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Several studies have been dedicated to altering friction forces, with external excitation being one of the
approaches explored. When the latter is considered, its influence has primarily been studied within the context
of discrete systems. Therefore, in this study, a moving oscillator in frictional contact with an elastic rod of
finite length subjected to distributed damping is considered, to study the influence of external excitation in
the presence of support flexibility on friction modulation. The modal expansion method is used to derive the
modal equations of motion, which are then solved numerically. Two cases are investigated, one with the load
acting on the mass and the other with the load acting on the rod. It is found that, for both cases, friction
modulation varies along the rod’s length, and it differs from that obtained assuming a rigid rod. Moreover, for
the load-on-mass scenario, a critical velocity is defined, providing direct insight into the friction modulation
differences between flexible and rigid rod cases. For the load-on-rod scenario, large deformations are observed
close to and above resonance, and geometric nonlinearity is accounted for to describe the system dynamics
accurately. To link theoretical results to applications, the findings are used to qualitatively interpret slip-joint
vibration-assisted decommissioning tests, and are compared with experimental results in which friction force
reduction is explained through the use of elasto-plastic friction models that account for surface deformability,
showing good qualitative agreements between the theoretical and experimental outcomes.

1. Introduction a sliding process, the presence of an oscillatory field at the sliding
interface (if uncontrolled or if mistakenly neglected), can also lead to
erroneous interpretations of measured friction forces, if the goal is to
assess the tribological behaviour of a sliding interface. This may result
in an apparent (but misleading) dependency between the friction force

and the sliding velocity (Tolstoi, 1967; Soom and Kim, 1983). The com-

Controlling the tribological behaviour of interfaces is essential for
the satisfactory operation of systems in many fields of applied science.
This control is crucial for mitigating energy, efficiency and economic
losses and reducing noise pollution (Liu et al., 2022). Tribological inter-
face properties encompass various factors, including surface roughness,

hardness, wear, and friction. Over the past few decades, extensive re-
search has explored ways to modulate or control friction forces without
relying on lubricants. This area of study is particularly relevant in
mechanical engineering, as lubrication management — such as timely
application, removal, and replacement — can be both challenging and
labour-intensive. Additionally, the environmental impact of lubricants
further underscores the importance of developing alternative friction-
control strategies. A lubricant-like effect at the sliding interface can also
be reproduced by a surrounding oscillatory field. The use of a deliberate
application of oscillatory forces has already been implemented in metal
working (Siegert and Mock, 1996), decommissioning of joints (Cabboi
et al., 2021), positioning control in robots (Ipri and Asada, 1995),
pile driving (Tsetas et al.,, 2023) and rendering textures in surface
haptics (Meyer et al., 2014). However, besides the scope of controlling
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plexity of the friction-vibration interaction increases if the influence of
the so-called “inner-dynamics” of the interface is introduced. In fact,
in previous studies (Hess et al., 1992; Grudzinski and Kostek, 2007;
Costagliola et al., 2017, 2018; Menga et al., 2021, 2023), it has been
shown that the small-scale dynamics of a micro-structured interface
can have a substantial effect on friction modulation. This means that
a desired frictional behaviour can also be obtained by optimizing the
properties of the microstructure. Besides the application of modulating
the friction force, the use of a deliberate high-frequency microvibration
was also investigated to control the adhesion behaviour between two
material pairs (Tricarico et al., 2025; Argatov et al., 2025), a topic that
lies beyond the remit of this study.
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Over the last two decades, researchers have used various models to
study friction modulation, with a special focus on developing strate-
gies to quench friction-induced instabilities of a sliding system, the
simplest one being represented by a single-degree-of-freedom oscillator
sliding over a rigid belt. The effect of a high-frequency tangential
excitation on such model was studied by Thomsen (Thomsen, 1999),
who showed that high-frequency excitation can prevent self-excited
oscillations by effectively cancelling the negative slope in the assumed
friction-velocity relationship. Follow-up studies were carried out by
Michaux and coworkers (Michaux et al., 2007) in which monotonic and
non-monotonic friction-velocity relations were assumed. An extension
to the two-degree-of-freedom system was investigated by Hoffman
and coworkers (Hoffmann et al., 2005). In their work, they not only
investigated the effect of external tangential excitation on the friction
force change, but also showed that excitation can stabilize the mode-
coupling instability. Other studies used similar systems, emphasizing
the focus on the stability rather than friction modulation (Ouyang et al.,
1999; Sinou and Jezequel, 2007; Li et al., 2016; Hong et al., 2020). In
a more recent study, Sulollari and coworkers also considered a similar
system to study both the friction modulation and the system stability
under the effect of parametric excitation (Sulollari et al., 2025).

The above-mentioned studies did not account for the effect caused
by microstructured surfaces, whose corresponding stiffness and dy-
namic properties can significantly affect the friction force. This is
shown by Costagliola and coworkers (Costagliola et al., 2017), who
considered a 1-D elastic surface discretized into mass elements con-
nected by springs, a discretization representative of the microscopic
heterogeneity of the surface roughness. A 2-D spring-block model was
studied in a follow-up study (Costagliola et al., 2018). Both models
showed that the frictional behaviour depends strongly on the micro-
structures’ shape, size and orientation. Menga and coworkers also
considered a micro-structured 2-D surface modelled through masses
connected to radial and torsional elastic elements (Menga et al., 2021).
It was found that different dynamic regimes that affect friction be-
haviour can be achieved depending on the supports’ elastic properties
and static orientation. In a follow-up study, the frictional behaviour of
a 3-D lattice structure was studied to account for the effect of the local
distribution of the normal load and the in- and out-of-plane self-excited
vibrations emergence (Menga et al., 2023). These studies show that by
optimizing the mechanical properties of the interface microstructure, it
would be possible to obtain the desired friction behaviour.

