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Polynomial Line Outage Distribution Factors for
Estimating Expected Congestion and Security

Jochen Lorenz Cremer , Member, IEEE

Abstract—Extreme weather events and simultaneous k faults
pose significant challenges to the security of the power system,
leading to sudden line congestion. Conventionally, Line Outage
Distribution Factors (LODFs) are used to compute post-fault line
flows. However, as k increases, the complexity and number of re-
quired matrix inversions make these computations impractical for
large systems. This paper introduces a polynomial approximation
for LODFs, a method that efficiently combines and multiplies the
matrices corresponding to single-line faults using Taylor series
expansion. This method is faster than performing matrix inversions
for each fault scenario. Moreover, we apply polynomial LODFs to
compute expected line flows and enhance probabilistic security,
reducing computational demands by decomposing N-k faults into
repeating basis functions. Case studies on 118-, 300-, 1354- and
2328-bus systems demonstrate the accuracy and computational
superiority of polynomial LODFs in assessing expected congestion
and security. These findings are a first step towards managing the
reliability and efficiency of power systems in the face of increasing
extreme weather events.

Index Terms—Congestion management, line outage distribution
factors, power system operation, Taylor series.

I. INTRODUCTION

THE electricity network transports more renewable energy
and increasingly operates at physical limitations, also due

to extreme weather hazards [1]. These severe weather hazards
may cause more frequent failures of multiple equipment simul-
taneously or cascading failures [2], [3]. Operators consider sel-
dom multiple failures in operational planning leading to several
(partial) power blackouts in the last decades [4]. Currently, the
N-1 criterion considers the secure operation when a maximum
of one equipment fails at a time. Although the likelihood of other
failures and N-k equipment failures can be modelled [5], [6] and
inform system-design [7], assessing the impact on the grid of
all possible failure combinations during planning and operation
is computationally challenging and may trigger instabilities
not assessed. Planning with failure-induced congestion [8] and
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considering the risks of failures [9], [10] shows benefits [11] but
requires new computational methods to handle the combinatorial
complexity of failures triggered by multiple extreme events.

Power Transfer Distribution Factors (PTDF) and Line Outage
Distribution Factors (LODF) are used for assessment, control,
market, operational [12], and expansion planning [13]. PTDFs
compute the power distribution on transmission lines due to
real power transfers between two regions and, for example,
can determine transfer limits for energy markets [14]. When
a line fails, the power is rerouted over the altered network
topology. The PTDFs can compute this rerouting by inverting
the large susceptance matrix considering the fault. The Sherman-
Morrison-Woodbury formula reduced the dimension of the in-
verted matrix for low-rank alternations of the PTDFs, leading
to speedups when inverting [15]. The LODFs compute the real
power distribution over the network in response to multiple line
outages (N-k with k > 1) [16], and recently were modified to
consider bus voltages [17]. However, it remains challenging to
compute system properties for many possible faults, in a grid
with N assets, where multiple simultaneous faults k occur, as
these methods require individual computational steps for each
line fault combination.

Two types of approaches address this computational chal-
lenge, either by reducing the number of contingency scenarios or
by speeding up individual scenarios. The first type of approach
reduces the large number of contingency scenarios, based on
electrical distance [18], identifying high-risk contingencies [19],
[20], contingency ranking [21], probabilistic assessments [22],
machine learning [23], [24] or using motifs for cascading fail-
ures [25]. The limitation of the first type of approach is that some
contingency (scenarios) may be missed. [18] identifies vulner-
able N − 3 fault combinations using the electrical distance to
avoid solving power flows. However, this approach may miss
weather-induced multiple faults as these don’t necessarily corre-
late with electrical distance, and the approach does not consider
all fault combinations. [19] maintains a high-risk contingency
list where the total number of all possible contingencies is lim-
ited to a number linearly proportional to the size of the system,
and not all risks can be considered. [20] searches for the worst
N-k contingencies in a contingency list by incrementally running
simulations in the time domain on the most stressed equipment.
Approaches that identify N-k contingencies using a linear search
type may miss potentially dangerous combinations of contingen-
cies and are not very suitable when the expectation or risk-based
assessment of all N-k contingencies is of interest, as these would
require evaluating the impact of all combinations beyond those in
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the search. [21] identifies the worst-case contingency out of N-k
contingencies based on the risk and the load loss, and recursively
ranks the worst contingencies and assesses their severity (load
loss). However, identifying all severities requires solving one
optimization problem per contingency scenario, which is a large
number. [22] proposes a probabilistic risk-based assessment of
the contingencies; however, the severity must be individually
calculated for each contingency scenario and, therefore, does
not scale well for exploding combinations of N-k faults. [23]
ranks contingencies based on probabilistic scores from machine-
learned classifiers considering only N-1 contingencies, however,
does not also scale well to N-k contingencies. [24] reduces the
total number of cascading contingencies and works well for
locally propagating cascading failures as a graph convolutional
neural network is used, however, the approach does not consider
all possible weather-induced N-k contingencies. To include a
more exhaustive list of N-k contingencies, [25] identifies mo-
tifs capturing the likelihood of a combination of N-k failures
improving the list. However, reducing N-k failures to a subset
of contingencies through the above-mentioned approaches does
not arguably result in the highest accurate estimation when used
to compute the expected congestion and expected security as the
full set of N-k contingencies would need to be considered and
not a reduced ’worst-case’ subset.

The second type of approach speeds up the assessment of
the impact (severity) of the contingencies so that more con-
tingencies can be assessed with a given computational budget.
The foundation for many approaches that perform impact as-
sessment of static security are the LODFs relying on matrix
inversions. The Sherman-Morrision Woodbury formula [26] can
efficiently update the LODFs when k is low [27], and even
faster for k = 2 [28]. However, [27] and [28] may not be most
suitable when k is greater than 2 when operating a resilient grid.
Considering the network cycles in PTDFs and LODFs showed
numerical speedups for small cycles [29]. However, [29] was
not specifically developed to consider N-k contingencies, and
power systems may have many loops. Despite these speedups,
many approaches rely on computing the severity (impact) of the
combination of the contingencies with the support of the LODF
matrices for each N-k contingency which is limiting. This limit
means that considering a large number of N-k contingencies for
operational planning is currently not yet possible. For example,
risk analysis, security assessment or operational constraint pro-
gramming can not consider risks of ’all’ N-k faults yet and most
of the time operates on a subset of selected contingency scenarios
as the computational time of considering the combination of
contingencies is too large.

