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1 Institute of Thermophysics SB RAS, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia
3 Paul Scherrer Institute, Villigen, Switzerland
4 CORIA-CNRS and INSA Rouen, Normandie Université, Rouen, France
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Abstract. We describe the low Mach variable-density Navier-Stokes numerical iterative
solution procedure implemented in the finite-volume unstructured T-FlowS code. As the test
cases we use a number of analytic manufactured solutions and Rayleigh-Taylor instability
problem from the literature for algorithm verification purposes. The tests show that the code
is second-order accurate in agreement with the spatial discretization scheme. We outline the
recent combustion ADEF model implemented in the program.

1. Introduction
During the last few decades rapid development of the computational technologies stimulated the
research using computational codes for fundamental and applied studies. Increasing complexity
of codes makes the verification process essential for research purposes [1]. In the present work we
assess the accuracy of the implemented algorithm in the variable-density Navier-Stokes solver
related to the combustion problems where quite a broad range of problems can serve as a
benchmark [2–9]. As the test cases we use the analytic manufactured solutions derived by
Shunn et al [10], the Rayleigh-Taylor instability problem employed by Desjardins et al [11]
and describe the combustion modeling framework [12] used in Large-eddy simulations of the
Cambridge stratified burner [13].

2. Governing equations and iterative procedure
At low Mach numbers variable-density reacting flows can be described be the following
conservation equations for mass, momentum and scalars together with a suitable equation of
state:

∂ρ

∂t
+
∂ρuj
∂xj

= Q̇ρ, (1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
2µSij

)
+ Q̇ui , (2)
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∂ρφk
∂t

+
∂ρφkuj
∂xj

=
∂

∂xj

(
ραk

∂φk
∂xj

)
+ Q̇φk , (3)

ρ = f
(
φ1, φ2, ..., φk, ...

)
, (4)

where

Sij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
δij
∂ul
∂xl

(5)

is the rate-of-strain tensor. The variables ρ, ui, p and φk denote the density, velocity vector
components, pressure and additional scalar fields. The dynamic viscosity and kinematic
diffusivity coefficients are denoted by µ and αk. The source terms Q̇ρ, Q̇ui and Q̇φk in Eqs. (1)-
(3) are used to construct the analytic manufactured solutions or denote the subgrid-scale terms
appearing in the framework of Large-eddy simulations (LES). In the present work we consider
only one additional scalar φ, thus, further we omit the subscript index ‘k’.

The following iteration procedure similar to the one described by [14] is implemented into
the finite-volume T-FlowS code [15] employing unstructured cell-centered collocated grids and
featuring second-order accuracy in time and space. Below the superscript n and n − 1 refers
to solutions that are known from two previous time levels, the subscript 0 indicates the initial
guess or the current provisional value of some quantity.

Step 0: The solution from the previous time step n for momentum, pressure and scalar are
used as the initial best guess:

(ρui)
n+1
0 = (ρui)

n, pn+1
0 = pn, φn+1

0 = φn. (6)

The predictor ρn+1
0 for the density is calculated from the continuity equation, Eq. (1), integrated

over a control volume (CV):∫
CV

∂ρ

∂t
dV =

∆V

∆t

(3

2
ρn+1
0 − 2ρn − 1

2
ρn−1

)
= −

∫
CV

∂ρuj
∂xj

dV = −
∫
faces

ρujnjdS, (7)

where the Gauss theorem is used to go from the volume to the surface integration. The time
derivative is approximated with a three-point backward-difference scheme (second order).

Step 1: The scalar equation is advanced so that a better estimate for the density can be
obtained early in the iteration process. Time advancing Eq. (3) yields (ρφ)n+1, from which a
provisional estimate for φn+1

0 is obtained using the current density predictor:

φn+1
0 = (ρφ)n+1/ρn+1

0 . (8)

Step 2: Update the density from the equation of state using the provisional scalar values:

ρn+1 = f(φn+1
0 ). (9)

Step 3: Update the scalar based on the new density:

φn+1 = (ρφ)n+1/ρn+1. (10)

Step 4: Advance in time the momentum equations, Eq. (2), to obtain provisional values for
the momentum components, gi = ρui. Compute provisional velocity field:

un+1
i,0 = gn+1

i,0 /ρn+1. (11)
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Step 5: A Poisson equation is solved to satisfy the continuity equation adjusting the values of
momentum and pressure. We consider additive corrections, δgi and δp, to the momentum and
pressure such that

gn+1
i = gn+1

i,0 + δgn+1
i , pn+1 = pn+1

0 + δpn+1, (12)

We then substitute these expressions into the momentum equation. Following Pierce [14] we
group all other terms into a generic right-hand-side term, Ri,

∂gn+1
i

∂t
=
∂(gn+1

i,0 + δgn+1
i )