Other than theoretical studies examining the effect of external exci-
tation or microstructure dynamics on friction modulation and stability,
numerous experimental studies with similar objectives have also been
conducted, the results of which have been compared using models
(discrete and continuous) akin to those described earlier. Commonly,
the experimental tests are conducted on pin-on-disk setups. For in-
stance, Littmann and coworkers (Littmann et al., 2001), Storck and
coworkers (Storck et al., 2002) and Kumar and Hutchings (Kumar and
Hutchings, 2004) studied the reduction of the friction force due to
ultrasonic vibrations applied parallel and perpendicularly to the sliding
direction. For each loading case, qualitative agreements between the-
oretical predictions (e.g., based on single-degree-of-freedom systems)
and measurements (e.g., involving a moving ultrasonic vibrator along a
track) were obtained. A better consistency of the experimental and the-
oretical results was obtained by Tsai and Tseng (Tsai and Tseng, 2006)
using the Dahl model (Dahl, 1976) which takes into account contact
deformability in the tangential direction, or the elasto-plastic fric-
tion model proposed by Dupont and coworkers (Dupont et al., 2002).
Kapelke also used the Dupont model and the Amontons—Coulomb law
to compare the experimental results to theoretical ones and found
an excellent match between the experimental and theoretical results
for tests carried out with moderate excitation frequencies (Kapelke
and Seemann, 2018). Thus, when comparing experimental results to
theoretical studies, the latter are typically focused on 1- or 2-DOF
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systems, utilizing friction models often coupled with terms account-
ing for the surface compliance (see the use of the Dahl or Dupont
model). Besides small-scale experiments, the notion of modulating a
friction force through a deliberate oscillatory forcing has also been
applied to large-scale structures. More specifically, a vibration-assisted
technique was tested through laboratory experiments to modulate the
friction force, enabling the installation and removal of a scaled slip
joint (Cabboi et al., 2020). A follow-up study applied the technique
on a full-scale slip joint for a wind turbine connection (Cabboi et al.,
2021), allowing the decommissioning of the slip joint itself. While the
decommissioning operations successfully confirmed the effectiveness
of the vibration-assisted technique and correlations were established
between the excitation frequencies used and the structural modes of
vibration, the actual change of the friction force due to the applied exci-
tation could not be quantified. Moreover, analysing a more realistic (or
high-fidelity) model of the large-scale structure with friction-vibration
interaction proved to be too complex for understanding the observed
physical behaviour.

While previous studies have investigated the effect of external ex-
citation on friction modulation using discrete systems or focused on
the influence of microstructure dynamics and geometry without con-
sidering external excitation, there remains a gap in understanding
how external excitation interacts with the dynamics of continuous
systems, which are more representative of the dynamics of real systems.
Therefore, this study aims to analyse the effect of external excita-
tion on friction, considering a moving oscillator on an elastic rod
of finite length subjected to distributed damping, which allows for
a more realistic representation of how external excitation influences
the frictional behaviour through continuous deformations. Two cases
are investigated, one with the external load acting on the mass and
the other one with the load acting on the rod. For both cases and
various excitation frequencies, the values of the effective (or average)
friction vary along the rod’s length and differ from those obtained
assuming a rigid rod. For the load-on-mass scenario, a critical velocity
is defined, which reveals direct insight into the differences in friction
modulation between the flexible and rigid rod cases. The application
of an external excitation to the rod needs particular attention in order
to avoid large axial deformation under resonance conditions or high-
excitation frequencies. For cases when large deformations are allowed
(depending on the material type, properties, loading conditions etc.),
geometric nonlinearity is accounted for in the equations of motion.
Finally, the results of this study are used to qualitatively explain the
vibration-assisted decommissioning tests of the slip joint (Cabboi et al.,
2021, 2020), and allow for a comparative discussion with the friction
modulation results obtained using elasto-plastic friction models meant
to encapsulate the surface deformability (Kapelke and Seemann, 2018).

The paper is structured as follows. First, the description of the
moving oscillator on the rod is introduced in Section 2. In Section 3,
the results on friction modulation are obtained when the oscillatory
load acts on the mass. The results for the load acting on the rod
are presented in Section 4. In Section 5, analogies with real-world
applications and experimental studies are explored to contextualize the
modelling choices. Finally, conclusions are drawn in Section 6 and the
Appendix is added, providing additional details to the discussions and
the results presented in this study.

2. The model system

To reveal the effects of axial rod deformations on vibration-induced
friction modulation, the system illustrated in Fig. 1 is considered. Fig.
1(a) illustrates the case where the harmonic load is applied on the mass,
and Fig. 1(b), the case where the load is applied on the rod. The system
consists of a moving oscillator composed of a mass m, a spring with
stiffness k and a dashpot with damping coefficient ¢, connected to a
massless support. The support is pushed to the right direction with a
constant velocity v and the distance from the left end at time ¢ is vr.
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Fig. 1. Oscillator moving on an axially deforming rod: (a) harmonic load applied on the mass; (b) harmonic load applied on the rod at a position defined by the initial length of

the spring s,.

The initial length of the spring is s, and the elongation of the spring
from the free length is s. The load N is a constant normal preload acting
on the mass. The rod has a cross-sectional area A, density p, length L,
Young’s modulus E and damping coefficient c,. The axial deformation
of the rod at a given position x is u(x,#). The rod has fixed supports
on both ends. The external harmonic loading is characterized by a
frequency @, and an amplitude MaQ? (e.g., load arising from a hor-
izontally unbalanced mass M at eccentricity a (Thomsen, 1999)). For
the load acting on the rod, Fig. 1(b), the application point corresponds
to the position defined by the spring’s initial length s.

For the chosen model setup, the kinetic friction is considered to
be the same as the static friction. The adopted friction law is the
Amontons-Coulomb’s law (Amontons, 1699; Coulomb, 1821), since the
corresponding friction force is directly linked to a constant coefficient
of friction, and proportional to the normal force. As the aim of this
study is to capture the effect of the rod deformation on vibration-
induced friction changes, the assumption of Amontons—Coulomb’s law
is deemed most appropriate, since it avoids the complexity of more
realistic friction laws which are case-study and material pair depen-
dent (Cabboi and Woodhouse, 2018, 2020). The friction force f acting
between the mass and the rod is then

[ =—ugsgn(v,)N, (€H)

where y, is the static friction coefficient and v, is the relative velocity.
The latter is expressed as

U,:$+v—u|xzxc, (@3]

where the overdot represents the total derivative with respect to time
and x, is the position of the point at which the mass contacts the rod.

Under the small deformation theory, so assuming the deformation
of the rod and mass to be negligible compared to L and s, respectively,
the expression of x, can be written as

x.(t) = vt + 5. 3)

It should be noted that in the study of Hong and coworkers (Hong
et al., 2020) where a similar system is considered, the full kinematic
expression for the contact point is used, and reads as follows

x.(t) = vt + 59 + s(t) — u(x.(0),1). 4)

According to this expression, « and x, are coupled, so the x, expression
is implicit. Under small deformations, however, the contributions from
the spring elongation and the rod deformation are negligible, and
Eq. (4) can be approximated by Eq. (3). In this study, when small
deformations are considered, Eq. (3) is used, significantly reducing the
computational time.