As pointed out earlier, the required computational time relates
to the matrix inversion of the LODFs for each combination.
Matrix inversion iteratively finds a matrix through an algorithm
such as Gaussian elimination; however, iterations render the
approach unsuitable for several uses. For example, computing
risks may require Riemann integrals over a function defining the
severity of faults. However, the differentiability of an algorithm
that inverts matrices is not specified; hence, no integrals could
be easily computed. Additionally, the computation of statistical
moments or applying Chebyshev’s inequality (as in [30]) and

using Bernoulli distributions of the faults for large k would
require a function to measure the fault’s impacts instead of
an iterative or recursive function. [31] consider distributionally
robust reliability assessment considering N-k security. Their
work and the computing of preventive and corrective control ac-
tions often rely on constraint programming. However, constraint
programming can not efficiently consider N-k based LODFs to
include security constraints [21], [32], as these programs would
need an inverted matrix for each fault and a large number of
constraints slows these computations.

This paper proposes polynomial LODFs for faults that are far
from each other. The proposed method does not rely on inverting
matrices for the combination of faults but adds and multiplies
matrices for the single N-1 line faults (such as using them as
basis functions). The proposed polynomial LODFs approach the
Sherman-Morrision-Woodbury update with two Taylor series
approximations and linearly combine multiple outages. This pa-
per then develops use cases to compute expected congestion and
security assessment. There, the proposed decomposition keeps
the computations constant with k. The approach decomposes
large summation and multiplication into basis terms appearing
multiple times, saving significant computational time. The two
contributions are

1) polynomial LODFs for N-k faults that add and multiply
N-1 matrices. These LODFs show high accuracy in faults
far away from each other.

2) algorithm to compute expected line flows. The computa-
tions do not grow with the number of simultaneous faults.

Case studies use the 118-, 300-, 1354- and 2328-bus systems.
The study investigates the approximation error of the proposed
polynomial LODF compared to the Sherman-Morrision Wood-
bury LODF baseline for multiple line fault combinations k. The
study also analyzes the convergence of the Taylor series and
how to select the number of Taylor components. The study then
assesses the impact of fault proximity on the approximation error
and convergence. The study finally investigates the advantages
of computing expected congestion and security assessment.
Sec. II presents LODFs, and Sec. III the proposed polynomial
LODFs. Sec. IV develops the polynomial LODFs for a use
case, computing expected congestion. Sec. V studies, and VI
concludes.

II. LINE OUTAGE DISTRIBUTION FACTORS

The power network has a set of buses ΩB and lines ΩL. The
cardinalities |ΩB | and |ΩL| are the number of buses and lines.
A ∈ {−1, 0, 1}|ΩL|×|ΩB | is the branch incidence matrix where
1 and −1 represent the ‘from bus’ and ‘to bus’ of a connecting
line, respectively. Zero represents that a line does not connect
to a bus. As in [33], we start by building the susceptance matrix
B ∈ R

|ΩB |×|ΩB |. Line resistances are neglected. Hence,B’s off-
diagonal and diagonal elements of B are only computed with
the line reactances χl for the lines l ∈ ΩL by

Bb̃,b =
∑
l∈ΩL

Al,bAl,b̃

1

χl
∀b, b̃ ∈ ΩB (1a)
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Bb,b = −
∑
l∈ΩL

Al,bAl,b
1

χl
∀b ∈ ΩB (1b)

The row and column are set 0 at the slack bus b̂

Bb̂,b = 0 ∀b ∈ ΩB (2a)

Bb,b̂ = 0 ∀b ∈ ΩB (2b)

We then compute the Moore-Penrose pseudoinverse matrixX =
B−1. The power transfer distribution factors are

PTDF = Bbr ×A×X (3)

where the diagonal matrix Bbr ∈ R
|ΩL|×|ΩL| has the inverse line

reactance values 1
χl

in the diagonal entries, and all other entries
are zero. B and Bbr are two different matrices.

A. Challenge of Computing N-k Line Outage Power
Distribution

The matrix B̃ = B +D describes the susceptance matrix of
the power network after a perturbation D. The perturbed matrix
D ∈ R

|ΩB |×|ΩB | can show the change in the susceptance matrix
when lines are in an outage. The matrix D has the elements

Db̃,b =
∑
l∈ΩL

−ylAl,bAl,b̃

1

χl
∀b, b̃ ∈ ΩB (4a)

Db,b = −
∑
l∈ΩL

−ylAl,b
1

χl
∀b, b̃ ∈ ΩB (4b)

Db̂,b = 0, Db,b̂ = 0 ∀b ∈ ΩB (4c)

where yl = {0, 1} shows the lines in outage. yl = 0 means the
line is intact and yl = 1 means that the line is out of power.
The set of lines simultaneously in an outage is ΩL̂ = {l | yl =
1 ∧ l ∈ ΩL} and the total number of lines in the outage is k =∑

l∈ΩL yl = |ΩL̂|.
Challenging is to compute

B̃−1 = (B +D)−1 (5)

for all possible combinations of yl. Computing these matrices
for k line fault combinations requires

M(k) =
∑

k̂=1...k

|ΩL|!
k̂!(|ΩL| − k̂)!

(6)

matrix inversions. These computations are in big-O notation

O( |Ω
L|k
k! ) and become a burden for memory and computational

times for large systems. This becomes challenging when op-
erators aim to study many fault scenarios simultaneously, for
example, to study the expected impact of large extreme events
that could possibly lead to many N-k fault combinations. Current
methods would require assessing many power flows to compute
the risks and expectations of the power flows post-fault scenar-
ios. Although a single metric, like risks, expected congestion
or expected security is desired, the assessment of many M(k)
possible scenarios is needed which represents a limitation of
current methodologies.

B. Line Outage Distribution Factors

LODFs use the Woodbury matrix identity [26] for (5). This
identity

(B + UIV )−1 = B−1 −B−1U
(
I + V B−1U

)−1
V B−1 (7)

updates the inverse of the original matrix B changed by
D = UIV where I is the identity matrix with dimensions
|ΩB | × |ΩB |. We define the matrix

U = I +
∑
l∈ΩL̂

Ul (8a)

Ul = −ebtl e
T
btl

(8b)

where btl is the ‘to’ bus, bfl is the ’from’ bus of the line l. All

lines in outages are ΩL̂, hence |ΩL̂| = k. ei is the standard basis
vector, which means that the i th element is one, and all other
elements are zero. The matrix V is

V =
∑
l∈ΩL̂

Vl (9a)

Vl = − 1

χl
ebfl

eT
bfl

(9b)

The computational advantage of performing this Woodbury
update and inverting (I + V B−1U)−1 over directly inverting
(B + UIV )−1 is when (I + V B−1U) has significantly fewer
dimensions than (B + UIV ), in other words, when the update
is of low-rank. Then, the N-k LODF matrix is

LODFN−k = Bbr ×A× (B + UIV )−1AT (10)

that exactly contains the PTDF (3), is no approximation and
is exact. The LODFs (10) using Woodbury matrix update (7)
compute faster than PTDFs (3) which use the Moore-Penrose
pseudoinverse of the full matrix X . However, a large number of
matrix inversions are needed (M(k)) as (6) shows.

