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 A B S T R A C T

Several studies have been dedicated to altering friction forces, with external excitation being one of the 
approaches explored. When the latter is considered, its influence has primarily been studied within the context 
of discrete systems. Therefore, in this study, a moving oscillator in frictional contact with an elastic rod of 
finite length subjected to distributed damping is considered, to study the influence of external excitation in 
the presence of support flexibility on friction modulation. The modal expansion method is used to derive the 
modal equations of motion, which are then solved numerically. Two cases are investigated, one with the load 
acting on the mass and the other with the load acting on the rod. It is found that, for both cases, friction 
modulation varies along the rod’s length, and it differs from that obtained assuming a rigid rod. Moreover, for 
the load-on-mass scenario, a critical velocity is defined, providing direct insight into the friction modulation 
differences between flexible and rigid rod cases. For the load-on-rod scenario, large deformations are observed 
close to and above resonance, and geometric nonlinearity is accounted for to describe the system dynamics 
accurately. To link theoretical results to applications, the findings are used to qualitatively interpret slip-joint 
vibration-assisted decommissioning tests, and are compared with experimental results in which friction force 
reduction is explained through the use of elasto-plastic friction models that account for surface deformability, 
showing good qualitative agreements between the theoretical and experimental outcomes.
1. Introduction

Controlling the tribological behaviour of interfaces is essential for 
the satisfactory operation of systems in many fields of applied science. 
This control is crucial for mitigating energy, efficiency and economic 
losses and reducing noise pollution (Liu et al., 2022). Tribological inter-
face properties encompass various factors, including surface roughness, 
hardness, wear, and friction. Over the past few decades, extensive re-
search has explored ways to modulate or control friction forces without 
relying on lubricants. This area of study is particularly relevant in 
mechanical engineering, as lubrication management — such as timely 
application, removal, and replacement — can be both challenging and 
labour-intensive. Additionally, the environmental impact of lubricants 
further underscores the importance of developing alternative friction-
control strategies. A lubricant-like effect at the sliding interface can also 
be reproduced by a surrounding oscillatory field. The use of a deliberate 
application of oscillatory forces has already been implemented in metal 
working (Siegert and Möck, 1996), decommissioning of joints (Cabboi 
et al., 2021), positioning control in robots (Ipri and Asada, 1995), 
pile driving (Tsetas et al., 2023) and rendering textures in surface 
haptics (Meyer et al., 2014). However, besides the scope of controlling 
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a sliding process, the presence of an oscillatory field at the sliding 
interface (if uncontrolled or if mistakenly neglected), can also lead to 
erroneous interpretations of measured friction forces, if the goal is to 
assess the tribological behaviour of a sliding interface. This may result 
in an apparent (but misleading) dependency between the friction force 
and the sliding velocity (Tolstoi, 1967; Soom and Kim, 1983). The com-
plexity of the friction-vibration interaction increases if the influence of 
the so-called ‘‘inner-dynamics’’ of the interface is introduced. In fact, 
in previous studies (Hess et al., 1992; Grudziński and Kostek, 2007; 
Costagliola et al., 2017, 2018; Menga et al., 2021, 2023), it has been 
shown that the small-scale dynamics of a micro-structured interface 
can have a substantial effect on friction modulation. This means that 
a desired frictional behaviour can also be obtained by optimizing the 
properties of the microstructure. Besides the application of modulating 
the friction force, the use of a deliberate high-frequency microvibration 
was also investigated to control the adhesion behaviour between two 
material pairs (Tricarico et al., 2025; Argatov et al., 2025), a topic that 
lies beyond the remit of this study. 
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Over the last two decades, researchers have used various models to 
study friction modulation, with a special focus on developing strate-
gies to quench friction-induced instabilities of a sliding system, the 
simplest one being represented by a single-degree-of-freedom oscillator 
sliding over a rigid belt. The effect of a high-frequency tangential 
excitation on such model was studied by Thomsen (Thomsen, 1999), 
who showed that high-frequency excitation can prevent self-excited 
oscillations by effectively cancelling the negative slope in the assumed 
friction-velocity relationship. Follow-up studies were carried out by 
Michaux and coworkers (Michaux et al., 2007) in which monotonic and 
non-monotonic friction-velocity relations were assumed. An extension 
to the two-degree-of-freedom system was investigated by Hoffman 
and coworkers (Hoffmann et al., 2005). In their work, they not only 
investigated the effect of external tangential excitation on the friction 
force change, but also showed that excitation can stabilize the mode-
coupling instability. Other studies used similar systems, emphasizing 
the focus on the stability rather than friction modulation (Ouyang et al., 
1999; Sinou and Jezequel, 2007; Li et al., 2016; Hong et al., 2020). In 
a more recent study, Sulollari and coworkers also considered a similar 
system to study both the friction modulation and the system stability 
under the effect of parametric excitation (Sulollari et al., 2025).

The above-mentioned studies did not account for the effect caused 
by microstructured surfaces, whose corresponding stiffness and dy-
namic properties can significantly affect the friction force. This is 
shown by Costagliola and coworkers (Costagliola et al., 2017), who 
considered a 1-D elastic surface discretized into mass elements con-
nected by springs, a discretization representative of the microscopic 
heterogeneity of the surface roughness. A 2-D spring-block model was 
studied in a follow-up study (Costagliola et al., 2018). Both models 
showed that the frictional behaviour depends strongly on the micro-
structures’ shape, size and orientation. Menga and coworkers also 
considered a micro-structured 2-D surface modelled through masses 
connected to radial and torsional elastic elements (Menga et al., 2021). 
It was found that different dynamic regimes that affect friction be-
haviour can be achieved depending on the supports’ elastic properties 
and static orientation. In a follow-up study, the frictional behaviour of 
a 3-D lattice structure was studied to account for the effect of the local 
distribution of the normal load and the in- and out-of-plane self-excited 
vibrations emergence (Menga et al., 2023). These studies show that by 
optimizing the mechanical properties of the interface microstructure, it 
would be possible to obtain the desired friction behaviour.

Other than theoretical studies examining the effect of external exci-
tation or microstructure dynamics on friction modulation and stability, 
numerous experimental studies with similar objectives have also been 
conducted, the results of which have been compared using models 
(discrete and continuous) akin to those described earlier. Commonly, 
the experimental tests are conducted on pin-on-disk setups. For in-
stance, Littmann and coworkers (Littmann et al., 2001), Storck and 
coworkers (Storck et al., 2002) and Kumar and Hutchings (Kumar and 
Hutchings, 2004) studied the reduction of the friction force due to 
ultrasonic vibrations applied parallel and perpendicularly to the sliding 
direction. For each loading case, qualitative agreements between the-
oretical predictions (e.g., based on single-degree-of-freedom systems) 
and measurements (e.g., involving a moving ultrasonic vibrator along a 
track) were obtained. A better consistency of the experimental and the-
oretical results was obtained by Tsai and Tseng (Tsai and Tseng, 2006) 
using the Dahl model (Dahl, 1976) which takes into account contact 
deformability in the tangential direction, or the elasto-plastic fric-
tion model proposed by Dupont and coworkers (Dupont et al., 2002). 
Kapelke also used the Dupont model and the Amontons–Coulomb law 
to compare the experimental results to theoretical ones and found 
an excellent match between the experimental and theoretical results 
for tests carried out with moderate excitation frequencies (Kapelke 
and Seemann, 2018). Thus, when comparing experimental results to 
theoretical studies, the latter are typically focused on 1- or 2-DOF 
2 
systems, utilizing friction models often coupled with terms account-
ing for the surface compliance (see the use of the Dahl or Dupont 
model). Besides small-scale experiments, the notion of modulating a 
friction force through a deliberate oscillatory forcing has also been 
applied to large-scale structures. More specifically, a vibration-assisted 
technique was tested through laboratory experiments to modulate the 
friction force, enabling the installation and removal of a scaled slip 
joint (Cabboi et al., 2020). A follow-up study applied the technique 
on a full-scale slip joint for a wind turbine connection (Cabboi et al., 
2021), allowing the decommissioning of the slip joint itself. While the 
decommissioning operations successfully confirmed the effectiveness 
of the vibration-assisted technique and correlations were established 
between the excitation frequencies used and the structural modes of 
vibration, the actual change of the friction force due to the applied exci-
tation could not be quantified. Moreover, analysing a more realistic (or 
high-fidelity) model of the large-scale structure with friction-vibration 
interaction proved to be too complex for understanding the observed 
physical behaviour.