∂t
= −∂(pn+1

0 + δpn+1)

∂xi
+Ri. (13)

Provided that the following equation has been satisfied on the previous step

∂gn+1
i,0

∂t
= −∂p

n+1
0

∂xi
+Ri, (14)

we have to satisfy the rest of the equation

∂δgn+1
i

∂t
= −∂δp

n+1

∂xi
. (15)

The time derivative is approximated using the three-point backward-difference to be consistent
with Eq. (7). Taking the divergence of this expression and integrating over a control volume,
we arrive to

1

∆t

∫
CV

∂

∂xi

(3

2
δgn+1
i − 2δgni +

1

2
δgn−1i

)
dV = −

∫
CV

∂2δpn+1

∂x2i
dV. (16)

Note that δgni = δgn−1i = 0 provided the algorithm has satisfied both the momentum and
continuity equations on previous time steps. The derivative of the momentum correction can be
expressed as the residual of the continuity equation:

∂δgn+1
i

∂xi
=
∂(gn+1

i − gn+1
i,0 )

∂xi
= −∂ρ

∂t

n+1

−
∂gn+1

i,0

∂xi
= −δ(cont.)n+1. (17)

Going from volume to surface integrals, we obtain

3

2∆t

∫
CV

δ(cont.)n+1dV =

∫
faces

∂δpn+1

∂xi
nidS (18)

which is solved for the pressure correction derivatives in the cell centers.
Step 6: The momentum components, velocity and pressure at the cell centers are updated:

gn+1
i = gn+1

i,0 −∆t
∂δpn+1

∂xi
, un+1

i = gn+1
i /ρn+1, (19)

pn+1 = pn+1
0 + δpn+1. (20)

In the next section we describe a set of test cases to verify the described algorithm.
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Problem 1 Value Problem 2 Value Problem 3 Value
ρ0 20 ρ0 20 ρ0 5
ρ1 1 ρ1 1 ρ1 1
k1 4 uF 1 k = ω 2
k2 2 vF 0.5 uF = vF 0.5
w0 5 a 0.2 ραφ = µ 0.001
ραφ = µ 0.03 b 20

k 4π
ω 1.5
ραφ = µ 0.001

Table 1. Parameters of problems introduced by Shunn et al [10]
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Figure 1. Profiles of φ, ρ and u for Problem 1 and different time instants (increment ∆t = 0.2).

3. Laminar test cases
3.1. Problem 1: one-dimensional diffusion
We consider a one-dimensional problem described by the following relations:

φ(x, t) =
exp(−k1t)− cosh(w0x exp(−k2t))

exp(−k1t)
(
1− ρ0

ρ1

)
− cosh(w0x exp(−k2t))

, (21)

ρ(x, t) =
(φ(x, t)

ρ1
+

1− φ(x, t)

ρ2

)−1
, (22)

u(x, t) = 2k2 exp(−k1t)
∆ρ

ρ(x, t)

( ûx

û2 + 1
+

(
k1
k2
− 1

)
(arctan û− π

4 )

w0 exp(−k2t)

)
, (23)

where û = exp(w0x exp(−k2t)) and ∆ρ = ρ0−ρ1, w0, k1 and k2 are constants (see Table 1). The
corresponding source terms in Eqs. (1)-(3) are explicitly derived by Shunn et al [10] (see their
Appendices). The computational domain for this problem is 0 ≤ x ≤ 2 and 0 ≤ t ≤ 1 and the
time step is ∆t = 0.00125. The number of uniformly distributed cells is nx = 64, 128 and 256.
Figure 1 shows the profiles of φ, ρ and u for different time instants. The rate of convergence of
the algorithm is assessed by calculating the L2-error for different grid refinement levels, where

L2 =

√√√√∑N
i=1(Φex − Φi)2∑N

i=1 Φ2
ex

(24)

and Φ is some test function. The subscript ‘ex’ denotes the exact solution while ‘i’ corresponds
to the value in the i-th control volume with the total number N . Figure 2 shows the L2-error
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Figure 2. Log-log plot of L2-error for φ, ρ and u for Problem 1 and t = 1. The dashed line
shows the slope corresponding to the second-order accurate discretization.

Figure 3. Contours of ρ(t, x, y) for t = 0 (top), t = 0.5 (middle), t = 1 (bottom). Red color
corresponds to ρ = 1 and blue color to ρ = 20.

for φ, ρ and u at the moment t = 1. Note that the decrease of the error when nx is increased
confirms the second-order accuracy of the algorithm.