III. POLYNOMIAL APPROXIMATION OF N-k LODFS

The following derives the polynomial approximation

B̃−1 ≈ h
(
yl, g(Vl, Ul)

−1
)

(11)

assuming that B̃−1 is non-singular. g(Vl, Ul)
−1 inverts the func-

tion g based on the basis matrices Ul and Vl for each line
∀ l ∈ ΩL. Note, g considers Ul and Vl of only one line l as input
at a time and no combinations of lines. Therefore, no matrices
corresponding to the combination of faults need inversion, which
is the idea of this work. h sums and multiplies the inverted matri-
ces (where yl = 1) to consider fault combinations. The objective
of this work is to derive g and h so that the post-fault flows
are superposing the power flows from multiple line failures.
This proposed polynomial approximation requires only |ΩL|
matrix inversions of individual lines, and avoids the M matrix
inversions of all possible fault combinations, hence the number
of inversions is largely reduced (|ΩL| � M ).
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A. Approximating N-k LODFs Through Additives

This section derives the approximation(
I + V B−1U

)−1 ≈
∑
l∈ΩL̂

(
I + VlB

−1U
)−1 − (k − 1)I + ε

(12)
for the part that needs to be inverted in (7). ε considers all higher-
order terms. We write

(
I + V B−1U

)−1
=

⎛
⎝I +

∑
l∈ΩL̂

VlB
−1U

⎞
⎠

−1

(13)

and define

Gl := I + VlB
−1U (14a)

Hl := VlB
−1U = VlB

−1

⎛
⎝I +

∑
l̂∈ΩL̂

Ul̂

⎞
⎠ (14b)

Hl :=
∑

l̂∈ΩL̂\l
Hl̂

=
∑

l̂∈ΩL̂\l
Vl̂B

−1I +
∑

l̂∈ΩL̂\l

∑
l̄∈ΩL̂

Vl̂B
−1Ul̄ (14c)

where Gl = I +Hl. With (13) and (14), we obtain

(
I + V B−1U

)−1
=

⎛
⎝Gl +

∑
l̂∈ΩL̂\l

Hl̂

⎞
⎠

−1

(15)

We develop the Taylor series (the literature references Neu-
mann series [34] when approximating linear matrix operation
with the analogous series) around Gl for any line l ∈ ΩL̂. Hl

is considered a perturbation of Gl. The inverse of the perturbed
matrix can be expressed as the convergent series(

I + V B−1U
)−1

≈ G−1
l −G−1

l HlG
−1
l +

(
G−1

l Hl

)2
G−1

l − . . . (16)

iff ||G−1
l Hl|| < 1. This application of series expansion for ma-

trix inversion with perturbations can be found in linear algebra
and numerical analysis literature, for example in [35, chapter 9])
or matrix perturbation theory in [36, chapter III, section 2]. The
error of this series has bounds. When truncating the series after
the t1 terms, the error is

Et1 = (Gl +Hl)
−1

−
(
G−1

l − · · ·+ (−1)t1
(
G−1

l Hl

)t1 G−1
l

)
(17)

and the error bound is

||Et1 || ≤
||G−1

l || × ||(G−1
l Hl)

t1+1||
1− ||G−1

l Hl||
(18)

where (G−1
l Hl)

t1+1 is the next term in the series. Vl and Gl

correspond to the outage of the line l changing the power from
the bus bfl to all other buses represented by one row. Intuitively,
this series around Gl may converge faster at the bfl th row than
in the other rows as Taylor approximates locally. Therefore, one

could linearly combine the Taylor series for all lines in outage
ΩL̂ by using (ebfl

eT
bfl
) in

(
I + V B−1U

)−1 ≈
∑
l∈ΩL̂

(
G−1

l − (ebfl
eT
bfl
)G−1

l HlG
−1
l

)

− (k − 1)I (19)

with the first two components (t1 = 2) of the Taylor series.

B. Deriving First Order Impact

To compute the inverse G−1
l , the ’first order impact’ of the

line outage l, we use (8a) and the distributive property

G−1
l = (I + VlB

−1U)−1 =

⎛
⎝I + VlB

−1

⎛
⎝I+

∑
l∈ΩL̂

Ul

⎞
⎠
⎞
⎠

−1

=

⎛
⎝I + VlB

−1I + VlB
−1Ul +

∑
l̂∈ΩL̂\l

VlB
−1Ul̂

⎞
⎠

−1

(20)

We define

El := I + VlB
−1I + VlB

−1Ul (21a)

Fl :=
∑

l̂∈ΩL̂\l
VlB

−1Ul̂ (21b)

and expand with Taylor around El with t2 components, where
we consider Fl a perturbation on El, hence

G−1
l ≈ E−1

l − E−1
l FlE

−1
l + E−1

l FlE
−1
l FlE

−1
l . . . (22)

which converges iff ||E−1
l Fl|| < 1. E−1

l is the Moore-Penrose
pseudoinverse. Error bounds can be derived in a similar way as
(17)–(18).