The equations of motion of the system without considering the
external forcing terms then become

*u ou

02
pAﬁ+ch—EAﬁ+f5(x—xc)=0, 5)

d?s ds
— — +ks=f. 6
mdt2+cdt+ s=f 6)

with the boundary conditions for a fixed-fixed rod being

u=0 at x=0 and u=0 at x=1L, 7

and the friction force as in Eq. (1). In the case of load-on-mass, an
additional loading term appears on the right-hand side of Eq. (6) as
M a? sin(Q,1). For the load-on-rod case, the loading term appears on
the right-hand side of the Eq. (5) as M aﬂz sin(2,1)8(x — sy). To general-
ize the results, the following dimensionless parameters are introduced:

t*=w. t wzzﬁ = _¢ - X s*:i
T m? 2mw,,’ L’ L
s
ssz—o, w=2,
L L
v
vt = U’ vF = r’ 5*=L5, f*— f2 =,
Lo, Lo, pAL w;
Nio N ®)
- 202"
pAL w;
ﬁ_ Cp w_£ E r—& r——pAL
T 240, T LN T @, m’
@ =P M
¢ w, mL’

where r,, is the mass ratio of the rod and the oscillator mass, r,
is the frequency ratio between the rod’s first natural frequency and
the oscillator’s natural frequency (defined for the separate subsystems
when no interaction is present) and the asterisk denotes a dimensionless
component. Substituting Eq. (8) into Eq. (5) and (6), and dropping
the asterisks from the dimensionless equation for simplicity, the di-
mensionless equations of motion of the unforced system are derived

0%u Ju o \2 0%u _

2, S () S fe-x) =0, ©
d?s ds

an PG s =l (o

To solve the equations of motion, first, the modal expansion method
is used to derive the modal equation from the rod equation. Using this
method and the mode shapes of a fixed-fixed rod, the response u(x,r)
is written as

p
u(x,t) = Z T;(Dsin(jnx),

Jj=1

1)

where p is the total number of modes considered and T;(0) is the
unknown function of time to be determined. Substituting Eq. (11) into
Egs. (9) and (10), with f and x, as in Egs. (1) and (3), respectively,
and using the orthogonality property of the mode shapes, the modal
equations are obtained

T+ 2By, Ty + Jro Ty + 25,1y, T,..T,) = 0, (12)
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The modal forces f; are functions of 3, T}, T, ..., T, and are given by

[G, Ty, T 1) = —pysen(v, | 4oy )NsIn(jzx,.), 14)
and
P P
Uplymy, =8+ 0— Z Tisin(jrx,) — z T;jmx cos(jmx,). (15)
j=1 j=1

In the v, expression, the chain rule is used to calculate the total
derivative of i since x, is time dependent. However, the contribution of
the last term appeared negligible for the cases considered in this study.

3. Harmonic load acting on the mass

This section examines the case of the external harmonic load acting
on the mass, as shown in Fig. 1(a). The equations of motion are solved
numerically, and the friction modulation is evaluated as the mass
moves along the rod, considering different excitation frequencies. Then,
plots of friction modulation for different pushing velocity values v are
presented. All results are compared to those obtained for a mass-spring-
dashpot system on a rigid rod (analogous to a mass—spring-dashpot on
a moving belt system as described in Sulollari et al. (2024)).

3.1. Friction modulation along the rod length

The equations of motion, Egs. (12) and (13), are solved using the
MATLAB solver ode23s, considering r, = 6, r,, = 4.8, s, = 025,
p = 0.14, g, = 0.001, y, = 05, N = 0.002, v = 0.005, « = 0.004
and p = 10 (increasing the number of modes can be shown to have a
negligible effect on the results). These parameter values are chosen to
ensure sliding over a wide range of excitation frequencies. To guarantee
that the response adheres to the small deformation assumption, for
the parameters chosen, the solutions obtained are compared to those
derived considering a rod with geometric nonlinearity, with the x,
expression as in Eq. (4). The comparison shows negligible differences
between both cases, as demonstrated in Appendix A.1, complying the
small deformation assumption.

The mass and rod responses (obtained from Egs. (12) and (13)) are
used to calculate the average friction, fi(v,), by integrating the friction
force over the excitation period as follows

fa(,) = <ﬂssgn(ur|x=xc)> = <;4Ssgn(s' +v- Z T"j(t)sin(jnxc))> N ae)
j=1

where <> defines the average operator over the excitation period ?7”

In Fig. 2, the continuous lines represent the average friction valueés
obtained for different excitation frequencies as the mass moves along
the rod length, ranging from 0.25 to 1, as s, = 0.25 is chosen. The dot
markers represent the average friction values obtained analytically for
a mass-spring-dashpot system on a rigid rod/belt as done in Sulollari
et al. (2024), where the approach for calculating the average friction
through the velocity response function is described. These modulated
friction values are constant and do not vary along the length of the
rod. The colours of the dot markers correspond to the colours of the
continuous lines, indicating that the same parameter values are used
for each pair. It should be noted that the initial parts of the continuous
lines correspond to oscillation cycles of the transient response as the
averaging process is carried out on the entire relative velocity response,
whereas the dot markers are obtained analytically considering the
steady-state response only.

The results shown in Fig. 2 are obtained for r, = 6, meaning that
the natural frequency of the rod’s first mode is 6 (i.e. w, = 6 rad/s
and w, = 1 rad/s). Fig. 2(a) depicts the average friction plots for
excitation frequencies smaller than and equal to the rod’s first natural
frequency, and Fig. 2(b) illustrates results for excitation frequencies
exceeding the rod’s first natural frequency. Both plots demonstrate that
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the continuous lines are not constant, indicating that, unlike the rigid
rod case, the rod’s flexibility leads to variations in the average friction
along its length. Depending on the position along the rod length, these
values can be smaller or larger than the ones obtained for the rigid rod.
Towards the end of the rod, the values of the continuous lines approach
those of the dot markers, since the axial deformation at both rod’s
ends approaches zero. Differences in values are from rod oscillations in
the proximity of the support due to the change in (perceived) stiffness
giving rise to transition-radiation effects (Fardagau et al., 2021). While
all the continuous lines show variations, the most significant differences
relative to the rigid case are observed at excitation frequencies £, =3
and Q, = 6.