While previous studies have investigated the effect of external ex-
citation on friction modulation using discrete systems or focused on 
the influence of microstructure dynamics and geometry without con-
sidering external excitation, there remains a gap in understanding 
how external excitation interacts with the dynamics of continuous 
systems, which are more representative of the dynamics of real systems. 
Therefore, this study aims to analyse the effect of external excita-
tion on friction, considering a moving oscillator on an elastic rod 
of finite length subjected to distributed damping, which allows for 
a more realistic representation of how external excitation influences 
the frictional behaviour through continuous deformations. Two cases 
are investigated, one with the external load acting on the mass and 
the other one with the load acting on the rod. For both cases and 
various excitation frequencies, the values of the effective (or average) 
friction vary along the rod’s length and differ from those obtained 
assuming a rigid rod. For the load-on-mass scenario, a critical velocity 
is defined, which reveals direct insight into the differences in friction 
modulation between the flexible and rigid rod cases. The application 
of an external excitation to the rod needs particular attention in order 
to avoid large axial deformation under resonance conditions or high-
excitation frequencies. For cases when large deformations are allowed 
(depending on the material type, properties, loading conditions etc.), 
geometric nonlinearity is accounted for in the equations of motion. 
Finally, the results of this study are used to qualitatively explain the 
vibration-assisted decommissioning tests of the slip joint (Cabboi et al., 
2021, 2020), and allow for a comparative discussion with the friction 
modulation results obtained using elasto-plastic friction models meant 
to encapsulate the surface deformability (Kapelke and Seemann, 2018).

The paper is structured as follows. First, the description of the 
moving oscillator on the rod is introduced in Section 2. In Section 3, 
the results on friction modulation are obtained when the oscillatory 
load acts on the mass. The results for the load acting on the rod 
are presented in Section 4. In Section 5, analogies with real-world 
applications and experimental studies are explored to contextualize the 
modelling choices. Finally, conclusions are drawn in Section 6 and the 
Appendix is added, providing additional details to the discussions and 
the results presented in this study.

2. The model system

To reveal the effects of axial rod deformations on vibration-induced 
friction modulation, the system illustrated in Fig.  1 is considered. Fig. 
1(a) illustrates the case where the harmonic load is applied on the mass, 
and Fig.  1(b), the case where the load is applied on the rod. The system 
consists of a moving oscillator composed of a mass 𝑚, a spring with 
stiffness 𝑘 and a dashpot with damping coefficient 𝑐, connected to a 
massless support. The support is pushed to the right direction with a 
constant velocity 𝑣 and the distance from the left end at time 𝑡 is 𝑣𝑡. 
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Fig. 1. Oscillator moving on an axially deforming rod: (a) harmonic load applied on the mass; (b) harmonic load applied on the rod at a position defined by the initial length of 
the spring 𝑠0.
The initial length of the spring is 𝑠0 and the elongation of the spring 
from the free length is 𝑠. The load 𝑁 is a constant normal preload acting 
on the mass. The rod has a cross-sectional area 𝐴, density 𝜌, length 𝐿, 
Young’s modulus 𝐸 and damping coefficient 𝑐𝑏. The axial deformation 
of the rod at a given position 𝑥 is 𝑢(𝑥, 𝑡). The rod has fixed supports 
on both ends. The external harmonic loading is characterized by a 
frequency 𝛺𝑒 and an amplitude 𝑀𝑎𝛺2

𝑒 (e.g., load arising from a hor-
izontally unbalanced mass 𝑀 at eccentricity 𝑎 (Thomsen, 1999)). For 
the load acting on the rod, Fig.  1(b), the application point corresponds 
to the position defined by the spring’s initial length 𝑠0.

For the chosen model setup, the kinetic friction is considered to 
be the same as the static friction. The adopted friction law is the 
Amontons–Coulomb’s law (Amontons, 1699; Coulomb, 1821), since the 
corresponding friction force is directly linked to a constant coefficient 
of friction, and proportional to the normal force. As the aim of this 
study is to capture the effect of the rod deformation on vibration-
induced friction changes, the assumption of Amontons–Coulomb’s law 
is deemed most appropriate, since it avoids the complexity of more 
realistic friction laws which are case-study and material pair depen-
dent (Cabboi and Woodhouse, 2018, 2020). The friction force 𝑓 acting 
between the mass and the rod is then 
𝑓 = −𝜇𝑠sgn(𝑣𝑟)𝑁, (1)

where 𝜇𝑠 is the static friction coefficient and 𝑣𝑟 is the relative velocity. 
The latter is expressed as 
𝑣𝑟 = 𝑠̇ + 𝑣 − 𝑢̇|𝑥=𝑥𝑐 , (2)

where the overdot represents the total derivative with respect to time 
and 𝑥𝑐 is the position of the point at which the mass contacts the rod.

Under the small deformation theory, so assuming the deformation 
of the rod and mass to be negligible compared to 𝐿 and 𝑠0, respectively, 
the expression of 𝑥𝑐 can be written as 
𝑥𝑐 (𝑡) = 𝑣𝑡 + 𝑠0. (3)

It should be noted that in the study of Hong and coworkers (Hong 
et al., 2020) where a similar system is considered, the full kinematic 
expression for the contact point is used, and reads as follows 
𝑥𝑐 (𝑡) = 𝑣𝑡 + 𝑠0 + 𝑠(𝑡) − 𝑢(𝑥𝑐 (𝑡), 𝑡). (4)

According to this expression, 𝑢 and 𝑥𝑐 are coupled, so the 𝑥𝑐 expression 
is implicit. Under small deformations, however, the contributions from 
the spring elongation and the rod deformation are negligible, and 
Eq. (4) can be approximated by Eq. (3). In this study, when small 
deformations are considered, Eq. (3) is used, significantly reducing the 
computational time.

The equations of motion of the system without considering the 
external forcing terms then become 

𝜌𝐴𝜕2𝑢 + 𝑐 𝜕𝑢 − 𝐸𝐴 𝜕2𝑢 + 𝑓𝛿(𝑥 − 𝑥 ) = 0, (5)

𝜕𝑡2 𝑏 𝜕𝑡 𝜕𝑥2 𝑐

3 
𝑚𝑑2𝑠
𝑑𝑡2

+ 𝑐 𝑑𝑠
𝑑𝑡

+ 𝑘𝑠 = 𝑓. (6)

with the boundary conditions for a fixed-fixed rod being 
𝑢 = 0 at 𝑥 = 0 and 𝑢 = 0 at 𝑥 = 𝐿, (7)

and the friction force as in Eq. (1). In the case of load-on-mass, an 
additional loading term appears on the right-hand side of Eq. (6) as 
𝑀𝛼𝛺2

𝑒 sin(𝛺𝑒𝑡). For the load-on-rod case, the loading term appears on 
the right-hand side of the Eq. (5) as 𝑀𝛼𝛺2

𝑒 sin(𝛺𝑒𝑡)𝛿(𝑥−𝑠0). To general-
ize the results, the following dimensionless parameters are introduced: 

