,m i',m' 

= L çt,t',m,m' (xo, Yo)Rê,m(Y - Yo)Rê',m'(x - xo) 
t,m 

l' ,m' 

(29) 
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with the coefficients 

Where x is close to the expansion centre Xo and y to yo. More exactly we can state that for the 
convergence ofthe expansion it is required sup Ilx - xoll + sup Ily - yol < Ilxo - yoll. 

Applying (29) to the potential rjJ, point Xo can be used as the local expansion centre for 
the potential and Yo as the local centre for the multipole coefficients of the mass distribution. 
Obviously this new expansion directly relates to the multipole and local expansion: 

rjJ(x) = LLG Iv Ri,m(y-yo)dy';e,l',m,m,(xo,Yo)Ri',m'(x-xO)' 
f/ )m' i,m, v ' 

Me,m(Yo) 
~----------~y~------------~ 

L;',m'(xO) 
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A gravity mission for Earth sciences* 

Roland Klees and Radboud Koop 

Abstract 

In spite of the developments in accurate gravimetry and the use of artificial earth orbiting satel
lites for global gravity field determination, the quality of our current global gravity field mod
els remains inhomogeneous and too poor for some applications in geodesy, geodynamics and 
oceanography. These applications would greatly benefit from the determination of agiobal 
gravity field model of homogeneous and high accuracy as it seems feasible now from the ded

icated ESA gravity field mission GOCE, which is currently under development. The main 
objective of GOCE is the recovery of the Earth's gravity field with a homogeneous accuracy of 

less than 5 cm in terms of geoid heights and less than 2 mgal in terms of gravity anomalies at a 
resolution of about 100 km. Error covariance propagation studies have al ready shown the fea
sibility of GOCE to reach its goals. Now more sophisticated end-to-end closed-Ioop simulation 
studies are going on, aiming at a detailed modelling of the satellite and all its instruments in 
order to carefully estimate the effect of all kinds of instrument errors on the final gravity field 
recovery. Once the satellite will be operational millions of observations have to be processed 
and reduced to geophysical end products. Data reduction and analysis methods methods and 
software have to be developed, for which different strategies for geophysical parameter estima
tion should be considered. A key issue here is the quality assessment of the measurement data 
as weIl as of the scientific data products like geoid heights, geoid slopes, gravity anomalies or 
harmonic coefficients. 

1 Introduction 

Many fundamental questions conceming the exact nature of the dynamics of the solid Earth are 
unsettled. In this context, the analysis of seismic wave propagation, magnetic field, and Earth 
gravity field provides the most valuable source of information about the nature and composi

ti on of our planet, and about evolutionary processes which continue to shape it. Snieder (1998) 
stresses the role of seismology in this context; Wortel (1998) tells us more about the dynamics 
of processes. Our focus will be on the gravity field of the Earth, which is the subject of the 
research program D of the Vening Meinesz Research School of Geodynamics (VMSG). More 

• Presented at "Views on the dynamic Earth", Symposium 20 November 1998, Utrecht, The Netherlands 
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Fig. 1. The dual role of the gravity field in Earth sciences 

precise, we want to discuss current research at the Delft Institute for Earth-Oriented Space Re

search (DEOS) related to the improvement of our knowledge about the gravity field driven by 

requirements from geodynamics. The geophysical implications of an improved model of the 
static and time-varying gravity field is addressed by Wahr (1998). 

Let us first make a few remarks concerning the role of the gravity field in Earth sciences. 
First of all, the gravity field is a mirror of various processes in the Earth's interior. In order to 
understand this we simply have to remember that the mass distribution inside the Earth and the 

Earth's rotation generate the gravity field. If there would be no geodynarnics at all, the Earth 

gravity field would be that of a slowly rotating fluid in hydrostatic equilibrium. Therefore, 
any difference between the gravity field of the real Earth and that of the equilibrium figure 
reflects the anomalous density structure inside the Earth. These density anomaIies are due 
and related to a number of processes and features over a wide range of scales from global to 
regional. Examples are the structure of the lithosphere, orogenic processes, the existence and 
characteristics of sedimentary basins, and the temperature and viscosity variations in the upper 
mantIe (cf. figure I). 

The second role of the gravity field in Earth sciences, which is in some sen se dual to the 
first one, is to serve as a reference surface of all topographic processes. This becomes obvious 
when one recalls that the geoid, the equipotential or level surface of the Earth's gravity field 
at mean sea level, represents the hypothetical ocean surface at rest. So it is the surface, which 
heights are referred to, and it determines in which direction water flows. Thus, it is the natural 



71 

~ 
! 10.10· 

>. ... 
f! 
:::I 8.10· ... ... .. 
~ 
> 
I! 6.10 · 
." 
"0 
C .. 
Oi 4.10· c 
.21 
UI 

"ö 
'#. 2.10· 
0 ... 

Horizontal Resolution in km 

Fig. 2. Required accuracy as function of horizontal resolution necessary to resolve various geophysical 
features 

reference surface for the topography of land and ice surfaces (several km) and their temporal 
variations (several m) as weil as for the topography of the oceans (up to 2 m). 

2 The goals 

The gravity signal and the spatial pattern of geodynamic processes and geophysical features 

determine the requirements we have to impose on gravity field models in terms of accuracy 
and resolution. Figure 2 illustrates the required accuracy as a function of horizontal resolution 
necessary in order to resolve the quoted geodynamical and tectonic features. The read dashed 
line indicates that the gravity signalof most of the characteristic features of interest cannot be 
resolved yet. This weakness in gravity field knowledge is related to the limitations of current 
observation techniques, mainly terrestrial gravimetry, satellite altimetry, and conventional satel
lite tracking. For instance, after more than 50 years of terrestrial gravimetry, surface gravity 
data are very precise, but still highly incomplete, inhomogeneous with many gaps (high moun
tain areas, shallow water areas, pol ar regions, lakes), and often contaminated by systematic 
error. Satellite altimetry measures so to say the ocean geoid but is much too approximate, since 
actually the real and not the idealized ocean surface is measured; it deviates from the geoid 
at the meter level. Gravity field modelling by satellite orbit analysis of many, mostly non
geodetic satellites using various ground-based tracking techniques at many observatories, can 
only resolve the long wavelength features, i.e., wavelengths of a few thousand kilometers and 
longer. Therefore neither the accuracy nor the resolution of current geopotential models can be 
expected to improve significantly by additional data from conventional gravity field sensors. 

The aim must be to move the read line in figure 2 further to the right. This wiIl be achieved 
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Accuracy Spatlal Resolutlon 

Geoid Gravity (half wavelength) 

Ocean Clrculation 
-SmaU scale 2cm 60-250 km 
- Bassin scale <1 cm 1000 km 

Geodynamics 
1-210-5mJs2 - ContinentalUthosphere (thennal structure, 50-400 km 

post-glacial rebound) 
1-210-5mJs2 - ManIIe composition, rheology 100-5000 km 

- Ocean lithosphere and interaction with 5-101O"5mJs2 100-200 km 
asthenosphere (subduction procasses) 

.. """eSle 
- lce and land vertical movements 2cm 100-200 km 
- Rock basement under polar lce sheets 1-5 10-5mJs2 50-100 km 
- World-wlde helght system <5 cm 50-100 km 

Fig. 3. GOCE scientific requirements (from ESA 1996) 

by the dedicated gravity field mission GOCE. More precise, the aim of GOCE is to determine 
the global gravity field with a resolution of 100 km or better and agiobal homogeneous accuracy 

of (1-10) .10- 5 mi 82 and 1-5 cm in terms of gravity anomalies and geoid heights, respectively 

(cf. figure 3). This is an improvement of the resolution with a factor 3 to 4 and of the accuracy 
of several orders of magnitude over the state-of-the-art global gravity field modeis. 

3 The idea 

A significant improvement can only be expected from new satellite techniques. However, any 

satellite technique for gravity field mapping has one pitfall, which is illustrated in figure 4. The 

bottom panel shows the gravity signal at the Earth's surface. It mainly reflects the topography, 

thus containing many short-wavelength features. The top panel shows what signal is left at an 
altitude of 250 km. Obviously, small scale features are highly damped, and only the dominant 
large scale features are still visible. Therefore, altitude acts as a low pass filter, and the gravity 
signalof small scale mass inhomogeneities can hardly be seen at satellite altitude. 

Basically there are two possibilities to counteract the damping effect: first of all, we can fly 

the satellite as low as possible. The lowest altitude, however, is limited to 200 - 250 km for tech
nical, financial , and safety reasons, and this is not sufficient to meet the goals given in figure 3. 
The second possibility is indicated in figure 5. The top panel shows the information content 
of the second radial derivative of the potential at 250 km altitude. Obviously, this quantity has 
much more power in the short wavelengths compared to the first derivative (bottom panel of 
figure 5) , which is of course due to the differentiation. Derivatives of the potential are provided 

by differencing techniques. For instance, second derivatives of the potential can be derived from 

acceleration differences between two proof masses over very short di stances (some decimeters). 
This is called "differential accelerometry". In general, the term "gravity gradiometry" is used 
to indicate the measurement of second order potential derivatives. These quantities are much 
more sensitive to the fine structures of the gravitational field, and this sensitivity increases with 
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Fig. 4. The attenuation effect 

decreasing distance between the proof masses. 

4 The concept 

The idea can now be transformed into a concept as shown in figure 6. In a low orbiting satel!ite 

at, say, 250 km altitude, test masses are tied by springs to their equilibrium position, the center 

of mass, on three perpendicular axes, but each mass is otherwise free to move along its spring 

axis. At the positions of the test masses, the compensation of gravitational force and centrifugal 
force is not complete, resulting in smal! tidal accelerations that move the test masses away from 
their equilibrium positions. These displacements are a measure of the gravitational acceleration 

at the location of the proof mass; the acceleration difference, divided by the distance between 

the proof masses is a first order approximation of the gravity gradient in the direction of the 
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Fig. 6. GOCE concept 

axes. In practice, residual non-inertial accelerations of the frame are unavoidable (e.g., due 
to atmospheric drag); they are eliminated when forming the difference of the displacements of 
pairs of masses on one axis. The sum of the displacements then measures these non-inertial 
accelerations, and that information may be used to restitute the orbit via thrusters, i.e., to com
pensate for non-inertial accelerations. Rotation of the frame, i.e., angular velocities and angular 
accelerations, also affect the difference of the displacements. We may, however, correct for 
frame rotation if acceleration differences are taken in all possible spatial combinations ("full 
tensor gradiometer"). The displacements are very smalI, typicaJly about 10-7 m. 