3.2. Problem 2: two-dimensional advection and diffusion
The second problem describes the advection of a diffusing two-dimensional ‘flame’ front (see
Fig. 3):

φ(x, y, t) =
1 + tanh(bx̂ exp(−ωt))(

1 + ρ0
ρ1

)
+
(
1− ρ0

ρ1

)
tanh(bx̂ exp(−ωt))

, (25)

ρ(x, y, t) =
(φ(x, y, t)

ρ1
+

1− φ(x, y, t)

ρ2

)−1
, (26)
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Figure 4. L2-error for u, v, p, φ and ρ for Problem 2 and t = 1.

u(x, y, t) =
∆ρ

ρ

(
ωx̂− ωx̂− uF

exp(2bx̂ exp(−ωt)) + 1
− ω log(exp(2bx̂ exp(−ωt)) + 1)

2b exp(−ωt)

)
, (27)

v(x, y, t) = vF , p(x, y, t) = 0, (28)

where x̂(x, y, t) = uF t − x + a cos(k(vF t − y)), ∆ρ = ρ0 − ρ1 and a, b, k, ω, uF and vF
are parameters (see Table 1). The computational domain for this problem is −1 ≤ x ≤ 3,
−1/2 ≤ y ≤ 1/2 and 0 ≤ t ≤ 1. Four meshes are considered with the number of uniform cells
in each direction nx × ny = 200 × 50, 400 × 100, 800 × 200 and 1600 × 400. The time step is
∆t = 0.00125. Figure 4 shows the spatial convergence of the L2-error with the grid refinement
approximately indicating the second-order accuracy of the code.

3.3. Problem 3: two-dimensional oscillating density field
Further we consider a time-periodic solution of the following form (see Fig. 5):

φ(x, y, t) =
1 + sin(πkx̂) sin(πkŷ) cos(πωt)(

1 + ρ0
ρ1

)
+
(
1− ρ0

ρ1

)
sin(πkx̂) sin(πkŷ) cos(πωt)

, (29)

ρ(x, y, t) =
(φ(x, y, t)

ρ1
+

1− φ(x, y, t)

ρ2

)−1
, (30)

u(x, y, t) =
ρ1 − ρ0
ρ(x, y, t)

(−ω
4k

)
cos(πkx̂) sin(πkŷ) sin(πωt), (31)

v(x, y, t) =
ρ1 − ρ0
ρ(x, y, t)

(−ω
4k

)
sin(πkx̂) cos(πkŷ) sin(πωt), (32)

p(x, y, t) =
1

2
ρ(x, y, t)u(x, y, t)v(x, y, t), (33)

where x̂ = x−uF t and ŷ = y− vF t. The computational domain for this problem is −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1 and 0 ≤ t ≤ 1. Structured hexahedral and unstructured triangular grids have been
used for calculations with four levels of refinenment, i.e. nx × ny = 322, 642, 1282 and 2562.
The time step descreases from ∆t = 0.025 for the coarsest mesh to ∆t = 0.003125 for the finest.
Figure 6 shows the L2-error convergence for hexahedral and triangular grids in comparison with
the results of Shunn et al [10]. While unstructured meshes demonstrate similar absolute level
of the L2-error, the hexahedral grids with the present algorithm bring lower error compared to
the data from the literature.
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Figure 5. Colorplots of φ, ρ and p and streamlines at t = 0 for Problem 3.
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Figure 6. Left: uniform hexahedral mesh. Right: unstructured triangular mesh. Solid lines
correspond to the present simulations while dashed lines denote results of Shunn et al [10].

3.4. Problem 4: Rayleigh-Taylor instability
Following Desjardins et al [11] we consider the two-dimensional Rayleigh-Taylor instability
problem. A rectangular domain of the size [−0.5, 0.5] × [−0.5, 0.5] filled with two miscible
fluids separated by a horizontal perturbed interface. The heavy fluid with ρ0 = 1 is above the
light fluid with ρ1 = 0.1. The exact location of the interface is given by

yint(x) = −γ
8∑

k=1

cos(ωkπx), (34)

where γ = 0.001 is the perturbations amplitude and ωk = 4, 14, 23, 28, 33, 42, 51, 59. The initial
scalar field is set by the relation:

φ(x, y, t = 0) =
1

2

[
1 + tanh

(yint(x)− y
2δ

)]
, (35)

with δ = 0.002. The density obeys the same equation of state used in previous problems:

ρ(x, y, t) =
(φ(x, y, t)

ρ0
+

1− φ(x, y, t)

ρ1

)−1
. (36)

The two fluids have identical kinematic viscosity ν = µ/ρ = 0.001 and kinematic diffusivity
αφ = 0.0005. The gravity body force is added to the momentum equation with the gravity
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Figure 7. Contour plot of ρ at t = 0.1 (left), t = 0.4 (middle) and t = 0.75 (right) computed
on a 128 × 128 grid. The dashed lines correspond to ρ = 0.2, 0.5 and 0.8 levels. Red color
corresponds to the heavy fluid (ρ = 1) and blue color to the light one (ρ = 0.1).

