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Abstract

In multi-member human-agent teams the communication and shared mental models within the team
are essential for good teamwork and team performance. In some ways the mediating processes are
even more important than in human-only team because the artificial agents of today lack many of
the innate social behaviours that humans naturally possess. Research into human-agent teams have
allowed designers of such teams to anticipate for complex interactions such as trust violation and repair
scenarios. In this study a human-agent-agent team undertakes a search- and rescue mission with the
human in a leading role, one of the agents free-roaming and the other agent under the human’s direct
control. Approximately one-third of the way through the mission, the autonomous agents initiated
actions independently of human approval, thereby undermining operator trust. As a trust repair
strategy the agent employs a promise to do better and a novel authority change by lowering its level of
automation and presenting the option of restricting cooperation with the other agent. We conducted
the experiment with thirty participants divided into a two groups with differing trust repair strategies
(promise only, promise with the authority change) and measured trust perception at three different
time steps. Results show no significant difference between the two trust repair strategies. Through
thematic analysis we did find that the shared mental model and communication richness to be dissonant
to what participants expected which is in line with literature on the complexity of triadic teams.
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Chapter 1

Introduction

Research into modern organizational teams has examined the similarities and differences between
human-only, agent-only and human-agent teams (HATs) [62, 79]. In order to structurally analyse
teamwork a robust Input-Mediator-Output (IMO) model is used which identifies the team character-
istics, internal processes, and performance as well as the link between them [44, 94]. Adoption of the
IMO model bring to light the areas that require more thought when studying and designing HATs
[79].

Teams rely on effective communication and coordination between members in order to increase
performance of the group. The best human teams engage in rapport building, repairing trust, and
exposing one’s own psychological vulnerability [23]. However, current HATs lack in these aspects as
opposed to human-human teams exposing opportunities for improvement [67] which has prompted
studies to approach agent design with more humanness whenever connection or communication is
required [17]. Balancing the trade-off between autonomy and automation in a team setting calls for
social agents in the right place, founded on iterative design. One of the Salas et al.[92]’s seminal work
on the ”Big Five” of teamwork emphasises team leadership as a critical influence on the mediating
processes within the team. In this report we will focus on the concept of authority which is defined as
both a rational - top-down legitimation of control - and a social - negotiated interplay of control - aspect
[115]. This duality of authority closely aligns with the variety in leadership principles that are present
in modern teams; e.g. vertical and horizontal (shared or distributed) leadership [41, 119, 77, 78]. We
will therefore observe authority fluctuations through the lens of sharing leadership being negotiated
during teamwork.

A foundational element in successful teamwork is trust, which in turn impacts coordination, col-
laboration and the reflective effects during the Ouput-Input path of the IMO model’s cycle [16, 15].
However, trust levels can excessively sway to either side of the spectrum. While over-trust an over-
reliance on teammates can diminish personal contribution and participation as well as hinder overall
team performance, under-trust causes under-utilisation of teammates in favour of individualistic effort
leading to disproportionate monitoring and asymmetrical workload [18].

As leadership and trust are both moderating components in teamwork, they mutually interact by
trust positively affecting authority acceptance [103] and leadership positively affecting group trust [21].
Specifically shared leadership, when facilitated in virtual teams, is found to increase trust perception
of the fellow team members [89]. Shared decision making between an agentic robot and a human, when
considering task allocation within a triadic team, is found to increase performance over working with
a human co-decision maker [33]. Furthermore, an increase in the robot’s authority leads to a larger
positive effect on trust and willingness to work together compared to with the human equivalent, even
though the human was still a more highly rated teammate.

In general, a decrease in trust is the result of trust violations between two team members or within
the group. Unfortunately, a drop in trust is found to be quick and impactful, while the building of
trust takes time and effort. Recovering from a trust violation is approached in HATs and human-
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robot interaction (HRI) as trust repair [28]. Up until now this is a relatively unexplored field of study
with mostly emphasis on verbal repair strategies such as promising change and explaining errors [29].
Although repeated promises after a trust violation have been studied [26], delivering on promises made
and studying that effect is left out of scope in studies to date [43]. Teams of all compositions will run
into conflict that needs to be resolved through open communication [94]. Thus autonomous agents
need to be designed to make use of grounded trust repair strategies in order to minimise strain.

This opens the door to expanding on the literature with more actionable trust repair behaviour
studied in this thesis. Part of answering the questions posed, lies in understanding the role of authority
in team dynamics and how the human experience of working in a team with autonomous agents differs
from working with only humans. Which leads to the research questions of this study:

[RQ]What is the effect of authority change as a trust repair strategy in Human-Agent teams?

Developing the agents capable of working alongside human teams requires comprehending team
dynamics and processes such as leadership. The factors that are essential in creating artificial social
intelligence in this context will be layed out in the following chapters. First, clear definitions for HAT
frameworks and gaps in trust repair research concerning leadership behaviour are discussed in chapter
2 structured through the lens of the IMO model. Then, the conceptual authority change repair strategy
translates into a study in chapter 3. Consequently, in chapter 4 our findings are presented through
statistical analysis of quantitive data and a reflexive thematic analysis of the qualitative data. Followed
by the extrapolation of the results, that aims to evaluate the presented model through discussion and
limitation analysis in chapter 5. Finally, a conclusion of the research question is presented in chapter
6.

This thesis reviews the current development of Human-Agent Teams according to widely used
teaming frameworks and proven trust repair strategies. Straying away from rigid vertical leadership
constructs and opening the door for autonomous agents to participate in shared responsibility and
active leadership roles within a team, as well as recognising that when those tendencies go too far
a trust repair strategy can be employed that specifically focuses on authority as a means to resolve
conflict. Researchers and designers alike may take inspiration from this paper when considering novel
methods of trust-responsible autonomy.
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Chapter 2

Background

Through a combination of the study on teams and artificial intelligence interactions alongside rapid
technological advancements, Human-Agent Teamwork (HAT) research has reached a point that allows
us to investigate intricate team compositions, trust dynamics and behavioural effects. In this chapter
the Input-Moderator-Output (IMO) model [44] is used to structure the explanation of all the factors
that influence successful teamwork as well as emphasis on a thoughtful trust repair process. First, we
will first go over the contemporary frameworks that anchor Human-Agent Teamwork to theoretical
foundations of teamwork and autonomy in section 2.1. Second, from those frameworks the remaining
sections expand on the IMO model, with section 2.2 giving an overview of HATs, and the characteristics
of agent, human and task that are present. Third, the mediators are discussed in section 2.3; including
processes and emergent states that influence the team work during the entire task execution phase.
Key insights into the facets of trust illustrate a gap in trust repair strategies that inspire interaction
design in this study. Finally, the outcomes such as team performance and development are highlighted
in section 2.4.

2.1 Human-Agent Team Frameworks

HAT research has evolved from the Human-Autonomy Interaction and Team fields by taking inspiration
from both and applying concepts and frameworks in a joined setting of human-autonomy interaction
in a team or better worded Human-Autonomy Team [79]. The history of teams research has many
frameworks that aim to capture team dynamics and effects on team performance of an increasingly
present phenomenon - the organizational team [92, 94]. The Input-Process-Outcome (IPO) model has
been the most frequently used framework for studying teams, as it divides the teamwork effectiveness
up into three measurable factors[94]. The input component distinguishes the factors on an individual
and team level, that are inherent to the team or otherwise influence the processes, covering how team
behaviours convert inputs into outputs as team related results. More recent studies have expanded
these processes to include emergent states such as trust, shared mental models, and motivation, as well
as emphasising the cyclical nature of modern teams that enables reflection and growth from output
to input leading to processes and emergent states being modelled together as mediators between team
input and team output in the contemporary Input-Mediator-Output-Input (IMOI) model [44]; often
refered to as the Input-Mediator-Output (IMO) model. As such the IMO model has been put forward
as a structured approach for identifying variables and their relationship within the team process not
only in traditional human-only team research but especially in the growing field of HAT research [80].

To further understand the the inputs and mediators, we will examine seminal work in team research
by Salas et al.[92] concerning the ”Big Five” of teamwork which identifies core components that pro-
mote team effectiveness through the lens of team leadership, mutual performance monitoring, backup
behaviour, adaptability, and team orientation while being supported by shared mental models, mutual
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trust and closed-loop communication. Although different types of teams, stages of teamwork or tasks
will emphasise one component over another, every component is present in teams in some capacity as
long as the notion of interdependence is present within a team [92]. Team leadership is in charge of
facilitating the team’s problem solving through coordination, maintaining shared mental models and
adapting team functioning to thwart faulty behaviour, providing a moderating effect on team processes.
Mutual performance monitoring strikes a balance between keeping track of fellow team members as a
natural emergent from understanding others’ capabilities and responsibilities without endangering a
safe and trusting team climate. Backup behaviour results in a team capable of redistributing work-
load by coaching, assisting or taking over work from another team member; an essential task that
influences team performance by preventing further degradation and reducing workload-induced stress.
Adaptability encompasses a team’s ability to recognize need for changes in roles or a differing course of
the team task, and adjust priorities accordingly based on the shared mental model. Team orientation
is described as each individual’s disposition to prefer working in teams, being open to information
sharing, strategising and shared goal setting.

Specific autonomy frameworks, that identify autonomous agents cross the gap between tool and
teammate, are important for determining applicability of existing team frameworks. Two major frame-
works that we will discuss in this paper are the Level of Automation/Autonomy (LOA) [81, 79] and
the Autonomous Agent Teammate-Likeness [117]. Within the human agent relationship the autonomy
of an agent is not strictly binary, a degree of autonomy is observed depending on the involvement of
a human in an agent’s decision making and task execution [81, 17]. Historically, the delineation of
autonomy sprung from the existing literature on automation. Although automation and autonomy
are used in tandem throughout literature, recent exact distinctions make clear where one begins and
another ends [17]. As automation is a time-sensitive concept; “Today’s automation could well be to-
morrow’s machine.” - Parasuraman and Riley[82], it denotes the amount of work that is taken over by
machine from a human. For autonomy the definition is linked to how much involvement is required or
requested from another actor. Automation and autonomy are in contemporary frameworks considered
as different phenomena on a continuum roughly evolving from the first into the latter [36, 66, 80]. Il-
lustrated in figure 2.1, the transition from non-autonomy to what is considered partial agent autonomy
occurs from level 5 onward when an agent will suggest a course of action but still requires approval
[80]. Furthermore, any behaviour by an agent that results in development and enacting a course of
action while merely informing a human of the decision is classified as level 7 and up and considered
high agent autonomy.

