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Abstract

In this paper, we analyze the distributional properties of firms’ growth, using an
exhaustive data set of Italian firms between 1987 - 2006. In fact, we want to
understand the patterns of growth of firms and the relationship between growth
and different financial structures. We use the number of employees and revenues
as measure of size. In line with Cabral and Mata (2003) [5], we found that the
size distribution in terms of (log) number of employees is pretty stable over time,
while the size distribution of the (log) revenue shifts to the right over time. We
also noticed that the upper tail of the size distribution follows power law behaviour
irrespective of the proxy of size used. On the other hand, our results regarding the
power law behaviour in the upper tail of the size distribution shows evidence of
higher inequality in firms’ revenue compared to that of the number of employees.
Furthermore, we noticed that, on average, the firms in our sample displays a positive
evolution in terms of revenues and net worth as firms age and over time, while the
(log) growth rate (in terms of revenues and net worth) and the profitability measures,
ROA (Return on Assets) and ROE (Return on Equity), show a downwards trend
over time. In particular, ROI (Return on Investment) appears relatively stable
over time. We also observed that young firms experience higher growth rates and
profitability levels in the early stages of their business life cycle with respect to older
firms. Also, the Laplace benchmark for the growth rate and profitability distribution
proved to be extremely robust at both aggregate and disaggregate level.

Keywords: Power-exponential distributions, Paretianity, Laplacianity, Gibrat’s
law

1. Introduction

In this paper, we explore some fundamental properties of firms’ growth using an
exhaustive data set of Italian firms. We are mainly interested in understanding
the patterns of growth of firms and the relationship between growth and different
financial structures. We begin by analyzing the evolution of the size distribution of
firms and then the growth rate distribution. We also investigate the distribution of
profitability, by considering the ROA (Return on Assets), ROE (Return on Equity)
and the ROI (Return on Investment) as measures of profitability. The analysis of
the size distribution of firms will be developed using the number of employees and
revenues as measure of size, while the analysis for the growth rate distribution is
performed in terms of employment, revenues and net worth. It is worth noting that
the analysis of the firm size, growth rate and profitability distribution would be
developed at firms’ age level and over time. In addition, the firms’ growth rate and
profitability distribution will be examined at firms’ revenue level.

Two main aspects of the industrial dynamics appears to have caught the attention
of many researchers over the last decades, namely the statistical characterization of
firm size distribution and the relation between the growth rates of firms and their
size. These two aspects seems to describe the life course of business companies.
The distribution of various economic quantities like individual income was first
discovered by the Italian economist, Vilfred Pareto, in 1896. He observed that the
distribution of individual income follows a Pareto distribution (which is a generic
name for power law distribution) and his work made a huge impact on the issue
of inequality in economics. Notably, most previous studies have mainly focus on
the validity of the well-known “law of proportionate effects”, developed by Robert
Gibrat (1931), which states that the expected growth rate of firms is independent
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of their firm size. In this paper, we will also try to investigate whether the “law of
proportionate effects” (also known as Gibrat’s law) holds for our data.

Previous studies (see for example Refs. [3], [7] and [9]) on industrial data show that
two main properties of the size distribution of firms are robust over time and even at
firms’ age level: the size distribution of firms is positively skewed and also displays
heavier long tail, especially in the upper tail. In Cirillo and Hüsler (2009) [7], the
power law behaviour in the upper tail of the size distribution has been verified for
the Italian firms using the firms’ net worth as proxy of size. We will provide similar
analysis for the Italian firms using the number of employees and revenues as measure
of size and also for different time-period.

In recent papers (see for example Refs. [1] and [3]), the distribution of firms’
growth rates and profitability have been shown to be well described by tent-shaped
distribution like the Laplace distribution. In fact, the Laplace distribution of growth
rates have been shown to be an extremely robust characteristic of the industrial
dynamics (see Refs. [3] and [4]). Furthermore, we will verify whether the Laplace
distribution is indeed a good fit for the distribution of the firms’ growth rates and
profitability.

According to Coad, Segarra and Teruel, the authors of Ref. [9], young firms are
more vulnerable to selection pressures with respect to older firms. In general, young
firms are smaller, less profitable, less productive and generate less revenue compared
to older firms. However, they experience higher growth rates and profitability levels
in the early stages of their business life cycle. We will also try to understand the
effect of the financial fragility on firms’ growth patterns (in terms of firms’ revenue
and net worth).

The structure of this paper is as follow. Section 2 gives a short description of our
dataset; Section 3 provides analysis of the size distribution of firms and the power
law behaviour in the upper tail of the size distribution; Section 4 gives an empirical
analysis of the growth rate and profitability distribution. Finally, concluding remarks
are shown in Section 5, while the R-script used for the study and the descriptive
statistics of the considered growth variables are reported in the Appendix

2. Data Description

In this paper, we use an unbalanced panel which is part of the larger CEBI data
set. CEBI is a comprehensive database first developed by the Bank of Italy and
now maintained by Cerved Group S.p.A. This database represents one of the largest
Italian industrial data set and it contains firm-level observations and balance sheets
of thousands of firms.

It also contains exhaustive data of companies, such as the year of foundation, number
of employees, costs, revenues, net worth and many other financial variables. The
subpanel contains 6047 companies per year for the observed time-period 1987 - 2006.
In our study, we focus mainly on firms that during the observed period haven’t
undergone any kind of modification of structure, such as merging or acquisition. In
other words, we restrict our study to only continuing firms over the observed period.
Furthermore, we construct a balanced panel from the raw dataset by restricting our
analysis to firms with the following conditions:

• At least one full-time employee.
• Cost of at least 1000 euros per year.
• Revenue of at least 1000 euros per year.
• A total assets of at least 1 each year.
• A net worth of at least 1000 euros per year.
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In our study, we use the balanced panel, constructed for the period 1987 - 2006,
consisting of 4596 firms each year to analyze the distributional properties of Italian
firms. This choice may introduce some bias when studying disaggregation by age.
We are aware of this, but we use this for the sake of simplicity. We will perform a
more robust analysis in future studies.

3. Firm Size Distribution

In this section, we provide a statistical analysis of the evolution of the size distribution
of Italian firms over time and at firms’ age level. In most of the literature (see
for example Ref. [6]), the size distribution of firms have been fitted with several
distributions, such as the generalized beta families. However, our aim in this section
is not to provide a plausible fit for the size distribution of Italian firms, but to
simply examine the (log) firm size distribution by studying its shape and other
relevant properties, while also paying attention to the behaviour of the upper tail
of the empirical density. We explore the properties of the size distribution of
Italian firms by considering two different proxies of firm size, namely number of
employees and revenues. In the first part of this section, we analyze the (log) firm
size distribution over time and then later in the section, we take a close look at
the firm size distribution at firms’ age level. Using Gaussian kernel estimates, we
explore the shape of (log) firm size distributions at firms’ age level and over time.

Table 1. Descriptive statistics (mean, std, min, max and median)
for the number of employees of Italian firms in our balanced panel.

Year Min. 1st Qu. Median Mean 3rd Qu. Max. Std.
1987 1.00 27.00 53.00 150.80 113.00 27960.00 736.0499
1988 1.00 27.00 53.00 148.90 110.00 25240.00 702.8524
1989 1.00 28.00 53.00 147.10 110.00 23780.00 678.6298
1990 1.00 28.00 54.00 146.50 110.00 21600.00 653.2677
1991 1.00 29.00 55.00 145.60 112.00 21880.00 642.5221
1992 2.00 30.00 56.50 146.60 113.00 21060.00 632.9956
1993 1.00 31.00 59.50 147.90 117.20 20440.00 615.5088
1994 1.00 32.00 61.00 151.60 120.00 21410.00 627.5263
1995 1.00 33.00 62.00 155.60 124.00 22970.00 643.2986
1996 1.00 33.00 63.50 156.50 124.00 22650.00 605.6839
1997 2.00 34.00 63.00 156.50 122.00 21570.00 617.4858
1998 1.00 33.00 63.00 154.90 122.00 18890.00 597.8297
1999 1.00 33.00 63.00 155.40 122.00 18540.00 587.8263
2000 1.00 34.00 65.00 159.40 126.00 19840.00 594.0596
2001 1.00 34.00 66.00 160.60 127.00 18320.00 578.8108
2002 1.00 35.00 67.00 162.30 129.00 17880.00 571.7027
2003 1.00 35.00 68.00 175.00 132.00 53130.00 958.2419
2004 1.00 35.00 69.00 177.50 135.00 53660.00 964.0045
2005 2.00 36.00 71.00 178.00 138.00 52960.00 942.6846
2006 1.00 36.00 71.00 180.40 137.00 59460.00 1012.2700
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Table 2. Descriptive statistics (mean, std, min, max and median)
for the revenues of Italian firms in our balanced panel.