Exemplary, we write the approximation (with Taylor compo-
nents t1 = 2 and t2 = 1) as follows

B̃−1 ≈ B−1 −
∑
l̂∈ΩL̂

∑
l∈ΩL̂

B−1IE−1
l Vl̂B

−1

−
∑
ľ∈ΩL̂

∑
l̂∈ΩL̂

∑
l∈ΩL̂

B−1UľE
−1
l Vl̂B

−1

+
∑
l̄∈ΩL̂

∑
l∈ΩL̂

∑
l̂∈ΩL̂\l

B−1I
(
ebfl

eT
bfl

)

× E−1
l Vl̂B

−1IE−1
l Vl̄B

−1

+
∑
l̃∈ΩL̂

∑
l∈ΩL̂

∑
l̂∈ΩL̂\l

∑
l̄∈ΩL̂

B−1I
(
ebfl

eT
bfl

)

× E−1
l Vl̂B

−1Ul̄E
−1
l Vl̃B

−1

+
∑
ľ∈ΩL̂

∑
l̄∈ΩL̂

∑
l∈ΩL̂

∑
l̂∈ΩL̂\l

B−1Uľ

(
ebfl

eT
bfl

)

× E−1
l Vl̂B

−1IE−1
l Vl̄B

−1

+
∑
ľ∈ΩL̂

∑
l̃∈ΩL̂

∑
l∈ΩL̂

∑
l̂∈ΩL̂\l

∑
l̄∈ΩL̂

B−1Uľ

(
ebfl

eT
bfl

)
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× E−1
l Vl̂B

−1Ul̄E
−1
l Vl̃B

−1

+
∑
l∈ΩL̂

B−1I(k − 1)IVlB
−1

+
∑
ľ∈ΩL̂

∑
l∈ΩL̂

B−1Uľ(k − 1)IVlB
−1 (23)

This equation approximates (7) by substituting (I + V B−1U)
with (19) truncating after t1 = 2 components, and subsequently
substituting G−1

l with (22) truncating after the first component
t2 = 1. Then, use the distributive property to multiply all ob-
tained terms with V B−1. Finally, after reorganising the terms,
we get (23). Evaluating (23) requires to pre-compute E−1

l , Vl

and Ul for all lines ΩL.
Note that the proposed approximation of the N-k LODFs in

(7), (19), (22) requires only k = |ΩL̂| matrix inversions and
k � M . The state-of-the-art approaches require M inversions
of N-k matrices as shown in (6). In this work, the only matrices
to (pseudo-) invert are El of the single outages l ∈ ΩL̂, which
was the objective to derive in this section. The same (pseudo-)
inverted matrices can be used for another fault combination.
However, our work requires several multiplications and addi-
tions and may not be faster than M inversions. The calculations
also increase with the number of Taylor series components t that
approximate LODF t

N−k in (16) and (22).

IV. EXPECTED CONGESTION AND SECURITY

A. Security for k Faults

The equations

f t = LODF t
N−k × f0 (24a)

f t
l = 0 ∀l ∈ ΩL̂ (24b)

compute the post-fault line flows f t given the pre-fault line
flows f0 ∈ R

|ΩL| for the lines in fault. The physical limits on
the transmission lines are

−fB
l ≤ f t

l ≤ fB
l l ∈ ΩL (25)

where fB
l is the limit of the power flow over line l. This

paper computes only line overloads and does not provide a
methodology to compute voltages. The system is here consid-
ered statically secure for the N-k fault if fl are constrained by
(25) for all lines ∀l ∈ ΩL.

B. Expected Congestion At Faults

The proposed polynomial estimates the expected line flow
considering the N-k grid given outage probabilities. Such prob-
abilities may be estimated from historical observations and
line dependencies [37]. We consider P(yl = 1) as the marginal
probability that the line l is in an outage considering the Bernoulli
distribution [38], e.g.

P(yl) =

{
r if yl = 1

1− r if yl = 0
(26)

where r is the probability that the line is in an outage. The
probability of two outages occurring can be expressed with the
Bayes’rule as

P(yl = 1 ∩ yl̂ = 1) = P(yl̂ = 1)P(yl = 1|yl̂ = 1) (27)

The chain rule gives the joint probability distribution

P

⎛
⎝ ⋂

l∈ΩL̂

yl = 1

⎞
⎠ =

∏
l∈ΩL̂

P

⎛
⎝yl = 1

∣∣∣∣∣∣
⋂

l̂∈ΩL̂\l
yl̂ = 1

⎞
⎠ (28)

through the continuous application of Bayes’rule. Assuming
independent line faults, then

φΩL̂ := P

⎛
⎝ ⋂

l∈ΩL̂

yl = 1

⎞
⎠ =

∏
l∈ΩL̂

P(yl = 1), (29)

where |ΩL̂| = k correspond to k faults at the same time. ΩO are
the possible lines where k outages may occur, where |ΩO| ≤
|ΩL|. ΩL̂

c ⊂ ΩO is one k-fault sample (realisation) c, where c =
1, 2, . . .M(k) with M(k) from (6). Using (3)–(5) and (24), we
can write the expected line flows as

E[fl] = Bbr AE[B̃−1]AT f0 ∀l ∈ ΩL\ΩO (30)

This expectation considers only the lines not considered as
possible outage (ΩL\ΩO) as the (24b) is not considered. Con-
sidering k̂ = 1, 2, . . . k fault combinations and assuming the
independence of faults, we can write this expectation in the
state-of-the-art approach as

E[fl] =
∑

c=1,2,...M(k)

φΩL̂
c
Bbr AB̃−1

c AT f0 ∀l ∈ ΩL\ΩO

(31)

where B̃−1
c considers the lines in fault ΩL̂

c that has k̂ simul-
taneous faults (|ΩL̂

c | = k̂). As pointed out earlier in (6), using
the standard LODFs to compute B̃−1

c requires many (M(k))
inversions of the matrices (B̃−1

c ).

C. Proposed Decomposed Probabilistic Assessment

We consider t1 = 1, t2 = 1 and ΩL̂
c , and derive

B̃−1
c ≈ B−1 + (k̂ − 1)

∑
l∈ΩL̂

c

B−1IVlB
−1

−
∑
l̂∈ΩL̂

c

∑
l∈ΩL̂

c

(
B−1IE−1

l Vl̂B
−1

−(k̂ − 1)B−1Ul̂IVlB
−1
)

−
∑
ľ∈ΩL̂

c

∑
l̂∈ΩL̂

c

∑
l∈ΩL̂

c

B−1UľE
−1
l Vl̂B

−1 (32)

in a similar way as (23). The right-hand side of (32) has terms that
simultaneously involve 1, 2 or 3 lines from the lines in outage
ΩL̂

c . These terms are computed offline

P1,l := B−1IVlB
−1 (33a)



CREMER: POLYNOMIAL LINE OUTAGE DISTRIBUTION FACTORS FOR ESTIMATING EXPECTED CONGESTION AND SECURITY 2537

Fig. 1. Offline (a) and near-realtime (b) workflows of the proposed probabilis-
tic security assessment.

