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Abstract

The transport of a solute dissolved in a fluid flowing trough porous media is,
next to advection and diffusion, determined by hydrodynamic dispersion. This be-
haviour is commonly characterized using the longitudinal and transverse dispersion
coefficients. Laboratory and field measurements of these coefficients tend to differ,
which might be attributed to heterogeneities found in field porous media.

To investigate this, a stratified porous medium consisting of two layers is con-
sidered. Each layer has different physical properties, resulting in a different average
fluid velocity. As a consequence of the difference in velocity, transport of the solute
occurs between the two layers. Under certain circumstances the layers start to be-
have as one single layer, with one single effective dispersion coefficient, explaining
the discrepancy between field and laboratory measurements.

The two-layer stratified porous medium is characterized using a dimensionless
number. It is investigated for which values of this number the porous medium acts
as one single layer, and for which values the medium behaves as two separate layers.
This is done by introducing an index, which effectively measures the behaviour of
the medium in terms of these two limit cases. The calculation of the index is done
using a numerical simulation of flow and dispersion in the stratified porous medium.

It was found that the dimensionless number was in general a good predictor of
the behaviour of the stratified porous medium. The system behaved as one single
layer if the dimensionless number (after a correction with a certain factor) was
much greater than unity. Similarly, the system behaved as two separate layers if
the number was much less than unity. However, this number failed if the ratio of
the two layer thicknesses was varied. A correction to the dimensionless number was
suggested, taking the ratio into account.
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1 Introduction

Transport of a solute in porous media is, next to advection and diffusion, determined
by hydrodynamic dispersion. Hydrodynamic dispersion is similar to molecular diffusion,
but is unlike diffusion anisotropic and depends on the average fluid velocity.

Quantitative description of hydrodynamic dispersion is relevant to different fields like hy-
drology and oil reservoir engineering, [1, 17]. For example, in groundwater hydrology the
flow of contaminated water could be modelled with hydrodynamic dispersion. Likewise,
the transition zone between salt and fresh water in coastal regions can be better un-
derstood through hydrodynamic dispersion. In oil reservoir engineering, hydrodynamic
dispersion is of interest regarding enhanced oil recovery precesses, [3, 10].

In the direction of the fluid velocity, dispersion is often modelled using the longitudinal
dispersion coefficient, Dl = αlu+Dm, where αl is the longitudinal dispersivity, u is the
average fluid velocity and Dm the molecular diffusion coefficient, [1, 6, 15]. Field and
laboratory measurements of αl tend to differ, [8, 10]. Not only due to scale (in laboratory
measurements, αl is in the order of centimeters, while in field measurements it can be
in the order of meters), but additional differences might be attributed to heterogeneities
found in field porous media. Earlier work to explain this difference in measurements
includes [3, 8, 10, 19].

To investigate this, a stratified porous medium is considered, consisting of two layers
with different physical properties. In this system, a solute dissolved in a fluid is con-
tinuously injected in both layers. Due to the different physical properties, the average
fluid velocities in each layer will be different, which will cause transversal transport of
the solute between the two layers. Under certain circumstances, the two-layer strati-
fied porous medium can be described as being one single layer, with one single effective
dispersion coefficient. This effective dispersion coefficient can in turn explain the dis-
crepancy between field and laboratory measurements.

It is the aim of this study to characterize the system using a dimensionless number, which
is called the transverse dispersion number. It is then investigated for which values of the
transverse dispersion number the system behaves as one single layer or as two separate
layers. This is done using the transverse dispersion index, which effectively measures the
behaviour of the system in terms of two limit cases. The transport of the solute in the
two-layer stratified porous medium is modelled using numerical simulations, which are
performed using MATLAB. From the numerical simulations, the transverse dispersion
index can be calculated.

In chapter 2 a general description of porous media and transport therein is given. Then
in chapter 3, the model of the two-layer stratified porous medium is given, as well as a
way to characterize it and measure its behaviour. The numerical method is described in
chapter 4. In chapter 5 the results will be presented, after which the conclusions will be
given in chapter 6.
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2 Transport Phenomena in Porous Media

This section gives an overview of transport phenomena occurring in porous media, and
the way they are modelled. This background information is used later on in the model-
ing of the transport of a solute dissolved in a fluid flowing through a layered (stratified)
porous medium, and the characterization of such a system. For more elaborate intro-
ductions on porous media and the transport of a solute in porous media, see for example
[1, 17].

First, a description of porous media is given, after which single-phase fluid flow in porous
media is described. Next, the transport of a solute dissolved in a fluid flowing in a porous
medium is described, as well as the equations and boundary conditions to model the
transport.

2.1 Description of porous media

In the most simple terms, porous media are solids which contain interconnected “holes”
usually filled with fluid. The interconnected holes should also enable continuous paths
across the medium in order for the fluid to flow. The part of the medium which is solid
is called the solid matrix and the space that is not part of the solid matrix is called the
void or pore space. A more proper definition of porous media is given in [1]. Naturally,
porous media can occur in many forms, such as packed beds or fractured rock.

Figure 1: A randomly distributed porous medium, with random sized and constant
shaped grains. The pore space is grey, and the solid matrix is white. This example
contains no dead-end pores nor unconnected pores. This figure is from [5].

Porous media often are made up out of constituent particles, or grains. The distribution
of the grains can be either structured of random, as well as their shape and size. In
case of randomness, it is hard to describe phenomena, like fluid flow and transport,
occurring in porous media, as will be explained in section 2.2. For regular porous media,
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these difficulties might be possible to overcome, but are mostly still too difficult to solve
(numerically). In either way, one usually resorts to statistical or continuum methods,
or a combination of both. An example of a statistical method is a network of capillary
tubes, and for continuum models often spatial-averaging is used, [1]. The models used
in this thesis are based on the latter.

To quantify the pore space in a porous medium the porosity φ is used. This is defined
as the ratio between the volume occupied by the pore space Vp (pore volume) and the

total volume V of the medium, φ =
Vp
V . It could also be possible that a porous medium

has a porosity which locally differs (for example porous media can be layered), in which
case the Vp and V are taken in a representative elementary volume (the smallest volume
for which the continuum approach holds).

Apart from interconnected pores, porous media can also contain unconnected pores and
dead-end pores. From the standpoint of flow through porous media only interconnected
pores are of interest, so that unconnected pores can be considered to be part of the
solid matrix. This gives rise to an effective porosity φeff , in which Vp is taken only over
interconnected pore space. The porosity in this thesis will be assumed to be the effective
porosity.

2.2 Darcy and fluid flow in porous media

Fluid flow through the pores of a porous medium generally has a low Reynolds number
(this will be defined below), so that the Stokes equation can be used to calculate the
fluid velocity field u in the pore space. Also, the fluid is considered to be Newtonian, so
that the Stokes equations take the form of ([9, 17])

µ∇2u−∇p+ ρg = 0 (1)

where µ is the dynamic viscosity, p is the pressure and g is the gravitational accelera-
tion.

Furthermore, the fluid is considered to be incompressible, so its density ρ is constant
over time and space. From the continuity equation ([1]),

∂ρ

∂t
+ ∇ · (ρu) = 0 (2)

a constant density gives that
∇ · u = 0. (3)

Equations (1) and (3) can in principle be used to calculate the flow through the pores of
a porous medium, given the pore geometry of the medium, pressure, dynamic viscosity
and proper boundary conditions. However, the geometry of the pores of a medium is for
all practical purposes unknown. To be able to approximate the flow velocity a continuum

6



approach can be used to get effective flow equations at a much larger scale. This yields
Darcy’s law ([9, 17]),

q = −k
µ

(∇p− ρg) (4)

where q is the volume flux per unit area, also called Darcy velocity, and k is the per-
meability of the porous medium. Multiple derivations of Darcy’s law can be given (for
example in [1], [13], [17] and [22]), and they agree with experimental results. Darcy’s law
in the form of (4) suffices for most applications in ground water hydrology and petroleum
engineering as long as the permeability is isotropic. The Darcy velocity is not the same
as the (average) fluid velocity1, but is related to it by the (effective) porosity φ of the
porous medium,

ū =
q

φ
(5)

This accounts for the fact that only a fraction of the porous medium is available for
flow.

To define a range of validity for Darcy’s law, the Reynolds number (Re) is used. It is
defined as

Re =
ρūd

µ
(6)

where ū is the magnitude of the average fluid velocity and d is a characteristic length.
For the characteristic length multiple options are possible, but often the average size
or diameter of the porous medium’s constituents (or grains) is used. In practically all
cases, with d the average grain size, Darcy’s law is valid if Re does not exceed some
value between 1 and 10 (in other words, for laminar flow), [1].

In case the flow is in the transition zone from laminar to turbulent, or if it is turbulent,
Darcy’s law is not valid any more, since Stokes equation is not valid anymore. Some
extensions to Darcy’s law take this into account, but this is beyond the scope of this
thesis.

In stratified porous media, Darcy’s law is still valid. Consider a stratified porous medium
consisting of n layers, each with porosity φj , permeability kj and thickness hj (see figure
2). The viscosity µ is considered constant, and it is assumed that gravity can be ignored.
Then, if the pressure is constant in y, the average fluid velocity in layer j is only in the
x̂-direction, and is given by

ūj = − kj
µφj

∂p

∂x

1For the average fluid velocity, also ∇ · ū = 0 holds.
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Figure 2: Stratified porous medium consisting of n layers, each with porosity φ, perme-
ability k and thickness h.

2.3 Transport of a solute in a porous medium

The transport of a solute dissolved in a fluid is generally described by the well-known
advection-diffusion equation,

∂c

∂t
= ∇ · (Dm∇c)−∇ · cu (7)

where c is the solute concentration and Dm is the molecular diffusion coefficient. The
first term on the right-hand side of (7) accounts for molecular diffusion (as described by
Fick’s law), and the second term for advection.

Equation (7), together with (1), (3) and proper boundary conditions, can fully describe
the transport of particles dissolved in a fluid flowing through a porous medium. (This
is done, for example, in [3] and [7]) However, again the geometry of the pores of the
medium is for all practical purposes unknown, and furthermore for porous media the
formulation of boundary conditions is very hard. To deal with this, lots of different
methods have been developed [1, 17].

Most methods, such as volume averaging methods, yield a generalization of (7), with
Dm replaced by a tensor D, called the hydrodynamic dispersion tensor, and u replaced
by ū from (5). This gives the advection-dispersion equation,

∂c

∂t
= ∇ · (D∇c)−∇ · cū (8)

When the fluid flows in a porous medium, the flow lines are deviated in the geometry
of the pore space. Because of this deviation, the length of the path each particle of the
solute takes differs, causing an additional spread of the particles. (Dependent on the
Stokes number, the particles may also change flow lines more often in a porous medium,
which even further causes spreading.) Mostly (but not always) the spreading of the
solute is diffusion like, justifying the use of the hydrodynamic dispersion tensor, [6].
Hydrodynamic dispersion is the spreading of a solute when it is transported in a porous
medium.
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2.4 Hydrodynamic dispersion

The dispersion tensor describes the anisotropic behaviour of hydrodynamic dispersion.
To demonstrate this anisotropic behaviour, consider the case where the velocity field
only has a component in the x̂-direction. Then for most models the dispersion tensor
takes the form of (in two dimensions)

D =

(
Dl 0
0 Dt

)
(9)

where Dl and Dt are called the longitudinal and transverse coefficients of dispersion
respectively.

Table 1 summarizes experimental results ([17]) of the longitudinal and transverse coef-
ficients of dispersion in terms of the molecular diffusion coefficient Dm and the dimen-
sionless Peclet number Pe. The Peclet number is defined, for porous media, as Pe = ūd

Dm
where ū is the magnitude of the average fluid velocity, d is a representative grain di-
ameter and Dm is the molecular diffusion constant. Like with Reynolds number, the
average grain size is often used for d. Further in the table, F is the formation factor
(left undefined here), the α’s and β’s are constants (which for different rows are not the
same) and the f ’s are some functions.

For Pe < 0.3, diffusion becomes dominant, and the dispersion coefficients are not depen-
dent on Pe. Then as Pe increases (0.3 < Pe < 5) a transition zone is reached where it
is hard to tell the relationship between Dl, Dt and Pe. For 5 < Pe < 300 the so-called
power-law regime is reached, where the influence of diffusion is noticeable, but the Peclet
dependency is clear (βl and βt usually take a value close to one). If 300 < Pe < 105,
then the diffusion becomes negligible, and the dispersion coefficients become linearly
dependent on Pe. Next, if Pe further increases, the fluid flow becomes turbulent, and
thus the dispersion coefficients become dependent on the Reynolds number. This hardly
occurs in porous media. Lastly, there is hold-up dispersion, which is independent of Pe.
This is caused by the dead-end pores (section 2.1), which trap the solute so that it can
only escape through molecular diffusion.

Table 1: Experimental Peclet dependency of the longitudinal and transverse dispersion
coefficients, [17].

Pe Dl
Dm

= Dl
Dm

= regime

<0.3 1
Fφ

1
Fφ diffusion

0.3 < Pe < 5 fl(Pe) ft(Pe) transition

5 < Pe < 300 1
Fφ + αlPeβl 1

Fφ + αtPeβt power-law

300 < Pe < 105 αlPe αtPe pure advection
Pe > 105 fl(Pe,Re) ft(Pe,Re) turbulent

αlPe2 αtPe2 holdup dispersion
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Table 2: Comparison of multiple methods to estimate the dispersion coefficient Dl

Method Dl
Dm

= Author(s)

Capillary tube 1 + 1
48Pe2 Taylor

Volume-averaging 1 + 3
4Pe + αPe ln Pe + βPe2 Koch and Brady

Fluid mechanical αPe(ln Pe)β Saffman

Table 2 gives three examples of methods which estimate the longitudinal dispersion co-
efficient (with similar expressions for the transverse dispersion coefficients). This earliest
and simplest work has been done by Taylor, [18]. He did not consider a porous medium,
but a capillary tube instead. More advanced works include that of Koch and Brady ([9]),
and Saffman ([16]). Each method uses different assumptions and simplifications, and are
valid for different values of Pe, but the results contain similar terms. More methods can
be found in [1], [9] and [17], for example.

More generally, the dispersion tensor D is usually taken to be ([1, 21])

D = (αl − αt)
ūūT

||ū||
+ αt||ū||I +DmI (10)

where αl and αt are the longitudinal and transverse dispersivities respectively, ū is the
average fluid velocity and I is the identity matrix. In one dimension, the dispersion tensor
becomes Dl = Dm + αlū, so that there is no anisotropic behaviour. (This is known as
the Perkins-Johnston relationship, [15]) In case of a constant velocity ū = (ū, 0)T in the
x̂-direction (in two dimensions here), it follows from (10) that

D = u

(
αl 0
0 αt

)
+

(
Dm 0
0 Dm

)
(11)

(which explains the terms longitudinal and transverse dispersivity). As can be seen, (11)
agrees with the experimental results from table 1 if 5 < Pe < 105.

Values of the longitudinal dispersivities range between 0.13-0.51 cm in laboratory mea-
surements, to even 2.5 m in field measurements. The value of the transverse dispersivities
is typically αt ≈ αl/30 [10].
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3 Dispersion in Stratified Porous Media

In a paper by L.W. Lake and G.J. Hirasaki, Taylor’s Dispersion in Stratified Porous Me-
dia ([10]), the transport of a solute through a two-dimensional stratified porous medium
consisting of two layers is described. Under certain circumstances these two layers ac-
tually start behaving as one single layer. This aks for an investigation on how this
behaviour can be characterized and predicted.

Furthermore, field measurement differ from laboratory measurements of the longitudinal
dispersivity αl. If a stratified porous medium can be described as one single layer, then
this can result in an effective longitudinal dispersivity, αl,eff. This might explain the
discrepancy between the laboratory and field measurements, as porous media in field
measurements tend to be (more) heterogeneous.

In this chapter, first the physical properties and the model of a two-layer stratified porous
medium are described. Then a description is given of the behaviour of this system for
various values of the physical parameters, and of the behaviour in their limit. Lastly a
way to a priori characterize the system using a dimensionless number is presented, as
well as an index to effectively measure the behaviour of a given system in terms of the
limit cases.

3.1 Model

Consider a two-dimensional porous medium, with length Lx and thickness Ly. The
porous medium is assumed to consist of two layers, each with height hj , porosity φj and
longitudinal average fluid velocity2 uj , as shown in figure 3. The transverse average fluid
velocity is assumed zero. Without loss of generality, throughout this thesis it is assumed
that u1 > u2.

These average fluid velocities can be realized if there is the pressure is contant in y, see
section 2.2. (Further the viscosity µ is assumed constant, so that any choice of uj and
φj determines the permeability kj in each layer.)