They have to be determined to about 7 significant digits to meet the mission goals, say, once 
every second (in that time the satellite moves about 8 km), so we are talking about length scales 
of the order of 10-14 m. That is truly remarkable when one recalls that the radius of an atomic 
nucleus is only one order of magnitude smaller. 

The present concept of the GOCE gradiometer has 3 pairs of aligned accelerometers (fig
ure 7). One pair is pointing along track, one pair perpendicular to the orbit plane, and one pair 
pointing towards the Earth. This configuration is able to recover the three diagonal terms of the 
gravity gradient tensor. It wiIl also provide the non-diagonal terms, but with degraded perfor
mance, since the proof masses will also move a little bit in the directions perpendicular to the 
sensitive axis, but the springs in these directions are much stiffer. Finally, the linear acceleration 
due to surface forces such as atmospheric drag and solar radiation pressure, and the rotation of 
the gradiometer frame, i.e., the angular velocity and the angular accelerations are recovered. 
The accelerometers are of course not simple springs but the springs are realised either by elec
trostatic suspension or through magnetic levitation with superconducting coiJs. But even then, 
the high accuracy level can only be maintained over a certain time period of less than, say, 200 
s, corresponding to a spatial resolution of some 800 km, due to instrument drifts. That means 
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Fig. 7. GOCE 3 axes gradiometer 

wavelengths above 800 km can only be determined with reduced accuracy. To build such a gra

diometer is an extremely demanding task, but an even bigger chaUenge is how such a sensitive 

instrument can be isolated from the mechanical, electromagnetic, and thermal environment in 

the spacecraft. Therefore, instrument calibration is one of the most delicate issues. For more 
details we refer to (Morgan & Paik 1988). 

In order to recover the gravity field we have to know where the observations have been 
taken, i.e., we have to know the orbit of the GOCE satellite at any time epoch. This is done by 

tracking simultaneously the satellites of the NAVSTAR-GPS (cf. figure 6). The GPS tracking 

data, however, have also another purpose. Any GPS satellite and the GOCE satellite can be 

treated a pair of moving proof masses in the total gravitational field. From tracking the position 

of the low proof mass (GOCE satellite) w.r.t. the position of the high proof mass (GPS satellite) 

and the known GPS satellite orbits, we may recover the Earth's gravitational field according to 

the principle of gradiometry (cf. figure 6). Compared to gravity gradiometry, the differencing 
effect is less pronounced since the di stance between the GPS proof mass and the GOCE proof 

mass is about 20000 km. Consequently, only the long wavelength features of the geopotential 

can be recovered. This is complementary to the characteristics of the gravity gradiometer mea

surements, which are strong at the medium and short wavelengths, but less strong at the long 

wavelengths and weak at the very long wavelengths. Therefore, the GOCE mission will make 

use of both concepts in order to resolve the entire spectrum up to a maximum resolution. 

5 The design 

Scientific mission objectives and mission concept have to be converted into a mission design 

(e.g., satellite orbit) and system design (e.g., payload, attitude and drag contro\, satellite sys
tem, ground segment, launcher). Our contribution to find an "optimai" design, i.e., a design that 
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meets the scientific goals and is feasible from a technical and financial point of view, is mainly 

devoted to a detailed gravity field error analysis for various possible options. The goal of such 

an error analysis is to quantify for any given mission and system design and observational error 

characterstic, the expected accuracy of recovered potential coefficients and gravity field func

tionals. Every time the design has been changed, a new error analysis has to be done. Till now, 

the error analysis is mostly based on a covariance propagation using a more or less adequate 

linear observation model connecting observations and gravity field parameters. This allows on 
a case-by-case basis, without simulating any observations, to study the effects on gravity field 
functionals like geoid heights and gravity anomalies of, e.g., satellite altitude and orbit, stochas

tic model, observation type. Let us give two examples of mission and system design aspects for 

which error propagation studies are being done. 

The first example illustrates the role of satellite altitude, one of the important mission design 
parameters . From a scientific point of view low altitudes are preferred in order to counteract 

the attenuation effect. On the other hand, at low altitudes aerodynamic forces and torques are 
also higher. This requires higher thrust levels to compensate for atmospheric drag, i.e., higher 

electric power making the mission much more expensive. For GOCE a mean orbit of 250 km 

has been chosen, mainly from spacecraft constraints. It is the altitude that can be maintained by 

ion propulsion with a power demand of the order of 500 W; altitudes below 200 - 250 km are 

not allowed because of the requirement for the spacecraft not to re-enter before 7 days in case 

of failure. The task is to investigate what the relation is between satellite altitude and scientific 

mission requirements. This relation depends on many parameters, among them the assumed 

measurement noise level and the type of observation. Figure 8 shows the result of an error 

propagation study. It indicates the expected geoid commission error as a function of the satel

lite altitude for (i) various observation types (i .e. , full tensor, diagonal, cross-track component) 

and (ii) various measurement noise levels (white noise over the entire measurement frequency 
band) . For instanee, wh en measuring the three diagonal elements of the tensor at an altitude of 

250 km a measurement noise level of about 5 . 10- 4 E is required in order to keep the averaged 

geoid commission error over 1 x 1 degree blocks bel ow 2 cm. When increasing the altitude by 

only 40 km, the gradiometer performance has to be improved by a factor of 5. 

These results are based on the assumption that the measurement noise is white over the entire 

measurement spectrum. This is a best case scenario. More realistic is that this specification 

can only be met over a subband above 27 cycles per revolution (cpr), which corresponds to 

a frequency of 5 . 10-3 Hz. Below 27 cpr the exact noise characteristic is still unknown, but 

currently it is expected that the noise increases somehow proportional to 1/ f, where f denotes 
the frequency. Finally, bel ow, say, 4 cpr (8 . 10- 4 Hz) the measurements are likely to contain 

no useful information at all due to gradiometer drift. It is therefore useful to look into the 

,effect of any band-limitation of the instrument. Figure 9 shows an extreme example of the 

erdct on the estimated potential coefficients using gravity gradient observations only. If no 

information is available below 27 cpr, no improvement of the long wavelengths and only little 

improvements of the short wavelengths would be achieved compared to the current situation. If 
information is available above 4 cpr the situation becomes more favorable. Of course, this is still 
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Fig. 8. Geoid commission error over 1 x 1 degree blocks as function of satellite aititude and gradiometer 
measurement noise 

worse compared with the most favorate situation of a white noise error spectrum over the entire 
measurement spectrum. This also indicates the importanee of the measurement bandwidth and 
the stochastic model of the observations for proper error propagation studies. 

6 Data center 

Currently we are involved in phase A of GOCE, which aims at (i) the finalization of mission 
and system design, especially mission duration, gravity gradiometry and satellite-to-satellite 
tracking performance objectives, selection of gradiometer type, drag free control approach, 
demonstration of performance, (ii) the definition of the satelIite development programme, e.g., 
launcher and ground control, and (iii) making cost estimates. 

In ESA's mission development program phase A will be foUowed by phases B-E. It is likely 
that at a certain point in the program a data center wiIl be set up for scientific data analysis 
(figure 10). Such a data center wiU consist of five task units: the sensor unit, the data processor, 
the end product unit, the quality assessment unit, and the simulator. The sensor unit will pro
vide the instrument readouts (raw data), calibration data and various corrections. Moreover, it 
computes calibrated and corrected gravity gradients and GPS observations, and provides infor
mation about linear accelerations, angular veIocity and angular accelerations incl. a stochastic 
model for the various types of observations. The data processor unit, which forms the heart of 
the data center, consists of aU tools for data analysis and synthesis. The quality assessment unit 
aims at comparing the results with ground truth, e.g., orbits, regional geoid modeis, gravity and 
geoid profiles, and test field data. In addition, it contains tools for statistical testing and post 
mission calibration. The end product unit will provide the user with various end products such 
as gridded geoid heights and gravity anomalies, geoid slopes, and propagated error estimates. 
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potential 

Finally, the simulator allows to perform ful!-scale simulations prior and during the mission. 
Ful!-scale simulations prior to the mission are important in order to investigate whether 

or not the mission goals wil! be achieved depending on the mission and system design. Full
fledged simulations of the GOCE mission are currently being done under contract of ESA and in 
collaboration with the industrial prime contractor by the SID consortium, a cooperation between 
DEOS, the Dutch Space Research Organisation (SRON) and the Institute for Astronomical and 
Physical Geodesy at the Technical University of Munich (IAPG). The main goal is arealistic 
description of the quality of the observations and a proper propagation of the observation errors 
to any type of gravity field functionals, such as potential coefficients, gravity anomalies, geoid 
heights, and geoid slopes. In order to end up with a realistic error budget, the various error 
sources have to be identified and described, e.g., sensor errors (e.g., gradiometer, star camera, 
GPS antenna and receiver), control unit errors (e.g., drag and attitude control), and environ
mental effects (e.g., orbit, gravity field and non-conservative forces). Moreover, the interaction 
between sensors, control loops, actuators, and other subsystems have to be taken into account 
("closed-Ioop" simulation). 

The closed-loop simulation (figure 11) starts with a given set of gravity gradients and in
formation about satellite po si ti on and orientation, disturbing forces, and a model for various 
instrumental errors, e.g., various misalignment errors, sealing errors, and non-perfect drag and 

attitude con trol. The motion of the coupled system of proof masses is modelled by a system of 
differential equations ("forward step") . From the solution of the equations of motion and after 
adding read-out errors linear accelerations, Euler accelerations, and gravity gradients as mea

sured are computed ("backward step"). The linear accelerations are due to non-gravitational 
forces mainly atmospheric drag and solar radiation pressure. They are fed into the drag free 
control system (DFC). Then, a pair of ion thrusters corrects for these disturbances such that 
the orbit is reconstituted. From the measured Euler accelerations and the observations of a 
star camera any attitude motion of the satellite can be computed. This information is fed into 
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Fig. 10. Scheme of the GOCE data center 
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the attitude control system (ACS), causing a set of cold-gas proportional thrusters to control 

this attitude motion. However, DFC and ACS cause control forces and moments, respectively, 
which in turn affect for in stance the satellite orbit, the satellite dynamics, and the gradiometer 

signal. They are fed into the gradiometer forward model, which cIoses the loop ("cIosed-loop 
simulation"). We refer to (Sneeuw et al. 1998) for more details. 