Year Min. 1st Qu. Median Mean 3rd Qu. Max. Std.
1987 6.00 1991.00 3486.00 10030.00 6740.00 2448000.00 56603.19
1988 4.00 2290.00 4017.00 11440.00 7656.00 2683000.00 61404.42
1989 161.00 2749.00 4711.00 13180.00 9164.00 2773000.00 64177.44
1990 30.00 3179.00 5479.00 15080.00 10680.00 3013000.00 70975.89
1991 45.00 3497.00 5958.00 16850.00 11730.00 3263000.00 81625.30
1992 284.00 3913.00 6648.00 17890.00 13080.00 2172000.00 73158.33
1993 299.00 4502.00 7520.00 19980.00 14850.00 2142000.00 75233.06
1994 233.00 5100.00 8483.00 22530.00 16750.00 2464000.00 83477.98
1995 157.00 5476.00 9154.00 24970.00 17860.00 2688000.00 95298.34
1996 5.00 5723.00 9536.00 27230.00 19110.00 2802000.00 105007.61
1997 379.00 5933.00 9888.00 28850.00 20070.00 3099000.00 109953.85
1998 522.00 6052.00 10200.00 29970.00 20740.00 2847000.00 113845.32
1999 670.00 6726.00 11390.00 32510.00 23370.00 3043000.00 116283.03
2000 907.00 7790.00 13300.00 36710.00 27370.00 3700000.00 127849.46
2001 882.00 7848.00 13510.00 39450.00 27990.00 3907000.00 145359.26
2002 436.00 7989.00 14030.00 41830.00 29280.00 4036000.00 151814.29
2003 421.00 8309.00 14840.00 47800.00 30970.00 16060000.00 286190.89
2004 1142.00 8438.00 15040.00 49550.00 32130.00 16150000.00 290511.74
2005 986.00 9124.00 16350.00 53410.00 35000.00 17270000.00 310761.90
2006 670.00 9338.00 16770.00 59010.00 35800.00 22720000.00 397727.34

3.1. Firm size distribution over time. First, we analyze the evolution of the
(log) firm size distribution using the number of employees and revenues as proxy
of size over time and later the behaviour of the upper tail of the empirical density.
Table 1 and 2 present the main descriptive statistics of our balanced panel for the
different measures of size over the period 1987 - 2006, while Figure 1 shows the
kernel density estimates of the considered firm size in four different years obtained
using the Gaussian kernel and a bandwidth of 0.2. The size distribution of Italian
firms shown in Figure 1 appears to be consistent with the observations made in
previous studies regarding the evolution of firm size distribution. In particular, there
are at least two properties that comes to light from a simple visual inspection. First,
we observe that the (log) size distribution of Italian firms are positively skewed over
time. Second, all the distributions for the different size variables provide evidence of
heavier tails than the Gaussian distribution, especially in the right tail. Thus, the
existence of large firms on the market appears to be remarkably greater than what
one would expect with a Gaussian distribution. Moreover, there is evidence that the
right tail of the (log) revenue distribution becomes thicker over time. The fat long
tail beyond the mode of the size distribution of Italian firms seems to suggest that
the right tail of the size distribution obeys a power law. Later in this subsection,
we will provide analysis of the behaviour in the upper tail of the size distribution
of Italian firms. We observe that the size distribution of Italian firms in all cases
appears to have an unimodal structure over time.

In line with Cabral and Mata (2003) [5], the (log) employees distribution of Italian
firms presented in Figure 1 seems relatively stable over our window of observation,
but this is not quite the case when considering revenues as a measure of size. There
is a simple explanation for this behaviour in case of employees, mainly that firms
do not dramatically change their numbers of employees from one year to the next.
In contrast to the evolution of the (log) employees distribution over time, the plot
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of the (log) revenue distribution of Italian firms appears to show a shift towards the
right over time, indicating that firms in our sample increases their revenues over
time. The observation regarding the evolution of the firms’ revenue distribution is
quite explainable, because irregardless the size of firm, they have to increase their
revenues in order to survive. Also our results regarding how the size distribution (in
terms of number of employees and revenues) evolves in time is confirmed by simply
looking at the evolution of the mode over time. In particular, we notice that the
mode increase of the revenue distribution over the 20 years period of observation is
quite significant compared to the mode increase of the number of employees.

Figure 1. Kernel density estimates of (log) firm size in differ-
ent years.The kernel density is estimated with a Gaussian kernel
bandwidth equal to 0.2.
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3.1.1. Power law and power law exponent estimation. We now turn our attention to
investigating the behaviour of the upper tail of the size distribution of Italian firms.
The main aim in this subsection is to explore whether the upper tail of the firm size
distribution, which is related to the large firms and their frequency, really obeys a
power law. According to Cirillo and Hüsler, the authors of Ref. [7], understanding
the behaviour of the upper tail of the firm size distribution is vital to capturing the
market structure and the economic behaviour for the considered entities, which in
our case are the number of employees and revenues.

In general, a random variable x obeys a power law if it is drawn from the probability
distribution

(1) f(x) ∝ Cx−α,
where C,α > 0. The parameter α is known as the exponent or scaling parameter of
the power law and C is a normalization constant. In most industrial studies, the
scaling parameter of the power law falls in the range 2 < α < 3, although this is not
always true. As stated in Aoyama et al. (2010, p. 21) [2], the scaling parameter, α,
is used as a measure of inequality in the power law region. In particular, smaller
value for α indicates a fatter distribution and thus the existence of larger firms,
whereas larger value for α indicate the opposite.

Note that the density, f(x), given in (1) diverges as x→ 0. To avoid this problem,
there is a lower bound, xmin > 0, needed in order for the power law behaviour to
hold. However, provided that α > 1 (condition almost always satisfied in nature),
the normalizing constant is easily calculated to obtain the following density function

(2) f(x) =
α− 1

xmin

( x

xmin

)−α
The (complementary) cumulative distribution function of a power law is therefore
defined as

(3) F (x) =

∫ ∞
x

f(s)ds =
( x

xmin

)−α+1

Various techniques have been established in estimating the scaling parameter, α.
Note that log(1− F (x)) = C − α log x, implying that the power law distribution is
linear on a log-log plot of the survival function (also known as Zipf plot). Basically,
one concludes that the right tail of the frequency distribution follows a power law
with an exponent, α (which is given by the absolute slope of the straight line), if
there is presence of linearity in the right tail of the log-log plot of the empirical
survival function. The slope of the straight line is obtained by performing a standard
OLS regression. As discussed in Cirillo and Hüsler (2009) [7] and Clauset et al.
(2007) [8], this method and other variations on this method can be deceptive in
claiming power law behaviour that actually do not hold up under closer examination.

In estimating the scaling parameter, α, we use the maximum likelihood method,
which has proved to give accurate parameter estimates in the limit of large sample
size. Assuming that the data obeys a power law for x ≥ xmin, then the maximum
likelihood estimate of the scaling parameter is given by

(4) α̂ = 1 + n
[ n∑
i=1

log
xi
xmin

]−1
with standard error

(5) σα̂ =
α̂− 1√
n

+O
( 1

n

)
Note that xi, i = 1, 2, ..., n in (4) are the observed values of x, such that xi ≥ xmin
and n is in this case the number of observation beyond the lower bound, xmin.
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Nonetheless, to correctly estimate α, we need an accurate method for estimating
the lower bound, xmin, that represents the value above for which the power law
behaviour better hold. The two common ways of estimating xmin are either plotting
α̂ as a function of xmin and identifying the point beyond which the value appears
relatively stable or by looking for the point beyond which the Zipf plot presents
some sort of linearity, as described in Cirillo and Hüsler (2009) [7] and Clauset et
al. (2007) [8]. Unfortunately, according to the authors of Ref. [8], these approaches
can be sensitive to noise or fluctuations in the tail of a distribution and thus, affect
estimating the scaling parameter correctly.

However, the authors of Ref. [8] presented two objective methods to properly
estimate the lower bound, xmin. One of the method is based on the so-called
marginal likelihood which is specific to discrete data and the other is based on
minimizing the “distance” between the empirical data and the best-fit power law
model above xmin, which works either for discrete or continuous data. In our case,
we use the latter of the two methodologies proposed in Clauset et al. (2007) [8] to
estimate xmin, since it’s more preferable in most literature on this issue. To quantify
the distance between the two distributions, we use the Kolmogorov-Smirnov statistic
but other goodness-of-fit statistics such as the Anderson-Darling statistics (see for
example Ref. [7]) are also suitable. The Kolmogorov-Smirnov statistic is simply the
maximum distance between the empirical cumulative distribution of the actual data,
Fn(x), and the cumulative distribution of the fitted power-law model, F (x):

(6) Dn = max
x≥xmin

|Fn(x)− F (x)|,

where Fn(x) = 1
n

∑n
i=1 Ixmin≤Xi≤x is the empirical cumulative distribution function

of the data for the observations with value at least xmin and F (x) the cumulative
distribution function for the best-fit power law model in the region x ≥ xmin.

The best estimate, x̂min, is therefore the value of xmin that minimizes the Kolmogorov-
Smirnov statistic, Dn.

Figure 2. Zipf plot of firm size (in terms of number of employees)
for the years 1987 and 1990. Dashed lines represent best fit power
law model using the method described in the text.
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Figure 3. Zipf plot of firm size (in terms of number of employees)
for the years 1996 and 2006. Dashed lines represent best fit power
law model using the method described in the text.

Figure 4. Zipf plot of firm size (in terms of revenues) for the years
1987 and 1990. Dashed lines represent best fit power law model
using the method described in the text.

Figure 5. Zipf plot of firm size (in terms of revenues) for the years
1996 and 2006. Dashed lines represent best fit power law model
using the method described in the text.

We first consider a graphical analysis of the data by plotting the Zipf plot and
the mean excess function plot (also known as meplot) of our data to verify the
plausibility of power law in the upper tail of the size distribution over time and
then employ the objective method described above to estimate α and xmin in case
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of power law behaviour. Figure 2 - 5 display the Zipf plot, while Figure 6 - 7 show
the mean excess function plot of the firm size in the four considered years (1987,
1990, 1996 and 2006).

Zipf plot is a simple explanatory tool usually used to investigate whether the tails
of a distribution follows a power law behaviour. Furthermore, a straight line on the
double logarithmic scale indicates Pareto tail behaviour. In our case, there is a clear
evidence in Figure 2 - 5 that the upper tail of the size distribution of Italian firms
shows some sort of linearity on the log-log plot of the empirical survival function,
indicating at first sight a power law behaviour. In particular, it seems that the
linearity on the log-log plot of the empirical survival function is persistent over time.

The empirical mean excess function (MEF) of the sample X1, X2, ..., Xn is given by

(7) en(u) =

∑n
i=1(Xi − u)IXi>u∑n

i=1 IXi>u
,

In words: the empirical mean excess function is the sum of the excess over some
threshold u divided by the number of observations beyond u. According to Cirillo
and Hüsler, the authors of Ref. [7], the mean excess function plot is usually used in
extreme value statistics to graphically examine the presence of Generalized Pareto
distribution. Notice the upward trend in the mean excess function plots shown in
Figure 6 - 7, which is a sign of power law behaviour in the upper tail of the size
distribution as described in Cirillo and Hüsler (2009) [7].

Figure 6. Mean Excess Function plot of firm size (in terms of
employees) for four different years.
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Figure 7. Mean Excess Function plot of firm size (in terms of
revenues) for four different years.

So from a graphical point of view, one can then conclude that the power law is a
plausible fit to our data in the upper tail. The second and third column of Table 3
and 4 show the maximum likelihood estimates of the power law parameters, while
the last two columns of Table 3 and 4 present the number of firms for which power
law holds for the considered measure of size and the percentage of the firms beyond
x̂min, respectively.

