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Abstract—A significant challenge in the implementation of
health monitoring systems for estimating the health state of
devices is the lack of accurate information about design details.
This challenge is particularly prominent in the field of power
electronics, where both IC designers and converter designers
are often hesitant to share information about their designs.
Addressing this issue, this paper introduces a novel AI-driven
digital twin modeling methodology that enables the detection
and classification of failures in power semiconductors, particu-
larly Wide Band Gap semiconductors. By employing AI-based
system identification techniques, this method offers a noninvasive
approach to health monitoring of power switches with high
resolution, even while operating under real conditions. The
proposed method has been validated by simulating wire bond
failure in a SiC power MOSFET using MATLAB SIMULINK,
and the results demonstrate its accuracy.

Index Terms—AI, Digital twin, Health monitoring, Kalman
filter, NARX-ANN, Power converter, WBG semiconductor.

I. INTRODUCTION

Recently, due to rapid advancements in technology and an
increase in the demand for green energies, power converters
are playing a significant role in transferring energy, converting
electrical energy from AC to DC, from DC to DC, and from
DC to AC. A power converter efficiently converts and controls
energy between a source and a load. It comprises of active
components, which are power semiconductor components, that
regulate the power flow within the converter by turning it on
and off. Additionally, it includes passive components, such
as inductors and capacitors, which temporarily store energy
within the converter system. Finally, there’s the control unit,
including signal converters and processors. However, all of
these components may degrade or fail before reaching their
expected useful lifetime. In [1], an industrial survey conducted
by various companies, including component manufacturers,
aerospace, automotive, motor drive, utility, and others, shows
that power semiconductors are most prone to failure, and

capacitors are the next. Therefore, to better understand and
estimate the physics of failure, prevent unexpected failures in
power converters, and reduce maintenance costs, the applica-
tion of health monitoring systems is necessary.

A health monitoring system is a combination of several
measurement devices that measure one or several parameters
to detect, localize failure, and assess its intensity while the
device is in service. Whereas it is possible to use different
methods and measurement devices during laboratory testing,
in health monitoring systems, to avoid any changes in the size
and performance of the real device (e.g., load effect), the num-
ber and type of sensors are limited to prevent any alteration
in the performance of the device. Therefore, selecting proper
parameters that have a direct relationship with the failure mode
will be challenging in many cases. To overcome this difficulty,
the application of monitoring systems for model updating
and estimating parameters of interest can be beneficial for
increasing the accuracy of a numerical model in parallel
with the physical element for further analysis. In different
applications, the updated model is called a digital twin.

In the literature, a digital twin is defined as a multiphysics,
multiscale, probabilistic method of modeling a real physical
element [2]. However, the definition of a digital twin model
also depends on the level of detail needed to describe the
physical element. It can either be defined as a three dimensions
or five dimensions model. The difference between these two
lies in the fact that in a three-dimensional model, there are
only the physical element, the virtual element, and the link
between these two. However, a five-dimensional model has
the additional capability of optimizing the accuracy of the
virtual model [3]. Moreover, with continuous development in
the field of digital twins, the application of digital twins has
expanded to cover more areas every day; for instance, it now
includes aerospace engineering, electronic engineering, EVs,
construction, logistics, and other fields.

In the field of the electronic industry, the application of
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digital twins is recommended for the reliability analysis of
various devices. For example, Adam Talen et al [4] created
a 5D digital twin model of a Li-ion battery to predict its
ideal retirement time. Similarly, in [5], it is proposed as a
potent tool for diagnosing and prognosticating the health of
light-emitting diodes, serving as the connection between the
physical space and the virtual space to enhance the accuracy
of health monitoring systems. Several studies show that in the
area of power converters, using digital twin technology can
be beneficial at different levels of detail, from estimating the
behavior of the model to estimating the health state of each
single component of the converters.