To better highlight the influence of the deformable rod with respect
to the rigid one, Fig. 3 shows boxplots for different excitation fre-
quencies, highlighting the statistical distribution of the average friction
values while the mass slides over the rod. For each boxplot, the median
is indicated by the central red line. The bottom and top edges of
the box represent the 25th percentile (Q1) and 75th percentile (Q3),
respectively, while the whiskers extend to the most extreme data points
within 1.5 times the interquartile range below Q1 and above Q3. All
other observed data points outside the boundary of the whiskers are
plotted as outliers using the “+” grey marker and are mainly a result
of averaging over the oscillation cycles of the transient response.

The green dot markers indicate the average friction values obtained
considering the rigid rod and they show a clear trend as their values
decrease for increasing excitation frequencies, and for frequencies big-
ger than the frequency of the rod’s first mode, they are close to the
median and mean (middle of the box) values of the boxes. For lower
excitation values, the green dot markers display significant deviations
from the mean and median values represented in the boxes, with the
largest discrepancies occurring at excitation frequencies £, = 3 and
Q, = 6, as already shown in Fig. 2(a).

Figs. 4 and 5 show the velocity responses of the mass (blue line)
and of the rod (red line), for 2, = 3 and @, = 6, respectively.
The velocity responses are obtained at the moving contact point and
allow us to explain the large deviations observed at these excitation
frequencies compared to the rigid rod scenario. The amplitude of the
velocity response of the rod in Fig. 5(a) is higher than in Fig. 4(a), as
in the former, the excitation frequency corresponds to the frequency
of the first mode of the rod. Although the velocity responses have
a lower amplitude in Fig. 4(a), the zoom-in in Fig. 4(b) shows the
responses to be out of phase with each other. The resulting relative
velocity response, v,, then exhibits a high amplitude, and the friction
force reverses direction during each oscillation period. Consequently,
this results in low average friction values as shown in Figs. 2(a) and 3.

Fig. 5(b), however, shows the responses to be in phase. The resulting
relative velocity has low amplitudes, preventing the friction force from
changing direction during certain oscillation cycles. Without a change
in direction, the friction force remains constant. This explains why in
Fig. 2(a), the average friction tends to the originally imposed friction
coefficient y, = 0.5. Fig. 6(a) illustrates this statement, visualizing
the relative velocity obtained for £, = 6. Indeed, the amplitudes of
the relative velocity response are low and for the time window from
~ 25-110, the values are mostly positive, meaning the friction force
does not change sign. Fig. 6(b), provides a zoom-in where the mini-
mum velocity response value approaches zero, resulting in stick—slip
behaviour.

Thus, exciting the mass at an excitation frequency corresponding to
the first mode of the rod results in stick-slip behaviour at parts along
the rod length, and in a negligible change of the average friction values.
Note that for the rigid rod case, stick-slip is not observed. In previous
studies (Sulollari et al., 2024, 2025), the average operation was per-
formed when considering continuous sliding as they were focused on
analysing friction modulation during sliding only. In this case, however,
for Q, = 6, the averaging process is performed numerically, and it is
important to note that this is done over a stick-slip region.
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®)

Fig. 2. Average friction results along the rod length for v = 0.005. Continuous lines refer to the case of the flexible rod, and dot markers refer to the rigid rod. Dot marker colours
match those of the continuous lines for the same excitation frequency: (a) results for excitation frequencies smaller than and equal to 6, (b) results for excitation frequencies bigger

than 6.
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Fig. 3. Comparison between the statistics of the average friction distributions along
the rod length (represented by box plots) and the average friction coefficients for the
rigid rod. The assumed pushing velocity is v = 0.005.

Before concluding this part, it is worth noting that higher harmonics
are present in the rod’s velocity response, as shown in Figs. 4 and
5, which arise from the moving nature of the load rather than from
the nonlinear contact. It can be verified that in addition to these
higher harmonics, which correspond to oscillations at the rod’s natural
frequencies, the influence of the higher harmonics due to the external
excitation is also present (when these do not coincide with the rod’s
natural frequencies), albeit with a small effect. The presence of all
higher harmonics also explains the large variations in the average
friction values along x,, for each excitation frequency, as indicated in
Fig. 2. These average friction values are computed by averaging over
the oscillation period, 2z/£,. However, due to the presence of many
harmonics, whose relevance varies depending on the x, positions, the
relative velocity response used to calculate the average friction exhibits
quasi-periodic behaviour, causing significant variations in the average
friction values when averaged over 2z/,. While in this study, the
averaging is always performed over the period corresponding to the
excitation frequency, as discussed in a previous study (Sulollari et al.,
2025), when multiple oscillation periods are present in the relative
response, the choice of the period is important as it affects the resulting
average friction values and their variability.

3.2. Friction modulation versus pushing velocity

This subsection compares the average friction obtained for various
pushing velocities v, with reference to the excitation frequencies for

which the most significant difference between the flexible and rigid
rod case is observed, i.e. 2, = 3 and 2, = 6. Fig. 7 depicts the results
for Q, = 3 for v values ranging from 0.005 to 0.02. As shown in the
figure, for low v values (< 0.008), the average friction results obtained
for the flexible rod are generally smaller than those obtained for the
rigid rod, while for bigger v values, the opposite trend holds. For v
values exceeding the amplitude of the relative velocity response (not
presented here), the friction force does not change sign and no friction
change is observed (v > 0.014) for both rigid and flexible rod cases. The
figure also suggests the existence of a velocity below which the average
friction values for the flexible rod are lower than that of the rigid case,
while above it, the opposite is true. To better understand the differences
in the average friction values between the flexible and rigid rod cases
and to investigate the presence of such transition at a specific velocity,
Fig. 8(a) presents the maximum amplitude of the rod velocity at the
contact point for each v value. The choice of the rod velocity is based
on the fact that the largest difference in relative velocities between the
flexible and rigid rods arises from its contribution.

Fig. 8(a) shows that the maximum amplitude of the rod’s velocity
response is observed at v = 0.008, which corresponds to the velocity
for which the trend in the average friction values in Fig. 7 shifts.
This value at which the maximum rod velocity occurs is defined as
the “critical” velocity and marks the point where the average friction
values obtained for the flexible and rigid rod systems are closest to each
other. It is worth highlighting that the average friction values being
close does not imply that the responses are identical (in fact, they are
not, as the rod response is at its maximum while the belt is rigid). It
simply means that the change in sign of the relative velocities is similar,
resulting in average friction values that are close to each other. For
pushing velocities below the critical one, the system with the flexible
rod exhibits lower average friction, whereas, for pushing velocities
above it, the same system displays higher average friction values (until
the velocity for which no friction modulation is observed for both
flexible and rigid rod cases). Therefore, identifying the critical velocity
offers direct qualitative insight into how the average friction differs
between the system with a rigid rod (assuming its average friction is
known) and the one with a flexible rod, without the need to explicitly
compute the average friction for the latter. Moreover, to explain the
increase in average friction values with increasing velocity v and to
find the pushing velocity beyond which no friction change is observed,
Fig. 8(b) illustrates the minimum relative velocity response value for
each v. The v, ;;, values decrease, reaching almost zero at v = 0.014,
meaning that beyond this pushing velocity, the relative velocity values
are strictly positive, resulting in a friction force that does not change
sign. Consequently, no friction modulation occurs, consistent with the
behaviour portrayed in Fig. 7.