First of all, note that in Table 3 the scaling parameter of the power law in case of
employees yield value close to the range, α̂ ∈ [2.19, 2.30], while in Table 4 the scaling
parameter of firms’ revenue falls in the range, α̂ ∈ [2.11, 2.21]. Figure 8 gives a
graphical view of the evolution of the Power law exponent over time for the considered
measure of size. Paraphrasing Aoyama et al. (2010, p. 23-24) [2], the inequality in
firm size increase with growth in the early stage of economic development, while in
advanced state of economic development the firm size inequality reduces. In other
words, when the economic structure is changing rapidly, the firm size inequality
grows, but reduces again when conditions stabilize. As shown in Figure 8, the
evolution of the power law exponent seems relatively stable during the twenty-year
period, independently of the proxy of size. Moreover, as observed before in the
subsection “Firm size distribution over time” the (log) revenue distribution shows
a shift towards the right over time, indicating that the lower bound x̂min is more
likely to increase over time as shown in the second column of Table 4. In fact, it
seems that the (log) revenue distribution of Italian firms is roughly invariant to
translation (as suggested in Cirillo and Hüsler (2009) [7] for the net worth of Italian
firms), since firms’ revenue is likely to increase over time. It’s more interesting
to note that, the power law exponent of firms’ revenue is relatively smaller than
the power law exponent in terms of the number of employees, indicating that the
inequality in firm size in terms of revenues is roughly higher for the firms in our
sample than the inequality in firm size in terms of employment.
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Table 3. Power law fit and Kolmogorov-Smirnov statistic of
goodness-of-fit for power law behaviour in the upper tail of employ-
ees distribution for every year.

Year x̂min α̂ Dn P-value Nx≥x̂min
%Nx≥x̂min

1987 193 2.27 ± 0.05 0.02 0.99 626 14 %
1988 228 2.30 ± 0.06 0.02 0.98 515 11 %
1989 243 2.28 ± 0.06 0.02 0.99 464 10 %
1990 115 2.22 ± 0.04 0.02 0.70 1114 24 %
1991 80 2.19 ± 0.03 0.02 0.71 1681 37 %
1992 80 2.19 ± 0.03 0.02 0.66 1711 37 %
1993 160 2.28 ± 0.05 0.02 0.96 799 17 %
1994 82 2.21 ± 0.03 0.02 0.30 1783 39 %
1995 164 2.29 ± 0.04 0.02 0.76 837 18 %
1996 140 2.26 ± 0.04 0.02 0.84 1021 22 %
1997 130 2.23 ± 0.04 0.02 0.95 1081 24 %
1998 137 2.27 ± 0.04 0.02 0.96 1028 22 %
1999 140 2.26 ± 0.04 0.02 0.97 997 22 %
2000 134 2.25 ± 0.04 0.01 0.98 1078 23 %
2001 117 2.24 ± 0.03 0.01 0.97 1285 28 %
2002 131 2.25 ± 0.04 0.02 0.94 1143 25 %
2003 143 2.27 ± 0.04 0.01 0.99 1067 23 %
2004 134 2.25 ± 0.04 0.01 1.00 1166 25 %
2005 129 2.25 ± 0.04 0.01 1.00 1247 27 %
2006 118 2.23 ± 0.03 0.01 0.97 1390 30 %

Table 4. Power law fit and Kolmogorov-Smirnov statistic of
goodness-of-fit for power law behaviour in the upper tail of revenue
distribution for every year.

Year x̂min α̂ Dn P-value Nx≥xmin
%Nx≥x̂min

1987 5261 2.18 ± 0.03 0.02 0.83 1530 33 %
1988 8835 2.20 ± 0.04 0.01 0.99 1006 22 %
1989 10283 2.21 ± 0.04 0.01 1.00 1040 23 %
1990 11178 2.20 ± 0.04 0.02 0.75 1106 24 %
1991 11261 2.19 ± 0.03 0.01 0.96 1211 26 %
1992 14542 2.21 ± 0.04 0.01 0.99 1022 22 %
1993 18676 2.21 ± 0.04 0.01 0.99 891 19 %
1994 18905 2.20 ± 0.04 0.01 0.98 1005 21 %
1995 20306 2.19 ± 0.04 0.02 0.97 1020 22 %
1996 23131 2.16 ± 0.04 0.01 1.00 937 20 %
1997 18550 2.11 ± 0.03 0.02 0.81 1242 27 %
1998 18620 2.11 ± 0.04 0.02 0.80 1291 28 %
1999 26322 2.16 ± 0.03 0.02 0.96 1018 22 %
2000 26632 2.15 ± 0.03 0.02 0.81 1180 26 %
2001 24510 2.11 ± 0.03 0.02 0.73 1310 29 %
2002 28134 2.12 ± 0.03 0.02 0.80 1208 26 %
2003 43568 2.16 ± 0.04 0.02 0.97 821 18 %
2004 47099 2.14 ± 0.04 0.02 0.91 789 17 %
2005 60990 2.16 ± 0.05 0.02 0.97 657 14 %
2006 56281 2.12 ± 0.04 0.02 0.97 750 16 %



16

Figure 8. Evolution of the Power law exponent,1987 - 2006.

3.1.2. Testing the power law hypothesis. In this subsection, we test whether our data
set in the upper tail of the size distribution are actually drawn from a hypothesized
power law distribution. The basic methods described in the previous subsection
allow us to fit a power-law distribution to our data in the upper tail of the size
distribution and provides estimates of the parameters α and xmin. Even though,
this methods are very useful, it’s not enough to verify whether the power law is a
plausible fit to the data in the upper tail. To explore if the power law is a good model
for our dataset in the upper tail of the size distribution, we perform a goodness-of-fit
test. For the goodness-of-fit test, we use the Kolmogorov-Smirnov test which we
encountered when searching for the best lower bound x̂min, but in principle another
goodness-of-fit measure can be used instead, such as the Anderson-Darling test.
We would like to underline that the obtained results with Kolmogorov-Smirnov are
quite reliable (since large sample size are used), although the Kolmogorov-Smirnov
statistic seems to be relatively insensitive to difference between distributions at the
extreme limits of the range of the quantity x. As already mentioned in the subsection
“Power law and power law exponent estimation”, the Kolmogorov-Smirnov measures
the distance between the empirical cumulative distribution of the actual data and
the cumulative distributionof the hypothesized power law model.
The null hypothesis that all the firms beyond the estimated lower bound, x̂min
(lower bound is shown in the second column of Table 3 and 4 for each year in our
panel), are indeed drawn from the hypothesized power law distribution, is rejected
at level α1

1 for
√
nD ≥ Kα1

, where Kα1
is obtained from Pr(K ≤ Kα1

) = 1− α1,
according to the Kolmogorov distribution. In our case, since the parameters of
theoretical cumulative distribution function F (x) have been estimated from the
sample itself, standard Monte Carlo techniques are used to determine the rejection
region.

The fourth and fifth column of Table 3 and 4 present, for each year in the panel, the
value of the KS-statistic and the corresponding p-value of the goodness-of-fit test,
respectively. As one can see, there is a clear evidence that the null hypothesis of a
power law in the upper tail is never rejected using 5% significance level, independently

1Note that α1 denotes the critical value and not the scaling parameter of the power law.
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of the measure of size. Therefore, one can conclude that the power law is likely to
hold for the larger firms in our sample.

3.2. Size distribution by firms’ age. Finally, we provide an empirical analysis
of the size distribution of Italian firms by age. Although our balanced panel doesn’t
include information about the firms’ age, we have knowledge about the year of
foundation and the year of observation for every firm, so it’s easy to derive the age
of the firm. Firm’s age is therefore defined as the difference between the year of
foundation and the year of observation. Based on the proxies of size used, which
are the number of employees and revenues, we classify the firms into the following
age groups: 0 - 20 (young firms), 21 - 30 (matured firms), and 31 or more years
(older firms). Table 5 presents the number of firms in each age group in five different
years, while Table 6 shows the median and standard deviation in 1996 of the main
descriptive variables from our balanced panel. We assume that all absolute variables
increase with firm age group. Therefore, firms are generally larger when they get
older and also their revenues increase and their efficiency and number of employees
are higher.

Figure 9. Histogram of the firms’ age in 1996.

In our balanced panel, the age of firms goes from a minimum of 0 year in 1987 for 3
firms to a maximum of 154 years in 2006 for only one firm. Furthermore, Figure 9
presents the age distribution for the firms in our balanced panel in the year 1996.
It appears that young firms (firms with age 0 - 20) are most numerous, indicating
probably a sample selection bias due to the balanced panel. Note that the modal
age in 1996 is 16 years.
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Table 5. Number of firms by age group.

Year Age group Number of firms
[0,20] 2950

1987 [21,30] 806
(30,∞) 840

[0,20] 2121
1993 [21,30] 1173

(30,∞) 1302
[0,20] 1508

1996 [21,30] 1555
(30,∞) 1533

[0,20] 141
2001 [21,30] 2272

(30,∞) 2183
[0,20] 5

2006 [21,30] 1503
(30,∞) 3088

Figure 10. Kernel density estimates of firm size by age in 1996.
The kernel density is estimated with a Gaussian kernel bandwidth
equal to 0.2.
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Figure 10 and Figure 11 show the Gaussian kernel density estimate of the size
distribution of Italian firms by age in the year 1996 and for the whole dataset,
respectively. From a graphical point of view, we observe how the size distribution of
Italian firms evolves with age for the considered size variables. It’s interesting to see
that the size distribution of Italian firms by age is positively skewed and presents
heavier tails, independently of the size variable as observed in most literature on
this subject. In line with previous studies (see for example Refs. [5], [6] and [9]),
it seems that the firm size distribution of the considered size variables slightly
shifts towards the right and the right tail becomes thicker as firm’s age increases,
as shown in Figure 10. However, this behaviour is clearly visible in Figure 11
when using the whole dataset instead of only the observations in the year 1996.
Furthermore, the shift in the firm size distribution by age is also verified by the
descriptive statistics shown in Table 6, as we see an increase in the median over
the age groups regardless of the size variable. A possible explanation regarding the
shift and thickness in the right tail of the size distribution as firms’ age increases
is that older firms are on average larger, so they are more likely to increase their
size in terms of revenues and number of employees with respect to younger firms
in a sort of natural self-reinforcing process. Figure 10 - 11 also shows that the size
distribution of Italian firms by age is unimodal regardless of the size variable, as
observed in Cirillo (2010) [6]. However, from a visual inspection, the skewness of
the size distribution by age doesn’t seems to diminish as firms age, suggested in
Cabral and Mata (2003) [5] and Coad, Segarra and Teruel (2012) [9]. This may be
due to the quality of our sample.