𝑡∗ = 𝜔𝑛𝑡, 𝜔2
𝑛 =

𝑘
𝑚
, 𝛽 = 𝑐

2𝑚𝜔𝑛
, 𝑥∗ = 𝑥

𝐿
, 𝑠∗ = 𝑠

𝐿
,

𝑠∗0 =
𝑠0
𝐿
, 𝑢∗ = 𝑢

𝐿
,

𝑣∗ = 𝑣
𝐿𝜔𝑛

, 𝑣∗𝑟 =
𝑣𝑟
𝐿𝜔𝑛

, 𝛿∗ = 𝐿𝛿, 𝑓 ∗ =
𝑓

𝜌𝐴𝐿2𝜔2
𝑛
,

𝑁∗ = 𝑁
𝜌𝐴𝐿2𝜔2

𝑛
,

𝛽𝑏 =
𝑐𝑏

2𝜌𝐴𝜔𝑏
, 𝜔𝑏 =

𝜋
𝐿

√

𝐸
𝜌
, 𝑟𝜔 =

𝜔𝑏
𝜔𝑛

, 𝑟𝑚 =
𝜌𝐴𝐿
𝑚

,

𝛺∗
𝑒 =

𝛺𝑒
𝜔𝑛

, 𝛼∗ = 𝑀𝑎
𝑚𝐿

,

(8)

where 𝑟𝑚 is the mass ratio of the rod and the oscillator mass, 𝑟𝜔
is the frequency ratio between the rod’s first natural frequency and 
the oscillator’s natural frequency (defined for the separate subsystems 
when no interaction is present) and the asterisk denotes a dimensionless 
component. Substituting Eq.  (8) into Eq. (5) and (6), and dropping 
the asterisks from the dimensionless equation for simplicity, the di-
mensionless equations of motion of the unforced system are derived 

𝜕2𝑢
𝜕𝑡2

+ 2𝛽𝑏𝑟𝑤
𝜕𝑢
𝜕𝑡

−
( 𝑟𝜔
𝜋

)2 𝜕2𝑢
𝜕𝑥2

+ 𝑓𝛿(𝑥 − 𝑥𝑐 ) = 0, (9)

𝑑2𝑠
𝑑𝑡2

+ 2𝛽 𝑑𝑠
𝑑𝑡

+ 𝑠 = 𝑟𝑚𝑓. (10)

To solve the equations of motion, first, the modal expansion method 
is used to derive the modal equation from the rod equation. Using this 
method and the mode shapes of a fixed-fixed rod, the response 𝑢(𝑥, 𝑡)
is written as 

𝑢(𝑥, 𝑡) =
𝑝
∑

𝑗=1
𝑇𝑗 (𝑡)sin(𝑗𝜋𝑥), (11)

where 𝑝 is the total number of modes considered and 𝑇𝑗 (𝑡) is the 
unknown function of time to be determined. Substituting Eq.  (11) into 
Eqs. (9) and (10), with 𝑓 and 𝑥𝑐 as in Eqs.  (1) and (3), respectively, 
and using the orthogonality property of the mode shapes, the modal 
equations are obtained 
𝑇̈ + 2𝛽 𝑟 𝑇̇ + 𝑗2𝑟2 𝑇 + 2𝑓 (𝑠̇, 𝑇̇ , 𝑇̇ ...𝑇̇ ) = 0, (12)
𝑗 𝑏 𝑤 𝑗 𝜔 𝑗 𝑗 1 2 𝑝
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𝑠̈ + 2𝛽𝑠̇ + 𝑠 − 𝑟𝑚𝑓𝑗 (𝑠̇, 𝑇̇1, 𝑇̇2...𝑇̇𝑝) = 0. (13)

The modal forces 𝑓𝑗 are functions of 𝑠̇, 𝑇̇1, 𝑇̇2, . . . , 𝑇̇𝑝 and are given by 

𝑓𝑗 (𝑠̇, 𝑇̇1, 𝑇̇2...𝑇̇𝑝) = −𝜇𝑠sgn(𝑣𝑟|𝑥=𝑥𝑐 )𝑁sin(𝑗𝜋𝑥𝑐 ), (14)

and 

𝑣𝑟|𝑥=𝑥𝑐 = 𝑠̇ + 𝑣 −
𝑝
∑

𝑗=1
𝑇̇𝑗sin(𝑗𝜋𝑥𝑐 ) −

𝑝
∑

𝑗=1
𝑇𝑗𝑗𝜋𝑥̇𝑐cos(𝑗𝜋𝑥𝑐 ). (15)

In the 𝑣𝑟 expression, the chain rule is used to calculate the total 
derivative of 𝑢̇ since 𝑥𝑐 is time dependent. However, the contribution of 
the last term appeared negligible for the cases considered in this study.

3. Harmonic load acting on the mass

This section examines the case of the external harmonic load acting 
on the mass, as shown in Fig.  1(a). The equations of motion are solved 
numerically, and the friction modulation is evaluated as the mass 
moves along the rod, considering different excitation frequencies. Then, 
plots of friction modulation for different pushing velocity values 𝑣 are 
presented. All results are compared to those obtained for a mass–spring-
dashpot system on a rigid rod (analogous to a mass–spring-dashpot on 
a moving belt system as described in Sulollari et al. (2024)).

3.1. Friction modulation along the rod length

The equations of motion, Eqs.  (12) and (13), are solved using the 
MATLAB solver ode23s, considering 𝑟𝜔 = 6, 𝑟𝑚 = 4.8, 𝑠0 = 0.25, 
𝛽 = 0.14, 𝛽𝑏 = 0.001, 𝜇𝑠 = 0.5, 𝑁 = 0.002, 𝑣 = 0.005, 𝛼 = 0.004
and 𝑝 = 10 (increasing the number of modes can be shown to have a 
negligible effect on the results). These parameter values are chosen to 
ensure sliding over a wide range of excitation frequencies. To guarantee 
that the response adheres to the small deformation assumption, for 
the parameters chosen, the solutions obtained are compared to those 
derived considering a rod with geometric nonlinearity, with the 𝑥𝑐
expression as in Eq. (4). The comparison shows negligible differences 
between both cases, as demonstrated in Appendix  A.1, complying the 
small deformation assumption.

The mass and rod responses (obtained from Eqs.  (12) and (13)) are 
used to calculate the average friction, 𝜇̄(𝑣𝑟), by integrating the friction 
force over the excitation period as follows 

𝜇̄(𝑣𝑟) =
⟨

𝜇𝑠sgn(𝑣𝑟|𝑥=𝑥𝑐 )
⟩

=

⟨

𝜇𝑠sgn(𝑠̇ + 𝑣 −
𝑛
∑

𝑗=1
𝑇̇𝑗 (𝑡)sin(𝑗𝜋𝑥𝑐 ))

⟩

, (16)

where <> defines the average operator over the excitation period 2𝜋𝛺𝑒
. 

In Fig.  2, the continuous lines represent the average friction values 
obtained for different excitation frequencies as the mass moves along 
the rod length, ranging from 0.25 to 1, as 𝑠0 = 0.25 is chosen. The dot 
markers represent the average friction values obtained analytically for 
a mass–spring-dashpot system on a rigid rod/belt as done in Sulollari 
et al. (2024), where the approach for calculating the average friction 
through the velocity response function is described. These modulated 
friction values are constant and do not vary along the length of the 
rod. The colours of the dot markers correspond to the colours of the 
continuous lines, indicating that the same parameter values are used 
for each pair. It should be noted that the initial parts of the continuous 
lines correspond to oscillation cycles of the transient response as the 
averaging process is carried out on the entire relative velocity response, 
whereas the dot markers are obtained analytically considering the 
steady-state response only.

The results shown in Fig.  2 are obtained for 𝑟𝜔 = 6, meaning that 
the natural frequency of the rod’s first mode is 6 (i.e. 𝜔𝑏 = 6 rad/s 
and 𝜔𝑛 = 1 rad/s). Fig.  2(a) depicts the average friction plots for 
excitation frequencies smaller than and equal to the rod’s first natural 
frequency, and Fig.  2(b) illustrates results for excitation frequencies 
exceeding the rod’s first natural frequency. Both plots demonstrate that 
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the continuous lines are not constant, indicating that, unlike the rigid 
rod case, the rod’s flexibility leads to variations in the average friction 
along its length. Depending on the position along the rod length, these 
values can be smaller or larger than the ones obtained for the rigid rod. 
Towards the end of the rod, the values of the continuous lines approach 
those of the dot markers, since the axial deformation at both rod’s 
ends approaches zero. Differences in values are from rod oscillations in 
the proximity of the support due to the change in (perceived) stiffness 
giving rise to transition-radiation effects (Fărăgău et al., 2021). While 
all the continuous lines show variations, the most significant differences 
relative to the rigid case are observed at excitation frequencies 𝛺𝑒 = 3
and 𝛺𝑒 = 6.