The transport of a solute with concentration c through a porous medium in general is
described by (section 2.3)

∂c

∂t
+ ∇ · cu = ∇ ·D∇c (12)

where u is the average fluid velocity and D is the dispersion tensor. Using the above
assumption (u = (u, 0)T ), D is given by (section 2.4)

D =

(
αlu+Dm 0

0 αtu+Dm

)
=

(
Dl 0
0 Dt

)
(13)

2From here on, the average fluid velocity will be denoted with u or u, instead of ū or ū (see section
2.2)
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Figure 3: Two layer porous medium.

with αl and αt the longitudinal and transverse dispersivities, respectively, and Dm the
molecular diffusion coefficient. The dispersivities and diffusion coefficient are assumed
homogeneous in the medium. Furthermore, the fluid is assumed incompressible, so that
∇ · u = 0. With this and D, and equation (12) becomes

∂c

∂t
+ u

∂c

∂x
= (αlu+Dm)

∂2c

∂x2
+

∂

∂y

(
(αtu+Dm)

∂c

∂y

)
(14)

3.1.1 Initial and boundary conditions

The initial concentration is assumed zero on the domain, and at the left boundary (x = 0)
the concentration is kept constant at unity, c(0, y, t) = 1.

The top and bottom boundaries (y = 0 and y = Ly) are solid boundaries so that the
solute flux is zero,

(D∇c− cu) ·
(

0
1

)
= 0 y = 0, Ly

Since the transverse velocity is zero, there is no transverse advective transport, and the
boundary condition for y = 0 and y = Ly becomes Dt

∂c
∂y = 0.

At the right boundary (x = Lx), ideally a free-flow boundary condition is imposed.3

However, for the numerical method, this is not possible. Instead, an (artificial) boundary
condition of no net dispersive transport is imposed, Dl

∂c
∂x = 0, x = Lx.

Summarized the initial and boundary conditions are,
c(x, y, 0) = 0, (x, y) ∈ (0, Lx)× (0, Ly)

c(0, y, t) = 1, y ∈ (0, Ly), t > 0
∂c
∂y (x, y, t) = 0, y ∈ {0, Ly}, x ∈ (0, Lx), t > 0
∂c
∂x(Lx, y, t) = 0, y ∈ (0, Ly), t > 0

(15)

3In other words, if the domain is infinitely extended in the x̂-direction, then the boundary condition
would become limx→∞ c = 0.
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3.2 Qualitative behaviour

To understand the behaviour of the transport of a solute through the stratified porous
medium, first the limit cases of two separate layers and one single layer need to be
considered. This aids in finding a quantitative measure for transport behaviour through
a stratified porous medium and to characterize it.

3.2.1 Single layer limit

In certain cases transport in the stratified porous medium can behave as through a single
layer, and might be described by a one-dimensional advection-dispersion equation.

In the following, concentration fronts are defined as the moving fronts in case there
is only advection, see figure 4. Furthermore, since the left boundary concentration is
constant in y, the gradient in this direction is zero, ∂c

∂y (0, y, t) = 0. Similarly, since
the initial concentration is constant in y, the initial gradient in this direction is zero,
∂c
∂y (x, y, 0) = 0. This means that initially there is no transverse dispersive transport.
Transverse dispersive transport later arises because the concentration fronts moving at
different velocities create a gradient in the y-direction. For the system to behave as one
single layer, this gradient needs to remain small.

Lx

u1h1

u1t

concentration front

u2h2

u2t

Figure 4: Concentration fronts at time t.

The cases to be distinguished, for the system to behave as a single layer, are (all other
physical properties remain constant)

(a) h1 or h2 → Ly. If the thickness of the porous medium is nearly the same as one of
the layer thicknesses, then the time for the solute to transversely cross the small
layer (by transverse dispersion) will be very short. The concentration in the small
layer will be dominated by the concentration in the big layer.

(b) Ly → 0 (with constant layer thickness ratio). If the medium thickness goes to zero,
then the time for the concentration solute to transversely cross the medium will
also go to zero, and any gradient will be damped.

(c) αt → ∞. If αt → ∞, then the transverse dispersion will go to infinity. Even
though there will be a y-gradient caused by the concentration moving at different
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velocities, the infinite transversal dispersive flux will instantaneously damp this
out.

(d) Lx → ∞. If the medium becomes very long, then a y-gradient may develop, but
this will damp out, since the time to longitudinally cross the medium is much
longer than to transversely cross the medium.

(e) u1 = u2. The case of equal velocities is trivial.

Thus, for any of the above cases the porous medium is expected to behave as a single
layer, and can be described by

∂c′

∂t
+ u′

∂c′

∂x
= Deff

∂2c′

∂x2
(16)

with u′ some average velocity and Deff the effective dispersion coefficient, and with initial
and boundary conditions from (15) A solution is given by4

c′(x, y, t) = erfc

(
x− u′t√

4Defft

)
(17)

It can be verified that this solution satisifies (16). However, it does not satisfy5 the
boundary conditions c′(0, y, t) = 1 and ∂c′

∂x (Lx, y, t) = 0. The latter does not matter,
as this boundary condition was imposed for numerical reasons, and former is nearly
satisfied as c′(0, y, t) is close to one at all times.

Now, u′ and Deff can be expressed in terms of the properties of the two layer medium
(like the layer velocities and thicknesses). An expression for u′ and Deff is given in
[10]. In this expression, Deff is larger than the thickness-weighed average longitudinal
dispersion coefficients of the two layer (and in turn results in an increased effective
longitudinal dispersivitiy αl,eff). Thus heterogeneities in the porous medium, under
certain circumstances, tend to increase the effective longitudinal dispersion.

3.2.2 Double layer limit

Similar to the single layer limit, multiple cases can be distinguished for the system to
behave as two separate layers.

(a) Dt = 0. In case there is no transverse dispersion (in any of the two layers), the
porous medium will behave as two separate layers. (Naturally, the transverse
dispersion cannot be zero, as there is always molecular diffusion.)

(b) h1 and h2 →∞. If the layers are very thick, then the medium will behave as two
separate layers, as the time for the concentration solute to cross the medium will
go to infinity, and any y-gradient will not be damped out.

4The complementary error function is defined here as erfc(x) = 1− erf(x) = 1√
π

∫∞
x

exp(−z2)dz
5It is the solution on an infinite domain, with the boundary conditions that limx→±∞ c is finite. It

does satisfy the initial condition.
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(c) Lx → 0. Similarly, if the medium is very short, then the two concentration fronts
reach the end of the medium before the gradient in the y-direction increases, and
no interaction occurs. This can also be interpreted a considering very short time
scales.

(d) u1 >> u2. If the difference between the velocities is large, then the y-gradient will
remain large throughout the medium.

With the same arguments regarding the boundary conditions for (17), the solution to
equation (14) in the double layer limit is approximately given by

c̃(x, y, t) =

erfc
(
x−u1t√

4Dl1t

)
, y ∈ [0, h1)

erfc
(
x−u2t√

4Dl2t

)
, y ∈ (h1, Ly]

(18)

where Dlj = αluj +Dm (at y = h1, c̃ is left undefined).

3.2.3 Intermediate case

Figure 5 show the calculated isoconcentration lines for the two limit cases and for a
system with interacting layers using the numerical method presented later. In the single
layer limit the isoconcentration lines are straight through both layers, as is expected
from (17). In the double layer limit, the layers behave separately and there is no (net)
transport of solute between the them. (Also the isoconcentration lines in the bottom
layer are spaced further apart, since the dispersion coefficient is velocity dependent,
unlike normal diffusion problems.)

(a) Single layer limit. (b) Interacting layers.

↙Interface

(c) Double layer limit.

Figure 5: Isoconcentration lines for different cases. In (b) and (c) the bottom layer has
a higher velocity.

With understanding of the limit cases, the behaviour of actual stratified porous media
can be described, and how the layers are going to interact. Because of the difference in
layer velocities an interface, as shown in figure 5c for the double layer limit, will form,
causing a gradient in the concentration in the ŷ-direction. This can be seen in figure
5b, as the isoconcentration lines are not straight. The y-gradient causes a transverse
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dispersive flux, transporting the solute form the layer with the higher velocity to the other
layer. The transversal dispersive flux increases for a larger velocity difference.

Within each layer, the transversal dispersive flux is dependent on the layer velocity. This
can be seen in figure 5b as the isoconcentration lines in the higher velocity layer are less
curved. If u2 is very low, then the curved iso-concentration lines will be more curved,
and the medium behaves as if in the double layer limit. On the other hand, if u2 is
higher (but lower than u1) then the curved iso-concentration lines will be less curved,
and the medium behaves as if in the single layer limit. (But for higher u2, the interaction
between the layers will be less.)

3.3 Transverse dispersion number NTD

With this understanding, a characterization of the stratified porous medium can be done
using a dimensionless number. The transverse dispersion number is defined as

NTD =
tl
tt

(19)

with tl the time for the solute to cross the medium in the longitudinal direction and tt
the time to cross the medium in the transverse direction [10].

These times can be approximately expressed in terms of the fluxes by

tl =
cLx

cu−Dl
∂c
∂x

, tt =
cLy

Dt
∂c
∂y

Now define yD = y
Ly

, so that ∂c
∂yD

= Ly
∂c
∂y . Then ∂c

∂yD
is of the same order as c, and the

longitudinal dispersion is negligible compared to the advection so that

NTD ≈
Lx
L2
y

Dt
∂c
∂yD

cu
≈ Lx
L2
y

Dt

u

Lastly, to be able to calculate NTD from the parameters, Dt = αtu + Dm is calculated
using the lower velocity and for u the higher velocity is taken (this can been seen as a
lower bound on NTD). Assuming furthermore that Dm << αtu2, and that u2 < u1, this
gives

NTD ≈ αt
Lx
L2
y

u2

u1
(20)

This expression for NTD is used in [10], and will be referred to as Lake’s NTD.

3.3.1 Discussion of NTD

From definition (19) low values of NTD imply that the time for the species to cross the
medium longitudinally is shorter than to do so transversely. If this is the case one might
expect the stratified porous medium to behave like two separate layers.
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Indeed, from (20) if αt → 0 (from the above discussion the system then behaves as two
layers), then NTD → 0. If the velocity difference between the layers increases, then
u2
u1
→ 0, and thus NTD → 0. Also if the medium is very thick, Ly → ∞ or very short

Lx → 0, then NTD → 0.

In these limits, NTD behaves as expected. However, if u1 = u2, then NTD can be
arbitrarily small, but the system still behaves as a single layer. Similarly, if h1 or
h2 → Ly, then NTD can take any value, but the system behaves as a single layer.

To solve the latter issue, the approximation tt can be replaced by

tt =
ch1

Dt1
∂c
∂y

+
ch2

Dt2
∂c
∂y

where Dtj = αtuj +Dm. Further, if for u the thickness-weighed average of the velocity
is taken, then a similar derivation as above gives

ÑTD =
αtu1u2

h1u2 + h2u1

Lx
h1u1 + h2u2

(21)

This ÑTD is suggested to take the effect of varying thickness ratio into account. Suppose
h1 = h2 = Ly/2 and u1 >> u2, then (21) becomes,

ÑTD = 4αt
Lx
L2
y

u2

u1

which differs from Lake’s NTD by a factor of 4.

Lastly, assuming that αl is in the order of 10−4 to 10−3 m, and Dm is in the order of
10−9 m2 s−1, the velocity needs to be higher than roughly 10−3 m s−1 for the molecular
diffusion to be neglected.

3.4 Transverse dispersion index ITD

With the transverse dispersion number NTD (and ÑTD) as a suggested dimensionless
number to characterize the transverse dispersion in a two-layer stratified porous medium,
this needs to be verified. For that, the transverse dispersion index ITD is introduced,
with the desired property that for a system in the single-layer limit ITD = 1 and in the
double-layer limit ITD = 0. ITD then effectively measures the behaviour of a system
regarding the transverse dispersion.

To this end, for a given system a function ρ is needed, of which the value lies between
the value of ρ for the two limits. Then ITD can be constructed from ρ as

ITD =
ρsystem − ρdouble layer

ρsingle layer − ρdouble layer
(22)
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Indeed, if the system behaves as a single layer, then ρsystem = ρsingle layer and ITD = 1.
Similarly, if the system behaves as in the double layer limit, then ρsystem = ρdouble layer

and ITD = 0. For any system, ITD ∈ [0, 1].

To find a well-defined ρ, first the amount of fluid volume injected at time t is considered,
which equals

φ1h1u1t+ φ2h2u2t

This corresponds to the hatched area in figure 6. Expressed in units of pore volume,
this is6

Q =
φ1h1u1 + φ2h2u2

LxLyφ
t (23)

which is called the pore volume injected (PVI). Since the concentration on the left
boundary is constant, the PVI corresponds to the injected mass of the species. Although
in figure 6 there is only transport due to advection, the PVI is also valid for media where
there is longitudinal and/or transversal dispersion.

Lx

u1h1

u1t

φ1

u2h2

u2t

φ2

Figure 6: Pore Volume Injected.

Next, the effluent concentration cout of each layer is defined. For each layer, this is the
y-averaged concentration at x = Lx,

cout,1(t) =
1

h1

∫ h1

0
c(Lx, y, t) dy, cout,2(t) =

1

h2

∫ Ly

h1

c(Lx, y, t) dy (24)

Then, a choice for ρ is to take the PVI when the effluent concentration of the layer with
largest fluid volume flux (φhu) equals 0.5. This can be calculated by determining time
t0.5 from {

cout,1(t0.5) = 0.5, φ1h1u1 > φ2h2u2

cout,2(t0.5) = 0.5, φ1h1u1 < φ2h2u2

(25)

So that

ρ =
φ1h1u1 + φ2h2u2

LxLyφ
t0.5 (26)

For the limit cases of single layer and double layer, expression can be given for ρ.

6The porosity is φ =
Vp

V
=

Vp

LxLy
= φ1h1+φ2h2

Ly
, where Vp is the pore volume.
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Single layer

For a system in the single-layer limit, the PVI simply becomes Q = u′t
Lx

. From (17)

cout,1(t) = cout,2(t) ≈ erfc

(
Lx − u′t√

4Defft

)
(27)

so that the effluent concentration of both layers equals 0.5 when t = t0,5 = Lx
u′ , following

from the symmetry of the complementary error function. This yields that ρsingle layer =
1.

Double layer

Similar for a system in the double-layer limit, the effluent concentrations can be deter-
mined from (18),

cout,1(t) ≈ erfc

(
Lx − u1t√

4Dl1t

)
, cout,2(t) ≈ erfc

(
Lx − u2t√

4Dl2t

)
(28)

Again using the symmetry of the complementary error function, the time t0.5 is given
by, {

t0.5 = Lx
u1
, φ1h1u1 > φ2h2u2

t0.5 = Lx
u2
, φ1h1u1 < φ2h2u2

(29)

From this, ρdouble layer can be calculated, and is given by

ρdouble layer =


φ1h1u1+φ2h2u2

u1Lyφ
, φ1h1u1 > φ2h2u2

φ1h1u1+φ2h2u2

u2Lyφ
, φ1h1u1 < φ2h2u2

(30)

Lastly, in the two limits, ρ is not influenced by numerical diffusion (this will be explained
in section 4.5). For example, writing Dnum for the numerical diffusion, the effluent
concentration in the single layer would become

cout,1(t) = cout,2(t) ≈ erfc

(
Lx − u′t√

4(Deff +Dnum)t

)

However, because of the symmetry of the complementary error function, the time for
the effluent concentration to become 0.5 remains t0,5 = Lx

u′ . A similar argument goes for
the double-layer limit effluent concentration.
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4 Numerical Modeling of Dispersive Transport

In this chapter, the numerical method used to solve the transport of the solute through
the two-layer stratified porous medium, as described by (12) in section 3.1, is pre-
sented.

First a general description of the finite volume method (FVM) will be given, followed
by some definitions regarding the analysis of the numerical method. Then a discretiza-
tion for the stratified porous medium is given, with an analysis of the method. A
way to validate the numerical method using an analytical solution is then presented.
Lastly, a description of the calculation of ITD (section 3.4) from the numerical solution
is given.

4.1 Finite volume methods

In order to solve the advection-dispersion equation (12) the Finite Volume Method
(FVM) is used. This section describes the application of the FVM to (12).

The domain D, on which the PDE is to be solved, is subdivided in in finite volumes
vi ⊂ D called cells.7, where i denotes the index of the finite volume. Then in the FVM
the partial differential equation is integrated over finite volume vi. The FVM described
in this section applies to any proper grid choice.

