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ONE-DIMENSIONAL DYNAMICS: 
THE SCHWARZIAN DERIVATIVE AND BEYOND 

W. DE MELO AND S. VAN STRIEN 

Most of the important results in the study of the dynamics of smooth 
interval maps ƒ : [0,1] —• [0,1] assume the condition that S f < 0 where S f is 
the Schwarzian derivative of ƒ : 

This condition, although very powerful, has the disadvantage of being too 
restrictive and, even worse, it is not invariant under C°° change of coordinates. 
More precisely, there exists a C°° diffeomorphism <p : [0,1] —• [0,1] such that 
<pf<p~x does not have negative Schwarzian derivative. 

In this announcement we will present a technique which enables one to 
replace these conditions by smoothness conditions: we assume that ƒ is C3 

and that ƒ is nonflat at the critical points (i.e. ƒ is C°° near the critical points 
and at each critical point one of the derivatives is nonzero). We will illustrate 
this technique by showing the analogue, for maps ƒ : [0,1] -+ [0,1] with one 
critical point, of the result of Denjoy done for C2 circle-diffeomorphisms. 

More precisely, Denjoy showed that a C2 diffeomorphism ƒ : S1 —• S1 can­
not have any wandering interval L c S 1 . Here, we say that L is a wandering 
interval if L, f{L), / 2 ( L ) , . . . are mutually disjoint and no point x € L is 
asymptotic to a periodic orbit. From this it follows that if ƒ is a C2 dif­
feomorphism, then either ƒ has a periodic orbit or it is conjugate to a rigid 
rotation. We say that ƒ : [0,1] —• [0,1] is in class A if ƒ is a C3 map with only 
one critical point and ƒ is nonflat at its critical point. 

THEOREM. Let ƒ: [0,1] —• [0,1] be in class A. Then f has no wandering 
intervals. 

COROLLARY. Every ƒ in A is semiconjugate to a map from the quadratic 
family fx : [0,1] —• [0,1] defined by fx{x) = Ax(l - x). This semiconjugacy 
only collapses the basin of attraction of the periodic orbits which do not attract 
the critical point. 

REMARK 1. The Schwarzian derivative was introduced in one-dimensional 
dynamics by D. Singer [S]. Guckenheimer proved the nonexistence of wander­
ing intervals for maps in A under the assumption that S f < 0 [G]. 

REMARK 2. In general a map ƒ in A can have several attracting periodic 
orbits, whereas if fx has an attracting periodic point then it attracts the 
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critical point | . It follows that one cannot hope to get a conjugacy between 
ƒ and /A. 

REMARK 3. We expect to be able to prove that there is a bound for the 
period of the attracting periodic orbits of each map ƒ in A. This would imply 
that the semiconjugacy only collapses a finite number of intervals and their 
backward orbits. 

SKETCH OF THE PROOF. We consider two cross-ratios. Let J,T C [0,1] 
be open intervals such that Clos(T) - J has two connected components L and 
R. We define 

c<r-J>-iLuTufl|
 Md D™Jmwv 

where \J\ denotes the length of the interval J. If g: [0,1] —• [0,1] is monotone 
on T we define the operators 

If g has negative Schwarzian derivative we can see that A(g,T, J) > 1 and 
B(g,T, J) > 1. In the general case we prove the following: 

THEOREM 1. Let ƒ : [0,1] —• [0,1] be a C°° map whose critical points are 
nonflat. There exist 6 > 0 and j ^ > e > 0 such that ifTDJ are open inter­
vals satisfying: (i) fm is a diffeomorphism on Clos(T); (ii) Y^kLo \fk(J)\ < ^ 
(iii) \L\ \R\ < e\J\2 then 

A(r,T,J)<l-W. 

COROLLARY. Under the conditions of Theorem 1 we have 

ö^pM<^,r(,»„r(r„. 
THEOREM 2. Let ƒ : [0,1] - • [0,1] be a C°° map whose critical points are 

nonflat There exists a constant C\ > 0 such that ifTDJ are intervals such 
that (i) fm is a diffeomorphism on Clos(T); (ii) £ J 1 0 | /

m(T) | 2 = S < 3, 
then 

LogB(/m,T,J)>-d5. 

THEOREM 3. Let ƒ : [0,1] —• [0,1] be a C°° map whose critical points are 
nonflat Let C\ be as in Theorem 2. IfT= [a,&] C [0,1] is such that fm is a 
diffeomorphism on T and YlT=o l/*(T)l = 6 < x then 

\Dr(x)\ > (EM-CiStflDr (a)| 

or 
\Dfm(x)\ > (Exp(-CiS)f\Dr(b)\ 

or both. 