To better highlight the influence of the deformable rod with respect 
to the rigid one, Fig.  3 shows boxplots for different excitation fre-
quencies, highlighting the statistical distribution of the average friction 
values while the mass slides over the rod. For each boxplot, the median 
is indicated by the central red line. The bottom and top edges of 
the box represent the 25th percentile (Q1) and 75th percentile (Q3), 
respectively, while the whiskers extend to the most extreme data points 
within 1.5 times the interquartile range below Q1 and above Q3. All 
other observed data points outside the boundary of the whiskers are 
plotted as outliers using the ‘‘+’’ grey marker and are mainly a result 
of averaging over the oscillation cycles of the transient response.

The green dot markers indicate the average friction values obtained 
considering the rigid rod and they show a clear trend as their values 
decrease for increasing excitation frequencies, and for frequencies big-
ger than the frequency of the rod’s first mode, they are close to the 
median and mean (middle of the box) values of the boxes. For lower 
excitation values, the green dot markers display significant deviations 
from the mean and median values represented in the boxes, with the 
largest discrepancies occurring at excitation frequencies 𝛺𝑒 = 3 and 
𝛺𝑒 = 6, as already shown in Fig.  2(a).

Figs.  4 and 5 show the velocity responses of the mass (blue line) 
and of the rod (red line), for 𝛺𝑒 = 3 and 𝛺𝑒 = 6, respectively. 
The velocity responses are obtained at the moving contact point and 
allow us to explain the large deviations observed at these excitation 
frequencies compared to the rigid rod scenario. The amplitude of the 
velocity response of the rod in Fig.  5(a) is higher than in Fig.  4(a), as 
in the former, the excitation frequency corresponds to the frequency 
of the first mode of the rod. Although the velocity responses have 
a lower amplitude in Fig.  4(a), the zoom-in in Fig.  4(b) shows the 
responses to be out of phase with each other. The resulting relative 
velocity response, 𝑣𝑟, then exhibits a high amplitude, and the friction 
force reverses direction during each oscillation period. Consequently, 
this results in low average friction values as shown in Figs.  2(a) and 3.

Fig.  5(b), however, shows the responses to be in phase. The resulting 
relative velocity has low amplitudes, preventing the friction force from 
changing direction during certain oscillation cycles. Without a change 
in direction, the friction force remains constant. This explains why in 
Fig.  2(a), the average friction tends to the originally imposed friction 
coefficient 𝜇𝑠 = 0.5. Fig.  6(a) illustrates this statement, visualizing 
the relative velocity obtained for 𝛺𝑒 = 6. Indeed, the amplitudes of 
the relative velocity response are low and for the time window from 
∼ 25–110, the values are mostly positive, meaning the friction force 
does not change sign. Fig.  6(b), provides a zoom-in where the mini-
mum velocity response value approaches zero, resulting in stick–slip 
behaviour.

Thus, exciting the mass at an excitation frequency corresponding to 
the first mode of the rod results in stick–slip behaviour at parts along 
the rod length, and in a negligible change of the average friction values. 
Note that for the rigid rod case, stick–slip is not observed. In previous 
studies (Sulollari et al., 2024, 2025), the average operation was per-
formed when considering continuous sliding as they were focused on 
analysing friction modulation during sliding only. In this case, however, 
for 𝛺𝑒 = 6, the averaging process is performed numerically, and it is 
important to note that this is done over a stick–slip region.
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Fig. 2. Average friction results along the rod length for 𝑣 = 0.005. Continuous lines refer to the case of the flexible rod, and dot markers refer to the rigid rod. Dot marker colours 
match those of the continuous lines for the same excitation frequency: (a) results for excitation frequencies smaller than and equal to 6, (b) results for excitation frequencies bigger 
than 6.
Fig. 3. Comparison between the statistics of the average friction distributions along 
the rod length (represented by box plots) and the average friction coefficients for the 
rigid rod. The assumed pushing velocity is 𝑣 = 0.005.

Before concluding this part, it is worth noting that higher harmonics 
are present in the rod’s velocity response, as shown in Figs.  4 and
5, which arise from the moving nature of the load rather than from 
the nonlinear contact. It can be verified that in addition to these 
higher harmonics, which correspond to oscillations at the rod’s natural 
frequencies, the influence of the higher harmonics due to the external 
excitation is also present (when these do not coincide with the rod’s 
natural frequencies), albeit with a small effect. The presence of all 
higher harmonics also explains the large variations in the average 
friction values along 𝑥𝑐 , for each excitation frequency, as indicated in 
Fig.  2. These average friction values are computed by averaging over 
the oscillation period, 2𝜋∕𝛺𝑒. However, due to the presence of many 
harmonics, whose relevance varies depending on the 𝑥𝑐 positions, the 
relative velocity response used to calculate the average friction exhibits 
quasi-periodic behaviour, causing significant variations in the average 
friction values when averaged over 2𝜋∕𝛺𝑒. While in this study, the 
averaging is always performed over the period corresponding to the 
excitation frequency, as discussed in a previous study (Sulollari et al., 
2025), when multiple oscillation periods are present in the relative 
response, the choice of the period is important as it affects the resulting 
average friction values and their variability.

3.2. Friction modulation versus pushing velocity

This subsection compares the average friction obtained for various 
pushing velocities 𝑣, with reference to the excitation frequencies for 
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which the most significant difference between the flexible and rigid 
rod case is observed, i.e. 𝛺𝑒 = 3 and 𝛺𝑒 = 6. Fig.  7 depicts the results 
for 𝛺𝑒 = 3 for 𝑣 values ranging from 0.005 to 0.02. As shown in the 
figure, for low 𝑣 values (≤ 0.008), the average friction results obtained 
for the flexible rod are generally smaller than those obtained for the 
rigid rod, while for bigger 𝑣 values, the opposite trend holds. For 𝑣
values exceeding the amplitude of the relative velocity response (not 
presented here), the friction force does not change sign and no friction 
change is observed (𝑣 ≥ 0.014) for both rigid and flexible rod cases. The 
figure also suggests the existence of a velocity below which the average 
friction values for the flexible rod are lower than that of the rigid case, 
while above it, the opposite is true. To better understand the differences 
in the average friction values between the flexible and rigid rod cases 
and to investigate the presence of such transition at a specific velocity, 
Fig.  8(a) presents the maximum amplitude of the rod velocity at the 
contact point for each 𝑣 value. The choice of the rod velocity is based 
on the fact that the largest difference in relative velocities between the 
flexible and rigid rods arises from its contribution.

Fig.  8(a) shows that the maximum amplitude of the rod’s velocity 
response is observed at 𝑣 = 0.008, which corresponds to the velocity 
for which the trend in the average friction values in Fig.  7 shifts. 
This value at which the maximum rod velocity occurs is defined as 
the ‘‘critical’’ velocity and marks the point where the average friction 
values obtained for the flexible and rigid rod systems are closest to each 
other. It is worth highlighting that the average friction values being 
close does not imply that the responses are identical (in fact, they are 
not, as the rod response is at its maximum while the belt is rigid). It 
simply means that the change in sign of the relative velocities is similar, 
resulting in average friction values that are close to each other. For 
pushing velocities below the critical one, the system with the flexible 
rod exhibits lower average friction, whereas, for pushing velocities 
above it, the same system displays higher average friction values (until 
the velocity for which no friction modulation is observed for both 
flexible and rigid rod cases). Therefore, identifying the critical velocity 
offers direct qualitative insight into how the average friction differs 
between the system with a rigid rod (assuming its average friction is 
known) and the one with a flexible rod, without the need to explicitly 
compute the average friction for the latter. Moreover, to explain the 
increase in average friction values with increasing velocity 𝑣 and to 
find the pushing velocity beyond which no friction change is observed, 
Fig.  8(b) illustrates the minimum relative velocity response value for 
each 𝑣. The 𝑣𝑟,min values decrease, reaching almost zero at 𝑣 = 0.014, 
meaning that beyond this pushing velocity, the relative velocity values 
are strictly positive, resulting in a friction force that does not change 
sign. Consequently, no friction modulation occurs, consistent with the 
behaviour portrayed in Fig.  7.