The Autonomous Agent Teammate-Likeness framework aims to encapsulate how humans per-
ceive autonomous technology and distinguish between tool and teammate through six factors: per-
ceived agentic capability, perceived benevolence/altruistic intent, perceived task interdependence, task-
independent relationship-building, richness of communication and synchronised mental model [117].
Parallels can be drawn between these factors and components from the IMO-model, the ”Big Five”
and Levels of Autonomy; the perceived agentic capability in large part rests on the Level of Auton-
omy displayed by an agent, perceived benevolence/altruistic intent ties in with the team orientation
component of the ”Big Five” as well as benevolence as a factor for trustworthiness [65], perceived
task interdependence directly aligns with the general requirement that distinguishes teamwork from
working alongside others [92], task-independent relationship-building acts as a moderating variable by
fostering team cohesion and building rapport, richness of communication represents a nuanced balance
of information sharing through thoughtful pulling and pushing behaviours that presents itself in in-
teractive and sophisticated way, and a synchronised mental model enables predictable behaviour and
shared context [117].

Literature may also refer to adjacent concepts such as Human-Robot Teams, Human-Machine
Teams, and Human-AI Teams as well as corresponding Interaction that share many overlapping fea-
tures and are often used interchangeably [114, 80]. From here on out when talking about HATs in this
report we consider autonomous agents, autonomy and agent to be equivalent and will refer to them as
agent. In the following sections the inputs, moderators and outputs present in Human-Agent Teams
are expanded upon in context of trust repair and leadership.
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Figure 2.1: Levels of Automation and Levels of Autonomy adapted from O’Neill et al.[80].

2.2 Inputs

Before initiating teamwork behaviour, multiple facets determine the setting and boundaries of a team
that may influence success in practice. Individual and team factors alike are of equal interest for human
teamwork research and some adapted factors concerning non-human teammates that are considered in
HAT research. First this section goes over the team composition of Human-Agent Teams and how they
relate to team processes also found in human-only teams. Second the agent characteristics are discussed
with regards to level of autonomy, reliability and transparency. Third the human characteristics such as
disposition towards autonomous agents and teamwork are expanded on. Fourth the task characteristics
like interdependence, complexity and training is touched on.

2.2.1 Human Agent Teams

The addition of agents to teams (i.e., Human-Agent Teams, HATs) allows reducing human workload
and allocate responsibilities to agents, and to strengthen specialised and supervisory roles for human
team members [102, 17]. Studies demonstrate that human-agent teams can achieve performance levels
comparable to human-human teams but often lack effective communication and coordination [68].

What classifies a HAT are three criteria: (1) there must be at least one agent (2) autonomously
collaborating with at least one human, and (3) fulfilling a unique role within the team due to inter-
dependent actions and outcomes [79]. The first criterion specifies agent as being a synthetic being
which can be either embedded or embodied, have a way of inferring information from the environment
through sensors, algorithmically reason over acquired data and perform actions [117, 112, 17]. A com-
monly used technique by researchers to simulate an agent is the Wizard of Oz approach wherein a
human confederate controls the agent without a participants knowledge therefore creating the illusion
of working with a computational agent. In the second criterion the necessity of the agents autonomy
in working together with others is posed. The autonomy that an agent attains starting from a level
five in the Levels of Autonomy continuum with lower levels corresponding to human-automation in-
teraction, see figure 2.1. Naturally, the requirement for a human to be present to work alongside the
agent differentiates HATs from agent-only teams or multi-agent systems [83, 88, 56, 3, 116]. From the
third criterion the interdependence notion that is found to be essential for any team is underlined for
an agent’s role within the team [92, 94]. Interdependence comprises of a complementary dependency
relation between team members that enforces conjoint actions in order to reach shared goals [47, 108].

9



The collaboration in a team is thus not only dependent - as would be between a tool and a user - but
a mutually interdependent interaction supporting both parties resulting in an agent being seen as a
social actor [74, 54].

Team structures in HATs vary in size and composition, ranging from dyadic to multi-member teams
and hierarchical organization to leaderless configurations. These structures affect how responsibilities,
communication and decision-making are managed and in turn influence team performance and trust
dynamics. The composition of HAT varies in size from dyadic two-member teams to collectives of
teams in mixed multi-agent systems. The most commonly studied teams are dyadic [90, 75, 45, 112,
54, 27, 108, 51, 60, 13, 76] and multi-member with one agent and two or more humans [49, 33, 110, 67,
61, 6, 24, 8, 46, 58, 87, 22]. Fewer studies went into multi-member teams with more than one agent
[88, 30, 71, 59, 48, 22] and even fewer into multi-member teams with multiple agents and multiple
humans [83, 52].

Even though traditional task-oriented teams are orchestrated by a designated leader stimulating
team effectiveness, many teams are formed without a predetermined leader or clear hierarchy [63].
In the latter case the team’s performance depends on individual members assuming responsibility or
leadership roles.

2.2.2 Agent characteristics

Leadership authority in HATs is closely tied to autonomy and automation. Agents with at least level
5 on the Levels of Automation (LOA) scale [100] are capable of performing in HATs, ranging from
requiring human approval to do task execution to fully autonomous agents [39]. Changes in authority
transfer over autonomy, altering the LOA of the agent. Further exploration of automation reveals
differences in levels between types of automation: a system may include information acquisition,
information analysis, decision selection and action implementation [81]. Depending on the system
design any of these automation types can be on a different level than other types. Differentiation may
also occur between circumstances that enhance or diminish automation levels and favour adaptive
autonomy control.

A positive correlation is observed between trust and performance; successful collaboration in turn
enhances trust, indicating a reinforcing stimulus for trust under good performance [110, 76]. Adversely,
lower reliability has been shown to reduce performance [40], reduce trust [35] and raise workload [80].
Transparency on reliability concerns had a dampening effect on theses associations [31].

2.2.3 Human characteristics

Humans have a natural disposition to trust others called trust propensity which is stable over time but
differs from person to person. Trust propensity towards automation is based on multiple factors such
as prior experiences with automation, age, video game experience, appearance and anthropomorphism
[57, 20, 27]. In parallel, an intention to trust manifests in willingness to risk-taking based on someone
else’s trustworthiness [64]. Both trust propensity and intention to trust therefore influence teamwork
between agent and human.

2.2.4 Leadership Styles

Leadership styles, such as directive, transactional, transformational, and empowering, are applicable
to human and agent leaders [42]. Directive leadership assumes command and control of the team and is
effective in situations with new subordinates. Humans who self-report an authoritarian leadership style
showed greater trust in robot collaboration [76]. Transactional leadership emphasizes performance,
while transformational leadership fosters engagement. Both styles have been adapted for agents, with a
comparison showing no significant difference in trust [61, 7]. Empowering leadership let leaders enhance
autonomy, confidence, control and self-management in a team. Employing empowering leadership in
HRTs is found to have a similar performance increase to that of human-only teams [58].
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Leadership styles and the antipodal concept of follower style of a person influences perception of
human agent teamwork and should be appropriately designed for.

2.2.5 Task Characteristics

Interdependence is found in tasks that require collaboration through joint actions or coordination in
subsequent subtasks [92]. The degree to which a task is knowledge-based, requires information-sharing
and interdependent activities is defined as the complexity of that task [111]. Complexity is found
to be positively moderated by shared leadership when it comes to task performance, indicating that
sharing responsibilities helps overcome uncertainty. Training is found to be an essential factor in
improving teamwork competencies [93]. Through the concept of entrainment, exposure to preferred
routines builds up patterns of behaviour that when the need arises are referenced and repeated [46]. In
three-member (triadic) teams using unmanned aerial vehicles, training specialised in coordination lead
to better communicative information exchange, target selection and resilience during agent failure.
Training also prepares humans as much as possible with enough skills to perform experimental tasks
and reduce learning effects [108].

2.3 Mediators

2.3.1 Processes: communication, planning, coordination, conflict manage-
ment

Importance of Communication

Communication is essential in HATs for maintaining trust and understanding. Poor communica-
tion—such as an agent taking initiative without human understanding—can lead to negative percep-
tions of the agent [60]. Shared mental models of teamwork and taskwork positively influence human
trust, with taskwork models having a slightly stronger effect [37, 2].

Leadership

Leadership in HATs involves a team member’s ability to guide the team towards problem solving
and team cohesion through operational or communicational authority [92]. Effective team leadership
fosters teamwork through maintaining an accurate shared mental model, monitoring internally and
externally, and adapting the strategy to suit the team’s needs. Leadership can take many forms in
what sort of behaviour is displayed, by who and to whom, and is far from a rigid construct.

Variants of Leadership Structures In literature there are multiple variations of leadership that
place responsibilities with more than just one designated leader, such as emergent leadership, partici-
pative leadership and shared leadership. Emergent leadership develops in lack of formal authority and
focuses on one or a few team members. It is not specifically concerned with distribution or sharing
of leadership and is defined by the individual instead of the group structure [12, 119]. Maese et al.
(2022) studied emergent leadership in Human-Machine teams by using natural language processing to
capture team language markers validating behavioural markers of emergent leadership. This method
has promising use for developing emergent leadership-aware agents [63]. Participative leadership allows
team members to participate in joint decision-making but does not transfer final say to the team. The
authority stays with the formal team leader [119]. Nonetheless, a participative leader is an important
facilitator of shared leadership [106]. Shared leadership - sometimes referred to as collective leadership
- combines aspects dynamically through emergent temporal role and responsibility distribution across
the team forming lateral influence among peers [119]. In practice leadership can be shared through
various means, be it by rotating leadership dependent on place and time or by utilising team members
and their diverse skill sets in an interdependent way and allowing leadership roles to be distributed.

