
 
 

Delft University of Technology

Modeling, Analysis, and Experimental Comparison of Streaming Graph-Partitioning
Policies

Guo, Yong; Hong, Sungpack ; Chafi, Hassan; Iosup, Alexandru; Epema, Dick

DOI
10.1016/j.jpdc.2016.02.003
Publication date
2017
Document Version
Final published version
Published in
Journal of Parallel and Distributed Computing

Citation (APA)
Guo, Y., Hong, S., Chafi, H., Iosup, A., & Epema, D. (2017). Modeling, Analysis, and Experimental
Comparison of Streaming Graph-Partitioning Policies. Journal of Parallel and Distributed Computing, 108,
106-121. https://doi.org/10.1016/j.jpdc.2016.02.003

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jpdc.2016.02.003
https://doi.org/10.1016/j.jpdc.2016.02.003


J. Parallel Distrib. Comput. 108 (2017) 106–121
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Modeling, analysis, and experimental comparison of streaming
graph-partitioning policies
Yong Guo a,∗,1, Sungpack Hong b, Hassan Chafi b, Alexandru Iosup a, Dick Epema a

a Delft University of Technology, The Netherlands
b Oracle Labs, USA

h i g h l i g h t s

• Wemodel the run time of different types of graph-processing systems.
• We design new graph-partitioning policies that address important challenges.
• We report comprehensive results about the performance of partitioning policies.
• We discuss the coverage of our model and method, and the design of future policies.

a r t i c l e i n f o

Article history:
Received 16 July 2015
Received in revised form
29 January 2016
Accepted 20 February 2016
Available online 3 March 2016

Keywords:
Streaming graph-partitioning policies
Large-scale graphs
Graph-processing systems
Modeling analysis
Performance evaluation

a b s t r a c t

In recent years,many distributed graph-processing systems have been designed and developed to analyze
large-scale graphs. For all distributed graph-processing systems, partitioning graphs is a key part of
processing and an important aspect to achieve good processing performance. To keep low the overhead
of partitioning graphs, even when processing the ever-increasing modern graphs, many previous studies
use lightweight streaming graph-partitioning policies. Althoughmany such policies exist, currently there
is no comprehensive study of their impact on load balancing and communication overheads, and on
the overall performance of graph-processing systems. This relative lack of understanding hampers the
development and tuning of new streaming policies, and could limit the entire research community to the
existing classes of policies. We address these issues in this work. We begin by modeling the execution
time of distributed graph-processing systems. By analyzing this model under the load of realistic graph-
data characteristics, we propose a method to identify important performance issues and then design new
streaming graph-partitioning policies to address them. By using three typical large-scale graphs and three
popular graph-processing algorithms, we conduct comprehensive experiments to study the performance
of our and of many alternative streaming policies on a real distributed graph-processing system. We
also explore the impact on performance of using different real-world networks and of other real-world
technical details. We further discuss how to use our results, the coverage of our model and method, and
the design of future partitioning policies.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

The scale of graphs is increasing rapidly in recent years, and
has already exceeded the processing capabilities of single ma-
chines. Distributed graph-processing systems such as Pregel [27],

∗ Corresponding author.
E-mail addresses: Yong.Guo@tudelft.nl (Y. Guo), Sungpack.Hong@oracle.com

(S. Hong), Hassan.Chafi@oracle.com (H. Chafi), A.Iosup@tudelft.nl (A. Iosup),
D.H.J.Epema@tudelft.nl (D. Epema).
1 This work was done when the author was doing an internship at Oracle Labs.

http://dx.doi.org/10.1016/j.jpdc.2016.02.003
0743-7315/© 2016 Elsevier Inc. All rights reserved.
GraphLab [25], and GraphX [12], have been designed and devel-
oped to process large-scale graphs by using the computation and
memory capabilities of clusters. For such systems, graph partition-
ing is essential in achieving good performance, because it deter-
mines the computationworkload of eachworkingmachine and the
communication between them. Many streaming graph partition-
ing policies [39,45,42] have been proposed to efficiently partition
graphs into balanced pieces for distributed graph-processing sys-
tems. Streaming graph partitioning treats graph data as an online
stream, by reading the data serially and then determining the tar-
get partition of a vertex when it is accessed. However, the impact
on the overall system performance of these partitioning policies

http://dx.doi.org/10.1016/j.jpdc.2016.02.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.02.003&domain=pdf
mailto:Yong.Guo@tudelft.nl
mailto:Sungpack.Hong@oracle.com
mailto:Hassan.Chafi@oracle.com
mailto:A.Iosup@tudelft.nl
mailto:D.H.J.Epema@tudelft.nl
http://dx.doi.org/10.1016/j.jpdc.2016.02.003


Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121 107
has not been thoroughly evaluated on real graph-processing sys-
tems, and the understanding of the performance issues raised by
such policies when used in real-world graph-processing systems
is currently relatively limited. Gaining such knowledge can lead to
the design of newpolicies, to newmethods for tuning existing poli-
cies, and in general to better system design for distributed graph
processing. Addressing this lack of understanding is the goal of our
presentwork, inwhichwemodel, analyze and design newpolicies,
and experimentally compare streaming graph-processing policies
in real-world environments.

In this paperwe address the following five important challenges
in partitioning large-scale graphs. The first challenge is partitioning
graphs into splits with balanced numbers of vertices while
minimizing edge-cuts, which is an NP-complete problem [1].
For graphs with billions of edges [5], the partitioning time can
become too long, even when using partitioning heuristics. Second,
many graphs of interest are not static but dynamic, with vertices
and edges being added all the time. As a consequence, graph
partitioning is then an online streaming process rather than an
offline process. Third, the performance of partitioning depends
on the graph-processing application. Fourth, because they are
designed to address the needs of specific communities, each with
their own applications and domains of expertise, graph-processing
systems are designed around different programming models and
generally take different evolutionary paths. The core programming
model, which specifies how the system performs computation
on vertices and how the distributed components of the system
communicate, can affect the performance impact of partitioning.
Fifth, the structure and capacity of the cluster used may impact
the performance effect of a partitioning policy on the run time
of graph-processing systems. For instance, switching the network
from relatively low-speed Ethernet to high-speed InfiniBand, or
the level of heterogeneity of a cluster [45] may change the relative
merits of partitioning policies.

Many graph-partitioning approaches have been proposed to
address these challenges, from offline partitioning heuristics to
online, streaming, graph-partitioning policies. These partitioning-
centric studies focus on the design of reasonable partitioning
policies that are based on heuristics and rely on a limited
set of theoretical metrics, such as the edge cut ratio [39], the
number of vertices per partition [35,22], etc. The partitions are
created online by real-world graph-processing systems, which
indicate that empirical metrics, such as partitioning time and
algorithm run time are important for system developers and users.
However, few partitioning policies have been proposed from the
perspective of real systems. In contrast to such policies, the policies
designed from a more theoretical perspective lack of simplicity
and of considering the relationship between the computation
and the communication, because they use relatively complicated
heuristics and focus on minimizing the communication. And also,
few experiments have been conducted on real graph-processing
systems to evaluate the performance of existing partitioning
policies. As our own and related studies [15,26,16] of entire graph-
processing systems have shown, the results reported from narrow
experiments can misreport performance by orders of magnitude,
especially when the input workloads and the algorithms change
from the conditions tested in the limited studies.

In this work, we address the challenges of streaming graph
partitioning and the problem of relative lack of understanding
about streaming graph-partitioning policies. In Section 3, we
model the run time of distributed graph-processing systems. We
set the objective function of partitioning to minimizing the run
time. Our model extends related work [45] by including different
programming models and implementation of graph-processing
systems.

In Section 4, we conduct an experimental analysis of the
performance implications of partitioning policies, using our run
time model and conducting real-world measurements on a real-
world graph-processing system—PGX.D [18]. PGX.D is an Oracle
Labs tool and it can be up to ninety times faster than other
popular graph-processing systems [18], such as GraphLab [25] and
GraphX [12]. We find out what graph characteristics are closely
related to the run time. We further propose streaming graph
policies based on the run-time-influencing graph characteristics.

In Section 5, we evaluate and compare the performance of our
policies, other streaming alternative, and also the start-of-the-art
offline partitioner—METIS [19] on PGX.D, by using 3 large-scale
graphs and 3 popular graph-processing algorithms. We use a set
of metrics to present the partitioning performance, such as run
time, partitioning time, edge cut ratio, scalability, etc. We also
consider the impact of different real-world networks (Ethernet and
InfiniBand) and the impact of a common technique (selective ghost
node) used by graph-processing systems.

In Section 6, we further discuss how to use our results, the
coverage of our method for different types of real-world graph-
processing system, and the design of future partitioning policies
based on our comprehensive experimental results.

2. Background and related work

2.1. Graph-processing systems

Single machines with limited resources are unable to handle
growing modern graphs. Generic distributed data-processing
systems, such as Hadoop [44], have first been adapted to analyze
and process large-scale graphs on clusters. However, because of
the limitation of programming models, generic data-processing
systems cannot support iterative graph-processing applications
very well. It has been reported that the performance of generic
data-processing systems, for graph-processing applications, is
much worse than specific graph-processing systems [27,25,9].
This has become a common knowledge in the graph-processing
community.

Many graph-processing systems adapt the vertex-centric
paradigm, in which graph-processing algorithms are implemented
from the perspective of each vertex of graphs. The Bulk Syn-
chronous Parallel (BSP) computing model has been used by many
graph-processing systems, such as Pregel [27] and Hama [36],
mainly because the BSP model simplifies the design and imple-
mentation of iterative graph-processing algorithms. A BSP compu-
tation of a graph-processing algorithm consists of a series of global
iterations (or supersteps). In each iteration, active vertices execute
the same user-defined function, generate messages, and transfer
them to neighbors that are not located in the same machine. Syn-
chronization is needed between two consecutive iterations to en-
sure that all vertices have been processed and all messages have
been delivered. The cost of synchronization in BSP systems may
incur performance degradation, especially when the workload be-
tweenworkingmachines is not balanced. To improve performance,
graph-processing systems, such as GraphLab [25] andGraphHP [6],
have used asynchronous models to avoid using barriers for syn-
chronization and to reduce the performance degradation caused
by imbalanced workload. The use of asynchronous models in-
creases the complexity of graph-processing systems and, in some
cases, creates redundant messages [46] when executing graph al-
gorithms.

