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1
Introduction

The concept of randomness and chance has intrigued human beings since the oldest
times. In ancient history, it was thought that events are affected by the choices of the
gods, who then were responsible for the variability detected in nature. During the 3rd

century BC, however, Greek philosophers argued that randomness has a more natural
essence. Democritus, for instance, believed that it is closely related to ignorance.
Any unexpected result has a plausible explanation, therefore randomness is due to the
inability of humans to fully understand the nature of events [1]. On the other hand,
Epicurus suggested that Nature itself is continuously affected by random events at
the smallest atomic scales and is therefore intrinsically unpredictable [2].

Since these pioneering works, the concept of randomness has been forgotten for
several centuries, in an era in which philosophers were mostly focused on finding
a higher meaning to the human lives and struggles. However, by the end of the
18th century, many revolutionary discoveries led to the establishment of classical
mechanics, which seemed to suggest that Nature is governed by deterministic laws.
Therefore, it was thought that natural events can be predicted upon full knowledge
of the initial conditions of the system.

It was only in the late 19th century that findings in electrodynamics and thermody-
namics undermined this believe. Since then, many scientific fields, including but not
limited to quantum mechanics, statistical physics and particle physics, developed that
describe natural events as stochastic, probabilistic and affected by noise. The idea of
Epicurus became again widely accepted: natural events are variable, not predictable
and partially driven by random events. Since then, the concepts of randomness and
noise have played a central role in many disciplines in science, such as mathematics,
physics, chemistry, statistics and, last but not least, biology. In this thesis, we aim to
contribute to the understanding of the origins, the roles and the effects of noise in
biology.
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1 Introduction

1.1 The role of randomness in biology
Although there are several hypothesis on how life arose on our planet [3], it is widely
accepted that the oldest form of life on Earth is at least 4 billion years old [4]. As
Darwin hypothesized in 1859 [5], it has been recently found that all living organisms
on Earth descend from a universal common ancestor that lived at least 3.5 billion
years ago [6]. Such primitive forms of life were very different from the organisms
that populate our planet nowadays, as they were often anaerobic, thus did not require
presence of oxygen to survive. Instead, they relied on simple chemical reactions
to perform nitrogen and carbon dioxide fixation to extract energy. Nevertheless, it
has been recently established that part of the biological machinery that keeps all
current living organisms alive is relatively similar to that of the primitive organisms
populating Earth billion years ago [6].

Even if all living organisms share some traits with their primitive common
ancestor, over the course of 4 billion years life has evolved in a wide variety of forms,
from sub-micrometer sized bacteria to the honey fungus that stretches over 2.4 km in
the Blue Mountains in Oregon. It is estimated that more than one trillion species live
on Earth, and that we have only been able to describe 1.2 millions of them, which is
a mere 0.0001% [7, 8].

It may not seem surprising that life on our planet shows such a huge variety.
After all, over the last 4 billion years, several more or less catastrophic events
have happened that forced living organisms to evolve and adapt in order to survive,
sometimes causing massive extinctions. Natural selection has worked over billion
years to privilege the fittest species and extinguish species that were not able to cope
with the ever-changing environment and the predators surrounding them. However, it
is surprising the extent at which each of these organisms have been able to optimize
their biology to the ecosystem and make the most out of the resources that the
surrounding provided them. Each of the living organisms populating our planet can
be seen as an almost perfect machine that receives inputs from the surrounding
environment and reacts accordingly through a complicated internal machinery.
Ultimately, this is what makes bacteria move towards food and antelopes run away
from lions.

During the last century, biologists have worked hard trying to elucidate the
complex mechanisms that allow all living organisms to survive. Probably the major
advances in this respect are the discovery and description of deoxyribuncleic acid
(DNA) as carrier of all the genetic information [9, 10] and the definition of the
central dogma of molecular biology [11]. DNA is a molecule organized in a double
helix structure and contained in every single cell. Each helix is a sequence of single
monomers that can occur in four chemically different nucleotides. The combination
of such nucleotides defines the genetic information specific to a particular organism.
DNA molecules can be contained freely inside the cell wall, in which case we talk
about prokaryotic cells, or can be enclosed in a sub-cellular structure, the nucleus,
in which case we talk about eukaryotic cells. In most eukaryotic cells, the genetic
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1.1 The role of randomness in biology

information is spread over different substructures called chromosomes. All multi-
cellular organisms consists of such eukaryotic cells.

Despite the differences in its large-scale organization, DNA always contains
all the instructions needed to perform the complex biological functions necessary
to survive. Such instructions are encoded on the DNA, in the form of genes. The
question of how this genetic information is translated into molecules able to perform
complex functions is explained by the central dogma of molecular biology. As an
approximate and brief version of it, the central dogma of molecular biology states
that a single cell is able to replicate its own DNA entirely, translate parts of it into
messenger ribonucleic acid (mRNA), and transcribe mRNAs into proteins. While
replication of DNA is necessary for reproduction of the cell, the final products of
this complex machinery are proteins, highly specialized molecules that are able to
perform different tasks. Often multiple proteins combine to create a macromolecule
able to perform a complicated task. For example, ribonucleic acid polymerase
(RNAp) can bind to a particular site on the DNA and transcribe the gene found
downstream into an mRNA. An even more complex molecule is the ribosome, the
machine necessary to translate mRNAs into proteins. Many more proteins exists and
each of them has a specific functional role in the survival of a cell.

During their entire life, cells need to perform many different tasks, each of them
requiring the production of the corresponding proteins. It is therefore evident that not
all the proteins must be produced at equal levels. A complex mechanism is exploited
to regulate the production of proteins. At the earliest stage, gene expression can
be tuned in order to produce more or less mRNAs. For instance, some molecules,
called transcription factors, bind on specific parts of DNA, called promoters, to
stimulate or inhibit binding of RNAp and therefore regulate the expression of the
gene downstream on the DNA. Secondary, translational regulation can be used
to suppress production of proteins. For instance, single mRNA molecules can be
actively degraded.

1.1.1 Cell biology and thermal fluctuations
Considering the discovery of the central dogma of molecular biology and the theory
of natural selection, it is natural to assume that all observable variability among
living organisms can be fully explained by genetic and/or environmental variability.
However, a third element is formed by stochastic variability, which causes random
variations even in two genetically identical individuals exposed to exactly the same
environmental conditions. To understand the origin of this source of variability, we
need to give a closer look to the building blocks of life. The typical dimension of a
cell is on the order of a few micrometers, while proteins size is on the nanometers
scale. At these scales, thermal fluctuations are omnipresent and have a major effect
on the molecular dynamics. Individual molecules move inside the cell by Brownian
motion, and the chemical reactions that trigger the basic biological processes happen
only when two or more components come into contact. That is the reason why
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1 Introduction

biochemical processes are probabilistic. For instance, one can never predict when
a single RNAp will bind to the promoter of a certain gene, but can only estimate a
binding rate: the probability that this event will happen within a certain amount of
time.

Thermal fluctuations are largely ignored when studying a macroscopic system
because the number of molecules involved is so large that fluctuations are eventually
averaged out. Therefore, a fully deterministic description of macroscopic systems is
possible. However, certain molecules are present in the cell with as few as 10-100
copies. When dealing with such low numbers, molecular fluctuations, often referred
to as noise, cannot be simply averaged out, and the slightest deviation in the motion
of a single transcription factor can have a significant effect on the expression level
of its target gene. It is therefore easy to imagine that molecular fluctuations have a
major impact on many cellular processes such as gene expression, cell signaling and
motility.

1.1.2 Gene expression noise
Historically, the first biological process in which stochasticity has been acknowledged
is gene expression. Even though stochasticity in gene expression had been previously
observed [12, 13], it was not until the late 1990s that scientists started to recognize
that gene expression is indeed strongly stochastic [14]. After this preliminary
work, many researchers started looking for more experimental evidence of such
phenomenon.

In one of the first studies showing stochastic gene expression [16], a synthetic
biology approach was used. The authors engineered a repressilator: a genetic circuit
consisting of three different genes that was designed to generate gene expression
oscillations. The network was designed in a circular fashion: each gene expresses a
transcription factor able to repress the expression of the consecutive gene in the loop.
The authors placed all genes in a plasmid, a small DNA molecule, and inserted it in
E. coli bacteria. The expected result of such a circular negative feedback loop is an
oscillatory system, with expression of each gene cyclically activated over the course
of several hours. By tagging one of the genes with the green fluorescent protein
(GFP), the authors were able to follow the dynamics of one of the three genes over
time and confirm the predicted oscillatory dynamics. Besides showing the power of
synthetic biology, with which it is possible to study gene regulatory networks, they
reported a noisy behavior of the fluctuations. In particular, they found considerable
cell-cell variability both in the amplitude and the period of the oscillations. The
authors suggested that such noisy behavior could possibly be explained by stochastic
fluctuations of the components of the system.

Shortly after that, two milestone studies explored the causes of stochastic gene
expression. In the first study, the concepts of intrinsic and extrinsic variability were
formulated for the first time [15]. The authors inserted two copies of the same
promoter in E. coli bacteria expressing two different fluorescent proteins (CFP and
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A B

Figure 1.1: Gene expression fluctuations. (A) Expression of CFP (green) and
YFP (red) in a population of genetically identical E. coli. (B) Schematic of the
time series of CFP (green) and YFP (red) expression levels in a single cell in case
of significant intrinsic noise. Figures were taken from [15].

YFP). Fluorescence intensity from bacteria belonging to the same colony was then
recorded with dual color time-lapse fluorescence microscopy (Fig. 1.1). Following
their description of intrinsic and extrinsic variability, extrinsic fluctuations due to
the variability in the abundance of RNAp and ribosomes affect both promoters
equally. On the other hand, intrinsic fluctuations due to the stochastic nature of
gene expression affects each promoter independently. Therefore, if no intrinsic
stochasticity is present, promoter activities in the same cell should perfectly correlate.
However, the authors found that the amount of CFP and YFP in the same cell was
highly variable, which then resulted in high cell-to-cell variability in the expression
of both CFP and YFP (represented as cells with different red (YFP) and green (CFP)
intensities in Fig. 1.1A). This shows that both sources of noise are significant, and that
the impact of intrinsic variability on a single gene expression is as high as its extrinsic
variability. In the second study, evidence arose that intrinsic variability is present
also in eukaryotic cells [17], although it has a smaller effect. The authors suggested
that this could be due to the larger amount of molecules present in eukaryotic cells,
supporting the hypothesis that molecular fluctuations are more relevant when a low
number of molecules is involved.

Following the work on gene expression noise, researchers started to intensively
study the protein production process as a whole, starting from the expression of
the gene to the translation of the mRNA. First, it was observed that the rate of
transcription of a gene is not constant, but instead it is often activated in a transient
way. This phenomenon is called transcriptional bursts, and has been observed both
in bacterial and eukaryotic cells [18, 19]. Transcriptional bursts are likely due to
a number of different factors. For instance, in eukaryotic cells, the structure of
chromosomes is changing constantly, allowing transcription of a gene only when
that part of the chromosome is in an open state. In prokaryotic cells, the sources of
transcriptional bursts are most likely due to fluctuations in RNAp abundance and
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1 Introduction

error-correction mechanisms resulting in pauses in the synthesis of mRNAs [20, 21].
Similarly, translational bursts were observed [22]. In particular, it was shown that
the translational rate is not constant over time, but instead it follows a series of
stochastic bursts. This is due to the low number of mRNA molecules and to the fact
that a large amount of proteins is produced by a single mRNA before it starts being
degraded.

1.1.3 Noise in cellular decision-making
Despite the advances that such models and experiments represent in understanding
the dynamics of gene expression, the question remains whether such stochasticity
can impact the state and behavior of an entire cell.