Equation (12) can be written as

∂c

∂t
= ∇ · (D∇c− cu)

where D is the dispersion tensor. This is integrated over a volume vi∫∫
vi

∂c

∂t
dx =

∫∫
vi

(∇ · (D∇c− cu)) dx =

∮
∂vi

(D∇c− cu) · nds

where the last step follows from the Gauss integral theorem, and n is the outward
normal. If c is continuously differentiable the order of integration and differentiation can
be changed 8, and the entire equation is integrated over an interval ∆t from tn to tn+1

to obtain ∫ tn+1

tn

∂

∂t

∫∫
vi

c dxdt =

∫ tn+1

tn

∮
∂vi

(D∇c− cu) · ndsdt (31)

Now, the volume average of concentration c is

Qi =
1

|vi|

∫∫
vi

c dx (32)

7The finite volumes should be disjoint if they are not adjacent, vi ∩ vj = ∅, i 6= j, and if they are
adjacent then vi ∩ vj = ∂vi ∩ ∂vj , i 6= j. Moreover they should cover D,

⋃
j

vj = D).

8Equation (12) is in fact derived from the mass conservation law in integral form, so that c does not
need to be continuously differentiable.
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where |vi| is the volume of vi. This can be substituted in equation (31) and after applying
the fundamental theorem of calculus this yields

|vi|Qn+1
i − |vi|Qni =

∫ tn+1

tn

∮
∂vi

(D∇c− cu) · ndsdt (33)

where Qni is Qi at t = tn. Now the time-averaged flux is introduced,

Fni =
1

∆t

∫ tn+1

tn

∮
∂vi

(D∇c− cu) · ndsdt (34)

Substituting this in equation (33) and rearranging yields

Qn+1
i = Qni +

∆t

|vi|
Fni (35)

Note that this equation is still exact. The only information that is lost on c is because
of the averaging in (32). In the two-dimensional case, if c is sufficiently smooth, then
the (exact) cell average Qnij agrees with cnij = c(xi, yj , tn) to O(∆x2) +O(∆y2) 9 (with
the index substituted by a double index ij). The challenge in numerically solving the
advection-dispersion equation lies in properly approximating Fni .

For any approximation of Fni equation (35) still is in conservation form since if the sum
over all cells is taken, then all fluxes of adjacent cells cancel out and just the flux through
the boundaries of the domain D remains.

4.2 Two-dimensional discretization

In this section the numerical discretization of the model described in section 3.1 is
given.

The domain, with length Lx and height Ly, is divided in Nx and Ny intervals of length
∆x and ∆y, respectively (see figure 7). The x-coordinate of each cell is denoted by the
index i, and the y-coordinate by j.

As stated in the description of the model, the velocity field is given by u = (u(y), 0)T

(where the first component of the velocity is explicitly dependent on y). With this
velocity field, the dispersion tensor becomes,

D =

(
αlu(y) +Dm 0

0 αtu(y) +Dm

)
Substituting this in the time-averaged flux (34) gives

Fnij =
1

∆t

∫ tn+1

tn

∮
∂vij

(
(αlu(y) +Dm) ∂c∂x − cu(y)

(αtu(y) +Dm) ∂c∂y

)
· nds︸ ︷︷ ︸

Φi,j

dt

9 1
∆x∆y

∫
vi
c(x, y, t)dxdy = c(x, y, t) +O(∆x2) +O(∆y2), with vi square with sides ∆x and ∆y.
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As mentioned in section 4.1, the aim in a finite-volume method is to properly discretize
Fnij . The flux Φi,j through the boundary of vi,j can be divided into four parts as shown
in figure 7,

Φi,j = Φ(i,j),1 + Φ(i,j),2 + Φ(i,j),3 + Φ(i,j),4

These partial fluxes, with the corresponding normal vectors, are given by

Φ(i,j),1 =

∫ y
j+ 1

2

y
j− 1

2

[
(αlu(y) +Dm)

∂c

∂x
(xi+ 1

2
, y)− c(xi+ 1

2
, y)u(y)

]
dy

Φ(i,j),2 =

∫ x
i+ 1

2

x
i− 1

2

[
(αtu(yj+ 1

2
) +Dm)

∂c

∂y
(x, yj+ 1

2
)

]
dx

Φ(i,j),3 = −
∫ y

j+ 1
2

y
j− 1

2

[
(αlu(y) +Dm)

∂c

∂x
(xi− 1

2
, y)− c(xi− 1

2
, y)u(y)

]
dy

Φ(i,j),4 = −
∫ x

i+ 1
2

x
i− 1

2

[
(αtu(yj− 1

2
) +Dm)

∂c

∂y
(x, yj− 1

2
)

]
dx

The discretization of the partial fluxes is elaborated in appendix A.1. Note that u = u(y)
is assumed, so that Dl = Dl(y) and Dt = Dt(y). If the velocity contains a discontinuity,
then Dl and Dt are discontinuous as well. In that case, the grid is always chosen so
that any discontinuity is on a cell interface. Then Dl has no discontinuity on the cell
boundary. And on the discontinuity, the harmonic average is taken of the values of Dt

above and below the discontinuity.

From the partial fluxes, the total flux can be written as a linear combination of all values
of vij and its neighbours,

Φi,j = (a1 + a2 + a3 + a4)Qi,j + a5Qi+1,j − a2Qi,j+1 + a6Qi−1,j − a4Qi,j−1 (36)

(where the coefficients depend on j). Then the time average can be approximated by a
time weighed average,

Fni,j ≈ βΦn
i,j + (1− β)Φn+1

i,j

where β ∈ [0, 1]. With the volume of each cell |vij | = ∆x∆y, equation (35) be-
comes

Qn+1
ij = Qnij +

∆t

∆x∆y
Fnij

so that the full numerical scheme, with the coefficients from (36) and appendix A.1, is
given by

Qn+1
ij − ∆t

∆x∆y
(1− β)Φn+1

i,j = Qnij +
∆t

∆x∆y
βΦn

i,j (37)

For β = 1 the scheme is fully explicit.
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i, j

n1

Φ(i,j),1

n3

Φ(i,j),3

n2

Φ(i,j),2

n4

Φ(i,j),4

i− 1, j i+ 1, j
∆y

i, j − 1

∆x

i, j + 1

Figure 7: Two-dimensional grid at cell i, j.

To solve this linear system, note that it can be written as

BQn+1 = AQn + a (38)

where a is a constant vector to account for the constant boundary conditions.

The linear system (38) is then solved in MATLAB using built in system solvers. The
system is programmed as sparse matrices to improve computational efficiency. The
MATLAB code which implements this system is included in appendix A.6.

4.3 Numerical boundary conditions

On the left boundary, x = 0, the concentration is at unity, c(0, y, t) = 1. Numerically,
to implement this boundary condition, the average of the cells to the right of the left
boundary of the domain, Qn1,j , and the left virtual cells10 Qn0,j outside of the domain is
taken,

Qn1,j +Qn0,j
2

= 1, j ∈ {1, ..., Ny} (39)

At all other boundaries, the gradient is zero, so that the difference between the cells on

10Virtual cells are cell which are not in the numerical domain, but are defined so that the boundary
conditions can be satisfied.
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the boundary of the domain and the virtual cells is zero,

QnNx,j −Q
n
Nx+1,j = 0, j ∈ {1, ..., Ny} (40)

Qni,1 −Qni,0 = Qni,Ny+1 −Qni,Ny = 0, i ∈ {1, ..., Nx} (41)

These boundary conditions are substituted in (37) (for cells on the boundary). From
this vectors a and b of (38) can be calculated.

Lastly, the right (artificial) boundary condition (imposed for numerical reasons), creates
an additional error in the effluent concentration. The effect of artificial boundary con-
ditions is for example considered in [2], [4] and [12]. To understand this, consider the
analytical solution (17), of which the derivative at x = Lx is not zero at all times. To
reduce the effect of the artificial boundary condition, the domain is extended to 2Lx,
while the effluent concentration is still measured at x = Lx.

4.4 Definitions

In this section (which largely follows [11]) the definitions of convergence, consistency
and stability of numerical methods are given. In the following only problems on an
unbounded domain are considered, since the introduction of boundary conditions leads
to additional difficulties in the analysis.

To analyze the convergence, consistency and stability, first the error needs to be quan-
tified. Let qni be the exact value at point xi and time tn which is approximated by Qni ,
and let T = Nt∆t be the time over which the method is computed. The global error is
then defined by

ENt = QNt − qNt . (42)

For finite volume methods, the exact value at (xi, tn) is given by qni = 1
vi

∫
vi
c(x, tn) dx,

where c is the exact solution. However, for numerical analysis it is easier to use cni as the
exact value, as can been seen from the Taylor expansions used in explicitly calculating
the local truncation error later on. Assuming c is sufficiently smooth, this agrees with
the cell average to O(∆x2) +O(∆y2).

It is throughout this thesis assumed that ∆t, ∆x and ∆y are related in some manner
as the grid is refined. With the global error defined, the definition of convergence and
accuracy can be given.
Definition 1 (Convergence and accuracy). Let || · || be some norm and ENt the global
error. A numerical method is convergent at time T = Nt∆t in the norm || · || if

lim
∆t→0

||ENt || = 0 (43)

The method is called accurate of order s if

||ENt || = O(∆ts) as ∆t→ 0 (44)

24



Convergence depends on the norm being used, and the norms most commonly used are
given by the p-norm (here in one-dimension)

||E||p =

(
∆x

∞∑
i=−∞

|Ei|p
)1/p

(45)

In this thesis the 2-norm is used.

Following from the fundamental theorem of numerical methods for differential equations,
convergence is implied if the method is stable and consistent. Both definitions will be
given below.

4.4.1 Local truncation error and consistency

A explicit one-step numerical method can be written in general as

Qn+1 = N (Qn) (46)

Where N (·) is the numerical operator mapping the numerical solution Qn at time tn to
the numerical solution Qn+1 at the next time step.
Definition 2 (Local truncation error). The local truncation error is defined as

τn =
1

∆t

[
N (qn)− qn+1

]
. (47)

The local truncation error gives the error introduced when applying the numerical
method to the exact solution. The local truncation error gives an indication of the
magnitude of the global error, and in case it is stable, the order of accuracy. A more
proper motivation of this definition can be found in Appendix A.2.
Definition 3 (Consistency). A numerical method written as (46) is consistent with the
differential equation it tries to approximate if for the local truncation error τn

lim
∆t→0

τn = 0 (48)

4.4.2 Stability

As can been seen from Appendix A.2, stability aims to give a bound on N (qn + En)−
N (qn), the effect of the numerical operator on a perturbation or error En.

There are multiple ways of proving stability, such as showing that a numerical operator is
contractive in some norm, using Lax-Richtmyer stability or performing a von Neumann
Analysis, or using eigenvalue expansion.

Is this thesis Von Neumann stability is used, which uses the 2-norm. The imaginary
unit is denoted here with ι to avoid confusion with the grid index i. In the Von
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Neumann stability analysis (here in one spatial dimension, multiple spatial dimensions
is similar), Qni = exp(ιξi∆x) is substituted in the numerical method with β = 1.
This yields an expression of the form Qn+1

i = g(ξ,∆x,∆t)Qni , where g(ξ,∆x,∆t) is
called the amplification factor of the numerical method. Then the method is stable if
|g(ξ,∆x,∆t)| ≤ 1.

4.4.3 TVD and Monotonicity-preserving

Stability of numerical schemes, especially in multiple dimension, can be hard to prove.
Therefore, other concepts are introduced, TVD and monotonicity-preserving. First, the
total variation of a numerical scheme is defined by

TV(Qn) =
∑
i

∣∣Qni −Qni−1

∣∣ (49)

Total Variation is here only defined for one spatial dimension.
Definition 4 (Total Variation Diminishing). A numerical scheme is called total variation
diminishing (TVD) if

TV(Qn+1) ≤ TV(Qn) ∀n (50)

If a scheme is TVD, the in each time step, the total variation does not grow.

Further, any linear numerical scheme can be written as11

Qn+1
i =

∑
k

γkQ
n
i+k (51)

Lemma 1. A linear numerical scheme, written in the form of (51), is TVD if
∑

k |γk| ≤
1.

Proof. Assume
∑

k |γk| ≤ 1. Using the triangle inequality, the total variation at n + 1
can be bounded by

TV(Qn+1) =
∑
i

∣∣Qn+1
i −Qn+1

i−1

∣∣ =
∑
i

∣∣∣∣∣∑
k

γkQ
n
i+k −

∑
k

γkQ
n
i+k−1

∣∣∣∣∣
≤
∑
i

∑
k

|γk|
∣∣Qni+k −Qni+k−1

∣∣ =
∑
k

|γk|
∑
i

∣∣Qni+k −Qni+k−1

∣∣
= TV(Qn)

∑
k

|γk| ≤ TV(Qn) (52)

where the fact is used that the total variation is invariant under translation (over index
k).

11γk can also depend on i.
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Next to TVD, there is the concept of monotonicity-preserving.
Definition 5 (Monotonicity-preserving ([11])). A numerical scheme is called monotonicity-
preserving if

Qni ≥ Qni+1 ∀i =⇒ Qn+1
i ≥ Qn+1

i+1 ∀i (53)

If a scheme is monotonicity-preserving, then no oscillations can develop if the scheme
was initially monotone. Unlike TVD, monotonicity-preserving can also be defined for
multiple spatial dimensions [14].
Theorem 2 (Godunov’s Theorem ([20])). A linear numerical scheme in the form of
(51) is monotonicity-preserving if and only if γk ≥ 0, ∀k.

Godunov’s Theorem is also valid for multiple spatial dimensions [14].
Theorem 3 ([11]). A linear numerical scheme that is TVD is also monotonicity-preserving.
Lemma 4. A linear numerical scheme that is monotonicity-preserving and with

∑
k γk =

1, is TVD.

Proof. From Godunov’s Theorem, γk ≥ 0, ∀k, so that∑
k

|γk| =
∑
k

γk = 1

Then lemma 1 completes the proof.

4.5 Numerical analysis of the two-dimensional discretization

In this section the numerical analysis is given of the two-dimensional discretization (37),
as described in section 4.2, using definitions from section 4.4. The analysis here is
performed for β = 1 (explicit). Stability for this scheme will not be proved.

Local truncation error

The local truncation error of the numerical scheme is given by

τ = u(yj)
∆x

2

∂2q

∂x2
(xi, yj , tm)

− ∆t

2

∂2q

∂t2
(xi, yj , tm) + u(yj)

∆x2

6

∂3q

∂x3
(xi, yj , tm) +O

(
∆t2,∆x2,∆y2

)
(54)

where the remainder depends on higher order derivatives of q. The derivation of this
can be done using Taylor expansion (assuming c is sufficiently smooth), and is shown in
appendix A.3. This expression for the local truncation error is not valid on a disconti-
nuity.

Under the assumption that ∆x→ 0 and ∆y → 0, if ∆t→ 0, then this numerical scheme
is consistent. The scheme is first order in time and x, and second order in y.
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By repeated differentiation of the differential equation with respect to x and t, the second
derivative with respect to t in the local truncation error can be expressed as a second
derivative with respect to x (and some higher order derivatives)12. This yields

τ =

(
u(yj)

∆x

2
− u(yj)

2 ∆t

2

)
︸ ︷︷ ︸

Dnum

∂2q

∂x2
(xi, yj , tm) +O

(
∆t,∆x,∆y2

)
(55)

The underbraced term is the numerical diffusion, Dnum. The biggest numerical diffusion
occurs in the layer with the highest velocity. For accurate solutions of the advection-
dispersion equation the numerical diffusion needs to be small compared to the dispersion
coefficient. So

Dnum

Dl1
=
u1∆x− u2

1∆t

2αlu1 + 2Dm
≈ ∆x− u1∆t

2αl

needs to be small. However, if ∆x = u1∆t, then there is no numerical diffusion, but the
scheme might be unstable. In the y-direction, there is no numerical diffusion, as there
is no second derivative with respect to y in the local truncation error.13

Further, if u∆t > ∆x, then the numerical diffusion becomes negative, and the scheme
might become unstable. (This is the CFL-condition [11]).

Monotonicity-preserving

The numerical scheme monotonicity-preserving if all coefficients of (37) are positive. The
only coefficient that can be negative, is that of Qnij . This leads to the condition

1 +
∆t

∆x∆y
(a1 + a2 + a3 + a4) ≥ 0

Filling out the coefficients yields

1 ≥ ∆t

∆x∆y

([
2(αlu(yj) +Dm)

∆y

∆x
+ ∆yu(uj)

]
+2

∆x

∆y

[
(αtu(yj−1) +Dm)(αtu(yj) +Dm)

αt(u(yj−1) + u(yj)) + 2Dm

]
+2

∆x

∆y

[
(αtu(yj+1) +Dm)(αtu(yj) +Dm)

αt(u(yj+1) + u(yj)) + 2Dm

])

This has to be true for all j. Therefore, the maximum velocity umax is used, so that

1 ≥ 2(αlumax +Dm)
∆t

∆x2
+ umax

∆t

∆x
+ 2(αtumax +Dm)

∆t

∆y2
(56)

This is a sufficient condition for the scheme to be monotonicity-preserving.