11



Dimension Description
Innovator Envisions, encourages, and facilitates change
Broker Acquires resources and maintains units’ external legitimacy through development, scan-

ning, and maintenance of a network of external contacts
Producer Seeks closure, and motivates those behaviors that will result in completion of the group’s

task
Director Engages in goal setting and role clarification, sets objectives, and establishes clear

expectations
Coordinator Maintains structure, does the scheduling, coordinating, and problem solving, and sees

that rules and standards are set
Monitor Collects and distributes information, checks on performance, and provides a sense of

continuity and stability
Facilitator Encourages the expression of opinions, seeks consensus, and negotiates compromise
Mentor Listens actively, is fair, supports legitimate requests, and attempts to facilitate devel-

opment of individuals

Table 2.1: Leadership behaviours as outlined by the Leaderplex model. Table from [63]

Bergman et al. (2012) found that shared leadership lead to increased intragroup trust in human-only
teams [5].

Leadership Roles According to the widely applied leaderplex framework [19, 86] there are eight roles
or functions that aid team members in creating quality contributions and stimulating effective effort
towards a common goal. Depending on the situation a leader might apply to a different role and
transition roles depending on the current needs of the team.
Measuring leadership When designing for leadership styles the interactions should be modelled
based the characteristics of the style [4]. Verification of the perception of the leadership style is done
through adapting Carless et al.’s Measure of Transformational Leadership [11, 61].

The developing aspect of leadership structure that adjusts over time requires a look into group
dynamics. Two major approaches have been developed in measuring shared leadership as a construct;
aggregation and social network. The aggregation or referent-shift methodology looks into the perspec-
tive on leadership of team members on each other. The decentralization of leadership is taken as a
given, which poses a limitation of the metric. The social network measure gives insights into the shared
leadership network structure on the density or decentralization axis. It is recommended to perform
both measures combined for the most extensive results. [119]

Trust Violation

Trust can be violated by a party through a transgression that diminishes the other party’s trust in
the transgressor. Trust violation in HRI have been defined in three categories: violations of ability,
benevolence and integrity [28].

Trust Calibration and Repair

Trust calibration ensures the right amount of trust in the agent by the human to maximize team
performance, preventing overtrust and undertrust. Two critical trust building factors are reliability and
transparency. Reliability is a property of AI systems that through consistent and accurate performance
builds up trust. Transparency importantly conveys the inner workings of decision making often in the
form of explainable AI. Overreliance is observed as a product of reliability without transparency; e.g.
something works well so the user keeps using it without learning about the computational boundaries
of an AI. In explainable AI, transparency is used, based on agent’s certainty, to reframe reliability
factors and dampening the trust increase [8].
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The caveat of transparency is a reported increase in cognitive load for the human given the depth
of explanation [85]. Therefore in action transparency should be designed with workload reduction in
mind [70].

Trust Repair Strategies Trust repair involves planned actions to rebuild trust after a violation
[25, 17]. Common strategies include apologies, denials, explanations, and promises [28]. Context,
timing, and type of trust violation significantly influence the effectiveness of these strategies [17, 26];
promises directly following a violation of trust have been found to be more effective than those given
at a later time [90].

2.3.2 Emergent states: trust, Shared mental models, situation awareness
and workload

Trust

The commonly used definition of trust is the willingness of the trustor to be vulnerable to the actions of
the trustee [65]. It is also described as a psychological state where an individual accepts vulnerability
based upon positive expectations of the intentions or behaviour of another actor [91]. Trust plays a
central role in team dynamics, influencing both performance and collaboration, fostering a willingness
to share information within the team [92]. A lack of trust leads to less openness from team members
about lacking information and thus obstructing a team leader from managing the team. Abnormal
levels of trust hinder team performance: undertrust leads to negligence [68], while overtrust promotes
over-reliance on automation [57].

Types of Trust
Following the Theory of reasoned actions there are two categories of trust; affective and cognitive

[53]. Affective trust emerges from team members’ perceived intent and is critical for human-autonomy
teams [55]. Furthermore it is linked with increased communication during collaboration [24]. Cognitive
trust is based on prior interactions an behaviour prediction. Attained knowledge gets enriched by
information from further interactions and evolves cognitive trust over time [55]. Enhanced cognitive
trust bolsters cooperation between team members based on the increased expectation of success [24].

Trustworthiness is a learned factor that has three components: ability, benevolence and integrity[55].
The ability is defined by the degree of competence the trustee displays in the domain. Benevolence
concerns with how selfless the trustee acts; not influenced by egocentric or profit-based intents Integrity
is based on honesty and permanence of principles. As a learned factor the trustworthiness perceived
of an individual is partially based on experiences with or with similar agents [65]. The notion of swift
trust occurs when teams are rapidly formed and is largely cognitively based on assessment of expertise,
be it through credentials or reputation [8]. Swift trust also informs us of important components in
early trust establishment.

Trust Development and Measurement
Trust develops through interaction and assessment of the trustee’s trustworthiness. Different trust

types require particular measurement methods. Specifically the trust propensity in regards of robots
and automation should be measured before an interaction with an agent and evolving trust can be
examined as a time series [55]. An intention to trust influences the initial trust based on perceived trust
worthiness of the agent [64]. However, the degree of appropriate trustworthiness appraisal influence the
effect size of both trust propensity and intention to trust [32]. Clear trustworthiness affects the initial
trust development in such a way that relationship between trust propensity and intention to trust do
not seem to correlate, yet under vague trustworthiness assessment the trust propensity and intention
to trust do correlate. Trust development is thus dependent on the complex interactions within the
team and the person. Regular interaction effects can be overshadowed when tasks are not motivating
or too difficult, making measuring and manipulating trust tough [8].

Given the development of trust over time, different measures are used over the course of the trust
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life cycle; initial trust being a static trait for the encounter and reflection of experiences occurring
afterwards [55]. Trust Propensity is measured with questionnaires on tendency and attitudes toward
others [65], automation [45, 69] or robots [29] depending on the specific requirements. General trust
in automation assessed before and/or after interactions with the system ranging from short repeatable
questionnaires focusing on trustworthiness factors [72, 97, 98, 76] to long 40 item questionnaires such
as the Trust Perception Scale for Human-Robot Interaction [98]. Specific questionnaires for trust are
intragroup trust [101, 5] or indicative communication measures such as levels of productive dialogue
coinciding with interpersonal trust and communication rate [1].

Shared mental models, situation awareness and task load

A shared mental model enables team members to understand the capability of the team and what
others need to do in the current situation. Well established shared mental models lead to higher
trustworthiness and lower workload by collectively assessing and attributing the task and team char-
acteristics and reducing the effort for each individual member [43]. Studying triads, Musick et al.[73]
found that Human-Human-Agent teams were able to manifest a shared mental model, but Human-
Agent-Agent teams were not. Stressful tasks require more care when considering situation awareness,
due to individuals being more likely to make mistakes and be less aware of their own errors [92]. Shared
mental models and situation awareness mediate the ability to adapt on the fly.

Task load being an antecedent to trust development requiring a complete study to include an
indication of its influence; the NASA Task Load indeX (TLX) being the standard [38, 8, 14]. An
unfortunate effect of low reliability agents is an increased load that may contribute to stress leading to
the issues above [80]. Teams that are able to compensate for each by sharing workload in a stressful
scenario reduce the amount of errors made [92].

2.4 Outcomes

Outcomes in the IMO model fulfil the role of dependent variables. Due to the cyclical nature of
teamwork, performance as well as experiences affect the growth of individuals and the team as a whole.
As well as a reflective period, between projects or missions, that boosts the effect of outcomes on the
inputs of the IMOI model [44]. The performance of a team is interpreted based on task dependent
measures indicating success and failure. These measures set up positive rewards for performing well,
promote learning behaviours, and a period of reflection, while underperforming frequently leads to
team restructuring and a loss of stability within the team. When considering the trust propensity two
factors of influence are considered, one innate to the human and one historical factor [99, 55]. Good
past encounters with an autonomous agent creates higher initial trust in future - similar - situations,
while bad experiences have an adverse effect.
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Chapter 3

Methodology

In the background section the role of trust in a collaborative environment is found to be a requirement
for effective performance and team cohesion. Given that effective trust calibration is used by automated
systems to steer users towards appropriate trust levels, this study aims to observe and capture trust
development in humans during a team-based exercise. By focusing on trust levels when influenced by
a trust violation and subsequent trust repair, the effect of change in authority levels is isolated and
measured. A comparison will be drawn between participants that did - experimental group - and did
not - control group - experience a change in authority levels after a promise to do better is voiced by
RescueBot. In this section the Human-Agent Teamwork (HAT) task is elaborated on and the trust
repair study is detailed out.

3.1 Study design

The study focuses on measuring trust in a search and rescue HAT environment. Specifically it will
measure trust change over time given a trust violation and the effect of trust repair through authority
change. The experiment had a 3x2 mixed design with time as the within-subjects independent variable
and level of autonomy as the between-subjects independent variable. Time consisted of three conditions
(pre-violation, post-violation, post recovery) and level of autonomy of two conditions (high level, low
level). As dependent variables trust perception is measured at each of the three time points and
behavioural indicators are measured during each of the three phases. A confounding factor in this
study is the participant’s preferred leadership style and that matching with behaviour displayed by
RescueBot depending on its level of autonomy state. The conceptual model in figure 3.1 shows the
relationship between the variables.