As mentioned above, transcription factors regulate the expression of target genes.
However, transcription factors themselves are proteins produced via the expression
of other genes, which in turn are regulated by different transcription factors. As a
consequence, the cell consists of a deeply interconnected gene regulatory network
(GRN). Within the cell, multiple genes produce the right set of proteins necessary
to process input signals and trigger cellular responses. When the network has a
particular architecture, small changes in the input can result in massively different
responses on the level of the entire cell. Such GRNs are called genetic switches.

A classical example of a genetic switch is the λ switch [23]. When the λ

bacteriophage, a well-studied virus, infects an E. coli bacterium, the viral DNA is
typically inserted into the host and starts being replicated together with the bacterial
DNA without causing any damage. This state is called the lysogenic state. However,
the system can also exist in a different state, called the lytic state. When the lytic
state is triggered, the viral DNA is massively transcribed and hundreds of viruses are
synthesized, causing the lysis of the host and allowing the viruses to escape and hunt
for another host. The cellular state is light-sensitive: small doses of UV light cause
transient upregulation of the expression of a gene, which in turns activates itself in a
positive feedback loop and finally results in the induction of the lytic state. This was
one of the first examples in which small changes in the input can cause a dramatic
effect on the response of an entire cell.

In the previous example different cellular responses are triggered by subtle
changes in the input of the GRN. However, intrinsically stochastic switches, i.e. cel-
lular responses that are triggered randomly and are affected by stochastic fluctuations
at the gene expression level, also play an important role in biology.

A well-known example of a stochastic switch is found in the soil bacterium
Bacillus subtilis. When a population of genetically identical B. subtilis is exposed
to unfavorable environmental conditions, such as starvation, each cell can assume
a number of different fates. Some cells decide to lyse and release their genetic
material, which can be used by the other cells as food source, therefore increasing the
chances of population survival [25]. Other cells develop into spores, a dormant, non-
growing and highly resistant state. As soon as environmental conditions improve, the
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A B

Figure 1.2: Gene expression dynamics during the competence decision in B.
subtilis. (A) Frames from a video of a competence event. A single cell that
stochastically enters the competent state expresses CFP (red). Other cells express
YFP (green). White cells developed into spores. (B) Time-series of both gene
expression levels for a cell assuming competence fate (green and red lines) and a
cell that did not (faint lines). Figures were taken from [24].

sporulation state is terminated and cells recover their normal growing behavior [26].
Another particular cell fate is competence, i.e. the ability to take up extracellular
DNA released by lysing cells [24]. External DNA could be used as food source or
might be integrated into the genome to try to adapt to the unfavorable conditions
[27]. The mechanism driving the competence decision have been extensively studied.
First it was shown that the decision to assume the competent fate is governed by a
complex gene regulatory network exploiting positive and negative feedback loops, in
which a major role is played by a gene called comK (Fig. 1.2A) [24, 28]. Next, it was
shown that comK expression is intrinsically stochastic, and that such stochasticity
drives the cell decision, in that large enough fluctuations are amplified by a positive
feedback loop and result in the switch of the cell to the competent fate (Fig. 1.2B)
[29]. Competence decisions are therefore intrinsically stochastic.

These results represent important evidence showing how noise at the gene
expression level can greatly affect the state of an entire cell. Moreover, they show
how noise can be beneficial for the survival of a population in an unpredictable
environment.

These examples show that noise at the gene expression level can affect gene
regulation in bacterial cells. These phenomena can have effects in decision-making
processes, leading to stochastic responses of individual cells to the same environ-
mental inputs. It is therefore natural to ask whether such stochasticity also affects
the biology of multi-cellular organisms, particularly in the case of multi-cellular
development. Intriguingly, significantly different phenotypic traits are commonly
found between genetically identical multicellular organisms. For instance, even
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1 Introduction

identical human twins have different fingerprints and different risks of contracting
diseases such as rheumatoid arthritis [30]. In the next section I will discuss recent
studies on the role of noise in the biology of multi-cellular organisms.

1.2 Noise in developmental biology
Multi-cellular organisms development is a remarkably reliable and complex program
during which, starting from a single-celled embryo, cell divisions and differentiation
give rise to a fully developed adult capable of reproduction. During development,
cells need to tightly control their positions and coordinate their behavior to be in the
right place at the right time to perform their functions in the organism.

However, as we have discussed in the previous section, the most basic biological
processes are intrinsically stochastic. All cells of a multi-cellular organism are likely
subject to the same sources of stochasticity as for unicellular organisms. However,
in contrast to unicellular organisms, in multi-cellular organisms a small number of
cells can affect the behavior of several surrounding cells, for instance via cell-cell
communication. For this reason, noise at the single cell level can have dramatic
consequences for the entire organism.

The fact that such serious mistakes are extremely rare suggests that multi-cellular
organisms have developed complex control mechanisms to reliably progress through
development [31]. The ability of multi-cellular organisms to reliably develop
despite noise is called robustness. The intrinsic conflict between stochasticity and
developmental robustness raises the fundamental question of how noise is suppressed.
In this section, I will discuss examples in which noise is detrimental and needs to be
suppressed in order to ensure the correct development of the organism. Even though
development is largely robust to noise, interestingly examples exist in which noise
might not be detrimental but instead is thought to drive development. In this section,
I will also discuss such examples. At the end, I will highlight the fundamental
questions that need to be addressed in order to have a deep understanding of the role
of stochasticity in developmental biology.

1.2.1 Robustness to developmental noise
Examples that have been extensively studied exist in which multi-cellular organisms
have developed complex control mechanisms to suppress noise in order to reliably
progress through development.

A classical example in which noise suppression mechanisms are exploited is the
morphogenesis of the fruit fly Drosophila melanogaster embryos [34]. Morphogen-
esis is the process by which an organized spatial distribution of cells is generated
during embryonic development. During early embryogenesis of D. melanogaster, a
morphogen protein called Bicoid is produced at the anterior pole, and diffuses into
the embryo, thereby generating an exponentially decaying concentration gradient
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1.2 Noise in developmental biology

A B

Figure 1.3: Stochasticity in developmental processes. (A) Expression of the
final target gene responsible for intenstinal cell fate in wild-type (left) and mutant
(right) animals. Figure taken from [32] (B) Cone cell in a human retina color-
coded according to the photopigment chosen (red, green and blue). Figure taken
from [33].

along the anteroposterior axis, with a characteristic length of about 100 µm. In
order to generate the correct spatial pattern, single cells reliably detect their relative
position along the gradient by measuring the local Bicoid concentration. Among
other genes, Bicoid triggers the expression of hunchback, which then controls the
expression of crucial downstream genes. The spatial profile of Hunchback (Hb) is
strongly non-linear, with a steep drop in the middle of the embryo. Despite the noise
in the Bicoid concentration, the authors found that the Hb profile had extremely low
noise levels and that the position of the drop was remarkably precise. This suggests
that stochastic cellular decisions due to intrinsic fluctuations are strongly suppressed.
In particular, the authors suggested that neighboring cells are able to communicate
in order to accurately estimate the Bicoid concentration.

The previous example suggests that gene expression noise and stochastic cell
decisions are strongly suppressed during development of multi-cellular organisms.
What happens when the fluctuations are not controlled and noise suppression fails?
Already in 1925 researchers observed that some genetic mutations in the fruit fly
Drosophila fimebris result in variable outcomes, with a fraction of individuals
showing a wild-type phenotype, while the other part of the population shows a
mutant phenotype [35, 36]. Recent studies examined the mechanistic origins of this
phenomenon, called incomplete penetrance, in the intestinal cell fate specification of
the nematode worm Caenorhabditis elegans [32]. The intestinal cell fate specification
in C. elegans is regulated by a simple genetic circuit. By creating a mutant in which
a key transcription factor was not expressed, the authors showed that the expression
pattern of intermediate genes became highly variable and that the final target gene
responsible for the cell fate specification assumed a bimodal distribution (Fig. 1.3A).
These results show that the architecture of the GRN underlying intestinal induction
is optimized to suppress noise and ensure proper cell specification.
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These examples show that mechanisms exist to strongly suppress gene expression
noise, leading to highly robust development of multi-cellular organisms.

1.2.2 Stochastic cell fate decisions
Although the robustness of developmental processes is often achieved by suppressing
stochasticity, interesting examples exist that show how stochastic gene expression
can actually be exploited to perform a specific developmental program. Often
these mechanisms result in stochastic cell fate decisions, a process in which a cell
differentiates in a random manner, by choosing one cell fate out of a repertoire of
different fates [37].

One example of stochastic cell fate decisions is the photoreceptor selection in
primates [33, 38]. Each of the 4 million cone cells in the human retina, for instance,
chooses one type of photoreceptor out of three possible choices: red, green and blue,
in what appears to be a random, cell-autonomous decision. The result is a random
pattern of cell fates in the retina (Fig. 1.3B). Another example of cell-autonomous
cell fate decision is olfactory receptor selection in mice [39]. In this much more
complicated system, each olfactory neuron randomly expresses one gene out of
~1300 possible genes, exploiting a stochastic mechanism similar to the cone cells
specification in the human retina.

Interestingly, some stochastic cell fate decisions also involve cell-cell commu-
nication. In these cases, the stochastic process in one cell impacts that in the
neighboring cells, and vice versa. For instance, in the fruit fly D. melanogaster,
neuronal cells exploit signaling and feedback mechanisms to specify their fate [40].
This cell-cell interaction process results in a mutually exclusive and highly reliable
cell fate assignment: when one particular cell randomly assumes a neuronal fate, all
neighboring cells become epidermal cells.

These examples suggest that random fluctuations at the gene expression level are
not detrimental, but instead can be exploited to drive development.

Taken together, these results suggest that multi-cellular organisms are subject to
molecular fluctuations and that they have developed different mechanisms to reach
robustness. In some cases, noise is efficiently suppressed, making the outcome of
the developmental process almost deterministic. In other cases, organisms exploit
noise to reach a variable but robust developmental outcome.

The intrinsic stochastic nature of the molecular players involved in the regula-
tory network underlying developmental processes raises a number of fundamental
questions:

• What are the sources of noise that impact development? How strong are their
fluctuations?

• How can such fluctuations be suppressed in deterministic developmental
processes to achieve a robust outcome?
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1.3 The role of C. elegans in developmental biology

• Do developmental processes exist that rely on and are driven by molecular
noise? If so, how are molecular fluctuations amplified to impact the behavior
of entire cells in the developing organism?

While a molecular biology approach will reveal the key components of the
underlying regulatory network, the intrinsic fluctuations at the molecular level require
a quantitative approach in order to address these questions. Moreover, to study
a process as highly dynamic as development, an approach is needed to follow
developmental processes over time. To this end, one needs to follow developing
organisms with enough spatial and temporal resolution to detect the dynamics of
the process at the single-cell level. However, most of the model systems for multi-
cellular organisms, such as fruit flies, zebrafish and mice, have a large body size and
a relatively slow development. Therefore, there are currently no techniques able to
follow their development with enough spatial resolution and for more than few hours.
In the next section, I will discuss an alternative model system that is extensively used
for developmental studies: the nematode worm Caenorhabditis elegans. Moreover, I
will argue that C. elegans represents an ideal model system to study the role of noise
in development.

1.3 The role of C. elegans in developmental biology
In the early 1970s, with the pioneering work of Sydney Brenner, the nematode
C. elegans has emerged as a model system in many fields in biology [41]. C.
elegans is a soil nematode consisting of ~1000 cells. The full development from
single-celled embryo to adult organism is ~48 hours long, and allows a 50 µm
long egg to develop into a 1 mm adult organism. After 12 hours of embryonic
development, a newly hatched larva grows for 36 hours into an adult organism. The
post-embryonic development is divided in four larval stages (L1-L4), and at the end
of each larval stage the animal enters a lethargus stage of 2 hours (Fig. 1.4). During
this period, motility is strongly reduced and feeding stops. Eventually, a new cuticle
is synthesized and the old one shed, an event called ecdysis, which then marks the
start of the next larval stage.