Graph-processing systems can be categorized into three
main multi-phase systems, based on their vertex computation
abstractions [28]: one-phase [27,9], two-phase [18,33,41], and
three-phase [11,8]. The main computation in graph processing
includes processing incoming messages, applying vertex updates,
and preparing outgoingmessages. In eachmulti-phase abstraction,
the main computation is placed and executed in different



108 Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121
Table 1
Graph-processing systems using different partitioning approaches.

Partitioning approach Example heuristics Example systems using the approach

Traditional heuristics METIS [19], ParMETIS [21] –
Streaming Hash, LDG [39] Giraph [9], HeAPS [45]
Vertex-cut Random, Balanced p-way [11] PowerGraph [11], GraphX [12]
Dynamic Exchange [35], Migration [22] GPS [35], Mizan [22]
Chunking File size Hadoop [44], Stratosphere [43]
computation phases. For example, in Scatter–Gather, which is
a two-phase abstraction, the scatter phase prepares outgoing
messages, and the gather phase collects incoming messages and
applies updates to vertex values. We will further analyze and
discuss these three abstractions in Sections 3 and 6.

2.2. Related work

The study of partitioning policies for graph-processing is based
on two main disciplines, graph partitioning and performance
analysis. We survey in this section the related materials published
in each of these two disciplines, in turn. Overall, ours is one of the
few studies combining theoretical work in graph partitioning with
experimental comparison of policies using several algorithms and
datasets, which, as we indicate in the introduction, is important
for the validity of the results. Our main findings from this survey,
regarding graph partitioning, are summarized in Table 1.
Graph partitioning. Graph partitioning has been explored and
studied for a long time in many research areas [28,20], from
scientific workflow scheduling [10] to recent work on large-
scale graph processing [12]. Balanced graph partitioning, which
aims to balance the number of vertices in each partition while
minimizing the communication between partitions, is known as
the k-way graph partitioning problem and has been proved to be
NP-hard [1]. To achieve an approximate solution, many traditional
heuristics [19,34] have been proposed. Many of them adapt the
multi-level partitioning scheme,which typically includes threemain
phases [34], coarsening to reduce the size of the graph, partitioning
the reduced graph, and uncoarsening tomap back partitions for the
original graph. The prominent example of multi-level partitioning,
METIS [19] and its family of partitioning policies [7], are used
by the community because of their high-quality partitions and
relatively fast partitioning speed. However, we identify threemain
reasons for which these heuristics may be unable to handle the
partitioning problem for distributed graph-processing systems.
First, most distributed graph processing systems are designed
for large-scale graphs, with millions of vertices and billions of
edges. For partitioning policies designed explicitly for single-node
operation, such asMETIS, large-scale graphs and their intermediate
partitioning data often do not fit in the main memory of the
system, which causes spills to disk and severe performance
degradation, and in our experience even system crashes. Formulti-
node heuristics such as ParMETIS [21], using them in practice may
be complex and time consuming, because they need a global view
of graphs and slow synchronization for partitioning. Second, these
heuristics are designed to operate offline. They need to access the
entire graph for every partitioning operation, which makes them
relatively inefficient for growing and changing graphs. Third, many
of the heuristics are designed for scientific computing workloads.
In particular, they have been designed to solve k-way partitioning
problem, by recursively executing 2-way partitioning when k is
a power of 2. They may not be able to effectively partition real-
world graphs representative for other domains, and in particular
real-world graphs with arbitrary values of k [2].

To address the problems faced by offline heuristics, online
streaming graph partitioning policies have been proposed for dis-
tributed graph-processing systems. Hash partitioning, a type of
streaming graph partitioning, is used in many graph processing
systems, such as Pregel-like systems [27,9], because of its sim-
plicity and short partitioning time. The drawbacks of hash parti-
tioning for real large-scale graphs are obvious. For computation,
partitions created by hash partitioning policies from highly-
skewed real graphs [11] can have an even number of vertices but
will often include partitions where vertices have very diverse in-
/out-degrees, case in which graph-processing algorithms such as
Breadth-First Search (BFS) traversal will incur high computation
imbalance. For communication, hash partitioning does not con-
sider any locality of vertices and edges. Theremay be an inordinate
amount of edge-cuts between partitions, which results in inten-
sive network traffic. To conclude, hash partitioning policies have
so far not considered highly-skewed graphs, and result when used
on real-world graphs in partitions that lead to imbalanced compu-
tation and communication.

Many studies make efforts in twomain directions to obtain bal-
anced graph partitions. The first direction is to design more com-
plex steaming graph-partitioning policies. Stanton and Kliot [39]
propose more than ten streaming policies. Many factors are se-
lected and used in these policies, such as the relationship between
the vertex to be assigned and the current vertices in the partition,
buffering for assigning a group of vertices, and streaming orders.
From their evaluation, a linear-weighted deterministic greedy policy
(LDG) performs the best. In LDG, a vertex is assigned to the parti-
tion with the most neighbors, while using the remaining capacity
of partitions as a penalty. Tsourakakis et al. [42] formulate a par-
titioning objective function, considering the costs of edge cut and
the size of partitions. Based on this function, they design a stream-
ing graph partitioning, FENNEL, which is a greedy policy using dif-
ferent heuristics to place vertices. Closest to our work, to address
heterogeneity of computing hardware and network, Xu et al. [45]
build a model for the heterogeneous environment and discuss a
time-minimized objective function from the perspective of graph-
processing systems. They propose six streaming graph partitioning
policies and evaluate their performance in both homogeneous and
heterogeneous environments. From their experimental results, the
combined policy (CB) achieves the best performance in homoge-
neous environment and reasonably good performance in differ-
ent settings of heterogeneous environment. They use the analytical
method to estimate theworkload of thewhole computation. In our
model, we further divide the whole computation and use real ex-
periments to find out run-time-influencing graph characteristics.
Our method can be more precise. Advanced streaming graph par-
titioning policies can achieve comparable performance of METIS
[39,45].

The second direction is to partition graphs by vertex-cut
[11,12]. Vertex-cut partitioning places edges, instead of vertices,
to different partitions. According to percolation theory [40],
good vertex-cuts can be achieved in power-law graphs. Evenly
placing edges can reduce the workload imbalance and the large
communication of high-degree vertices, which are represented
as multiple replicas and stored in different partitions. Vertex-cut
partitioning has its drawbacks. System-wise, the graph-processing
system needs to allow a single vertex’s computation to span
multiple machines, which increases the complexity of the system.
Performance-wise, too many pieces of vertex replicas can still



Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121 109
generate high communication, primarily to synchronize vertex
status.We summarize our survey of this class of graph-partitioning
policies in Table 1, in the row ‘‘Vertex-cut’’. Vertex-cut partitioning
is used by few graph-processing systems. In our work, we focus on
edge-cut partitioning, which is used by more systems.

To avoid the workload imbalance incurred by static streaming
partitioning and vertex-cut partitioning and also by the execution
of algorithms (for example, active vertices vary in each iteration
during the process of the BFS algorithm), dynamic repartitioning is
moving vertices between working machines during the execution
of algorithms. The general process of dynamic repartitioning
methods can be abstracted as the following sequence of four steps:
discover workload imbalance of computing machines, find the
pairs of computing machines for migrating vertices, determine
which vertices are required to move, andmigrate selected vertices
from its source to destination. Mizan [22] selects the execution
time of each machine as the metric for workload imbalance and
maintains a distributedhash table to record theposition of vertices.
GPS [35] simply uses the outgoing messages as the workload-
imbalance metric. When computing machines are paired, they
will exchange vertices rather than migrate vertices from one to
another. Both Mizan and GPS take a delay migration strategy to
alleviate the overhead of migration of vertices and their associated
data. Shang et al. [37] focus onhowmuchof theworkload should be
moved between pairs of working machines and on which vertices
should bemoved. They also propose several constraints to improve
the benefit of migration. We show systems that support dynamic
repartitioning in Table 1, in the row ‘‘Dynamic’’.

Partitioning performance. Although many graph partitioning meth-
ods and policies have been proposed, their performance has not
been thoroughly evaluated with various input graphs and algo-
rithms. Theoretical metrics, such as the edge cut ratio and mod-
ularity [39,42,3] are generally used to measure the quality of
partitions. For real graph-processing systems, these metrics do
not directly represent the performance of partitioning [45]. In
practice, metrics such as the run time of graph-processing algo-
rithms, partitioning time, and the variance of the run time on
different machines/threads represent the performance of bottle-
neck components in real graph-processing systems. Meyerhenke
et al. [29] design their graph partitioning heuristic based on la-
bel propagation and size constraints for social networks and web
graphs. Guerrieri andMontresor [14] discuss the properties of high
quality partitions and introduce a distributed edge-partitioning
framework. Both studies lack experimental results from execut-
ing algorithms on real graph processing systems, to show the per-
formance of their partitioning methods in practice. Stanton and
Kliot [39], FENNEL [42], andXu et al. [45] compare the performance
of many streaming partitioning policies on data-processing sys-
tems. The systems they run experiments on are not (advanced)
graph-processing systems—Spark’s generic data processing for
Stanton and Kliot, Hadoop for FENNEL, and a prototype of Pregel
for Xu et al., contrast starklywith highly optimized production sys-
tems such as GraphLab [25] and Giraph [9]. Their evaluations are
also limited to the use of a single algorithm, PageRank; our own
and related studies [15,26,16] have shown that the results obtained
from a single algorithm do not characterize well the performance
expected from the general field of graph processing. In contrast,
in this work, we conduct comprehensive experiments on an ad-
vanced distributed graph-processing system—PGX.D, using 3 rep-
resentative algorithms, 3 large-scale graphs with billions of edges
from different domains, different practical configurations and in
particular different types of network, and many different perfor-
mance metrics.
3. A model of graph-processing systems and the objective
function of graph partitioning

In this section, we model the run time of different types of
graph-processing systems and we discuss the objective function
of graph partitioning of real graph-processing systems. We focus
on graph-processing systems that follow the BSP programming
model, that is, for which the graph-processing algorithm is
executed in super-steps or iterations. Our model focuses on two-
phase systems (described later in this section), but it can also
represent single-phase systems such as the Pregel-based Apache
Giraph. We consider in our model machine-level and thread-
level programming abstractions, and blocking and parallel I/O.
Conceptually, our model derives non-trivially from prior work; in
contrast to the prior model of Xu et al. [45], which is the closest
related work to our present study, our model considers a much
larger variety of systems and has a higher granularity of processing
units.