Table 6. Descriptive statistics (Median and standard deviation in
1996). Standard deviation are given in the parentheses.

[0,∞) [0,20] [21,30] (30,∞)
Employees 63.5 50.5 60 87

(605.7) (256.7) (661.4) (763.2)
Revenues 9536 8869.5 8651 11435

(105007.60) (59580.71) (90706.80) (144789.51)
ROA 0.299 0.317 0.302 0.275

(10.477) (17.360) (5.340) (1.954 )
ROE 0.253 0.276 0.270 0.223

(0.867) (1.032) (0.592) (0.921)
ROI 0.052 0.053 0.051 0.052

(0.108) (0.102) (0.099) (0.120)
Growth variables

Employees 0 0 0 0
(0.085) (0.082) (0.092) (0.080)

Revenues 0.023 0.022 0.025 0.022
(0.099) (0.085) (0.078) (0.126)

Net worth 0.043 0.043 0.044 0.042
(0.113) (0.116) (0.108) (0.114)
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Figure 11. Kernel density estimates of firm size by age for the
whole dataset. The kernel density is estimated with a Gaussian
kernel bandwidth equal to 0.5.

4. Empirical analysis of (log) growth rates and profitability

In this section, we explore the behaviour of the distribution of the firms’ (log)
growth rate. In particular, we want to investigate the evolution of the firms’ (log)
growth rate as firms’ age, firms’ revenue and over time. We will also pay attention
to the firms’ performance by looking at the distribution of the profitability. We will
employ the same analysis as in firms’ (log) growth rates to the profitability, since
the profitability and the growth rates have the same functional form. Furthermore,
we examine whether the empirical, Gibrat’s law (i.e. that expected growth rate
does not depend on the firm size) holds true for our data.

In most literature on industrial dynamics (see for example Refs. [1] and [3]), the
(log) growth rates and profitability distribution seem to be characterized by tent-
shaped distribution like the Laplace distribution. We analyze the (log) growth
rates distribution by considering the following measure of size: the number of
employees, revenues and net worth, while using the following measures of profitability,
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namely ROA (Return on Assets), ROE (Return on Equity) and ROI (Return on
Investment). In contrast to the methodology proposed in most studies, we take a
different approach by directly fitting the Laplace distribution to the firms’ (log)
growth rates and profitability distribution of Italian firms as it seems that the
methodology applied in most studies eventually favours the Laplace distribution to
other possible distributions.

A random variable x is said to follow a Laplace (µ, b) if its density function is given
by

(8) f(x|µ, b) =
1

2b
exp
(
−|x− µ|

b

)
where µ is the location parameter and b > 0 the scale parameter, which is sometimes
referred to as the diversity.

Its cumulative distribution function is expressed as:

(9) F (x) =

∫ x

−∞
f(t|µ, b)dt =

1

2
+

1

2
sgn(x− µ)

[
1− exp

(
−|x− µ|

b

)]
where sgn(x) is the sign function or signum function of a real-valued number x.

The structure of this section is as follow. We first analyze both the firms’ (log)
growth rates distribution and the profitability distribution over time and then later
in this section, investigate the impact of firms’ age and firms’ revenue on both
distributions.

4.1. Empirical analysis of (log) growth rates and profitability over time.

4.1.1. Empirical analysis of (log) growth rates over time. In this subsection, we
present the empirical analysis of (log) growth rates of Italian firms over time. In
particular, we investigate whether the Laplace distribution is a reasonable benchmark
for the (log) growth rate distribution of Italian firms. We define the logarithmic
growth rate as follow:

g = log(Si,t)− log(Si,t−1)

where Si,t stands for the firm size (in terms of employment, revenues and net worth)
of firm i at time t.

The variable, g, defined above represents the rate at which a firm increases or
decreases its size (in terms of employment, revenue and net worth). We will use the
maximum likelihood method to estimate the parameters of the Laplace distribution
and to verify if indeed the Laplace distribution is plausible fit for both distributions
(firms’ (log) growth rates and profitability distribution), we use the Kolmogorov-
Smirnov test as a goodness-of-fit test. Note that the maximum likelihood method and
the Kolmogorov-Smirnov test will be used throughout this section to estimate the
parameters of the Laplace distribution and to check whether the Laplace distribution
is a good fit for our data, respectively. The maximum likelihood estimate of µ is
the median of the sample; thus

(10) µ̂ =

 x((n+1)/2) if n is odd;

(x(n/2) + x((n/2)+1))/2 if n is even.

and the maximum likelihood estimate of b is given as

(11) b̂ =
1

n

n∑
i=1

|xi − µ̂|

where x(1), x(2), ..., x(n) are ordered data and n in this case is the number of obser-
vations in our whole dataset.



22

Table 7. Summary results of the maximum likelihood estimation
and the Kolmogorov-Smirnov test of the Laplace distribution for
the employment (log) growth rates.

Year µ̂ b̂ KS-statistic P-value
1987/1988 0 ± 0.0002 0.04 ± 0.0007 0.604 0.328
1988/1989 0 ± 0.0002 0.05 ± 0.0007 0.524 0.534
1989/1990 0 ± 0.0002 0.05 ± 0.0007 0.693 0.488
1990/1991 0 ± 0.0002 0.05 ± 0.0007 0.557 0.414
1991/1992 0 ± 0.0003 0.05 ± 0.0007 0.492 0.498
1992/1993 0.01 ± 0.0008 0.05 ± 0.0007 0.547 0.398
1993/1994 0.01 ± 0.0008 0.04 ± 0.0007 0.569 0.360
1994/1995 0 ± 0.0003 0.04 ± 0.0006 0.479 0.550
1995/1996 0 ± 0.0002 0.04 ± 0.0006 0.50 0.456
1996/1997 0 ± 0.0002 0.04 ± 0.0006 0.536 0.380
1997/1998 0 ± 0.0003 0.04 ± 0.0006 0.682 0.322
1998/1999 0 ± 0.0003 0.04 ± 0.0006 0.471 0.568
1999/2000 0.01 ± 0.0008 0.04 ± 0.0006 0.452 0.766
2000/2001 0 ± 0.0002 0.04 ± 0.0005 0.512 0.426
2001/2002 0 ± 0.0003 0.03 ± 0.0005 0.502 0.400
2002/2003 0 ± 0.0006 0.04 ± 0.0005 0.469 0.462
2003/2004 0 ± 0.0002 0.03 ± 0.0005 0.476 0.568
2004/2005 0 ± 0.0003 0.04 ± 0.0006 0.50 0.744
2005/2006 0 ± 0.0002 0.04 ± 0.0006 0.533 0.492

Table 8. Summary results of the maximum likelihood estimation
and the Kolmogorov-Smirnov test of the Laplace distribution for
the (log) growth rate of firms’ revenue.

Year µ̂ b̂ KS-statistic P-value
1987/1988 0.06 ± 0.001 0.07 ± 0.001 0.602 0.382
1988/1989 0.07 ± 0.001 0.07 ± 0.001 0.515 0.410
1989/1990 0.06 ± 0.001 0.06 ± 0.001 0.507 0.440
1990/1991 0.04 ± 0.001 0.06 ± 0.001 0.460 0.732
1991/1992 0.04 ± 0.001 0.05 ± 0.001 0.581 0.386
1992/1993 0.06 ± 0.001 0.06 ± 0.001 0.427 0.608
1993/1994 0.05 ± 0.001 0.05 ± 0.001 0.495 0.522
1994/1995 0.03 ± 0.001 0.05 ± 0.001 0.506 0.554
1995/1996 0.02 ± 0.001 0.06 ± 0.001 0.793 0.344
1996/1997 0.02 ± 0.001 0.05 ± 0.001 0.674 0.376
1997/1998 0.01 ± 0.001 0.06 ± 0.001 0.622 0.390
1998/1999 0.05 ± 0.001 0.06 ± 0.001 0.419 0.568
1999/2000 0.06 ± 0.001 0.06 ± 0.001 0.611 0.412
2000/2001 0.01 ± 0.001 0.06 ± 0.001 0.364 0.684
2001/2002 0.02 ± 0.001 0.05 ± 0.001 0.568 0.412
2002/2003 0.02 ± 0.001 0.05 ± 0.001 0.448 0.536
2003/2004 0.01 ± 0.001 0.05 ± 0.001 0.422 0.726
2004/2005 0.03 ± 0.001 0.05 ± 0.001 0.412 0.766
2005/2006 0.01 ± 0.001 0.05 ± 0.001 0.527 0.504
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Table 9. Summary results of the maximum likelihood estimation
and the Kolmogorov-Smirnov test of the Laplace distribution for
the (log) growth rate of firms’ net worth.