Typically animals exist as hermaphrodite, which reproduce by self-fertilization.
The progeny is therefore genetically identical to the mother except for rare random
mutations. A single adult hermaphrodite can produce up to 350 offspring. At the
same time, males are produced at low frequency (~0.1%), allowing for cross progeny.
The simple genetics involved made C. elegans the first multi-cellular organism with a
complete genome sequenced, revealing more than 19000 genes of which at least 40%
code for proteins with homologous in higher organisms [42]. Many key regulatory
genes in developmental and cell biology processes have so far been identified.

Thanks to its simple genetics, short life cycle, ease of maintenance and simple
body plan, C. elegans is an ideal model system to perform developmental studies.
In particular, all cells in the body can be imaged and identified using differential
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L1 larva
(~12 h, ~250 μm)

L2 larva
(~8 h, ~370 μm)

L3 larva
(~8 h, ~500 μm)

L4 larva
(~10 h, ~630 μm)

embryo
(~12 h, ~50 μm)

adult
(~2-3 weeks, ~1 mm)

Figure 1.4: Schematic of C. elegans life cycle at 22◦C . Embryos are laid
approximately 3 hours after fertilization and continue developing for about 9
hours until hatching occurs. Numbers next to each animal indicate the length
of each larval stage and the approximate length right after each ecdysis event.
Figure adapted from Introduction to C. elegans anatomy chapter (WormAtlas).

interference contrast microscopy (DIC). As a result, all cell divisions have been
detected and the full lineage from single-celled embryo to adult organism has been
reconstructed [43].

Surprisingly, this study revealed that C. elegans development is largely invariant,
in that cells divide and differentiate in a stereotypical manner. This suggests that C.
elegans development, because of its extraordinary robustness, must be optimized
to strongly suppress noise. For this reason, C. elegans is an ideal model system to
study how deterministic developmental processes efficiently suppress molecular
fluctuations. In this thesis, we did not directly examine mechanisms of noise
suppression, but, as a starting point, we characterized the degree of variability
in two developmental processes that show an invariant outcome: stem-cell like
division patterns (Chapter 3) and gene expression oscillations during development
(Chapter 4).

Even though C. elegans development is largely invariant, a few examples exist
in which cells undergo stochastic cell fate decisions [44, 45]. The fact that these
stochastic cell fate decisions take place within an environment inside the animal
which is otherwise invariant, could potentially make it easier to pinpoint the sources
of noise driving the cell fate decision. In Chapter 5 of this thesis, we perform a
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quantitative analysis aimed to elucidate the sources of noise and the mechanisms
underlying one of the best-understood stochastic cell fate decisions in C. elegans:
the so-called AC/VU decision [37].

Because of the highly dynamic behavior and long duration of these processes,
an approach able to follow single C. elegans larvae over the full post-embryonic
development is an essential requirement. Moreover, because these developmental
processes often involve a small number of cells, this approach should provide
enough spatial resolution to follow single cells. In the next section, I will review a
number of techniques currently used to perform time-lapse microscopy of C. elegans
development and argue that none of them are suitable for the experiments we aim to
perform.

1.4 Time-lapse microscopy of C. elegans
A first basic time-lapse microscopy protocol has been established in 1988 to follow
C. elegans larvae during development [46]. This technique is meant to aid the lineage
analysis during the post-embryonic development of the animal [47], and requires
manual loading of a single larva on a standard microscopy slide together with a small
amount of E. coli bacteria as food source. Standard DIC microscopy techniques then
allows researchers to image single nuclei and detect cell divisions.

Despite the technical simplicity of this technique, it is an inefficient way of
imaging live animals, and presents several disadvantages. First, the whole process is
manual, therefore extremely time-consuming and laborious. Second, only a single
animal can be imaged at a time, thus severely limiting its throughput. This is in
particular a problem when multiple animals in parallel need to be followed.

As an improved version of the previous technique, some paralysis-inducing
drugs such as levamisole or sodium azide can be used to follow many animals in
parallel by preventing them from moving [48]. However, such drugs also prevent the
animal from feeding, leading to developmental arrest within a few hours. Therefore,
a technique that combines the ability to follow many animals in parallel and to
perform imaging over developmental time-scales is required. In order to tackle these
challenges, several approaches have been recently developed that rely on microfluidic
devices.

1.4.1 Microfluidic devices to study C. elegans
Microfluidics recently emerged as an important tool to perform microscopy analysis
of C. elegans animals. In the last decade, microfluidic devices have been successfully
used to study single bacterial cells [49], yeasts [50] and fruit fly embryos [51]. One
of the great advantages of microfluidic devices is that environmental conditions
can be controlled, possibly allowing for diffusion of chemicals at a specific time.
Typically, a master mold with the desired pattern is created with soft-lithography
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techniques. The mold is then used to create the inverse pattern in a soft material.
PDMS (polydimethylsiloxane) is often the favorite material as it is transparent,
permeable and biocompatible [52].

As many other biological fields, the C. elegans research field has been impacted
by the advent of microfluidics, and a large variety of microfluidic devices has been
recently designed [53, 54]. One typical application is worm handling, in which
individual animals are loaded into narrow channels using an external flow [55].
Similarly, immobilization techniques can be used to perform high resolution imaging
of sub-cellular structures. Immobilization can be achieved by flowing a cooling
liquid in a separate channel [56], by deforming a flexible layer to compress the
animal in a loading channel [57] or by reversibly gelating the surrounding fluid
[58]. When immobilization is not necessary, animals can be placed in chambers or
droplets, where food is provided and biological waste is removed through fluidic
channels [59].

The majority of these techniques is geared towards the handling of adult
animals, and they have been successfully used to perform behavioral studies,
mutant screening and laser microsurgery [60–62]. However, as food is not
provided to the animals, these techniques are not designed to sustain the full
post-embryonic development. In the very few cases in which normal larval
growth was supported, the techniques lacked the required spatial resolution to
study sub-cellular processes [63, 64]. Moreover, the technological complexity of
such techniques, consisting of multiple layers channels, liquid flow controls and
surface treatments is a technological barrier for many C. elegans biology laboratories.

In this thesis, I present an approach in which larvae are confined in small
microfabricated chambers that have minimal impact on the animals in terms of
mechanical stress (Chapter 2). At the same time, animals are able to freely move and
feed in order to progress through the full post-embryonic development. Moreover, the
minimal technological investments make our approach highly accessible to standard
biology laboratories.

1.4.2 Microscopy techniques to image developmental processes
In addition to a device able to handle individual animals, a microscopy technique able
to image developmental processes in live C. elegans larvae is needed. Development
of multi-cellular organisms is driven by a variety of processes, such as tissue
formation, cell division and gene expression. Thus, the main challenge in imaging
developmental processes is to follow processes that occur simultaneously and at
very different length scales. Specifically, this requires an imaging technique with a
field of view large enough to image the whole animal, but still with enough spatial
resolution to image sub-cellular events.

Many recent approaches try to match a large field of view with high spatial
resolution. In fluorescence microscopy, axial resolution can be improved by optical
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sectioning, a way to reject fluorescence light coming from out of focus focal planes
[65]. Such techniques include confocal microscopy and two photon microscopy.
Despite the high spatial resolution, these techniques require scanning of the incident
beam over the area to be imaged. Therefore, there is a trade-off between field of
view and acquisition speed. Often, high frame rate is achieved by illuminating only
a small area, therefore limiting the field of view.

Techniques that are capable of large field of view imaging and high spatial
resolution are limited. Recently, light sheet fluorescence microscopy (LSFM) proved
to be an important technique capable of imaging large samples with high frame
rate and medium resolution [66, 67]. With LSFM two objectives are used. An
illumination objective shapes the laser beam in a thin sheet. A detection objective
oriented in the orthogonal direction is used to collect the fluorescence light emitted
from the sample. The main advantage of this technique is that phototoxicity, i.e. the
toxicity damage caused in the sample by illuminating with high intensity light, is
reduced compared to standard confocal techniques. That is because a single plane
is illuminated at the time. Moreover, imaging can be fast, as no laser scanning
is required, as in confocal microscopy. Light sheet fluorescence microscopy has
been applied successfully to the study of embryonic development of Drosophila,
Zebrafish and C. elegans [68, 69]. However, these techniques are not suited for
imaging of C. elegans larvae, as they require a peculiar sample loading, in which
the organism is embedded in a cylinder made of agarose gel and placed vertically in
the microscope [70]. Few alternative configurations exist in which sample loading is
more conventional, but these come at the cost of increased complexity in the design
and have never been tested for developmental studies [71–73].

A novel and recent development of optical sectioning techniques is multifocal
temporal focusing [74, 75]. This technique has the typical diffraction limited
resolution of a two-photon imaging system and is able to image large field of
views at high speed. The microscope design is completely equivalent to a standard
confocal microscope, so that the sample can be loaded on the stage with a standard
microscope slide. Temporal focusing has been used to perform whole brain calcium
imaging at high spatial and temporal resolution in C. elegans and mice [76, 77],
and it represents the most promising technique for fast, large field of view, high
resolution imaging of freely moving animals. However, this technique is geared
towards the imaging of thick opaque samples such as brain tissues. Therefore,
when studying a simple transparent organism such as C. elegans, this technique is
unnecessarily complicated. In fact, while optical sectioning is essential for thick
samples imaging, it is often unnecessary for C. elegans imaging [78]. Instead, in
order to image freely moving animals, we chose to develop a simpler technique that
is optimized for acquisition of large field of views at high speed with high enough
spatial resolution to follow single cells.

In this thesis, I present a technique to perform long-term fluorescence time-lapse
microscopy of live C. elegans (Chapter 2). Our approach uses an imaging system
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that is capable of acquiring large field of views at high frame rate but, at the same
time, that is able to resolve single cells and sub-cellular structures. We use bright
epi-fluorescence laser illumination to provide sharp and highly resolved fluorescence
images with high temporal resolution in freely moving animals.

1.5 Thesis outline
In Chapter 2, I describe our fluorescence time-lapse microscopy technique: a
combination of microfabricated chambers, wide-field fluorescence microscopy and
image analysis. I provide the protocols used to perform the microfabrication, a detail
description of our imaging system and a characterization of the performance of the
setup in terms of single cell localization and fluorescence intensity quantification.
Next, I test whether C. elegans larvae develop normally in our microfabricated
chambers. In particular, I elaborate on the effects of microchamber dimensions and
food availability on the development of C. elegans larvae. I find that individual
animals develop normally in our microchambers as long as food is available.

In Chapter 3, I test the capability of our approach to follow single cells, by
performing a quantitative lineaging study of cell divisions during development. In
particular, I perform lineage analysis of seam cells, a model system for stem cell-like
behavior, in multiple animals over the full post-embryonic development. To this end,
I use fluorescence time-lapse microscopy of animals in which seam cell nuclei are
fluorescently labeled. First, I perform a quantitative analysis of the time of division
of all the seam cells in multiple wild-type animals. I find that some seam cells divide
on average before others, suggesting that stage- and lineage-dependent temporal cues
are responsible for the temporal regulation of seam cell divisions. Next, I characterize
the variability in timing of divisions in this otherwise invariant developmental process.
Moreover, by repeating the lineage analysis in mutant animals in which these cells do
not follow the stereotypical division pattern, I show that stage- and lineage-dependent
mechanisms are responsible for the correct execution of the stem-cell like divisions.