12Using a subscript to indicate the derivative and writing here uj = u(yj), qtt = u2
jqxx − ujDljqxxx −

ujDtjqyyx+Dljqxxt+Dtjqyyt = u2
jqxx−2ujDljDtjqxxx−2ujDtjqyyy+D2

ljqxxxx+D2
tjqyyyy+DljDtjqxxyy

13In fact, every even derivative with respect to x (or y) in the local truncation error causes numerical
diffusion. However, the higher order derivatives are O(∆x2) or higher (or O(∆y2) or higher).
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4.6 One-dimensional discretization

Since stability is hard to prove for the two-dimensional scheme (37), this will be inves-
tigated for advection-dispersion equation in one dimension

∂c

∂t
+ u

∂c

∂x
= (αlu+Dm)

∂2c

∂x2

(compare with equation (14)).

With a similar discretization as in section 4.2, the numerical scheme is given by
Qn+1
i − ∆t

∆x(1− β)Φn+1
i = Qni + ∆t

∆xβΦn
i

Φn
i = −

[
Dl

Qni −Qni−1

∆x − u
(
θQni−1 + (1− θ)Qni

)]
+
[
Dl

Qni+1−Qni
∆x − u

(
θQni + (1− θ)Qni+1

)]
(57)

with β ∈ [0, 1] and θ ∈ [0, 1]. For β = 1 the scheme is explicit, and for θ = 1 the scheme
is fully upwind. For β = 1 the scheme becomes

Qn+1
i =

(
1 +

∆t

∆x

[
u(1− 2θ)− 2Dl

∆x

])
Qni +

∆t

∆x

(
uθ +

Dl

∆x

)
Qni−1+

∆t

∆x

(
u(θ − 1) +

Dl

∆x

)
Qni+1

Writing σ = u∆t
∆x (Courant number) and δl = Dl∆t

∆x2 (dispersion number),

Qn+1
i = (1 + σ(1− 2θ)− 2δl)︸ ︷︷ ︸

γ0

Qni + (σθ + δl)︸ ︷︷ ︸
γ−1

Qni−1 + (σ(θ − 1) + δl)︸ ︷︷ ︸
γ1

Qni+1 (58)

4.6.1 Numerical analysis of the one-dimensional discretization

Monotonicity-preserving and TVD

The numerical scheme (58) is monotonicity-preserving if all coefficients γk are positive.
Assuming u ≥ 0, γ−1 is unconditionally larger than or equal to zero. Also γ0 ≥ 0 if

1 ≥ σ(2θ − 1) + 2δl (59)

and γ1 ≥ 0 if
σ(θ − 1) + δl ≥ 0 (60)

In case the method is fully upwind (θ = 1), then σ + 2δl ≤ 1 is sufficient for the scheme
to be monotonicity-preserving. This is similar to the monotonicity-preserving condition
(56) of the two-dimensional scheme.

Further, since γ0+γ−1+γ1 = 1, the scheme is also TVD under the same conditions.
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Stability in the 2-norm

For the von Neumann analysis, Qni = exp(ιξi∆x) is substituted in (58). Using the
property that Qni+m = exp(ιξm∆x)Qni , m ∈ N, this yields

g(ξ,∆x,∆t) = 1 + σ(1− 2θ)− 2δl + (σθ + δl) e
−ιξ∆x + (σ(θ − 1) + δl) e

ιξ∆x

= 1 + (σ(2θ − 1) + 2δl) (cos(ιξ∆x)− 1)− ισ sin(ιξ∆x)

Then |g(ξ,∆x,∆t)| ≤ 1, ∀ξ, leads to the condition (see appendix A.4)

σ2 ≤ σ(2θ − 1) + 2δl ≤ 1 (61)

Second inequality of this stability condition is the same as (59). In case the method is
fully upwind (θ = 1), then stability is a stronger condition than monotonicity-preserving.
For θ 6= 1, stability does not imply monotonicity-preserving, as (60) might not be satis-
fied.

Rewriting this using δl = αl
∆xσ+ Dm∆t

∆x2 = αl
∆xσ+ δm (since Dl = αlu+Dm), the stability

condition becomes
σ2 ≤ σ

(
2θ − 1 + 2

αl
∆x

)
+ 2δm ≤ 1

From this it can be seen that larger αl requires σ to be smaller for the scheme to remain
stable.

Lastly, consider
∂c

∂t
= (αtu+Dm)

∂2c

∂y2

with a similar derivation of the numerical scheme and stability as above and introducing
δt = Dt∆t

∆y2 , the stability condition becomes

2δt ≤ 1 (62)

(61) and (62) both give a stability condition in one direction of the two dimensional
scheme.

Local truncation error

The local truncation error of scheme (58) is given by

τn =
1

∆t

[(
1 +

∆t

∆x

[
u(1− 2θ)− 2Dl

∆x

])
qni +

∆t

∆x

(
uθ +

Dl

∆x

)
qni−1

+
∆t

∆x

(
u(θ − 1) +

Dl

∆x

)
qni+1 − qn+1

i

]
(63)

where qni = (xi, tn) is the value of the exact solution at (xi, tn). The values qn+1
i , qni+1

and qni−1 can be expanded in Taylor series about (xi, tn) (see Appendix A.5), assuming
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it is sufficiently smooth. After common terms are canceled, the local truncation error
becomes14

τn = Dlqxx−(1+θ)uqx+

(
θ − 1

2

)
∆x uqxx+θuqx−qt−

∆t

2
qtt+O(∆t2)+O(∆x2) (64)

Since q is a solution to the equation (Dlqxx − uqx = qt), it follows that

τn =

(
θ − 1

2

)
∆x uqxx −

∆t

2
qtt +O(∆t2) +O(∆x2) (65)

This local truncation error vanishes as ∆t→ 0 (∆t and ∆x are assumed related), for all
values of θ, so that this method is consistent.

Now, qtt can also be rewritten in term of higher order partial derivatives of q, by dif-
ferentiating the equation qt = −uqx + Dlqxx with respect to t and x multiple times
and assuming that q is sufficiently smooth such that the order of differentiating can be
interchanged. In this way, it can be found that

qtt = u2qxx − uDlqxxx +Dlqtxx = u2qxx − 2uDlqxxx +D2
l qxxxx

Substituting this in (65) gives after rearranging

τn = ∆x

(
θ − 1

2
− u∆t

2∆x

)
uqxx +

∆t

2

(
2uDqxxx −D2qxxxx

)
+O(∆t2) +O(∆x2) (66)

Now, if θ = 1
2 + u∆t

2∆x = σ+1
2 , then the first term cancels, and the method becomes second

order in space. The monotonicity-preserving condition then becomes

σ ≤ σ2 + 2δl ≤ 1

and the stability condition becomes

σ2 ≤ σ2 + 2δl ≤ 1

Since σ ≤ 1, σ2 ≤ σ, so that if it is monotonicity-preserving, then it is stable (but the
converse is not true).

For θ = 1, comparing this to the two-dimensional local truncation error (55), these
expressions are similar. The numerical diffusion is a result of the first-order discretization
of the advection term.

4.7 Validation of the numerical method

To validate the numerical method, an analytical solution for specific boundary and ini-
tial conditions and constant velocity is used. Although this analytical solution does not
say anything about a discontinuous velocity, it can be used to check whether the (im-
plementation of the) numerical method is behaving as it should, and gives an indication
of the global error.

14The sub- and superscripts i and n are omitted for clarity. qx, qxx, qt and qtt are evaluated in (xi, tn).
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Analytical solution

Suppose the spatial domain is [0,∞)×R, u is constant with respect to x and y, and the
initial and boundary conditions are given by

c∞(0, y, t) =

{
c0, |y| ≤ a
0, |y| > a

(67)

lim
y→±∞

dc∞
dy

= 0 (68)

lim
x→∞

dc∞
dx

= 0 (69)

Then the analytical solution of (14) with these boundary conditions is given by ([3])

c∞(x, y, t) =
c0x

4
√
πDl

∫ t

0
exp

(
−(x− ūτ)2

4Dlτ

)
τ−

3
2

[
erf

(
a− y

2
√
Dtτ

)
+ erf

(
a+ y

2
√
Dtτ

)]
dτ

(70)
where Dl = αlu + Dm and Dt = αtu + Dm. The subscript ∞ is to denote that this
solution is on an infinite domain in the y-direction.

Since c is assumed to be sufficiently smooth, c∞ can be used to find a solution to the
same problem on the spatial domain R+×[−Ly/2, Ly/2] with boundary conditions

c(0, y, t) =

{
c0, |y| ≤ a
0, |y| > a

(71)

dc

dy
(x,±Ly/2, t) = 0 (72)

lim
x→∞

dc

dx
= 0 (73)

assuming that a ≤ Ly/2. This solution is given by

c(x, y, t) =

∞∑
n=−∞

c∞(x, y + nLy, t) (74)

It can be verified that this solution satisfies the boundary conditions at y = ±Ly. This
solution can be used to validate the numerical method and give an indication of the
global error.

4.8 Numerical computation of ITD

This section shows how ITD (see section 3.4) is calculated from the numerical solution.
Suppose the discontinuity of the average fluid velocity is between the cells with indices
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j = Nb and j = Nb + 1 (so that yj is in layer 1 if j ≤ Nb). Then for the average outflow
concentration of layer 1 (cout,2(tn) is similar) is approximated by

cout,1(tn) =
1

h1

∫ h1

0
c(Lx, y, tn)dy =

1

h1

Nb∑
j=1

∫ j∆y

(j−1)∆y
c(Lx, y, tn)dy ≈

≈ 1

h1

Nb∑
j=1

∆y

2

(
QnNx,j +QnNx+1,j

)
=

1

2Nb

Nb∑
j=1

QnNx,j +QnNx+1,j

Then at a certain time tm, cout,1(tm) < 0.5 < cout,1(tm+1). From this a linear in-
terpolation is done to determine t0.5, and subsequently ρsystem (from (26)). Further,
ρsingle layer = 1, and ρdouble layer is calculated from (30). Using equation (22), ITD follows
follows from these values.
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5 Results

This section gives results of the numerical simulations which were used to simulate the
two-layered porous medium as described in section 3 using the numerical method from
section 4. MATLAB code is included in appendix A.6, on which the scripts are based
which give these results.

First the numerical method is validated using an analytical method to see if it behaves
as expected. Next, the calculation of ITD using the numerical simulations is verified.
Lastly, different sets of simulations are preformed, in which only one physical parameter
varies. This is done to investigate for which values of NTD and ÑTD the system behaves
as one single layer, as two separate layers, or is in the transition zone between the two
limit cases.

5.1 Validation of the numerical method

The numerical method was validated using the analytical solution as described in section
4.7.15 For example, figure 8a shows the numerical solution of the problem described in
section 4.7, with certain physical parameters and a = 0.5Ly. Figure 8b shows the abso-
lute difference between the numerical and the analytical solution for the same problem.
The maximum absolute difference here is 0.09. This is, however, close to the discontinu-
ity in the left boundary condition. Away from the left boundary, the absolute difference
is below 0.5%. Different sets of physical parameters yielded similar results, and the
numerical method behaved as expected.

(a) Numerical solution
(b) The absolute difference between the numer-
ical solution and the analytical solution.

Figure 8: Example of the validation of the numerical method using an analytical solution.

15In the validation, the concentration on the left boundary (x = 0) was not constant at unity. Other-
wise, there is no transverse dispersion, as the solution would be independent of y.
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5.2 Verification of ITD

In this section, ITD from section 3.4 is verified using numerical simulations. The calcu-
lation of ITD from the numerical simulation is described in section 4.8

Figure 9 shows the effluent concentrations of three numerical simulations expressed in
PVI. The effluent concentrations are plotted for both layers, and for the layers com-
bined.16. All three runs have the same physical and numerical parameters, except for
the transverse dispersion coefficient, Dt. In these runs, φ1h1u1 > φ2h2u2, so that the
effluent concentration of layer 1 is used in the calculation of ρ (equation (26)) and ITD
(equation (22)). For every run in figure 9, ρ = ρsystem is indicated. Further, for all three
runs ρsingle layer = 1, and ρdouble layer = 0.6 (calculated using (30)).

Figure 9a shows the effluent concentrations of a numerical simulation where Dt = 0,
corresponding to the double-layer limit. From the numerical simulation, the effluent
concentration of layer 1 reaches the value of 0.5 when ρ = ρsystem = 0.60, as can be seen
in the figure. The resulting transverse dispersion index (equation (22)) is ITD = 0.01.
This is close to zero, as was expected for the double-layer limit. The slight error might
be caused by the numerical error, or by the fact that (28) used to calculate ρdouble layer

is an approximation.

Similarly, figure 9b shows the effluent concentrations of a run where Dt was large, corre-
sponding to the single-layer limit. In this plot, the three different effluent concentrations
cannot be distinguished, as both layer have the same concentration. From the figure,
the effluent concentration of layer 1 reaches the value of 0.5 when ρ = ρsystem = 0.99.
The resulting transverse dispersion index is ITD = 0.98, which is close to one, as was
expected for the double-layer limit.

Lastly, figure 9c shows the effluent concentrations of a run where there was some trans-
verse dispersion. This is an example of what can be expected from an actual two-layer
system. From the figure, the effluent concentration of layer 1 reaches the value of 0.5
when ρ = ρsystem = 0.78. The resulting transverse dispersion index is ITD = 0.44.

16The total effluent concetration is cout = 1
Ly

∫ Ly

0
c(Lx, y, t)dy = h1

Ly
cout,1 + h2

Ly
cout,2
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ρ

(a) Dt = 0, NTD = 0, ITD = 0.01.

ρ

(b) Large Dt, NTD = 1000, ITD = 0.98. All
three effluent concentrations are plotted but can-
not be distinguished (as is expected in the single-
layer limit).

ρ

(c) Some Dt, NTD = 0.1, ITD = 0.44.

Figure 9: The effluent concentrations of three numerical simulations, expressed in PVI.
All three simulations have the same physical and numerical parameters, except for the
transverse dispersion coefficient, Dt. The NTD used is Lake’s.
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5.3 ITD versus NTD

Figure 10 shows an example of a numerical solution at a certain time. Different sim-
ulations were performed with varying physical and numerical parameters. From the
numerical solutions, the ITD was calculated as described in section 4.8.

Figure 10: Example of numerical solution at t = 1 s. This solution has NTD = 0.07, and
is one of the simulations from figure 11

In figure 11 the value of ITD for multiple simulations is plotted against Lake’s NTD

for that simulation. In all the simulations the numerical and physical parameters were
kept constant, expect for αt. ITD shows monotonic behaviour, as should be expected.
However, at ITD = 1, NTD does not equal 1, but 0.1, and is thus off by a factor 10. This
is similar to the factor 14 found in [10].

To determine whether a system behaves as a single-layer system, as a double-layer system
without transverse dispersion, or as a system of two interacting layers, a threshold needs
to be defined for ITD. To this end, if ITD < 0.1, the system is considered to behave as
a double-layer system, and for ITD > 0.9 the system is considered to be a single-layer
system. This threshold is arbitrary, but looking at figure 11, ITD is most sensitive to
changes in NTD between these thresholds, justifying their choice.

From figure 11 it then also follows that the system behaves as a double-layer system if
10NTD < 0.1, and as a single-layer system for 10NTD > 5. The latter is in agreement
with [10], but 10NTD < 0.1 is slightly lower than the value 0.2 in [10].

Similarly, two sets of simulations were performed in which only the thickness Ly was
varying, see figure 12. These simulations agree to the conclusion as for figure 11: the
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system behaves as a double-layer system if 10NTD < 0.1, and as a single-layer system
for 10NTD > 5.

Figure 11: ITD plotted against Lake’s NTD for different numerical solutions. The only
varying parameter in these simulations is αt.

Figure 12: ITD plotted against Lake’s NTD for two sets of simulations. The only varying
parameter in these simulations is Ly.

Also, simulations were performed where the velocity u1 was varied (but still u1 > u2).
The ITD for these simulations is shown in 13, and results in a similar conclusion regarding
NTD.

Lake’s NTD is mostly a good predictor of the behaviour of the two layer stratified porous
medium, but needs to be corrected by a factor 10 in order for ITD to equal 0.5 if NTD = 1.
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If Lake’s NTD is redefined as

NTD = 10αt
Lx
L2
y

u2

u1
(75)

then the system can be described as one single-layer if NTD > 5 and as a double-layer
system if NTD < 0.1.

Figure 13: ITD plotted against Lake’s NTD for different numerical solutions. The only
varying parameter in these simulations is u1.

5.3.1 ÑTD

Lake’s NTD does not take into account the layer-thickness ratio. To correct for this,
ÑTD (equation (21)) is introduced. Figure 14 shows a set of simulations for which ÑTD

was calculated. The only parameter that was varied was the ratio of the two layers
thicknesses. As can be seen, ÑTD correlates well with ITD. Similarly to the factor
10 used to restore Lake’s NTD, ÑTD needs to multiplied by approximately 3.5 so that
ITD = 0.5 when ÑTD = 1. The threshold of ITD = 0.9 is reached when 3.5ÑTD ≈ 1.55,
so that for larger ÑTD the system behaves as a single-layer system. By only varying
the thickness ratio, no conclusion can be reached on for what values of ÑTD the system
behaves as a double-layer system.