Year µ̂ b̂ KS-statistic P-value
1987/1988 0.086 ± 0.002 0.11 ± 0.002 0.385 0.564
1988/1989 0.027 ± 0.001 0.07 ± 0.001 0.552 0.434
1989/1990 0.032 ± 0.001 0.06 ± 0.001 0.403 0.710
1990/1991 0.039 ± 0.001 0.06 ± 0.001 0.621 0.308
1991/1992 0.037 ± 0.001 0.06 ± 0.001 0.50 0.492
1992/1993 0.033 ± 0.001 0.06 ± 0.001 0.458 0.540
1993/1994 0.033 ± 0.001 0.06 ± 0.001 0.510 0.454
1994/1995 0.032 ± 0.001 0.05 ± 0.001 0.510 0.384
1995/1996 0.043 ± 0.001 0.06 ± 0.001 0.458 0.332
1996/1997 0.009 ± 0.001 0.06 ± 0.001 0.477 0.676
1997/1998 0.009 ± 0.001 0.06 ± 0.001 0.433 0.718
1998/1999 0.018 ± 0.001 0.06 ± 0.001 0.451 0.642
1999/2000 0.028 ± 0.001 0.07 ± 0.001 0.454 0.554
2000/2001 0.018 ± 0.001 0.06 ± 0.001 0.533 0.418
2001/2002 0.016 ± 0.001 0.05 ± 0.001 0.446 0.754
2002/2003 0.015 ± 0.001 0.06 ± 0.001 0.478 0.414
2003/2004 0.017 ± 0.001 0.06 ± 0.001 0.540 0.502
2004/2005 0.023 ± 0.001 0.07 ± 0.001 0.472 0.652
2005/2006 0.015 ± 0.001 0.06 ± 0.001 0.469 0.688

The first two columns of Table 7 - 9 contain the maximum likelihood estimates of the
two parameters of the Laplace distribution for each year of our observed time-period,
while the third and fourth column present the value of the Kolgomorov-Smirnov
statistic and the corresponding p-value, respectively. Note, however, that all p-values
in this section are computed with the non-parametric method, bootstrapping (500
replications) since the parameters of the Laplace distribution are estimated from
the data.
Figure12 presents the empirical density of the (log) growth rates for the considered
size variables in four different years. In line with previous studies (see for example
Refs. [6] and [9]), we observe that the distribution of the (log) growth rates over
time irrespective of the used proxy are characterized by a tent-shaped distribution
and it also displays heavier tails. From a visual inspection and Table 7 - 9, it seems
that the (log) growth rates of the considered size variables are persistent around
zero, indicating that most firms in our sample have relatively stable growth rates (in
terms of employment, revenues and net worth) over time while a small proportion
of the firms experience rapid growth or decline. Interestingly, we observe from the
second plot of Figure12 that right tail of the (log) growth rate distribution of the
firms’ revenue shows negative dependence of growth over time. In particular, we
notice that the right tail becomes thinner over time, indicating that the number of
firms to experience faster (log) growth rates in terms of revenues decreases over time.
Also the heavier tail of (log) growth rate distribution is due to the involvement of
relatively frequent extremal growth events as observed in Bottazzi et al. (2007) [3]
and Jacoby et al. (2007) [4] for the Italian and French manufacturing firms.
Moreover, from the fourth column of Table 7 - 9, it’s clear that the Kolgomorov-
Smirnov does not rejects the Laplacian hypothesis at 5% significance level for the
considered measure of size.
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Figure 12. Empirical (log) growth rates densities of firm size in
4 different years. (Note the log scale on the y-axis.) Solid lines
show the Laplace distribution fit for the corresponding annual (log)
growth rates given in the same colour.
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Therefore, one can conclude that a tent-shape distribution like the Laplace distri-
bution is a plausible fit for the (log) growth rates distribution of Italian firms as
observed in most literature on industrial dynamics.

We now take a closer look into the evolution of the the (log) growth rates over time.
The median values will be used to investigate the evolution of the (log) growth rates
over time rather than the mean values, since the mean values are heavily influenced
by extreme growth events. We will, however, analyze the evolution of the (log)
growth rates over time for the revenues and net worth, but not for the employment
since most firms do not dramatically change their number of employees from 1 year
to the next. Therefore, it does not make sense to investigate the employment growth
rate, since the median of the employment growth rate appears to be almost zero
over time (see Table 16 - 18 given in the Appendix for the descriptive statistics of
the (log) growth rates over time). Figure13 gives a graphical view of the evolution
of the (log) firm size and growth rates over time respectively for the firms’ revenues
and net worth. Based on a graphical analysis, there seems to be, on average, a
positive evolution of the firms’ revenue and net worth over time. This positive
evolution of the median reflects on the pressure exercised by the market on the firms
to increase their revenue and also their net worth and thus to be able to survive
the competitive environment. From an economic theory point of view, this could
also suggest the presence of endogenous growth. Interestingly, we observe from the
second plot of Figure13 that the (log) growth rates of both the firms’ revenues and
net worth display, on average, a downwards trend over time.

4.1.2. Empirical analysis of the profitability over time. In this subsection, we provide
an empirical analysis of the profitability distribution over time using the following
measures, namely ROA (Return on Assets, defined as the ratio of the earnings
before interest and taxes (EBIT) to total assets, whereby the total assets is defined
as the sum of fixed and financial assets), ROE (Return on Equity, defined as the
product of ROA and the ratio of total assets to total equity, where net worth is
used as a proxy of equity) and ROI (Return on Investment, defined as the ratio
of the earnings before interest and taxes (EBIT) to total costs). We employ the
same methodology used in the preceding subsection to analyze the evolution of the
profitability over time.

Firms are always looking for ways to improve their performances and thus maximizing
their profits. Paraphrasing Alfarano et al. (2012) [1], it seems that firms maximize
their profit by seeking increases in market share or revenues through product
differentiation, price undercutting, advertising, customer relationship management,
etc. At the same time, firms continuously seek to reduce costs, if possible by
downsizing operations, by exploiting increasing returns to scale, or by adopting or
inventing cost-cutting technologies. In that sense, the profitability seems to play a
crucial role in the financial performance of a firm. The ROA (Return On assets) is
an indicator of how profitable a company’s assets are in generating revenue while
the ROI (Return On Investment) is a performance measure used to evaluate the
efficiency of an investment. The ROE (Return On Equity), however, measures the
company’s efficiency at generating profits from every unit of shareholders’ equity.
Furthermore, Figure 14 displays the evolution of the median values of the considered
measure of profitability over time. It seems that both the ROA and ROE relatively
decreases over time, especially in the period 1991 - 2006, while on the other hand
the ROI appears to be roughly stable over time and varies around the value 0.06, as
shown in Figure 14. The stability of the ROI over time seems to suggests that, on
average, the revenue generated by firms in relation to the capital invested do not
differ much from each other.
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Figure 13. Evolution of the median values of the (log) firm size
and growth rates over time. Note that the x-axis runs from 1987 to
2006 for the first plot and from 1988 to 2006 for the second plot.

Figure 14. Evolution of the median values of the profitability
over time. Note that x-axis runs from 1988 - 2006.
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Table 10. Summary results of the maximum likelihood estimation
and the Kolmogorov-Smirnov test of the Laplace distribution for
the ROA (Return on Assets).

Year µ̂ b̂ KS-statistic P-value
1987 0.35 ± 0.01 1.19 ± 0.02 0.60 0.53
1988 0.30 ± 0.01 0.91 ± 0.01 0.59 0.47
1989 0.32 ± 0.01 1.03 ± 0.02 0.84 0.47
1990 0.36 ± 0.01 1.10 ± 0.02 0.79 0.45
1991 0.45 ± 0.01 1.01 ± 0.01 0.75 0.41
1992 0.39 ± 0.01 0.97 ± 0.01 0.67 0.52
1993 0.37 ± 0.01 0.84 ± 0.01 0.70 0.48
1994 0.36 ± 0.01 0.89 ± 0.01 0.85 0.48
1995 0.35 ± 0.01 0.86 ± 0.01 0.56 0.58
1996 0.30 ± 0.01 0.91 ± 0.01 0.76 0.59
1997 0.28 ± 0.01 0.75 ± 0.01 0.70 0.46
1998 0.30 ± 0.01 0.73 ± 0.01 0.77 0.41
1999 0.32 ± 0.01 0.72 ± 0.01 0.72 0.46
2000 0.35 ± 0.01 0.71 ± 0.01 0.78 0.44
2001 0.32 ± 0.01 0.69 ± 0.01 0.66 0.52
2002 0.29 ± 0.01 0.61 ± 0.01 0.85 0.41
2003 0.27 ± 0.01 0.62 ± 0.01 0.79 0.36
2004 0.27 ± 0.01 0.61 ± 0.01 0.83 0.50
2005 0.21 ± 0.01 0.61 ± 0.01 0.66 0.48
2006 0.22 ± 0.01 0.74 ± 0.01 0.84 0.36

Figure 15 shows the empirical densities of the considered measures of profitability
in four different years. Notice that the empirical densities of the profitability display
similar properties as the (log) growth rates densities. Visual inspection shows
that the distribution of the considered measures of profitability are described by a
tent-shaped distribution and possesses heavier tails. It is interesting to note that the
ROA distribution displays much heavier right tails than the distribution of the other
considered measure of profitability and also the right tail of the ROA distribution
becomes thinner over time, suggesting that a noticeable amount of firms in our
sample are more likely to generate higher revenue from their assets and that this
amount of firms decreases over time.
The dispersion of the profitability (particularly for the ROA and ROE) seems to
be much higher than that of the considered (log) growth rates (which is apparent
from a simple comparison between the estimated scale parameters of the considered
(log) growth rates and the measures of profitability). In line with Erlingsson et
al. (2012) [10], the average profitability ratio appears to be less volatile than the
average (log) growth rate, especially when the firms’ revenue is used as a proxy of
size (as shown in Figure 13 and Figure 14), suggesting that the persistency in the
profitability of firms are much higher than the way firms manage their assets. As
pointed out in Erlingsson et al. (2012) [10], the profitability of firms is presumably
the driving force of the firms’ dynamics and not the way they grow or decline over
time.
Fitting a Laplace distribution to the distribution of profitability, we use the maximum
likelihood method to estimate the parameters of the Laplace distribution and then
use the Kolmogorov-Smirnov to perform a goodness-of-fit test. Table 10 - 12 presents
the results of the maximum likelihood estimation and also the summary results of
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Year µ̂ b̂ KS-statistic P-value
1987 0.308 ± 0.008 0.55 ± 0.01 0.50 0.70
1988 0.258 ± 0.005 0.43 ± 0.01 0.49 0.70
1989 0.267 ± 0.007 0.48 ± 0.01 0.91 0.28
1990 0.297 ± 0.006 0.53 ± 0.01 0.85 0.44
1991 0.343 ± 0.005 0.41 ± 0.01 0.56 0.65
1992 0.309 ± 0.007 0.41 ± 0.01 0.53 0.70
1993 0.288 ± 0.006 0.38 ± 0.01 0.79 0.36
1994 0.291 ± 0.006 0.35 ± 0.01 0.66 0.35
1995 0.294 ± 0.006 0.35 ± 0.01 0.73 0.33
1996 0.253 ± 0.006 0.34 ± 0.01 0.52 0.50
1997 0.263 ± 0.006 0.37 ± 0.01 0.67 0.36
1998 0.273 ± 0.007 0.43 ± 0.01 0.51 0.55
1999 0.294 ± 0.006 0.39 ± 0.01 0.68 0.33
2000 0.324 ± 0.006 0.47 ± 0.01 0.95 0.36
2001 0.305 ± 0.006 0.44 ± 0.01 0.92 0.33
2002 0.270 ± 0.006 0.43 ± 0.01 0.69 0.48
2003 0.265 ± 0.007 0.41 ± 0.01 0.82 0.31
2004 0.253 ± 0.005 0.37 ± 0.01 0.71 0.50
2005 0.197 ± 0.006 0.36 ± 0.01 0.62 0.65
2006 0.194 ± 0.005 0.37 ± 0.01 0.77 0.34

Table 11. Summary results of the maximum likelihood estimation
and the Kolmogorov-Smirnov test of the Laplace distribution for
the ROE (Return on Equity).

the goodness-of-fit tests that we have performed for each year of our observed time-
period. In line with Alfarano et al. (2012) [1], the Laplace distribution seems to be
indeed a good fit for the distribution of the considered measures of profitability, since
the Kolmogorov-Smirnov test generally does not reject the Laplacian hypothesis at
5% significance level.