Similarly to the model of Xu et al. [45], suppose we have M
workingmachines running N iterations of the same process. If T k

i is
the run time on machine i of the kth iteration of some application,
and if T k denotes the (total) run time of the kth iteration across all
machines, then we have:

T k
= max

i
{T k

i }, k = 1, 2, . . . ,N. (1)

The total run time Tr of the application running on multiple
machines can now be presented as:

Tr = ΣT k, k = 1, 2, . . . ,N. (2)

We assume conservatively that in each iteration all vertices are
active (that is, considered for processing) and that messages are
sent to all their neighbors, for three reasons. First, many popular
algorithms match well this assumption, such as community
detection [32] and PageRank [31]. Second, previous policies, and in
particular the commonly used family of policies based on METIS,
partition the whole graph with all its vertices and edges, so they
implicitly follow this assumption. Last, predicting, for different
algorithms, which of the vertices and edges become active during
an arbitrary iteration is an open and challenging problem, but
not a part of real-world graph-processing systems. Currently, no
real graph-processing system is able to make prediction-based
workload balancing in each iteration. We further discuss how the
variety of algorithms complicates prediction in Section 6.3. Under
this conservative assumption, the run time of every iteration on
eachmachine can be considered to be equal, say to value T i, and so
we can simplify Eq. (2) to:

Tr = N ×max
i
{T i}. (3)

From the survey [28], there are three vertex-centric program-
ming abstractions of graph-processing systems: one-phase ab-
straction, two-phase abstraction, and three-phase abstraction. For
each iteration, the one-phase programming abstraction runs a sin-
gle computation function, which consists of three computation
tasks: processing incoming messages, applying vertex values, and
preparing outgoing messages. The communication starts after the
completion of the single computation function. The one-phase
abstraction is often used in practice, for example in Pregel-like
systems [27,9]. The two-phase abstraction usually refers to two
computation phases: the scatter phase (for preparing outgoing
messages) and the gather phase (for processing incomingmessages
and applying vertex values). The communication happens between
the scatter phase and the gather phase. The two-phase abstrac-
tion has been implemented in systems such as PGX.D [18]. Im-
portantly, most one-phase systems can be converted to two-phase



110 Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121
Fig. 1. The computation phases and communication in one iteration of the Scatter–Gather abstraction.
Table 2
Notations for the time of computation and communication of machine i.

Symbol Meaning

T
g
i Time spent processing incoming messages and applying vertex values across all threads.

T
g
i,l Time spent processing incoming messages and applying vertex values in the lth thread,

l = 1, 2, . . . , L.
T
s
i Time spent preparing outgoing messages across all threads.

T
s
i,q Time spent preparing outgoing messages in the qth thread, q = 1, 2, . . . ,Q .

T
x
i Time spent in communication, data transfers.

L Number of threads involved in processing incoming messages and applying vertex values.
Q Number of threads involved in preparing outgoing messages.
systems [28], but the reverse may not be true. We summarize in
Table 2 the notation we propose for the time of the computation
tasks and for the communication. The three-phase systems usually
use the vertex-cut partitioning, which is out of the scope for this
work. We further discuss three-phase systems, as a future exten-
sion of our modeling work, in Section 6.2.

Graph-processing systems can use one of the following
two I/O modes, between computation and communication:
blocking I/O and parallel I/O. With blocking I/O, computation
and communication are executed serially. With parallel I/O,
computation and communication can execute in parallel, with
at least parts of the execution overlapped. For blocking I/O, T i
is the sum of the time spent on all computation phases and on
communication. For parallel I/O, T i is determined by the longest
among the two computation phases and communication.We show
in Fig. 1 two computation phases and communication in one
iteration of the Scatter–Gather abstraction.

Another important aspect of graph processing that we consider
in our model is the granularity of the programming abstraction.
In real graph-processing systems, where multi-threading has been
used to accelerate computation, the run time of a computation
phase is determined by the thread with the longest run time.

Table 3 summarizes the run time of a single iteration executed
on machine i for different programming abstractions and I/O
modes, in coarse-grained machine-level and fine-grained thread-
level. Because the one-phase abstraction uses a single computation
function, all computations for a vertex are always executed by
the same thread, which means processing incoming messages and
applying vertex updates cannot be parallelized with preparing
outgoing messages. For the parallel I/O mode of the two-phase
abstraction, the threads of a working machine need to be
assigned to different computation phases to gain all the possible
performance through parallelism. Thus, the assignment of the
threads is an important factor for the run time of working
machines. Moreover, for threads in the same phase, being able to
balance their workload is crucial for achieving high performance.

The models we summarized in Table 3 are used to determine
the graph characteristics that may have an impact on the run time
of graph-processing systems (see Sections 4.1 and 4.2). However,
the models cannot be used to (precisely) predict the run time
of graph-processing systems, because the relationships between
every time component (such as T

g
i ) of the models and the graph

characteristics are not explored. It is non-trivial to formulate
uniform relationships for various graphs, datasets, and systems.

Themain target of partitioning graphs for real graph-processing
systems is to achieve the shortest run time. Similarly to Xu
et al. [45], we set the objective function for finding a graph
partitioning that minimizes the total run time Tr :

min{Tr} = N ×min{max
i
{T i}}. (4)

In the following section, we investigatewhat are the interesting
graph characteristics that affect the run time of the computation
phases and communication, and we use this information to design
new partitioning policies.

4. Design of graph partitioning policies

The aim of this section is to design good graph-partitioning
policies. In order to do so, we want to identify the graph
characteristics that have significant impact on the run time of
graph-processing systems. In Section 4.1, we propose a method
for identifying such graph characteristics, and in Section 4.2 we
empirically validate this method in the PGX.D graph-processing
system. Then in Section 4.3 we design new streaming graph-
partitioning policies according to the graph characteristics we
identified.

4.1. A method for identifying the run-time-influencing graph charac-
teristics

Asmany popular graph-processing systems [27,9] can only pro-
cess directed graphs, we consider without loss of generality graph-
processing systems that use a directed graph representation. In
Table 4 we distinguish a number of characteristics of a partition of
a directed graph thatmay have an impact on the run times of graph
processing algorithms.Our target is to identify the graph character-
istics that actually have the strongest such impact. We propose the



Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121 111
Table 3
The time for one iteration (T i) for different programming abstractions and I/O modes.

System I/O block, machine-level I/O block, thread-level I/O parallel, machine-level I/O parallel, thread-level

One-phase T
g
i + T

s
i + T

x
i max(T

g
i,l + T

s
i,l)+ T

x
i max(T

g
i + T

s
i , T

x
i ) max(max(T

g
i,l + T

s
i,l), T

x
i )

Two-phase T
g
i + T

x
i + T

s
i max(T

g
i,l)+T

x
i+max(T

s
i,q) max(T

g
i , T

s
i , T

x
i ) max(max(T

g
i,l),max(T

s
i,q), T

x
i )
Table 4
The characteristics of a partition of a graph.

Characteristic Symbol Definition

Number of vertices #V Vertex count
Remote in-degree Dri The number of in-edges from other partitions
Remote out-degree Dro The number of out-edges to other partitions
Local in-degree Dli The number of in-edges in the partition
Local out-degree Dlo The number of out-edges in the partition (equal to local in-degree)
Total in-degree Dti The sum of remote in-degree and local in-degree
Total out-degree Dto The sum of remote out-degree and local out-degree
Remote degree Dr The sum of remote in-degree and remote out-degree
Local degree Dl The sum of local in-degree and local out-degree
Total degree Dt The sum of remote degree and local degree
Fig. 2. Our 3-step method for identifying the run-time-influencing graph
characteristics of a two-phase system. (The selection from the communication
component may not be performed if the communication is overlapped by the
computation, depicted as dashed lines and further discussed in Section 4.2.)

following three-step method to achieve this, which is illustrated
for a two-phase system in Fig. 2.
Step 1: Determine the run time model of the graph-processing
system from the possibilities listed in Table 3.
Step 2: Determine the Potential Run-Time-Influencing (PRTI) graph
characteristics that may have an impact on the run time given
the model determined in Step 1. These characteristics represent
the candidate set for Step 3 of our method. The PRTI graph
characteristics may vary for different graph-processing algorithms
and perhaps even for the different components (e.g., computation
and communication) of the same graph-processing algorithm, and
for themodel of the graph-processing system. For each component
(even each phase if the model includes multiple phases) of the
algorithm,we select a set of PRTI graph characteristics according to
the graph entities operated by the graph algorithm. For example,
the number of vertices (#V ) is always selected for the scatter
phase (one phase of the computation component) because vertices
are processed during the computation, and the remote out-degree
(Dro) is selected for the communication component if the algorithm
sends messages by remote out-going edges.
Step 3: Identify from the PRTI graph characteristics the actual
Run-Time-Influencing (RTI) graph characteristics that are strongly
related to the run time of (a phase or component of) an algorithm.
In order to do so, we first create different candidate subsets from
each set of PRTI graph characteristics for the partial set of RTI
graph characteristics. We will show how to create these subsets
in Section 4.2. We take an experimental approach to pick the
appropriate subset. For each experiment, wemeasure the run time
of each working machine and we calculate the values of the graph
characteristics of the partition stored on it shown in Table 4. For
each candidate subset,we conduct a linear regression [30] between
the run times of the working machines and the values of the graph
characteristics in that subset of the partitions assigned to them. In
this way, we obtain a value of the R-squared (R2) coefficient from
every experiment.