In Chapter 4, I prove that our setup is capable of quantifying gene expression
levels, even in single cells, using fluorescence transcriptional reporter strains. To do
so, I quantify the dynamics of expression of two genes which show an oscillatory
behavior over the course of development. The first gene is expressed in the whole
body of the animal, while the second is exclusively expressed in a number of cell
nuclei. I find that expression of these two genes peaks once every larval stage. Next,
I characterize the noise levels in the dynamics of these oscillations, and find that the
times of the oscillation peaks show significant animal-to-animal variability. However,
these times strongly correlate with the times of the closest molt, suggesting that a
noise generated by a common source equally impacts the times of oscillations peaks
and the times of ecdysis.

In Chapter 5, I show that our approach contributes to the understanding of
a simple stochastic cell fate decision, the AC/VU decision, which relies on the
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communication between two cells, referred to as α cells. Thanks to the well-known
underlying gene regulatory network, we can use our time-lapse microscopy technique
to study, for the first time, the dynamics of expression of the key molecular players
involved in the decision. To this end, I use our fluorescence time-lapse microscopy
technique on transcriptional reporter strains. Here, I aim to elucidate the sources
of noise responsible for the AC/VU cell fate decision process. I show that, as
previously reported, the birth order of the α cells biases the outcome of the process.
However, I also show that other sources of noise must be responsible for the cell fate
determination when the two α cells are born at similar times. Next, I explore whether
the stochastic expression of lag-2, one of the key components of the underlying gene
regulatory network, before the time of births of the α cells, i.e. in their mother cells,
could form this additional source of noise and, hence, bias the decision when the α
cells are born at similar times. However, our results are not conclusive, leaving the
identification of additional sources of noise an open question. At the end, I comment
on future directions to address this open question.
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2
Experimental method and C. elegans
development in microfabricated chambers

This chapter is part of the following publication:
"N. Gritti, S. Kienle, O. Filina and J. S. van Zon,

Long-term time-lapse microscopy
of C. elegans post-embryonic development.

Nat. Commun. 7:12500 doi: 10.1038/ncomms12500 (2016)."

Thanks to its simple body plan, short life cycle and transparency, C. elegans is
an ideal model system to perform quantitative studies of developmental processes.
Despite these advantages, there is currently no technique available to study the
full post-embryonic development of individual living C. elegans with high spatial
and temporal resolution. This limitation is due to the high motility of C. elegans
larvae and their need to feed in order to properly develop. The standard time-lapse
microscopy technique consists on imaging freely moving animals on a nematode
growth medium (NGM) agar plate or on a microscope slide. Although this technique
has been successfully used to perform neuronal and optogenetic studies [79, 80],
it does not allow to image multiple animals in parallel, a key requirement when
studying stochastic processes.

Current microfluidic devices designed to perform time-lapse microscopy of
C. elegans are optimized to temporarily immobilize the animal, allowing high
resolution imaging. Immobilization is accomplished using various strategies, in-
cluding clamping [81, 82], compression [83, 84], cooling [85], nanometer size
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beads [86] and gelation of the environment [87]. However, approaches based on
microfluidics to immobilize animals have two major disadvantages. First, they
are not designed to sustain imaging over developmental timescales. Second, their
complicated designs often have undesired impacts on the animals during imaging.
For instance, immobilization techniques have the potential to damage the cuticle
of the larvae or to cause stress responses. In fact, previous works confirmed that
physiological changes occur as a response to chemicals, mechanical stimulations
and temperature changes [88–91].

In order to perform time-lapse microscopy over developmental timescales, single
animals should be kept confined in an area that contains enough food to ensure
proper development. Recently, solutions have been proposed that sustain larval
development. Such systems use wells filled with agar gel and nutrients [63], growth
chambers with inlet and outlet channels [64] and water-in-oil droplets filled with an
aqueous solution containing nutrients [92]. This techniques have been successfully
used to study motility of C. elegans larvae when exposed to different chemicals [93]
and to quantify some markers of developmental progression such as growth rate
and timing of larval stage transitions [64]. However, due to the large size of the
compartments, these techniques are not compatible with high resolution imaging.
Therefore, they do not provide sufficient spatial resolution to study developmental
processes at the single-cell level.

We aimed to design a technique in which the impact of the device and imaging
system on the development of the larvae is minimal. Ideally, this technique should
be sufficiently simple as to be used by C. elegans biology laboratories, while at the
same time allowing to perform time-lapse microscopy of post-embryonic C. elegans
development with high spatial and temporal resolution over multiple animals in a
parallel fashion.

Inspired by previous works [94], we explored the possibility of confining
individual larvae in microfabricated compartments. First, we confine individual
larvae in hydrogel-based microcompartments filled with E. coli bacteria as food
source. The microfabricated chambers are large enough to provide sufficient food to
sustain development for the full duration of the experiment, while small enough to fit
in the field of view of the camera chip when using high magnification objectives to
capture single-cell processes. Second, we use an imaging acquisition setup capable
of acquiring images of larvae as they move inside the chamber. A combination of
fast camera and bright illumination allows us to acquire sharp transmission and
fluorescence images at different focal planes for each chamber even when animals
are highly motile. Third, we use image analysis to reconstruct the dynamics of
developmental processes between images at different time-points, such as cell
divisions. This is a crucial part of our technique: instead of mechanically modifying
the body shape and constraining the animal in a narrow channel, we image freely
moving animals and exploit image processing techniques to obtain results that are
independent of the body shape of the animal. For instance, we computationally
straighten the animal body to define a convenient anteroposterior reference system.
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This aids the analysis of the developmental processes we are interested in, including
cell division detection and gene expression quantification, both in the whole animal
and in single cells. One great advantage of our technique is the ease of use compared
to previous microfluidics approaches: no multiple layers channels or liquid flows are
required. Even though the idea of using microcompartments to confine individual
animals is not new [94], it has only been used to study behavior over a limited time
period and not to follow cellular dynamics over the full duration of development.
Moreover, for reasons to be discussed in the next section, we propose to use an
alternative material, polyacrylamide hydrogel, to the one previously used, agarose
hydrogel.

In this chapter, I describe in detail our technique and show that it can sustain
normal development. In Section 2.1, I describe how to fabricate microchambers in
polyacrylamide hydrogel and how to confine C. elegans in such chambers. Next, I
introduce the fast acquisition setup to perform volumetric imaging at ~100 fps in an
automated fashion (Section 2.2). In the same section, I characterize the ability of
our setup to quantify fluorescence signals and I briefly comment on the amount of
data generated by our technique. Finally, in Section 2.3, I test whether wild-type C.
elegans larvae develop normally when confined in microchambers by quantifying
several markers of developmental progression.

This chapter shows that we have developed a powerful new technique to perform
time-lapse microscopy of freely moving and feeding C. elegans larvae in a parallel
fashion and with high spatial and temporal resolution. In addition, our findings show
that microchambers are able to sustain the full post-embryonic development of C.
elegans larvae.

2.1 Microfabrication of polyacrylamide hydrogel
chambers and sample preparation

Due to their tunable mechanical properties [95], hydrogels are the most common
choice for the creation of microenvironments to study micro-organisms. In particular,
agarose hydrogel has been succesfully used to confine bacteria for single cell studies
[96–98]. The great advantage of this hydrogel is its permeability to chemicals,
which provides control and uniformity of the microenvironment without the need
of complicated flow systems. Recent experiments showed that agarose hydrogel
microcompartments can be created to confine live nematode larvae for behavioral
studies [94]. However, agarose is fragile and difficult to handle, especially in the
thin layers required to create the microcompartments. Moreover, agarose consists
mainly of water and galactase, which is easily metabolized by micro-organisms [99].
Therefore, the microenvironment to which single animals are exposed is subject to
degradation.

A good alternative to agarose is polyacrylamide. Polyacrylamide hydrogel
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has many practical advantages that make it an ideal material to create microenvi-
ronments to confine biological samples. Polyacrylamide is widely used for DNA
and protein electrophoresis, and thus it is easily accessible to biology laboratories.
Polyacrylamide gels are ideal for microfabrication because they have highly tunable
elastic properties and their micropatterning is easily accomplished by cost-effective
techniques [100–102]. Thanks to its versatile mechanical properties, polyacrylamide
is less brittle and easier to handle (fracture energy G ~10 - 50 J ·m−2) than agarose (G
~0.1 - 6 J ·m−2) [103]. Moreover, in contrast to agarose, the polymers that compose
the gel are not metabolized, making it an ideal material to study biological samples
in a stable microenvironment. Despite the fact that residual monomers in the gel are
toxic, polyacrylamide is fully biocompatible when proper washing steps are used to
remove the monomers [100]. Polyacrylamide hydrogel has been successfully used
to fabricate highly controllable microenvironments to observe bacteria, yeast and,
for short time periods, C. elegans [104].

Considering its ease of use and tunable mechanical properties, we chose poly-
acrylamide hydrogel to create microfabricated chambers to confine larvae in a small
area. Chambers are filled with food to sustain development over the course of the
experiment. Therefore, chamber dimensions should be chosen based on the duration
of the biological process of interest. The shape of the chambers should also be
optimized: considering that most cameras have a squared chip, we designed squared
microchambers to maximize the relevant area that is imaged. The depth of the
chambers is also optimized. On the one hand, they are shallow enough to prevent C.
elegans larvae from moving in the axial direction, therefore minimizing the number
of focal planes to be imaged. On the other hand, chambers are deep enough to
prevent larger animals from being damaged by mechanical compression. To this end,
the tunable mechanical properties of the hydrogel are beneficial, as we can optimize
polyacrylamide stiffness such that it deforms to accomodate larger animals with
modest compression in the axial direction.

2.1.1 Microfabrication
In our approach, we created a master mold with standard soft-litography techniques
[105]. To pattern a 4 inch silicon wafer, the following protocol was used:

• The 4 inch silicon wafer was cleaned with isopropanol and cleared of dust
particles before heating it on a hotplate at 150◦C and cooling it with nitrogen
air (N2). Next, the silicon wafer was spin-coated with an epoxy resin (SU-8,
MicroChem, Fig. 2.1A). The viscosity of the epoxy resin was chosen and the
speed of the coating was tuned to obtain homogeneous layers of 10 or 20 µm
(Table 2.1).

• The silicon wafer was placed on a hotplate at 65◦C for 3 minutes and trans-
ferred to a 95◦C hotplate for 5 minutes. The silicon wafer was then allowed to
cool down at room temperature for about 30 minutes. This process, called soft
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Figure 2.1: Fabrication of microchambers. (A) A thin layer (10-20 µm) is
spin coated on a 4 inch silicon wafer. The maximum speed is reached in two
steps: first, to homogeneously spread the SU-8, 500 rpm speed is reached with
an acceleration of 100 rpm/s, and it is maintained for 15 seconds. Then, the
desired speed is reached with an acceleration of 500 rpm/s and maintained for 45
seconds (Table 2.1). (B) The silicon wafer is exposed to UV light. A foil mask
is used to pattern the SU8. Exposure time used was 20 s. (C) The silicon wafer
is immersed in SU-8 developer (Mr. Dev 600) for approximately 3 minutes to
remove the SU-8 in excess. (D) The patterned silicon wafer is cut in 3 molds
with the same size as a glass slide (26 mm x 76 mm). (E) Preparation of the
polyacrylamide chambers. One mold is glued to a glass spacer with high vacuum
grease. A 29:1 solution of polyacrylamide-bisacrylamide is poured in the cavity.
A silanized glass slide is lowered on the solution and mechanically clamped. (F)
After approximately 2 hours, the glass slide is removed. Each array of chambers
is cut and washed in distilled water.

bake step, was needed to improve the adherence of the SU-8 to the surface of
the wafer.