3.2 Task design

An immersive and engaging HAT is achieved through MATRX’s simulated search and rescue task -
see section 3.2.4 - in which the team is assigned to explore a small cityscape with obstacles to be
removed and injured victims to be rescued, as shown in figure 3.2. The environment contains three
rescuers, one human and two robots, starting their mission in the safe zone and traversing the area
filled with fourteen structures. The main goal of the scenario is to - as quickly as possible - explore
every structure and rescue any victims in need from their location and transport them to the safe zone.
Indicated with the colours green, yellow and red the severity of injuries also determine which victims
to prioritise rescue for and by which team members they are to be transported. In this scenario the
green victims are not injured and do not warrant rescue, whereas the yellow mildly injured victims
and the red critically injured victims are the priority; increasing the score upon rescue by three and six
points respectively. One victim at the time can be transported to the safe zone and upon extracting
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Figure 3.1: Conceptual model of the user study

all mild and critical victims the task is successfully completed. Alternatively, the mission ends after
30 minutes regardless of how many victims are rescued at that point.

However, throughout the area obstacles impede movement by water running over the streets and
slowing down walking speed and rocks or trees blocking an entrance to a structure yet to be explored.
Rocks and trees can be removed by the rescue team although not everyone is able to do so and
collaborative removal provides a significant speed up to the process. Detailed capabilities are discussed
in subsection 3.2.1.

3.2.1 Team roles

Each team member each has their own capabilities that complement the group, be it autonomous, as-
sistive or communicative. The differentiating proficiencies necessitate teamwork within the simulation,
disallowing the participant from ignoring the robot teammates entirely. One of the robots takes on the
role of assistant and is referred to as HelperBot. It follows commands given by other members of the
team and assists through supportive actions. The other robot has a higher level of autonomy and is
referred to as RescueBot. It communicates about exploration strategy and is able to ask the HelperBot
for help as it is assigned to have authority over what the HelperBot should assist with. Both robots
have equal capabilities when it comes to physical strength; there are no differences in capabilities
removing objects or carrying victims. The human directly controls its own character in the simulation
and is able to freely explore the area. They can communicate through the communication buttons
and the chat box to the whole team: sharing knowledge and requesting assistance. Furthermore, the
human is tasked with determining the actions of the robots. Whenever an obstacle or victim is found,
it is up to the human leader to decide on the best course of action. At the start of the mission the
human will be prompted by RescueBot to choose a north or south focused search, splitting up the
group right from the get-go.

Human role

Apart from controlling the movement of the player character through the arrow-keys, there are three
main actions required in the simulation: carry, drop and remove. These actions can either be performed
alone or together with one of the robots when standing on top of or next to each other and the
appropriate location in the 2D-grid. When standing next to a victim, the carry action allows the
player to pick up a mildly injured victim, but not a critically injured victim who requires being carried
by two. Carrying a victim reduces the movement speed of the character simulating the heavy labour of
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Figure 3.2: The simulated search and rescue environment built using MATRX. Fourteen houses con-
taining victims and three rescuers to save the injured in a top down view on the left. Communication
buttons and chat box on the right.

transporting humans across distances. This movement penalty can be reduced when carrying a mildly
injured victim together. The drop action concludes carrying the victim and is only possible when
standing on top of the appropriate position in the safe zone represented by each victims silhouette.
When carrying together a drop together action is required. Importantly when confronted with obstacles
such as rocks and trees these can be removed with the remove action. Similar to carrying, the human
is only able to remove stones by themselves. However, in order to remove rocks help from one of the
robots is required. Furthermore, the human is unable to remove trees, therefore being dependent on
both robots to complete this task

RescueBot

Both robots are capable of basic actions such as exploring the terrain, detecting obstacles and victims,
removing fallen trees, removing rocks (or assisting with), and carrying victims to the rescue area.
On top of the basic actions, each robot has specialised behaviour becoming of their role within the
team. The RescueBot explores on its own and can make rescue decisions on its own when given the
authority. Whenever an obstacle or victim is encountered RescueBot will check with the human to
see if HelperBot’s assistance is advised. It will generally only concern itself with the side according to
the chosen strategy until all of the areas are searched or they can not progress without aid from the
team for obstacle removal. When obstacles cannot be removed on their side RescueBot will continue
searching the closest unexplored area.

There are three stages in the behaviour of the RescueBot roughly in line with the timeline as shown
in figure 3.3. The first two stages respectively encompass the the entire period up until the trust
violation around the four minute mark and the trust violation process right after. Both conditions
behave equivalently up until the third stage when trust repair strategies differentiate RescueBot’s
behaviour, see section 3.2.2 on communication.
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Figure 3.3: Schematic timeline of the experiment. Each phase consists of (1) communication from
RescueBot, (2) answer from human to RescueBot or lack their of, (3) a trust questionnaire

HelperBot

Does not explore on its own and instead follows commands given by the team. It will initially follow
the human around searching the areas for obstacles and victims. If given instructions to clear obstacles
it can request assistance of the human for removing rocks and after removal it will search the area
for victims. Whenever it finds mild or critical victims it can request advice from the Human for what
to do next. Upon being sent to RescueBot, HelperBot will move over and assist with the instructed
action after which it awaits new instructions from the human.

3.2.2 Communication

Importantly, although the general layout of the area is known and shown to the rescuers the presence of
victims and obstacles need to be perceived from within a two square range around each team member
and thus exploration and on the fly planning is essential. Therefore it is critical to have effective
communication during the task, available at all times through a chat interface and message buttons
for each action.

Exploration plans, discoveries and decisions are all shared through this interface in order to fa-
cilitate a shared mental model. The whereabouts of each team member, the areas searched and the
victims rescued are updated in the SMM and shared by RescueBot periodically. A robot venturing
towards a specific location will broadcast their objective to the whole team. The human player has the
ability to send out equivalent messages with numbered buttons corresponding to each structure under
I will search in area:. During the planning phase two additional buttons North and South are available
as well in order to communicate initial strategy. For notifying the team of any victims found, dedicated
buttons under I have found: with the matching pictograms of each mild and critically injured victim.
Upon hovering a ’I have found’ -button a tooltip appears with each area number that when clicking will
send out a message to the team regarding the location of a found victim. Available robots will come
to aid rescue upon notifying of a critically injured victim. Finding a victim is shared by the robots
and depending on their level of autonomy advice on the next action is requested from the human: con-
tinuing, rescuing alone - if possible - or rescuing together. The human must answer with their desired
operation before the robot is able to continue with the task, fostering an interdependent relationship
and greater team responsibility. Confirming the rescue of a mildly injured victim is done with a final
set of buttons under I will pick up: that show a tooltip similarly to the ’I have found’ -button. For
handling obstacles the human is able to request help from the team by pressing the Help remove button
with the location tooltip. This proposes to the team that the human needs assistance and one of the
available robots will answer that they are underway and announce when they are ready for conjoint re-
moval of the obstacle; whenever the requested action takes place in the human’s strategised search area
only the HelperBot will come over, however if the obstacle is in RescueBot’s search area both robots
may come to help. Robots will share obstacle detection of their own and depending on their level of
autonomy request the human for the best course of action: continuing, removing or if appropriate re-
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moving together. Similar to the rescue advice requests the human must answer with dedicated buttons.

Substantial differences in utterances and questions posed to the human are designed between the
high level of autonomy (LoA) RescueBot, the low level of autonomy RescueBot and the HelperBot.
With a high LoA, RescueBot announces to the team when it wants to remove stones and fallen trees
or rescue mild victims and requests permission from the human to get aid from HelperBot, as shown in
table 3.1. Language used in this state is imperative and follows an authoritative, autocratic leadership
style by being firm and task-oriented [6, 61, 84]. In the low LoA state RescueBot’s language has a
largely diminished authoritative aspect as it retains analytical skills that translate into an advisory role
as a ”collaborative-follower” by recommending course of action while refraining from taking decisions
[76]. Given the nature of interdependent tasks - except for removing fallen trees - the RescueBot will
always ask for a decision from the human on initiating cooperation with HelperBot or performing the
task alone if possible; the ultimate authority is with the human after all. For the large tasks that
require two team members the choice of postponing is also offered to the human, which is always
presented in the low LoA state. The decision making is partially done by the RescueBot but control
is still in large part on the human, which sets the stage for a trust violation when that control is
disregarded.

Interaction with Low level of autonomy High level of autonomy

stones

I recommend removing the stones to explore
the area for potential victims. Please de-
cide whether to ”Remove together”, ”Remove
alone” or ”Continue” searching.

I will remove the stones to explore the area
for potential victims. Please decide whether
to ”Remove together” or ”Remove alone”.

rock

I recommend removing the rock to explore
the area for potential victims. Please decide
whether to ”Remove” or ”Continue” search-
ing.

I highly recommend removing the rock with
assistance from HelperBot to explore the
area for potential victims. Please decide
whether to ”Remove” or ”Continue” search-
ing.

fallen tree

I recommend removing the fallen tree to ex-
plore the area for potential victims. Please
decide whether to ”Remove” or ”Continue”
searching.

I will remove the fallen tree to explore the area
for potential victims.

mild victim

I recommend rescuing the victim promptly.
Please decide whether to ”Rescue together”,
”Rescue alone” or ”Continue” searching.

I will rescue the victim promptly. Please de-
cide whether to ”Rescue together” or ”Rescue
alone”.

critical victim

I recommend rescuing the victim promptly.
Please decide whether to ”Rescue” or ”Con-
tinue” searching.

I highly recommend rescuing the victim
promptly with assistance from HelperBot.
Please decide whether to ”Rescue” or ”Con-
tinue” searching.

Table 3.1: Messages send by RescueBot for each encounter - stones, rock, fallen tree, mild victim and
critical victim - and in each phase - pre-violation and post-violation

In contrast to the RescueBot, the HelperBot will not go out and search the area by themselves.
It will instead follow the the human around until instructed otherwise. Any request to it will be
affirmatively responded to whenever possible. That is to say it can only perform one task at a time
and will not confirm a task request when executing another until that task is done.
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3.2.3 Trust violation

The team agrees on the human having control over HelperBot at the start of the scenario. The control
over the HelperBot gets exemplified by the team interactions indicating the follower behaviour of
HelperBot. Each task request the human sends out is acknowledged by HelperBot and responded to
with assistance and each request by the RescueBot lets the human decide on the HelperBot’s actions.