At the lowest level of detail, the converter in many cases is
defined as a black box, and the digital twin is used to estimate
the output of the converter due to variations in the load. At
this level, different system identification techniques are used
as a twin to estimate the relationship between the input and
output of power converters. For instance, in [6], parametric
system identification is used to understand the behavior of a
synchronous buck converter under different load conditions.
It links the input duty cycle to the output inductor current
and output capacitor voltage, creating a state-space model of
a synchronous buck converter, and then employs the recursive
least squares algorithm for estimating the parameters of the
model. In [7], this method is optimized by using the Kalman
filtering method to estimate the parameters of the model, and
their results show that this method allows for faster parameter
estimation. However, defining the proper state-space model
that can explain the dynamic performance of the converter is
not easy in many cases. In these instances, the application
of Artificial Intelligence (AI)-based methods can be helpful.
In [8], Wunderlich et al. proposed the application of the
Nonlinear Autoregressive with eXogenous inputs Artificial
Neural Network (NARX-ANN) method to estimate the dy-
namic performance of converters. For training the model, they
used variouse combinations of duty cycle, input voltage, and
load current as input training data and inductor current and
capacitor voltage of a boost converter as the output training
data. They used a closed-loop NARX-ANN model for the
prediction of the output. Validation of their approach in both
the time domain and frequency domain shows that the model
can make accurate predictions under all operating conditions.

At a higher level of detail, the concept of digital twin has
been used to estimate the health state of power converters by
estimating the passive components over time. For instance,
in [9], the circuit schematic of a buck converter was defined
as the digital twin of the converter, and the Particle Swarm
Optimization (PSO) method was employed to estimate the
passive components of the digital twin, making its output
match as the real physical converter. This method is beneficial
as it is a noninvasive method of monitoring, meaning that no
additional sensors or components were added to the circuit for
monitoring the converter. Similar research can be found in the
literature. In [10] and [11], different methods were used to
define and solve the equivalent circuit of the converter, and in
[12], the Genetic Algorithm (GA) was used as the optimizer

to estimate the parameters of the twin circuit.
As mentioned earlier, studies indicate that the power switch

within the power converter is more prone to failure than other
components. At this level, the digital twin should incorporate
a higher level of detail compared to other models. This
is because power switches involve multiphysics concepts at
the microscale level. Moreover, without a good understand-
ing of the behavior of the switch in different applications,
the problem becomes an ill-posed problem. Addressing this
challenge, many researchers have employed highly accurate
Finite Element Models (FEM) of the switch to define the
digital twin. For example, in [13], a FEM model was used
to extract the thermal model of the MOSFET. This Reduced-
Order Model (ROM) was employed as a digital twin for real-
time estimation of the junction temperature of the switch in a
boost converter. Additionally, in [14], a FEM was defined as
the digital twin and utilized for design optimization to reduce
parasitic elements inside the switch.

In many research efforts, Machine Learning (ML) tech-
niques have been proposed as a solution to estimate the
behavior of the switch or the variation of its structural parame-
ters. For instance, in [15], a physics-informed long short-term
memory (PILSTM) was utilized for plastic strain prediction
in solder joints. In [16], an unsupervised learning method was
proposed for the fault prognosis of SiC MOSFETs, where data
from healthy devices were used to detect abnormalities through
the application of Principal Component Analysis (PCA). In
[17], a supervised recurrent neural network was trained to
predict the sequence of the active gate driver.

Although these studies and many others demonstrate the
benefits of AI for modeling the behavior of a part or the entire
behavior of the switch, the emergence of new technologies
in power semiconductor materials and packaging necessitates
further study and application of new technologies like digital
twin modeling in this area. This becomes even more critical in
the application of digital twin models for health monitoring of
the switching performance of power semiconductors, as any
abnormality in switching performance can induce stress on the
switch itself and the rest of the components in the converter.

In this regard, this paper presents a novel noninvasive
digital twin model for real-time health monitoring of power
semiconductors while they are operating and independent
of the converter’s topology. Details of the methodology are
explained in the section III, and it is proved with a benchmark
example in Section IV.