ÑTD was also calculated for the simulations from figures 11 and 12. For example, figure
15 shows the ITD plotted against ÑTD for the simulations where αt was varying. The
same factor 3.5 was necessary so that ITD = 0.5 when ÑTD = 1. Also in this case, the
system behaves as a double-layer system if 3.5ÑTD < 0.1, and as a single-layer system
for 3.5ÑTD > 5.
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Figure 14: ITD plotted against ÑTD for different numerical solutions. The only varying
parameter in these simulations is the ratio of the layer thickness ratio.

Figure 15: ITD plotted against ÑTD for different numerical solutions. The only varying
parameter in these simulations is αt.
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The transverse dispersion number ÑTD was in all cases a good predictor for the behaviour
of the two-layer system. ÑTD needs to be corrected by a factor 3.5, so that it is redefined
as

ÑTD = 3.5
αtu1u2Lx

(h1u2 + h2u1)(h1u1 + h2u2)
(76)

The system behaves as one single layer if ÑTD > 5 and as a two layers ÑTD < 0.1.

5.4 Further work

The two-layer stratified porous medium suggests a generalization to multiple layers.
Lake and Hirasaki [10] investigated how a multiple-layer porous medium can be reduced
to less layers. They suggested to use a grouping procedure, where two adjacent layers
are combined if their NTD is larger than 5 (starting with the layer pair with the highest
NTD). In this way, the behaviour of a multi-layer system can be described, and the
effect of the heterogeneities. The effect of ÑTD in this grouping procedure needs to be
investigated.

Furthermore, this grouping procedure has a greedy algorithm-like nature. It might be
possible to find better grouping algorithms to reduce a multi-layer system. Verification
of a multi-layer system also requires ITD to be generalized.

Lastly, this thesis and [10] only consider stratified porous media, where the hetero-
geneities only occur perpendicular to the direction of the flow. This choice was made
since it simplifies Darcy’s law. The effect on the (longitudinal) dispersion coefficient
could als be investigated for more general heterogeneous porous media. Simulations of
this then also require Darcy’s law to be solved.

6 Conclusion

It was found that the transverse dispersion number, NTD, was in general a good predictor
of the behaviour of the stratified porous medium. The system behaved as one single layer
if the transverse dispersion number (after a correction with a certain factor) was greater
than 5. Similarly, the system behaved as two separate layers if the number was less than
0.1.

However, NTD failed if the ratio of the two layer thicknesses was varied. A new definition
of the transverse dispersion number, ÑTD, was suggested, taking the ratio of the layer
thicknesses into account. Like NTD, the system behaved as one single layer if ÑTD (after
a correction with a certain factor) was greater than 5, and the system behaved as two
separate layers if the number was less than 0.1. ÑTD was in all cases a good predictor
of the behaviour of the stratified porous medium.
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Nomenclature

αl, αl,eff (Effective) longitudinal dispersiv-
ity (m)

αt Transverse dispersivity (m)

ū Magnitude of the average fluid ve-
locity field (m s−1)

β Parameter in the approximation of
the time-averaged flux

∆t Time discretization step (s)

∆x,∆y Spatial discretization steps (m)

δl, δt Longitudinal and transverse disper-
sion number

x̂, ŷ Unit vectors

ι Imaginary number

µ Dynamic viscosity (Pa·s)

φ, φeff, φj (Effective) porosity (in layer j)

Φij Flux through the boundary of cell
ij

ρ Fluid density (kg m−3)

ρ PVI when the effluent concentration
of the layer with largest fluid volume
flux equals 0.5

σ Courant number

θ Parameter in the one dimensional
discretization

ū Average fluid velocity field (m s−1)

D Dispersion tensor

g Gravitational acceleration (m s−2)

I Identity matrix

n Outward normal

q Darcy velocity field (m s−1)

u Fluid velocity field (m s−1)

c Concentration (kg m−3)

cout,j Effluent concentration of layer j

D Domain

d Characteristic length (m)

Deff Effective diffusion coefficient
(m2 s−1)

Dnum Numerical diffusion coefficient
(m2 s−1)

Dl, Dt Longitudinal and transversal dis-
persion coefficients (m2 s−1)

Dm Molecular diffusion coefficient
(m2 s−1)

F Formation factor

Fni , F
n
ij Time-averaged flux at time tn
through the boundary of cell i (ij)

hj Thickness of layer j of the stratified
porous medium (m)

ITD Transverse dispersion index

k Porous medium permeability (m2)

Lx, Ly Length and thickness of the two-
layer porous medium (m)

Nt Number of time points

Nx, Ny Number of cells in the x- and y-
direction

NTD Transverse dispersion number

p Pressure (N/m2)

Q Pore volume injected (PVI)
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q Exact solution of the advection-
dispersion equation

Qni , Q
n
ij (Approximate) volume average of
the concentration at time tn in cell
i (ij)

T Time over which the numerical
method is computed (s)

t Time coordinate (s)

tl, tt Time for the solute to cross the
medium longitudinally and trans-
versely (s)

uj Average fluid velocity field in layer

j (m s−1)

V Volume of the porous medium (m3)

vi, vij Finite volume or cell

Vp Pore volume, volume of the pore
space of the porous medium (m3)

x, y Spatial coordinates (m)

xi yj Spatial coordinates of cell ij

yD Dimensionless coordinate, y
Ly

Pe Peclet number

Re Reynolds number
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A Appendix

A.1 Partial Fluxes

In the partial fluxes form section 4.2, the midpoint rule is used to approximate the
integral. To discretize the partial derivatives, the central difference is applied. For the
velocity, the upwind discretization is applied. The partial fluxes are then given by

Φ(i,j),1 =

∫ y
j+ 1

2

y
j− 1

2

[
(αlu(y) +Dm)

∂c

∂x
(xi+ 1

2
, y)− c(xi+ 1

2
, y)u(y)

]
dy

≈ ∆y

[
(αlu(yj) +Dm)

Qi+1,j −Qi,j
∆x

−Qi,ju(yj)

]
=−

[
(αlu(yj) +Dm)

∆y

∆x
+ ∆yu(yj)

]
︸ ︷︷ ︸

a1

Qi,j + (αlu(yj) +Dm)
∆y

∆x︸ ︷︷ ︸
a5

Qi+1,j

As stated in 4.2, if the velocity contains a discontinuity, then the harmonic average of
the transverse dispersion coefficient above and below the discontinuity is taken,

Dl,ave,j = 2

[
(αtu(yj+1) +Dm)(αtu(yj) +Dm)

αt(u(yj+1) + u(yj)) + 2Dm

]
(77)

The discretization is chosen so that any discontinuity is always on the cell interface.
Note that if u(yj+1) = u(yj), then Dl,ave = (αtu(yj) + Dm). With this, Φ(i,j),2 is given
by

Φ(i,j),2 =

∫ x
i+ 1

2

x
i− 1

2

[
(αtu(yj+ 1

2
) +Dm)

∂c

∂y
(x, yj+ 1

2
)

]
dx

≈ ∆x

[
2

(αtu(yj+1) +Dm)(αtu(yj) +Dm)

αt(u(yj+1) + u(yj)) + 2Dm

Qi,j+1 −Qi,j
∆y

]
= 2

∆x

∆y

[
(αtu(yj+1) +Dm)(αtu(yj) +Dm)

αt(u(yj+1) + u(yj)) + 2Dm

]
︸ ︷︷ ︸

−a2

Qi,j+1

−2
∆x

∆y

[
(αtu(yj+1) +Dm)(αtu(yj) +Dm)

αt(u(yj+1) + u(yj)) + 2Dm

]
︸ ︷︷ ︸

a2

Qi,j
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Similarly, Φ(i,j),3 and Φ(i,j),4 are given by

Φ(i,j),3 = −
∫ y

j+ 1
2

y
j− 1

2

[
(αlu(y) +Dm)

∂c

∂x
(xi− 1

2
, y)− c(xi− 1

2
, y)u(y)

]
dy

≈ −∆y

[
(αlu(yj) +Dm)

Qi,j −Qi−1,j

∆x
−Qi−1,ju(yj)

]
=

[
(αlu(yj) +Dm)

∆y

∆x
+ ∆yu(yj)

]
︸ ︷︷ ︸

a6

Qi−1,j −(αlu(yj) +Dm)
∆y

∆x︸ ︷︷ ︸
a3

Qi,j

Φ(i,j),4 = −
∫ x

i+ 1
2

x
i− 1

2

[
(αtu(yj− 1

2
) +Dm)

∂c

∂y
(x, yj− 1

2
)

]
dx

≈ −∆x

[
2

(αtu(yj−1) +Dm)(αtu(yj) +Dm)

αt(u(yj−1) + u(yj)) + 2Dm

Qi,j −Qi,j−1

∆y

]
= 2

∆x

∆y

[
(αtu(yj−1) +Dm)(αtu(yj) +Dm)

αt(u(yj−1) + u(yj)) + 2Dm

]
︸ ︷︷ ︸

−a4

Qi,j−1

−2
∆x

∆y

[
(αtu(yj−1) +Dm)(αtu(yj) +Dm)

αt(u(yj−1) + u(yj)) + 2Dm

]
︸ ︷︷ ︸

a4

Qi,j

Note that if u(yj−1) = u(yj), then a4 = −∆x
∆y (αtu(yj) +Dm).

A.2 Motivation of stability, consistency and local truncation error

The approximation Q of a solution q at time tn can be written by introducing the error
E such that

Qn = qn + En

If this is applied to a numerical operator N (·), then

Qn+1 = N (Qn) = N (qn + En)

So that for the global truncation error at tn+1

En+1 = Qn+1 − qn+1

= N (qn + En)− qn+1

With the local truncation error defined as

τn =
1

∆t

[
N (qn)− qn+1

]
,
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En+1 can be rewritten as

En+1 = N (qn + En)−N (qn)︸ ︷︷ ︸
stability

+ ∆t τn︸ ︷︷ ︸
consistency

In this way it can clearly be seen that the first underbraced terms determine the effect
of the existing error after using the numerical method and the second underbraced term
the effect of the error introduced by one time step. Stability is to give a bound on
N (qn + En)−N (qn) and consistency on the one-step error.

A.3 Derivation of the local truncation error of numerical scheme (37)

For β = 1, inserting the exact solution in the numerical scheme (37) and expanding in
Taylor series around (xi, yj , tm) gives

qm+1
i,j = αqmi,j + βqmi+1,j + γqmi,j+1 + δqmi−1,j + εqmi,j−1

= αqmi,j +
∞∑
n=0

β
∆xn

n!

∂nq

∂xn
(xi, yj , tm) +

∞∑
n=0

γ
∆yn

n!

∂nq

∂yn
(xi, yj , tm)

+
∞∑
n=0

δ
(−∆x)n

n!

∂nq

∂xn
(xi, yj , tm) +

∞∑
n=0

ε
(−∆y)n

n!

∂nq

∂yn
(xi, yj , tm)

= αqmi,j +
∞∑
n=0

(β + δ(−1)n)
∆xn

n!

∂nq

∂xn
(xi, yj , tm) + (γ + ε(−1)n)

∆yn

n!

∂nq

∂yn
(xi, yj , tm)

Where the coefficients are given by

α = 1 +
∆t

∆x∆y
(a1 + a2 + a3 + a4)

= 1− 2(αlu(yj) +Dm)
∆t

∆x2
− 2(αtu(yj) +Dm)

∆t

∆y2
− u(yj)

∆t

∆x

β =
∆t

∆x∆y
a5 = (αlu(yj) +Dm)

∆t

∆x2

γ = − ∆t

∆x∆y
a2 = (αtu(yj) +Dm)

∆t

∆y2

δ =
∆t

∆x∆y
a6 = (αlu(yj) +Dm)

∆t

∆x2
+ u(yj)

∆t

∆x

ε = − ∆t

∆x∆y
a4 = (αtu(yj) +Dm)

∆t

∆y2
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The local truncation error τ is then given by

τ∆t =N (qmi,j)− qm+1
i,j =

=αqmi,j +

∞∑
n=0

(β + δ(−1)n)
∆xn

n!

∂nq

∂xn
(xi, yj , tm) + (γ + ε(−1)n)

∆yn

n!

∂nq

∂yn
(xi, yj , tm)−

∞∑
n=0

∆tn

n!

∂nq

∂tn
(xi, yj , tm)

=u(yj)
∆x∆t

2

∂2q

∂x2
(xi, yj , tm)− ∆t2

2

∂2q

∂t2
(xi, yj , tm)+

∞∑
n=3

(αlu(yj) +Dm)∆t (1 + (−1)n)
∆xn−2

n!

∂nq

∂xn
(xi, yj , tm) + u(yj)∆t

∆xn−1

n!

∂nq

∂xn
(xi, yj , tm)+

(αtu(yj) +Dm)∆t (1 + (−1)n)
∆yn−2

n!

∂nq

∂yn
(xi, yj , tm)− ∆tn

n!

∂nq

∂tn
(xi, yj , tm)

A.4 Derivation of the stability condition of numerical scheme (58)

The amplification factor of scheme (58) is given by

g(ξ,∆x,∆t) = 1 + (σ(2θ − 1) + 2δl)︸ ︷︷ ︸
d

(cos(ι ξ∆x︸︷︷︸
ω

)− 1)− ισ sin(ιξ∆x)

Writing σ(2θ − 1) + 2δl = d and ξ∆x = ω, then |g(ξ,∆x,∆t)| ≤ 1 leads to

[1 + d(cos(ω)− 1)]2 + σ2 sin2(ω) ≤ 1

Using sin2(ω) + cos2(ω) = 1, this can be written as

(cos(ω)− 1)(d2(cos(ω)− 1) + 2d− σ2(cos(ω) + 1)) ≤ 0

Since cos(ω)− 1 ≤ 0, ∀ω, this yields that

d2(cos(ω)− 1) + 2d− σ2(cos(ω) + 1) ≥ 0

Rewriting this gives

−σ2 − d2 + 2d+ (d2 − σ2) cos(ω) ≥ 0

This has to hold for all ω (or ξ actually). Now, cos(ω) attains its extrema in ω = 0 or
ω = π. The conditions for stability therefore become

σ2 ≤ d and 0 ≤ d ≤ 1

And combining the gives the condition from (61).
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A.5 Taylor series for the one-dimensional local truncation error

The Taylor serries of q(x, t) around (xi, tn) is given by

q(x, t) = q(xi, tn) + (x− xi)qx(xi, tn) + (t− tn)qt(xi, tn)+

1

2!

(
(x− xi)2qxx(xi, tn) + 2(x− xi)(t− tn)qxt(xi, tn) + (t− tn)2qtt(xi, tn)

)
+ ...

From this it can be easily found that q(xi+1, tn), q(xi−1, tn), q(xi−2, tn), and q(xi, tn+1)
are given by

qni+1 = qni + ∆xqx(xi, tn) +
1

2!
(∆x)2qxx(xi, tn) +

1

3!
(∆x)3qxxx(xi, tn) +O

(
∆x4

)
qni−1 = qni −∆xqx(xi, tn) +

1

2!
(∆x)2qxx(xi, tn)− 1

3!
(∆x)3qxxx(xi, tn) +O

(
∆x4

)
qn+1
i = qni + ∆tqt(xi, tn) +

1

2!
(∆t)2qtt(xi, tn) +O

(
∆t3

)
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A.6 MATLAB Code

In this appendix the code is shown used for the numerical method. The code is based on
a class FasterNumericalSystem2D. First an example script is shown, which implements
the class. The class is shown below the example script. Other scripts are based on this
example script, such as the script that runs multiple simulations with only one parameter
varying (used to plot ITD versus NTD) or the script which implements the analytical
solution.