Fig. 9 depicts the results for £, = 6 corresponding to the rod’s
first mode frequency. At low v values, the boxplots show a noticeable
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difference between the mean (middle of the box) and the median as
well as a higher spread in the variability of the values. This variability
in distribution decreases as v values increase. For all v values, other
than the ones for which no friction change is observed, the average
friction results for the flexible rod (except for extremes and outliers)
are higher than those for the rigid rod case. Thus, independent of the v
value, exciting the mass at an excitation frequency corresponding to the
rod’s first mode results in less friction reduction. In Fig. 9(b), a plot of
limax Versus v values is presented for this excitation frequency. Unlike
Fig. 8(a), no distinct critical velocity is observed within this velocity
range, as the u,,, values continuously decrease. This behaviour is
similar to the portion of Fig. 8(a) where the velocities are greater than
0.008; there, u,,, also decreases. In Fig. 7, this region is associated
with average friction values higher than those of the rigid rod, a pattern
consistent with the behaviour shown in Fig. 9(a). Therefore, even for
this excitation frequency, the plot of i, provides qualitative insights

into the differences in average friction values between the systems with
flexible and rigid rods. Notably, it can be verified that the critical
velocity defined and calculated in this section is much smaller than
the conventional critical velocity corresponding to the resonance of the
rod as induced by a moving oscillatory load of frequency £2, (see Fryba
(1973)).

4. Harmonic load acting on the rod

This section examines the case of the external harmonic load acting
on the rod at location x = s, as shown in Fig. 1(b). Following the
methodology and steps outlined in the preceding section, the equations
of motion are solved numerically, and the friction modulation is evalu-
ated for different excitation frequencies £2, and velocities v. All results
are compared to those obtained from a mass—spring-dashpot system on
a rigid rod, with the load acting on the mass.
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4.1. Friction modulation along the rod length

Using the equations of motion, Egs. (12) and (13), with the external
harmonic loading applied on the rod, first, the average friction values
along the rod length are obtained for different excitation frequencies,
employing the x. expression in Eq. (3). The results are depicted in
Fig. 10(a) where, like in Fig. 2, the continuous lines represent the
results of the flexible rod and the dot markers correspond to those
of the rigid rod. Again, similarly to Fig. 2, Fig. 10(a) shows large
variations in the average friction values along x,, for each excitation
frequency (other than the ones for which no change in the frictional
behaviour is observed, such as for 2, = 2 and £, = 3). For this case
as well, with the load acting on the rod, due to the moving load, the
beam velocity response exhibits oscillations not only at the excitation
frequency but also at additional frequencies, leading to a quasi-periodic
response, causing significant variations in the average friction values
when averaged over 2z/Q,. The plots in Fig. 10(a) indicate that for
Q, = 2 and 2, = 3 (shown with a dashed line for distinction), no
friction change is observed. For Q, = 4, the average friction values
vary along the rod length, and no change is observed after x, ~ 0.7.
To explain the constant average friction values after x, ~ 0.7, in Fig.
10(b), the relative velocity for 2, = 4 is plotted as a function of time. As
illustrated in the figure, the relative velocity is at its highest near the
location of the applied load and decreases towards the fixed end on
the right, eventually reaching zero. As the relative velocity decreases,
it becomes strictly positive, indicating the absence of sign changes and,
consequently, no friction modulation. For £, = 2 and 2, = 3, the
relative velocity values remain strictly positive at all times, explaining
the absence of friction modulation at any point x,, as shown in Fig.
10(a).

When compared to the rigid rod case (load acting on the mass
which oscillates on a rigid rod), the dot markers indicate lower average
friction values for the rigid rod for all three £, values (2, 3, and 4).
Although the load in the rigid rod case is applied directly to the mass,
while this section examines the scenario where the load is applied to
the flexible rod, these cases are compared not only to highlight their
differences but also because the rigid rod with the load on the mass
serves as a benchmark for evaluating the effects of load application
on the mass versus on the rod in flexible rod systems. For instance,
as shown in Fig. 2(a), for £, = 4, when the load is applied to the
mass in the flexible rod case, the average friction values are closer to
those in the rigid rod case (with the load on the mass) and are even
smaller along parts of the rod’s length. In contrast, when the load is
applied on the rod in the flexible rod case, Fig. 10(a), for 2, = 4, the
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average friction values are consistently higher than those in the rigid
rod case (with the load on the mass). Thus, applying the load directly
to the mass can result in greater friction modulation than applying
it to the rod. The friction reduction increases as £2, increases to 5, 6
and 7, with the highest reduction for £, = 6, corresponding to the
natural frequency of the rod’s first mode, as shown in Fig. 10(a). For
the latter case, the friction reduction associated with the flexible rod
(green line) is greater than that of the rigid rod (green dot) and also
greater than that of the load-on-mass case, where almost no friction
reduction was observed (see Section 3.1). As already explained, for the
load-on-mass case and for an excitation frequency of 2, = 6, the rod
velocity response is high and comparable to the mass response, but the
two responses are in phase. This results in a low-magnitude relative
velocity, predominantly positive, causing no change in the friction
force’s sign and, consequently, no friction modulation. In contrast, for
the load-on-rod case described here, the rod’s response is high while the
mass response is minimal. As a result, the relative velocity is dominated
by the rod’s motion, leading to a change in the friction force’s sign
and a reduction in the average friction. For 2, = 5 and @2, = 7, the
comparison varies depending on the position along the rod length.