II. STATE OF THE PROBLEM

Lately, due to the high demand for highly efficient power
converters, there has been an increased demand for transistors
made of Wide Band Gap materials (WBGs). These materials,
such as Silicon Carbide (SiC) and Gallium Nitride (GaN),
are capable of operating at higher temperatures, voltages, and
frequencies due to their higher thermal conductivity, electron
breakdown field, and electron mobility. These capabilities
make them more attractive candidates for applications in harsh
environments, such as traction inverters in Electric Vehicles
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.
Fig. 1: Schematic of a digital twin model for a DC-DC buck converter.

(EVs). In this regard, advanced packaging technology is re-
quired to enable them to operate at their highest level of
efficiency and reliability. One important consideration here
is to minimize package parasitic resistance and inductance
caused by the internal conduction path, as well as parasitic
capacitance generated by parallel conductors separated by di-
electric layers. These parasitic elements can induce overshoot
voltage and ripple during switching transitions. This effect is
particularly significant in WBG semiconductors due to their
ability for fast switching and high di/dt and dv/dt. Despite
all considerations during the design process, failures such as
wire bond failure can increase the overshoot voltage and ripple
during switching, leading to unwanted stress on the device
itself and other connected components in a power converter,
potentially affecting their reliability.

Although there are several studies in the literature about
the application of different testing methods for simulating
failures in real applications, there is still a need for research
in the design and application of monitoring systems for real-
time health state monitoring of switches. In this context,
digital twin technology can assist in monitoring the switching
performance of WBG semiconductors and the variation of their
switching profile during device operation. This not only helps
in understanding the physics behind any possible failures but
also, through optimization of the switching speed with the help
of feedback controller systems in converters, it is possible to
enhance the switch’s lifetime. However, a significant challenge
in applying monitoring systems to detect the failure and
the understanding Physics of the failure of the switch is
that the structure of the switch’s package is only known to
manufacturers. On the other hand, the dynamic characteristics
of the switch depend highly on the type and magnitude of
the load when used in converters. Meaning, in many cases,
during the design of a power switch, its application (i.e. the

converter’s topology) and therefore the load is unknown. Con-
sequently, even if a converter is equipped with a monitoring
system to monitor passive component degradation, lacking
information about the structure of the switch’s package makes
the application of a monitoring system for health estimation
of both active and passive components inside the converter
difficult. This paper presents a novel AI-based digital twin
method to overcome this problem.

III. METHODOLOGY

In this methodology, to define the digital twin, the power
converter is separated into two parts: the switch and the rest
of the circuit. For each of these two parts, a twin is defined
separately, and their serial connection creates the digital twin
that explains the power transistors’s behavior (Fig 1). The twin
of the switch is used for failure classification, and the twin of
the rest of the circuit will be used to link the variation of
the output to the failure in the switch. Moreover, the twin
of the switch operates offline, with an arbitrary load and it
is used to mimic the failure inside the real switch. On the
other hand, the twin of the rest of the circuit will be replaced
by an open-loop NARX-ANN, which is a particular type of
AI that trains in real time while the converter is in service.
However, many failures in power switches have small effects
on the output of the converter that can be mistaken with the
presence of noise. Therefore, in this research, a particular type
of Extended Kalman Filter (EKF) has been used to improve
the accuracy of the NARX-ANN by removing the noise from
its prediction. More details and a graphical presentation about
the methodology are explained in the following subsection.

A. Digital Twin Model of the Switch

Power switches can be utilized in any power converter with
almost endless various structures. The voltage and current
stress of the power switches vary for the topology, load, etc.
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For instance, the voltage stress across the power switch in a
DC-DC boost converter is equal to the output voltage, while in
a buck converter, it is input voltage values. Similarly, when the
output load power changes, the energy flow in the converter
changes, leading to current level variation in the elements,
including the power switch. Therefore, before designing a
health monitoring system for monitoring power switches while
they are operating, the voltage and current ratings for all
possible operational modes should be known. As it mentioned
earlier, this makes defining the digital twin of the switch during
the manufacturing process while the application of the switch
is unknown difficult.