1 %% Example of the implementation of FasterNumericalSystem.m

2 clear all; close all; clc;

3 format compact

4

5 fprintf(’SetParameters.\n’);

6 date = string(datetime);

7 fprintf(’%s\n’,date);

8

9 % Enable animation, saving and printing the figures

10 ParameterRelativeFilePath = ’./parameters’;

11 relativeFilePath = ’./saved/example’;

12 filenamePrefix = ’example_run’;

13

14 % Physical parameters

15 Lx = 10; % m, length in x-direction

16 Ly = 0.01; % m, length in y-direction

17 T = 2.5;

18

19 layerVelocities = [5 1];

20 layerPorosities = [0.9 0.9];

21 Fh = 0.5;

22 layerBoundaries = [0 Fh 1]*Ly;

23

24 Dm = 1e-9;

25 alpha_l = 1e-2;

26 alpha_t = alpha_l/30;

27

28 % Numerical parameters

29 Nx = 50;

30 Ny = 200;

31 Nt = 2500;

32 Nextension = 2;

33

34 dx = Lx/Nx;

35 dy = Ly/Ny;
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36 T = Lx/min(layerVelocities)*1.1;

37 dt = T/(Nt-1);

38

39 beta = 1; % in [0,1], ’explicivity’

40

41 % Initial condition and boundary conditions

42 ic = @(x,y) heaviside(y-Ly/2)+0*x;

43 initialConditionIsZero = true;

44

45 constantBoundaryConditions = true;

46 leftBC = @(y) 1+0*y; % BC at x = 0

47 rightBC = @(y) 0*(y); % BC at x = Lx

48 bottomBC = @(x) 0*(x); % BC at y = 0

49 topBC = @(x) 0*(x); % BC at y = Ly

50

51 N_TD = (Lx/Ly)^2*(alpha_t*min(layerVelocities)/(Lx*max(layerVelocities)));

52

53 fprintf(’N_TD = %f.\n’,N_TD);

54

55 if mod(Fh*Ny,1) ~= 0

56 error(’The velocity discontinuity is not on a cell interface.’)

57 end

58

59 %% Saving the workspace

60

61 if ~isfolder(relativeFilePath)

62 mkdir(relativeFilePath);

63 end

64

65 if N_TD>0.01

66 filePath = sprintf(’%s/%s_N_TD=%.3f’,relativeFilePath,filenamePrefix,N_TD);

67 else

68 filePath = sprintf(’%s/%s_N_TD=%.2e’,relativeFilePath,filenamePrefix,N_TD);

69 end

70

71 % Checking if the folder exists, otherwise create it.

72 index = 0;

73 while true

74 if isfolder(filePath)

75 index = index + 1;

76 if N_TD>0.01

77 filePath = sprintf(’%s/%s_N_TD=%.3f_%u’,relativeFilePath,filenamePrefix,N_TD,

↪→ index);
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78 else

79 filePath = sprintf(’%s/%s_N_TD=%.2e_%u’,relativeFilePath,filenamePrefix,N_TD,

↪→ index);

80 end

81 else

82 mkdir(filePath);

83 break

84 end

85 end

86 clear index

87

88 try

89 save(ParameterFilename,’-v7.3’)

90 save(sprintf(’%s/%s_two_layer_dispersion_parameters.mat’,filePath,filenamePrefix),’-v7

↪→ .3’)

91 catch

92 warning(’File might not be saved correctly.’)

93 end

94

95 try

96 system = FasterNumericalSystem2D(Lx,Ly,T,Nx,Ny,Nt,Nextension);

97 catch

98 warning(’Object could not be created.’);

99

100 end

101

102 try

103 system.setNumericalParameters(beta);

104 system.setPhysicalParameters(layerVelocities,layerBoundaries,layerPorosities,alpha_l,

↪→ alpha_t,Dm);

105 catch

106 warning(’Physical or numerical parameters could not be set.’);

107

108 end

109

110 try

111 system.setInitialCondition(ic,initialConditionIsZero);

112 system.setBoundaryConditions(leftBC,1,rightBC,2,bottomBC,2,topBC,2,

↪→ constantBoundaryConditions);

113 catch

114 warning(’Initial or boundary conditions could not be set.’);

115

116 end
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117 try

118 system.checkStability;

119 catch

120 warning(’Stability check failed.’);

121 end

122

123 try

124 system.setLinearSytem;

125 catch

126 warning(’System could not be set.’);

127

128 end

129

130 try

131 elapsedTime = system.solveLinearSytem;

132 catch

133 warning(’System could not be solved.’);

134

135 end

136

137 %% Calculating the breakthrough curve

138 try

139 [N_TD,I_TD,tm] = system.breakthrough(true,true,true,filePath,filenamePrefix);

140 catch

141 warning(’Breakthrough curve failed.’)

142 end

143

144 try

145 filename = sprintf(’%s/%s_solution.mat’,filePath,filenamePrefix);

146 save(filename,’-v7.3’)

147 catch

148 warning(’File might not be saved correctly.’)

149 end

150

151 %% Visualizing the solution.

152 try

153 system.plotSolution(T/8,45,45,true,filePath,filenamePrefix);

154

155 system.contourPlotSolution(T/4 ,true,filePath,filenamePrefix);

156 catch

157 warning(’Plots failed.’)

158 end

159
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160 try

161 system.animateSolution([5 45],[45 45],true,filePath,filenamePrefix);

162 system.animateContourPlot(true,filePath,filenamePrefix);

163 catch

164 warning(’Animation Failed.’)

165 end

Class FasterNumericalSystem2D

1 classdef FasterNumericalSystem2D < handle

2

3 properties

4 Lx

5 Lxout

6 Ly

7 T

8 Nx

9 Nout

10 Ny

11 Nt

12 dx

13 dy

14 dt

15

16 x

17 y

18 t

19

20 Qfull

21 Qlfull

22 Qrfull

23 Qbfull

24 Qtfull

25

26 A

27 B

28 a

29 b

30

31 xStep

32 yStep

33 tStep
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34 Nxmax

35 Nymax

36 Ntmax

37 xIndex

38 yIndex

39 tIndex

40 storeIndex

41

42 Q

43 Ql

44 Qr

45 Qb

46 Qt

47 outflowLayer1

48 outflowLayer2

49

50 leftBoundaryType = 0;

51 rightBoundaryType = 0;

52 bottomBoundaryType = 0;

53 topBoundaryType = 0;

54

55 layerVelocities

56 layerBoundaries

57 layerPorosity

58

59 alpha_l = 0;

60 alpha_t = 0;

61 Dm = 0;

62

63 beta = 1;

64

65 boundariesAreSet = false;

66 initialConditionIsSet = false;

67 physicalParametersAreSet = false;

68 numericalParametersAreSet = false;

69 linearSystemIsSet = false;

70 solutionIsReady = false;

71 end

72

73 methods

74 function obj = FasterNumericalSystem2D(Lx,Ly,T,Nx,Ny,Nt,Nextension)

75

76 obj.Lx = Nextension*Lx;
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77 obj.Ly = Ly;

78 obj.T = T;

79 obj.Nx = Nextension*Nx;

80 obj.Nout = Nx;

81 obj.Lxout = Lx;

82 obj.Ny = Ny;

83 obj.Nt = Nt;

84 obj.dx = Lx/Nx;

85 obj.dy = Ly/Ny;

86 obj.dt = T/(Nt-1);

87

88 obj.x = linspace(obj.dx/2,obj.Lx-obj.dx/2,obj.Nx);

89 obj.y = linspace(obj.dy/2,obj.Ly-obj.dy/2,obj.Ny);

90 obj.t = linspace(0,obj.T,obj.Nt);

91

92 obj.Qfull = sparse(obj.Nx*obj.Ny,1);

93 obj.Qlfull = sparse(obj.Ny,1);

94 obj.Qrfull = sparse(obj.Ny,1);

95 obj.Qbfull = sparse(obj.Nx,1);

96 obj.Qtfull = sparse(obj.Nx,1);

97

98 obj.Nxmax = 200;

99 obj.Nymax = 200;

100 obj.Ntmax = 1000;

101

102 if obj.Nx > obj.Nxmax

103 obj.xStep = floor(obj.Nx/obj.Nxmax);

104 obj.xIndex = 1:obj.xStep:obj.Nx;

105 if obj.xIndex(end) ~= obj.Nx

106 obj.xIndex = [obj.xIndex obj.Nx];

107 end

108 obj.Nxmax = length(obj.xIndex);

109 else

110 obj.xStep = 1;

111 obj.xIndex = 1:obj.Nx;

112 obj.Nxmax = obj.Nx;

113 end

114 if obj.Ny > obj.Nymax

115 obj.yStep = floor(obj.Ny/obj.Nymax);

116 obj.yIndex = 1:obj.yStep:obj.Ny;

117 if obj.yIndex(end) ~= obj.Ny

118 obj.yIndex = [obj.yIndex obj.Ny];

119 end
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120 obj.Nymax = length(obj.yIndex);

121 else

122 obj.yStep = 1;

123 obj.yIndex = 1:obj.Ny;

124 obj.Nymax = obj.Ny;

125 end

126 if obj.Nt > obj.Ntmax

127 obj.tStep = floor(obj.Nt/obj.Ntmax);

128 obj.tIndex = 1:obj.tStep:obj.Nt;

129 if obj.tIndex(end) ~= obj.Nt

130 obj.tIndex = [obj.tIndex obj.Nt];

131 end

132 obj.Ntmax = length(obj.tIndex);

133 else

134 obj.tStep = 1;

135 obj.tIndex = 1:obj.Nt;

136 obj.Ntmax = obj.Nt;

137 end

138

139 for ii = obj.xIndex

140 obj.storeIndex = [obj.storeIndex (ii-1)*obj.Ny+obj.yIndex];

141 end

142

143 obj.Q = zeros(obj.Nxmax*obj.Nymax,obj.Ntmax);

144 obj.Ql = zeros(obj.Nymax,obj.Ntmax);

145 obj.Qr = zeros(obj.Nymax,obj.Ntmax);

146 obj.Qb = zeros(obj.Nxmax,obj.Ntmax);

147 obj.Qt = zeros(obj.Nxmax,obj.Ntmax);

148

149 end

150

151 function setInitialCondition(obj,ic,isZero)

152 fprintf(’Setting initial condition... ’);

153

154 if isZero

155 obj.Qfull = sparse(obj.Nx*obj.Ny,1);

156 else

157 for i = 1:obj.Nx

158 for j = 1:obj.Ny

159 obj.Qfull((i-1)*obj.Ny+j,1) = integral2(ic,(i-1)*obj.dx,i*obj.dx,(j

↪→ -1)*obj.dy,j*obj.dy)/(obj.dx*obj.dy);

160 end

161 end
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162 end

163

164

165 obj.initialConditionIsSet = true;

166 fprintf(’Initial condition correctly set.\n’);

167 end

168

169 function setBoundaryConditions(obj,leftBoundaryCondition,leftBoundaryType,

↪→ rightBoundaryCondition,rightBoundaryType,bottomBoundaryCondition,

↪→ bottomBoundaryType,topBoundaryCondition,topBoundaryType,areConstant)

170 % Currently only handles stationary boundary conditions.

171 fprintf(’Setting boundary conditions... ’);

172

173 obj.leftBoundaryType = leftBoundaryType;

174 obj.rightBoundaryType = rightBoundaryType;

175 obj.bottomBoundaryType = bottomBoundaryType;

176 obj.topBoundaryType = topBoundaryType;

177

178 if leftBoundaryType == 1 % Dirichlet boundary condition.

179 if areConstant

180 obj.Qlfull(:) = leftBoundaryCondition(0);

181 obj.Ql(:,:) = leftBoundaryCondition(0);

182 else

183 for i = 1:obj.Ny

184 obj.Qlfull(i) = integral(leftBoundaryCondition,(i-1)*obj.dy,i*obj.dy

↪→ )/(obj.dy);

185 end

186 for i = 1:obj.Ntmax

187 obj.Ql(:,i) = obj.Qlfull(obj.yIndex);

188 end

189 end

190 elseif leftBoundaryType == 2 % Von Neumann boundary condition.

191

192 else

193 fprintf(’Wrong left boundary type!\n’);

194 return

195 end

196

197 if rightBoundaryType == 1

198 if areConstant

199 obj.Qrfull(:) = rightBoundaryCondition(0);

200 obj.Qr(:,:) = rightBoundaryCondition(0);

201 else
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202 for i = 1:obj.Ny

203 obj.Qrfull(i) = integral(rightBoundaryCondition,(i-1)*obj.dy,i*obj.

↪→ dy)/(obj.dy);

204 end

205 for i = 1:obj.Ntmax

206 obj.Qr(:,i) = obj.Qrfull(obj.yIndex);

207 end

208 end

209 elseif rightBoundaryType == 2

210

211 else

212 fprintf(’Wrong right boundary type!\n’);

213 return

214 end

215

216 if bottomBoundaryType == 1

217 if areConstant

218 obj.Qbfull(:) = bottomBoundaryCondition(0);

219 obj.Qb(:,:) = bottomBoundaryCondition(0);

220 else

221 for i = 1:obj.Nx

222 obj.Qbfull(i) = integral(bottomBoundaryCondition,(i-1)*obj.dx,i*obj.

↪→ dx)/(obj.dx);

223 end

224 for i = 1:obj.Ntmax

225 obj.Qb(:,i) = obj.Qbfull(obj.xIndex);

226 end

227 end

228 elseif bottomBoundaryType == 2

229

230 else

231 fprintf(’Wrong bottom boundary type!\n’);

232 return

233 end

234

235 if topBoundaryType == 1

236 if areConstant

237 obj.Qtfull(:) = topBoundaryCondition(0);

238 obj.Qt(:,:) = topBoundaryCondition(0);

239 else

240 for i = 1:obj.Nx

241 obj.Qtfull(i) = integral(topBoundaryCondition,(i-1)*obj.dx,i*obj.dx)

↪→ /(obj.dx);
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242 end

243 for i = 1:obj.Ntmax

244 obj.Qt(:,i) = obj.Qtfull(obj.xIndex);

245 end

246 end

247 elseif topBoundaryType == 2

248

249 else

250 fprintf(’Wrong top boundary type!\n’);

251 return

252 end

253

254 obj.boundariesAreSet = true;

255 fprintf(’Boundaries correctly set.\n’);

256 end

257

258 function setPhysicalParameters(obj,layerVelocities,layerBoundaries,layerPorosity,

↪→ alpha_l,alpha_t,Dm)

259 fprintf(’Setting physical parameters... ’);

260

261 obj.layerVelocities = layerVelocities;

262 obj.layerBoundaries = layerBoundaries;

263 obj.layerPorosity = layerPorosity;

264

265 obj.alpha_l = alpha_l;

266 obj.alpha_t = alpha_t;

267 obj.Dm = Dm;

268

269 obj.physicalParametersAreSet = true;

270 fprintf(’Physical parameters correctly set.\n’);

271 end

272

273 function setNumericalParameters(obj,beta)

274 fprintf(’Setting numerical parameters... ’);

275 obj.beta = beta;

276

277 obj.numericalParametersAreSet = true;

278 fprintf(’Numerical parameters correctly set.\n’);

279 end

280

281 function setLinearSytem(obj)

282 fprintf(’Setting system... ’);

283
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284 if ~obj.boundariesAreSet

285 fprintf(’Error in setLinearSytem: Boundaries are not set!\n’);

286 return

287 end

288 if ~obj.physicalParametersAreSet

289 fprintf(’Warning in setLinearSytem: Physical parameters are not set!\n’);

290 end

291 if ~obj.numericalParametersAreSet

292 fprintf(’Warning in setLinearSytem: Numerical parameters are not set!\n’);

293 end

294

295 obj.A = sparse(obj.Nx*obj.Ny,obj.Nx*obj.Ny);

296 obj.B = sparse(obj.Nx*obj.Ny,obj.Nx*obj.Ny);

297 obj.a = sparse(obj.Nx*obj.Ny,1);

298 obj.b = sparse(obj.Nx*obj.Ny,1);

299

300 f = waitbar(0,sprintf(’Iteration 1 out of %i\nEstimated time to completion: --

↪→ min -- s’,obj.Nx),’Name’,’Setting the linear system...’);

301 iterationTime = zeros(obj.Nx-1,1);

302

303 for ii = 1:obj.Nx

304 tic;

305 for jj = 1:obj.Ny

306 k = (ii-1)*obj.Ny+jj;

307

308 y_cell = obj.y(jj);

309 %x_cell = 0; % Used for the velocity calculation, which is constant in x

↪→ .

310 %t_cell = 0; % Used for the velocity calculation, which is constant in t

↪→ .

311

312 % Calculate the transeverse dispersion coefficient in

313 % the cell centers

314 Dt_below = obj.alpha_t*obj.ux(y_cell-obj.dy)+obj.Dm;

315 Dt = obj.alpha_t*obj.ux(y_cell )+obj.Dm;

316 Dt_above = obj.alpha_t*obj.ux(y_cell+obj.dy)+obj.Dm;

317

318 % Calculate the dispersion coefficient on the

319 % interfaces.