It should be noted that for £, values of 5, 6 and 7, the responses of
the rod are high and do not comply with the small deformation theory.
To accurately describe the system dynamics, geometric nonlinearity
should be accounted for (see Appendix A.1). However, as large defor-
mations are not desirable, another approach is to vary the excitation
amplitude value, a, to identify the maximum « value that ensures the
response complies with the small deformation theory. To achieve this,
the results from Egs. (12) and (13) using x, as in Eq. (3) are compared
to those from Egs. (A.4) and (A.5) with x, as in Eq. (4). Fig. 11(a)
presents the average friction values corresponding to « values for which
the results obtained from the equations of motion with and without
geometric nonlinearity agree. As shown in the figure, for the results to
agree, the « value is reduced from 0.004, used so far in this study, to
0.0015, 0.00004 and 0.001 for £, values of 5, 6 and 7, respectively.
For Q, = 5 and 2, = 7, the average friction changes along the beam
length. The average friction values are smaller for the higher excitation
frequency, but still bigger than those corresponding to the same £,
value in Fig. 10(a), as in the latter a greater « value is used. The
reduction in « is most prominent for 2, = 6, as this excitation frequency
results in the highest rod displacement response. While the a reduction
leads to small deformations, it also results in a relative velocity response
with oscillation cycles having amplitudes smaller than the velocity v.
Consequently, no friction change is present in sections along the rod
length for Q, =6.

To provide an indication of the displacement values, Fig. 11(b)
presents the maximum values of the displacement response across a
range of velocities v for 22, = 6 and the reduced a = 0.00004. Within this
velocity range, the peak displacement value is approximately 0.0022,
corresponding to 0.22% of the rod’s length L. This shows that as
the excitation amplitude value is decreased, the strain value remains
small and does not lead to failure phenomena. For comparison, in
the next subsection, the scenario of maintaining the original a value
while accounting for geometric nonlinearity is presented, along with
the corresponding maximum deformation values.

To sum up, when the load is acting on the rod, the velocity response
of the rod is higher than that of the mass and it increases as the
excitation frequency increases, significantly contributing to friction
reduction. This response changes along the rod length and exhibits os-
cillations at different frequencies leading to large variations in average
friction values and in no variations towards the end of the rod. High
responses also imply a potential deviation from the small deformation
theory. To address this, either geometric nonlinearity should be incor-
porated into the model, or the amplitude of the harmonic load needs to
be adjusted. A reduction of the a value implies less friction reduction.
When the excitation frequency matches the natural frequency of the
rod’s first mode under a reduced «, this results in no friction reduction
occurring in some sections along the length of the rod.
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4.2. Friction modulation versus pushing velocity

The average friction values for a range of velocities v are presented
and compared for both the flexible and rigid rod cases. In Section 3.1,
the comparison was made for excitation frequencies 2, =3 and 2, =6
for which the most significant differences between the flexible and
rigid rod cases were observed. Looking at Fig. 10(a), for 2, = 2 and

. = 3, no friction change is observed for v = 0.005 and that holds for
higher velocities as well since friction reduction lessens with increasing
v. Therefore, no average friction plots are shown for these excitation
frequencies. In Fig. 12(a), results for £, = 4 are illustrated. As shown
in the figure, the average friction values for the system with the flexible
rod, except for some extremes, are higher than those for the rigid

rod system for any velocity v value. For the rigid rod, no change in
friction is observed for v > 0.018, whereas for the flexible rod, this
behaviour occurs at a lower v = 0.014. The latter observation can be
explained by revisiting the relative velocity response shown in Fig.
10(b) for v = 0.005. As previously mentioned, the relative velocity
decreases and becomes strictly positive as the mass approaches the
fixed end of the rod, indicating no friction sign change and no friction
modulation towards the rod’s end. Increasing the velocity incrementally
to v = 0.006,0.007, ..., up to v = 0.02, as shown in Fig. 12(a), reduces
the time required for the mass to reach the rod’s end. For example,
while the rod’s end is reached at 1 = 150 for v = 0.005, it is reached
at + = 75 for v = 0.01. With this shorter time frame and higher v
values, the relative velocity response becomes strictly positive more
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rapidly, occurring at x, ~ 0.5 instead of approximately 0.7 (observed
for v = 0.005). Therefore, as the velocity v increases, no friction change
is observed from lower x, values.

In Fig. 12(b), the same plot is illustrated for the load-on-mass case,
as studied in Section 3, with the boxplots showing again the results for
the flexible rod system and the green markers the results for the rigid
one (the latter being the same in Fig. 12(a) and 12(b)). As shown in
the figure, the results align more closely with those of the rigid rod
case as the mass governs the response, and the rod’s contribution is
minimal. Consequently, for this excitation frequency, applying the load
directly to the mass yields average friction values similar to the rigid
rod. In contrast, applying the load to the rod results in less reduction
in friction, which diminishes rapidly as the velocity v increases.

Using the same parameters and higher excitation frequencies, for
the deformations to remain small, either the amplitude of the excitation
a should get reduced, as shown in Fig. 11(a), or nonlinearity should be
considered in the equations of motion. Using a smaller a, the reduction
in friction for £, = 6 is not that significant (see Fig. 11(a)). Therefore,
as shown in Fig. 13(a), the average friction is illustrated for the original
value of a« = 0.004, 2, = 6 and including the geometric nonlinearity in
the rod. Since the excitation frequency matches the first mode of the
rod, the velocity response amplitude of the rod becomes significantly
higher (i, ~ 1) compared to the constant velocity v. This leads to
substantial friction reduction, as illustrated in Fig. 13(a). In contrast,
for the rigid rod case, the average friction values are higher and no
friction reduction is observed when v > 0.025. For the flexible rod,
the average friction values remain low (due to the velocity amplitude
of the rod being very large) with only small variations along each
other for all the v values considered. Only for v > ., no changes
in the average friction will be observed for this case. To provide an
indication of the displacement values, Fig. 13(b) presents the maximum
values of the displacement response for the same range of velocities

v as in Fig. 13(a). Within this velocity range, the peak displacement
value is approximately 0.21, which is around 100 times larger than the
one in Fig. 11(b) for the same excitation frequency but with a smaller
amplitude «. This displacement is 21% L, and depending on factors
such as material type, geometric properties (e.g., cross-sectional shape
and size), loading conditions (e.g., magnitude, direction, and duration),
boundary conditions and more, it can lead to failure phenomena such
as buckling, permanent plastic deformation and crushing or fracture.

Overall, using an excitation frequency corresponding to the first
mode results in greater friction reduction compared to the rigid case
for any velocity v, but this comes with large deformations experienced
by the flexible rod, where the material type and its properties play a
crucial role.