P̂2,l,l̂ := B−1IE−1
l Vl̂B

−1 (33b)

P2,l̂,l := B−1Ul̂IVlB
−1 (33c)

P3,ľ,l,l̂ := B−1UľE
−1
l Vl̂B

−1 (33d)

involving 1, 2, 2, or 3 lines in outage, respectively. These terms
are computed well ahead of operation as shown in the offline
workflow Fig. 1(a).

When assessing security for many combinations of k̂ faults,
the terms involving specific motifs of ǩ = 1, 2, or 3 lines in an
outage appear

Nǩ,k̂ =
(|ΩO| − ǩ)!

(k̂ − ǩ)!(|ΩO| − k̂)!
(34)

times. For example, a sample of ǩ = 2 distinct lines could be in
outage with another line (k̂ = 3 outage) or with two completely
different lines (k̂ = 4 outage). Each ǩ = 1 line motifs with the
term P1,l appears N1,k̂ times in all k̂-fault combinations of the

lines ΩO. For example, a single line outage appears N1,2 =

|ΩO| − 1 times in all possible k̂ = 2 faults. The ǩ = 2 line motifs
of lines l and l̂ with the terms P2,l,l̂ and P̂2,l,l̂ appear N2,k̂ times

and the ǩ = 3 line motifs with term P3,ľ,l,l̂ appears N3,k̂ times.
The proposed probabilistic security assessment exploits this

repetitive appearance and decomposes the probabilistic assess-
ment in motif-specific basis terms. The near realtime workflow
(as shown in Fig. 1(b)), computes the expected LODFs with

E

[
B̃−1

]
≈ B−1 +

∑
l∈ΩO

φ1,lP1,l

+
∑
l̂∈ΩO

∑
l∈ΩO

φ2,l,l̂P2,l̂,l,−φ̂2,l,l̂P̂2,l,l̂

−
∑
ľ∈ΩO

∑
l̂∈ΩO

∑
l∈ΩO

φ3,l,l̂,ľP3,ľ,l,l̂ (35)

considering the lines ΩO. Note that this summation considers
the individual lines ΩO and not all fault-combinations as in the
state-of-the-art (31) that sums all combinations of faults M(k),
and note that |ΩO| � M(k). φ1,l, φ2,l,l̂, φ̂2,l,l̂ and φ3,l,l̂,ľ are
weights considering the probability that the motifs appear in k
fault combinations, as illustrated in Fig. 2. The weights are a
function of the probabilities Pl and the frequency with which

Fig. 2. A motif of two lines l and l̂ may be part of multiple different k-fault

combinations. This motif may appear with a probability of PlPl̂PN2,3 in an
k = 3 outage.

the motifs appear in the combination of faults (N1,k, N2,k, and
N3,k). We compute the weights as

φ1,l = Pl

⎛
⎝1 +

∑
k̂=2,...k

P
k̂−1

(k̂ − 1)N1,k̂

⎞
⎠ (36)

φ2,l,l̂ =

⎧⎨
⎩PlPl̂

(
1 +

∑
k̂=3,...k P

k̂−2
(k̂ − 1)N2,k̂

)
if l 
= l̂

Pl if l = l̂

(37)

φ̂2,l,l̂ =

⎧⎨
⎩PlPl̂

(
1 +

∑
k̂=3,...k P

k̂−2
N2,k̂

)
if l 
= l̂

Pl if l = l̂
(38)

and

φ3,l,l̂,ľ =

⎧⎪⎪⎨
⎪⎪⎩
PlPl̂Pľ(1 +

∑
k̂=4,...k P

k̂−3
N3,k̂) if l 
= l̂

Pľφ2,l,l̂ if l = ľ ∨ l̂ = ľ

Pl if l = ľ = l̂

(39)
assuming the average outage probability

P =
1

|ΩO|
∑
l∈ΩO

P(yl = 1) (40)

Subsequently, we can compute the expected line loading (30) us-
ing the expected LODFs from (35). Assessing the physical limits
with (25) for the expected line flows provides the probability of
whether the system is secure.

The primary benefit of this proposed approximation to prob-
abilistic security assessment is that the computation of (35) has
the complexity O(|ΩO|3) (note the three nested sums in (35))
and, therefore, is independent of k. k only appears in the scalar
weights computed in (36)–(39). An additional advantage is that
these weights are easily re-computed when the probabilities of
lines Pl change.

V. CASE STUDY

The case study is on the 118-, 300-, 1354- and 2383-bus
systems. The study testsk = {1, 2, . . . , 7} fault combinations on
the IEEE 118-bus system. 10 000 combinations were randomly
sampled for each k fault combination (total 70 000). The Taylor
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series were tested for components t = {1, 2, . . . 10}. The in-
verses of matrices were computed with Moore-Penrose method
with default tolerances in MATLAB and SCIPY. The Dijkstra
method for the shortest paths [39] and the effective Thevenin
impedance [40] quantified the ‘proximity’ of the faults. The pre-
fault power flows f0 were the active [MW] or apparent powers
[MVA], respectively. The AC power flow (using Newton Raph-
son), DC power flow, and the DC Optimal Power Flow (OPF)
computed pre-fault flows (and post-fault flows as baselines).
Samples with post-fault flows that were unreasonably high were
not considered, e.g. more than 200 times higher than the pre-fault
flows; these resulted from islanding, system splits, or nonconver-
gence of the Taylor series. The errors to the baseline AC power
flow were calculated on 1000 fault combinations for each k. The
security was assessed for 1000 load power levels sampled around
±0.25 around the nominal load with DC assumptions. The
samples were drawn from a Kumaraswamy(1.6,2.8) distribution
with a Pearson correlation coefficient of 0.75. The 10 000 fault
samples for each k-fault combination were 10 000× 1000 were
10 million fault samples. In the IEEE 118-bus system, 187
lines were assessed for static security whether they meet line
limits, totalling 10 000× 1000× 187× 7 security assessment
labels for each k fault combination, where k = {1, 2, . . . 7}. An
insecure, ’positive’ sample is when the post-fault line flows are
over the physical limitations, otherwise, the sample is consid-
ered ’negative’. Different metrics quantified the performance of
estimating security with the proposed polynomial LODFs. Two
types of accurate estimations (predictions) can occur, one is the
true positives and the other is the true negatives. The true positive
rate is the accurately predicted positive samples of all true
positive labels. The true negative rate is the accurately predicted
negative samples of all true negative labels. The precision is the
rate of the true positives out of all, predicted, positive labels.
The negative predictive value is the rate of the true negatives
out of all, predicted, negative labels. The probabilistic security
assessment assumed the failure probabilities Pl = 0.001 for all
lines l ∈ ΩO. |ΩO| = {5, 10, 50, 100, 150, 187} different lines
were selected where k = {1, 2, 3, 4, 5} lines out of these ΩO

can possibly fail. The studies were performed on a standard
laptop with i7, four cores CPU 1.80GHz and 16GB RAM. The
AC power flows were run in MATPOWER 8.0 in MATLAB
R2023b. The DC OPF was implemented in the CVXPY 1.3.1
library (with solver SCS 3.2.0) in Python 3.8.16. The graph
metrics were computed using NETWORKX 2.8.4. The linear
algebra was done in MATLAB or with SCIPY 1.11.3.