320 Dtb = 2*Dt*Dt_below/(Dt+Dt_below); % transverse bottom

321 Dtt = 2*Dt*Dt_above/(Dt+Dt_above); % transverse top

322 Dl = obj.alpha_l*obj.ux(y_cell)+obj.Dm; % longitudinal

323
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324

325 a1 = -(Dl)*obj.dy/obj.dx - obj.dy*obj.ux(y_cell);

326 a2 = -(Dtt)*obj.dx/obj.dy;

327 a3 = -(Dl)*obj.dy/obj.dx;

328 a4 = -(Dtb)*obj.dx/obj.dy;

329 a5 = (Dl)*obj.dy/obj.dx;

330 a6 = (Dl)*obj.dy/obj.dx + obj.dy*obj.ux(y_cell);

331

332 obj.A(k,k) = obj.A(k,k) + 1-obj.dt/(obj.dx*obj.dy)*(1-obj.beta)*(a1+a2+

↪→ a3+a4);

333 obj.B(k,k) = obj.B(k,k) + 1+obj.dt/(obj.dx*obj.dy)*obj.beta *(a1+a2+a3+

↪→ a4);

334

335

336 % Check if cell is on the right boundary

337 if ii == obj.Nx

338 if obj.rightBoundaryType == 1

339 obj.A(k,k) = obj.A(k,k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)

↪→ *(-a5);

340 obj.B(k,k) = obj.B(k,k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(-a5)

↪→ ;

341 obj.a(k) = obj.a(k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)*(a5)

↪→ *2*obj.Qrfull(jj);

342 obj.b(k) = obj.b(k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(a5)*2*

↪→ obj.Qrfull(jj);

343 elseif obj.rightBoundaryType == 2

344 obj.A(k,k) = obj.A(k,k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)*(

↪→ a5);

345 obj.B(k,k) = obj.B(k,k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(a5);

346 end

347 else

348 obj.A(k,k+obj.Ny) = obj.A(k,k+obj.Ny) + -obj.dt/(obj.dx*obj.dy)*(1-

↪→ obj.beta)*(a5);

349 obj.B(k,k+obj.Ny) = obj.B(k,k+obj.Ny) + obj.dt/(obj.dx*obj.dy)*obj.

↪→ beta *(a5);

350 end

351

352 % Check if cell is on the top boundary

353 if jj == obj.Ny

354 if obj.topBoundaryType == 1

355 obj.A(k,k) = obj.A(k,k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)*(

↪→ a2);

356 obj.B(k,k) = obj.B(k,k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(a2);
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357 obj.a(k) = obj.a(k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)*(-a2)

↪→ *2*obj.Qtfull(ii);

358 obj.b(k) = obj.b(k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(-a2)*2*

↪→ obj.Qtfull(ii);

359 elseif obj.topBoundaryType == 2

360 obj.A(k,k) = obj.A(k,k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)

↪→ *(-a2);

361 obj.B(k,k) = obj.B(k,k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(-a2)

↪→ ;

362 end

363 else

364 obj.A(k,k+1) = obj.A(k,k+1) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)

↪→ *(-a2);

365 obj.B(k,k+1) = obj.B(k,k+1) + obj.dt/(obj.dx*obj.dy)*obj.beta *(-a2)

↪→ ;

366 end

367

368 % Check if cell is on the left boundary

369 if ii == 1

370 if obj.leftBoundaryType == 1

371 obj.A(k,k) = obj.A(k,k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)

↪→ *(-a6);

372 obj.B(k,k) = obj.B(k,k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(-a6)

↪→ ;

373 obj.a(k) = obj.a(k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)*(a6)

↪→ *2*obj.Qlfull(jj);

374 obj.b(k) = obj.b(k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(a6)*2*

↪→ obj.Qlfull(jj);

375 elseif obj.leftBoundaryType == 2

376 obj.A(k,k) = obj.A(k,k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)*(

↪→ a6);

377 obj.B(k,k) = obj.B(k,k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(a6);

378 end

379 else

380 obj.A(k,k-obj.Ny) = obj.A(k,k-obj.Ny) + -obj.dt/(obj.dx*obj.dy)*(1-

↪→ obj.beta)*(a6);

381 obj.B(k,k-obj.Ny) = obj.B(k,k-obj.Ny) + obj.dt/(obj.dx*obj.dy)*obj.

↪→ beta *(a6);

382 end

383

384 % Check if cell is on the bottom boundary

385 if jj == 1

386 if obj.bottomBoundaryType == 1
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387 obj.A(k,k) = obj.A(k,k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)*(

↪→ a4);

388 obj.B(k,k) = obj.B(k,k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(a4);

389 obj.a(k) = obj.a(k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)*(-a4)

↪→ *2*obj.Qbfull(ii);

390 obj.b(k) = obj.b(k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(-a4)*2*

↪→ obj.Qbfull(ii);

391 elseif obj.bottomBoundaryType == 2

392 obj.A(k,k) = obj.A(k,k) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)

↪→ *(-a4);

393 obj.B(k,k) = obj.B(k,k) + obj.dt/(obj.dx*obj.dy)*obj.beta *(-a4)

↪→ ;

394 end

395 else

396 obj.A(k,k-1) = obj.A(k,k-1) + -obj.dt/(obj.dx*obj.dy)*(1-obj.beta)

↪→ *(-a4);

397 obj.B(k,k-1) = obj.B(k,k-1) + obj.dt/(obj.dx*obj.dy)*obj.beta *(-a4)

↪→ ;

398 end

399

400

401

402 end

403

404 iterationTime(ii) = toc;

405

406 % Estimate remaining time

407 estimatedTime = mean(iterationTime(1:ii))*(obj.Nx-1-ii)*1.4;

408

409 % Update waitbar every 20 iterations (every iteration slows down the

↪→ process a lot).

410 if mod(ii,50) == 0

411 waitbar(ii/(obj.Nx-1),f,sprintf(’Iteration %i out of %i\nEstimated time

↪→ to completion: %i min %3.2f s’,ii,obj.Nx,floor(estimatedTime/60),

↪→ mod(estimatedTime,60)));

412 end

413 end

414

415 waitbar(1,f,sprintf(’Iteration %i out of %i\nEstimated time to completion: %i

↪→ min %3.2f s’,obj.Nx,obj.Nx,0,0));

416 delete(f)

417

418 obj.linearSystemIsSet = true;
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419 fprintf(’System correctly set.\n’);

420 end

421

422 function elapsedTime = solveLinearSytem(obj)

423 fprintf(’Solving system... ’);

424 readyToSolve = true;

425

426 if ~obj.boundariesAreSet && ~obj.initialConditionIsSet

427 fprintf(’Error in solveLinearSytem: Boundaries and inital condition are not

↪→ set!\n’);

428 readyToSolve = false;

429 elseif ~obj.boundariesAreSet

430 fprintf(’Error in solveLinearSytem: Boundaries are not set!\n’);

431 readyToSolve = false;

432 elseif ~obj.initialConditionIsSet

433 fprintf(’Error in solveLinearSytem: Initial condition is not set!\n’);

434 readyToSolve = false;

435 end

436 if ~obj.physicalParametersAreSet

437 fprintf(’Warning in solveLinearSytem: Default physical parameters are used

↪→ !\n’);

438 end

439 if ~obj.numericalParametersAreSet

440 fprintf(’Warning in solveLinearSytem: Default numerical parameters are used

↪→ !\n’);

441 end

442 if ~obj.linearSystemIsSet

443 fprintf(’Error in solveLinearSytem: Linear system is not set!\n’);

444 readyToSolve = false;

445 end

446

447 if ~readyToSolve

448 fprintf(’Error in solveLinearSytem: System could not be solved.\n’);

449 return

450 end

451

452 Nboundary = obj.layerBoundaries(2)/obj.dy;

453

454 obj.outflowLayer1 = zeros(1,obj.Nt);

455 obj.outflowLayer2 = zeros(1,obj.Nt);

456 % A waitbar to show the progress and estimate time to

457 % completion.
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458 f = waitbar(0,sprintf(’Iteration 1 out of %i\nEstimated time to completion: --

↪→ min -- s’,obj.Nt),’Name’,’Solving the linear system...’);

459 iterationTime = zeros(obj.Nt-1,1);

460 % Record the time to solve.

461 timerValue = tic;

462

463 % Actually solving of the linear system.

464 for i=1:obj.Nt-1

465

466 tic;

467 % Store Qfull in Q

468 if ~isempty(find(obj.tIndex == i,1))

469 j = find(obj.tIndex == i,1);

470 obj.Q(:,j) = obj.Qfull(obj.storeIndex);

471 end

472

473 obj.outflowLayer1(i) = mean(0.5*(obj.Qfull(((obj.Nout-1)*obj.Ny+1):((obj.

↪→ Nout-1)*obj.Ny+Nboundary))+obj.Qfull((obj.Nout*obj.Ny+1):(obj.Nout*

↪→ obj.Ny+Nboundary))));

474 obj.outflowLayer2(i) = mean(0.5*(obj.Qfull(((obj.Nout-1)*obj.Ny+1+Nboundary

↪→ ):(obj.Nout*obj.Ny)) +obj.Qfull((obj.Nout*obj.Ny+1+Nboundary):((obj.

↪→ Nout+1)*obj.Ny))));

475

476 % Calculating the solution at the next time step.

477 if obj.beta == 1

478 obj.Qfull = (obj.B*obj.Qfull+obj.b);

479 else

480 obj.Qfull = obj.A\(obj.B*obj.Qfull+obj.b-obj.a);

481 end

482

483 iterationTime(i) = toc;

484

485 % Estimate remaining time

486 estimatedTime = mean(iterationTime(1:i))*(obj.Nt-1-i)*1.4;

487

488 % Update waitbar every 20 iterations (every iteration slows down the

↪→ process a lot).

489 if mod(i,20) == 0

490 waitbar(i/(obj.Nt-1),f,sprintf(’Iteration %i out of %i\nEstimated time

↪→ to completion: %i min %3.2f s’,i,obj.Nt,floor(estimatedTime/60),

↪→ mod(estimatedTime,60)));

491 end

492 end
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493 obj.Q(:,end) = obj.Qfull(obj.storeIndex);

494 obj.outflowLayer1(end) = mean(0.5*(obj.Qfull(((obj.Nout-1)*obj.Ny+1):((obj.Nout

↪→ -1)*obj.Ny+Nboundary))+obj.Qfull((obj.Nout*obj.Ny+1):(obj.Nout*obj.Ny+

↪→ Nboundary))));

495 obj.outflowLayer2(end) = mean(0.5*(obj.Qfull(((obj.Nout-1)*obj.Ny+1+Nboundary)

↪→ :(obj.Nout*obj.Ny)) +obj.Qfull((obj.Nout*obj.Ny+1+Nboundary):((obj.Nout

↪→ +1)*obj.Ny))));

496

497

498

499 elapsedTime = toc(timerValue);

500

501 waitbar(1,f,sprintf(’Iteration %i out of %i\nEstimated time to completion: %i

↪→ min %3.2f s’,obj.Nt,obj.Nt,0,0));

502 delete(f)

503

504 % Set the values of the ghosts cells if they are of the second

505 % type.

506 if obj.leftBoundaryType == 2

507 obj.Ql = obj.Q(1:obj.Nymax,:);

508 end

509 if obj.rightBoundaryType == 2

510 obj.Qr = obj.Q(((obj.Nxmax-1)*obj.Nymax+1):(obj.Nxmax*obj.Nymax),:);

511 end

512 if obj.bottomBoundaryType == 2

513 obj.Qb = obj.Q(1:obj.Nymax:((obj.Nxmax-1)*obj.Nymax+1),:);

514 end

515 if obj.topBoundaryType == 2

516 obj.Qt = obj.Q(obj.Nymax:obj.Nymax:obj.Nxmax*obj.Nymax,:);

517 end

518

519 obj.solutionIsReady = true;

520 fprintf(’System succesfully solved.\n’);

521 end

522

523 %% Stability analysis

524

525 function [nu, di_x] = checkStability(obj)

526 if ~obj.physicalParametersAreSet

527 fprintf(’Error in checkStability: Physical parameters are not set!\n’);

528 return

529 end

530 if ~obj.numericalParametersAreSet
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531 fprintf(’Error in checkStability: Numerical parameters are not set!\n’);

532 return

533 end

534

535 nu = max(obj.layerVelocities)*obj.dt/obj.dx; % Courant number

536 di_x = (obj.alpha_l*max(obj.layerVelocities)+obj.Dm)*obj.dt/obj.dx^2; %

↪→ Diffusion number

537 di_y = (obj.alpha_t*max(obj.layerVelocities)+obj.Dm)*obj.dt/obj.dy^2; %

↪→ Diffusion number

538

539 if 2*di_x+nu > 1

540 fprintf(’The scheme might be unstable: 2*di_x+nu = %2.3f > 1.\n’,2*di_x+nu)

↪→ ;

541 end

542 if 2*di_x+nu < nu^2

543 fprintf(’The scheme might be unstable: 2*di_x+nu = %2.3f < %2.3f = nu^2.\n’

↪→ ,2*di_x+nu,nu^2);

544 end

545 if 2*di_y > 1

546 fprintf(’The scheme might be unstable: 2*di_y = %2.3f > 1.\n’,2*di_y);

547 end

548 end

549

550 %% Plotting

551

552 function [Qgrid, Xgrid, Ygrid] = indexVectorToGrid(obj)

553 Qgrid = zeros(obj.Nxmax+2,obj.Nymax+2,obj.Ntmax);

554

555 for i = 1:obj.Nxmax

556 Qgrid(i+1,2:end-1,:) = obj.Q((1:obj.Nymax)+(i-1)*obj.Nymax,:);

557 end

558

559 Qgrid(1,2:(end-1),:) = obj.Ql;

560 Qgrid(end,2:(end-1),:) = obj.Qr;

561 Qgrid(2:(end-1),1,:) = obj.Qb;

562 Qgrid(2:(end-1),end,:) = obj.Qt;

563 Qgrid(1,1,:) = 0.5*(obj.Ql(1,:) +obj.Qb(1,:));

564 Qgrid(1,end,:) = 0.5*(obj.Ql(end,:)+obj.Qt(1,:));

565 Qgrid(end,1,:) = 0.5*(obj.Qr(1,:) +obj.Qb(end,:));

566 Qgrid(end,end,:) = 0.5*(obj.Qr(end,:)+obj.Qt(end,:));

567

568 Qgrid = permute(Qgrid(:,:,:),[2 1 3]);

569 xPlot = [0 obj.x(obj.xIndex) obj.Lx];
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570 yPlot = [0 obj.y(obj.yIndex) obj.Ly];

571 [Xgrid,Ygrid] = meshgrid(xPlot,yPlot);

572 end

573

574 function animateSolution(obj,azimuth,elevation,saveToFile,filePath,filenamePrefix)

575 if ~obj.solutionIsReady

576 fprintf(’Error in animateSolution: System is not solved.\n’);

577 return

578 end

579 fprintf(’Animation running...’)

580

581 f = figure(’Name’,’Animation’,’Color’,’white’);

582 ax = axes;

583 [Qgrid,Xgrid,Ygrid] = obj.indexVectorToGrid;

584 s = surf(Xgrid,Ygrid,Qgrid(:,:,1),’EdgeColor’,’none’);

585 Qmax = max(Qgrid,[],’all’);

586 axis(ax,[0,obj.Lxout,0,obj.Ly,0,Qmax*1.05]);

587 colorbar

588

589 view(ax,azimuth(1),elevation(1));

590

591 title(’Animation of numerical solution, $t$ = 0.00 s’,’Interpreter’,’Latex’);

592 xlabel(’Distance $x$ (m)’,’Interpreter’,’Latex’);

593 ylabel(’Distance $y$ (m)’,’Interpreter’,’Latex’);

594 zlabel(’$c(x,y,0)$’,’Interpreter’,’Latex’);

595

596 if saveToFile

597 v = VideoWriter(sprintf(’%s/%s_movie.mp4’,filePath,filenamePrefix),’MPEG-4’

↪→ );

598 open(v);

599

600 for i = 1:obj.Ntmax

601 s.ZData = Qgrid(:,:,i);

602 title(ax,sprintf(’Animation of numerical solution, $t$ = %.2f s’,(i-1)*

↪→ obj.dt*obj.tStep),’Interpreter’,’Latex’);

603 zlabel(ax,[’$c(x,y,’ num2str((i-1)*obj.dt*obj.tStep) ’)$’],’Interpreter’

↪→ ,’Latex’);

604 view(ax,(azimuth(2)-azimuth(1))/(obj.Ntmax-1)*(i-1)+azimuth(1),(

↪→ elevation(2)-elevation(1))/(obj.Ntmax-1)*(i-1)+elevation(1));

605 frame = getframe(f);

606 writeVideo(v,frame);

607 end
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608 title(ax,sprintf(’Animation of numerical solution, $t$ = %.2f s’,(i-1)*obj.