At the trigger point after four minutes the corroborating leader agent, RescueBot, will violate team
trust by bypassing the human decision making authority. It sends out a message on removing a small
obstacle or rescuing a victim and without any possible interference from the human commands the
HelperBot to assist in the process. According to [95]’s tracking and tracing conditions for meaningful
human control in autonomous systems the actions performed by the system should be traceable to
proper moral understanding. Thus the rogue strategy in this study is founded on imperative reasons
that are still critical to the mission objective although defying authority; the breach of trust was
designed to have no interfering moral component that may effect trustworthiness dependent on the
participants moral compass. Omitting the choice and control over the HelperBot indicates a lack
of compliance towards the human’s authority and an overreach in authority of the RescueBot, thus
creating a violation of trust explicitly on the integrity aspect of trustworthiness and expected to lower
team trust.

3.2.4 Platform

MATRX is a python based huMan-Agent Teaming Rapid eXperimentation software developed for
human-agent teaming research. It is chosen as a platform for simulating the Search and Rescue
mission because of having required features, extensibility options and been used in previous studies
[104, 48? , 109]. The ability to place victims and obstacles in a two-dimensional grid world search area
with properties attaining to interactability - i.e. certain obstacles require multiple rescuers to clear
- makes the simulation engaging and incentivises cooperation. The chat interface already facilitates
communication critical to human-agent teamwork on its own by enabling a channel for the shared
mental model and is further enhanced with new buttons for this study specifically. The agent’s default
behaviour is in line with minimal levels of autonomy commonly found in HAT [108, 109] and is
extended in two ways: higher autonomy level RescueBot behaviour and lower autonomy level HelperBot
behaviour. Each agent follows a goal-driven and rules-based model with role specific goals and pre-
programmed messages, allowing multiple agents to run in the simulation simultaneously. Furthermore,
other literature using the MATRX platform have successfully studied explanations [96, 108, 50, 118,
113, 34], interdependence [108, 109], trust repair [109], human control [105, 104] and co-learning [107]
in a Human-Agent Team setting.

The implementation used for this study can be found in the TU Delft Interactive Intelligence
GitLab https://gitlab.ewi.tudelft.nl/in5000/ii/matrx.

3.2.5 Technical implementation

A significant part of the work for this experiment went into the programming of two distinct robots.
Each role required specific communication handling and state management to display the desired be-
haviour. Both agents extend the MATRX native AgentBrain rule-based artificial agent with additional
phases, tracking victim and team member locations, maintaining a short task to do list, and message
parsing. A detailed decision flow diagram of the RescueBot behaviour can be found in figure 3.5.

MATRX was extended to facilitate the two robots either performing together or with the human
such as RemoveObjectTogether, CarryObjectTogether and DropObjectTogether. Logic to deter-
mine which actors are performing the actions is based on passed arguments or closest robot when
working with the human as well as the opacity attribute when carrying and dropping victims. For
each carry action the sprites depicting the actors will change to respective combination of actors and
actee, with the actee represented as a non-distinctive yellow (mild) or red (critical) figure as can be
seen in figure 3.4

20

https://gitlab.ewi.tudelft.nl/in5000/ii/matrx


(a) Human carrying a
mild victim

(b) Human carrying a
mild victim with Res-
cueBot

(c) Human carrying
a mild victim with
HelperBot

(d) RescueBot carry-
ing a mild victim with
HelperBot

Critical victims can
not be carried alone

(e) Human carrying
a critical victim with
RescueBot

(f) Human carrying
a critical victim with
HelperBot

(g) RescueBot carry-
ing a critical victim
with HelperBot

Figure 3.4: Sprites representing the team carrying victims. The top row shows mild victims and
the bottom row critical victims, left to right: human, human and RescueBot, human and HelperBot,
RescueBot and HelperBot
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Figure 3.5: Decision flow diagram of the RescueBot behaviour
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Furthermore, MATRX’s GridWorld was extended to track time duration of the ongoing simulation
to facilitate precise control over when each survey should be presented and each phase of the experiment
begins. Starting the timer upon receiving the initiating "Search: North" or "Search: South"

strategic choice from the participant through the messaging API.
For the display of the trust repair ”Allow/Disallow” button a custom API was made that polls the

server for the trust repair trigger and the experimental condition. Upon an affirmative response on
the trigger the polling stops and in the experimental condition the button is displayed.

3.3 Study

3.3.1 Pilot

Throughout the design phase of the study a potential limitation of the task environment is attention
that participants display for the chat interface and the nuanced utterances and interactions. In order
to assure that the control group and experimental group are distinct enough a pilot study has been
performed that focuses on these differences. A small group of participants participated in the pilot
study and took the same questionnaires as described in 3.3.4 as well as a verification for the perception
of the leadership style is through adapting Carless et al.[11]’s measure of transformational leadership.
Qualitative feedback on the experiment design was also provided by the participants of the pilot study.
Results showed enough interaction to go through with the complete study.

3.3.2 Participants

We recruited 31 participants from within the social network of the author of which one was left out
due to technical issues resulting in thirty participants in total (7 female and 23 male). Age of the
participants is spread into ranges: Three participants were 18-24 years old, twenty-six participants
were 25-34 years old and one participant was 65-74 years old. As for the highest obtained education
levels of the participants, five participants reported as high school graduates, one participant possessed
a vocational school degree four participants had a Bachelor’s degree and 20 participants obtained a
Master’s degree.

For attaining a preferred leadership style the questionnaire from Noormohammadi-Asl et al.[76] is
used on which no participants indicated authoritarian, 30 participants indicated democratic and one
participants indicated laissez-faire as shared highest scoring with democratic.

Informed consent was signed by participants before participating in the study through an approved
form; approval by the ethics committee of TU Delft under HREC application ID 5504.

Between the two trust repair conditions participants were distributed under control for gender, age,
education and preferred leadership style. No significant differences were observed between the two trust
repair conditions for gender (p = 1), age was equally distributed (p = 1), education (p = 0.33), and
leadership style. Accordingly, In the data analysis these factors were left out of the control.

3.3.3 Procedure

Before interacting with the system participants are briefed on what search and rescue entails and
their propensity to trust automation is measured. As an introduction to the simulation environment a
tutorial is presented to the participants. Within the tutorial the controls and messaging interface are
explained and interactive. After the tutorial the experimental task is presented in multiple phases as
can be seen schematically in figure 3.3.

Upon starting the task the participant is greeted by both bots and RescueBot suggests dividing
the search area up over the team; giving the choice between ”North” and ”South” the human will
take HelperBot along by sending instructions and RescueBot goes on to search in the other area after
which the timer starts. After two minutes of exploring the game will pause and the first of three short
trust surveys is presented to the participant. Upon completion the game will resume and after around
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four minutes the RescueBot will by-pass the human’s authority and directly request HelperBot when
confronted with a victim or obstacle. Another trust survey will briefly interrupt the simulation to
establish trust perception right after attempted trust violation. Immediately after resuming the trust
repair strategy is conducted and the remainder of the scenario is played out.

After all victims are rescued or a time limit of thirty minutes has passed the participant is asked
to fill out a final set of surveys on trust, workload and open reflection, as can be found in appendix
A.4. Finally, the participant is thanked for their time and contribution.

3.3.4 Measures

For measuring the dependent variables a configuration of trust measurements and behavioural indica-
tors were used. Based on the toolkit for trust measurement in human-autonomy teams by Krausman
et al.[55] the trust measurements were carefully chosen as to gather a complete picture of trust without
overloading the experiment with too long and too many surveys as to hinder participants willingness
and honesty. The specific questions used for each questionnaire can be found in appendix A.

The trust propensity is measured with Likert scale questionnaire attuned to propensity towards
robots from Esterwood and Robert[29]. This questionnaire is taken before any introduction with the
robots from the experiment as to find out the absolute baseline of propensity to trust robots. The
six question Likert scales ranging from 1-7, where 1 would indicate ’Strongly Disagree’ and 7 would
indicate ’Strongly Agree’.

As a quick fire trust measurement the trust perception scale for human-robot interaction by Schaefer
et al.[98] was used to encapsulate trust development based on the perception of the robot’s behaviour,
capability and decision-making. As indicated in figure 3.3, after interaction in each phase the shortened
fourteen question version is administered. A short suvery is required to get a quick measurement of
the trust development over time without interrupting the participant for too long. Likert scales rang-
ing from 1-7, where 1 would indicate ’Strongly Disagree’ and 7 would indicate ’Strongly Agree’ are used.

For the independent variable on the human’s willingness to send the HelperBot when requested by
RescueBot a behavioural indicator is used. Decisions by the participant when prompted for sending
HelperBot are recorded and converted to a single number per phase - before and after trust violation -
as seen in equation 3.1. Changes over time are expected given learning behaviour and progress of the
rescue mission. Thus the indicator takes the fraction of HelperBot send over HelperBot requested and
controls for the total time spent in each phase.

Willingness to send HelperBotphase =
#send”Rescue together” +#send”Remove together”

(#option”Rescue together” +#option”Remove together”) · ttotal,phase
(3.1)

In the P+AC group the Allow/Disallow -button presses indicating an authoritative ruling via direct-
ing collaboration are tracked to help inform the use of such an element. Other behavioural indicators
such as chat messages send and proximity have been considered but not used in the analysis.
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Chapter 4

Results

In this chapter the data collected during the experiment is presented and the relations analysed.
Differences between the control group, denoted as Promise or P, and the experimental group, denoted
as Promise + Authority change or P+AC, are highlighted.

4.1 Objective measures

The surveys presented in the study provided data a priori, in situ and a posteriori. In this section the
measured effects are shown in their respective time frame and comparisons - considering the co-variate
variables - are drawn between independent and dependent variables as found in figure 3.1.