The result of such a cIosed-loop simulation is a time series of output gravity gradients. We 
compare them with the input gravity gradients, and from the difference, arealistic stochastic 

model of the gradiometer readouts in terms of error power spectral densities (error PSD's) 
is computed. Figure 12 shows, e.g., the error power spectral density of the influence of a 
misaligment between the sensitivity axes of the two component acce\erometer that measures 
Vyy in the presence of drag. For comparison, the mission requirements of 5 mE/VHZ and 1/ f 
behaviour below 27 cpr (5 . 10-3 Hz) and the error power spectral density of the numerical 
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Fig. 12. Effect of misaligment on the gravity gradients 

integration errors (solid line) are shown. The latter can be seen as the simulator noise but can 

be made arbitrarily small by choosing a smaller step size. In a second step we propagate the 

error PSD into geoid errors or gravity anomaly errors, in order to investigate whether or not the 

mission goals are met. For instance, figure 13 shows how the alignment error propagates into 
geoid heights in the presence of drag. 

Similar caIculations are currently being done for many other errors of the sensors, the con trol 
units, the actuators, and other subsystems. This allows to identify weaknesses and limitations 

of the mission and system design al ready prior to the mission, and to adapt the design to the 
mission goals. 

As the data processor concerns we are confronted with a number of theoretical and numeri

cal problems, most of them have not yet been fully solved. The numerical problems are caused 
by the huge number of observations and unknowns to be solved for (figure 14), which are ex
tremely demanding in terms of computer power and storage requirements. They require efficient 
algorithms and supercomputing facilities. For instance, when using a sophisticated functional 

model, which allows for instance for real , perturbed orbits, satellite maneuvers, and data gaps, 

all entries of the norm al matrix are non-zero. Currently there is no operational approach for the 

assembly of the observation equations and the full normal equations. The solution of normal 
equations itself does not pose any problem from a mathematical point of view: iterative sol vers 

have to be used, e.g., conjugate gradient methods or multigrid techniques. A critical point could 
be the number of iterations. However, since the normal matrix shows a dominant block-diagonal 
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structure with some resonance bands, we may exploit this to design efficient preconditioners in 
order to reduce the number of iterations. This has still to be investigated. 

Our current approach is to use a simplified functional model, which only holds if orbit, mis
sion length, maximal resolution, and sampling fulfil certain requirements. To be more specific, 
we assume that we have an uninterrupted time series of observations available along a circular 
repeat orbit with a prime number of revolutions in a repeat cycle, where this prime number has 
to be larger than twice the maximal degree of the potential field. Then, the normal equation 
matrix has a block-diagonal structure even when coloured noise and/or band-limited stochastic 
behaviour of the observations is assumed. This allows to solve the normal equations very easily 
order by order. We assembIe the observation vector along the "actual" orbit and take arealistic 
stochastic behaviour of the measurements (e.g., coloured noise or even band-limitation) prop
erly into account. Then, the strategy is to reduce the influence of model errors on the gravity 
field parameters by iteration. Questions of convergence and speed of onvergence win become 
important. This is currently being investigated numerically but should also be proved analyti
cally. We did an experiment in order to investigate whether and how fast the iteration scheme 
converges. A non-pol ar, non-circular GOCE-like orbit was simulated along which gravity gra
dients were computed using a potential model up to degree and order 80. From this time series 
of gravity gradients the potential coefficients were estimated up to degree and order 80, and the 
relative differences between input coefficients and estimated coefficients were computed. This 
proces was then iterated. The results are shown in figure 15. The lowest curve in the figure 
is the one-step solution for a non-polar, circular orbit. It seems that after a few iterations the 
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70 5037 19600 0.8 0.2 

180 32757 129600 34.0 8.4 

240 58077 230400 104.5 26.4 

Fig. 14. Number of observations and unknowns and storage requirements for estimation of poteritial 
coefficients from gravity gradiometry observations. The number of observations has been estimated 
using the Nyquist sampling theorem; during a real mission the number of observations may he 10 times 
as large 

inftuence of the non-perfect functional model (in this case the assumption of a circular orbit) on 
the estimated gravity field parameters is negligible. However, before a definite answer can be 

given, more numeri cal experiments have to be done. 

From a theoretical point of view the major questions are related to the problem of, e.g., 
non-homogeneous data distribution, downward continuation, combination with terrestrial data 
sets, and choice of base functions. 

A homogeneous data distribution is required in order to provide a homogeneous accuracy 
and resolution over the entire Earth. However, a simple spacecraft design (power production 
by means of solar panels, minimal effect of thermal and mechanical noise due to occultation), 

requires an orbit such that the orbital plane will remain fixed w.r.t. the sun during the mission 

(a so-called sun-synchronous orbit). This implies that the satellite fties in a slightly non-polar 

orbit, leaving a data gap of some degrees around the poles, the so-called polar gaps. A number 
of problems are related to the polar gaps. For instanee, in terms of spherical harmonie analysis 
they may cause leakage of the spherical harmonie spectrum; next the normal equations may 
become unstable. If they need to be regularized, bias will be introduced. Finally, aliasing will 
become important since we only estimate spherical harmonies up to a maximum degree. 

We investigated various regularization techniques and have put special attention to the bias, 
the propagated error, and aliasing, see (van Gelderen 1997), (Bouman 1998). Let us take as 

a simple example the problem of the bias. The left panel of figure 16 shows the bias in the 
potential coefficients due to pol ar gaps of 13.2 degree diameter. Obviously the bias is almost 
concentrated on the low order potential coefficients. The bias is closely related to the loss of 
power of the spherical harmonies due to the limitation of the domain. Therefore one can try 

to construct a system of base functions that minimizes the loss of power in the pol ar areas, cf. 
(AlberteIla et al. 1998). Another strategy to reduce the bias is to add terrestrial gravity data 

in the polar areas. We investigated how dense the sampling must be and what precision the 
gravity measurements should have in order to remove the bias in the low order coefficients, 
cf. (Bouman & Koop 1998). We have assumed a quality and ,coverage that can be achieved 
by available observation techniques such as airborne gravimetry. The panel on the right of fig-
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Fig. 15. Semi-analytical approach to potential coefficient estimation from gravity gradiometry observa

tions 

ure 16 indicates that for moderate spatial density and quality of the terrestrial gravity data the 
bias does almost vanish. 

Assuming that a high degree geopotential model has been estimated from gravity gradiom
etry and SST data, we have to compute functional s of the geopotential , usually at the Earth's 
surface. Then, another problem arises, due to the downward continuation of the geopotential 
from satellite altitude to the Earth's surface. Ifthe geopotential would be exactly known at satel
lite altitude it would be known everywhere outside the Earth 's masses due to its harrnonicity. 
However, since the estimated geopotential coefficients at satellite altitude are erroneous, errors 
in the coefficients of degree n will be amplified by a factor of 1.0424(n+l) if geoid heights have 
to be evaluated at the Earth 's surface. This amplification is worst for the shortest wavelengths 
(i.e., for large n up to maximum degree n ~ 240) and less pronounced for the long wavelengths. 
For in stance, errors in the high degree potential coefficients will be amplified by more than 3 or
ders of magnitude. Therefore, downward continuation may lead to weak solutions at the Earth's 
surface, requiring some regularization in order to control the errors. 

Finally, the integration with terrestrial data sets is an important issue. Terrestrial data sets 
provide the very short wavelengths above a resolution of degree 200 - 240 as expected from 
satellite gradiometry and satellite-to-satellite tracking. In principle this can be done by a clas
sical least-squares approach taking the stochastic properties of the measurements and of the 
estimated gravity field parameters properly into account. Alternatively to this discrete approach 
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Fig. 16. Bias in potential coefficients due to polar gaps with (right panel) and without (Jeft panel) tèrres
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we may fonnulate the problem of improving the gravity field from terrestrial observations as a 

boundary value problem with a priori constraints. When using integral equation techniques, we 
are faced with the problem of how to construct efficiently a suitable system of base functions 
that fuIfiI the constraints, and, at the same time, are stable. First investigations have shown 
that muitiscaie bases with compactly supported base functions fuifil these requirements. How
ever, when applied to the geodetic situation, we are confronted with some conceptual problems 
of wavelet basis functions due to the lack of smoothness of the Earth's topography over the 

support of the coarse scale wavelet base functions, see (Klees & Lehmann 1998). 
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Abstract 

The main goal of the study is to obtain a consistent height and depth reference system in the 
form of a geoid for the Dutch mainland and marine area. For this purpose a procedure has been 
developed and tested to combine available gravity data and extern al data from satellite altimetry, 
GPS and levelling in an optimal manner. After all, local gravimetric geoid models from a 
combination of agiobal geopotential model and local gravity anomalies, usually contain errors 
of dm-level on wavelengths longer than 50 km. One of the main causes for this is the limited 
precision of the global modeis. External geoid information on discrete points, like GPS and 
levelling sites on land and altimeter tracks combined with permanent sea surface topography at 
sea is often available with cm-precision. These points can be used to correct for the medium and 
longer wavelength errors in the gravimetric geoid. The problem is to find an adequate functional 
representation of the correction surface. The authors have developed a method to investigate 
the form of this correction, and find empirical representations depending on area size. Once a 
class of functions have been selected the most suitable can be found from a statistical testing 
procedure. 

The initial purely gravimetric geoid is adjusted in longer wavelengths by means of the ex
temal geoid data. The preliminary North Sea geoid GEONZ97 has a precision of better than 
4 cm at sea and along the Dutch coast. As soon as instantaneous GPS height components in 
off-shore applications reach a comparable accuracy, ti des and meteorological response can be 
eliminated in an efficient and effective way simply by subtracting the geoid. 

1 Introduction 

The main objective of this study (De Bruijne et al. (1997)) was to develop and implement a pro
cedure for determining a consistent height and depth reference system for the Netherlands in the 
form of a unified land and marine geoid. This geoid is mainly needed for coastal zone manage
ment by Rijkswaterstaat. For instance for maintenance of important sea lanes, or maintenance 
of coastal areas depending on sediment transport related to (surface) currents. An accurate 
geoid and permanent sea surface topography model (PST) are necessary tools to achieve this. 
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Fig. 1. The land and sea geoid concept. 
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It also allows to convert depths related to mean sea level (MSL) into depths related to Lowest 
Astronomical Tide for use in nautical charts. 

The setting for the geoid is : 
h-H=N, (1) 

where h is the measured geometrieal height, H is the known orthometric height, and N is the 
unknown geoid height that can be approximated with a gravimetrie one. Specifically, at sea 
H pST and hrOPEX, and on land HORTHO from levelling and hGPs are needed. In figure 1, 
the relations between all components are visible together with MSL and Normaal Amsterdams 
Peil (NAP). The hypothesis used in the preliminary setup is that the PST is negligibly small 
compared to the required accuracy of JO cm. This level can hopefully be achieved for instanta
neous GPS heights off-shore in the near future. The neglection implies the MSL from altimetry 
to coincide with, the marine geoid, and consequently the equipotential for height reference to 
coincide with current MSL at tide gauges. The land height datum NAP refers to the MSL at the 
time of definition, and in astriet sen se the NAP heights do not refer to an equipotential any
more, due to land subsidence and sea level change. Therefore, the NAP heights are transformed 
to orthometric heights referring to an equipotential at current MSL in the tide gauges. At sea 
the spatial resolution and quality of the altimeter measurements is not homogeneous. Therefore, 
only good quality TOPEX altimetry is used as extemal geoid data, rather than a direct altimetric 
result. This allows to optimally exploit details in the gravimetrie geoid. 