We perform multiple experiments using different setups (in
terms of system configurations, datasets, and graph-partitioning
policies) and we build a histogram with the numbers of
occurrences of the R2 value in given ranges (for an example, see
Table 7). We select as the partial set of RTI graph characteristics
the subset of PRTI with the most occurrences in the highest
range of R2 values. After having obtained the partial sets of RTI
characteristics of multiple phases/components of an algorithm,
they can be combined to form the set of RTI characteristics of
the whole algorithm. The RTI graph characteristics are strongly
determined by the behavior of graph algorithms and the model
of graph-processing systems. Using different datasets may affect
the coefficients of the linear regression between the run times
and the values of the subset of PRTI graph characteristics, but not
affect the distribution of the R2 values. So, the obtained RTI graph
characteristics are also applicable for other graphs that are not used
in the experiments.

4.2. Empirical results validating the method

Wewill now empirically validate themethod from the previous
section for the PGX.D graph-processing system.
Step 1: We use Table 3 to identify the run time model
corresponding to PGX.D. As PGX.D is a multi-threaded graph-
processing system with two-phase abstraction and parallel I/O, its
run time model is:

T i = max(max(T
g
i,l),max(T

s
i,q), T

x
i ). (5)

Step 2: We seek to understand the operation of PGX.D in order to
select the PRTI characteristics. In PGX.D, the threads assigned to the
scatter phase and the gather phase are called worker threads and
copier threads, respectively. PGX.D balances the workload across
its worker threads with the edge-chunking technique and across
its copier threads with the max-slot first strategy. So, max(T

g
i,l)

and max(T
s
i,q) are equal to the average run time of worker threads



112 Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121
and copier threads, respectively. PGX.D uses the continuation
mechanism to buffer and combine messages between working
machines to reduce communication. A dedicated poller thread is
maintained in each working machine for sending and receiving
messages. PGX.D implements a commonly used technique, called
Selective Ghost Node (SGN), to further reduce the network traffic.
SGN duplicates the high-degree vertices (ghosts) in each partition.
A vertex is selected as a ghost if the sum of its in-degree and out-
degree is larger than a pre-defined threshold. The use of SGN is
optional for users.

We apply Step 2 of our method on different components of
the PageRank algorithm. The scatter phase in PageRank reads all
vertices and prepares messages to remote neighbors through the
out-edges of each vertex. Therefore, the PRTI graph characteristics
of the scatter phase are the number of vertices, the remote out-
degree, the local out-degree, and the total out-degree. The gather
phase in PageRank processes all incoming messages and updates
each vertex, and so, the PRTI graph characteristics of the gather
phase are the number of vertices and the remote in-degree. The
only PRTI graph characteristic of the communication component
in the PageRank algorithm is the remote out-degree.
Step 3: In order to identify the RTI graph characteristics for
PGX.D, we perform experiments with PageRank (maximum 10
iterations) with PGX.D deployed on a 16-machine cluster in Oracle
Labs with properties as in Table 5. We explain the experimental
setup in terms of the system configurations, the datasets, and the
partitioning policies that we employ.

We use four system configurations of worker and copier
threads: w24c2, w18c8, w12c14, and w6c20 [18], where the no-
tation w24c2 means that we set 24 worker threads and 2 copier
threads in each working machine, etc. We conduct experiments
with or without using the SGN technique.

We use three large-scale graphs, Twitter, Scale_26, and
Datagen_p10m (see Table 6). The Twitter dataset is one of the
largest publicly available real-world datasets and consists of a
graph of its users with the follower relationships between them.
Scale_26 is a synthetic graph generated by theGraph500 generator,
with a scale factor of 26. Graph500 is the de-facto standard for
comparing hardware infrastructures for graph processing systems.
Datagen_p10m is created by the Linked Data Benchmark Council
(LDBC) generator, which aims to produce graphs with structures
and properties similar to those of real-world social networks,
such as Facebook. The LDBC generator is used by the Graphalytics
project [4], which is an active big data benchmark for graph-
processing systems. The two generated graphs contain roughly 1
billion edges, and are comparable in size to the Twitter dataset.We
set the threshold for ghost selection of SGN to 50,000 for Twitter
and Scale_26, and to 600 for Datagen_p10m.

We use three streaming graph-partitioning policies incorpo-
rated in PGX.D, viz. the in-degree balanced policy (I), the out-
degree balanced policy (O), and the total degree balanced policy
(IO). All policies assign vertices to partitions by balancing the in-
degree, the out-degree, or the total degree across partitions. To
this end, each policy first determines the average (in-/out-/total)
degree per partition, and then assigns vertices sequentially to the
partitions, going from one partition to the next when the (in-/out-
/total) degree of the former exceeds the corresponding average.

We obtain 72 executions of PageRank by combining all system
configurations with or without SGN (4x2), all datasets (3), and all
partitioning policies (3). We find that the run time of PageRank
is dominated by either the scatter phase or the gather phase. As
PGX.D optimizes the network traffic and is deployed on the high-
speed InfiniBand network, the communication time in PageRank
is overlapped by both the scatter and gather phases. In Fig. 3, we
show the run time of a single iteration, the run time of the longest
worker thread, and the run time of the longest copier thread
Table 5
The environment of our experiments.

Category Item Detail

CPU
Type Intel Xeon E5-2660
Frequency 2.20 GHz
Parallelism 2 socket * 8 core * 2 HT

Network
Card Mellanox Connect-IB
Switch Mellanox SX6512
Raw BW 56 Gbit/s (per port)

Software OS Linux 2.6.32 (OEL 6.5)
Compiler gcc 4.9.0

Fig. 3. The run time of an iteration, of the longest worker thread, and of the longest
copier thread of PageRank for Twitter using system configuration w12c14.

of PageRank for Twitter when using the w12c14 configuration.
We notice that for all policies the run time of a single iteration
is approximately 50 ms higher than the maximum run time
of the longest worker and copier threads, which is due to the
overhead of the system. We have similar findings for other system
configurations. Thus, we only need to consider the scatter and
gather phases to select the RTI graph characteristics.

For each execution, we measure the run times of the scatter
and gather phases, respectively, of the sixteen working machines
and we calculate for each machine the values of the graph
characteristics of its graph partition. We consider different
candidate subsets of RTI characteristics from the PRTI set, which
we evaluate empirically in order to determine the RTI graph
characteristics. We could consider all subsets of the PRTI set as
candidates, but in practice, we can use previous knowledge to
consider fewer subsets. For example, we derive three subsets of
characteristics from the PRTI set of the scatter phase: the number
of vertices (#V ) and the total out-degree (Dto), only Dto, and
the local out-degree (Dlo). We consider the subset consisting of
only Dto because many previous partitioning policies focus on
it. The subset of #V and Dto is considered because during our
experiments we found that some partitions with similar Dto but
different #V have (significantly) different run times. The subset of
Dlo is randomly created as a control subset in order to show how
weak the relationship between the run time of the scatter phase
and a randomly selected graph characteristic can be.

For every candidate subset for each phasewe create a histogram
of the R2 values for all 72 experimental setups. In Table 7 we show
the histograms for the scatter phase. From this table, we identify
as the RTI graph characteristics of the scatter phase the number
of vertices (#V ) and the total out-degree (Dto) because they have
the highest number of values of R2 in the range of [0.9, 1]. Unlike
previous policies, which focus on the communication component
by minimizing edge-cuts, our results show that the number of
vertices is also an important factor. Similarly, for the gather phase,
we identify the number of vertices (#V ) and the remote in-degree



Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121 113
Table 6
Summary of datasets.

Dataset V E d D̄ Q1 Q2 Q3 Max D Type & Source

Twitter 41,652,230 1,468,365,182 8 35 5 13 34 3,081,112 Real-world, Public [23]
Scale_26 32,804,978 1,073,741,824 10 33 1 4 17 1,710,236 Synthetic, Graph500 [13]
Datagen_p10m 9,749,927 687,174,631 72 70 30 87 204 648 Synthetic, LDBC [24]

V and E are the vertex count and edge count of the graphs. d is the link density (×10−7). D̄ is the average vertex out-degree. Q1, Q2, and Q3 are the first quartile, median,
and the third quartile of vertex total-degree, respectively.Max D is the largest vertex total-degree.
Table 7
The numbers of experiments with PageRank that have the value of R-squared (R2)

for the scatter phase in the indicated ranges.

Range T
g
i with #V and Dto T

g
i with Dto T

g
i with Dlo

[0.9, 1] 39 28 10
[0.8, 0.9) 8 11 7
[0.7, 0.8) 9 9 1
[0.6, 0.7) 5 4 6
[0, 0.6) 11 20 48

(Dri) as the RTI graph characteristics. Combining the results of both
phases we identify as the complete set of RTI graph characteristics
for PageRank the number of vertices (#V ), the total out-degree
(Dto), and remote in-degree (Dri).

We have conducted a similar set of experiments for the weakly
connected component (WCC) algorithm, which computes the
maximal groups of vertices connected by edges. The RTI graph
characteristics of WCC are the number of vertices (#V ), the total
degree (Dt), and the remote degree (Dr).

4.3. Four new graph partitioning policies

In this section, we design four new graph-partitioning policies
based on the findings from the experiments in Section 4.2. The first
of these, called the degree-balanced (DB) policy, is new, while the
other three of these are randomized versions of the I, IO, and O
policies from Section 4.2.

Our target is to design a good partitioning for graph-processing
systems in general, not for a specific algorithm. Combining the RTI
graph characteristics identified by running PageRank andWCC, we
show that the number of vertices is a common characteristic. For
different algorithms, they may propagate messages through in- or
out-edges. It is difficult to determine which graph characteristics
about degree we should balance. We decide to select total in-
degree and total out-degree, because of twomain reasons. First, the
remote or local degree of a partition can only be calculated after the
finish of partitioning. We cannot use them during the execution of
partitioning. Second, from the perspective of the system, balancing
the total in-degree and total out-degree is a generic way to cover
different algorithms. Thus, the primary purpose of our DB policy
is to balance the total in- and out-degree per partition, and its
secondary purpose is to balance the sum of the in-degree and out-
degrees across the partitions by setting a constraint on the number
of vertices of the partitions.