• Epoxy resins are negative photoresists, i.e. light-sensitive materials that cross-
link when exposed to ultraviolet light (λ≤ 400 nm). We then used a foil mask
and exposed the image to UV light, such that only part of the SU-8 layer cross-
linked (Fig. 2.1B). The time the mask is exposed depends on the power of the
illumination source, and in our case we used a 20 second exposure time at 25

29



2 Experimental method and C. elegans development in microfabricated chambers

Thickness (µm)
Speed (rpm) SU-8 3010 SU-8 3025
3000 12 26
3500 10 22.5
4000 9.5 19.5

Table 2.1: Thickness of SU8 photoresist. The thickness of the photoresist
depends on the maximum speed and on the viscosity of the SU-8 used. SU-8
3025 is more viscous than SU-8 3010. Thickness is in µm.

mW. The foil masks contained the desired pattern, in our case consisting of 9
arrays of 10x10 squared chambers. Final dimensions of the microchambers
are equal to the dimensions of the structures on the mask.

• A post bake step was used to help adhesion of the cross-linked SU-8 to the
silicon surface. The silicon wafer was treated at 65◦C for 1 minute and at 95◦C
for 6 minutes. Subsequently, it was let to cool down at room temperature.

• To remove the SU-8 in excess, we immersed the full silicon wafer in a chemical
solvent (Mr. Dev 600) for about 3 minutes, a process called development (Fig.
2.1C). The wafer was immersed for 10 seconds in another beaker with fresh
developer and for another 10 seconds in isopropanol to stop the development.
The patterned wafer was then dried with N2 air.

• Once the silicon wafer was dry, it was hard baked at high temperature (200◦C)
for 30 minutes on a hot plate to further cross-link the SU-8. This step also
greatly improves the hardness of the micropattern, therefore preventing usage
damage.

• The silicon wafer was then cropped with a diamond cutter to create the three
final master molds, each containing 3 arrays of 10x10 structures (Fig. 2.1D).

Once the patterned silicon wafer is ready, the fabricated mold can be used many
times to create microfabricated chambers in polyacrylamide hydrogel. To prepare
the polyacrylamide, we used a 29:1 ratio of acrylamide/bis-acrylamide solution
(Bio-Rad) diluted to a final 10% concentration. Ammonium persulfate (Sigma, 0.1%
of the volume) and TEMED (Sigma, 0.01% of the volume) were added to trigger the
polymerization. The solution was poured in a cavity created by a hollowed standard
microscope slide glued to the micropatterned silicon wafer with high vacuum grease.
The polymerization reaction starts immediately upon addition of TEMED, therefore
the solution must be poured in the cavity within 3-5 minutes. The cavity was
then closed with a silanized glass slide and sealed by mechanical clamping (Fig.
2.1E). The solution was left to polymerize for at least 2 hours. When the gel was
ready, the three arrays were cut with a scalpel from each cavity (Fig. 2.1F). After
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polymerization, acrylamide monomers might still be present in the resulting gel.
Acrylamide monomers are known to be a powerful neurotoxin, thus with the potential
to negatively impact development of C. elegans larvae. To remove the monomers, at
least 3 washing steps in distilled water of at least 3 hours each were necessary. When
using fewer or shorter washing steps, we found that C. elegans larvae development
was arrested during the first or second larval stage. Polyacrylamide gels could be
stored in distilled water for at least 15 days without any visible degradation.
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Figure 2.2: Sample preparation. (A) Schematic of the sample. A glass spacer
is glued to a glass slide. The microchamber array is placed in the center
of the cavity and single animals are transferred together with bacteria in the
microchambers. The sample is closed with a coverslip ~100 µm thick. (B) The
sample is mechanically clamped and sealed in a custom fabricated sample holder
to prevent liquid evaporation. (C) The sample is placed upside down on the
microscope to perform epi-fluorescence microscopy.
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2.1.2 Sample preparation
To prepare the sample, we first transferred a microchamber array in M9 buffer for
about 4 hours. C. elegans larvae were synchronized as follow: 15-20 adults were
transferred on a fresh NGM agar plate spotted with E. coli bacteria (OP50) and
allowed to lay eggs. After about 2 hours, the adults were transferred back to the
original plate, so that the eggs left on the fresh plate were synchronized within
a 2 hours period. The eggs on the fresh plate are then ready to be immediately
transferred into the microfabricated chambers. A glass spacer with the same height
as the polyacrylamide gel was glued to a glass slide using high vacuum grease (Fig.
2.2A). A single microchamber array was positioned on the glass slide, with the
microchambers facing up. Excess liquid was removed with a tissue. The required
time to transfer around 25-30 embryos is about 15 minutes. This is already long
enough for the liquid to evaporate, causing the polyacrylamide gel to bend. To
prevent this, a ~40 µl drop of M9 buffer was placed on the side and on the surface of
the microchamber array, taking care to not let the liquid fill the chambers. Under a
dissection microscope, a drop of bacterial suspension containing a single embryo
was collected with an eyelash and transferred from the NGM agar plate into a single
microchamber. To facilitate the release of the bacteria and embryo into the chamber,
the eyelash was briefly dipped into the M9 drop prior to touching the microchamber.
Ideally, the microchamber was already filled with enough OP50 bacteria after this
step. However, if necessary, more bacteria were transferred to fill it completely.
Subsequently, excess liquid was removed with tissue paper and the sample was
closed with a #1 coverslip. The coverslip was lowered slow enough to avoid the
formation of large air bubbles in between the polyacrylamide and the coverslip.
The sample was then placed on a holder fabricated by the AMOLF mechanical
workshop. The holder is optimized to minimize weight, thus allowing for rapid
sample scanning along the axial direction. Moreover, the holder contains mechanical
clamps to prevent liquid evaporation from the sample during the full duration of the
experiment (Fig. 2.2B, C). Our design allowed us to load up to 50 chambers in a
single sample.

2.2 Time-lapse microscopy setup
In order to study developmental processes with single cell resolution, we need to
image individual chambers with high magnification and high numerical aperture
(N.A.) objectives. However, C. elegans larvae can be highly motile. Therefore,
in order to avoid motion blur due to the animal movement during a single image
acquisition, we used an imaging system that provides bright illumination to reduce
exposure time as much as possible. Moreover, to minimize movement between
images acquired at different Z positions, we optimized our imaging system to quickly
scan the sample along the Z direction.

Typically, cell lineages, migration and differentiation in C. elegans span many
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hours of the post-embryonic development. Therefore, images typically need to
be acquired on a timescale of minutes in order to resolve the dynamics of the
developmental process. However, fluorescence microscopy causes phototoxicity in
biological samples, especially when bright illumination (e.g. lasers) is used with
long exposure times. A trade-off between exposure time, illumination power and
time interval had to be determined for every experiment, but we generally found that
5-20 minutes time resolution and 1-10 ms exposure time do not lead to detectable
phototoxicity. Moreover, as we want to perform parallel imaging of multiple animals,
an automated system able to move through different chambers and acquire volumetric
images is necessary.

2.2.1 Imaging setup
Instead of designing a completely new imaging system, we decided to optimize a
commercially available inverted wide field microscope (Nikon Ti-E) to our needs
(Fig.2.3A). We opted for a standard epi-fluorescence microscope with limited optical
sectioning capability in favor of bright illumination and fast volumetric imaging.
For all the experiments performed, the optical sectioning of our imaging setup
was enough to resolve single cells and sub-cellular features. In fact, while optical
sectioning techniques are essential for thick samples like vertebrates, they are often
unnecessary for C. elegans imaging [78].

In our setup we used high magnification objectives (40X and 60X) and a camera
with the largest possible chip (2048 x 2048 pixels Hamamatsu sCMOS Orca v2).
The high numerical aperture of both objectives (N.A. = 1.3 for 40X, 1.4 for 60X)
provides high spatial resolution, allowing to resolve sub-cellular structures (<1 µm).
At the same time, the field of view of the camera was large enough to accommodate
an entire chamber. In order to minimize the amount of UV light in the sample, which
causes C. elegans larvae to move faster [106], transmission imaging was performed
using a red LED (CoolLED p-100 615 nm).

In addition, we equipped our setup with two lasers for excitation of green
(Coherent OBIS LS 488-100) and red fluorophores (Coherent OBIS LS 561-100).
In contrast to standard lamp illumination systems, lasers have a much narrower
bandwidth and a much higher intensity (80-100 mW). With these lasers, even very
short exposure times (1-10 ms) were enough to have a high signal-to-noise ratio for all
the strains studied. Moreover, as C. elegans larvae are highly motile even in absence
of UV light (peaking at 50 µm s−1 for reversals), short exposure times minimize or
even eliminate motion blur of fluorescently-labeled cells during acquisition. The
two laser beams were combined in a single optical path with a dichroic mirror
(Semrock LM01-503-25). In order to illuminate the microfabricated chambers as
homogeneously as possible, we expanded the original laser beam from 0.7 mm to
36 mm with a telescope composed of two achromatic lenses of 10 and 500 mm
focal length (Thorlabs), respectively. The expanded beam was then aligned through
dielectric mirrors (Thorlabs) to enter the back aperture of our Nikon Ti-E inverted
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Figure 2.3: Imaging system. (A) Schematic of the optical setup. (B)
Representation of the synchronization of the devices during volumetric imaging
of a single chamber with two imaging channels (transmission LED and one of
the two lasers). The camera is operated in rolling shutter mode: every line of
the camera chip is active at slightly different times (green lines, bottom part).
The delay between the first and the last lines is about 10 ms. In our case we
synchronized the laser and LED (yellow and red lines, middle part) to switch ON
only when all the pixels of the camera chip are active in order to perform a global
exposure (yellow and red rectangles, bottom part). We synchronized the piezo to
move to the next position only when both channels have been imaged and when
the camera is not in global exposure (blue curve, top part). In this way, while the
camera is reading out the pixel values, the sample is positioned to the next focal
plane. In this configuration, two channels with 5 ms exposure times can be image
in 30 ms. A full stack of 20 images is acquired in 600 ms.

microscope. A tube lens of 300 mm focal length (Thorlabs) was used to focus the
beam in the back focal plane of the objective. We used a dual band filter set (Chroma
#59904) to perform fluorescence imaging with both 488 nm and 561 nm excitation
without the need to mechanically move between two different filter sets.

In designing the depth of the chambers, there is a trade-off between the amount
of food available and the degree of compression in the axial direction: chamber depth
(10-20 µm) was optimized to provide enough food to the animals to develop during
the full duration of the experiment, while being able to confine the animals as much
as possible in the axial direction. In particular, the depth of our chambers ensure that
young larvae are slightly compressed in the axial direction, while older larvae are
not mechanically damaged by excessive compression. Most of the developmental
processes we intend to study are happening in different focal planes, so 3D imaging
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2.2 Time-lapse microscopy setup

is necessary. In most of our experiments, we scanned the full depth of the chambers
with 1-2 µm spacing, resulting in a full stack of about 15-20 images. In order to
minimize larval movement over the acquisition of a full stack, we used a Z piezo
stage (Nano Drive 85, Mad City Labs) to move the sample between two subsequent
focal planes within 10 ms.

Accurate synchronization between the laser, the camera and the piezo stage is
necessary to make sure that images are acquired at the right focal plane only when
the sample is illuminated. The sCMOS camera operates in rolling shutter mode,
meaning that the lines on the chip are not active all at the same time, but there is
a delay (10 µs) in between the activation of two consecutive rows. Our camera
has 2048 rows, and the read out of the chip starts from the row in the center and
moves in the two opposite directions, such that two rows are read out simultaneously.
Therefore, the delay between the first line in the center of the chip and the last two
lines at the edges is about 10 ms (Fig. 2.3B). During the time in which all the lines
were simultaneously active and collecting light for the same frame, the laser or the
LED was switched ON (rise time 3 µs). When the first line started to be read out, the
illumination was turned OFF. This procedure was repeated for all the preselected
channels. During the 10 ms in which the image was being transferred from the chip
to the internal memory of the camera, the fast Z piezo stage moved the sample to
the next Z position (Fig. 2.3B). In this way, acquiring a single imaging volume,
consisting of 20 slices in two channels, with 5 ms exposure times and 10 ms readout
time, took 20x2x15 = 600 ms.