4.2. Empirical analysis of (log) growth rates and profitability by age and
revenue. As shown in most previous studies on the dynamics of firms, financial
constraints have quite an impact on firms’ investment decision and thus, the growth
of firms. In fact, paraphrasing Coad, Segarra and Teruel, the authors of Ref. [9],
young firms have less financial resources and therefore presumably suffer from a
higher need of external finance. Furthermore, the capital structure of a firm changes
as firms’ age increases. Especially, younger firms are very limited in obtaining
internal equity with respect to older firms. On the other hand, established firms
however gain access to resources from their own productive activity and also sources
of external finance. Hence, firms tend to increases their internal equity over time
and also the equity capital and internal reserves tends to play a more crucial role as
firm matures. According to Coad, Segarra and Teruel, the authors of Ref. [9], the
internal cash-flow increases over time, specially, among firms with age beyond 50
years. For more information about the effect of firms’ age on the firms’ performance,
see Coad, Segarra and Teruel (2012) [9].
In this section, we analyze the impact of firms’ age and revenue on both the (log)
growth rate and profitability distribution. Also, we will be analyzing the evolution
of the firms’ (log) growth rates and profitability as firms’ age. We will briefly pay
attention to the implications of the financial market on the growth of firms.
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Year µ̂ b̂ KS-statistic P-value
1987 0.059 ± 0.001 0.079 ± 0.001 0.72 0.38
1988 0.055 ± 0.001 0.071 ± 0.001 0.57 0.47
1989 0.053 ± 0.001 0.070 ± 0.001 0.62 0.53
1990 0.056 ± 0.001 0.069 ± 0.001 0.52 0.42
1991 0.068 ± 0.001 0.071 ± 0.001 0.48 0.42
1992 0.061 ± 0.001 0.071 ± 0.001 0.67 0.38
1993 0.054 ± 0.001 0.069 ± 0.001 0.76 0.38
1994 0.053 ± 0.001 0.065 ± 0.001 0.57 0.37
1995 0.055 ± 0.001 0.065 ± 0.001 0.71 0.30
1996 0.052 ± 0.001 0.064 ± 0.001 0.50 0.51
1997 0.053 ± 0.001 0.065 ± 0.001 0.56 0.39
1998 0.061 ± 0.001 0.070 ± 0.001 0.69 0.38
1999 0.059 ± 0.001 0.067 ± 0.001 0.58 0.42
2000 0.062 ± 0.001 0.068 ± 0.001 0.71 0.42
2001 0.062 ± 0.001 0.068 ± 0.001 0.59 0.41
2002 0.054 ± 0.001 0.066 ± 0.001 0.57 0.37
2003 0.054 ± 0.001 0.067 ± 0.001 0.70 0.32
2004 0.053 ± 0.001 0.066 ± 0.001 0.58 0.44
2005 0.044 ± 0.001 0.063 ± 0.001 0.59 0.44
2006 0.044 ± 0.001 0.064 ± 0.001 0.60 0.36

Table 12. Summary results of the maximum likelihood estimation
and the Kolmogorov-Smirnov test of the Laplace distribution for
the ROI (Return on Investment).

4.2.1. Empirical analysis of (log) growth rates and profitability ratios by age. We
provide in this subsection, the empirical analysis of the firms’ (log) growth rates and
profitability distribution of Italian firms by age. In particular, we turn to explore
the relationship between (log) growth rates (or profitability) and the firms’ age for
the considered size variables. Figure 16 and 17 show the empirical densities of the
(log) growth rates and profitability of the age groups in the year 1996, respectively.
From a graphical point of view, the (log) growth rates and profitability distribution
of the age groups seems to be tent-shaped with a strong peak roughly around
zero, suggesting that most Italian firms in the classified age groups have relatively
stable profitability level and (log) growth rates irrespective of the measure of size.
Our results are, in fact, consistent with observation made in previous studies (see
Refs. [1], [6] and [9]), concerning the shape of the firms’ (log) growth rates and
profitability distribution at the firms’ age level.
In terms of employment and revenues, we observe a significant age dependency in the
upper tail of the (log) growth rates distribution, while the left tail seems to be roughly
independent to age in the case of employments. Our results are well in accordance
with similar findings on the Spanish manufacturing firms (see Coad, Segarra and
Teruel (2012) [9]). This behaviour suggests that younger firms have presumably
higher chances of experiencing higher growth rates in terms of employment and
revenues, while in the case of employment, age seems to be irrelevant when looking
at the patterns of decline. However, when considering revenues as a measure of
size, we find an interesting property regarding the left tail of the (log) growth rate
distribution. In particular, we find that younger and matured firms are less likely to
experience decline with respect to older firms. From a visual inspection, the firms’
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age seems to play no role in the (log) growth rates of the firms’ net worth, since
both younger and older firm experience the same probability of growth and decline.
We provide a graphical analysis of the profitability by age. We observe from the
first plot of Figure 17 that the ROA distribution shifts towards the right over the
age groups, indicating a positive dependence of ROA on firms’ age. In other words,
the ROA distribution of younger firms are relatively concentrated on lower values of
the return on assets with respect to older firms. On the other hand, the second and
third plot of Figure 17 seems to suggest that firms’ age have negligible effect on the
ROE and ROI distribution. We, however, stress that our results may be affected by
sample selection bias and thus, should be interpreted with caution.

Table 13. Summary results of the maximum likelihood estimation
and the Kolmogorov-Smirnov test of the Laplace distribution for
the age groups.

Variable Age group µ̂ b̂ KS-statistic P-value
[0,20] 0.0003 ± 0.0004 0.0427 ± 0.0011 0.491 0.402

Employment growth rates [21,30] 0 ± 0.0004 0.0403 ± 0.0010 0.450 0.674
[31,∞) - 0.0002 ± 0.0004 0.0353 ± 0.0009 0.672 0.404
[0,20] 0.0221 ± 0.0017 0.0582 ± 0.0015 0.469 0.380

Growth rates of revenue [21,30] 0.0249 ± 0.0017 0.0542 ± 0.0014 0.418 0.476
[31,∞) 0.0215 ± 0.0016 0.0559 ± 0.0014 0.798 0.234
[0,20] 0.0430 ± 0.0019 0.0652 ± 0.0017 0.380 0.738

Growth rates of net worth [21,30] 0.0436 ± 0.0015 0.0641 ± 0.0016 0.480 0.384
[31,∞) 0.0423 ± 0.0017 0.0654 ± 0.0017 0.397 0.416
[0,20] 0.3169 ± 0.0159 1.2915 ± 0.0333 0.877 0.286

ROA [21,30] 0.3024 ± 0.0126 0.8057 ± 0.0204 0.916 0.342
[31,∞) 0.2753 ± 0.0156 0.6397 ± 0.0163 0.839 0.388
[0,20] 0.2765 ± 0.0087 0.3878 ± 0.0010 0.583 0.416

ROE [21,30] 0.2703 ± 0.0067 0.3250 ± 0.0082 0.593 0.374
[31,∞) 0.2229 ± 0.0061 0.3193 ± 0.0082 0.478 0.610
[0,20] 0.0532 ± 0.0016 0.0617 ± 0.0016 0.553 0.388

ROI [21,30] 0.0516 ± 0.0017 0.0624 ± 0.0016 0.411 0.442
[31,∞) 0.0520 ± 0.0015 0.0688 ± 0.0018 0.493 0.418

We examine whether the Laplace distribution is a good fit for the considered firms’
(log) growth rates and profitability distribution at firms’ age level. In particular,
we use the maximum likelihood method to estimate the parameters of the Laplace
distribution and then use the Kolmogorov-Smirnov to perform a goodness-of-fit
test. Table 13 presents the results of the maximum likelihood estimation and the
goodness-of-fit test. It appears that the Laplace distribution is indeed a plausible
fit for the conditional firms’ (log) growth rates and profitability ratio distribution,
because the Kolmogorov-Smirnov test does not reject the Laplacian hypothesis at
5% significance level.
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Figure 15. Profitability densities in 4 different years. (Note the
log scale on the y-axis.) Solid lines show the Laplace distribution fit
for the corresponding annual profitability given in the same colour.
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Figure 16. Empirical densities of (log) growth rates in 1996 for
the three age groups. (Note the log scale on the y-axis.)
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Figure 17. Empirical densities of the profitability in 1996 for the
three classified age groups. (Note the log scale on the y-axis.)
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Figure 18. Evolution of the median values of the (log) growth
rates by age in 1993. Note that the firms’ age in 1993 runs from 6
years to 50 years and the rest of the years have been cut.