A. Quantifying Approximation Error

This study investigates the approximation error of the pro-
posed polynomial LODF t

N−k to the conventional LODFs
LODFN−k. The error was assessed by the mean of the element-
wise squared errors

MSE =
1

|ΩB |2
∑
b∈ΩB

∑
b̃∈ΩB

(
Bb,b̃ − B̃−1

b,b̃

)2

(41)

between the proposed polynomial approximation B and the
actual B̃−1 computed with the Woodbury-formula. The trivial

TABLE I
NUMBER OF FAULTS SAMPLES WHERE FAULTS HAVE A COMMON BUS

(ADJOINT FAULTS) OR NOT (DISJOINT FAULTS)

Fig. 3. MSE of all matrix elements between the proposed Taylor-series ap-
proximation with t components and the actual B̃−1 for disjoint faults. The trivial
baseline B−1 is shown as ’base’.

baseline was the original, fully intact B−1 that did not consider
any N-k fault changes in the matrix. The study calculated the
mean of a subset of the 10 000 fault samples for each k fault
combination. The subset considered only disjoint fault combi-
nations, so the fault combinations where each line in the fault
shares no common bus. Table I shows this share of disjoint fault
samples.

Fig. 3 shows that the proposed approximation improves over
the trivial baseline in all cases by around 2-3 orders of magni-
tude. The error increases with increasing k fault combinations.
The error for a smaller number of Taylor components around t =
t1 = t2 = {1, 2, 3, 4} improved with increasing components;
then, the error increased for increasing t > 4 as the Taylor series
did not converge in many samples.

B. Selecting Taylor Series Components

This study guides selecting the components t for the two Tay-
lor series approximations (16) and (22). The selection considers
the error and convergence. The share of the converging Taylor
series was investigated by computing the norms. When the norm
is lower than 1, a series is considered converging; otherwise,
diverging. The share of converging Taylor series was computed
for the 10 000 samples per k faults.

Fig. 4 shows the Taylor series in (16) converges at 90% of
samples for all k-fault combinations. However, the convergence
performance of the approximation in (22) is increasingly poor
for larger k combinations. Above k > 4 fault combinations,
the Taylor series rarely converges. Therefore, a lower number
of components t2 may be preferable in (22) than t1 in (16),
particularly for higher k faults.

Fig. 3 shows an improvement of roughly an order of magni-
tude in MSE when selecting t = 2 over t = 1 in all combinations
of faults k. Therefore, we select t1 = 2 for (16) and t2 = 1
for (22) and test this selection further. For Taylor components
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Fig. 4. Share of converged Taylor series.

Fig. 5. MSE of converged (conv) and non-converged (not conv) Taylor series.
Different Taylor series were studied with varying numbers of components. The
parenthesis shows the number of components (t1, t2) of the two Taylor series,
(16) (22), respectively.

t1 = {1, 2} and t2 = {1, 2}, we calculated MSE using samples
where the two Taylor series converged and did not converge,
respectively. ’converged’ here means that both the two series
inclusively converged, e.g. for k > 4 no sample had all Taylor
series converging as Fig. 4 showed.

Fig. 5 shows the sensitivity of the convergence on the MSE.
The MSE is lower for all k fault combinations when the Taylor
series successfully converges than when the Taylor series does
not converge. The proposed selection of (t1 = 2, t2 = 1) has the
lowest MSE and confirms the validity of this selection for this
case study. The MSE ≤ 10−7 for the samples when the series
did not converge is still several orders of magnitude lower than
the trivial baseline of using B−1 as shown in Fig. 3. This also
demonstrates that the Taylor series (16) (convergence above 90
% as shown in Fig. 4) has a significantly higher impact on MSE
than the second Taylor series (22). The remaining case study
considers these two selected components t1 = 2 and t2 = 1.

C. Post-Fault Line Flows

This study investigates the accuracy of the proposed polyno-
mial LODFs when computing post-fault line flows. 1000 fault
samples for each k = {1, . . . 5} were studied. The proposed
polynomial LODFs compute the post-fault flows with (24) using
the pre-fault apparent power [MVA] obtained from the pre-fault
AC power flow. The mean absolute percentage error

MAPE =
1

|ΩL|
∑
l∈ΩL

∣∣∣∣f t
l − fAC

l

fAC
l

∣∣∣∣ (42)

Fig. 6. Mean absolute percentage error to the apparent AC power flow for
various k-fault combinations.

Fig. 7. Maximum and minimum voltages of the AC PF (post-fault) solution
for various k-fault combinations considering converged cases only.

references the apparent post-fault AC power flow fAC
l (consid-

ered as ground truth). Samples where no ground truth exists, as
the post-fault sample then is assumed not physically feasible
(e.g. when Newton Rapson did not converge). Around 75%
of samples converged. Fig. 6 shows that the proposed polyno-
mial LODFs result in errors similar to a DC approximation of
post-fault power flows for k = {1, 2, 3}. However, the proposed
polynomial LODFs become increasingly inaccurate for higher
k. Additional baselines are the conventional LODF and the AC
post-fault flows considering active power only. These results
show that the polynomial LODFs need to be used with caution
and if so, only below k ≤ 3. Subsequently, we assessed the
voltage errors for AC post-fault power flows using the AC power
flow. Fig. 7 shows the minimal and maximal voltages over all
buses per sample. As the figure shows for the converged samples,
100% of maximal voltages were close at 1.05. The minimal
voltages varied between 0.9 and 1. LODFs (or polynomial
LODFs) do not replace AC post-fault power flows as the latter
provides these insights in the voltages helping to assess voltage
stability.

D. Faults Proximity

This study investigates the impact of the line faults’ proximity
on the MSE of the LODF matrix B, the Taylor-convergence
and the accuracy of the estimated post-fault power flows. The
LODFs distribute more power from the line in an outage to
the neighbouring proximity lines than to the lines ’far away’ in
the network. To avoid cross effects with k, this study first fixed
k = 2 and analysed 10 000 samples; then, this study analysed
all possible fault combinations k = {2, . . . 7} with each 10 000
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Fig. 8. MSE over the minimal distance between the faults.