Since our microfabrication technique allows for confinement of multiple ani-
mals in the same sample, we also equipped our setup with a motorized XY stage
(MicroDrive, Mad City Labs) to move between different chambers. Because of the
long duration of our experiments, the sample may experience significant drift along
the axial direction. If the position of the objective is not corrected by the drift of
the sample, the distance between the objective and the sample would change over
time, and the images would eventually be out of focus. To avoid this, we defined a
home position in the sample where no chambers are present, and used the Perfect
Focus System (PFS) provided by the microscope to correct for sample drift in the
Z direction. In particular, the PFS adjusts the position of the objective so that the
distance between the objective and the closest glass surface of the sample is constant.
As the position of each chamber is defined by the piezo stage, the drift correction
did not actually change the position of each chamber, but only the position of the
objective relative to the sample. At the end of the waiting time, PFS was switched
OFF and images were acquired for all the chambers. After all chambers were imaged,
the objective was moved back to the home position and the PFS was switched ON
again, therefore correcting the position of the objective for the drift of the sample
until the next acquisition starts.

Overall, the total time it takes to acquire a full stack of a single chambers (600
ms) was given by the exposure time of a single image and by the readout time of
the camera chip. With these exposure and readout times, for all the experiments
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performed, we found that larval motility was negligible and that single images were
not affected by motion blur. On the other hand, the interval between subsequent
time points was instead limited both by the slower XY movement between different
chambers and by the data transfer to the computer drive. We found that we could
image 30 animals in parallel every 10-20 minutes, which was a sufficient time
interval to capture the relevant dynamics of all the developmental processes analyzed
in this thesis. While shorter time intervals could be reached in order to capture the
dynamics of faster developmental processes, for instance using faster data transfer
tools, phototoxicity represents an unavoidable limiting factor on the time interval
between subsequent time points. Even though we have observed developmental
arrest for short time intervals (3-5 minutes), we did not find any detectable effect on
the development of the animals when imaging every 10 minutes, even when using
the maximum laser power (100 mW).

2.2.2 Characterization of the setup
Since we designed our setup to perform fluorescence microscopy to follow indi-
vidual cells and to quantify fluorescence intensity, we first decided to measure the
performance of our setup, both in terms of illumination pattern and reliability.

In order to quantify the homogeneity of the excitation beam, we used autoflu-
orescent plastic slides (Chroma) and acquired ~50 images using the PFS to make
sure that the same focal plane was imaged. We will refer to such images as flat
field images (Fig. 2.4). Because our microscope is designed to expand the beam 50
times, the beam assumed a broad Gaussian profile. This is reflected by the measured
pixel intensity distribution, with outer pixels showing ~80% of the central peak
intensity. Nevertheless, since many of our experiments were designed to quantify
gene expression in single cells with appropriate fluorescence reporter constructs, we
acquired this average flat field image after every experiment and used it to apply a
flat field correction according to the equation:

C = I −D

F −D
· 〈F −D〉 = (I −D) ·G (2.1)

where C is the corrected image, I is the raw image, F is the flat field image and D is
the dark field image. The dark field image is acquired under no light conditions, i.e.
when the camera shutter is closed. Brackets represent the pixel intensity averaged
over the full image. For each pixel in the position (i , j ), the quantity 〈F−D〉

(F−D)(i , j )
is

the gain value G to be applied to correct for the inhomogeneous illumination. This
correction factor is particularly important when the same cell is imaged over time, as
it will be found in different positions within the field of view over the course of the
experiment.

In fluorescence microscopy, every image is affected by blurring. In principle,
the acquired image is a convolution of the true object with the blurred image of
a point source, known as point spread function (PSF). When imaging conditions
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Figure 2.4: Flat Field illumination. An average over 50 images of the excitation
profile for both (A) 488nm and (B) 561nm excitations with the 60X magnification
objective. On the right and on top of each image, the plot profile for pixels along
the corresponding blue dashed line. Intensities are normalized to the highest pixel
value along the dashed line.

are optimal, it is sometimes possible to estimate such function and deconvolve the
raw images to recover a sharp representation of the object of interest [107]. This is
possible and easily implemented when objects are in a single focal plane, as no out
of focus effects need to be considered, and when fluorescence light is not affected by
heavy scattering through the sample. Unfortunately, our imaging design involves
many components that can cause scattering, including the polyacrylamide itself, the
bacteria floating in the microchambers and the tissues in the animal body. Therefore,
it is technically impossible to estimate a PSF in all the different conditions of the
sample. We therefore decided to estimate how fluorescence quantification is affected
by these optical disturbances. To this end, we imaged (i) autofluorescent slides, (ii)
beads coated with fluorescent molecules and (iii) fluorescently labeled animals in
chambers. We then compared the noise obtained when quantifying fluorescence
coming from these different samples (Fig. 2.5).

Autofluorescent slides were imaged under the same experimental conditions as
in Fig. 2.4. We then quantified the fluorescence intensity in small regions about 4 µm
wide. The time series are shown in Fig. 2.5A (bottom panels). When imaging
fluorescent beads, we embedded them in polyacrylamide hydrogel to emulate
experimental conditions. Because of the small mesh size of the gel and the large bead
diameter (0.7 µm), we assumed that beads are immobilized in the gel, and we imaged
a single focal plane with 3-4 seconds time interval (Fig. 2.5B). Position of the beads
were annotated manually and fluorescence intensity was computed by applying the
Otsu segmentation algorithm [108]. Briefly, this algorithm finds a threshold value
that maximizes the difference between pixel values inside and outside the mask. The
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mask was applied to a subregion including the bead of interest, and the fluorescence
intensity was computed by summing all the pixel values inside the mask. Time traces
are normalized by the mean value of each trace.
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Figure 2.5: Noise characterization. (A) Image of an autofluorescent slide (top).
Time series (bottom) of regions of interest highlighted with dashed boxes (top).
(B) Cropped image containing a fluorescent bead immobilized in polyacrylamide
hydrogel (top). Time series of the fluorescence intensity (bottom) for all the beads
in the original image. The red time series corresponds to the bead shown on top.
Red asterisk correspond to the image on top. (C) Image of a vulva precursor cell
labeled with hist::mCherry marker. In red the mask drawn manually. Timetraces
for 6 different cells are shown in the bottom. Red asterisk corresponds to the
image on top. In all the panels, to facilitate comparisons, time series have been
normalized by the mean value of the trace. Standard deviation of the time series
is indicated in each panel.

We found that time series of different regions in the autofluorescent slides are
highly correlated. This global effect is likely due to the fact that laser power is not
constant between different exposures. Nevertheless, such variability, measured as
the standard deviation of the time series, is less than 1% when compared to the mean
intensity (Fig. 2.5A). Fluorescence intensity collected from the beads is instead
highly dynamic, and single traces are not correlated. We found that fluorescence
quantification is affected by a 3% error (Fig. 2.5B). This is only partially due to the
laser power fluctuation. Instead, we speculate that quantification is highly dependent
on the exact position of the imaging plane and on the bead position along the axial
direction. This can vary due to small fluctuation in the relative position between the
sample and the objective and possibly due to small drifts in the position of single
beads in the gel.
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2.2 Time-lapse microscopy setup

So far we have focused on homogeneously fluorescent and immobile objects.
However, the final aim of our technique is to image single cells in an otherwise
freely moving larva. Therefore, we analyzed the fluorescence intensity of single
cells in the C. elegans strain stIs10226[his-72p::HIS-24::mCherry], in which a
histone promoter directly drives production of mCherry fluorescent protein in all cell
nuclei. This is a very convenient strain, as the nuclear marker expression is constant
over time. In our case, we used this strain to quantify the nuclear fluorescence of
manually selected cells. We imaged single animals in microchambers acquiring a
full stack every 10 seconds. We manually created the mask for each analyzed cell
in every timepoint. Because cells are mobile in the sample and can be found in
different positions, we performed the flat field correction as discussed previously
in this section, and quantified the fluorescence intensity of each cell (Fig. 2.4C).
We found that the variability of the time series is consistently higher (~14%) than
the variability found in the beads. Considering that the time series were acquired
in ~3 minutes, and that time series from different cells in the same animal seem to
correlate, it is unlikely that the measured variability is due to gene expression noise.
Instead, we speculate that such variability is due to some other biological aspects.
For instance, the degree of compression of C. elegans body is highly variable due
to the ~30 seconds defecation cycle. Therefore, nuclei can change their shape and
deform, thus affecting the quantification of the fluorescence intensity. Moreover, the
bacterial suspension might not be homogeneously distributed in the microchambers
and therefore the scattering properties of the sample might be dependent on the cell
position in all three dimensions. To prevent our quantification from being strongly
dependent on a single noisy image, we occasionally used data filtering approaches,
such as Gaussian filtering, to capture only the relevant dynamics of the time traces.
When used, I will discuss the filtering techniques in the relevant section for each
experiment.

2.2.3 Data handling
Because our camera produces 4 Mp images (2048x2048) with 16 bit depth, every
image is 8 Mb in size. Thus, as we typically acquire images in 15-20 different
focal planes, a full stack sums up to approximately 160 Mb per imaging channel.
Assuming two imaging channels are acquired (e.g. transmitted light and 488 nm
fluorescence), a single time point occupies about 320 Mb on the computer hard drive.
All together, the amount of data collected for a single animal imaged every 20 min
for 48 hours is 50 Gb. Therefore, within a single experiment, the amount of collected
data is easily scaling up to hundreds of GB or around a TB, depending on the number
of animals imaged in parallel.

A main challenge of the image analysis is to extract the correct quantitative data
from the raw imaging data. This requires several non-trivial steps, from loading of
large image stacks, to recognition of single cells and quantification of variables such
as fluorescence intensity. For each experiment presented in this thesis, a detailed
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description of the image processing techniques used to perform these tasks will be
given in the relevant section.

2.3 Larval development in microfabricated
chambers

In this section I characterize the development of wild-type animals confined in the
microfabricated chambers. In addition to show that the microfabricated chambers
and the imaging setup are suitable to perform long-term imaging of C. elegans larvae,
we found that such measurements have the potential to provide new insights in the
control of growth and response to food availability during development.

2.3.1 Experimental design and data analysis
To characterize development of wild-type animals in the microfabricated chambers,
we performed time-lapse microscopy using red light-emitting diode (LED) trans-
illumination. Each experiment was performed until the food source was exhausted
or until adulthood. Because no laser illumination was used, we could acquire images
with a short time interval (typically 5 minutes). For each animal, we performed
an average-projection along the Z-axis of the slices from a single stack. Images
at different timepoints were then combined to create a movie of a single animal
developing in a microchamber, such that the full ~30 Gb of data for a single animal
are compressed in a series of images of ~100 Mb (~350 frames).
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Figure 2.6: Data analysis schematic and body elongation curve. (A) Example
of a single spline curve x(s) (yellow line) fitted over manually selected points
along the body axis (red dots). Time stamp represents hours after hatching (B)
Example of body elongation curve (blue line) over time for a single animal. Red
asterisk represents the length of the timepoint shown in panel A. Dashed vertical
lines represent the timing of each ecdysis events.
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We then used this data set to directly measure two markers of developmental
progression. We first annotated the times of hatching, marked by the emergence of
the L1 larva from the egg, and ecdysis, evident by the appearance of the old cuticle
inside the chambers. Due to the short time interval used, we could detect ecdysis
events with 5 minutes accuracy. Second, we measured the body length extension as
a function of time (Fig. 2.6A) using a custom graphical user interface implemented
in Python. For each timepoint, we manually selected 10-20 points on the animal’s
center line and subsequently fitted a spline curve x(s) to these points, with s being
the arc length of the spline curve along the anteroposterior axes. Body length in a
single timepoint was given by the length of the spline curve x(s) (Fig. 2.6B).