Fig.  9 depicts the results for 𝛺𝑒 = 6 corresponding to the rod’s 
first mode frequency. At low 𝑣 values, the boxplots show a noticeable 



E. Sulollari et al. International Journal of Solids and Structures 321 (2025) 113572 
Fig. 4. (a) Mass and rod velocity response in blue and red lines, respectively; (b) Zoom-in on the response. 𝛺𝑒 = 3 and 𝑣 = 0.005.
Fig. 5. (a) Mass and rod velocity response in blue and red lines, respectively; (b) Zoom-in on the response. 𝛺𝑒 = 6 and 𝑣 = 0.005.
Fig. 6. (a) Relative velocity response for 𝛺𝑒 = 6 and 𝑣 = 0.005; (b) Zoom-in on the relative velocity response indicating stick–slip behaviour.
difference between the mean (middle of the box) and the median as 
well as a higher spread in the variability of the values. This variability 
in distribution decreases as 𝑣 values increase. For all 𝑣 values, other 
than the ones for which no friction change is observed, the average 
friction results for the flexible rod (except for extremes and outliers) 
are higher than those for the rigid rod case. Thus, independent of the 𝑣
value, exciting the mass at an excitation frequency corresponding to the 
rod’s first mode results in less friction reduction. In Fig.  9(b), a plot of 
𝑢̇max versus 𝑣 values is presented for this excitation frequency. Unlike 
Fig.  8(a), no distinct critical velocity is observed within this velocity 
range, as the 𝑢̇max values continuously decrease. This behaviour is 
similar to the portion of Fig.  8(a) where the velocities are greater than 
0.008; there, 𝑢̇max also decreases. In Fig.  7, this region is associated 
with average friction values higher than those of the rigid rod, a pattern 
consistent with the behaviour shown in Fig.  9(a). Therefore, even for 
this excitation frequency, the plot of 𝑢̇  provides qualitative insights 
max
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into the differences in average friction values between the systems with 
flexible and rigid rods. Notably, it can be verified that the critical 
velocity defined and calculated in this section is much smaller than 
the conventional critical velocity corresponding to the resonance of the 
rod as induced by a moving oscillatory load of frequency 𝛺𝑒 (see Frýba 
(1973)).

4. Harmonic load acting on the rod

This section examines the case of the external harmonic load acting 
on the rod at location 𝑥 = 𝑠0, as shown in Fig.  1(b). Following the 
methodology and steps outlined in the preceding section, the equations 
of motion are solved numerically, and the friction modulation is evalu-
ated for different excitation frequencies 𝛺𝑒 and velocities 𝑣. All results 
are compared to those obtained from a mass–spring-dashpot system on 
a rigid rod, with the load acting on the mass.
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Fig. 7. Comparison of average friction results for different velocity 𝑣 values obtained 
for the flexible and rigid rod case for 𝛺𝑒 = 3.

4.1. Friction modulation along the rod length

Using the equations of motion, Eqs.  (12) and (13), with the external 
harmonic loading applied on the rod, first, the average friction values 
along the rod length are obtained for different excitation frequencies, 
employing the 𝑥𝑐 expression in Eq. (3). The results are depicted in 
Fig.  10(a) where, like in Fig.  2, the continuous lines represent the 
results of the flexible rod and the dot markers correspond to those 
of the rigid rod. Again, similarly to Fig.  2, Fig.  10(a) shows large 
variations in the average friction values along 𝑥𝑐 , for each excitation 
frequency (other than the ones for which no change in the frictional 
behaviour is observed, such as for 𝛺𝑒 = 2 and 𝛺𝑒 = 3). For this case 
as well, with the load acting on the rod, due to the moving load, the 
beam velocity response exhibits oscillations not only at the excitation 
frequency but also at additional frequencies, leading to a quasi-periodic 
response, causing significant variations in the average friction values 
when averaged over 2𝜋∕𝛺𝑒. The plots in Fig.  10(a) indicate that for 
𝛺𝑒 = 2 and 𝛺𝑒 = 3 (shown with a dashed line for distinction), no 
friction change is observed. For 𝛺𝑒 = 4, the average friction values 
vary along the rod length, and no change is observed after 𝑥𝑐 ≈ 0.7. 
To explain the constant average friction values after 𝑥𝑐 ≈ 0.7, in Fig. 
10(b), the relative velocity for 𝛺𝑒 = 4 is plotted as a function of time. As 
illustrated in the figure, the relative velocity is at its highest near the 
location of the applied load and decreases towards the fixed end on 
the right, eventually reaching zero. As the relative velocity decreases, 
it becomes strictly positive, indicating the absence of sign changes and, 
consequently, no friction modulation. For 𝛺𝑒 = 2 and 𝛺𝑒 = 3, the 
relative velocity values remain strictly positive at all times, explaining 
the absence of friction modulation at any point 𝑥𝑐 , as shown in Fig. 
10(a).

When compared to the rigid rod case (load acting on the mass 
which oscillates on a rigid rod), the dot markers indicate lower average 
friction values for the rigid rod for all three 𝛺𝑒 values (2, 3, and 4). 
Although the load in the rigid rod case is applied directly to the mass, 
while this section examines the scenario where the load is applied to 
the flexible rod, these cases are compared not only to highlight their 
differences but also because the rigid rod with the load on the mass 
serves as a benchmark for evaluating the effects of load application 
on the mass versus on the rod in flexible rod systems. For instance, 
as shown in Fig.  2(a), for 𝛺𝑒 = 4, when the load is applied to the 
mass in the flexible rod case, the average friction values are closer to 
those in the rigid rod case (with the load on the mass) and are even 
smaller along parts of the rod’s length. In contrast, when the load is 
applied on the rod in the flexible rod case, Fig.  10(a), for 𝛺 = 4, the 
𝑒
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average friction values are consistently higher than those in the rigid 
rod case (with the load on the mass). Thus, applying the load directly 
to the mass can result in greater friction modulation than applying 
it to the rod. The friction reduction increases as 𝛺𝑒 increases to 5, 6 
and 7, with the highest reduction for 𝛺𝑒 = 6, corresponding to the 
natural frequency of the rod’s first mode, as shown in Fig.  10(a). For 
the latter case, the friction reduction associated with the flexible rod 
(green line) is greater than that of the rigid rod (green dot) and also 
greater than that of the load-on-mass case, where almost no friction 
reduction was observed (see Section 3.1). As already explained, for the 
load-on-mass case and for an excitation frequency of 𝛺𝑒 = 6, the rod 
velocity response is high and comparable to the mass response, but the 
two responses are in phase. This results in a low-magnitude relative 
velocity, predominantly positive, causing no change in the friction 
force’s sign and, consequently, no friction modulation. In contrast, for 
the load-on-rod case described here, the rod’s response is high while the 
mass response is minimal. As a result, the relative velocity is dominated 
by the rod’s motion, leading to a change in the friction force’s sign 
and a reduction in the average friction. For 𝛺𝑒 = 5 and 𝛺𝑒 = 7, the 
comparison varies depending on the position along the rod length.