In this methodology, the twin of the switch is another switch
that operates independently. It can be a real switch, a Finite
Element Method (FEM) simulation of the switch, or a reduced
order model of the switch capable of explaining different
failures inside the switch at various levels and intensities.
As mentioned earlier, this twin operates offline, without any
connection to the converter, and with an arbitrary load, but
with the same gate input as the real switch inside the converter.
The output of this twin will be used as the input of the twin
of the circuit. Then, when any abnormality is detected in
the output, the cause of this abnormality will be investigated
by conducting different failure scenarios through lab tests or
simulations in the twin of the switch. Although using an
arbitrary load in the twin of the switch makes its operational
profile different from the real switch inside the converter,
training the NARX-ANN with its output allows the twin model
to relate the output’s variation to the twin’s variation, not the
real switch with unknown input load. As a result, not only
there is no need to add a new component to the circuit to
monitor the health state of the switch, the same model can
also work for different topologies and converter types. Fig 1
shows a twin of a DC-DC buck converter as an example. It
can be observed that the load of the twin(IL(twin)) of the
switch can be different from the load applied to the real
switch(IL(real converter)).

B. Digital Twin of the Rest of the Circuit

To model the rest of the circuit, artificial neural networks
will be used to directly link the output of the switch to
the output of the power converter. To train an ANN model,
having enough data with high quality is inevitable. The
number and quality of the data can vary depending on the
level of complexity of the model. In more detail, an ANN
model can have feedforward or feedbackward architecture. In
feedforward structures, the information flows in one direction
from the input to the output. These models are used in several
applications in the engineering field for both regression and
classification. Data for training these models are mostly static
and can be generated using simulation or experimental tests.
Several studies in the area of power electronics show that
this method is quite powerful. But, since in this method, the
output depends only on the current values of the input, and the
outputs remain fixed at any instant for a fixed set of outputs,
they are not suitable for modeling dynamic systems like power

converters [8]. In AI models with feedbackward architecture,
feedback from past outputs can be used as an extra input.
This makes them suitable for training models using time series
data when an AI model can capture the dynamic behavior of
devices like power converters.

(a) Architecture of open loop NARX.

(b) Architecture of closed loop NARX.

Fig. 2: Architecture of NARX

There are several feedbackward AI models in the literature,
but for the purpose of this paper, the application of open-loop
NARX-ANN was found to be more interesting. NARX-ANN
is from the family of autoregressive models with inputs using
a nonlinear function that estimates the output of the next step
by using a feedbacked output. In literature, there are two types
of NARX-ANNs, open loop, and closed loop. While both of
them have feedback from the output, in the open loop model,
besides the input, the past output of the system will be used
as input, while in the closed loop model, the past predicted
output will be used as the input. The equation of the open
loop NARX is:

y = F (yk−1, yk−2, ..., yk−n, uk−1, uk−2, ..., uk−m) (1)

and the equation of the closed loop NARX is

ŷ = G(ŷk−1, ŷk−2, ..., ŷk−l, uk−1, uk−2, ..., uk−m) (2)

where u is the input of the system, y is the output of
the system, ŷ is the predicted output, n, l, and m are the
feedback delay of the output, predicted output, and the input
respectively, and F and G are nonlinear functions [18]. While
for training closed-loop NARX, enough data is needed to
explain the dynamic performance of the model, open-loop
NARX can be trained in real-time when the device is working.
Fig 2 shows the architecture of both closed-loop NARX and
open-loop NARX.

Therefore, as this paper assumes the target application of
the switch is unknown during the design of the digital twin,
the open-loop NARX will be a good choice as the twin of the
rest of the circuit. As it mentioned earlier, the NARX-ANN
will be trained by using the feedback of the converter’s output
as input and the output of the twin of the switch as the input.
Using output feedback both during the training and prediction
will not only make the training procedure fast and selecting
hyperparameters (number of neurons, number of hidden layers,
etc.) easier, but it will also increase the prediction accuracy.
However, this accuracy will be affected by the presence of
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noise in the data; As because of the noise, understanding the
sequence between data will be difficult for the AI model. To
overcome this problem, a method based on the application of
the EKF has been used in this paper to improve the accuracy
of the NARX-ANN to predict the real output of the converter,
even if the data is noisy.