5. Connection to real-life scenarios
5.1. Discussion on the slip joint application

In this section, connections are drawn to slip joints in offshore wind
turbines and related experimental studies to contextualize the model
system within the scope of applications and real-life scenarios. In the
first study of Cabboi and coworkers on the slip joint application (Cabboi
et al., 2020), the effectiveness of applying a harmonic excitation during
the installation and decommissioning procedure was experimentally
investigated using a 1:10 scaled model of the slip joint. In essence, a slip
joint for wind turbines enables the connection between the monopile
and the transition piece by simply overlapping the two cylindrical
structures. The entire connection relies on the frictional forces between
the two surfaces in contact. In their study, two cones, one representing
the monopile (MP) and one the transition piece (TP), were used for the
designed test setup. The TP was excited in either horizontal or vertical
direction utilizing a shaker, whereas the static pushing load was applied
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Fig. 13. Comparison of average friction results for different velocity v values obtained for the flexible rod with geometrical nonlinearity and rigid rod with the load acting on the
mass; (b) Maximum amplitude of the rod’s displacement response. Results obtained for 2, =6 and a = 0.004.

at the top cone representing the MP. Both cones were made of the
same steel type (S355), and had the same total length, mass and wall
thickness. The TP cone had a top and bottom outer diameter of 0.01 m
thicker than the MP cone. Due to its larger diameter, the TP cone was
stiffer.

The results of the tests performed during the experimental campaign
showed that settlement occurred when applying a harmonic load at
specific forcing frequencies (results hold for both loading directions).
To provide some insights concerning which structural modes should be
excited to effectively obtain a stable settlement, hammer tests on the
testing specimens and experimental modal analysis were performed.
One of the identified natural frequencies, specifically at 120 Hz (when-
ever excited by means of the shakers), was effective in reducing the
friction force for both the installation and dismounting of the cones,
regardless of the different amplitudes of the vibratory load. However,
settlements were observed for other frequencies as well, and in gen-
eral, most of the settlement frequencies corresponded well with the
identified natural frequencies.

Compared to our system, for the parameters considered, it can be
verified that the rod has higher stiffness than the mass (k, = EA/L >
k), allowing the rod to serve as a simplified representation of the TP.
Similarly, the mass represents the MP for the considered test setup.
While this setup simplifies the dynamics of the slip joint, it provides a
foundational framework for analysis. As the excitation is applied on the
TP, the corresponding case in our study is that of the load applied on
the rod, as shown in Section 4. One of the conclusions of this section
was that loading the rod with an excitation frequency corresponding
to the rod’s first mode leads to the highest friction reduction. The
conclusion is similar to that drawn from the slip joint study as exciting
the TP at resonance frequencies was the most effective way to install
and decommission the connection.

In a follow-up study (Cabboi et al., 2021), the vibration-assisted
decommissioning of the slip joint was applied to a full-scale wind
turbine, where the lower tower of the wind turbine (WT) was directly
connected to the monopile (MP) without the use of a transition piece.
The wall thickness of the steel plates forming the monopile and the
wind turbine tower decreased with increasing height, from 65 mm to
10 mm, making the MP the stiffer component. The shaker devices were
mounted at the base of the wind turbine tower, so the vibratory load
was applied to the WT. The decommissioning tests showed that the slip
joint detachment was triggered once the circumferential local mode at
53 Hz was excited. An experimental modal analysis was conducted to
identify the modes of the structure, and the results were compared to
modal properties extracted from a developed FE model. This analysis
showed that the mode at 53 Hz only referred to the dynamic of the wind
turbine tower, while the monopile foundation almost acted as a rigid
body. Thus, the excitation of this mode in combination with a vertical
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pulling force facilitated the detachment between the two contacting
surfaces.

Following the same line of reasoning as described above, compared
to our system, the rod has higher stiffness, making it representative of
the MP, and the mass representative of the WT, as the excitation is
applied on the WT. The corresponding case in our study is of the load
applied on the mass, see Section 3. This section concluded that exciting
the mass at an excitation frequency corresponding to the rod’s first
mode results in less friction reduction. Thus, to reduce friction forces
(i.e. to facilitate decommissioning), it is more effective to excite the
mass at frequencies which do not correspond to the rod’s first mode. In
these cases, the rod response is generally small. This is in line with the
result drawn by the study on the slip joint, as the decommissioning was
effective at a frequency at which the monopile foundation, represented
by the rod in our system, acted almost as a rigid body.

It should be noted that while our study and the slip joint ap-
plication share conceptual similarities, the agreement between their
results is purely qualitative. The slip joint primarily involves bending
and circumferential shell modes, making an axially deforming rod not
the most representative structure for comparison. Additionally, the
dynamic loading in the slip joint study involves a stepwise or linear
frequency increase, contrasting with the loading type used in our work.
Differences in stiffness, damping ratios, and other parameters also show
the distinct nature of the two systems, yet the qualitative agreements
remain, highlighting the broader applicability of the findings.

5.2. Discussion on pin-on-disk experimental results

Lastly, a connection is drawn between the findings obtained in this
study and related experimental works. In several experimental investi-
gations conducted on the effect of vibration-induced friction reduction,
the measurements did not match the model predictions obtained assum-
ing the Amontons-Coulomb law to model the friction force. Different
friction models were used to better catch the experimental behaviour,
for example, the Dahl and the Dupont models (Dupont et al., 2002) that
embed a tangential contact stiffness. In this regard, Kapelke employed
the Dupont model and the Amontons-Coulomb law to compare the
experimental results to theoretical ones (Kapelke and Seemann, 2018).
A pin-on-disk type experimental setup was developed, exhibiting a
dominant eigenmode at approximately 100 Hz (corresponding to the
motion of the dynamometer in the tangential direction). For moderate
excitation frequencies (40 Hz), the experimental results showed an
excellent match to the elasto-plastic Dupont model, for which the
contact stiffness k, = 5.6 x 10> N/m was chosen. However, when high-
excitation frequencies were used (350 Hz), to catch the behaviour of
the friction force accurately, a significantly different value of tangential
stiffness was needed for the Dupont model, i.e., k, = 12 x 10> N/m.
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Since this model incorporates a tangential contact stiffness, and our
system considers deformations in the tangential direction, a comparison
can be made between the results obtained from both systems. As
shown in Kapelke’s work (Kapelke and Seemann, 2018), the elasto-
plastic friction model yields higher effective friction values than the
Amontons-Coulomb law. The shape of the plots and the results are
qualitatively similar to those shown in Fig. 7 (for v > 0.008) and in Fig.
9(a) (for any v), as these results are also higher than those obtained
using the Amontons—Coulomb law. The comparison is made with these
plots because they correspond to the scenario in which the harmonic
load is applied to the mass, aligning with the experimental loading
condition. It is important to note that a direct one-to-one comparison
between the results from our mass-on-a-rod system and the system with
the Dahl/Dupont models cannot be made, as additional information
is needed regarding the relationship between the excitation frequency
and the system modes, as well as consistent amplitude and velocity
values. However, despite these limitations, our system demonstrates
that using a rod with the Amontons—Coulomb law provides friction
change results that qualitatively resemble those obtained from the
Dahl/Dupont models.