Fig. 9. Shares of converged Taylor series over the minimal fault distance.

Fig. 10. Mean absolute percentage error to the apparent post-fault AC power
flow for k-faults. Between the faults are different (a) shortest paths and (b)
average effective Thevenin impedances (displayed in 0.05-steps bins).

samples. k and the distance have cross-effects as the more faults
coincide, the shorter their path as Table I shows.

Fig. 8 shows a strong decrease of the MSE in B with the
minimal shortest path between the faults at k = 2 and k =
{2, . . . 7}. Adjoint faults showed an inferior performance. The
MSE improves multiple orders of magnitude with increasing
distance between the faults. As the MSE shows a similar relation
to the proximity in k = 2 and k = {2, . . . 7}, we conclude the
main driver for the inaccuracy is the proximity. Particularly for a
minimal path lower than 3 the proposed polynomial LODF t

N−k

is not recommended. Fig. 9 shows little impact of the minimal
shortest paths on the convergence share. Interestingly, only a
few samples did not converge in the adjoint faults (the shortest
path is zero). However, their MSE is significantly higher than at
longer minimal paths.

Fig. 11. Approximating line flows with polynomial LODFs is fairly accurate
in the IEEE 300-bus system when (a) 3 outages are far away in different regions
(in red), but is inaccurate when (b) 2 outages are close to each other. The line
thickness represents voltage levels.

Fig. 10 shows the impact of the proximity of faults on the
post-fault power flow computations (average for 1000 fault
samples for eachk = {1, . . . 5}). The proposed poly LODFs was
the only approach decreasing in error as the distances between
faults increased. The approach has a lower MAPE than DC
power flow in faults sufficiently far from each other, e.g. ≥ 5
or a Thevenin impedance ≥ 0.2. The conventional Woodbury
LODFs, DC power flow and AC power flow using active power
(for comparison) have lower errors than the proposed approach,
however, are in a similar order of magnitude 10− 20%.

E. Expected Congestion in Large Systems At Extreme Events

This study investigates the performance of the proposed
LODFs on large systems with AC and DC power flows. The
pre-fault power flow is computed. Subsequently, the LODFs are
used on the power flows to compute N-k flows.

Fig. 11 shows an example of how to use (and not use)
the polynomial approach. An appropriate use of the proposed
approach is in cases where the faults are far away from each
other as in Fig. 11(a) resulting in low MAPEs. Fig. 11(b) shows
an k = 2 outages close to each other. This fault scenario led to a
high MAPE at 411% in one connected line. There, the pre-fault
flow was 221MVA and the post-fault ground truth 0.4MVA. As
the Taylor series considered only one component, the difference
from pre to post-fault was too large that the approach accurately
approximated this change.

Fig. 12 simulated wind storms at two different locations of the
power system which may require assessing k = 2 events, then,
the proposed approach can quickly compute the expected line
flows for all possible outage combinations (shown in red in the
figure). This study was repeated for the 118-, 300-, 1354- and
2383-bus systems considering |ΩO| = 20 single line outages and
k = 2 faults. The impact radius of the wind storms was assumed
larger (so they tangengt). The LODFs and polynomial LODFs
were applied to the pre-fault apparent AC power flow. The mean
absolute error

MAE =
1

|ΩL|
∑
l∈ΩL

∣∣E [
f t
l

]− E
[
fAC
l

]∣∣ (43)

of the expected congestion references the expected apparent
post-fault AC power flow fAC

l as ground truth. Table II shows
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Fig. 12. Expected congestion in the IEEE 300-bus system for any k = 2
outages (marked in red) originating from two wind storms. The impact areas
of the wind storms are shown as black-quarter circles.

TABLE II
MAE FOR EXPECTED APPARENT POWER FLOWS [MVA]

TABLE III
N −K SECURITY ASSESSMENT WITH PROPOSED LODFS

the Polynomial LODFs and LODFs have similar errors on the
expected congestion outperforming DC post-fault power flows.

F. N-k Security Assessment

This study investigates the performance when using the
LODFs for security assessment on the 118-bus system. Unrea-
sonably higher congested lines (more than 200%) originated
from inaccurate Taylor approximations or islanded grids and
were removed from the assessment. The congestion assessment
in Table III shows that the accuracy is above 96% in all combina-
tions of faults k. For k ≤ 4, the accuracy is above 98.9% which
shows that the proposed method works well to approximate the
LODFs. However, for k > 4, the proposed method becomes
more inaccurate. When congestion was inaccurately predicted,
the average flow error (only for incorrect fault samples) remained
below 25% for all k and increased with k. This trend shows the
security prediction and flow estimations become more inaccu-
rate with increasing k. Fig. 13 shows the same analysis for the
minimal paths between faults. Interestingly, above the shortest
distance of 2 between two faults, the approximation works well
with almost 100% accurate security predictions. The flows had a
small estimation error of< 5% on average if the predictions were
inaccurate. For short times, the flow can exceed the line flow
threshold, and bounding the estimation error around < 5% is an
interesting insight. Fig. 14 shows the accuracy of the two types of
predictions (positives and negatives). All four metrics decreased

Fig. 13. Accuracy and relative error in flow predictions with proposed LODFs
highly dependent on the minimal shortest path d between faults.

Fig. 14. Performance of security assessments using the proposed LODFs.

with k-faults. However, the precision and the true positive rate
decreased faster (from 100% at k = 1 to 95% at k = 7) than the
true negative rate and the negative predictive value (from 100%
at k = 1 to 97% at k = 7). Therefore, the polynomial LODFs
predicted negative samples better than positive samples, leading
to an imbalance of accuracies. This imbalance was likely related
to the selection of Taylor components at t1 = 2 and t2 = 1.
The Taylor series expansion is a convergent alternating series.
In any convergent alternating series, the truncations alternate
between lower and upper bounds, so likely in the selection
of t1 = 2 and t2 = 1 the truncations were more often at the
bound of estimating lower line flows than flows higher than the
true post-fault line flows. To more robustly assess the security
under the assumption the Taylor series converges, someone may
compute two consecutive Taylor series approximations, and then
consider the supremum of the two line flows.