With DB, every next vertex is assigned to the degree-smallest
of what we call the opposite partitions. For a vertex with in-degree
Vi and out-degree Vo, a partition with total current in-degree Dti
and total current out-degree Dto is called opposite if Vi > Vo and
Dti ≤ Dto, or the other way around. The degree-smallest partition
is the partition with the smallest sum of its current total in-degree
and total out-degree.We set a constraint on the number of vertices
per partition to ensure that they do not become too imbalanced. In
the DB policy, this constraint is flexible and can be set by the user.
The process of assigning a vertex to a partition by the DB policy is
shown in Policy 1.

In order to show the balance of the partitions created by the
DB policy, we apply it to the three datasets (Twitter, Scale_26, and
Policy 1 The DB policy

Input: Vi, Vo, the constraint on the number of vertices C , a sorted
queue of partitions P[M]with ascending Dti + Dto, the number
of partitions M

Output: the index of the assigned partition Index, a sorted queue
of partitions after the assignment

1: Flag ← 0 ◃Flag indicates if there is an opposite partition of the vertex
in the queue.

2: if Vi > Vo then
3: for j = 1→ M do
4: if Dj

ti ≤ Dj
to then ◃Dj

ti and Dj
to is the current total in-degree

and the current total out-degree of the jth partition P j.
5: Assign the vertex to P j, update Dj

ti and Dj
to.

6: Flag ← 1, Index← j
7: break
8: end if
9: end for
10: if Flag = 0 then ◃Cannot find an opposite partition for the

vertex.
11: Assign the vertex to P1, update D1

ti and D1
to. ◃Assign the

vertex to the smallest/first partition.
12: Index← 1
13: end if
14: else if Vi < Vo then
15: for j = 1→ M do
16: if Dj

ti ≥ Dj
to of P j then

17: Assign the vertex to P j, update Dj
ti and Dj

to.
18: Flag ← 1, Index← j
19: break
20: end if
21: end for
22: if Flag = 0 then
23: Assign the vertex to P1, update D1

ti and D1
to.

24: Index← 1
25: end if
26: else ◃Vi = Vo

27: Assign the vertex to P1, update D1
ti and D1

to. ◃Assign the
vertex to the smallest/first partition.

28: Index← 1
29: end if
30: if #V of P Index

≥ C then
31: Remove P Index from the queue.
32: M ← M − 1
33: end if
34: Ascending sort the partition queue P[M] by Dti + Dto of each

partition

Datagen_p10m) to create 16 partitions each. We set the constraint
on the size of the partitions to 1.5 times their average size (we
assume the size of the graph to be known ahead of time). In order
to show the balance, we normalize the number of vertices, the total
in-degree and the total out-degree of eachpartition relative to their
average values across all partitions. Fig. 4 shows that the graph
characteristics are very well balanced for the Twitter partitions.
For the Scale_26 and Datagen_p10m graphs, we achieve similar



114 Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121
Fig. 4. The normalized values of the graph characteristics achieved by theDB policy
for Twitter.

results.Wehave also partitioned the graphs into different numbers
of partitions (2, 4, 8, and 32), and also then we achieve balanced
partitions. Our results even indicate that we can achieve balanced
numbers of vertices without setting a constraint.

From the experimental results in Section 4.2, we find that the
run time of the machines varies even though they have equal
numbers of edges to process in the I, IO, andOpolicies. The reason is
that the numbers of vertices of the partitions, which are run-time-
influencing, are not balanced. To address this issue, we change
the streaming order of the vertices in these policies, from the
sequential ordering to a random ordering, which accesses vertices
randomly. There are also other stream orderings, such as the BFS
ordering and the DFS ordering. We select the random ordering
for three main reasons. First, from the evaluation of Stanton and
Kliot [39], the random ordering has comparable performance to
the BFS and DFS orderings in many cases. Second, the BFS and
DFS orderings need to pre-traverse the graphs, which is time
consuming, in particular for large graphs. The traverse time may
be even longer than the partitioning time. Third, the BFS and DFS
orderings can be more complicated when a graph has multiple
connected components. By using the random ordering of each
original policy in PGX.D,we create three newpolicies called RI, RIO,
and RO, inwhich ‘‘R’’ stands for the randomordering. Fig. 7 shows a
comparison of the O and RO policies. The RO policy achieves more
balanced numbers of vertices across partitions, while keeping the
balance of the total degrees.

Many graphs are not static, but mutate over time. Although
we only cover static graphs in our experiments, our partitioning
policies can be used to partition mutating graphs online as well,
obviating the need to re-partition a graph after it has changed. For
example, the DB policy does not need to know meta information
of the graph (such as the number of vertices and edges) or the
neighborhoods of vertices to assign vertices. When partitioning
a mutating graph, it can simply assign new vertices one-by-
one based on its rules, and update the meta information of
every partition (such as the total in-degree and total out-degree).
However, many graph-processing systems cannot support online
graph-partitioning policies and process mutating graphs. We are
not able to show the ability of partitioning mutating graphs of our
policies in our experiments.

5. Experimental results

In this section we conduct comprehensive experiments with
different graph partitioning policies, applications, and system
configurations. In Section 5.1 we present our experimental setup,
and at the end of the section we explain the experiments reported
in later sections.
5.1. Experimental setup

Experimental environment: We keep using the same cluster as
shown in Table 5. Besides using InfiniBand, in Section 5.5 we
also evaluate the performance on 1 Gbit/s Ethernet. We run all
experiments on 16 working machines, except for the scalability
test in Section 5.4, in which we use four different numbers of
machines (2, 4, 8, and 32).

Datasets: We will only present the results of executing graph-
processing algorithms on large-scale graphs. In fact, we have
also run experiments on a smaller graph, Livejournal [38]
(with 4,847,571 vertices and 68,993,773 edges). However, the
performance differences of the graph-partitioning policies are
quite small in that case. In Section 5.6, we include four more
Graph500 graphs than we have used in Section 4.2, with the scale
factor running from 22 to 25. For these graphs, the numbers of
vertices and edges are doubled with every step of the scale factor.

Algorithms: We have conducted a comprehensive survey of graph-
processing algorithms [17]. Our survey covers over 100 research
articles published in 10 representative conferences (including
VLDB, SIGKDD, SIGMOD, etc.) in recent years. Graph algorithms in
previous publications can be categorized into different classes by
functionality. We find that the top 3 occurred classes of algorithms
are graph traversal, general statistics, and connected components.
The percentages of the occurrence of these 3 classes of algorithms
are 46.3%, 16.1%, and 13.4%, respectively. In total, they have
about 70% occurrence among all types of algorithms. We select
one exemplar algorithm from each of these 3 classes, Breadth-
First Search (BFS) from graph traversal, PageRank from general
statistics, and Weakly Connected Components from connected
components. PageRank and BFS propagate updates through out-
edges. WCC propagates updates through both in- and out-edges,
and does not need any parameter. For PageRank, the termination
condition is set to maximum 10 iterations. For BFS, we select the
same source vertex for each graph for all partitioning policies.

Partitioning policies: In total, we evaluate 12 graph-partitioning
policies: 2 streaming policies (R and H) commonly used by graph-
processing systems, 2 streaming policies (LDG and CB) from the
literature, the 3 original streaming policies (I, IO, and O) used in
PGX.D, our 4 new streaming policies (RI, RIO, RO andDB) presented
in Section 4.3, and the state-of-the-art partitioner (M). Except
for RI, RIO, and RO, all policies use the sequential ordering of
the graphs. We summarize the partitioning policies in Table 9.
According to the experimental results of the CB policy [45], we set
its degree threshold percentage to 30 %.

The experiments we have conducted are as follows:

• In Section 5.2, we evaluate the impact of the configurations of
worker threads and copier threads.
• In Section 5.3,wemeasure theworkload imbalance of partitions

by using the edge cut ratio and the standard deviation of
normalized run-time-influencing graph characteristics.
• In Section 5.4, we show the run time of graph-processing

algorithms with different datasets. We also present the
scalability of each partitioning policy.
• In Section 5.5 we report the performance of using Ethernet and

the impact of using the selective ghost node technique.
• In Section 5.6 we investigate the time spent on graph

partitioning, considering different numbers of partitions and
graph sizes.

A summary of the experiments, and of the remaining sections,
is in Table 8.



Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121 115
Table 8
Experimental setup for each experiment in Section 5.

Section Algorithms Datasets Metrics Threads Network SGN technique

Section 5.2 PageRank Twitter Run time All InfiniBand No
Section 5.3 PageRank Twitter, Scale_26, Datagen_p10m ECR, SD w12c14 InfiniBand No
Section 5.4 All Twitter, Scale_26, Datagen_p10m Run time, scalability w12c14 InfiniBand No
Section 5.5 All Twitter, Scale_26, Datagen_p10m Performance ratio w12c14 InfiniBand, Ethernet Yes
Section 5.6 – Twitter, from Scale_22 to Scale_26 Partitioning time – – –
Table 9
Twelve partitioning policies in our experiments.

Policy Streaming Mechanism

R Yes Randomly assign a vertex to a partition.
H [27] Yes Hash partitioning.
LDG [39] Yes Assign a vertex to the partition, which has most neighbors of the vertex.
CB [45] Yes Assign a vertex to a partition with the smallest workload or with the least incremental workload.
I [18] Yes Balance the in-degree of partitions, original policy in PGX.D.
IO [18] Yes Balance the total-degree of partitions original policy in PGX.D.
O [18] Yes Balance the in-degree of partitions, original policy in PGX.D.
RI Yes The I policy using random ordering, proposed in this work.
RIO Yes The IO policy using random ordering, proposed in this work.
RO Yes The O policy using random ordering, proposed in this work.
DB Yes The greedy degree-balanced policy, proposed in this work.
M [19] No METIS, multi-level graph partitioning.
Fig. 5. The run time of PageRank for Twitter with four thread configurations.

5.2. The impact of the configuration of worker and copier threads

There are many possible configurations with different numbers
of worker threads and copier threads. The configuration of
worker threads and copiers threads can significantly influence the
performance of PGX.D [18]. In this section, we explore the impact
of the thread configuration on 12 partitioning policies.

Key findings:

• The configuration ofworker and copier threads has a significant
impact on the run time of PGX.D for all partitioning policies.
• In most experimental runs, the thread configuration w12c14

shows the best performance.