-0.5 0 0.5
plot along the line, x

0

1

128
128 [11]
512
512 [11]

Figure 8. The plot of ρ at t = 0.75 and y = 0.2 (the line is shown in Fig. 7, right) for different
mesh resolutions. The data from the literature [11] is also shown.

acceleration constant set to g = 9 so that the Reynolds number is Re =
√
gLyLx/ν = 3000.

Simulations have been performed on a uniform hexahedral mesh with nx× ny = 1282 and 5122.
The time step size is ∆t = 0.001 for the coarse mesh and ∆t = 0.00025 for the fine mesh. The
comparison of our results with the data of Desjardins et al [11] shows good agreement although
not excellent. In our case coarse and fine simulations robustly capture the same peaks in the
profile of ρ(x, y = 0.2, t = 0.75) while in case of Desjardins et al the results are more different
with the mesh refinement. We imposed no-slip conditions on top and bottom wall and periodic
conditions in x-direction for the side walls while Desjardins et al did not mention the boundary
conditions. This issue could be a possible source of deviations.

4. Turbulent test case
In this section we introduce a recent approach to the Large-eddy simulation of premixed
turbulent combustion called the ADEF model (Approximate Deconvolution and Explicit flame
Filtering) for subgrid-scale modeling of scalar fields. First, let us define the spatial filtering
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procedure denoted by an overbar symbol of some test function φ:

φ(x, t) =

∫ +∞

−∞
φ(x′, t)G(x− x′)dx′, (37)

where G is the filter kernel. The density weighted filtering (similar to Favre time-averaging) is
introduced as follows

ρφ̃(x, t) = ρφ(x, t) =

∫ +∞

−∞
ρ(x′, t)φ(x′, t)G(x− x′)dx′, (38)

Applying the filtering operation to the system of Eqs. (1)-(4) we obtain

∂ρ

∂t
+
∂ρũj
∂xj

= 0, (39)

∂ρũi
∂t

+
∂ρũiũj
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
2µ(φ̃)S̃ij

)
− ∂

∂xj

(
τ c,uij − τ

d,u
ij

)
, (40)

∂ρφ̃

∂t
+
∂ρφ̃ũj
∂xj

= ω̇(φ) +
∂

∂xj

(
ρα(φ̃)

∂φ̃

∂xj

)
− ∂

∂xj

(
τ c,φj − τd,φj

)
, (41)

ρ = f(φ̃), (42)

where

τ c,uij = ρuiuj − ρũiũj , τd,uij = 2µ(φ)Sij − 2µ(φ̃)S̃ij , (43)

τ c,φj = ρφuj − ρφ̃ũj , τd,φj = ρα(φ)
∂φ

∂xj
− ρα(φ̃)

∂φ̃

∂xj
, (44)

The subgrid-scale terms, Eq. (43), in the momentum equation are expressed with the dynamic
Smagorinsky model:

τ c,uij − τ
d,u
ij = −2µtS̃ij , (45)

where µt is the time and space-dependent parameter which is calculated using a standard

dynamic routine [16]. The unclosed τ c,φj term in Eq. (41) can also be modeled using the
Boussinesq hypothesis:

τ c,φj = −ραt
∂φ̃

∂xj
, (46)

At the same time according to the thickened flame approach [17]:

ρα(φ)
∂φ

∂xj
= Fρα(φ̃)

∂φ̃

∂xj
, (47)

where

F =
ω̇(φ̃)

ω̇(φ)
(48)
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In the end, the equation for the filtered scalar field is the following:

∂ρφ̃

∂t
+
∂ρφ̃ũj
∂xj

= ω̇(φ) +
∂

∂xj

[
ρ
(
Fα+ αt

) ∂φ̃
∂xj

]
. (49)

Momentum and scalar equations contain unclosed terms which can be expressed if the inverse
filtering operation is defined [12], for example, the chemical source term is

ω̇(φ) = ω̇(L̃−1[φ̃]), (50)

where L−1 denotes the inverse of the filtering operation. For a Gaussian filter the inverse
operator can be approximately described as (see [18])

φ(x, t) = L−1[φ(x, t)] = φ(x, t)− ∆2

24

∂2φ

∂x2k
, (51)

where ∆ is the local filter width. The above described model further will be applied to the
laboratory stratified burner [13] for the validation purposes.

5. Conclusions
In this work we described the numerical algorithm and assessed the accuracy of the low Mach
variable-density Navier-Stokes solver on a number of analytic manufactured solutions and
Rayleigh-Taylor instability problem. It was shown that the code reproduces second order of
accuracy expected from the program. After the verification step we will validate the recent
Approximate Deconvolution and Explicit flame Filtering combustion model on experimental
data from a number of laboratory burners.
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