Next, we explore the evolution of the (log) growth rates (in terms of the revenues
and net worth) and profitability (in terms of ROA, ROE and ROI) as firms’ age
using a graphical analysis. Figure 18 displays the evolution of the median values
of the (log) firm size and growth rates as firms’ age in 1993 respectively, while
Figure 19 shows the evolution of the median values of the considered measures of
profitability. From the first plot of Figure 18, we observe a relatively upward trend
in the evolution of the (log) firm size, indicating that on the average young firms
have less (log) revenues and (log) net worth with respect to older firms that were
active in the market in the year 1993. This behaviour also shows that, on average,
firms are quite able to cope with the market pressure (so increasing their revenues
and net worth in order to survive), and are also capable of growing (in terms of
revenues and net worth) over time. Visual inspection shows that firms experience
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Figure 19. Evolution of the median values of the profitability by
age in 1993. Note that the firms’ age in 1993 runs from 6 years to
50 years and the rest of the years have been cut.

relatively higher profitability levels in their earlier stages, while their profitability
roughly stabilizes as age increases, as shown in Figure 19. One possible explanation
of this behaviour in the evolution of the firms’ profitability is that younger firms are
less capital intensive, therefore, generally have higher profitability levels than older
firms.
As pointed out in most literature (see for example Coad, Segarra and Teruel
(2012) [9]), younger firms have in general higher expected growth rates than older
firms. In fact, the second plot of Figure 18 confirms that younger firms indeed
experience faster growth rates (in terms of revenues and net worth) than older firms.

4.2.2. Empirical analysis of (log) growth rates and profitability by revenue. In this
subsection, we analyze the impact of the firms’ revenue on both firms’ (log) growth
rates and profitability distribution of Italian firms. In fact, we will be investigating
whether the distribution of both the (log) growth rates (in terms of employment and
net worth) and the profitability (in terms of ROA, ROE and ROI) changes with the
firms’ revenue. We segregate the firms into categories by dividing the firms’ revenue
into four groups, namely [0, 5 ∗ 105] (small firms), (5 ∗ 105, 1.5 ∗ 106] (medium firms),
(1.5 ∗ 106, 3 ∗ 106] (medium-large firms) and (3 ∗ 106,∞) (larger firms). Table 14
shows the number of firms in each revenue group. We assume that firms with larger
revenues are in general larger. From Table 14, it’s clear that our sample consist
mostly of small firms, which are firms with revenue in the interval, [0, 5 ∗ 105]. We
therefore stress that our results are more likely affected by sample selection bias
and thus, must be interpreted carefully.
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Table 14. Number of firms by revenues group.

Year Revenue group Number of firms
[0, 5 ∗ 105] 91280

(5 ∗ 105, 1.5 ∗ 106] 490
1987 - 2006 (1.5 ∗ 106, 3 ∗ 106] 125

(3 ∗ 106,∞) 25
[0, 5 ∗ 105] 4588

(5 ∗ 105, 1.5 ∗ 106] 6
1987 (1.5 ∗ 106, 3 ∗ 106] 2

(3 ∗ 106,∞) 0
[0, 5 ∗ 105] 4579

(5 ∗ 105, 1.5 ∗ 106] 13
1993 (1.5 ∗ 106, 3 ∗ 106] 4

(3 ∗ 106,∞) 0
[0, 5 ∗ 105] 4567

(5 ∗ 105, 1.5 ∗ 106] 23
1996 (1.5 ∗ 106, 3 ∗ 106] 6

(3 ∗ 106,∞) 0
[0, 5 ∗ 105] 4552

(5 ∗ 105, 1.5 ∗ 106] 33
2001 (1.5 ∗ 106, 3 ∗ 106] 9

(3 ∗ 106,∞) 2
[0, 5 ∗ 105] 4525

(5 ∗ 105, 1.5 ∗ 106] 50
2006 (1.5 ∗ 106, 3 ∗ 106] 16

(3 ∗ 106,∞) 5

Figure 20 and 21 display the empirical densities of the firms’ (log) growth rates
and profitability by firms’ revenue for the whole sample. Despite the biased sample,
it’s interesting to notice that the distribution of the firms’ (log) growth rates and
profitability is described by a tent-shaped distribution with heavier tails and a
strong peak around zero (this observation is clearly visible when considering the
small firms). Basing our analysis on the distribution of the small firms for both
the firms’ (log) growth rates and profitability, we observe that the employment
(log) growth rates are relatively less spread out compared to (log) growth rates

distribution of the firms’ net worth (see scaling parameter, b̂, given in Table 15),
indicating that the distribution of employment (log) growth rates are much more
concentrated around zero than the (log) growth rates distribution of the firms’ net
worth.
Regarding the distribution of the profitability, one observes that the dispersion
of the ROA is much higher than that of the ROE and ROA in the case of small

firms (compare scaling parameter, b̂, given in Table 15). More interestingly, we
observe a positively skewed ROA distribution and thus, indicates the emergence
of an underlying asymmetric conditional distribution of the ROA. The positively
skewed ROA distribution indicates that a noticeable amount of the firms in our
sample experience higher return on assets. However, the emergence of an underlying
asymmetric distribution of the ROA contradicts with the results shown in Table
15, which suggest that the ROA distribution is symmetric. Moreover, we observe
from the first plot of Figure 21 that the right tail of the ROA distribution displays
some dependence on firms’ revenue over the first three revenue groups, while the
distribution of the ROA for the third and fourth revenue group seems to roughly
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collapse into each other, suggesting that the ROA stabilizes as firms become older.
The positive dependence of profitability on firms’ revenue over the first three revenue
groups indicates that revenue increases the probability of firms experiencing higher
profitability levels in terms of ROA.

Figure 20. Empirical densities of the growth rates for the whole
dataset in the four revenue groups. Note the log scale on the y-axis
and also that medium 1 stand for medium firms, while medium2
stands for medium-large firms. Red dashed line shows the Laplace
fit of the small firms.

We also examine whether the Laplace distribution is a good fit for the considered
firms’ (log) growth rates and profitability distribution at firms’ revenue level. Table
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15 presents the results of the maximum likelihood estimation and the goodness-of-fit
test for only the small firms (which are firms with revenue in the interval, [0, 5∗105]),
since we have enough data for this category and also it seems that the obtained
results for the rest of the revenue group are not reliable due to sample selection bias.
Nevertheless, it appears that the Laplace distribution is a good fit for the conditional
firms’ (log) growth rates and profitability distribution, because the Kolmogorov-
Smirnov test does not reject the Laplacian hypothesis at 5% significance level for
the small firms in terms of revenues.
Due to insufficient data on the rest of revenue group, we couldn’t really examine
the impact of the firms’ revenue on the distribution of firms’ (log) growth rates and
profitability. Furthermore, it would be interesting to analyze the effect of firms’
revenue on the distribution of firms’ (log) growth rates (in terms of employment
and net worth) and profitability (in terms of ROA, ROE and ROI) using a better
selected dataset.

Variable Revenue group µ̂ b̂ KS-statistic P-value
Employees [0, 5 ∗ 105] 0.00045 ± 0.00006 0.04121 ± 0.00014 0.572 0.364
Net worth [0, 5 ∗ 105] 0.02569 ± 0.00022 0.06449 ±0.00022 0.470 0.51

ROA [0, 5 ∗ 105] 0.31398 ± 0.00213 0.82352 ± 0.00273 0.585 0.57
ROE [0, 5 ∗ 105] 0.27601 ± 0.00134 0.40164 ± 0.00133 0.791 0.40
ROI [0, 5 ∗ 105] 0.05580 ± 0.00024 0.06831 ± 0.00023 0.729 0.414

Table 15. Summary results of the maximum likelihood estimation
and the Kolmogorov-Smirnov test of the Laplace distribution only
for the first revenue group (small firms in terms of firms’ revenue).
Note that the variables, employees and net worth, are growth
variables.

5. Conclusion

In this work, we explored some fundamental properties of the firms’ dynamic and
also tried to highlight the role of the financial structure in the growth patterns of
firms.
We found that the variable used as proxy of size has negligible effect on the two
statistical regularities observed in most literature regarding the firms’ dynamics,
namely that the size distribution of firms is positively skewed and it possesses
thick long tails, especially on the right, both at the firms’ age level and over time.
Therefore, our results also confirms the robustness of the two statistical properties
of the firm size distribution. In particular, when the number of employees is used as
measure of size, the size distribution seems relatively stable over time, while the size
distribution of Italian firms clearly shifts to the right over time when considering
revenues as a proxy of size.
Moreover, our results also confirmed that the upper tail of the size distribution
of Italian firms obeys a power law behaviour as proposed by Cirillo and Hüsler,
the authors of Ref. [7]. Furthermore, the power law exponent, α, appears to be
relatively stable over time when we consider the number of employees and revenues
as measure of size. In fact, the stability of the power law exponent and shift of
the size distribution over time, when we use revenues as a proxy of size, seems to
imply that the firms size distribution in terms of revenues is invariant to translation.
Generally speaking, it seems that the inequality in firms size in terms of revenues
is relatively higher than the inequality in firms size in terms of the number of
employees.
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Empirical evidence also shows an increase in the thickness of the right tail of the
size distribution and a clearly shift of the size distribution towards the right as firms
age, indicating an increase in firms’ revenue and number of employees as firms’ age
increases.
Concerning the shape of firms’ growth rates and profitability, we found that the tent-
shaped distribution like the Laplace distribution seems to be a reasonable benchmark
for both the firms’ growth rates and profitability distribution, irrespectively of the
size proxy used. Our results are well in accordance with most previous studies (see
for example Refs. [1], [3], [6] and [9]). Notably, the Laplace benchmark for both the
firms’ growth rates and profitability distribution seems to be robust over time and
also at both firms’ age and revenue level, independently of the size variable. Note
that the firms’ growth rates and profitability distribution shows evidence of heavier
tails. This is due to the relatively frequent extremal growth events experienced
by a small proportion of the firms in our sample and also note that this regularity
emerges at both firms’ age and revenue level and also over time. The Gibrat’s
law, however, appears not to hold true for our data, since we observe a power law
behaviour in the size distribution.
Analyzing the evolution of the firms’ growth rates and profitability, we found in the
case of firms’ growth rates that, on average, (log) firms’ revenue and (log) net worth
increases over time, while, on average, the growth rate relatively decreases over
time. Regarding the evolution of the profitability, both the ROA and ROE seems to
decrease over time, while the ROI roughly stays stable over time, indicating that,
on average, the firms in our sample become more capital intensive over time and
thus, generates less revenue from their assets. We also noticed that, on average,
the profitability (in terms of ROA, ROE and ROI) are less volatile than the firms’
growth rates, especially when considering revenues as a proxy of size. The obtained
results concerning the evolution of he firms’ growth rates and profitability, suggest
that the profitability level of firms plays are very important role in the driving force
of the firms’ dynamic than the way firms grow or shrink in terms of revenues and
net worth over time.
We observe that firms are larger and have, on average, higher revenues and net worth
as firms age. We also observe that older firms have lower expected growth rates of
revenues and net worth and also lower profitability levels (in terms of ROA, ROA
and ROI). In particular, we found in our sample that firms have higher expected
growth rates and profitability levels in the early stage of their business life cycle,
which is consistent with results obtained in most previous studies on the. In line
with Coad, Segarra and Teruel, the authors of Ref. [9], our analysis of the firms’
growth rates distribution for different age groups shows that younger firms are more
likely to experience higher growth rates (in terms of employment and revenues),
while on the other hand, have the same probability as older firms of experiencing
decline in terms of employment. However, firms’ age seems to have no impact on
the firms’ net worth distribution and also it appears that older firms are more likely
to experience decline with respect to younger and matured firms. We found that the
ROA distribution shifts to the right as firms age, while firms’ age have negligible
effect on the ROE and ROI distribution.
Finally, analyzing the profitability at firms’ revenue level, we found that revenues
have a positive effect on the return on assets. In fact, we observe that the ROA
distribution becomes fairly stable when firms’ revenue is more than 3 million euros.
It would be interesting to use panel analysis to further study and testing firms’ size
and growth in order to get a better view of firms’ dynamics.
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Figure 21. Empirical densities of the measures of profitability
for the whole dataset in the four revenue groups. Note the log
scale on the y-axis and also that medium 1 stand for medium firms,
while medium2 stands for medium-large firms. Red dashed line
represents the Laplace fit of the small firms.
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Appendix