↪→ dt*obj.tStep),’Interpreter’,’Latex’);

609 zlabel(ax,[’$c(x,y,’ num2str(obj.T) ’)$’],’Interpreter’,’Latex’);

610 view(ax,azimuth(2),elevation(2));

611 frame = getframe(f);

612 writeVideo(v,frame);

613 close(v);

614 else

615 for i = 1:obj.Ntmax

616 s.ZData = Qgrid(:,:,i);

617 title(ax,sprintf(’Animation of numerical solution, $t$ = %.2f s’,(i-1)*

↪→ obj.dt*obj.tStep),’Interpreter’,’Latex’);

618 zlabel(ax,[’$c(x,y,’ num2str((i-1)*obj.dt*obj.tStep) ’)$’],’Interpreter’

↪→ ,’Latex’);

619 view(ax,(azimuth(2)-azimuth(1))/(obj.Ntmax-1)*(i-1)+azimuth(1),(

↪→ elevation(2)-elevation(1))/(obj.Ntmax-1)*(i-1)+elevation(1));

620 pause(obj.dt*obj.tStep);

621 end

622 end

623 fprintf(’Ready.\n’)

624 end

625

626 function animateContourPlot(obj,saveToFile,filePath,filenamePrefix)

627 if ~obj.solutionIsReady

628 fprintf(’Error in animateSolution: System is not solved.\n’);

629 return

630 end

631 fprintf(’Animation running...’)

632

633 f = figure(’Name’,’Animation’,’Color’,’white’);

634 ax = axes;

635 [Qgrid,Xgrid,Ygrid] = obj.indexVectorToGrid;

636 [~,s] = contour(Xgrid,Ygrid,Qgrid(:,:,1));

637 hold(ax,’on’);

638 plot([0 obj.Lx],[obj.layerBoundaries(2) obj.layerBoundaries(2)],’k’)

639 axis(ax,[0,obj.Lxout,0,obj.Ly]);

640

641 title(’Animation of contour plot, $t$ = 0.00 s’,’Interpreter’,’Latex’);

642 xlabel(’Distance $x$ (m)’,’Interpreter’,’Latex’);

643 ylabel(’Distance $y$ (m)’,’Interpreter’,’Latex’);

644

645 if saveToFile
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646 v = VideoWriter(sprintf(’%s/%s_contour_movie.mp4’,filePath,filenamePrefix),

↪→ ’MPEG-4’);

647 open(v);

648

649 for i = 1:obj.Ntmax

650 s.ZData = Qgrid(:,:,i);

651 title(ax,sprintf(’Animation of contour plot, $t$ = %.2f s’,(i-1)*obj.dt*

↪→ obj.tStep),’Interpreter’,’Latex’);

652 frame = getframe(f);

653 writeVideo(v,frame);

654 end

655 title(ax,sprintf(’Animation of contour plot, $t$ = %.2f s’,obj.T),’

↪→ Interpreter’,’Latex’);

656 frame = getframe(f);

657 writeVideo(v,frame);

658 close(v);

659 else

660 for i = 1:obj.Ntmax

661 s.ZData = Qgrid(:,:,i);

662 title(ax,sprintf(’Animation of contour plot, $t$ = %.2f s’,(i-1)*obj.dt*

↪→ obj.tStep),’Interpreter’,’Latex’);

663 pause(obj.dt*obj.tStep);

664 end

665 end

666 fprintf(’Ready.\n’)

667 end

668

669 function plotSolution(obj,time,azimuth,elevation,printFigures,filePath,

↪→ filenamePrefix)

670 if ~obj.solutionIsReady

671 fprintf(’Error in plotSolution: System is not solved.\n’);

672 return

673 end

674

675 if time > obj.T

676 time = obj.T;

677 fprintf(’Warning in plotSolution: Time out of bounds. Plot is at t=%4.2f.\n

↪→ ’,obj.T);

678 elseif time < 0

679 time = 0;

680 fprintf(’Warning in plotSolution: Time out of bounds. Plot is at t=0.\n’);

681 end

682
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683 timeIndex = round(time/obj.T*(obj.Ntmax-1)+1);

684

685 figure(’Name’,[’Plot at t=’ num2str(time)],’Color’,’white’);

686 ax = axes;

687 [Qgrid,Xgrid,Ygrid] = obj.indexVectorToGrid;

688 surf(Xgrid,Ygrid,Qgrid(:,:,timeIndex),’EdgeColor’,’none’);

689 ax.FontSize = 14;

690 Qmax = max(Qgrid,[],’all’);

691 axis(ax,[0,obj.Lxout,0,obj.Ly,0,Qmax]);

692 colorbar

693

694 view(ax,azimuth,elevation);

695 fontsize = 16;

696

697 xlabel(’$x$ (m)’,’Interpreter’,’Latex’,’Fontsize’,1.5*fontsize);

698 ylabel(’$y$ (m)’,’Interpreter’,’Latex’,’Fontsize’,1.5*fontsize);

699 zlabel([’$c(x,y,’ num2str(time) ’)$ kg/m$^3$’],’Interpreter’,’Latex’,’Fontsize’

↪→ ,1.5*fontsize);

700

701 if printFigures

702 filename = sprintf(’%s/%s_solution_plot_t=%.0fms’,filePath,filenamePrefix,

↪→ time*1000);

703 print(filename,’-dpng’,’-r300’)

704 end

705 end

706

707 function contourPlotSolution(obj,time,printFigures,filePath,filenamePrefix)

708 if ~obj.solutionIsReady

709 fprintf(’Error in plotSolution: System is not solved.\n’);

710 return

711 end

712

713 if time > obj.T

714 time = obj.T;

715 fprintf(’Warning in plotSolution: Time out of bounds. Plot is at t=%4.2f.\n

↪→ ’,obj.T);

716 elseif time < 0

717 time = 0;

718 fprintf(’Warning in plotSolution: Time out of bounds. Plot is at t=0.\n’);

719 end

720

721 timeIndex = round(time/obj.T*(obj.Ntmax-1)+1);

722

71



723 figure(’Name’,[’Contour Plot at t=’ num2str(time)],’Color’,’white’);

724 [Qgrid,Xgrid,Ygrid] = obj.indexVectorToGrid;

725 contour(Xgrid,Ygrid,Qgrid(:,:,timeIndex),’k’);

726 hold(’on’);

727 plot([0 obj.Lx],[obj.layerBoundaries(2) obj.layerBoundaries(2)],’k’)

728 axis([0,obj.Lxout,0,obj.Ly]);

729

730 xlabel(’Distance $x$ (m)’,’Interpreter’,’Latex’);

731 ylabel(’Distance $y$ (m)’,’Interpreter’,’Latex’);

732

733 if printFigures

734 filename = sprintf(’%s/%s_contour_plot_t=%.0fms’,filePath,filenamePrefix,

↪→ time*1000);

735 print(filename,’-dpng’,’-r300’)

736 end

737 end

738

739 function [N_TD,I_TD,tm] = breakthrough(obj,plotDoubleLayerLimit,inPVI,printFigures

↪→ ,filePath,filenamePrefix)

740 if ~obj.solutionIsReady

741 fprintf(’Error in breakthrough: System is not solved.\n’);

742 return

743 end

744 fontSize = 24;

745

746 time = obj.t;

747

748

749 if plotDoubleLayerLimit

750 Dl = obj.alpha_l*obj.layerVelocities+obj.Dm;

751 doubleLayer = @(x,t,u,h,Dl) ((h(2)-h(1))*(1-erf((x-u(1)*t)./(2*sqrt(Dl(1)*t

↪→ ))))+(h(3)-h(2))*(1-erf((x-u(2)*t)./(2*sqrt(Dl(2)*t)))))/(2*h(3));

752 end

753

754 outflow = 0.5*(obj.outflowLayer1 + obj.outflowLayer2);

755

756 tm = 0;

757 try

758 for i = 1:length(time)

759 if outflow(i) < 0.5 && outflow(i+1) > 0.5

760 tm = interp1([outflow(i) outflow(i+1)],[time(i) time(i+1)],0.5);

761 break

762 end
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763 end

764 catch

765 warning(’tm could not be found.’);

766 end

767 tm1 = 0;

768 try

769 for i = 1:length(time)

770 if obj.outflowLayer1(i) < 0.5 && obj.outflowLayer1(i+1) > 0.5

771 tm1 = interp1([obj.outflowLayer1(i) obj.outflowLayer1(i+1)],[time(i)

↪→ time(i+1)],0.5);

772 break

773 end

774 end

775 catch

776 warning(’tm1 could not be found.’);

777 end

778 tm2 = 0;

779 try

780 for i = 1:length(time)

781 if obj.outflowLayer2(i) < 0.5 && obj.outflowLayer2(i+1) > 0.5

782 tm2 = interp1([obj.outflowLayer2(i) obj.outflowLayer2(i+1)],[time(i)

↪→ time(i+1)],0.5);

783 break

784 end

785 end

786 catch

787 warning(’tm2 could not be found.’);

788 end

789

790 if (obj.layerBoundaries(2)-obj.layerBoundaries(1))*obj.layerPorosity(1)*obj.

↪→ layerVelocities(1)>=(obj.layerBoundaries(3)-obj.layerBoundaries(2))*obj.

↪→ layerPorosity(2)*obj.layerVelocities(2)

791 QD = obj.multiLayerPVI(tm1);

792 QDi = obj.multiLayerPVI(obj.Lxout/obj.layerVelocities(1));

793 I_TD = (QD-QDi)/(1-QDi);

794 elseif (obj.layerBoundaries(2)-obj.layerBoundaries(1))*obj.layerPorosity(1)*obj

↪→ .layerVelocities(1)<(obj.layerBoundaries(3)-obj.layerBoundaries(2))*obj.

↪→ layerPorosity(2)*obj.layerVelocities(2)

795 QD = obj.multiLayerPVI(tm2);

796 QDi = obj.multiLayerPVI(obj.Lxout/obj.layerVelocities(2));

797 I_TD = (QD-QDi)/(1-QDi);

798 else

799 error(’I_TD could not be calculated.’)
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800 end

801

802 N_TD = (obj.Lxout/obj.Ly)^2*(obj.alpha_t*min(obj.layerVelocities)/(obj.Lxout*

↪→ max(obj.layerVelocities)));

803

804 figure(’Name’,’Breakthrough’,’Color’,’white’);

805 ax = axes;

806 hold(ax,’on’);

807 if inPVI

808 if plotDoubleLayerLimit

809 plot(ax,obj.multiLayerPVI(obj.t),doubleLayer(obj.Lxout,obj.t,obj.

↪→ layerVelocities,obj.layerBoundaries,Dl),’k-.’,’LineWidth’,1);

810 end

811

812 plot(ax,obj.multiLayerPVI(time),outflow,’k-’,’LineWidth’,1.2);

813 plot(ax,obj.multiLayerPVI(time),obj.outflowLayer1,’k--’,’LineWidth’,1.2);

814 plot(ax,obj.multiLayerPVI(time),obj.outflowLayer2,’k:’,’LineWidth’,1.2);

815 plot(ax,[0 obj.multiLayerPVI(obj.T)],[0.5 0.5],’k’,’LineWidth’,1);

816 plot(ax,[0 obj.multiLayerPVI(tm) obj.multiLayerPVI(tm)], [0.5 0.5 0], ’k-’,

↪→ ’LineWidth’,1.2)

817 plot(ax,[0 obj.multiLayerPVI(tm1) obj.multiLayerPVI(tm1)], [0.5 0.5 0], ’k

↪→ --’,’LineWidth’,1.2)

818 plot(ax,[0 obj.multiLayerPVI(tm2) obj.multiLayerPVI(tm2)], [0.5 0.5 0], ’k

↪→ -.’,’LineWidth’,1.2)

819 ax = gca;

820 ax.FontSize = 14;

821 legend(’Total $c_\mathrm{out}$’,’Layer 1 $c_\mathrm{out}$’,’Layer 2 $c_\

↪→ mathrm{out}$’,’Interpreter’,’LaTeX’,’FontSize’,fontSize,’location’,’

↪→ southeast’)

822

823 axis(ax,[0 obj.multiLayerPVI(obj.T) 0 1]);

824 xlabel(ax,’PVI’,’Interpreter’,’LaTeX’,’FontSize’, fontSize);

825

826 if N_TD > 0.02

827 text(obj.multiLayerPVI(obj.T)/10,0.9,sprintf(’$N_{TD}$=%.2e\n$I_{TD}$

↪→ =%.3f\n$(Q_{Di})_{c=0.5}$=%.3f\n$(Q_{D})_{c=0.5}$=%.3f’,N_TD,I_TD

↪→ ,QDi,QD),’Interpreter’,’LaTeX’,’FontSize’, fontSize)

828 else

829 text(obj.multiLayerPVI(obj.T)/10,0.9,sprintf(’$N_{TD}$=%.2e\n$I_{TD}$

↪→ =%.3f\n$(Q_{Di})_{c=0.5}$=%.3f\n$(Q_{D})_{c=0.5}$=%.3f’,N_TD,I_TD

↪→ ,QDi,QD),’Interpreter’,’LaTeX’,’FontSize’, fontSize)

830 end

831 else
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832 if plotDoubleLayerLimit

833 plot(ax,obj.t,doubleLayer(obj.Lxout,obj.t,obj.layerVelocities,obj.

↪→ layerBoundaries,Dl),’k-.’,’LineWidth’,1);

834 end

835 plot(ax,time,outflow,’k’);

836 plot(ax,time,obj.layerBoundaries(2)*obj.outflowLayer1/obj.layerBoundaries

↪→ (3),’b’);

837 plot(ax,time,((obj.layerBoundaries(3)-obj.layerBoundaries(2))*obj.

↪→ outflowLayer2+obj.layerBoundaries(2))/obj.layerBoundaries(3),’r’);

838 plot(ax,[0 obj.T],[0.5 0.5],’k’,’LineWidth’,1);

839 plot(ax,[0 tm tm], [0.5 0.5 0], ’k’,’LineWidth’,1)

840 plot(ax,[0 tm1 tm1], [(obj.layerBoundaries(2)-obj.layerBoundaries(1))*0.5/

↪→ obj.layerBoundaries(3) (obj.layerBoundaries(2)-obj.layerBoundaries(1)

↪→ )*0.5/obj.layerBoundaries(3) 0], ’b’,’LineWidth’,1)

841 plot(ax,[0 tm2 tm2], [(obj.layerBoundaries(3)-obj.layerBoundaries(2))*0.5/

↪→ obj.layerBoundaries(3)+obj.layerBoundaries(2)/obj.layerBoundaries(3)

↪→ (obj.layerBoundaries(3)-obj.layerBoundaries(2))*0.5/obj.

↪→ layerBoundaries(3)+obj.layerBoundaries(2)/obj.layerBoundaries(3) 0],

↪→ ’r’,’LineWidth’,1)

842 axis(ax,[0 obj.T 0 1]);

843 xlabel(ax,’$t$’,’Interpreter’,’LaTeX’,’FontSize’, fontSize);

844

845 if N_TD > 0.02

846 text(obj.T/10,0.9,sprintf(’$N_{TD}$=%.2e\n$I_{TD}$=%.3f\n$(Q_{Di})_{c

↪→ =0.5}$=%.3f\n$(Q_{D})_{c=0.5}$=%.3f’,N_TD,I_TD,QDi,QD),’

↪→ Interpreter’,’LaTeX’,’FontSize’, fontSize)

847 else

848 text(obj.T/10,0.9,sprintf(’$N_{TD}$=%.2e\n$I_{TD}$=%.3f\n$(Q_{Di})_{c

↪→ =0.5}$=%.3f\n$(Q_{D})_{c=0.5}$=%.3f’,N_TD,I_TD,QDi,QD),’

↪→ Interpreter’,’LaTeX’,’FontSize’, fontSize)

849 end

850 end

851

852 ylabel(ax,’$c_\mathrm{out}$’,’Interpreter’,’LaTeX’,’FontSize’, 1.5*fontSize);

853

854 if plotDoubleLayerLimit

855 legend(ax,’Double layer limit’,’Numerical solution’,’Layer 1’,’Layer 2’,’

↪→ Location’,’southeast’,’Interpreter’,’LaTeX’,’FontSize’, fontSize);

856 end

857

858 if printFigures

859 filename = sprintf(’%s/%s_breakthrough.png’,filePath,filenamePrefix);

860 print(filename,’-dpng’,’-r300’)
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861 end

862

863 end

864

865 function PVI = multiLayerPVI(obj,t)

866 coef = 0;

867 for i = 1:length(obj.layerVelocities)

868 coef = coef + (obj.layerBoundaries(i+1)-obj.layerBoundaries(i))*obj.

↪→ layerVelocities(i)*obj.layerPorosity(i);

869 end

870

871 phi = 0;

872 for i = 1:length(obj.layerPorosity)

873 phi = phi + (obj.layerBoundaries(i+1)-obj.layerBoundaries(i))*obj.

↪→ layerPorosity(i);

874 end

875

876

877 PVI = coef*t/(obj.Lxout*phi);

878 end

879

880 function velocity = ux(obj,y)

881 velocity = 0.*y;

882 for i = 1:length(obj.layerVelocities)

883 velocity = velocity + obj.layerVelocities(i)*heaviside(y-obj.

↪→ layerBoundaries(i)).*heaviside(-y+obj.layerBoundaries(i+1));

884 end

885 end

886

887 end

888 end
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