2.3.2 Wild-type larval development
In order to test whether food availability can affect C. elegans development, we cre-
ated microfabricated chambers with different dimensions that can contain a variable
amount of OP50 bacteria. I will refer to these chambers as small (190x190x10 µm3),
medium (250x250x20 µm3) and large (290x290x25 µm3) chambers (Fig. 2.7A). We
observed that, independent of chamber dimensions, newly hatched larvae remained
constrained in the chambers over the course of the experiment (Fig. 2.7B).

As chambers of different dimensions can contain different amounts of OP50
bacteria, smaller chambers might not contain enough food to sustain development
over all four larval stages. Indeed, only when using medium or large chambers, did
larvae develop into adults and were eventually able to lay eggs inside the chambers
(Fig. 2.7B, last image). In contrast, we observed developmental arrest of animals
confined in the small chambers. This is likely a consequence of the limited food
supply.

To test whether body elongation agrees well with standard C. elegans culture
conditions, we compared body length of animals grown in microchambers with
body length of animals cultured on standard NGM agar plates. Our setup is not
temperature-controlled and, instead, we kept the temperature in the room at 20◦C
during all the experiments. However, when we measured the temperature in close
proximity to the sample on the microscope, we found that the local temperature
was 22◦C. As C. elegans development is strongly dependent on temperature, we
therefore performed the experiment on standard NGM agar plates in an incubator
at 22◦C. Briefly, adult animals were transferred on a large NGM agar plate. After
about 2 hours, each of the laid eggs was transferred on a single small NGM agar
plate spotted with OP50 bacteria. Hatching time was detected by visual inspection
of the plates every 10 minutes. Animals were then manually tracked and imaged
every 12 hours, and body elongation was measured as previously described.

We found that body elongation of animals grown in medium and large chambers is
comparable to that of animals grown on NGM agar plates (white dots in Fig. 2.8A,B).
Moreover, the body length at the start of each larval stage agreed well with previous
measurements [109] (Fig. 2.8D), suggesting that C. elegans larvae develop normally
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Figure 2.7: Example of a typical data set. (A) Comparison between the
different chamber size used in this chapter. Left: small chambers (60X
magnification), center: medium chambers (40X magnification), right: large
chambers (20X magnification). Compare main text for actual dimensions. (B)
Collection of frames from a movie of a single animal imaged in medium chambers.
Time stamps represent hours after hatching.

over the full post-embryonic development inside the medium and large chambers.
Therefore, we conclude that these chambers can be used to study developmental
processes spanning all four larval stages (Chapters 3, 4). However, to perform such
experiments we chose medium chambers instead of the large chambers because they
fit in the field of view of the camera when imaged with a 40X magnification objective,
which has a higher N.A. (1.30) compared to the 20X objective (N.A = 0.45) needed
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Figure 2.8: Development of wild-type C. elegans in microchambers. Body
elongation curve as a function of time for individual animals (grey curves) and
population average (black curve) for animals confined in large (A), medium
(B) and small (C) chambers. Blue histograms show the fraction of animals
undergoing ecdysis event at a particular time. In all panels, white dots represent
body elongation of animals grown on standard NGM agar plates. Red dots in
panel B represent the images shown in Fig. 2.7B. (D) Population average of body
length at the beginning of each larval stage for the small (red bars), medium (blue
bars) and large (yellow bars) chambers. Error bar respresents standard deviation.
Animals in the small chambers failed to complete L4, therefore no body length
could be measured for young adults.
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Figure 2.9: Growth rate and larval duration analysis. (A) Larval-dependent
linear fit (red line) of the body elongation curve shown in Fig. 2.8. Vertical
dashed lines represent the times of each ecdysis event. Numbers next to the linear
fit represent the growth rate for each larval stage. Numbers along the X axis
represent larval stage durations. Population average of growth rate (B) and larval
stage duration (C) for each larval stage for the small (red bars), medium (blue
bars) and large (yellow bars) chambers. Error bar represents standard deviation.
Animals in the small chambers failed to complete L4, therefore no growth rate
and L4 duration could be measured.

to image large chambers, and therefore higher resolution can be achieved.
When analyzing development in the small chambers, we observed that not all

the animals were able to develop into L4 larvae, suggesting that at this stage of
development food in the small chambers is limited. However, when comparing the
body length of animals grown in the small chambers for the first three larval stages,
we found that this agrees well with data obtained from animals grown on NGM
agar plates and with previous results [109] (Fig. 2.8C). Moreover, body elongation
curves showed only minor quantitative difference compared to the large and medium
chambers (Fig. 2.8D). The ability of C. elegans larvae to grow normally in the
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small chambers during the first two larval stages can be used to study developmental
processes at higher resolution because these chambers fit in the field of view of the
camera even when imaged with higher magnification and higher N.A. objectives
(60X, N.A.=1.40, Fig. 2.7A). Specifically, we used the small chambers to study the
stochastic AC/VU decision process (Chapter 5).

None of the animals grown in the small chambers completed the forth larval
stage, therefore we were not able to detect body elongation of young adult animals
grown in these chambers (Fig. 2.8 C,D). The observations that under limited food
conditions only a fraction of animals developed into L4 and none of them developed
into young adults are in agreement with previous studies [110, 111] that showed
how animals tend to arrest development directly after an ecdysis event if no food
is available: when C. elegans larvae enter a new larval stage, they stop growing if
no food is available. As, for most of the animals, food is still available in the small
chambers at the beginning of the L3 stage, the developmental program continues and
animals grow into L4 animals. However, when animals enter L4, the small chambers
are completely depleted of OP50 bacteria, and the animals undergo developmental
arrest.

The analysis suggested that our setup also has the potential to study how growth
depends on food availability. Therefore, we decided to quantitatively test how the
growth rate of individual larvae in the small chambers is affected by the limited food
supply. Even though we have already shown that body length of animals in small
chambers at beginning of each larval stage agrees with previous studies and with
data from larger chambers, it is still possible that food availability affects the growth
rate of C. elegans larvae. Studies on development in liquid culture using variable
bacterial concentrations were previously performed, and it was found that growth
rate indeed depends on bacterial concentration [64]. To test whether this is the case
in our microfabricated chambers, we performed a linear fit to the body elongation
curve at each larval stage (Fig. 2.9A). The slope of the fitted line represents the larval
stage-dependent growth rate of individual animals, here measured in micrometers
per hour. When comparing the population average of the growth rate and of the
duration of each larval stage for the different chamber dimensions we observed
that, for the first two larval stages, there is no significant difference between the
different chambers (Fig. 2.9B,C). This finding suggests that bacterial concentration
in microchambers of different dimensions is similar during the first two larval stages.
However, we found that animals grown in small chambers show lower growth rate
compared to animals grown in medium and large chambers in the third larval stage
(Fig. 2.9B). Moreover, the duration of the third larval stage in small chambers is
on average longer than that in medium and large chambers (Fig. 2.9C). Therefore,
small chambers affect growth rate and larval stage duration in an opposite manner,
which results in the normal body length at the beginning of the fourth larval stage
(Fig. 2.7D). This observations suggest that developmental transitions between larval
stages are triggered by body size rather than by the duration of the larval stages, as
was shown in previous studies [64].
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2.3.3 Animal-to-animal variability
We found significant animal-to-animal variability, both in timing of ecdysis and
body length extension rate (Table 2.2). Similar variability in timing of ecdysis was
observed recently in C. elegans larvae development in liquid culture [64]. Such
variability is not dependent on the chamber size, suggesting that, until food is
exhausted, development is not affected by the amount of food available at the
hatching time. However, it remains unclear whether the source of such variability we
measured is intrinsic to C. elegans development or is due to some extrinsic factors,
such as local temperature changes between different chambers. To test whether food
availability is responsible for the animal-to-animal variability, it would be interesting
in the future to perform time-lapse microscopy of animals grown in fluorescently
labeled bacteria. In this way, the bacterial concentration could be directly measured
by fluorescence microscopy. On the other hand, to avoid temperature-dependent
variability, an obvious solution would be to implement a system to more precisely
control the temperature in close proximity of the sample.

L1 L2 L3 L4

Duration [hours]
average 12.18 7.27 6.98 10.76

standard
deviation 0.51 0.22 0.18 0.64

Growth rate [µm hour−1]
average 11.80 16.75 22.31 20.12

standard
deviation 1.63 2.28 3.49 2.52

Table 2.2: Animal-to-animal variability. Average and standard deviation of
growth rate and larval stage duration for all the wild-type animals.

2.4 Conclusions
In this chapter, we have presented a novel technique to perform time-lapse mi-
croscopy of motile C. elegans larvae. The main advantage of this technique is the
ability to follow freely moving and feeding animals over developmental time scales.

The silicon mold we used to prepare microchambers in polyacrylamide hydrogel
can be re-used many times, making it a cost-efficient tool. Moreover, our microfabri-
cated chambers in polyacrylamide hydrogel could be expanded with an additional
channel in PDMS on top. This channel can be used to control temperature by
flowing cooling liquid or to rapidly exchange chemicals, for instance to induce
gene expression. In addition, the design of our microfabricated chambers is easily
adaptable to imaging of other nematode strains.
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Our optical setup relies on a commercial microscope and only few optical
components to expand and guide the laser beam. The illumination system allows us to
acquire sharp images at high signal-to-noise ratio even with short exposure times, in
the order of 1-5 ms. The imaging system, and specifically the synchronization
between camera, piezo stage and lasers, ensures that the acquisition of a full
volumetric image is efficiently performed in approximately half a second. Therefore,
in most of the cases, larvae motility is typically negligible when comparing different
images in the same stack. Although the transparency of C. elegans body does not
require a optical sectioning technique, the use of wide-field illumination affects the
theoretical resolution along the axial direction. In particular, higher axial resolution
might be needed in conditions of significant out of focus light, for instance when
fluorescently labeled cells are in close contact to each other. In fact, it is in principle
possible to extend our setup and use optical sectioning techniques capable of imaging
a large field of view with high frame rate. For instance, the temporal focusing
approach discussed in Section 1.4 [74] is the most promising technique for fast, large
field of view, high resolution imaging. It would be interesting to test the applicability
of such technique to our setup.

Our results on wild-type animals suggest that development of C. elegans larvae
is normal as it agrees well with previous results on body length and growth rate.
We conclude that the medium chambers (250x250x20 µm3) can be used to study
developmental processes spanning all four larval stages (Chapters 3, 4), while small
chambers (190x190x10 µm3) can be used to study processes happening during the
first two larval stages (Chapter 5). While larger chambers can fit in the field of view
of the camera using a 40X magnification objective, a 60X magnification objective can
be used to image smaller chambers. Therefore, as higher magnification objectives
typically have higher N.A., we can use the small chambers to improve light collection
when fluorescently labeled cells are particularly dim (Chapter 5).

Moreover, our results on body elongation and larval stage duration of animals
grown in small chambers suggest that larval stage transitions are triggered by body
size rather than by larval stage duration. The ability of our technique to image
animal growth in a controlled environment could be used to study the effect of food
availability on development in a quantitative manner. In addition, as our technique is
also capable of high resolution imaging, it represents a unique tool to study the same
effects on single cells within the animal body. For instance, in the future it would be
interesting to analyze the effect of food availability both at the whole-organism and
at the single cells levels within the same animal.
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3
Lineaging of stem-cell-like divisions

This chapter is part of the following publication:
"N. Gritti, S. Kienle, O. Filina and J. S. van Zon,

Long-term time-lapse microscopy
of C. elegans post-embryonic development.