Moreover, as mentioned earlier, NARX-ANN utilizes the
output of the previous time steps to predict the output of
the circuit at the current time step. This implies that failures
inside the switch can be detected faster than in real-time.
With this method, to protect the switch, the input can be
adjusted one time step before the overshoot voltage surpasses
the threshold voltage. It should be noted that the size of each
time instance defines how much faster than real-time the model
can estimate the output. The larger the difference between each
time instance, the faster the model. However, when selecting
the width of each time step, the resolution of failure detection
should also be taken into consideration.

C. EKF-NARX

While the converter is operating in real condition, several
sources of the noise can effects the accuray of the measured
output. As mentioned earlier, the prediction accuracy of the
NARX-ANN will be effected by this noise. To overcome
this problem, the EKF technique will be used in this paper
to estimate the true output from the noisy measurement.
Generally, the Kalman Filter (KF) process is designed to
estimate the state of a linear model. For nonlinear systems,
like power converters, before applying the filtering equation, a
linearization procedure will be applied. This linearization will
be done by linear Taylor approximation of the system function
at the previous state estimate and that of the observation
function at the corresponding predicted position. The Kalman
filter obtained through this process will be called the EKF [19].
The EKF estimates the true state in two stages. First, using
the state-space equation of the system, it will predict the true
state of the system. Then, based on the measured value, it will
adjust the estimated state of the system at each time instant.
In an EKF algorithm for the prediction stage:

x̂−
k = f(x̂k−1, uk−1) + wk (3)

This means slightly before the time instant k, the state of the
model (x̂−

k ) depends on the past state of the model (x̂k−1) and
past input of the model (uk−1) plus noise in the measurement
(wk) . Moreover, the covariance of the prediction error in the
same time instant (P−

k ) is calculated as:

P−
k = FkPk−1F

T
k +Qk (4)

where Fk is the Jacobian of the state transition function and
Qk is the process noise. In the updating stage:

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (5)

x̂k = x̂−
k +Kk(zk − h(x̂−

k )) (6)

Pk = (I −KkHk)P
−
k (7)

where Kk is the Kalman gain, Hk is the Jacobian of the
measurement fucntion (h) and zk is the measured value at
time instant k.

The goal of applying the EKF in this work is to estimate the
true state, which is the true output of the converter, from noisy
measured data at each time instant. By comparison between
the equation of the NARX (”1”) and the equation used as a
state-space equation in EKF (”3”) it can be seen that they are
similar to each other. Therefore, NARX-ANN is used in EKF
as the space-state equation of the power converter. However,
using a neural network as the state-space function of the model
makes the calculation of the Jacobian of the transformation
function (Fk) and the Jacobian of the measurement function
(Hk) difficult. As mentioned earlier, since the output of the
digital twin of the switch is used as the input of the digital
twin of the circuit, the variation in the output does not depend
on the variation of the real switch’s output. Therefore, in the
first step during the calculation of Fk, only the variation of the
output during the delayed time should be taken into account.
In addition to this, while the sampling frequency is high, it
can be assumed that the system is linear within the delayed
time instants plus one time instant. In this case, Fk can be
considered as equal to one. This assumption needs to hold
true only in the very first time instants. Because if we assume
that in the first iteration, the delay in the output from time
instant 1 to n is used to predict the output at time n + 1, at
the second iteration, the delay from time instant 2 to n + 1
will be used for predicting n+ 2, and then after n iterations,
true values will used as delayed time to predict the next true
value from the noisy data.

Fig. 3: Feedback output at first iterations of the EKF-NARX.