An attempt to explain the need for a change in the contact stiffness
value k), as the excitation frequency increases, is made by calculating a
“dynamic stiffness” (as perceived by the moving contact force through-
out the transient process) of the rod in our system, K,. To compute
K, for a given excitation frequency, the force acting on the rod and
the displacement at the contact point are transformed to the frequency
domain. Due to the quasi-periodic nature of the system response, K,
which is the ratio of force to displacement amplitudes, also exhibits
multiple frequency components. The K, value is then chosen based on
the component that matches the given excitation frequency. The same
procedure is repeated for other excitation frequencies, and the results
are illustrated in Fig. 14. As shown in the figure, K, is at its lowest
at the rod’s modal frequencies and higher between them. Moreover,
the peaks in the plot of K, increase with increasing frequency. This
behaviour could explain why higher contact stiffness values are needed
at higher excitation frequencies in the work of Kapelke and colleagues,
assuming that the excitation frequency used in their study lies between
the disk modes.

6. Conclusions

In this work, the effect of external excitation in the presence of
support flexibility on the friction modulation of a moving oscillator on
an elastic rod of finite length is investigated. Two loading scenarios
are analysed. In the first, a harmonic tangential load is applied on the
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moving mass, while in the second, the same load is applied on the
rod. The modal expansion method is employed to derive the modal
equations of the rod, which are then used to obtain the numerical
solutions for the system’s response.

In the case where the load acts on the mass, it is observed that,
unlike the rigid rod scenario where the average friction is a constant
value, the deformation of the rod introduces variations in friction
change along its length. Depending on the position along the rod
length, these values are smaller or bigger than the ones obtained for the
rigid rod system. Deviations are observed across excitation frequencies,
with the most prominent ones occurring at half the rod’s first mode
frequency and at the first mode frequency itself. For the latter case,
unlike the rigid rod scenario, no friction modulation and stick-slip
behaviour is observed along parts of the rod. For both cases, it is also
found that the critical velocity, i.e. the velocity for which the maximum
rod velocity response is observed, provides direct qualitative insight
into the differences in average friction between the rigid and flexible
rod cases without explicitly computing the average friction values for
the latter scenario. For pushing velocities smaller than the critical
velocity, the average friction values for the flexible rod are lower than
those of the rigid case, while above it, the opposite is true.

Even when the load acts on the rod, variations in average friction
values along the rod length are observed, but they differ from the
results from the load-on-mass scenario. For excitation frequencies close
to and above the rod’s first natural frequency, the rod’s response
increases and does not comply with the small deformation theory. To
address this, either the amplitude of the excitation value « is reduced,
or, if large deformations are permitted, geometric nonlinearity is incor-
porated into the model. A lower a value leads to less friction reduction
for all excitation frequencies and to no friction reduction along parts
of the rod for the excitation frequency equal to the rods’ first natural
frequency. For the same excitation frequency, introducing geometric
nonlinearity results in very high friction reduction compared to the
rigid case for any velocity v. Again, this comes with large deformations
experienced by the flexible rod.

The presence of support flexibility allows for comparisons with
real-life applications as well. Regarding the slip joint application, the
system’s behaviour is used to represent a simplified version of the
dynamics of the tower and the monopile. The findings from our study
regarding the choice of excitation frequencies for which the highest
friction reduction is obtained in the load-on-mass and load-on-rod
scenarios support the results of the experiments on the full scale and
on the 1:10 scaled model of the slip joint, respectively. Regarding
experimental studies, the average friction results from our study are
used to provide an alternative interpretation of the results of published
works using the Dahl and Dupont models. Using these models, higher
average friction values than those predicted by Amontons—Coulomb
law are observed. Similarly, in our study, according to a compara-
ble loading scenario, higher average friction values are also observed
(depending on the excitation frequency and pushing velocities). Thus,
modelling the system with a flexible rod yields friction change results
that qualitatively align with those from the Dahl and Dupont models
and related experimental studies, even though the Amontons-Coulomb
law is used.
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Fig. A.15. Comparison of rod displacement u obtained using the equations of motion with (dashed orange line) and without (continuous blue line) geometric nonlinearity in the

rod; (a) for excitation frequency £, =3, (b) for excitation frequency €, = 6.

Appendix

A.1. Geometrically nonlinear rod

With reference to Section 3.1, to ensure that the response of the rod
adheres to the small deformation assumption, the solutions obtained
are compared to those derived considering a rod with geometric nonlin-
earity with x, expression as in Eq. (4). For the geometrically nonlinear
rod, the displacement-strain relation (de Borst et al., 2012) and the
strain-stress relation are given by

du

o, =Ee,.

ou 1 < (A1)

2
e=ata ()
Thus, the displacement-strain relation has an additional quadratic term.

The equations of motion then become

0%u ou ou 0%u

A— EA——EA—— 6(x — =0 A.2
PAST +Cbat Ew ax02+f(x x.) (A.2)
d%u du
ﬁ+cd—s+ks—f, (A.3)

Using the same dimensionless parameters as in Eq. (9), the dimension-
less equation of motion are derived

au Pu [Ty \? ou 0%u _

o2 ﬂbwat (7[) ox2 (?) Eax2+f5(x x) =0, (A4
d?u

7 s+ 2ﬁ— +s=r,f, (A.5)

The modal equations of the rod are derived using the same solution
method as in Section 3.1 and are solved numerically using the MATLAB
solver ode23s.

In Fig. A.15, the results of the rod displacement u obtained using the
equations of motion with (dashed orange line) and without (continuous
blue line) geometric nonlinearity of the rod are presented for two
different excitation frequencies. As shown in Fig. A.15(a) for €,
3, the differences between the lines are negligible. The differences
become more pronounced at higher time values for 2, = 6, as shown
in Fig. A.15(b). This case is particularly noteworthy since 2, = 6
corresponds to the first natural frequency of the rod, leading to a higher
response. Nevertheless, the maximum relative error in the responses is
approximately 6.7%, and this occurs only within a narrow time range.
As a result, the error has no significant impact on the relative velocity
and, consequently, on the average friction.

Data availability

Data will be made available on request.
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