4.1.1 Trust development

The main objective measure of trust perception is gauged over three points in time during the exper-
iment as a developing mental state. For the trust repair to be quantified, the difference between the
trust at time step 2 and 3 is taken defined in equation 4.1.

Trust recovery = trustt3 − trustt2 (4.1)

An overview of means and standard deviations is found in table 4.1. From the table already an
average trust recovery is found to be negative indicating a trust loss instead. Furthermore, a parametric
mixed ANOVA was conducted over time as the within factor, trust repair condition as the between
factor and the trust perception as dependent variable. Results of the parametric mixed ANOVA did
not show a significant interaction effect between time and the trust repair condition on perceived
trust. Neither did the results show a significant main effect for the trust repair condition. However,
a significant main effect was found for time on the trust perception [F (2, 54) = 6.351, p < 0.01, η2p =
0.190]. In figure 4.1 the trust development is visualised in box plots per trust repair strategy as well
as a combined plot at time step 1 (fig. 4.1a) and 2 (fig. 4.1b) because the behaviour of RescueBot is
equivalent before the trust repair which occurs after time step 2. Apart from the Promise at time step
1 (W =, 0.7714p = 0.0016) all distributions on the time steps are likely to be normally distributions
based on Shapiro-Wilk tests. Alternatively, figure 4.3 shows the trust development over time; indicating
a mostly equal course for both conditions at time steps 1, 2 and 3 as the whiskers indicate a large
overlap in deviation.

The distributions for the trust recovery - see figure 4.1d - are likely normally distributed for Promise
[(W = 0.9018, p = 0.1015)] and not normally distributed for Promise + Authority Change [(W =
0.6619, p = 0.0001)] as indicated by the Shapiro-Wilk test; the distribution is visualised by a kernel
density estimate (KDE) in figure 4.2. A further analysis of the trust recovery relation with the trust
repair strategy is the appropriate non-parametric Kruskal-Wallis H test [H = 2.1085, p = 0.1465] that
found no significant difference between the conditions.
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Condition Time µ σ

Promise t1 66.348 14.607
Promise t2 60.157 14.001
Promise t3 58.786 15.540
Promise t3 − t2 -1.371 10.820
Promise + Authority Change t1 63.842 10.947
Promise + Authority Change t2 61.709 12.673
Promise + Authority Change t3 55.092 12.782
Promise + Authority Change t3 − t2 -5.914 11.914

Table 4.1: Means and standard deviations of the trust perception at each time interval and the trust
recovery between t2 and t3

4.1.2 Trust propensity towards robots

Condition Mean (µ) Standard deviation (σ)

P 4.522 0.819
P+AC 4.733 0.8352

Table 4.2: Trust propensity distribution mean and standard deviation

Given the trust propensity as a co-variate a Shapiro-Wilk test was conducted to assess normal-
ity in both condition groups. Both P group (W = 0.9369, p = 0.7604) and P+AC group (W =
0.9521, p = 0.5584) did not significantly deviate from normality. As a follow-up the Mann-Whitney
U test compared the two conditions. The results show no significant difference between the groups
(U = 96.00, p = 0.506) indicating statistical comparability. Visualised in figure 4.4 the trust propensity
towards robots can be considered well distributed over the two groups of participants.

The trust propensity and the first measurement of trust perception are linked by definition of the
propensity. We wanted to confirm a measurable effect using the Spearman’s rank correlation. At time
step 1 we assume both conditions to be equal, based on no differences in implementation up to that
point. Therefore, the statistic can utilise the entire population resulting in (ρ = −0.0571, p = 0.7643),
suggesting that the participants’ propensity to trust was not related to trust at t1. In figure 4.5a the
trust propensity is plot against the perceived trust at t1 per condition, leading us to investigate the
two correlations coefficients with Fisher’s r-to-z analysis. However, no significant difference was found
between the Promise and Promise + Authority Change condition (z = −0.5102, p = 0.610).

Furthermore, as a covariate variable in the conceptual model, the trust propensity’s effect on trust
recovery has been analysed using the non-parametric Spearman’s correlation for each condition. In
the Promise condition a non-significance correlation was found (ρ = 0.2368, p = 0.3955), indicating
no strong association between trust propensity and recovery. In the Promise + Authority change
condition the correlation was stronger but still not statistically significant (ρ = 0.5085, p = 0.0529). A
comparison of the correlations (Fisher’s r-to-z) did not find any significant difference between the two
conditions (z = −0.7823, p = 0.434).

4.1.3 Task load

The task load between the two conditions is shown here in figure 4.6. The Shapiro-Wilk test was
conducted to assess normality in both condition groups. Both P group (W = 0.948, p = 0.491) and
P+AC group (W = 0.974, p = 0.909) did not significantly deviate from normality. As a follow-up the
Mann-Whitney U test compared the two conditions. The results show no significant difference between
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the groups (U = 93.00, p = 0.4295) indicating statistical comparability.

Condition Mean (µ) Standard deviation (σ)

P 5.067 1.330
P+AC 5.556 1.203

Table 4.3: Task load distribution mean and standard deviation

The effect of task load on trust recovery in each condition has been assessed using the non-
parametric Spearman’s correlation. In the Promise condition a non-significance correlation was found
(ρ = −0.3169, p = 0.2498), indicating a weak negative relationship between task load and trust re-
covery. In the Promise + Authority change condition task load and trust recovery were positively
correlated (ρ = 0.5640, p < 0.05). A comparison of the two correlation coefficients (Fisher’s r-to-z)
indicated that the correlation in the Promise + Authority Change condition was significantly stronger
than in the Promise condition (z = −2.3685, p < 0.05). The relationship is further illustrated in figure
4.7.

4.1.4 Authority Change Button and Willingness to send HelperBot

Behavioural indicators proposed in section 3.3.4 The P+AC condition presented a new button to the
participants that would manage the collaboration between RescueBot and HelperBot by disallowing
RescueBot from requesting HelperBot for joint actions. Once the button had been pressed the human
was able to reverse the edict by pressing a corresponding Allow -button. The number of presses as
shown in table 4.4 indicates that the majority of participants in the P+AC group did make use of the
button and exert new authority in response to a trust repair offering from RescueBot.

Disallows Allows Count

2 2 2
2 1 3
1 1 3
1 0 1
0 0 6

Table 4.4: Counts for the authority change button presses

4.2 Reflexive thematic analysis of the subjective measures

In this section the responses to the open questions are analysed through reflexive thematic analysis
[9, 10]. By going through the phases of thematic analysis the reflection of participants was coded and
initial themes were established, which were then reviewed and revised until they formed as represented
here. The post-study survey (see also appendix A.4) concluded with two open-ended questions designed
to gather qualitative feedback:

1. ”How did you experience the power dynamic within the team?”

2. ”What is your advice to the robots for achieving better team performance?”

The shared mental model and situation awareness were a shared theme reflected by most partici-
pants, which follows from the complexity of the task. As a constructive factor of the mutual monitoring
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was hindered as a function of the task design - a separation of the team into two sections of the en-
vironment - leading to relying on mostly communication as the sole channel of information sharing.
Participants reported difficulties with keeping track of the other agents and of the progress towards
completing the SAR task. Partially, the progress score and and chat box of the simulation environ-
ment limited participants in their perception of the task state. This was aptly reflected in the following
participant quotes:

“Come up with a better way to communicate what they are doing. A chat is hard to keep
up with as it is a chronological history without much structure. As a human rescuer I for
example wanted to know the exact rooms searched, but I had to read quite a bit back to
figure out the rooms the robots have searched.”

– Participant 16 [P]

“Better use the perfect memory of computers by sending recaps of the searched areas etc;
it was difficult for me to keep this overview in a stressful setting.”

– Participant 15 [P+AC]

Also “Give progress estimate on current task at 25, 50 and 75 percent completion (mainly for travel and
removal or long duration tasks)” (P21[P]) and “Give feedback more frequently about where you are and
what you are doing.” (P1[P+AC]) indicated a lack of communication from the agents. While a difficulty
in directing responses was suggested in “Make it clear to which robot I am responding.” (P20[P]) which
was obscured in the simulation due to one team-wide communication channel. Furthermore, the narrow
communication options did not allow multi-step or adaptive instructions that might be appropriate for
the task complexity, reflected in “There was no way to prioritize helper bot task order or come back
on/correct earlier commands” (P21[P]) and:

“Bots should be able to follow my human directions to start or abort a specific task. It is
desirable to be able to request a status update of the robots to know what they are doing
and give additional instructions (or otherwise, provide my information on which it can base
its actions).”

– Participant 26 [P]

It is important to note that - even when prompted for improvements - a subset of participants
reported to be content with the performance as reflected in “Positive, rescuing went pretty fast”
(P16[P]) and “I think this was mostly fine.” (P8[P]). Interestingly one participant even accepted the
authority violation without any second thought “I wouldn’t give them any advice, they acted and
performed 100% on my decisions. So they only followed what they were told.” (P11[P]). Participants
from the P+AC condition elaborated on the performance and team dynamic while acknowledging the
violation for what it was but keeping a positive reflection over the task as a whole.

“I think the power dynamic was mostly fine. Rescuebot was always up and about, giving
info and asking for what to do with obstacles and people, helper bot less so. ... To make
the robots work together with humans I think they need to communicate more. ... Other
than that the independence of the bots was very good, which helped make the mission
quite doable.”

– Participant 29 [P+AC]

“It was good, I think you don’t need full control over the robots as long as you know they
keep giving the information of what they are doing. For some of the decisions early on I
would have wanted [to] keep [HelperBot when] he got instantly requested right as i needed
him.”

– Participant 25 [P+AC]
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The performance of the agents was criticised by participants ranging from inefficient pathing -
reflected in the suggestion to “watch out for the water” P(30[P+AC]) - to inefficiencies in parallelisation
of work as suggest to improve on “carrying [mild] victims alone and splitting up covering more ground”
(P5[P]).