It should be noted that for 𝛺𝑒 values of 5, 6 and 7, the responses of 
the rod are high and do not comply with the small deformation theory. 
To accurately describe the system dynamics, geometric nonlinearity 
should be accounted for (see Appendix  A.1). However, as large defor-
mations are not desirable, another approach is to vary the excitation 
amplitude value, 𝛼, to identify the maximum 𝛼 value that ensures the 
response complies with the small deformation theory. To achieve this, 
the results from Eqs.  (12) and (13) using 𝑥𝑐 as in Eq.  (3) are compared 
to those from Eqs. (A.4) and (A.5) with 𝑥𝑐 as in Eq. (4). Fig.  11(a) 
presents the average friction values corresponding to 𝛼 values for which 
the results obtained from the equations of motion with and without 
geometric nonlinearity agree. As shown in the figure, for the results to 
agree, the 𝛼 value is reduced from 0.004, used so far in this study, to 
0.0015, 0.00004 and 0.001 for 𝛺𝑒 values of 5, 6 and 7, respectively. 
For 𝛺𝑒 = 5 and 𝛺𝑒 = 7, the average friction changes along the beam 
length. The average friction values are smaller for the higher excitation 
frequency, but still bigger than those corresponding to the same 𝛺𝑒
value in Fig.  10(a), as in the latter a greater 𝛼 value is used. The 
reduction in 𝛼 is most prominent for 𝛺𝑒 = 6, as this excitation frequency 
results in the highest rod displacement response. While the 𝛼 reduction 
leads to small deformations, it also results in a relative velocity response 
with oscillation cycles having amplitudes smaller than the velocity 𝑣. 
Consequently, no friction change is present in sections along the rod 
length for 𝛺𝑒 = 6.

To provide an indication of the displacement values, Fig.  11(b) 
presents the maximum values of the displacement response across a 
range of velocities 𝑣 for 𝛺𝑒 = 6 and the reduced 𝛼 = 0.00004. Within this 
velocity range, the peak displacement value is approximately 0.0022, 
corresponding to 0.22% of the rod’s length 𝐿. This shows that as 
the excitation amplitude value is decreased, the strain value remains 
small and does not lead to failure phenomena. For comparison, in 
the next subsection, the scenario of maintaining the original 𝛼 value 
while accounting for geometric nonlinearity is presented, along with 
the corresponding maximum deformation values.

To sum up, when the load is acting on the rod, the velocity response 
of the rod is higher than that of the mass and it increases as the 
excitation frequency increases, significantly contributing to friction 
reduction. This response changes along the rod length and exhibits os-
cillations at different frequencies leading to large variations in average 
friction values and in no variations towards the end of the rod. High 
responses also imply a potential deviation from the small deformation 
theory. To address this, either geometric nonlinearity should be incor-
porated into the model, or the amplitude of the harmonic load needs to 
be adjusted. A reduction of the 𝛼 value implies less friction reduction. 
When the excitation frequency matches the natural frequency of the 
rod’s first mode under a reduced 𝛼, this results in no friction reduction 
occurring in some sections along the length of the rod.
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Fig. 8. (a) The maximum amplitude of the rod’s velocity response at the contact point for different velocity 𝑣 values and for 𝛺𝑒 = 3; (b) the minimum amplitude of the relative 
velocity response for the same parameter values.
Fig. 9. (a) Comparison of average friction results for different velocity 𝑣 values obtained for the flexible and rigid rod case for 𝛺𝑒 = 6; (b) Maximum amplitude of the rod’s 
velocity response at the contact point.
Fig. 10. (a) Average friction results along the rod length for different 𝛺𝑒 values and 𝑣 = 0.005. Continuous lines represent the results of the flexible rod and the dot markers those 
of the rigid rod. Dot marker colours match the lines for the same excitation frequency; (b) Relative velocity response for 𝛺𝑒 = 4.
4.2. Friction modulation versus pushing velocity

The average friction values for a range of velocities 𝑣 are presented 
and compared for both the flexible and rigid rod cases. In Section 3.1, 
the comparison was made for excitation frequencies 𝛺𝑒 = 3 and 𝛺𝑒 = 6
for which the most significant differences between the flexible and 
rigid rod cases were observed. Looking at Fig.  10(a), for 𝛺𝑒 = 2 and 
𝛺𝑒 = 3, no friction change is observed for 𝑣 = 0.005 and that holds for 
higher velocities as well since friction reduction lessens with increasing 
𝑣. Therefore, no average friction plots are shown for these excitation 
frequencies. In Fig.  12(a), results for 𝛺𝑒 = 4 are illustrated. As shown 
in the figure, the average friction values for the system with the flexible 
rod, except for some extremes, are higher than those for the rigid 
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rod system for any velocity 𝑣 value. For the rigid rod, no change in 
friction is observed for 𝑣 ≥ 0.018, whereas for the flexible rod, this 
behaviour occurs at a lower 𝑣 = 0.014. The latter observation can be 
explained by revisiting the relative velocity response shown in Fig. 
10(b) for 𝑣 = 0.005. As previously mentioned, the relative velocity 
decreases and becomes strictly positive as the mass approaches the 
fixed end of the rod, indicating no friction sign change and no friction 
modulation towards the rod’s end. Increasing the velocity incrementally 
to 𝑣 = 0.006, 0.007,…, up to 𝑣 = 0.02, as shown in Fig.  12(a), reduces 
the time required for the mass to reach the rod’s end. For example, 
while the rod’s end is reached at 𝑡 = 150 for 𝑣 = 0.005, it is reached 
at 𝑡 = 75 for 𝑣 = 0.01. With this shorter time frame and higher 𝑣
values, the relative velocity response becomes strictly positive more 
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Fig. 11. (a) Average friction results along the rod length using 𝛼 values for which the results from the equations of motion with and without geometric nonlinearity agree; (b) 
Maximum amplitude of the rod’s displacement response for 𝛺𝑒 = 6 and 𝛼 = 0.00004.
Fig. 12. Comparison of average friction results for different velocity 𝑣 values obtained for the flexible and rigid rod case for 𝛺𝑒 = 4: (a) load acting on the rod, (b) load acting 
on the mass.
rapidly, occurring at 𝑥𝑐 ≈ 0.5 instead of approximately 0.7 (observed 
for 𝑣 = 0.005). Therefore, as the velocity 𝑣 increases, no friction change 
is observed from lower 𝑥𝑐 values.

In Fig.  12(b), the same plot is illustrated for the load-on-mass case, 
as studied in Section 3, with the boxplots showing again the results for 
the flexible rod system and the green markers the results for the rigid 
one (the latter being the same in Fig.  12(a) and 12(b)). As shown in 
the figure, the results align more closely with those of the rigid rod 
case as the mass governs the response, and the rod’s contribution is 
minimal. Consequently, for this excitation frequency, applying the load 
directly to the mass yields average friction values similar to the rigid 
rod. In contrast, applying the load to the rod results in less reduction 
in friction, which diminishes rapidly as the velocity 𝑣 increases.

Using the same parameters and higher excitation frequencies, for 
the deformations to remain small, either the amplitude of the excitation 
𝛼 should get reduced, as shown in Fig.  11(a), or nonlinearity should be 
considered in the equations of motion. Using a smaller 𝛼, the reduction 
in friction for 𝛺𝑒 = 6 is not that significant (see Fig.  11(a)). Therefore, 
as shown in Fig.  13(a), the average friction is illustrated for the original 
value of 𝛼 = 0.004, 𝛺𝑒 = 6 and including the geometric nonlinearity in 
the rod. Since the excitation frequency matches the first mode of the 
rod, the velocity response amplitude of the rod becomes significantly 
higher (𝑢̇max ≈ 1) compared to the constant velocity 𝑣. This leads to 
substantial friction reduction, as illustrated in Fig.  13(a). In contrast, 
for the rigid rod case, the average friction values are higher and no 
friction reduction is observed when 𝑣 ≥ 0.025. For the flexible rod, 
the average friction values remain low (due to the velocity amplitude 
of the rod being very large) with only small variations along each 
other for all the 𝑣 values considered. Only for 𝑣 > 𝑢̇max, no changes 
in the average friction will be observed for this case. To provide an 
indication of the displacement values, Fig.  13(b) presents the maximum 
values of the displacement response for the same range of velocities 
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𝑣 as in Fig.  13(a). Within this velocity range, the peak displacement 
value is approximately 0.21, which is around 100 times larger than the 
one in Fig.  11(b) for the same excitation frequency but with a smaller 
amplitude 𝛼. This displacement is 21% 𝐿, and depending on factors 
such as material type, geometric properties (e.g., cross-sectional shape 
and size), loading conditions (e.g., magnitude, direction, and duration), 
boundary conditions and more, it can lead to failure phenomena such 
as buckling, permanent plastic deformation and crushing or fracture.