Weuse four configurations,w24c2,w18c8,w12c14, andw6c20,
which give a reasonable coverage of the possible configurations.
Fig. 5 shows the run time of PageRank for the Twitter dataset. In
general, the best performance is obtained from either w12c14 or
w18c8 for different partitioning policies. We also conduct other
groups of experiments, with different algorithms, datasets and
machines. In most cases, the configuration of w12c14 achieves the
best performance, and so we empirically use this as our default
thread configuration for the following experiments.
5.3. Workload distribution

In this section we discuss the workload distribution among
working machines. The workload includes two parts, the commu-
nication workload between working machines and the computa-
tion workload on each machine.
Key findings:

• The edge cut ratio is not a good indicator for the quality
of partitioning for real graph-processing systems, at least
when communication is not the performance bottleneck of the
system.
• The standard deviation of the normalized run-time-influencing

graph characteristics can be used to measure the imbalance of
the computation workload.
• The design of partitioning policies should not only focus on

minimizing the communication, but also on balancing the
communication between pairs of machines.

The edge cut ratio (ECR) is defined as the ratio of the number
of edges that connect vertices that are placed in two partitions
over the total number of edges in the graph. ECR is used by many
previous studies to measure the total communication workload.
We show the ECR of the 12 partitioning policies on Twitter,
Scale_26, and Datagen_p10m in Fig. 6. Because CB, LDG, and M
consider the neighborhoods of the vertex to be assigned and of
the already assigned vertices in each partition, they are the top 3
policies that achieve the lowest ECR for all three datasets (except
that LDG ranks sixth for Datagen_p10m). In contrast, the ECR of
other policies is very high, because they assign vertices without
considering their neighborhoods.

We use the standard deviation (SD) of the normalized (see
Section 4.3 for the normalization) run-time-influencing (RTI) graph
characteristics (i.e., the number of vertices, total out-degree, and
total in-degree) to understand the computation workload across
working machines. Fig. 7 shows the results for Twitter, which is
partitioned into 16 splits. As shown in Fig. 4, the Twitter partitions
under the DB policy have balanced RTI graph characteristics, so
the SD of all normalized RTI graph characteristics is small. We
also find that the SDs for the CB and LDG policies are significantly
higher than for the other policies. The reason is that vertices are
accumulated to very large partitions to reduce edge cuts in CB and
LDG. For theMpolicy, although the SDof the normalized number of



116 Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121
Fig. 6. The Edge Cut Ratio of all partitioning policies for 3 datasets.

Fig. 7. The standard deviation of the normalized RTI graph characteristics for
Twitter for all partitioning policies (the values of missing bars are too small to
display).

vertices is small, the SDs of the normalized total in-degree and out-
degree are relatively large, which indicates that communication is
not balanced between pairs of workingmachines. Surprisingly, the
random-based policies (R and H) also obtain small SD (we have
repeated the R partitioning 5 times with different random seeds
and obtained consistent results).

In Fig. 8 we show the run time of PageRank on all 3 datasets for
all graph partitioning policies. The LDG, CB, and M policies result
in the longest run times, even though they achieve a low ECR. The
reason is that communication is not the dominant workload in
PGX.Dwhen using the high-speed InfiniBand, aswe have discussed
in Section 4.2. This means that ECR is not a good metric when
the communication is not the dominant part of the workload. We
find that in general, the partitioning policy with smaller SD of
the RTI graph characteristics leads to shorter run time, and so SD
can be used as a metric to evaluate the quality of partitioning for
computation-dominated processing. Except for the CB, LDG,M, and
O policies, the SD of the other policies is less than 0.5 and their run
times are very close to each other. In practice, it is useful to find a
threshold for SD beyond which the run time of graph processing
may significantly increase. This threshold may be determined by
analyzing the statistics obtained from many more experiments
with various algorithms and datasets.

5.4. The impact of the partitioning policies on application perfor-
mance

In this section we present the performance impact of the
partitioning policies on the performance of graph algorithms for
different algorithms, datasets, and number of working machines.
Fig. 8. The run time of PageRank for 3 datasets with all partitioning policies.

Key findings:

• The Degree-Balanced policy achieves good performance, while
previous streaming policies from the literature (LDG and CB)
perform the worst.
• The graph structure has an impact on the performance of graph

partitioning.
• Most partitioning policies show reasonable scalability with the

increase of the number of working machines (partitions).

The run time of PageRank for 3 datasets with all partitioning
policies is depicted in Fig. 8. There is no overall winner among the
partitioning policies, but LDG and CB have the worst performance
as the computation workload of for these policies is highly
skewed between working machines (see Fig. 7). DB achieves good
performance for all graphs. For the Twitter graph, the run time of
PageRank is the shortest. Random ordering cannot always help to
achieve good performances evidenced by the O and RO policies
for partitioning Scale_26. The impact of graph partitioning is more
significant in highly skewed graphs, such as Twitter and Scale_26.
For Datagen_p10m, we see that only CB has obvious performance
impact. Both LDG and M yield results comparative to those other
partitioning policies. Simple partitioning policies, such as the
commonly used H policy, perform well for most algorithms and
graphs. The reason is that computation is the dominant workload
in our experiments and theH policy balances normalized RTI graph
characteristics as shown in Fig. 7.

In Figs. 9–11 we show that most partitioning policies exhibit
good scalability when increasing the number of worker machines
up to 16—the benefit of increasing the number ofmachines from16
to 32 is not significant. An important reason is that the workload is
not heavy enough when processing the graphs with more than 16
machines (i.e., the hardware resource is redundant). For LDG and
CB, the scalability is not obvious. To reduce edge-cuts, no matter
howmany number of partitions, LDG and CB may place vertices to
a small subset of partitions, which dominates the run time of the
algorithms. We also find that the random ordering results in poor
scalability, such as the RO policy shown in Fig. 10.

5.5. The impact of network and the selective ghost node technique

In this section, we compare the performance impact of using 56
Gbit/s InfiniBand versus 1 Gbit/s Ethernet, and of using selective
ghost node (SGN), which is a commonly used technique in graph-
processing systems for reducing network traffic.
Key findings:

• The run time of graph-processing algorithms on high-speed
InfiniBand is orders of magnitude smaller than on low-speed
Ethernet.



Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121 117
Fig. 9. The scalability of the BFS algorithm for Twitter.

Fig. 10. The scalability of the PageRank algorithm for Scale_26.

Fig. 11. The scalability of the WCC algorithm for Datagen_p10m.

• Using the selective ghost node technique may not always have
a positive impact on the performance.

We report the performance of InfiniBand relative to Network
when running 3 algorithms with Twitter in Fig. 12. In all
experiments, using InfiniBand leads to much better performance,
from10 times to nearly 900 times faster than the Ethernet. It is very
interesting that the performance ratio can be as much as hundreds
times, while the bandwidth of the InfiniBand is only about 50
times larger than that of the Ethernet. It may be because that
the communication is not balanced between pairs of machines.
For example, one machine may have heavy communication with
multiple other machines. Other machines may have to wait for
that machine to finish their communication, whichmakes the data
transfer and message processing extremely slow.

We show the performance improvement for PageRank of 3
datasets by using SGN on InfiniBand and on Ethernet in Figs. 13 and
Fig. 12. The performance ratio of 3 algorithms for Twitter on InfiniBand relative to
Ethernet (vertical axis has logarithmic scale).

Fig. 13. The performance change of PageRank for 3 datasets when using SGN on
InfiniBand.

Fig. 14. The performance change of PageRank for 3 datasets when using SGN on
Ethernet.

14, respectively. Not all values are positive, indicating that using
SGN cannot always help to achieve good performance, because
the time synchronizing ghost nodes can be longer than the run
time reduced by using SGN. Overall, the performance change on
Ethernet is larger than that on InfiniBand, because Ethernet ismore
sensitive to the change of network traffic.

5.6. The time spent on partitioning graphs

The complexity of the partitioning policies and the time spent
on partitioning graphs are also important for us to determine the



118 Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121
Fig. 15. The time spent on partitioning the Twitter graph into different numbers of
partitions for all policies (vertical axis has logarithmic scale).

choice of policies. Because the M policy is implemented in an
offline single-machine partitioner, and the LDG and CB policies
need to acquire the global information to assign vertices, it is non-
trivial to implement these policies in a distributed manner. In this
section, we compare the time spent on partitioning graphs on a
single machine.
Key findings:

• The LDG, CB, and M policies need much more time for
partitioning graphs than the other streaming policies.
• The number of partitions has a significant impact on the

partitioning time of LDG and CB.
• The partitioning time of all policies increases linearly with the

size of the graph.

We first explore the time spent on partitioning the same graph
into different numbers of partitions. In Fig. 15, we show the time
of each policy for partitioning Twitter into 2, 4, 8, 16, and 32
partitions, respectively. For the M policy, we use another machine
(equipped with two Intel Xeon CPU E5-2699 2.30 GHz processors
and 384 GB memory), because the M policy runs out of memory
when using theworkingmachine in Table 5. LDG, CB, andM are the
policies with the longest partitioning time. The M policy applies
a multi-level scheme, in which the coarsening phase is complex
and time consuming. This long partitioning time of M matches
a previous experiment [42], where more than 8.5 h is needed
to partition the Twitter graph using a less powerful machine.
For the assignment of a vertex, the LDG and CB policies need to
traverse all partitions to calculate the number of its neighbors in
each partition. To assign some low-degree vertices in CB, counting
the edges between each pair of partitions is also required. The
traversal of partitions is very expensive. With the increase of the
number of partitions, the LDG and CB policies need to spend
significantly more time on partitioning, because of the complexity
of the traversal process. Except for LDG and CB, we observe time
increase of DB, which is incurred by sorting the partition queue,
the size of which is equal to the number of working machines. In
practice, the size of clusters is limited, many of which have less
than thousands of machines. Thus, the impact of increasing the
number of partitions is limited for the DB policy.

We also investigate the partitioning time on different sizes of
graphs. Fig. 16 shows the time spent on partitioning Graph500
graphs with 5 different scales (from Scale_22 to Scale_26). We
partition each graph into 16 splits. Similarly to Twitter, we use
the same machine with 384 GB memory only for executing the
M policy with Scale_26, because out of memory. LDG, CB, and
M are the slowest policies. All partitioning policies exhibit good
scalability with increasing the size of graphs.
Fig. 16. The time spent on partitioning Graph500 graphs into 16 partitions for all
policies (vertical axis has logarithmic scale).