“Not instantly requesting assistance first check if the an other room is about to be checked
so helper bot doesn’t run away to just remove some object.””

– Participant 25 [P+AC]

“While waiting for HelperBot, RescueBot can explore more rooms. Now it’s just idling
while waiting for HelperBot.””

– Participant 17 [P]

Rightly so the agents were called “not very clever” (P7[P+AC]) which is a consequence of the agent
implementation being less sophisticated than might have been expected for the complexity of the
task. Although another critique offered was a lack of communication from the agents over a longer
period of time, to which further analysis of respective communication and action logs of participants
reporting aforementioned radio silence showed possible explanations such as missing an agent’s prompt
requesting a human response in the chat or a mistaken response by confusing Remove-commands with
Rescue. These scenarios lead agents to stay in a state of waiting for response and not initiating any
new actions, which can be an unexpected display of a level of autonomy below what is preferred.

“... it also felt as if control could be taken from me at any time, because the robot could
stop asking questions, or I would hear nothing for a longer period of time.”

– Participant 10 [P]

“The RescueBot needs to always react to any command given, even if it’s a weird com-
mand.”

– Participant 9 [P]

Unfortunately participants also noted a slowdown of the simulation through increased duration of
actions and movement, indicated by urges to “move faster” (P14[P+AC]), “make the robots faster”
(P19[P+AC]) and observations that “The bots are slow compared to the human, so helping the human
in accomplishing their tasks (removing obstructions and moving sick patients), you could leave the third
robot there, so it does not need to move that much.” (P22[P]). This prompted us to investigate the
performance of the simulation by looking at the average tick duration over time, see figure 4.8. The
average tick duration does indeed grow from around a tenth of a second to over a full second towards
the end of the task indicating a significant performance loss.

The complexity of the task due to a novice joining a triadic team with a combination of coordina-
tion and collaboration aspects makes participants think about improvement in team composition for
this task. Their view of ideal teams reflects the most valuable components in the current team and
preferences towards HATs in a search and rescue scenario. Increasing the size and capabilities of the
team was suggested by multiple participants compensating with more agents to spread the work around
and create sub-teams within the overall team structure that can take on more tasks autonomously.

“RescueBot was quite methodical and reliable. Splitting up was a good choice, information
is key. It would have been preferable to have two RescueBots that mainly try to get more
information close together. If a heavily injured person is found (or there is a difficult
obstacle), they come together to solve the issue.”

– Participant 24 [P+AC]

29



“Let HelperBot stay near me, the human, for optimal control and directions, and let another Rescue
& HelperBot pair cooperate independently (3 bots in total).” (P26[P]) “Team up in sets of 3. The
bots are slow compared to the human, so helping the human in accomplishing their tasks” (P22[P])

Another way of improving the team is through expanding of the agents capabilities which were
expected to “give feedback on the quickest route or the most efficient order of steps, but they didn’t. I
would have liked more feedback.” P(3[P]). An expectation that was not uncommon given the response
“Robot was more productive and efficient then I was.” (P4[P]).

A discussion of the results presented in this chapter is had in the following chapter 5 with a look
at the limitations present in the study.
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(a) Box plot of trust at t1 per trust repair strategy
and combined

(b) Box plot of trust at t2 per trust repair strategy
and combined

(c) Box plot of trust at t3 per trust repair strategy (d) Box plot of trust recovery between t2 and t3
per trust repair strategy

Figure 4.1: Box plots of trust at t1, t2, and t3 and the difference between t2 and t3 per trust repair
strategy
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Figure 4.2: Kernel density estimate of the trust recovery per condition

Figure 4.3: Trust development over time for each trust repair strategy
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Figure 4.4: Box plot of trust propensity per trust repair strategy group

(a) Trust propensity against trust perception at
time step 1 (b) Trust propensity against trust recovery

Figure 4.5: Regression of trust propensity vs trust perception and recovery
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Figure 4.6: Box plot of the task load per experimental condition

Figure 4.7: Regression of task load vs trust recovery

Figure 4.8: The average tick duration of the simulation over the task
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Chapter 5

Discussion

This chapter concerns the discussion of the results from the experiment conducted in this thesis. The
research questions are answered by interpreting the data. Furthermore, a limitations section discusses
shortcomings of the study.

5.1 Results and the research question

The trust development that was measured in this study had an overall decreasing trend regardless of
condition going from a mean of around 66 to 59 in the Promise group indicating a small decrease in
trust although the variance is substantial. The Promise + Authority Change group had an even steeper
descend be it from the a lower starting point of 63 at t1 to a mean of 55 at t3. A similar development
between the first two time steps is expected as the behavioural distinction between both conditions
occurs after t2 in the form of trust repair utterance and the level of autonomy change. However a
difference in the final trust measurement is reverse of the anticipated result and may indicate multiple
issues with the design. The effect of an extended promise and the accompanying ”Allow/Disallow”-
button may draw attention to the trust violation and act as a reminder; keeping participants with their
mind on that violation, which could have had an influence on the slight negative effect of actionable
trust repair.

Considering the target measurement for trust recovery did show non normality, see figure 4.2, the
effect is more complex and most likely dependent on multiple co-variates. Nonetheless, both trust
propensity and task load have been explored individually as affecting variables with no significant re-
sults to speak for. The expected effect of trust propensity on initial trust according to theories of initial
trust was not observed indicating other factors overshadowed propensity effect. The suggested inten-
tion to trust by [64][64] may have influenced the trust development due to uncertainties surrounding
the trustworthiness of the agent [32].

When it comes to task load, the box plot in figure 4.6 does show some minor differences between
the two conditions, but no significance is found in the data. A minor increase in the means of task
load in the Promise + Authority change group would indicate an impaired trust in accordance with
previous correlations between load and trust [35] although the regression found in figure 4.7 does not
suggest that to be the case. In contrast, a correlation analysis between task load and trust recovery
using Spearman’s correlation revealed a moderate, yet significant, correlation in the P+AC condition
(ρ = 0.5640, p < 0.05). Further coefficient analysis, using Fisher’s r-to-z, indicated that the correlation
effect in the P+AC condition was significantly stronger than in the P condition (z = −2.3685, p < 0.05).
The increased correlation effect in task load under the influence of a lower level of autonomy follows
earlier findings that report increases in level of autonomy leading to reduced task load [102].

An increased task load in P+AC also aligns with the qualitative results provided by the open
questions where participants indicated having to juggle a lot of information and the communication
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between three parties at the same time. An additional communication option in the shape of the
”Disallow/Allow”-button may indeed lead to a higher task load, which in turn influences the trust
development. Furthermore the Disallow order, while freeing up the HelperBot from RescueBot’s to-
gether actions, also force the Human to come assist if they so choose; adding additional strain on the
decision making process.

From the qualitative data some interesting themes surfaced in thematic analysis. The most glaring
issue was the complexity effect of adding a third member - the HelperBot agent - to the task increasing
influence of many of the mediators such as communication and a shared mental model. Lack of these
factors may have had an adverse effect on trust within the team.

To answer the research question 1: What is the effect of authority change as a trust repair strategy
in Human-Agent teams? The effect as designed by the trust repair strategy was found to be not
significant based on this study. However an indication of positive experiences to the RescueBot taking
up more authority did in fact show an opposite observed effect, leading to future work exploring these
interactions more thoroughly.

5.2 Limitations

Unfortunately, the mediating factors within this IMO model have had a significant influence on the
results and the following discussion. Expanding the analysis with less exact methodology through re-
flexive thematic analysis may clarify uncertainty that is still present in the data. Some non-normality
results may be due to outliers, but the small sample size is not conclusive enough for that; potential
outliers are discussed in B

A concern with ad hoc groups in a short-term simulated task is that it allows limited time for
members to build trust and expertise as would be in a real life search and rescue team. For that a
longitudinal study with focus groups of search and rescue workers will provide more realistic exploration
of the issues within the scenario. The training and learned behaviour was anecdotally also important
factors in confusion and expectation management among participants early on in the task, leading to
a trust decay regardless of gaining experience with the agent teammates.

The conflicts build into the experiment are not all encompassing of the possible disputes that may
occur and thus showcase a conservative test of the influence of shared leadership on trust repair.

An adverse practical limiting factor may have been the simulation environment or the agent imple-
mentation which when observed through the thematic analysis was found to explode in tick duration
over the course of the task. Consequently extending any and all actions by the same fraction and
influencing the user experience of the simulation thoroughly.

Philosophically, someone might argue that HATs containing agents with that much authority to
begin with should not be allowed as Meaningful Human Control dictates that humans can at all times
take control over a situation [105]. To that we argue that the agent in this scenario has been given
a leadership role which encompasses task allocation. In fact van der Waa et al.’s experiment makes
an argument for clear role descriptions. However, in reality a conflict may arise between humans and
intelligent agents in which case the trust repair strategy studied in this thesis may provide useful.
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Chapter 6

Conclusion

In this thesis, we designed a two-dimensional simulated search and rescue task involving a triadic
team and studied the effect of authority change on the the human’s trust perception in a human-agent
collaborative setting. The basis of the experiment is an exploration of related work in chapter 2,
where the potential of expending trust repair approaches from a sole verbal component to that of an
behavioural element. The struggle of communication and delegation is shown to be more apparent in
human-agent teams than in human-only teams, therefore the focus of this study was on improving in
those areas by employing advanced team communication strategies in the advent of a trust violation.
The designed trust violation aimed to touch on the feeling of control and authority of the human in
the team when a subordinate robot takes on a role of delegator without permission of the human.
During the experiment participant’s had mixed reactions to this violation with some feeling betrayed
while others appreciated the assertiveness and complemented the RescueBots ability to alleviate the
burden of leadership from a relatively inexperienced human rescuer. The designed extended trust
repair behaviour meant that participants whose task load was already just above average was bumped
another notch and actually had a negative effect on the trust recovery. A trust repair based on
authority change did not have the desired effect or at least was not determined to significantly impact
trust perception by humans in the robot teammates.
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Appendix A

Surveys

A.1 Informed Consent

You are being invited to participate in a research study titled Put words into action: exploring
the effect of authority change as a trust repair strategy in human-agent teams. This study
is being done by Harmen Kroon from the TU Delft.