Overall, using an excitation frequency corresponding to the first 
mode results in greater friction reduction compared to the rigid case 
for any velocity 𝑣, but this comes with large deformations experienced 
by the flexible rod, where the material type and its properties play a 
crucial role.

5. Connection to real-life scenarios

5.1. Discussion on the slip joint application

In this section, connections are drawn to slip joints in offshore wind 
turbines and related experimental studies to contextualize the model 
system within the scope of applications and real-life scenarios. In the 
first study of Cabboi and coworkers on the slip joint application (Cabboi 
et al., 2020), the effectiveness of applying a harmonic excitation during 
the installation and decommissioning procedure was experimentally 
investigated using a 1:10 scaled model of the slip joint. In essence, a slip 
joint for wind turbines enables the connection between the monopile 
and the transition piece by simply overlapping the two cylindrical 
structures. The entire connection relies on the frictional forces between 
the two surfaces in contact. In their study, two cones, one representing 
the monopile (MP) and one the transition piece (TP), were used for the 
designed test setup. The TP was excited in either horizontal or vertical 
direction utilizing a shaker, whereas the static pushing load was applied 
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Fig. 13. Comparison of average friction results for different velocity 𝑣 values obtained for the flexible rod with geometrical nonlinearity and rigid rod with the load acting on the 
mass; (b) Maximum amplitude of the rod’s displacement response. Results obtained for 𝛺𝑒 = 6 and 𝛼 = 0.004.
at the top cone representing the MP. Both cones were made of the 
same steel type (S355), and had the same total length, mass and wall 
thickness. The TP cone had a top and bottom outer diameter of 0.01 m 
thicker than the MP cone. Due to its larger diameter, the TP cone was 
stiffer.

The results of the tests performed during the experimental campaign 
showed that settlement occurred when applying a harmonic load at 
specific forcing frequencies (results hold for both loading directions). 
To provide some insights concerning which structural modes should be 
excited to effectively obtain a stable settlement, hammer tests on the 
testing specimens and experimental modal analysis were performed. 
One of the identified natural frequencies, specifically at 120 Hz (when-
ever excited by means of the shakers), was effective in reducing the 
friction force for both the installation and dismounting of the cones, 
regardless of the different amplitudes of the vibratory load. However, 
settlements were observed for other frequencies as well, and in gen-
eral, most of the settlement frequencies corresponded well with the 
identified natural frequencies.

Compared to our system, for the parameters considered, it can be 
verified that the rod has higher stiffness than the mass (𝑘𝑟 = 𝐸𝐴∕𝐿 >
𝑘), allowing the rod to serve as a simplified representation of the TP. 
Similarly, the mass represents the MP for the considered test setup. 
While this setup simplifies the dynamics of the slip joint, it provides a 
foundational framework for analysis. As the excitation is applied on the 
TP, the corresponding case in our study is that of the load applied on 
the rod, as shown in Section 4. One of the conclusions of this section 
was that loading the rod with an excitation frequency corresponding 
to the rod’s first mode leads to the highest friction reduction. The 
conclusion is similar to that drawn from the slip joint study as exciting 
the TP at resonance frequencies was the most effective way to install 
and decommission the connection.

In a follow-up study (Cabboi et al., 2021), the vibration-assisted 
decommissioning of the slip joint was applied to a full-scale wind 
turbine, where the lower tower of the wind turbine (WT) was directly 
connected to the monopile (MP) without the use of a transition piece. 
The wall thickness of the steel plates forming the monopile and the 
wind turbine tower decreased with increasing height, from 65 mm to 
10 mm, making the MP the stiffer component. The shaker devices were 
mounted at the base of the wind turbine tower, so the vibratory load 
was applied to the WT. The decommissioning tests showed that the slip 
joint detachment was triggered once the circumferential local mode at 
53 Hz was excited. An experimental modal analysis was conducted to 
identify the modes of the structure, and the results were compared to 
modal properties extracted from a developed FE model. This analysis 
showed that the mode at 53 Hz only referred to the dynamic of the wind 
turbine tower, while the monopile foundation almost acted as a rigid 
body. Thus, the excitation of this mode in combination with a vertical 
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pulling force facilitated the detachment between the two contacting 
surfaces.

Following the same line of reasoning as described above, compared 
to our system, the rod has higher stiffness, making it representative of 
the MP, and the mass representative of the WT, as the excitation is 
applied on the WT. The corresponding case in our study is of the load 
applied on the mass, see Section 3. This section concluded that exciting 
the mass at an excitation frequency corresponding to the rod’s first 
mode results in less friction reduction. Thus, to reduce friction forces 
(i.e. to facilitate decommissioning), it is more effective to excite the 
mass at frequencies which do not correspond to the rod’s first mode. In 
these cases, the rod response is generally small. This is in line with the 
result drawn by the study on the slip joint, as the decommissioning was 
effective at a frequency at which the monopile foundation, represented 
by the rod in our system, acted almost as a rigid body.

It should be noted that while our study and the slip joint ap-
plication share conceptual similarities, the agreement between their 
results is purely qualitative. The slip joint primarily involves bending 
and circumferential shell modes, making an axially deforming rod not 
the most representative structure for comparison. Additionally, the 
dynamic loading in the slip joint study involves a stepwise or linear 
frequency increase, contrasting with the loading type used in our work. 
Differences in stiffness, damping ratios, and other parameters also show 
the distinct nature of the two systems, yet the qualitative agreements 
remain, highlighting the broader applicability of the findings.

5.2. Discussion on pin-on-disk experimental results

Lastly, a connection is drawn between the findings obtained in this 
study and related experimental works. In several experimental investi-
gations conducted on the effect of vibration-induced friction reduction, 
the measurements did not match the model predictions obtained assum-
ing the Amontons–Coulomb law to model the friction force. Different 
friction models were used to better catch the experimental behaviour, 
for example, the Dahl and the Dupont models (Dupont et al., 2002) that 
embed a tangential contact stiffness. In this regard, Kapelke employed 
the Dupont model and the Amontons–Coulomb law to compare the 
experimental results to theoretical ones (Kapelke and Seemann, 2018). 
A pin-on-disk type experimental setup was developed, exhibiting a 
dominant eigenmode at approximately 100 Hz (corresponding to the 
motion of the dynamometer in the tangential direction). For moderate 
excitation frequencies (40 Hz), the experimental results showed an 
excellent match to the elasto-plastic Dupont model, for which the 
contact stiffness 𝑘0 = 5.6 × 105 N/m was chosen. However, when high-
excitation frequencies were used (350 Hz), to catch the behaviour of 
the friction force accurately, a significantly different value of tangential 
stiffness was needed for the Dupont model, i.e., 𝑘 = 12 × 105 N/m.
0
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Fig. 14. ‘‘Dynamic stiffness’’ of the rod.

Since this model incorporates a tangential contact stiffness, and our 
system considers deformations in the tangential direction, a comparison 
can be made between the results obtained from both systems. As 
shown in Kapelke’s work (Kapelke and Seemann, 2018), the elasto-
plastic friction model yields higher effective friction values than the 
Amontons–Coulomb law. The shape of the plots and the results are 
qualitatively similar to those shown in Fig.  7 (for 𝑣 > 0.008) and in Fig. 
9(a) (for any 𝑣), as these results are also higher than those obtained 
using the Amontons–Coulomb law. The comparison is made with these 
plots because they correspond to the scenario in which the harmonic 
load is applied to the mass, aligning with the experimental loading 
condition. It is important to note that a direct one-to-one comparison 
between the results from our mass-on-a-rod system and the system with 
the Dahl/Dupont models cannot be made, as additional information 
is needed regarding the relationship between the excitation frequency 
and the system modes, as well as consistent amplitude and velocity 
values. However, despite these limitations, our system demonstrates 
that using a rod with the Amontons–Coulomb law provides friction 
change results that qualitatively resemble those obtained from the 
Dahl/Dupont models.