On the other hand, as the noise is assumed to be Gaussian
with a zero mean value:

xmeasured
k = xtrue

k + ϵ (8)

where ϵ ∼ N(0, σ) and σ is standard deviation of the noise.
Therefore, similar to the Fk, the Hk can also be considered
as equal to one. Although this makes the concept of the
EKF close to the definition of the KF, still, as the system
is nonlinear, the EKF is selected for the purpose of this paper.
These estimated true values will be used in the next step to
estimate the properties of the failure in the switch.

D. Failure detection and assessment

As mentioned earlier, the estimation of the variation in the
parameters of the rest of the circuit has been excluded from
this method, as they are unknown for the IC manufacturers.
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Fig. 4: Schematic of a digital twin model for a DC-DC buck converter.

With this assumption, and using NARX-ANN as a black box
system identification method, the relationship between the
output of the converter and the output of the twin of the switch
under steady-state conditions can be defined as:

κ = |Output of the converter|+ |Output of the twin of the switch|
(9)

.
Fig. 5: Black box schematic of the rest of the circuit.

where κ is defined as the gain of the black box, and it
is calculated easily using Kirchhoff’s voltage law (see Fig
5). This expression should hold true both before and after
the failure. The κ should be calculated when the switch is
intact, then it assists in estimating the output of the twin of
the switch after failure is detected. Once the output of the
switch is detected, it can be used for failure classification,
which involves failure localization and assessment. The type
of the algorithm for failure classification and therefore the
type of model of the switch depend on the possible failure
mechanism. Returning to subsection A, the twin of the switch
can be modeled using different methods.

One method is the application of the large-signal model of
the switch. Owing to the fact that ideal power switches do not

Fig. 6: Circuit schematic of a switch.

exist in real-world applications, to model the exact behavior
of the switch in all possible operations modes, a model by
including all the parasitic elements is used in this paper.

Fig 6 shows the associated circuit schematic of this model.
Moreover, this model can be used for predicting the behaviour
of Si-based and WBG devices. However, one should note the
fact that regular power devices like the Si and SiC power
switches conduct when the VGS is more than Vth whether the
applied voltage to their drain-source is positive or negative.
Unlike these devices, GaN semiconductors conductivity is
controlled by VGS and VGD when the applied voltage to
their drain-source is positive and negative, respectively [20].
In this paper, this schematic model is used for estimating the
properties of the failure.

IV. BENCHMARK EXAMPLE

The method explained in Section III was tested here by
simulating the DC-DC Buck converter shown in Fig 1 using
MATLAB SIMULINK. The details of the converter’s design
are explained in Table I.

TABLE I: Design details of the DC-DC buck converter.

Items Value Unit
L 200 µH
C 470 µF
R 45 Ω

VDC 100 V
RD 64.94 µΩ
RS 6.436 mΩ
LD 3.648 nH
LS 4.3 nH

IL(twin) 1 A
Switching frequency 25 MHz

Fig. 7: Circuit schematic of the switch.

A SiC Power MOSFET with the TO-247 package has been
used as the both switches in the half-bridge configuration. The
package of the switch is considered to have a wire-bonded
structure with six wire bonds made of copper. For simulating
the failure, a simplified static circuit schematic of the switch
is used as both the real switch and the twin of the switch,
wherein each switch the parasitic resistances and inductances
are lumped as RD, RS , LD, and LS , representing the parasitic
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resistances and parasitic inductances of the drain and source,
respectively. The sampling time is considered as 5 [ms]. The
failure in the switch is defined as the failure in one of bond
wires of the S1 and simulated with a 0.2 [nH] increase in the
parasitic inductance of the source after 0.8 [ms] (LSnew = 4.5
[nH]). To resemble the real application, white Gaussian noise
was added to the output voltage of each batch. The Signal to
Noise Ratio (SNR) is assumed to be 10 [dB], and this noise
is added to each batch without any correlation. For modeling

(a) Predicted Vout using EKF-NARX.

(b) Zoomed Predicted Vout for the first
0.45 [ms].

