

Architectural Engineering Graduation Studio **P5 Presentation**

Recovering *The Water*

Enhancing the health and wellbeing of Indonesia's kampung system while contributing to the recovery of water ecosystem services

Aprisia Rasya Murran 5794781

Nico Tillie Research Tutor

Mo Smit Design Tutor

Paddy Tomesen Building Engineering Tutor

The Neighbourhood Keputih

River in Surabaya

Surabaya, 2024

Soerabaja Kart, 1915

So, what are the actual problems?

Water Scarcity

Rising Water Flood

Polluted Water & Drainage

Water is a source of life

Water is a human right

Water is a nature right

We've **broken** the water cycle, **destroyed** water ecosystems and **contaminated** groundwater.

UN's Chief António Guterres, World Water Day 2023

Disaster Events

Surabaya Disaster Events Recorded from 2014-2024

Source: National Agency for Disaster Countermeasure

But, what happens to the architecture of the houses?

Poor housing structure ; lack of proper ventilation; materials with higher CO2 emissions

Again, what happen with the kampung residents *living informally* and *build along the river*?

Forced Eviction

Surabaya's Resident Card holder

Non Surabaya's Resident Card holder

What's the goal?

Imbalance function of urban infrastructure

Imbalance function of urban infrastructure

Design Question

How can *kampung* housing retrofit strategies enhance the system health and wellbeing of *kampung* communities using <u>nature-based</u> and <u>low-tech solutions</u> to restore ecosystem services?

Program of Requirements

Residents & Activities

Technical Research

Context | Technical Research | Landscape | Water Management | Architecture | Building Technology | Management

Technical Research

Water Provisioning

Suitable: household activities expect drinking water

FILTRATION MEDIA

Flood Protection

Local Climate Regulation

How is *the water system* in the kampung now?

Water Use in Kampung Keputih

Household Level

Kampung / Community Level

Water Use in Kampung Keputih

135 L/day

Water Use in Kampung Keputih

129 L/day

Existing Water Infrastructure

Catfish aquaculture

Current Flood Adaptation

Elevated kampung street

Not elevated yet

Elevated housing 20 cm

Linear Water System

Linear Water System

Circular Water System

Urban Plan & Landscape

Water Tools

Water Index

Design Strategies for Drought, Flooding and Contamination

Seth McDowell

Clearing Riverbank Area (5 meter wide)

Clearing Riverbank Area (5 meter wide)

River Bank Area

Riverbank Section 1:100

River Bank Area

Riverbank Detail 1: 20

River Bank Area

Riverbank Detail 1: 25

River Bank

Potential On-site Material

Material Flow

Landscape Riparian restoration | Wastewater treatment | Soil erosion

Water Management

Set of Tools

Meso Scale Kampung Communal Place

Water Point & Communal Space

......

Water Point & Communal Space

and the party of the party of the

Lai.

Water Point & Communal Space

 \mathbf{O}

.

 \cup

00

Kampung Street Level | Shared Gutter

Household Level | Concept

Architecture of the Housing

Type of Retrofit Housing

But first, do you know that the existing kampung housing structure causes higher CO2 emissions?

Retrofit Home | Embodied Carbon

47,72 (KgCO2/Kg)

Cost & Embodied Carbon Comparison

Wall Module 3 x 3 m

Clay Brick + Cement Plaster

Rp 532.772 (€30.20)

3,574 KgCO2/Kg

CO.

Bamboo Framing + Woven Matt

Rp 160.000 (€9.06)

0,426 KgCO2/Kg

Bamboo Framing + Earth Plaster Rp 235.000 (€13.32) 0,438 KgCO2/Kg

Brick & Bamboo

Bamboo

Brick

Kampung Tongkol Kamil Muhammad

Source of Material

Source of Material | Bamboo

Bambu Tali Gigantochloa Apus

Growth 1 - 22 m Diameter 5 – 13 cm Flexible

Bambu Petung Dendrocalamus Asper

Growth 1-18 m Diameter 8 – 20 cm Strong - structure

Source of Material | Bamboo

Local Bamboo Supplier UD . Karya Bambu ± 1,8 km | 5 minutes driving

Bamboo Forest

Municipal-owned ± 1,3 km | 4 minutes driving

Bamboo Flow & Treatment

Bamboo Workshop

Summings.