6. Discussion

In this section, we discuss how to use our results, how to
extend the use of ourmodel andmethod tomore graph-processing
systems, and thepotential directions for the design of future graph-
partitioning policies.

6.1. How to use our results

We summarize the key findings of our experiments in Table 10.
Key findings in Sections 5.4 and 5.6 are about the performance
of partitioning policies. It is difficult to obtain clear rules as
to which partitioning policy should be used for which graph-
processing system, which algorithm, andwhich graph.We identify
four main reasons for this difficulty. First, graph-processing
systems are designed and implemented with specific goals and
optimization techniques. It is not easy to quantify the impact
of these implementations and techniques on the performance
of graph-partitioning policies. Second, graph algorithms have
various behaviors. We will further discuss the impact of graph
algorithms on partitioning policies in Section 6.3. Third, graphs
have diverse structures and characteristics. It is very difficult
to identify the typical graph structures and the most important
graph characteristics that can represent a given graph [26]. In
practice, the identified structures and characteristics should be
easily calculated, which is crucial for large-scale graphs. Fourth,
heterogeneous hardware infrastructure (different CPU, amount of
memory, network connection, etc.) also has significant impact. For
the same combination of graph-processing system, algorithm, and
graph, if the deployed cluster is changed, the best partitioning
policies may also change.

Although it is non-trivial to obtain best practice, we discover
and summarize some generic suggestions for designing and using
policies. Key findings in Sections 5.2 and 5.5 are closely related to
the PGX.D system and its hardware infrastructure. They may not
be applicable for other systems, but these findings indicate that
system configuration and tuning should be carefully conducted
(for different partitioning policies). Key findings in Section 5.3 are
more generic and can be used by other researchers to design and
measure the performance of their graph-partitioning policies. Our
DB policy cannot always outperform other partitioning policies in
all cases, but in general, it achieves good performance (short run
time of graph algorithm and fast partitioning process), if any other
graph system that falls in the same run time model of PGX.D, we
would suggest to use the DB policy.



Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121 119
Table 10
Key findings of our experiments.

Section Key findings

5.2 The configuration of worker and copier threads has a significant impact on the run time of PGX.D.
In most experimental runs, the thread configuration w12c14 shows the best performance.

5.3
The ECR is not a good indicator for the quality of partitioning for real graph-processing systems.
The SD of the RTI graph characteristics can be used to measure the imbalance of the computation workload.
The design of partitioning policies should also focus on balancing the communication between machines.

5.4
The DB policy achieves good performance, while LDG and DB perform the poorest.
The graph structure has an impact on the performance of graph partitioning.
Most partitioning policies show reasonable scalability with the increase of the number of partitions.

5.5 The run time of algorithms on InfiniBand is orders of magnitude smaller than on Ethernet.
Using the selective ghost node technique may not always have a positive impact on the performance.

5.6
The LDG, CB, and M policies need much more time for partitioning graphs than the other streaming policies.
The number of partitions has a significant impact on the partitioning time of LDG and CB.
The partitioning time of all policies increases linearly with the size of the graph.
6.2. The coverage of our model and method

In Section 3, we propose a run time model of two-phase graph
processing systems,which also encompasses one-phase systems. In
our experiments, we use PGX.D (a real-world production system
based on the two-phase abstraction) as the real graph-processing
system. Because we have tested our work on production-quality
code, and because of the simplicity of the conversion between
the one-phase abstraction and the two-phase abstraction [28], our
work also indicates that our method could be applied with trivial
adaptations to systems using the one-phase abstraction.

We now discuss the extensions needed to apply our work to
systems based on the three-phase abstraction. A typical three-
phase abstraction is the Gather–Apply–Scatter (GAS)model, which
is first implemented in PowerGraph [11]. Vertex-cut partitioning
is often implemented in GAS systems: a vertex can have multiple
copies, each of which is distributed to a working machine. One
copy is selected as the master, and others are mirrors. In GAS, the
gather phase collects the local incoming information for vertices,
then calculates their partial vertex values. The apply phase collects
all partial values and computes final vertex values. Last, the scatter
phase distributes the update to corresponding edges. There are
two periods of communication in the GAS model, with one period
between the gather and apply phases for sending partial vertex
values to the master, and another between the apply and scatter
phases for distributing final vertex values to all mirrors.We extend
our run time model to GAS systems, for example, by observing
that the run time becomes the sum of the time spend on each
of the three computation phases and the two communication
periods in the blocking I/O mode. Next, we can use our method to
pick out run-time-influencing graph characteristics for vertex-cut
partitioning, and proceed design new policies. (Using these steps,
we have already completed a preliminary model for three-phase
systems, but we do not report the outcome in this work, as we
have not proceeded with the design of new policies and have not
conducted meaningful experiments with them.)

6.3. The design of future partitioning policies

Policies when considering the heterogeneity of clusters. Graph-
processing systems may be deployed on clusters with different
hardware, such as machines with different processors and amount
of memory, and different type and topology of networks. From our
analysis and previous knowledge [15,26], both the computation
and the communication processes are important to the run
time of graph-processing systems. However, when considering
heterogeneous clusters, the computation or the communication
may become the dominant bottleneck of the system, and thus
requiring more in-depth analysis. We may need to understand
the relative priority of balancing computation and of minimizing
communication to design graph partitioning policies.
Policies that balance communication.Minimizing communication is
an important target of graph partitioning. However, it is only about
the total amount of network traffic. We identify two important
situations when partitioning can lead to lower network traffic
yet incur a longer processing run time. The first situation occurs
when most edge-cuts are made between a pair or a small subset
of working machines, which means that the processing run time
is determined by the communication between these machines.
The second situation occurs when the speed of creating messages
by working machines varies significantly over time. As we have
learned from decades of parallel and distributed computing,
message bursts can significantly reduce performance, and can even
lead to system crashes. The balance of communication is a very
important direction for graph partitioning and should consider
both, inter-machine and intra-machine optimizations. The inter-
machine optimization requires a balanced amount of messages
between pairs of machines. The intra-machine optimization has
to find a sequence of processing vertices that can distribute the
creation of messages evenly.
Policies addressing algorithmic variety in real-world graph processing.
Many graph algorithms are iterative and can be categorized by the
status and count of active vertices in each iteration, into stationary
and non-stationary [22]. In each iteration of stationary algorithms,
all the vertices are active and they receive and generate the same
amount of messages. Typical stationary algorithms are PageRank,
and Semi-clustering [27]. In contrast, only a part of vertices are
active in one iteration for non-stationary algorithms, such as BFS,
Single Source Shortest Path [27], and WCC. It is challenging to
predict and balance the workload of non-stationary algorithms
in each iteration, because we do not know what are the active
vertices and developing good predictors has so far proven difficult
and algorithm-specific. Dynamic repartitioningmay help solve this
balancing problem. However, existing repartitioning approaches
are unable to do so, because they repartition graphs based on
information regarding the current iteration [22] or (in the fewcases
that have tried this approach so far) the previous iterations [37].

7. Conclusion

Graph partitioning is an important aspect of achieving high per-
formance when designing and using distributed graph-processing



120 Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121
systems. Many graph partitioning policies have been proposed so
far, aiming to minimize communication, balance the number of
vertices on each working machine, and reduce the time spent on
partitioning, etc. However, most of the partitioning policies are
not designed from the perspective of real-world distributed graph-
processing systems. In addition, the performance of existing parti-
tioning policies has not been evaluated in-depth on real systems.
In this work, we address this situation by proposing models, parti-
tioning policies, and an experimental evaluation of different parti-
tioning policies in graph processing.

We model the run time of different types of graph-processing
systems. We set minimizing the run time as the objective function
of partitioning policies. The models we proposed cover the one-
phase and two-phase systems, using the blocking I/O and parallel
I/O modes, in machine-level and thread-level.

We propose a method to identify run-time-influencing graph
characteristics by analyzing the run-time model and by under-
standing the relationship between different graph characteristics
and the run time. Based on the run-time-influencing graph charac-
teristics, we design new graph partitioning policies to obtain bal-
anced partitions.

We use many metrics to evaluate the performance of twelve
partitioning policies. We select in our experiments three popular
graph-processing algorithms and three large-scale graphs from
both real world and synthetic graph generators. We also evaluate
the impact of real-world networks and a commonly used technique
in graph-processing systems. Our results indicate that the newly-
designed DB partitioning policy shows good performance, while
existing streaming policies, such as LDG and CB, do not perform
well.

We also discuss our preliminary work and ideas regarding
how to use our results, the coverage of our model and method,
and the design of future partitioning policies. In the future, we
plan to implement a distributed graph-processing system that can
use both the CPU and the GPU(s), and to design corresponding
streaming graph-partitioning policies for this hybrid system.

Acknowledgments

This research is supported by the Veni project @large, by
the Dutch NederlandseWettenschappelijke Onderzoek (the Dutch
Research Agency) Kennis Innovatie Mapping (KIEM; Mapping
between Knowledge and Innovation) project KIES-A, by Commit
and the Commit project Commissioner, by the NSFC No. 61379146,
No. 61272483, No. 61272056, and by the Fund No. JC13-06-03.

References

[1] K. Andreev, H. Racke, Balanced graph partitioning, Theory Comput. Syst.
(2006).

[2] S. Arora, S. Rao, U. Vazirani, Expander flows, geometric embeddings and graph
partitioning, J. ACM (2009).

[3] D.A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, D. Wagner,
Benchmarking for graph clustering and partitioning, in: ESNAM, 2014.

[4] M. Capota, T. Hegeman, A. Iosup, A. Prat-Pérez, O. Erling, P. Boncz, Graphalytics:
A big data benchmark for graph-processing platforms, in: GRADES, 2015.

[5] F. Checconi, F. Petrini, Traversing trillions of edges in real time: Graph
exploration on large-scale parallel machines, in: IPDPS, 2014.

[6] Q. Chen, S. Bai, Z. Li, Z. Gou, B. Suo, W. Pan, GraphHP: A hybrid platform for
iterative graph processing. 2014.