G. Computational Analysis

Three studies assess the computational performance of the
proposed polynomial LODFs, when applying them for conges-
tion estimation, and for large systems. The first study assesses
the computational times of the LODFs for varying Taylor series
components (considering t1 = t2) and for varying fault condi-
tions. The average time of 10 000 LODFs relative to the LODFs
using the Woodbury formula is presented in Fig. 15. The compu-
tation of the proposed polynomial LODFs was slower than the
Woodbury matrix inversion, as the polynomial LODFS involved
many matrix multiplications and summations. The proposed
LODFs outperformed the Woodbury LODFs for k = {1, 2} and
low components t.
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Fig. 15. Relative computational time of the proposed Taylor series approxi-
mation to the baseline Woodbury formula. The proposed approximation is only
faster for low k and low Taylor components t.

Fig. 16. Time computing the expected line flows with the proposed polynomial
LODFs and baseline Woodbury LODFs for a constant number ΩO = 10 of
contingency lines, out of which all k-fault combinations were considered.

The second study assesses the online computations of ex-
pected congestion and security assessment using the decom-
posing approach (online workflow in Fig. 1(b). Fig. 16 shows
the computational time for |ΩO| = 10; the Woodbury formula
takes too long for a standard laptop to study the higher numbers
of |ΩO| and k. Note that this figure demonstrates the proposed
decomposing approach and that the polynomial LODFs for
expected congestion are computationally constant with k, which
is a main finding of this work. The proposed decomposing
approach only computed the scalar weights φ1,l,φ2,l,l̂, φ̂2,l,l̂ and
φ3,l,l̂,ľ for different k, and then replaced these weights in (35).
The Woodbury formula, however, requires exponential growth
in computational times with k. There, the summation in (31)
considersM(k) elements whereM(k)grows exponentially with
k as shown in (6). Therefore, the proposed polynomial LODF has
strong computational benefits when k > 3 as the figure shows.
Fig. 17 shows the computational time for different sizes of the
power system, or here for increasing many linesΩO that can fail.
In the example of k = 4, the Woodbury formula was intractable
for |ΩO| > 10. The proposed polynomial LODFs were studied
however for more |ΩO| variations showing the LODFs improved
the computations to around O(|ΩO|3). For larger k and larger
|ΩO|, the computational benefits of the proposed approach over

the Woodbury formula can be roughly estimated with |ΩO |k
|ΩO |3 .

Applying this rough estimate to the IEEE-118 bus system with
|ΩO| = 187 lines showed a time benefit of one billion for k = 7.
Hence, the proposed polynomial LODF has benefits for large
systems and large k.

Fig. 17. Time computing the expected line flows with proposed polynomial
LODFs and state-of-the-art Woodbury LODFs for a constant number k = 4 of
outages. The Woodbury LODFs are unable to compute for larger ΩO > 10 in
reasonable times.

TABLE IV
MEMORY AND COMPUTING REQUIREMENTS FOR THE OFFLINE WORKFLOW IN

LARGE SYSTEMS WITH |ΩO | = 20 POSSIBLE FAULTS

The third study in Table IV assesses memory and computa-
tional times (offline) in larger systems. Some auxiliary matrices
can have sizes up to |ΩB |2 × |ΩO|2 in the working memory
and an implementation may need multiples of these. Table IV
reports the maximal working memory across all single matri-
ces. The stored memory considers

∑
i∈1,2,3{Bbr APi A

T f0}+
{Bbr A P̂2 A

T f0} for |ΩO| = 20 faults and were stored in single
precision. The computational times consider the offline work-
flow (in Fig. 1(a)), e.g., the offline preparation of all matrices
in Sections III and IV-C until (33) using Taylor series t1 = 1
and t2 = 1. The times and memory increase with system sizes
which highly depends on an efficient implementation of the
algorithm, here, reaching a working memory of 8GB in the
2383-bus system.

H. Discussion

The proposed approach was accurate when the series con-
verged and for failures far away from each other. The Taylor
series of (16) converged for all k but (22) only for low k. The
approximation of (16) showed a higher impact on the accuracy,
hence the overall approach showed reasonable accuracies also
for higher k-faults, and security assessments, as inaccurate line
flow estimations of 25% may be acceptable for short times,
however, at higherk typically other issues arises aside overloads,
e.g. voltage instability which this approach not assesses. This
study demonstrated that the proposed polynomial LODFs led
to an approach to estimated expected congestion that decom-
poses the computation of expected line flows into repeated basis
motifs, drastically reducing computations (for k > 4). There,
we demonstrated computational reductions from O(|ΩO|k) to
O(|ΩO|3). Applying parallel computing may further reduce the
computational time.
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The approach is limited to faults that are ’far’ from each
other, e.g., when the shortest distance between two faults is
greater than a path of 4 lines (or with an effective Thevenin
distance of greater than 0.2). This may only be at multiple
extreme (weather) events over large areas, wind storms, floods,
or coordinated attacks. For faults in proximity, the error of
the polynomial LODFs increases drastically. This approach is
limited to estimating line overloads, and can not provide insights
to other stability issues more typically occurring at k > 1, e.g.,
voltage stability. The approach approximates the (nonlinear) su-
perposition of LODFs with a linear superpositioning considering
multiplications and summation, which is limiting specifically
when the superposed terms are large (in the neighbourhood of
the faults). Limiting is also that the approximation only works
if the susceptance matrices of post-fault are non-singular, e.g.
where the fault-combination does not create separate, islanded
subsystems. Another limitation is that the polynomial LODFs
do not always converge, but this can be checked by the norms.
Numerical studies found the approach has a high convergence
rate for low k and is faster than Woodbury with a few Taylor
components. Computational benefits are in the use case on
expected line congestion. However, the working memory limits
the number of single faults that can be combined.

VI. CONCLUSION

This article investigated reducing the computational complex-
ity of estimating expected post-fault line flows for multiple line
faults. The proposed polynomial approximation of the LODFs
simplifies the calculations, especially for scenarios involving
multiple simultaneous line outages (N-k faults). The approach
computes expected line flows decomposing N-k faults into
repeating basis functions. Through case studies involving 118-,
300-, 1354- and 2328-bus systems, the article evaluated the ac-
curacy and computational efficiency of the proposed polynomial
LODFs showing the potential for reliability management. Future
work can investigate the differentiability of the polynomial
approximation, investigate the approach as constraints for N-k
security-constrained optimal power flow, methods to compute
bus voltages based on the obtained post-fault power flows, the
variance of post-fault power flows, the worst-case post-fault
power flow and develop memory-efficient algorithms.
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