An attempt to explain the need for a change in the contact stiffness 
value 𝑘0, as the excitation frequency increases, is made by calculating a 
‘‘dynamic stiffness’’ (as perceived by the moving contact force through-
out the transient process) of the rod in our system, 𝐾𝜔. To compute 
𝐾𝜔, for a given excitation frequency, the force acting on the rod and 
the displacement at the contact point are transformed to the frequency 
domain. Due to the quasi-periodic nature of the system response, 𝐾𝜔, 
which is the ratio of force to displacement amplitudes, also exhibits 
multiple frequency components. The 𝐾𝜔 value is then chosen based on 
the component that matches the given excitation frequency. The same 
procedure is repeated for other excitation frequencies, and the results 
are illustrated in Fig.  14. As shown in the figure, 𝐾𝜔 is at its lowest 
at the rod’s modal frequencies and higher between them. Moreover, 
the peaks in the plot of 𝐾𝜔 increase with increasing frequency. This 
behaviour could explain why higher contact stiffness values are needed 
at higher excitation frequencies in the work of Kapelke and colleagues, 
assuming that the excitation frequency used in their study lies between 
the disk modes.

6. Conclusions

In this work, the effect of external excitation in the presence of 
support flexibility on the friction modulation of a moving oscillator on 
an elastic rod of finite length is investigated. Two loading scenarios 
are analysed. In the first, a harmonic tangential load is applied on the 
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moving mass, while in the second, the same load is applied on the 
rod. The modal expansion method is employed to derive the modal 
equations of the rod, which are then used to obtain the numerical 
solutions for the system’s response.

In the case where the load acts on the mass, it is observed that, 
unlike the rigid rod scenario where the average friction is a constant 
value, the deformation of the rod introduces variations in friction 
change along its length. Depending on the position along the rod 
length, these values are smaller or bigger than the ones obtained for the 
rigid rod system. Deviations are observed across excitation frequencies, 
with the most prominent ones occurring at half the rod’s first mode 
frequency and at the first mode frequency itself. For the latter case, 
unlike the rigid rod scenario, no friction modulation and stick–slip 
behaviour is observed along parts of the rod. For both cases, it is also 
found that the critical velocity, i.e. the velocity for which the maximum 
rod velocity response is observed, provides direct qualitative insight 
into the differences in average friction between the rigid and flexible 
rod cases without explicitly computing the average friction values for 
the latter scenario. For pushing velocities smaller than the critical 
velocity, the average friction values for the flexible rod are lower than 
those of the rigid case, while above it, the opposite is true.

Even when the load acts on the rod, variations in average friction 
values along the rod length are observed, but they differ from the 
results from the load-on-mass scenario. For excitation frequencies close 
to and above the rod’s first natural frequency, the rod’s response 
increases and does not comply with the small deformation theory. To 
address this, either the amplitude of the excitation value 𝛼 is reduced, 
or, if large deformations are permitted, geometric nonlinearity is incor-
porated into the model. A lower 𝛼 value leads to less friction reduction 
for all excitation frequencies and to no friction reduction along parts 
of the rod for the excitation frequency equal to the rods’ first natural 
frequency. For the same excitation frequency, introducing geometric 
nonlinearity results in very high friction reduction compared to the 
rigid case for any velocity 𝑣. Again, this comes with large deformations 
experienced by the flexible rod.

The presence of support flexibility allows for comparisons with 
real-life applications as well. Regarding the slip joint application, the 
system’s behaviour is used to represent a simplified version of the 
dynamics of the tower and the monopile. The findings from our study 
regarding the choice of excitation frequencies for which the highest 
friction reduction is obtained in the load-on-mass and load-on-rod 
scenarios support the results of the experiments on the full scale and 
on the 1:10 scaled model of the slip joint, respectively. Regarding 
experimental studies, the average friction results from our study are 
used to provide an alternative interpretation of the results of published 
works using the Dahl and Dupont models. Using these models, higher 
average friction values than those predicted by Amontons–Coulomb 
law are observed. Similarly, in our study, according to a compara-
ble loading scenario, higher average friction values are also observed 
(depending on the excitation frequency and pushing velocities). Thus, 
modelling the system with a flexible rod yields friction change results 
that qualitatively align with those from the Dahl and Dupont models 
and related experimental studies, even though the Amontons–Coulomb 
law is used.
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Fig. A.15. Comparison of rod displacement 𝑢 obtained using the equations of motion with (dashed orange line) and without (continuous blue line) geometric nonlinearity in the 
rod; (a) for excitation frequency 𝛺𝑒 = 3, (b) for excitation frequency 𝛺𝑒 = 6.
Appendix

A.1. Geometrically nonlinear rod

With reference to Section 3.1, to ensure that the response of the rod 
adheres to the small deformation assumption, the solutions obtained 
are compared to those derived considering a rod with geometric nonlin-
earity with 𝑥𝑐 expression as in Eq. (4). For the geometrically nonlinear 
rod, the displacement-strain relation (de Borst et al., 2012) and the 
strain-stress relation are given by 

𝜀𝑥 = 𝜕𝑢
𝜕𝑥

+ 1
2

( 𝜕𝑢
𝜕𝑥

)2
, 𝜎𝑥 = 𝐸𝜀𝑥. (A.1)

Thus, the displacement-strain relation has an additional quadratic term. 
The equations of motion then become 

𝜌𝐴𝜕2𝑢
𝜕𝑡2

+ 𝑐𝑏
𝜕𝑢
𝜕𝑡

− 𝐸𝐴 𝜕2𝑢
𝜕𝑥2

− 𝐸𝐴 𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥2

+ 𝑓𝛿(𝑥 − 𝑥𝑐 ) = 0, (A.2)

𝑚𝑑2𝑢
𝑑𝑡2

+ 𝑐 𝑑𝑢
𝑑𝑡

𝑠 + 𝑘𝑠 = 𝑓, (A.3)

Using the same dimensionless parameters as in Eq. (9), the dimension-
less equation of motion are derived 
𝜕2𝑢
𝜕𝑡2

+ 2𝛽𝑏𝑟𝑤
𝜕𝑢
𝜕𝑡

−
( 𝑟𝜔
𝜋

)2 𝜕2𝑢
𝜕𝑥2

−
( 𝑟𝜔
𝜋

)2 𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥2

+ 𝑓𝛿(𝑥 − 𝑥𝑐 ) = 0, (A.4)

𝑑2𝑢
𝑑𝑡2

𝑠 + 2𝛽 𝑑𝑢
𝑑𝑡

+ 𝑠 = 𝑟𝑚𝑓, (A.5)

The modal equations of the rod are derived using the same solution 
method as in Section 3.1 and are solved numerically using the MATLAB 
solver ode23s.

In Fig.  A.15, the results of the rod displacement 𝑢 obtained using the 
equations of motion with (dashed orange line) and without (continuous 
blue line) geometric nonlinearity of the rod are presented for two 
different excitation frequencies. As shown in Fig.  A.15(a) for 𝛺𝑒 =
3, the differences between the lines are negligible. The differences 
become more pronounced at higher time values for 𝛺𝑒 = 6, as shown 
in Fig.  A.15(b). This case is particularly noteworthy since 𝛺𝑒 = 6
corresponds to the first natural frequency of the rod, leading to a higher 
response. Nevertheless, the maximum relative error in the responses is 
approximately 6.7%, and this occurs only within a narrow time range. 
As a result, the error has no significant impact on the relative velocity 
and, consequently, on the average friction.

Data availability

Data will be made available on request.
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