and the

Retrofit Home | Existing Condition

Prone to flood No rainwater equipment

Poor ceiling & roof structure

Lack of proper ventilation

Structure

Structure | Separated Structure

Structure | Lesson Learned

Structure | Column

Structure | Beam

Structure | Beam

Structure | Roof Truss

Structure | Disaster Proof-Bracing

Structure | Disaster Proof-Bracing

Structure | Clay Plaster

Structure | Clay Plaster

Structure | In Between Construction

-

Structure | In Between Construction

Structure | Fire Resistance

Structure | Foundation

1 Bamboo pole column d. 100 mm 2 Steel footing pole d. 70 mm 3 Clay mixture plaster with oil coating 5 mm 4 Earth rammed 100 mm 5 Concrete base 200 x 300 mm 6 Existing concrete sloof 150 x 200 mm 7 Stone foundation 300 x 600 mm

Structure | Foundation

1 Bamboo pole column d. 100 mm 2 Steel footing pole d. 70 mm 3 Clay mixture plaster with oil coating 5 mm 4 Earth rammed 100 mm 5 Concrete base 200 x 300 mm 6 Existing concrete sloof 150 x 200 mm 7 Stone foundation 300 x 600 mm

After Retrofit

Structure | Bamboo and Concrete Block

Element of Aesthetics

Interior Housing / Second Floor

1- prinan

Interior Housing / Second Floor

-

1000

Climate

Element of Ventilation

Fixed Window + Privacy

+ View

+ Airflow

Operable Window + Privacy + View

+ Airflow

Indoor Louvre + Airflow

Climate | Bamboo Louvre

1 Bamboo *Pelupuh* roof cover Waterproof membrane layer Bamboo woven 2 Banana fiber insulation panel 3 Bamboo pole louvre frame d. 100 mm 4 Bamboo inner louvre d. 40 mm 5 Insect screen net 6 Bamboo woven ceiling 7 Bamboo rafter d. 70 mm

Climate | Bamboo Louvre

 Bamboo *Pelupuh* roof cover Waterproof membrane layer Bamboo woven
Banana fiber insulation panel
Bamboo pole louvre frame d. 100 mm
Bamboo inner louvre d. 40 mm
Insect screen net
Bamboo woven ceiling
Bamboo rafter d. 70 mm

07.00 am / opening window

11111111

anna

10.00 am / hanging clothes

100 PAR 10

Meoow...

ana

12.00 am / half closed blind

V8. V8. VA

WONCH CHICKING

14.00 am / fully closed blind

THE WEAR AND THE WEAR AND THE PARTY OF THE P

18.00 am / closed window

Management

Context | Technical Research | Landscape | Water Management | Architecture | Building Technology | Management

Funding Scheme

Local Economy

Bamboo Workshop

Fishing Boat Tourism

Actor & Stakeholder

Keputih Community

- Deciding the planning and the available and suitable options
- Managing their existing infrastructure and funding
- Maintaining the overall infrastructure and kampung system

Riverbank Community (Paguyuban Warga Strenkali Surabaya)

Advocating & strengthing the local community

Community Architect (Arkom Jawa Timur)

- Guided the kampung planning process & decision making
- Supporting technical drawings & insight

International Institution (UNEP, UNICEF, World Bank) Provide communal water infrastructure through their CSR programmes

Raising awareness and building community capacity

Surabaya Municipality

- Formalising land ownership
- Clearing and restoring the riverbank zone
- Provide funding support, housing allowance and retrofit system
- Providing kampung improvement programme

Local Educational Institutional (ITS, Unair, UPN Veteran Jatim)

- Provide technical research about water system & water quality
- Provide water infrastructure through their social projects/pilot projects
- Raising awareness and building community capacity

Phase 1 | Clearing Riverbank Area & Land Formalisation

Phase 3 | Kampung retrofit within communal & household level

Planning

Context | Technical Research | Landscape | Water Management | Architecture | Building Technology | Management

Team of Builders

Food Production

Scale

Household Level | Private Hydroponic & Aquaponic

Conclusion & Reflection

Terima kasih Thank you Dank je wel