Suppose, by contradiction, that ƒ has a wandering interval J. By replacing 
J by some iterate we may assume that Yll^Lo I/*(^)l < ^ aiï^ /n(Clos(J)) 
does not contain the critical point c for every n. By the theorem of Schwartz 
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[CE, pp. I l l ] , the forward iterates of J must accumulate at the critical point 
c. Hence we may define a sequence of integers k(n) by A;(0) = 0 and k(n) = 
m i n { * ; / ^ - ^ ( J ) D ( / f c ( B " 1 ) ( J ) > ( /* ( B ' 1 ) W) , >} ' Here> f o r ** interval T 
which does not contain the critical point, V denotes the interval f"1(f(T))-T 
and (T,T') is the smallest interval containing T U T ' . Let Vn = {x;fn{x) G 
int((x, x')) and fl(x) $L (X, X') for i < n}. As in [G], the image of the boundary 
points of each connected component of Vn are fixed points of fn. Furthermore, 
the first n — 1 iterates of such a connected component are disjoint intervals. 
Using these facts for the connected component of Vfc(n+i)_fc(n) containing 
fk(n\j), and Theorem 3, we get that there is a constant e > 0 independent 
of n such that 

| / f c ( n + 1 ) ( J ) | > e | / f c ^ ( J ) | . 

Let Kn be the largest interval containing J on which fn is monotone. Since 
J is a wandering interval we have that Kn — J = Ln U Rn, where Rn and Ln 

are nonempty intervals whose lengths go to zero as n goes to infinity. As in 
[G], we get that fk{n)(Kk{n)) contains either fk(n~l){J) or (fk^n'^{J))f and 
it contains also either / f c(n + 1)(J) or {fk^n+l\j))'. Hence, by interchanging 
Lfç(n) with Rk(n) if necessary, we get 

| /* ( w>(L*(„ )) |>a| /*<n-1 )(J) | 

and 
\fkM(Rk(n))\ > a | / ^ + 1 ) ( J ) | > «*|/*<n>(J)|, 

where a = inf \Df{x)\/\Df{x')\. Since |/ fc(n)(^)l - • 0 as n - • oo we may 
choose a subsequence n(i) -» oo such that |/*(nW)(J)| > |/*(n(*_1))(J)|. 
From the corollary of Theorem 1 we get 

| / f c ( n ( i ) )(^(n(i)))ll/ f c ( n ( i ) )(^(n(i)))l 
\Lk(n(i))\\Rk(n(i))\ 

i o 

- j ^ l / f c ( n W ) ( J ) l {(l / f c ( n ( , ) )(^(nW))l + \fkMi»(J)\ 

+ | / f c ( " W ) ( % „ W ) ) | } . 

By shrinking K„(i) we get that 

|/*(ww>(£?)||/*(nW>(ig)| | / f c ( w W )(&?)| | /* ( w W )(fl?)| 

|£fc(»<i))ll*k(»«))l " I^.WI 

< r ^ | / * ( n ( i ) ) ( ^ ) l {|/fc(n(i))(i,*)l + | / f c ( n ( i ) ) (J ) | + \fk{n{i))(R*)\} 

for every tf? = L? U J U #? C Kn ( i ) . Choose L* and i?; so that 

|/*<»«)) (£•) | = min{|/ f c(nW)(J)|,a|/ f c(n( i-1»(J)|} 

and 
|/*(n(0)(jj*)| = min{|/*<B«>(J)|,ea|/*<n<'"»(J)|}. 
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Then 

and 

|/*W0)(L?)M/*W0)(ig)| < 3 i L | / * ( n ( 0 ) ( J ) | 2 j 

|ifc(n(f))ll^*(n(t))| \J\2 

| f * ( n ( t ) ) ( j \ \ 

i ^ U L = max(l,M-) 

\fk(n(i))(j\\ 

< 3T-^î2-max(l, (ea) 1 )max( l ,a 1 ) . 

because |/* r(n( i-1))(J)| > |/*(nW)(j)|. Hence 

— ^ — < 3 — 

l^(n(t))||^A:(n(i))l I^P 
This is a contradiction because \Lk^n^ | and |.Rfc(n(i)) | go to zero as n(i) —• oo. 
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