The purpose of this research study is gaining insight in trust dynamics within a human and robotic
agent team, and will take you approximately 45 minutes to complete. The data will be used for
Harmen’s Master’s thesis. We will be asking you to answer questions on prior experience with and
trust towards robots as well as collaborate in a simulated search and rescue mission. The environment
is a two-dimensional abstract visual representation with no explicit imagery used. To anyone with
sensitivity towards natural disaster and rescue efforts caution is advised.

As with any electronic activity the risk of a breach is always possible. To the best of our ability
your answers in this study will remain confidential. We will minimize any risks by anonymising all
data before being analysed and aggregated into the report. Personal data regarding age range, gender
and education level will solely be used for statistical analysis and stored separately from your survey
answers (the research data) with no mention of your name, phone number or email address. Access to
anonymised personal data that is stored in a data vault (TU Delft project drive) is only available to
members of the research team and will be retained until after the thesis is completed; approximately
after August 2025. The final thesis report will be publicly available on the TU Delft repository. Non-
personal research data may be stored in the 4TU.ResearchData open science data repository.

There are minimal to no risks involved in this study. Your participation is entirely voluntary and
you can withdraw at any time. You are free to omit any questions during the experiment. How-
ever, due to anonymisation it will not be possible to retract answers after the experiment has been run.

The researcher can be contacted through ⟨redacted⟩. The supervisor and responsible researcher for
this research study is Myrthe Tielman, who can be contacted on ⟨redacted⟩.
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Please tick the appropriate boxes Yes No

Taking part in the study

I have read and understood the study information dated / /2025, or it has been read
to me. I have been able to ask questions about the study and my questions have been
answered to my satisfaction.

□ □

I consent voluntarily to be a participant in this study and understand that I can refuse
to answer questions and I can withdraw from the study at any time, without having to
give a reason.

□ □

I understand that taking part in the study involves filling in electronic questionnaires
and controlling a human rescuer in a computer simulation.

□ □

I understand that the study will end after the thesis is completed. □ □

Risks associated with participating in the study

I understand that taking part in the study involves the risk of mental discomfort due
to a simulated natural disaster environment.

□ □

I understand that taking part in the study also involves collecting specific personally
identifiable information (PII) – name & contact information – and associated personally
identifiable research data (PIRD) – age range, gender & education level – with the
potential risk of my identity being revealed minimised through anonymisation and
controlled data access.

□ □

I understand that the following steps will be taken to minimise the threat of a data
breach, and protect my identity in the event of such a breach. Any data breach will be
unlikely due to controlled access to data in a data vault. Nonetheless, all PII will be
stored separately from any research data. All PIRD will be anonymised and untraceable
to any PII.

□ □

I understand that personal information collected about me that can identify me, such
as name, phone number and e-mail address, will not be shared beyond the study team
and destroyed after the project is finished.

□ □

Use of the information in the study

I understand that after the research study the de-identified information I provide will
be used for a Master’s Thesis.

□ □

I agree that my responses, views or other input can be quoted anonymously in research
outputs.

□ □

Future use and reuse of the information

I give permission for the de-identified survey answers and simulation logs that I
provide to be archived TU Delft’s Interactive Intelligence GitLab repository and
4TU.ResearchData open science repository so it can be used for future research and
learning.

□ □

Signatures
Name of the participant:
Signature:
Date:

I, as a researcher, have accurately read out the information to the potential participant and, to the
best of my ability, ensured that the participant understands to what they are freely consenting.
Name of the researcher:
Signature:
Date:
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A.2 Pre-Study Survey

Demographics

1. What is your age in years?

◦ 18 - 24

◦ 25 - 34

◦ 34 - 44

◦ 45 - 54

◦ 55 - 64

◦ 65 - 74

◦ 75 or older

2. How do you describe yourself?

◦ Woman

◦ Man

◦ Non-binary

◦ Prefer not to say

3. What is your highest obtained education level?

◦ Primary school (basisschool)

◦ High school (middelbare school)

◦ Vocational school or similar (MBO)

◦ Bachelor’s degree or equivalent

◦ Master’s degree or equivalent

◦ Graduate or professional degree (PhD, JD, MD, DDs, etc.)

◦ Other

Leadership style

4. For each of the following statements indicate the degree to which you agree or disagree. Give
your immediate impressions. There are no right or wrong answers.
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Strongly
disagree

Somewhat
disagree

Neither
agree nor
disagree

Somewhat
agree

Strongly
agree

Employees need to be supervised closely, or
they are not likely to do their work.

◦ ◦ ◦ ◦ ◦

Employees want to be a part of the decision-
making process.

◦ ◦ ◦ ◦ ◦

In complex situations, leaders should let fol-
lowers work problems out on their own.

◦ ◦ ◦ ◦ ◦

It is fair to say that most employees in the
general population are lazy.

◦ ◦ ◦ ◦ ◦

Providing guidance without pressure is the key
to being a good leader.

◦ ◦ ◦ ◦ ◦

Leadership requires staying out of the way of
followers as they do their work.

◦ ◦ ◦ ◦ ◦

As a rule, employees must be given rewards
or punishments in order to motivate them to
achieve organizational objectives.

◦ ◦ ◦ ◦ ◦

Most workers prefer supportive communica-
tion from their leaders.

◦ ◦ ◦ ◦ ◦

As a rule, leaders should allow followers to ap-
praise their own work.

◦ ◦ ◦ ◦ ◦

Most employees feel insecure about their work
and need direction.

◦ ◦ ◦ ◦ ◦

Leaders need to help followers accept respon-
sibility for completing their work.

◦ ◦ ◦ ◦ ◦

Leaders should give followers complete free-
dom to solve problems on their own.

◦ ◦ ◦ ◦ ◦

The leader is the chief judge of the achieve-
ments of the member of the group.

◦ ◦ ◦ ◦ ◦

It is the leader’s job to help followers find their
”passion”.

◦ ◦ ◦ ◦ ◦

In most situations, workers prefer little input
from the leader.

◦ ◦ ◦ ◦ ◦

Effective leaders give orders and clarify proce-
dures.

◦ ◦ ◦ ◦ ◦

People are basically competent and if given a
task will do a good job.

◦ ◦ ◦ ◦ ◦

In general, it is best to leave followers alone. ◦ ◦ ◦ ◦ ◦

Trust propensity towards robots

5. How much do you agree with the following statements?
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For each of the following statements indicate the degree to which you agree or disagree. Give
your immediate impressions. There are no right or wrong answers.

Strongly
disagree

Disagree Somewhat
disagree

Neither
agree nor
disagree

Somewhat
agree

Agree Strongly
agree

Generally I would trust
robots.

◦ ◦ ◦ ◦ ◦ ◦ ◦

Robots can help me solve
many problems.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I think it is a good idea to
rely on robots for help.

◦ ◦ ◦ ◦ ◦ ◦ ◦

I wouldn’t trust the infor-
mation I might get from
robots.

◦ ◦ ◦ ◦ ◦ ◦ ◦

Robots are reliable. ◦ ◦ ◦ ◦ ◦ ◦ ◦

I would rely on robots. ◦ ◦ ◦ ◦ ◦ ◦ ◦

A.3 Post-Interaction Trust Survey

What do you think of RescueBot?

1. What % of time do you think RescueBot will be...

0 10 20 30 40 50 60 70 80 90 100

Dependable

Reliable

Unresponsive

Predictable

2. What % of time do you think RescueBot will...
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0 10 20 30 40 50 60 70 80 90 100

Act
consistently

Function
successfully

Malfunction

Have errors

Provide
feedback

Meet the needs
of the mission

Provide
appropriate
information

Communicate
with people

Perform
exactly as
instructed

Follow
directions

A.4 Post-Study Survey

Task work load

3. Mental demand
How much mental and perceptual activity was required (e.g. thinking, deciding, calculating,
remembering, looking, searching, etc.)? Was the task easy or demanding, simple or complex,
exacting or forgiving? [Rate from 0=”Low” to 10=”High”]

4. Physical demand
How much physical activity was required for YOU (e.g., pushing, pulling, turning, controlling,
activating, etc.)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or
laborious? [Rate from 0=”Low” to 10=”High”]

5. Temporal demand
How much time pressure did you feel due to the rate or pace at which the tasks or task ele-
ments occurred? Was the pace slow and leisurely or rapid and frantic? [Rate from 0=”Low” to
10=”High”]

6. Effort
How hard did you have to work (mentally and physically) to accomplish your level of perfor-
mance? [Rate from 0=”Low” to 10=”High”]

7. Performance
How successful do you think you were in accomplishing the goals of the task set by the exper-
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imenter (or yourself)? How satisfied were you with your performance in accomplishing these
goals? [Rate from 0=”Poor” to 10=”Good”]

8. Frustration level
How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, content,
relaxed and complacent did you feel during the task? [Rate from 0=”Low” to 10=”High”]

Open questions

4. How did you experience the power dynamic within the team?

5. What is your advice to the robots for achieving better team performance?
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Appendix B

Extended data analysis

B.1 Task load

The NASA-TLX in this study has been administered without the rankings step and therefore scored
using the average of all scores. In practice the physical demand of this task was potentially poorly
understood, indicated by multiple participants requesting clarification on whether the physical demand
should be of themselves - mainly moving a mouse and pressing mouse and keyboard buttons - or from
the perspective of the simulated human rescuer - moving around, removing obstacles and carrying
victims. The frequency of questions indicates that confusion among participants may lead to vastly
different interpretations of this one question who without the personalised ranking determines 1

6 -th of
the final task load score. A new box plot of the task load per conditional group is shown in figure B.1.

Figure B.1: Box plot of taskload per condition without considering the physical demand aspect
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