2 Procedure 

The procedure we followed for determining the North Sea geoid can be summarized as follows, 
cf. De Bruijne et al. (1997). 

• Compute detailed gravimetrie geoid Ng from gravity data 

• Determine possible empirical models to correct the expected error in the gravimetrie 
geoid 

• Include extemal altimetry, GPS and levelling data 

• Correct the gravimetrie geoid Ng with the extemal data, yielding MSL 
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The following sections explain this procedure. The second item is dea!t with extensively in 
section 4. 

3 Gravimetrie eomputation 

For the deterrnination of the gravimetrie geoid Ng , we refer to De Min (1996). Here, we suffice 
with the main formula 

GM 360 (a)n n 
Ng = -- L - ÀnWn L ~CnmYnm(ip , À) 

, r n=2 r m =O 

+ 4~'Y I"o U::::"=2 2:~11 (1 - Ànwn)Pn(cos 1JI)}~g d(J, (2) 

where G is the gravitatiol)al constant, M the mass of the earth, I the norma! gravity, r the radius, 
a the semi-major axis, Àn the eigenvalue for the specific gravity field quantity, Wn the spectra! 
weights, ~Cnm the EGM96 global geopotential coefficients, Ynm the spherical harmonics of 
degree n and order m at latitude ip and longitude À, R the mean radius of the earth, (Jo the 
integration area up to a given capsize, Pn the Legendre polynomials, IJl the spherical distance 
and ~g the local gravity data. The first part of equation (2) is a weighed spherical harmonic 
expansion and the second part involves numerical Stokes' integration up to a capsize, based 
on a weighed difference between local gravity data and EGM96 (~g), in order to resolve all 
details. The weights W n that take care of an optimal combination of the longer and shorter 
wavelength contents, belong to the Meissl/Wong&Gore (MWG) modiflcation, cf. Heck and 
Grüninger (1987), De Min (1996), De Bruijne et al. (1997) and section 4. The gravity data 
involved are: 

• the EGM96 global geopotential model referring to GRS80 (Lemoine et al. (1996) and 
Rapp (1996»; 

• 6'xlO' block mean free-air gravity values in Europe (Weber (1984», and 3'x5' block 
mean free-air gravity valu~s in parts of the computation area, predicted from various data 
sets (De Min (1996». 

4 Correeting the error in the gravimetrie geoid 

4.1 Background 

In gravimetric geoid computation procedures, local gravity data are usually combined with a 
global geopotential model (GGM). In principle an optimal combination based upon realistic 
error characteristics of the globally available gravity data and a GGM should lead to the best 
possible gravimetric geoid result, however this is !imited due to systematic errors at regional 
scales from terrain reductions, height datums, etc., cf. Pavlis (1988). In regional computations, 
however, dense gravity data are only available in a restricted area. This spatial !imitation and 
the fact tha~_ one !ikes to exploit fully the advantages of the local gravity data and the global 
model lead to a practical optimal choice in a combined solution, compare also discussions in 
Haagmans and Van Ge1deren (1991). The advantage of the local gravity is that it provides all 
details at smal! and medium scales in the geoid solution. The advantage of the global models 
is that the long wavelength solution is best resolved from satel!ite data instead of gravity data. 
In case of aspecific weighing between local gravity data and a global model (see figure 3), the 
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Fig. 2. Differenee between total gravimetrie geoid in the Netherlands based on OSU91 and EGM96. 

differenees in the total gravimetrie geoid eomputations based upon OSU91 and EGM96 for the 
Netherlands may differ as shown in figure 2. From figure 2 we ean observe that the differenee 
only exhibits a longer wavelength pattern and no smaller seale details which is of practical 
importanee for GPS and levelling applications. Accepting the fact that regional gravimetrie 
geoid solutions may always be contarninated with errors at medium scales (cf. also Sideris and 
Li (1992)) we try to find a procedure to combine the gravimetrie geoid with external geoid 
data from GPS (h) and levelling (H) on land and altimetry (h) with a permanent sea surface 
topography model (H) at se a, all with proper quality measures. The problem is to find an 
adequate functional description for correction surface Fe in equation (3). 

h - H = N = Ng + Fe. (3) 

Generally, these are chosen to be trend functions of bi-linear type or similar, cf. Sideris and 
She (1995) and Forsberg et al. (1997). Usually, a profound reasoning for choosing such a 
specific function is missing. Therefore, we tried to find a procedure that can be applied for all 
gravimetrie geoid results and that is applicable and adaptive for areas of different size. 

4.2 Determination of the correction surface 

The procedure we followed can be divided into several steps: 

• Generate Iikely GGM geoid error surfaces 

• Find adequate empirical representations for the surface out of a set of functions 

• Fit the empirical function to the residuals between the gravimetrie and external geoid 

• Apply a statistical test procedure for finding the best representation 



GGt.A Inner zone dato 

80 80 

60 60 

~40 ~40 
~ ~ 
;i .S" 

CI1 
20 20 

0 ··1·············+·+· 

-20
0 10 

-20
0 10 

1 

dis tanc. (0) 

GGM 

-------- --- -- --------- ----- -- ----

100 150 200 250 

dogre. n 

distance (0) 

Inner zone dato 

-0.50 50 100 150 200 250 

degree n 

-- normal Slokes (capsize 4 deg. and Molodenskii weighls) 

-- Slokes wilh MWG modified weighls (degree 32 and capsize 4 deg.) 

Fig. 3. Nonnal Stokes weights (gray) and MWG weights (black). 

93 

The possible shape of the correction surface will be analyzed based upon the chosen GGM with 
its formal error description and the assigned weighing in the procedure. First, several possible 
sets of error coefficients per degree n and order m (Enm) are generated from the formal standard 
deviations of the coefficients of EGM96, assuming the errors per coefficient to be normally dis
tributed. For each set, error geoid surfaces can be obtained from the error coefficients weighed 
with W n , as shown in equation (4), cf. De Min (1996): 

(4) 

The weights W n can be in an idealized case Shannon weights, being 1 up to 360 and 0 for 
higher degrees, or Molodenskii weights in case of spatial truncation of Stokes' function, or 
weights according to the MWG (Meissl/Wong&Gore) kemel modification; the latter two cases 
are shown in figure 3. An example of degree varianees based on generated error coefficients for 
EGM96 is shown in the right part of figure 4, together with the MWG weights for coefficients. 
In the left part of figure 4 the signal and error degree variances of OSU91 and EGM96, and 
the difference between OSU91 and EGM96 are shown for comparison. For the North Sea area 
10 error surfaces were randomly generated according to equation (4) with MWG weights for 
degree parameter 32 and spherical capsize of 4°. The surfaces show a range of 16-23 cm and 
an rms of 3.6-6.4 cm, cf. figure 5. 
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Fig. 5. Examples of randomly generated geoid error surfaces based on EGM96 and MWG modification. 
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The next step is to select a cJass of functions for empirical modelling of these surfaces. Gen
erally, this can be e.g. polynomials, wavelets, harmonic base functions depending on the surface 
characteristics and the area extent. For the North Sea a bi-linear trend function and trigonomet
rie functions are selected, based on a Fourier analysis, which are symbolically represented in 
equations (5) and (6): 

(5) 
I J 

L L aij cos (iÀI) cos (j'Pk) + bij sin (iÀ1) cos (j'Pk) + 
i=l j=l 

Cij cos (iÀ1) sin (j 'Pk) + dij sin (iÀI) sin (j 'Pk) ; (6) 

Àl and 'Pk indicate longitude and latitude increments relative to a chosen origin in the area. From 
the Fourier analysis of tqe 10 surfaces it appeared that the maximum limit for land J is 2. In 
60% a 12 parameter model and in 40% a 28 parameter model was necessary for reducing the 
unmodelled negligible residual below a 1 cm rms. Examination of figure 4 reveals that the error 
estimates for EGM96 may be too optimistic by a factor of 2-3 in the range between degree 
2-70 from comparison with OSU91. Thus, the previous results need to be scaled to a 2-3 cm 
unmodelled residual, which is in the range of the precision of the extemal geoid data, so that 
no extension of the correction model is necessary. N.B. it is in principle possible to extend the 
model with more bias parameters in case land data from different height datums are involved. 

The final step is to fit the parameters to the residuals N - Ng of equation (3) in a least 
squares adjustment, with an overall model test, and iterative data snooping. The model can be 
extended and tested against others in order to select the optimal one within the cJass of functions, 
following the principles developed for deformation analysis (De Heus et al. (1995)). Careful 
analysis of the geoid error surface and suited correction functions limits the number of possible 
and acceptable correction surface parameters. This procedure has been successfully applied for 
the computation ofthe preliminary North Sea geoid GEONZ97, De Bruijne et al. (1997). 

5 Connecting the gravimetrie geoid with external data 

In De Min (1996), De Bruijne et al. (1997) and section 4 it is described that the gravimetric 
geoid Ng has to be corrected for its longer wavelengths, based on extemal data: 

(7) 

The correction function Fc depends on the error in the gravimetrie geoid and the con trol data 
(altimetry, GPS and levelling). Tests resuIted in the ehoice of a sum of a bilinear and a trigono
metrie surface, expressed in 12 or at most 28 parameters, cf. subsection 4.2. 

Figure 6 (Jeft side) contains the residuals with an rrns of 8.5 em between the extemal geoid 
and the gravimetrie geoid values, after removal of the mean of 69 em with respect to two year 
averaged TOPEX and GPS/\evelling heights. For details, see De Bruijne et al. (1997). A least 
squares adjustment procedure incJuding iterative data-snooping resuIted in the acceptanee of the 
28 parametér model in view of the required aeeuraey. Figure 6 (right side) shows the residuals 
after the eorrection; the rms of all aeeepted points is 3.2 cm, and the mean of all points is -0.1 
cm and the rms 4.2 em. 

The 28 parameter eorrection surface is shown on the left side of figure 7. Combining the 
gravimetrie geoid and the eorrection surface yields the preliminary North Sea geoid GEONZ97 
shown on the right side of figure 7. 
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Fig. 7. Correetion surfaee for the gravimetrie geoid (Jeft) and preliminary geoid GEONZ97 (right). 
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Fig. 8. Randomly generated geoid error surfaces based on EGM96 with Molodenskii weights (left) and 
with MWG modification (right). 