Table 16. Descriptive statistics (mean, std, min, max and median)
for the (log) employment growth rates.

Year Min. 1st Qu. Median Mean 3rd Qu. Max.
1988 -1.87 -0.02 0.00 0.01 0.02 1.10
1989 -1.11 -0.02 0.00 0.01 0.03 1.09
1990 -1.80 -0.02 0.00 0.01 0.03 1.49
1991 -1.80 -0.01 0.00 0.01 0.03 1.73
1992 -1.48 -0.02 0.00 0.01 0.03 1.81
1993 -1.68 -0.02 0.00 0.01 0.03 2.01
1994 -0.94 -0.02 0.00 0.01 0.03 1.68
1995 -1.37 -0.02 0.00 0.01 0.03 1.62
1996 -1.46 -0.02 0.00 0.01 0.02 1.55
1997 -1.59 -0.02 0.00 0.01 0.03 0.90
1998 -0.94 -0.02 0.00 0.01 0.03 2.23
1999 -1.11 -0.02 0.00 0.01 0.03 1.18
2000 -1.04 -0.02 0.00 0.01 0.03 1.18
2001 -1.91 -0.02 0.00 0.01 0.02 0.95
2002 -1.07 -0.02 0.00 0.01 0.03 1.56
2003 -1.56 -0.02 0.00 0.01 0.03 1.05
2004 -0.90 -0.02 0.00 0.01 0.03 3.04
2005 -1.01 -0.02 0.00 0.01 0.03 1.32
2006 -1.29 -0.02 0.00 0.01 0.02 1.71

Table 17. Descriptive statistics (mean, std, min, max and median)
for the (log) growth rate of firms’ revenue.

Year Min. 1st Qu. Median Mean 3rd Qu. Max.
1988 -1.44 -0.01 0.03 0.04 0.08 1.19
1989 -0.79 -0.00 0.03 0.04 0.08 1.57
1990 -1.17 -0.00 0.04 0.04 0.08 1.38
1991 -2.33 -0.01 0.03 0.04 0.08 1.84
1992 -1.21 -0.00 0.03 0.04 0.08 2.21
1993 -0.86 -0.01 0.03 0.04 0.08 1.45
1994 -1.92 -0.01 0.03 0.04 0.07 1.39
1995 -0.65 -0.01 0.03 0.04 0.08 2.01
1996 -1.11 -0.01 0.03 0.04 0.08 2.27
1997 -1.20 -0.01 0.03 0.04 0.08 1.39
1998 -1.20 -0.01 0.04 0.04 0.08 1.34
1999 -0.58 -0.00 0.03 0.04 0.08 1.00
2000 -1.21 -0.00 0.04 0.04 0.08 0.89
2001 -0.94 -0.01 0.03 0.04 0.08 0.97
2002 -3.85 -0.00 0.04 0.04 0.08 1.58
2003 -0.71 -0.00 0.04 0.04 0.08 2.77
2004 -0.80 -0.01 0.03 0.04 0.08 1.97
2005 -0.63 -0.00 0.04 0.04 0.08 1.05
2006 -0.97 -0.01 0.03 0.04 0.08 1.55
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Table 18. Descriptive statistics (mean, std, min, max and median)
for the (log) growth rate of firms’ net worth.

Year Min. 1st Qu. Median Mean 3rd Qu. Max.
1988 -1.11 0.00 0.03 0.04 0.07 1.25
1989 -1.05 0.00 0.03 0.04 0.07 1.12
1990 -0.83 0.00 0.02 0.04 0.07 1.23
1991 -1.12 0.00 0.02 0.04 0.07 2.23
1992 -2.09 0.00 0.03 0.04 0.07 1.41
1993 -0.99 0.00 0.03 0.04 0.07 1.81
1994 -0.87 0.00 0.03 0.04 0.07 1.24
1995 -1.89 0.00 0.02 0.04 0.07 1.21
1996 -1.01 0.00 0.03 0.04 0.07 2.55
1997 -1.42 0.00 0.03 0.04 0.07 1.50
1998 -2.34 0.00 0.03 0.04 0.07 2.02
1999 -1.54 0.00 0.03 0.04 0.07 1.37
2000 -1.90 0.00 0.03 0.04 0.07 1.31
2001 -1.07 0.00 0.02 0.04 0.07 1.87
2002 -1.42 0.00 0.03 0.04 0.07 2.19
2003 -1.53 0.00 0.02 0.04 0.07 1.31
2004 -1.67 0.00 0.02 0.04 0.07 2.42
2005 -2.00 0.00 0.03 0.04 0.07 1.72
2006 -0.90 0.00 0.03 0.04 0.07 2.10

R script used for study

library(stats4)

# Function ‘mlelap’ declares the log-likelihood of the Laplace distribution.

# The arguments of ‘mlelap’ are theta and x, where theta is a vector containing the

# location and scale parameter of the Laplace distribution and x is the dataset.

# logl defines the log-likelihood of the Laplace distribution.

mlelap = function(theta,x) {

gr <- x;

n.obs <- length(gr);

u <- theta[1];

b <- theta[2];

logl <- -1*(n.obs*log(2*b)) - (1/b)*sum(abs(gr - u))

return (- logl)

}

library(VGAM)

# Function ‘lapfit’ returns the mle of the parameter of Laplace dist.

# and the KS-statistic. Argument of ‘lapfit’ is x, which is the dataset.

# It also return the plots of the empirical density with the maximum likelihood

# Laplace fit. One with the actual empirical density and the other with
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# log scale on the y-axis. Also compares the plots of the theoretical

# and empirical distribution functions.

lapfit = function(x) {

gr <- x;

n.obs <- length(gr);

# computes mle of Lap. dist.

opt <- optim(c(0,1),mlelap,x=gr,method="BFGS",hessian=TRUE)

OI<-solve(opt$hessian)

se <- sqrt(diag(OI)) # compute standard error for MLE parameters.

location <- opt$par[1]; # MLE of location parameter

scale <- opt$par[2]; # MLE of scale parameter

hist <- hist(gr,breaks="Scott",plot=TRUE);

xhist<-c(min(hist$breaks),hist$breaks);

yhist<-c(0,hist$density,0);

xfit<-seq(min(gr),max(gr),length=n.obs);

yfit <-dlaplace(xfit,location,scale);

# pdf with maximum likelihood Laplace fit and log scale on y-axis

p1 = plot(xhist,log10(yhist),type="p")

p2 = lines(xfit,log10(yfit),col="red")

# pdf with maximum likelihood Laplace fit

p3 <- plot(xhist,yhist,type="p",ylim=c(0,max(yhist,yfit)))

p4 <- lines(xfit,yfit,col="red")

# compute empirical cdf

gr4 <- unique(gr);

no.obs2 <- length(gr4);

cq <- c(0:(no.obs2-1))/no.obs2

cq <- sort(cq)

xfit2 <-seq(min(gr4),max(gr4),length=no.obs2);

# Comparing theoretical and empirical distribution functions.

plot(xfit2,plaplace(xfit2, location = location, scale = scale),type="l",col="red")

plot(ecdf(gr4),add=TRUE,col="blue")

# KS- statistic

cf <- plaplace(xfit2, location = location, scale = scale);

cf <- sort(cf)

KS.stat <- max(abs(cq-cf));

return(list(location = location, scale = scale, location.se = se[1], scale.se = se[2],

KS.stat= KS.stat));

}

library(VGAM)
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# Function ‘lapfitpval’ computes the p-value of KS test using

# bootstrapping (500 replications).

# Argument of ‘lapfit’ is x, which is the dataset.

lapfitpval = function(x) {

gr <- x;

n.obs <- length(gr);

par <- lapfit(gr)

location <- par$location;

scale <- par$scale;

location.se <- par$location.se;

scale.se <- par$scale.se;

Dn <- par$KS.stat;

Bt <- 500

bof <- rep(0,Bt)

for(B in 1:length(bof)){

# bootstrap resample

gr2 <- gr[sample(n.obs,n.obs,replace=TRUE)]

lapsync <- lapfit(gr2);

D2 <- lapsync$KS.stat;

bof[B] <- D2;

}

# computes p-value

pvalue <- sum(bof>=Dn)/length(bof)

return(list(location = location, scale = scale, location.se = location.se,

scale.se = scale.se, KS.stat= Dn, KS.pval = pvalue));

}
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