Fig. 8: Removing noise from measured Vout using EKF-
NARX.

the rest of the circuit, the intact S1’s drain-source voltage is
utilized as the input of the NARX-ANN. Then, the NARX-
ANN was trained with three hidden layers, each containing
10 neurons. The input delay and feedback delay are both set
to 6-time instants, and the Levenberg-Marquardt algorithm is
employed as the training function. Moreover, the performance
of the model has been evaluated by calculating the Mean
Square Error as:

MSE = 1/N

N∑
k=1

(yk − ŷk)
2 (10)

where N is the number of time steps. This model is used to
detect the failure one time step before it occurs. Initially, the
model is trained with Vds(twin) and Vout while the switch
is intact. Then, this model predicts the output voltage using
Vds(twin) as the input and the feedback voltage output of the

converter in the failure scenario. Fig 8 shows the predicted
output using the proposed algorithm. From Fig 8b it can be
seen that in the first steps of denoising, the error between the
calculated and estimated values was high. However, by using
more data in subsequent time steps, the predicted value con-
verged to the true value of the signal. Moreover, the calculated
error between the predicted values in the two mentioned states,
used as the indication of the failure and presented in the Fig 9.
It can be observed that although the estimated error was noisy

Fig. 9: Fault detection.

even before the moment of failure, its trend increased after the
failure and followed the true error’s pattern. This is because,
in this example, to challenge the proposed method, the failure
is assumed to be a very small change in LS , occurring shortly
after the start. Moreover, assuming SNR = 10 [dB] means that
the measured value is near the acceptable range.

For the failure classification, the first step is to calculate the
κ to understand the gain of the rest of the circuit or the black
box.

κ = Vout + Vds(twin) = 150.246[V ] (11)

Using this κ, the Vds(twin) after the failure calculates as
100.422[V]. This is the peak overshoot voltage of the switch
after it experiences the failure. To esitmate the value of the
LS Kirchhoff’s law used when the switch is off as:

Vds = (RD +RS)× Ids − (LS + LD)× dIds
dt

+ Vin (12)

The Ids is assumed to be the same as before, while the
failure in the switch changes only the Vds. Therefore, by
using 12 the LS calculated as 4.64 [nH] means the relative
error is equal to 3%. Considering the high level of noise in
this benchmark example, this value can be regarded as an
acceptable estimation.

This example demonstrates the accuracy of the model in
detecting and estimating the intensity of the failure while the
measured data is noisy. The definition of the twin of the switch
provides the possibility to measure the output of the switch in
a controlled environment. Therefore, the measurement noise
and environmental effects can be minimized to an acceptable
range.
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V. CONCLUSION AND DISCUSSION

This work presents a digital twin modeling method for
health monitoring, fault detection, and classification of power
switches in power converter applications, and it proved by
simulating wire bond failure in a TO247 SiC MOSFET as a
case study.

Since this method is independent of the converter’s topology
and does not require additional sensors or components, it
can be applied to converters already in service. Furthermore,
through this method, IC designers can assist converter de-
signers in developing precise monitoring systems capable of
estimating the health status of all elements inside the con-
verter, including the switch, without sharing sensitive design
information about IC packages.

Using this methodology provides the possibility to under-
stand the physics behind the failure in WBG-based power
switches while they are operating in different applications
and under different environmental conditions. This insight
can help IC designers with design improvements for the
next generation of the package of switches. Additionally, as
this algorithm operates in real-time and in parallel with the
real device, it provides valuable information that can help
mitigate failures inside the switch and increase the switch’s
reliability. For instance, in the example of wire bond failure,
a smart PID controller can optimize the switching speed (or
optimize the di/dt or dv/dt) to reduce the switching overshoot
voltage to an acceptable range. Therefore, it can also help the
converter designer to improve the remaining useful lifetime
of a switch, even after a minor failure in its structure. Along
with these benefits, as this method is a noninvasive monitoring
technique, not only it can be used in algorithms for estimating
their Remaining Useful Lifetime (RUL) by estimating the
degradation of the performance of the switch over time, but the
extracted data can also be used further to develop different ML
models for reliability analysis and AI-based package design
techniques.
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