6 Conclusions 

A procedure is proposed for correcting the longer wavelength errors in the gravimetrie geoid by 
means of an adequately chosen empirical function based upon geoid error surfaces generated 
from the formal errors of a GGM. It depends mainly on the weighing between local data and 
a global model. A standard approach with Molodenskii weights results for the Netherlands 
in a rather irregular geoid error surface (see figure 8 (Jeft», that is rather complex to model. 
The MWG modification shows a smooth trend surface (see figure 8 (right» . Modelling this 
by means of extern al geoid data results in the elimination of the trend surface, but also of 
the difference between two gravimetrie geoid solutions as shown in figure 2: the final geoids 
wil\ be practically identical. Thus a proper weighing or kernel modification is important. The 
procedure can easily be extended to larger areas, avoiding unnatural blending of neighbouring 
solutions. 

This procedure has been successfully applied to determine - as a first attempt - a consistent 
geoid for land and sea in the Dutch region, within a ± \0 cm level at sea and a few cm's on 
land. However, some aspects can be improved in future computations. The statistical testing 
procedures lead to the choice of a 28 parameter model, but the overall model test was not fully 
accepted. Further extension of the model possibly leads to a better fit, but is not expected to 
be realistic. One of the reasons can be th at the assumption of H pST to be small and of random 
nature may be invalid, since a model based upon the major tidal component and wind predicts 
a PST with a trend pattern as shown in figure 9, cf. Prandle (1984). Comparing the left plots 
of figure 7 and figure 9 leads to the suggestion that the correction surface absorbs part of the 
systematic effect of the PST. So, inclusion of a state of the art PST model may very well lead 
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Fig. 9. Model PST in cm (Ieft) and accepted points in the final adjustment (right). 

to acceptance of the 12 parameter model and improvements near the coast. From the right plot 
of figure 6 and figure 9 and the original data distribution, it appears that data rejection took 
place at locations where residuals are large due to poor marine gravity covefage, and pOOf tidal 
modelling of altimetry close to the coast. Improving these aspects and inclusion of GPS and 
levelling of more countries can lead to an accurate unified geoid as a height and depth reference 
for the whole region. 
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Abstract 

The long term goal is to determine an accurate geoid for the Indonesian region. The most 
important step towards this goal is a thorough analysis of availability of data in this region, 
and the search for a proper method for geoid determination adapted to the specific situation. 
Therefore, an analysis is done of available terrestrial and satellite data for both land and 
marine areas. Based upon these data sets and expected extensions, geoid determination 
scenarios are proposed for future computation of a unified geoid for the lndonesian 
Archipelago. 

1 Introduction 
A geoid of the Indonesian region was derived by Kahar with a precision of about 4 meter. 
The main purpose of geoid determination at that time was the need to know of the 
geometrical relationship between earth surface and reference ellipsoid for geodetic 
computations, Kahar (1981). Recently, specific geodetic, oceanographic, and geophysical 
applications demand a more precise, dm- or even cm-level, high resolution geoid in the 
region as a reference surface. In geodesy, the prospect of establishing a highly accurate 
geoid for Indonesia can be found in practice when the costs of levelling can be reduced 
tremendously by using GPS in combination with the geoid. In this case, the subject of geoid 
determination as studied by Kahar needs to be reconsidered. 

According to Khafid (1997), a precise geoid computation in the Indonesian region is 
influenced by the following facts : 

• Physical terrain or bathymetry characteristics, e.g. mountainous terrain, complex 
tectonics and archipelago-type geography. 

• Establishment of a high resolution mean free air gravity anomaly data base covering the 
entire area oflndonesia and ofits surroundings. 

• Need for a Digital Terrain Model (DTM) in order to correct for the terrain effects. 
• Unified national vertical datum, such a reference does not exist. 

'On leave from Department of Geodetic Engineering, Institut Teknologi Bandung, JI. Ganesa 10, Bandung-
40132, Indonesia 
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• Insight into the oceanographic and tidal setting in the Indonesian waters for tide gauges 
and satellite altimetry. 

Improvements have been achieved in the methodology and measurement techniques. For 
the ocean part the accuracy of satellite altimetry improved dramatically so that it can be 
used perfectly in combination with marine gravity data. For the land part new terrestrial 
gravity data has been collected, in combination with the high precision Global Positioning 
System (GPS). Besides, improvements in high resolution topographic mapping are obtained 
with the airbome or satellite technique Synthetic Aperture Radar (SAR). Also theoretical 
developments in geoid computation evolved and practical experiences were gained in the 
geoid computation for the Netherlands, De Min (1996b), and for the North Sea, De Bruijne 
et al. (1997). Those two recent studies investigate the proper procedure for precise geoid 
computation in both land and sea areas. Within this report, we try to apply procedures 
following the approach which was used by those two researches for geoid deterrnination in 
the Indonesian archipelago adapted to its specific situation. 

2 Stokes' Approach in Local Geoid Determination 
The geoid deterrnination ofthe Netherlands and the North Sea by De Min (1996b) and De 
Bruijne et al. (1997) were carried out based upon the well known Stokes' approach. This 
section reviews the method of geoid deterrnination by those two researches, and also some 
additional aspects which are important to be considered as they are related to the Indonesian 
region situation. 

2.1 Stokes' Approach 

The Stokes' solution is to deterrnine the disturbing potential T that satisfies Laplace's 
equation: 

(1) 

and also fulfills a linearized Stokes' boundary value problem in spherical and constant 
radius approximation : 

(2) 

with R denoting the mean radius of the earth, and I1.g the difference between the reduced 
actual gravity on the geoid and norrnal gravity on the ellipsoid. The I1.g is called gravity 
anomaly. 

According to Stokes, solution ofthe boundary value problemis: 

(3) 

where S('F) is Stokes' function, tp is the angular di stance between gravity anomaly data 

point and point of computation, and dO" is the surf ace element of a unit sphere. A c10sed 
forrnula ofthe Stokes' function is Heiskanen & Moritz (1967): 
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I 2n+l 
S('I') = --Pn(cos'I') 

n-l 
n=2 

= 1+_I_-6sin!'I' -5cos'I'-
sin 1 'I' 2 

2 (4) 

-3cos'I'ln(sin!'I' +sin 2 !'I'), 
2 2 

where Pn(cos'I') is known as Legendre's polynomial. By applying Brun's formula, the geoid 
height N above a reference ellipsoid can be determined as follows : 

N = 4~ f f~g S('I') dO" ; (5) 
cr 

where ris mean value of gravity. 

Both equations (3) and (5) assume that Uk (1996): 

• the reference potential on the ellipsoid is equal to the gravity potential on the geoid, 
• the mass of reference ellipsoid is equal to the true mass of the earth, 
• the ellipsoid's centre coincides with the earth's centre of mass. 

In a more general form, instead of equations (3) and (5), we may write : 

N = No + 4~ ff~gS('I') dO", (6) 

where 

NO = 8:JM _ ~WO 
Ry Y 

(7) 

Here, 8:JM and ~WO are introduced. They are the unknown difference between the value of 
gravitational constant GM ofthe actual earth and its value ofthe adopted reference ellipsoid, 
and the difference between the potentialof the geoid and the potentialof the reference 
ellipsoid, respectively. The No, which is a constant, may be neglected for the computation of 
alocal relative geoid, De Min (1996b). 
From equation (5), N can be evaluated ifthe gravity anomaly function LIg: 
• refers to geoid surface, and no masses outside the geoid, 
• represents a continuous ög-field, 
• covers the whole earth surface. 

But in practice, we have a different situation : 
• gravity anomalies are measured discretely, 
• the measured gravity anomalies refer to the actual earth surface, 
• gravity anomalies are only available within limited coverage. 
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In order for the Stokes' integral to be evaluated nurnerically to compute N from the 
observed gravity anomalies, 
• the gravity anomaly data has to be reduced to geoid surface, 
• the discrete gravity anomaly data has to be assigned to represent surf ace element gravity 

anomaly values, 
• a combination solution has to be applied by means of combining geopotential 

coefficients, i.e. global geopotential model and gravity anomaly data. 

2.2 Data Preparation: Gravity Reduction and Representation 

2.2.1 Gravity Reduction 

In principle, we are interested in how to bring the gravity value from the actual earth surf ace 
to the geoid. On the other hand, we also have to consider the Stokes' formula requirement 
that there are no masses outside the geoid (topography and atmosphere). The masses can be 
removed or condensed to the geoid, depending on the adopted approach. To perform this 
step, the density function ofthe masses must be known. Therefore, hypothesis ofthe density 
structure ofthe masses outside the geoid is necessary. 

There are many ways to do such a gravity reduction in geoid computation, for example: 
Bouguer reduction, Helmert's second condensation, and Rudzki's methods. Each method is 
different, depending on how the topographic masses above the geoid are treated. 
Theoretically, all gravity reduction methods will result in an identical geoid height provided 
that they are applied properly. 

Except for Rudzki's method, the removal or shifting of masses in gravity reduction will 
change gravity potential, and hence the geoid, Heiskanen & Moritz (1967). The 
equipotential surface derived from Stokes' formula is called cogeoid, not the geoid (see Fig. 
1). 

ellipsoid 

Fig. 1. Indirect effect on geoid ON and cogeoid 

It is important to underline that every gravity reduction will result in a different cogeoid. In 
order to produce a geoid, the observed gravity anomaly ÖgO must be reduced to the geoid 
by adding the reduction term 8A; followed by a transformation to the cogeoid after applying 
a small correction 8ög called the indirect effect on gravity. Furthermore, the computed 
cogeoid height is also corrected by a term 8N called indirect effect on the geoid. Now, the 
expression of equation (5) can be modified as follows, Wichiencharoen (1982) and Sideris 
(1994): 
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N = 4: H(t1g0 + oA + ot1g) S('P) do- + oN (8) 

a 
In precise geoid computation, both indirect effects on gravity and geoid should also be taken 
into account, Wichiencharoen (1982). 

2.2.2 Gravity Anomaly Representation 

As mentioned before, equation (5) can be applied if the given gravity anomalies on the 
geoid represent a continuous field function. In practice, however, the gravity is measured 
pointwise. Then, in order to approximate the actual gravity anomaly field, an appropriate 
representation of the field in the form of surf ace elements is required. In this case, each 
surface element is represented by one gravity anomaly value. A very common approach is to 
define mean (equiangular) block gravity anomaly as surf ace element value (see Figure 2). 

Because of this discretization procedure, the integral operator in the Stokes' fQrmula 
expressed in equation (5) becomes summation operator, De Min (1996b): 

(9) 

N(P) is the computed geoid height at point P, and Q(tpQ,AQ) is the center point of block i. 