[7] Family of Graph and Hypergraph Partitioning Software.
http://glaros.dtc.umn.edu/gkhome/views/metis.

[8] Z. Fu, M. Personick, B. Thompson, MapGraph: A high level api for fast
development of high performance graph analytics on GPUs, in: GRADES, 2014.

[9] Giraph. http://giraph.apache.org/.
[10] L. Golab, M. Hadjieleftheriou, H. Karloff, B. Saha, Distributed data placement to

minimize communication costs via graph partitioning, in: SSDBM, 2014.
[11] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, PowerGraph: Distributed
graph-parallel computation on natural graphs, in: OSDI, 2012.

[12] J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, I. Stoica, GraphX:
Graph processing in a distributed dataflow framework, in: OSDI, 2014.

[13] Graph500. http://www.graph500.org/.
[14] A. Guerrieri, A. Montresor, Distributed edge partitioning for graph processing,

2014. arXiv:1403.6270.
[15] Y. Guo, M. Biczak, A.L. Varbanescu, A. Iosup, C. Martella, T.L. Willke, How

well do graph-processing platforms perform? An empirical performance
evaluation and analysis, in: IPDPS, 2014.

[16] Y. Guo, A.L. Varbanescu, A. Iosup, D. Epema, An empirical performance
evaluation of gpu-enabled graph-processing systems, in: CCGrid, 2015.

[17] Y. Guo, et al., How Well do Graph-Processing Platforms Perform?
An Empirical Performance Evaluation and Analysis: Extended Re-
port. Technical Report PDS-2013-004, Delft University of Technology,
2013, http://www.pds.ewi.tudelft.nl/research-publications/technical-
reports/2013/.

[18] S. Hong, S. Depner, T. Manhardt, J.V.D. Lugt, M. Verstraaten, H. Chafi, PGX.D: A
fast distributed graph processing engine and lessons from it, SuperComputing
(2015).

[19] G. Karypis, V. Kumar, Multilevel graph partitioning schemes, in: ICPP, 1995.
[20] G. Karypis, V. Kumar, A parallel algorithm formultilevel graph partitioning and

sparse matrix ordering, J. Parallel Distrib. Comput. (1998).
[21] G. Karypis, K. Schloegel, V. Kumar, ParMETIS: Parallel graph partitioning and

sparse matrix ordering library, 1997.
[22] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, P. Kalnis, Mizan:

A system for dynamic load balancing in large-scale graph processing,
in: EuroSys, 2013.

[23] H. Kwak, C. Lee, H. Park, S. Moon, What is twitter, a social network or a news
media? in: WWW, 2010.

[24] LDBC. http://ldbcouncil.org/.
[25] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J.M. Hellerstein,

Distributed GraphLab: A framework for machine learning and data mining in
the cloud, in: VLDB, 2012.

[26] Y. Lu, J. Cheng, D. Yan, H. Wu, Large-scale distributed graph computing
systems: An experimental evaluation, in: VLDB, 2014.

[27] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G.
Czajkowski, Pregel: A system for large-scale graph processing, in: SIGMOD,
2010.

[28] R.R.McCune, T.Weninger, G.Madey, Thinking like a vertex: A survey of vertex-
centric frameworks for large-scale distributed graph processing, Comput.
Surv. (2015).

[29] H. Meyerhenke, P. Sanders, C. Schulz, Parallel graph partitioning for complex
networks, 2014. arXiv:1404.4797.

[30] D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to Linear Regression
Analysis, John Wiley & Sons, 2012.

[31] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking:
Bringing order to the web. 1999.

[32] U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect
community structures in large-scale networks, Phys. Rev. E (2007).

[33] A. Roy, I. Mihailovic,W. Zwaenepoel, X-Stream: Edge-centric graph processing
using streaming partitions, in: SOSP, 2013.

[34] I. Safro, P. Sanders, C. Schulz, Advanced coarsening schemes for graph
partitioning, ACM J. Exp. Algorithmics (2015).

[35] S. Salihoglu, J. Widom, GPS: A Graph Processing System. Technical Report,
2012.

[36] S. Seo, E.J. Yoon, J. Kim, S. Jin, J.-S. Kim, S. Maeng, Hama: An efficient matrix
computation with the MapReduce framework, in: CloudCom, 2010.

[37] Z. Shang, J.X. Yu, Catch thewind: Graphworkload balancing on cloud, in: ICDE,
2013.

[38] SNAP. http://snap.stanford.edu/index.html.
[39] I. Stanton, G. Kliot, Streaming graph partitioning for large distributed graphs,

in: SIGKDD, 2012.
[40] D. Stauffer, A. Aharony, Introduction to Percolation Theory, CRC Press, 1994.
[41] P. Stutz, A. Bernstein, W. Cohen, Signal/collect: Graph algorithms for the

(semantic) web, in: ISWC, 2010.
[42] C. Tsourakakis, C. Gkantsidis, B. Radunovic, M. Vojnovic, FENNEL: Streaming

graph partitioning for massive scale graphs, in: WSDM, 2014.
[43] D. Warneke, O. Kao, Nephele: Efficient parallel data processing in the cloud,

in: MTAGS, 2009.
[44] T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 2012.
[45] N. Xu, B. Cui, L.-n. Chen, Z. Huang, Y. Shao, Heterogeneous environment aware

streaming graph partitioning, IEEE Trans. Knowl. Data Eng. (2015).
[46] Y. Zhang, Q. Gao, L. Gao, C. Wang, Accelerate large-scale iterative computation

through asynchronous accumulative updates, in: ScienceCloud, 2012.

http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref1
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref2
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref3
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref4
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref5
http://glaros.dtc.umn.edu/gkhome/views/metis
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref8
http://giraph.apache.org/
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref10
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref11
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref12
http://www.graph500.org/
http://arxiv.org/1403.6270
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref15
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref16
http://www.pds.ewi.tudelft.nl/research-publications/technical-reports/2013/
http://www.pds.ewi.tudelft.nl/research-publications/technical-reports/2013/
http://www.pds.ewi.tudelft.nl/research-publications/technical-reports/2013/
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref18
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref19
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref20
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref22
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref23
http://ldbcouncil.org/
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref25
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref26
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref27
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref28
http://arxiv.org/1404.4797
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref30
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref32
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref33
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref34
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref35
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref36
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref37
http://snap.stanford.edu/index.html
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref39
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref40
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref41
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref42
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref43
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref44
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref45
http://refhub.elsevier.com/S0743-7315(16)00018-6/sbref46


Y. Guo et al. / J. Parallel Distrib. Comput. 108 (2017) 106–121 121
Yong Guo is a Ph.D. student in the Distributed Systems
Group of Delft University of Technology. His research
interests are in the area of distributed computing systems,
large-scale graph processing, and online gaming. He has
built the Game Trace Archive, which provides a virtual
meeting space for the game community to exchange and
use game traces.

Sungpack Hong is a principal member of technical staff
for Oracle Labs. His research interests include parallel
and distributed algorithms for large-scale graph analytics,
domain-specific languages design and implementation,
and system-on-chip architecture design and simulation.

Hassan Chafi is the senior researchmanager at Oracle Labs
where he currently leads various projects. His research
investigates high-performance, parallel, in-memory graph
analytics and using domain specific languages to simplify
parallel programming. Dr. Chafi received his Ph.D. from
Stanford University.
Alexandru Iosup is currently an Associate Professor with
the Distributed Systems Group at TUDelft. He has received
in 2009 his Ph.D. in Computer Science from the Delft
University of Technology (TU Delft), the Netherlands.
He was a visiting scholar at U. Wisconsin-Madison, U.
Innsbruck, and U. California-Berkeley in the summers of
2006, 2008, and 2010, respectively. In 2011, Dr. Iosup
has received a Veni grant (the Dutch equivalent of the
US NSF CAREER.) He is the author of over 50 refereed
scientific publications and has received several awards
and distinctions, including best paper awards at IEEE

CCGrid 2010, Euro-Par 2009, and IEEE P2P 2006. He has co-founded the Grid
Workloads Archive, and the Peer-to-Peer, the Game, and the Failure Trace Archives,
all of which provide open access to workload and resource operation traces
from large-scale distributed computing environments. His long-term research
interests are in the area of distributed computing systems and their applications
(keywords: cloud computing, grid computing, peer-to-peer systems, scientific
computing, massively multiplayer online games, scheduling, scalability, reliability,
performance evaluation, workload characterization).

Dick Epema received theM.Sc. and Ph.D. degrees inmath-
ematics from Leiden University, Leiden, the Netherlands,
in 1979 and 1983, respectively. Since 1984, he has been
with the Department of Computer Science of Delft Univer-
sity of Technology, where he is currently a professor in the
Distributed Systems Group. Since 2011, he is also a part-
time full professor of Decentralized Distributed Systems at
Eindhoven University of Technology. During 1987–1988,
the fall of 1991, and the summer of 1998, he was a visit-
ing scientist at the IBMT.J.Watson Research Center in New
York. In the fall of 1992, he was a visiting professor at the

Catholic University of Leuven, Belgium, and in the fall of 2009 he spent a sabbat-
ical at UCSB. His research interests are in the areas of performance analysis, dis-
tributed systems, peer-to-peer systems, grids, and clouds. He has coauthored more
than 100 papers in peer-reviewed conferences and journals, he was a general co-
chair of Euro-Par 2009 and IEEE P2P 2010, and he was the general chair of HPDC’12
and CCGrid 2013.


	Modeling, analysis, and experimental comparison of streaming graph-partitioning policies
	Introduction
	Background and related work
	Graph-processing systems
	Related work

	A model of graph-processing systems and the objective function of graph partitioning
	Design of graph partitioning policies
	A method for identifying the run-time-influencing graph characteristics
	Empirical results validating the method
	Four new graph partitioning policies

	Experimental results
	Experimental setup
	The impact of the configuration of worker and copier threads
	Workload distribution
	The impact of the partitioning policies on application performance
	The impact of network and the selective ghost node technique
	The time spent on partitioning graphs

	Discussion
	How to use our results
	The coverage of our model and method
	The design of future partitioning policies

	Conclusion
	Acknowledgments
	References