Whereas the t1g j represents mean gravity anomaly of the block, and it can be determined by 

using simple arithmetic mean of the available data t1g j within the block as follows: 

_ 1 I 

ög j = I2>gj (10) 
j=l 

A better formulation is the use of "interpolate-average" technique as shown by Rummel 
(1991) and De Min (1996b) as follows: 

I 
t1g . = . 

I 27r(l - cos 'Pj ) 

'Pi 27r 

. f ft1g('P,a}Sin'Pdaa'l' 

'P=O a=O 

(11) 

The determination of t1g j is simple if the gravity anomaly data cover the earth's surf ace 

with sufficient density. However, the problem will arise ifthe available data are very few in 
number or they are sparsely distributed or even if there is a "no data" area. There are 
several ways that can be applied to approximate the mean block gravity anomaly value if 
there is no data available inside the block. The approach can be interpolation/prediction, 
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Moritz (1980) and Tscherning (1994), or gravity anomaly derived from geopotential 
coefficient data. 

'From geopotential coefficient data, in spherical approximation, the block value within 
the area of A can be approximated by : 

ög i ""~ fJög
ggm 

d4, 

A 

where 
nmax 

ögggm 
=y ~)n-I). 

n=2 
n 

. ~)Cnm cosml!.+Snm sinml!.)Pnm(sintp), 

m=O 

(12) 

(13) 

and Cnm,S nm are the fully normalised geopotential coefficients of the anomalous potential, 
Pnm are the fully normalised Legendre functions, and nmax is the maximum degree of the 
geopotential coefficient model. 

.1g1 .1g2 
-

.1g4 ög3 

q> • • 

+ • • • • • 
• • • • • 

.1g5 .1g6 .1g7 .1gs 

.1g9 .1g10 .1g11 .1g12 

• • • • 
• • • • • ·~gi • • • 

• • • 
• • • • • 

.1g13 .1g14 .1g15 .1g16 • • • • • ... "-
Fig. 2. Gravity anomaly representation. 

Another altemative approach is the use of least squares prediction method. This method to 
predict point gravity anomalies is defined through the following equation, Heiskanen & 
Moritz (1967): 

(14) 

Here, C ij is he row vector containing signal cross-covariance between the gravity anomaly 

being predicted ög and the vector of observed gravity anomaly ög. Also C jj is the auto

covariance matrix of the observed gravity anomaly. It can be seen that for optimal 
prediction, the statistical behaviour ofthe gravity anomalies, represented by their covariance 
matrices, must be known. 

In the current situation, the sea and ocean areas in general are not weil covered by marine 
gravitydata. Fortunately, the contrary holds for altimeter data. Based upon the altimeter and 
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gravity data, one can compute free-air gravity anomalies at sea. There are several techniques 
used to carry out this computation, for example the use of least-squares collocation, Basic & 
Rapp (1992) and Li & Sideris (1997), the inverse Vening Meinesz formula, Rummel & 
Haagmans (1990), Sandwell (1992), and Hwang (1997). 

A schematic flow diagram of data preparation procedures can be seen in Diagram 1. 

2.3 Combination Solution 

Since the gravity data usually does not cover the whole earth but is only available locally, 
then equation (5) cannot be used directly to ca1culate geoid heights in practice. To overcome 
this problem, for the computation of geoid height N, usually two kinds of data sets are 
combined, i.e. local gravity anomaly data and geopotential coefficients. Based on those 
data sets, there are two ways to ca1culate geoid height, Rapp & Rummel (1975): 

Method I: 

N=N\ +N2 

= 4~ H( ~g - ~gref ) S('I') dO' c + N re!' 

where 
nmax 

~gref = r ~:Cn -1). 

n=2 

n 

. L(Cnm cosmÀ + S nm sin mÀ)Pnm(sin tp), 

m=O 

nmax n 

Nref = R L L(Cnm cosmÀ+ 

n=2 m=O 
- -+ Snm sin mÀ)Pnm(sintp) 

(15) 

(16) 

(17) 

The 0' c indicates the cap size, so the integral is extended only up to 'I' = 'I' c in which the 
gravity anomaly data are evaluated. The NI andN2 represent the short and long wavelength 
contributions of gravity field respectively. This method is also called the "remove-restore" 
technique. 

Method 2 : 

(18) 

where ~gn is the degree anomaly computed from 
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tJ.gn = y(n -1). 

n 

. L(CnmcosmÀ+SnmsinmÀ)Pnm(sinq» , 

m=O 

and the Molodenski's truncation coefficient Qn('I'o) : 

7r 

Qn{'I' 0) = f S('I') Pn (cos '1') sin 'I' a'l' . 

'Po 

(19) 

(20) 

For both methods, the geoid height N can be computed and leads to identical results 
provided that they are applied properly. But in practice, the first method is usually chosen 
since it requires less computational effort. 
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Diagram 1. Data preparation procedure for geoid determination 

eduction I 



109 

Furthermore, it is important to find a proper choice of combination such that the global 
geopotential model information and the local gravity data are weIl combined in terms of 
reducing the truncation error. In view ofthe second method, equation (18) can be rewritten 
as, De Min (1996a): 

N = NI + N2 = 4~ ffSI('I') Llgl dO'+ 

(j 

+ 4~ fJS 2('Y) Llg2 dO', 

where 

00 

2: 2n + l ( ) SI ('I') = -- I-wn Pn(cos'I'), 
n-I 

n=2 

00 

I 2n+l 
S2('Y) = --wn Pn(cos'Y), 

n-l 
n=2 

(21) 

(22a) 

(22b) 

and always SI('Y)+S2('I')=S('Y) . There are many possibilities to choose the weight wn 
which determine the proper combination of the two data sets.The different choices are 
known as kemel modifications. In the computation of precise geoid for the Netherlands, the 
chosen Stokes' kemel modification is the combined Meissl/Wong&Gore model. This model 
has the foIlowing properties: 

• it can be tuned to select which degrees are mainly used from global geopotential model, 
• the kemel is exactly zero at the inner zone boundary, and the spectral weights stay close 

to zero for higher degree n. 

FoIlowing the above description, the NI in equation (15) is modified as: 

(23) 

(24) 

and 
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In precise geoid computation, one should also pay attention to the aspect of numerical 
integration of equation (23) in view of equation (9). As we know, the gravity anomaly data 
used in practical computation are often in the form of mean block values. In evaluating 
numerical integration, this will introduce discretization error especially for inner most 

('I' < 'I'~) residual gravity data. The situation of the inner zone cr 0 and the inner most zone 

cr ~ can be seen in Figure 3. 
To reduce that kind of error, the contribution of the inner most data to the geoid height 

can be calculated by least-squares collocation method. Implicitly, the least-square 
collocation does two steps at once: least-squares prediction and Stokes' integral. It allows to 
create automatically a smooth gravity function through the given point values. Hence, we 
use point gravity data instead of mean block values as input to the computation. A refined 
collocation formula for this purpose has been shown by de Min (1995). On the other hand, 
the collocation method has a numerical problem of large inversion matrix for larger number 
of the data. Furthermore, the contribution of the data in the rest of the inner zonè 

('P~ < 'P < 'Po) can be evaluated by numerical integration. Several numerical methods of 
evaluating Stokes' integral based on Fast Fourier Transform (FFT) approach have been 
proposed by many authors. A more refined technique for evaluation of convolution integral 
on the sphere was introduced by applying one-dimensional FFT [Haagmans et al, 1993]. So 
all practical advantages of both methods in evaluating equation (23), collocation and 
numerical integration, can be fully exploited. 

Fig. 3. The inner zone cr 0 and the inner most zone 

The solution of geodetic boundary problem described previously is based on spherical 
and constant radius approximation. To have a better solution, an ellipsoidal correction 
oN e should also be added to the result of equation (15). The magnitude of this correction is 
in the range of cm-level for the selected combined Meissl/Wong&Gore kemel modification 
[de Bruijne et al, 1997). For Stokes' formula the correction can be computed from 
[Pavlis, 1988]: 

(25) 
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where E 6g is the higher order term of equation (2) series expansion containing ellipsoidal 

flattening term. 
Then a complete expression to derive gravimetrie geoidal height N from combination 

solution can be written as : 

(26) 

2.4 Comparison with Independently Derived Geoid Heights 

The geoid height derived byequation (26) is still contaminated by errors in the lower 
frequencies of the selected global geopotential model. The magnitude of the error is in the 
order of a decimeter. Note that a 70 cm difference in this study comes from a 70 cm 
difference in the reference ellipsoids of TOPEXlPoseidon and ORS'80. lf the computed 
gravimetrie geoid is compared to extemal and independently derived precise geoid 
information, we may see the error pattem of the long wave1engths. 

Besides gravimetrie approach, precise geoid heights can also be determined 
geometrically by means of OPS/levelling combination on land area, and altimetric 
techniques at sea. Recently, the TOPEXlPoseidon altimeter data are considered very 
precise. If the geometrie geoid is weil defined and referred to a regional reference 
equipotential surf ace, then correction to the gravimetrie geoid can be modelled and 
computed. The procedure for correcting the gravimetrie geoid is shown by de Bruijne et al 
(1997). 

The schematic flow diagram of evaluating gravimetrie geoid using this combination 
solution approach can be seen in Diagram 2. The main input of this procedure are the global 
geopotential model and the mean block gravity anomaly as a result of the data preparation 
stage (Diagram I). 

3 Data Availability 
The definition of the area of investigation is the Indonesian region and its surroundings. 
Approximately, it has the following extension in geographical coordinates: 

-150 s latitude <jl S 100 

900 S longitude À S 1450 

The data availability related to geoid determination within the area defined above is of 
major importants for the current choice of the strategy for geoid determination at present 
and for possible future projects for data collection. The current situation is as follows: 

• Gravity data 
The gravity data covering lndonesian archipelago and its surroundings are available at 
several databases such as Bureau Gravimetrique International (BOl), National Oceanic and 
Atmospheric Administration (NOAA), Badan Koordinasi Survey dan Pemetaan Nasional 
(Bakosurtanal) and several other institutions. For the land part and very few sea part, 
Bakosurtanal or National Gravity Committee of Indonesia may provide point or line gravity 
data, while BOl or NOAA provides line gravity data for sea areas (see Figure 4). Several 
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lines of marine gravity data in Banda Sea area are also available from the Snellius II 
expedition [Strang van Hees, 1987 and Woodside et al, 1989). As explained in the previous 
chapter, the gravity data (free-air gravity anomaly) at sea can also be derived from satellite 
altimeter data. Recently, there are altimeter data available from several satellite altimetry 
missions such as Geosat, ERS-I, ERS-2 and TOPEXlPoseidon. Several institutions also 
derive and provide free-air gravity anomaly at sea based upon these data such as National 
Geodetic Data CenterlNOAA (USA), Nationa/ Chiao-Tung University (Taiwan), Kort & 
Matrike/styre/sen (Denmark), and DEOS, Delft University ofTechn%gy (The Netherlands). 

",..--- .......... , ... 
I Long wavelength \ 
, contribution ~ ... ", ... .... -.-

Global geopotential model 
[input data] 

",..--- .......... , ... 
I Short wavelength \ 
, contribution ~ ...... ....", -f 

Mean bloek gravity anomaly 
[input data] 

Gravity anomaly implied 
by potential eoeffieient ~ Residual gravity anomaly 

Geoid height implied 
by potential eoefficient 

[eqn. 17] 

[eqn. 16] 

• ellipsoidal correct ion [eqn. 25] 

Stokes' Integral evaluation 
(with modified kemel) 

[eqn. 23] 

.. 
• indirect effect on geoid height [eqn. 26] 

• GPS/levelling data 
• Altimetry data, and sea pressure, 

salinity, and temperature model 

.. Correction to gravimetrie geoid 
by means of external and 
independent geoid information 

[section 2.4] 

Diagram 2. Gravimetrie geoid eomputation by combination solution approach 

I 
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The University of Leeds, in collaboration with South East Asian countries and other 
international institutions, conducted the so called South East Asia Gravity Project (SEAGP) 
during 1991-1995. Based upon the SEAGP data, Geophysical Exploration Technology 
(GETECH) processed and compiled all available land and marine gravity data, and satellite 
altimetry derived gravity in this area into a unified data set. From the SEAGP original data 
coverage in Figure 5, it can be seen that there is very poor marine gravity data in the 
Indonesian archipelago. Fortunately, the sea part is weil covered by satellite altimeter data. 
It can also be seen that there are gap areas in land parts especially in Kalimantan, Sulawesi 
and Irian islands. Filling the gap areas by means of airborne gravimetric survey should be 
considered in the future. The GETECH's derived gravity product is in the form of 5'x5' grid 
offree-air, bouguer, and isostatic gravity anomalies. This does not mean that the data set has 
5'x5' data resolution. The data set is referred to the IGSN71 gravity datum, processed using 
the WGS '84 gravity formula and terrain corrected to 167 km. 

• Digital Terrain Model 
In gravity reduction to correct for terrain effects, and in gravity interpolationlprediction to 
smooth the gravity field, Digital Terrain Model (topography and bathymetry data) of the 
region is required. Up to now, Bakosurtanal provides the high resolution DTM only for 
Jawa, i.e. still under construction, and parts of the Sumatera islands. Again, as mentioned 
in the beginning, a unified national vertical datum does not exist in the region. In this case, 
each island has its own vertical datum. 

Besides gravity data, GETECH also provides a 5'x5' grid oftopography and bathymetry 
for the whole world called Global DTM5. The derived topography and bathymetry for 
Indonesian region can be seen in Figure 6. In constructing this data set, various elevation 
data sets were used: ETOP05, height data from gravity stations, topographic maps, national 
DTMs, bathymetry, satellite derived heights, and shoreline, GETECH (1995). Even though 
it covers land and sea globally, it does not mean that the height of grid points in the data set 
refer to a unique vertical datum. It is suspected that the height component of the DTM is 
adopted directly from the original data source. Another weakness of this data set is the 
resolution of the data. With 5'x5' or about 10 km x 10 km grid, the high frequency 
information of topography cannot be recovered. It is expected in the future that the 
realisation ofthe high resolution SAR derived DTM will be carried out. 
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Fig. 4. Marine (line) gravity data from NGDC/NOAA. 
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Fig.5. Data coverage for determination ofGETECH's gravity anomaly data set. Land gravity data 
(light gray), altimeter data (medium gray), and marine gravity data (dark gray). 
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• Geopotential Coefficient Model 
The use of potential coefficient models for the calculation of geoid heights has been carried 
out for years. Today a high resolution global model up to degree 360 is used routinely. 
Improvements on the model have been carried out, especially in reducing the long 
wavelength error in the model, Rapp (1996). The most recent model is Earth Gravity Model 
1996 (EGM96). This model has smaller formal error degree varianees for all degrees than 
those of the previous model, OSU91, De Bruijne et al. (1997). In deriving the OSU91 
model, there were very few data from Indonesian region contributed in the computation. But 
in the EGM96, through the SEAGP, the data from the region was inc1uded so that one can 
expect more accurate potential coefficient derived geoid height in the Indonesian region. 

• Geometrically Derived Geoid Height 
Some independently precise determined geoid heights can be used as a comparison to 
results computed by gravimetrie method. This independent information can be derived 
geometrically from combination GPS/levelling technique at land area, and very precise 
altirnetry measurement at sea such as the TOPEXlPoseidon data with a permanent sea 
surface topography model. There are several GPS/levelling points distributed over several 
major islands. Since each island has its own vertical datum, then the geoid height at those 
points do not refer to a unique equipotential surface. In order for those points to be used as 
control to the regionally determined geoid, a unified vertical datum in the region is required. 

• Auxiliary Data 
Several types of oceanographic data are required in reducing satellite altimeter data, and 
sea-surface topography determination. Sea tide data are required in reducing altimeter data 
to derive geoid height. There are some tide gauge stations maintained by Bakosurtanal and 
NOAA in the region. For ocean areas, the tide can also be modelled through a most recent 
global model called Provo st model, Provost et al. (1994). The validity of this new tide 
model in the Indonesian waters should be tested. Following Khafid (1997), the sea surface 
topography can be determined oceanographically (ocean levelling technique) based upon 
sea current, temperature, salinity, pressure, and density data. 

4 Strategies for Geoid Determination in the Indonesian Region 
As mentioned previously, GETECH's SEAGP gravity data set covers the South East Asian 
region in a 5'x5' grid of gravity anomalies, i.e. free-air, bouguer, and isostatic gravity 
anomalies. These gridded gravity anomalies are derived by using combination of terrestrial 
point gravity (land and sea) and satellite altimeter data at sea. The data set was not derived 
for precise geoid determination purpose, but for other geophysical applications such as 
regional geological interpretations, basin analysis, and continental margin studies, GETECH 
(1997). It is not c1ear how the data set was derived. Of course there are some criteria that 
have to be fulfilled to develop a gravity anomaly data set for precise high resolution geoid 
determination. Therefore, before it is used to compute geoid heights, several questions 
related to the data set are remain open : 

• What is the precision and reliability of original gravity data set used to derive gridded 
data? 

• What is the density and distribution of original data set to derive gridded data? 
• What is the vertical datum used to unify the gravity anomalies in a unique height 

reference system ? 
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• What is the formula used in deriving (point) free-air, bouguer, and isostatic anomalies ? 
What is the numerical approach to evaluate the analytical formula in the gravity 
reductions ? 

• How are the satellite altimeter data reduced to geoid height at sea ? What is the ti de data 
or model used ? Is the sea surf ace topography taken into account? 

• Are tide gauge measurement used and in what way ? 
• How are different data (combined and) weighted ? 
• What is the Digital Terrain Model used in gravity reduction ? What is the quality and 

resolution ofthe DTM ? 
• What is the formula used in transforming geoid height at sea to free-air gravity anomaly? 
• How to unify the vertical datum of both land and sea gravity anomalies ? 
• What is the approach used in gridding the original point gravity data into a 5'x5' grid 

data set? 

Those questions should be answered in order to have more detail information about the data 
set so that the difficulty in estimating accuracy of the computed geoid heights can be 
reduced. 

Another altemative of gravity data set is the use of point (original) gravity and altimeter 
data. The main point here is data treatment in preparation for geoid height computation. 
Here, we assurne that all of the gravity data have already been referred to a selected gravity 
datum. There are some problems that should be considered and anticipated for further 
investigations and improvements: 

· .. M.~l7 ... ,-,-, ... __ -

geoid 

reference 
ellipsoid 

MSL = Mean Sea Level 

Fig. 7. Inhomogeneous vertical datums and the geoid 

• Unified vertical datum does not exist in the region. 

Up to now, every island in Indonesian region has its own vertical height datum. This 
situation is described in Figure 7. The effect of vertical datum inconsist-ency on the geoid 
computation is shown by Khafid (1997). A one meter difference of height datum in 
Kalimantan island can cause up to 12 cm error in geoid computation. The error magnitude is 
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significant in precise geoid determination. In this research he also attempted to unify the 
vertical datum by means of oceanographic and geodetic approaches. The most interesting is 
the oceano-graphic approach, i.e. ocean levelling technique, since it is independent of local 
geoid information. 
However, the results show that the (dynamic) sea surface topography values for datum 
trans-formation is only available for deep water areas. Altematively, another possible 
approach is the use of satellite altimetry data in combination with a geoid derived from 
potential coefficients purely derived from the analysis of satellite tracking data. However, 
the spatial resolution is rather limited. The recent geopotential model has a maximum 
degree of at most 70. The future satellite geopotential model, based on satellite gradiometry 
technique, may provide such a model up to degree and order of 200-300 which is equivalent 
to a spatial resolution of between 50 and 100 km (half-wavelength), Koop (1993). Although 
it still needs to be refined, the two methods can be the best candidate to solve vertical datum 
problem in geoid computation in Indonesian region. 

• Mass density model and DTM data in land gravity reduction. 

As can be seen from Figure 6, the topographical setting of the land part of the lndonesian 
archipelago is mountainous. The maximum height can reach more than 4000 m above sea 
level at Irian island. lt is well known that besides its height variation, the area is also located 
at a tectonically active region, Bowin et al. (1980) and Katili (1989). This is characterised 
by the presence of tens of active vo1canoes. This situation makes us aware about the 
topographic mass density variations and the needs of gravity reductions. The formulas used 
in gravity reductions usually adopt the mean mass (above geoid) density value of 

2.67 g cm -3 . F or the Indonesian region situation, this density value could be not appropriate 
anymore, especially in precise geoid computation. Thus, the need of mass density modelling 
in gravity reductions becomes important for future investigation. Another important aspect 
in gravity reduction is the topography information. For mountainous region, an accurate and 
high resolution DTM is necessary to compute the topography attraction effects on gravity. 
Anticipating the high resolution topography information in the near future, refinement of 
gravity reduction and indirect effects models should be considered, especially in the 
inclusion of the higher order or non-linear terms which is usually ignored in the 
computations. Besides for gravity reductions, a good knowledge of mass density and 
topography information can also be useful in gravity interpolation. 

• Representation technique to derive mean block gravity anomalies in the region. 

Before deriving mean block gravity anomalies, we have to know the density distribution of 
gravity data in the computation area. As mentioned previously, there are still data gap areas 
in land parts, especially in Kalimantan, Sulawesi, and Irian islands. A proper handling of 
this problem also needs more investigation. For sea areas, a suitable approach for 
transforming altimeter data to gravity anomalies should be searched. Fortunately, there are 
several institutions that provide altimetry derived free-air gravity anomaly at sea. The use of 
this data sets should also be tested. The selected block size should describe the resolution of 
gravity data in the region. 

With an appropriate data preparation approach, we may expect an optimal data 
tepresentation for the region of computation. In the following, based on data availability and 
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their characteristics, three altemative procedures for geoid determination in Indonesian 
region will be discussed. 

4.1 Procedure A : Utilisation of GETECH's Data Set 

In this first procedure, we deal with the possibility of utilising the bouguer or isostatic 
gravity anomaly contained in GETECH' s data set. If it is used directly to compute geoid 
heights for Indonesian region, then at least two assumptions should be made : 

• All of the reduced gravity anomalies are referred to a homogeneous vertical datum . 
• The 5'x5' grid values represent the 5'x5' mean (equiangular) block gravity anomaly 

values. 

Another required data set is the global geopotential coefficients. In this case the EGM96 
model is selected. However, the potential coefficients of EGM96 refer to its own ellipsoid, 
Rapp (1996). As mentioned, GETECH's gravity data refer to the WGS84 datum, so 
transformation of all EGM96's coefficients with respect to degree n should be made, de 
Bruijne et al. (1997): 

t.CWGS84 = GMEGM96 (aEGM96)n t.CEGM96 
GMWGS84 aWGS84 

(27) 

where t.c represents the fully normalised geo-potential coefficients (:",. and S nm of degree 
n and order m with respect to an ellipsoidal reference, GM is the gravitational constant, and 
a is the semi-major axis ofthe reference ellipsoid. 

Based on those two data sets, i.e. gravity anomaly and geopotential coefficient data, 
geoid heights are then evaluated by using the combination solution approach as described in 
section 2.3. In order to yield an optimal combination solution, the following should be 
considered for future investigations : 

• The search of appropriate maximum degree L of modified kemel or other kind of 
modifications in evaluating equation (24). 

• The search of optimum cap size (Tc • 

By means of comparing to extemal and independent geoid heights, the long wavelength (not 
globally, but locally) error in the geopotential coefficients can be computed. The computed 
correction might be still contaminated by the effect of vertical datum inconsistencies. 

Since the history of GETECH's gravity data processing is not clearly understood, and 
also we imposed two assumptions mentioned above, it is very difficult to estimate the 
accuracy of the resulted geoid heights. 

4.2 Procedure B : Utilisation of Original Data Set 

Instead of using gravity anomalies from GETECH's data set, a better altemative is the use 
of original data sets, i.e. point gravity data and satellite altimetry data. In this way we can 
take some advantages on the use of more accurate data sets and better models such as newly 
determined topography from SAR, newer tidal model etc. As described in the beginning of 
this section, the procedure of the whole geoid computation can be written as follows : 
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• Data preparation : 

We have first to define a homogeneous vertical datum for the whole region (land and sea) of 
computation. In preparing the data before reduction to geoid, all point gravity anomalies 
must also be referred to the same system, i.e. gravity datum. The practical procedure for 
calculating gravity anomalies from gravity data can be found in Heck (1990). As mentioned 
previously, there are many ways to carry out gravity reductions. The important thing is how 
to do the reduction in a proper way. As we know, there are fewer terrestrial gravity data 
available at sea. Fortunately, the sea areas are well and densely covered by satellite 
altimetry data, i.e. ERS and Geosat altimeter data. After being reduced to geoid, then the 
altimeter data in combination with marine gravity anomalies are processed to derive marine 
free-air gravity anomalies. Here, the TOPEXlPoseidon data are not included in the 
computation. These data will be used as an extemal and independently geoid inforrnation in 
the later stage. Another alternative for the sea area is the use of available satellite altimetry 
derived free-air gravity anomaly data set provided by some institutions. As the next step, the 
point gravity anomalies are transforrned to the mean block values. Unfortunately, there are 
some data gap areas at several islands, especially in Kalimantan, Sulawesi, and Irian islands. 
As described in section (2.2.2), there are several possible techniques to compute the gravity 
anomaly values in the data gap areas. The following should be considered in gravity data 
preparation for future improvements and investigations : 

1. Application of Khafid' s approach in vertical datum unification. 
2. Gravity reduction procedures by means of a mathematical model, mass density model, 

and topography inforrnation. 
3. Methods of deterrnination of marine free-air gravity anomaly from satellite altimetry 

data in combination with terrestrial marine gravity data. 
4. Suitable technique for gravity anomaly interpolation/prediction in data gap areas. 
5. Selection of optimal block size. 

• Combination solution : 

As before, the data needed in this stage are mean block gravity anomalies and geopotential 
coefficients. Here, we also propose the use of geopotential coefficients from EGM96 model. 
Geoid heights are then evaluated by using the combination solution approach as described 
in section 2.3 . Not like in procedure A, here the use ofleast-squares collocation in the inner 
most zone for reducing discretization error proposed by De Min (1995) can be applied since 
the point gravity anomaly data are available. Of course this approach is only applicable for 
such an area with sufficient data density. The following should be considered in evaluating 
combination solution to calculate geoid height for future improvements and investigations : 

1. The search of appropriate maximum degree L of modified kemel or other kind of 
modifications in evaluating equation (23) . 

2. The search of optimum cap size cr c . 

3. The use of available marine free-air gravity anomaly data set in geoid computation. 
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• Comparison with external and independent geoid information : 

The realisation of vertical datum unification allows the extemal and independent precise 
geoid data (GPS/levelling and TOPEXlPoseidon data) to refer to one equipotential surface. 
As explained previously, the reason of comparing the gravimetrie geoid to the extemal and 
independent one is to correct the computed gravimetric geoid heights with the long 
wavelength error contained in the geopotential model. Since the error magnitude is in 
decimeter level typically, then this correction wiU be optimal if the accuracy of the 
independent geoid height is in the order of less than one decimeter level. On the other hand, 
the computed gravimetrie geoid heights have to be precise too. Otherwise, the correction not 
only contains long wavelength error but also other type of errors. Related to the current 
Indonesian region situation, the goal of this procedure is difficuit to be achieved due to 
many factors. 

To compute the geoid for the whole Indonesian region, it needs not only gravity data 
from the Indonesian region itself but also the data from several neighbouring countries such 
as Malaysia, Australia, Singapore, Papua Nugini, Phillipines, and Brunei Darussalam. 

4.3 Procedure C : Island-by-Island Geoid Determination 

As we have seen from gravity data availability, there are still some data gap areas at several 
islands. In procedure A and procedure B, these gap areas are filled by means of 
interpolation or prediction. Of course, this approach introduces errors. The procedure of 
vertical datum unification also introduces errors. Therefore, both errors wiU propagate to the 
computed geoid heights. The error magnitude in geoid heights caused by those two sources 
could be reduced by limiting area of computation. Here, the strategy is island-by-island 
geoid determination. Based on data availability, compared to other islands, Jawa and 
Sumatera are the best. For both islands, there are two main advantages of using this 
approach: 

• The vertical datum unification procedure is only applied to the data located at sea and at 
the neighbouring islands. 

• The gravity data density and quality can be more uniform. 

The procedure ofthe geoid height computation can follow the procedure B. In this way, we 
may expect best resuits for Jawa or Sumatera islands based upon the current data 
availability. Unlike applying the previous approach (procedures A and B), this approach 
may exploit the whole procedure of geoid heights computation described in the section 2. In 
case of other islands, the procedure A or procedure B can be applied. 

5 Conclusions and Recommendations 
Thc main constraints in precise geoid deterrnination in Indonesian archipelago are : 
• Vertical datum unification problem. 
• Data availability. 
Considering those two aspects, three possible procedures for geoid height computations are 
proposed. The most simple but the least accurate approach is procedure A. This can be 
easily understood since the GETECH's data set is not prepared for geoid determination. The 
second approach, procedure B, is expected to give better results than the. first approach, but 
the procedure is very laborious. Moreover, there are still some weaknesses in this procedure, 
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i.e. the quality of reference height datum over the whole region, and the effects of data gap 
areas. These can be said to be the main limiting factors of precise geoid determination for 
lndonesian archipelago. The better approach but the less area coverage ofthe computational 
area is procedure C. This procedure tries to reduce the computed geoid height errors by 
confining the area of computation by means of avoiding data gap areas, and also reducing 
the errors in inter-island vertical datum unification. Applying the last approach to the Jawa 
and Sumatera islands, the best derived geoid of part of Indonesian region can be expected. 
The recent advances in GPS technique and gravimetry instrumentation make the gravity 
measurement by means of airborne gravimetry more promising. At the same time, the SAR 
technique also provides a more refine high resolution topography data which are needed in 
the gravity reduction. This technique should be taken into account for filling the gravity gap 
areas in the future consideration. This technique mayalso provide solution of a unique 
reference for a proper land-sea gravity transition problem. Besides, these gravity data are 
also useful for other geophysical purposes. 

Another problem is in modelling. In general, various assumptions in geoid modelling are 
no longer hold in Indonesian geoid determination. The refinement or improvement on the 
mathematical models in geoid computation is also very important. There are many 
assumptions imposed in the derivation of the Stokes' boundary value problem solution. 
Besides, the resolution and the accuracy of data become higher and better. Another 
imperfectness is the simplification of mass density modelling in gravity reduction. 
Therefore, refinement or improvement on those two models is necessary for the future work. 

As an alternative to the Stokes' approach, the use of Molodenski's boundary value 
problem solution in geoid determination for Indonesian archipelago should also be 
considered in the future investigation. The main advantage of this approach is the 
independency of the mass density knowiedge. In this way we get the so called quasigeoid 
instead of the geoid. At sea or ocean, the quasigeoid is equal to the geoid, but this is not the 
case in land areas. If we relate to the local adopted height system, it means that we have to 
change the system from orthometric height to normal height. Of course, it is also possible to 
transform the quasigeoid to the geoid, but again the knowledge of mass density is required. 

Precise geoid determination for Indonesian archipelago is a very laborious task and a long 
term process. Following this report, the next tasks can be several investigations to test the 
proposed procedures (A and B) in small test areas. Besides testing and validating the data 
used, the investigation should also more concentrate on the geoid modelling as described in 
the previous sections. From this stage, it is expected to yield a more optimal and suitable 
geoid determination procedure to be applied in Indonesian archipelago. 
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