Nat. Commun. 7:12500 doi: 10.1038/ncomms12500 (2016)."

Cell division and differentiation are the hallmark of developmental progression.
During the development of multi-cellular organisms, the ability of undifferentiated
stem cells to generate differentiated cells is crucial to populate tissues and organs.
To achieve this, stem cells have to remain in a proliferative state over the course of
development and the number of differentiated cells and stem cells must be precisely
balanced throughout development. How the required tight coordination between
cell division and differentiation is achieved, is an active area of research. It is of
paramount importance to understand how stem cells divide, renew themselves and
differentiate as these processes are closely related to many relevant medical topics,
such as tissue repair and regeneration, aging and cancer [112].

Proliferation and differentiation of stem cells are ensured by two types of
division. During a symmetric division, a mother stem cell gives rise to either two
identical undifferentiated cells, therefore increasing the number of stem cells in the
organism, or to two differentiated cells, therefore decreasing the number of stem
cells. Asymmetric divisions instead result in one stem cell and one differentiated
cell. Therefore, when an asymmetric division occurs, the number of stem cells in the
organism remains constant. Two distinct mechanisms of differentiations have been
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3 Lineaging of stem-cell-like divisions

proposed for the regulation of stem cell differentiation. In some cases, stem cells lay
in a niche that provides environmental cues to keep cells undifferentiated. In this case,
it is only upon migration outside the niche that cells start the differentiation program
[113, 114]. In other cases, asymmetric divisions result in the inhomogeneous
partitioning of the cellular components, therefore one of the new born daughter cells
lacks the stem cell potential and is capable of differentiation without the need of
additional external cues [115].

Stem cell dynamics has been studied in many different organisms, from the fruit
fly D. melanogaster to mammals [116, 117]. However, due to the large number of
cells involved, it is often difficult to identify single cells and investigate their behavior.
Thanks to its simple body plan, transparency and invariant lineage, C. elegans is an
ideal system to study stem cell biology. Moreover, the easy genetics of C. elegans
makes the identification of the key regulators of division and differentiation simpler
compared to larger organisms. There are two main examples of stem cell systems
in C. elegans: germline cells and seam cells. While the germline is a complex
system in which cells continously proliferate in a niche throughout the entire life
of the animal [118, 119], seam cells represent a simplified model to study stem
cell behavior. During development, seam cells resemble the stem cell behavior,
as they both maintain and expand the seam cell pool through asymmetric and
symmetric divisions. However, after development is complete, seam cells terminally
differentiate. Therefore seam cells are not true stem cells, but they nevertheless
represent a convenient model system to study stem cell-like division patterns [120].

The 20 seam cells of a newly hatched animal are arranged in 2 rows on the
opposite sides of the body along the longitudinal axis (Fig. 3.1A). Seam cells divide
and differentiate in a stem-cell like manner over the ~48 hours of development and
are important for the formation of hypodermal cells and neurons. Divisions of seam
cells can be symmetric or asymmetric and follow a stereotypical lineage (Fig. 3.1B).
In most cases, during an asymmetric division, the posterior daughter remains a seam
cell while the anterior daughter fuses to the hypodermal syncytium, the skin of
the animal [121]. This pattern of asymmetric divisions repeats itself during each
larval stage. However, in the second larval stage some of the seam cells undergo a
symmetric division resulting in two seam cells, thereby increasing the number of
seam cells in the larva. After the last larval stage, the remaining seam cells terminally
differentiate to become hypodermal cells. The seam cell lineages are invariant and
have been determined when the full post-embryonic lineage of C. elegans was first
reconstructed [122].

Recent studies have started to elucidate the molecular mechanisms that control
seam cell division and differentiation. The division cycle and terminal differentiation
are regulated by micro RNAs (miRNAs). Mutations of these miRNAs cause errors
in the temporal regulation of division and differentiation. For instance, certain
mutations cause the symmetric divisions to already occur in the first larval stage
while others cause the first asymmetric division to be repeated identically for all the
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Figure 3.1: Schematic of C. elegans seam cells. (A) Location of seam cells
(red dots) in a newly hatched C. elegans larvae. (B) Stereotypical lineage of seam
cells (black lines) during larval development. Grey lines represent differentiated
cells resulting from an asymmetric division.

larval stages [123]. Wnt signaling also plays an important role in the execution of
asymmetric divisions, as mutations in the Wnt signaling pathway affect the final
number of seam cells [124, 125].

Despite these recent advances, many aspects of the seam cell division process
still need to be elucidated in order to reach a comprehensive understanding of this
developmental process. On the one hand, the molecular mechanisms that regulate
and execute seam cell divisions remain poorly understood. To elucidate these
mechanisms, full lineage analysis in mutant animals is necessary to provide a better
understanding of the effect of genetic mutations on the seam cell division pattern.
On the other hand, seam cell division and differentiation are important to progress
through development, as differentiated cells form the skin of the animal at the end
of each lethargus stage. Therefore, the seam cells need to divide at the correct
developmental time. However, even though the overall lineage is known, the exact
timing of divisions, as well as any animal-to-animal variability in timing, has never
been measured at high temporal resolution. That is due to the fact that, because of its
long duration, the full lineage of seam cells has never been imaged in an individual
animal.

With our time-lapse technique, however, it is possible to image single live
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animals over the full post-embryonic development. We therefore examined whether
it was possible to follow the cell division and differentiation dynamics of all the
seam cells in individual animals using fluorescent reporters to follow individual
cells.

In this chapter, I first introduce the experimental design and the data analysis
technique used to identify single cells and to extract division timing (Section 3.1).
Then, I analyze the temporal sequence of seam cell divisions (Section 3.2). We find
that seam cells follow a particular division sequence with a difference in the timing of
division between different seam cell lineages. In Section 3.3, to further demonstrate
the power of our approach, we use our technique to perform the seam cell lineage
analysis in a mutant strain. In particular, we study a mutant that exhibits a variable
number of seam cells in the adult stage. In this mutant, we find that errors in the
symmetry of the seam cell divisions are more likely to happen in specific lineages
and larval stages. This result shows that stage- and lineage-specific differences exist
in the regulation of the seam cell division and differentiation.

3.1 Experimental design and data analysis
To visualize seam cells in living animals, we used a strain, wIs51[SCMp::GFP],
that carries a fluorescent seam cell marker. This marker is convenient for single
seam cell detection, as it is expressed only in the nuclei and is seam cell-specific.
C. elegans animals were synchronized as described in Section 2.1.2. We used 250
x 250 x 20 µm3 microchambers with a 40X magnification objective (N.A.= 1.30)
and imaged animals with a 20 minutes time interval during the full post-embryonic
development. We used 100 mW laser power with 5 ms exposure time, which resulted
in high signal-to-noise ratio.

We acquired images in two different channels (red LED and 488 nm laser), which
resulted, as already mentioned in Chapter 2, in ~50 Gb of data for a single animal.
We therefore needed to develop custom written Python software to deal with such a
considerable amount of data. We used the trans-illumination images to exactly locate
the animal within the microchamber and to detect ecdyses events. For each timepoint,
we obtained an average projection of the trans-illumination stack. We used these
average projections to manually select 10-20 points along the anteroposterior (A-P)
axis of the animal and we fitted a spline curve x(s) to those points, similar to the
method discussed in Chapter 2 (Fig. 3.2A). The spline curve was then used to obtain
a computationally straightened stack for both the trans-illumination and fluorescence
channels. To do so, orthogonal segments with 25 µm length were drawn from each
pixel belonging to the spline curve (Fig. 3.2B). In this way, for each point of interest
with coordinates r = (x, y) in the original image, the A-P position s′ was given by
the value of the minimum distance to the spline curve

s′ = min
s

‖x(s)− r‖ (3.1)
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Figure 3.2: Data analysis of seam cell marker strain. . (A) Example of a
single frame from a time-lapse movie. Red dots are manually selected along the
A-P axis of the animal, a spline interpolation is computed (yellow curve). (B)
A 50 µm wide area around the spline curve is defined (red band). The A-P and
D-V position of each pixel in the red area is computed. Values of the pixels in
the straightened image are computed using 2D linear interpolation. For detail
refer to main text and Section 4.1. (C) Computationally straightened images
of both trans-illumination and fluorescence channels of a single animal for two
subsequent timepoints. Dashed lines connects individual cells between the two
timepoints in the fluorescence channel.
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Figure 3.3: Imaging of single seam cells. (A) Example of single seam cells
laying on the side closest to the objective (left column) and on the opposite side
(right column) at different larval stages. (B) Image sequence of the V1 lineage in
a single animal carrying the wIs51 [SCMp::GFP] nuclear seam cell marker. Seam
cell nuclei are indicated by red arrows. Other nuclei belong to hypodermal cells.
Images were computationally straightened and aligned to the posterior-most seam
cell. (C) Example of seam cell lineages measured in a single animal. Red lines
represent seam cells and grey lines differentiated cells. Dashed lines indicate time
of ecdysis, separating the different larval stages, L1-L4. Divisions are indicated
at the exact time of occurrence, with 20 min resolution.
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3.2 Timing of seam cell divisions

while the dorsal-ventral (D-V) position t ′ was given by

t ′ =±‖x(s′)− r‖ (3.2)

where the sign of t ′ is defined such that the D-V position of the anus is negative.
The pixel value in the position (s′, t ′) was then given by 2D linear interpolation
with all neighboring pixels, which will be described in detail in the next chapter
(Section 4.1). Animals were aligned with anterior to the left and posterior to the
right. The straightening of each animal is not strictly necessary but makes cell
identification much more convenient, especially to recognize cells between two
consecutive timepoints (Fig. 3.2C). Moreover, using cropped and straightened images
drastically reduced the amount of data to be handled during the cell annotation
procedure.

Straightened fluorescence images were used to detect single seam cells and
cell divisions. Starting from the first mother cell in the lineage, for instance V5,
daughters were labeled with names V5.a and V5.p, according to the position along
the A-P axis. Data were collected in a Python compatible format, and additional
Python scripts were used to draw cell lineages. The first appearance of two daughter
cells, for instance V5.a and V5.p, was recognized as the timing of division of the
correspondent mother cell.

Because C. elegans larvae usually lay on their side, one row of seam cells is close
to the glass surface, while the other is located deep inside the sample, i.e. far from
the objective. Therefore, the fluorescence signal emitted by the seam cells far from
the objective is degraded by light scattering in the animal’s tissue. Nevertheless, the
marker was bright enough to visualize cells on both sides of the body over all four
larval stages (Fig. 3.3A).

From the straightened images of a single animal, it was possible to build single
cell movies and follow the seam cells as they go through the cell division cycles.
At particular timepoints, we could identify cells in different stages of the cell cycle.
Cells in the G1 and S phases showed bright nuclear fluorescence (Fig. 3.2C and Fig.
3.3B). Cells in the M phase were recognized by the diffused fluorescence in the whole
cell (Fig. 3.3B, 13.3 hours after hatching), likely due to the breakdown of the nuclear
envelope, which allows the fluorescent proteins to diffuse into the cytoplasm. Finally,
cell differentiation was recognized thanks to the seam cell-specific property of the
fluorescent marker used: whenever a seam cell undergoes an asymmetric division,
the marker in the differentiated cell is lost within a few hour, while the new seam cell
retains nuclear fluorescence (Fig. 3.3B). Therefore, we could unambiguously assign
the fate of each daughter cell. In this way, we could reconstruct the full lineage for
all the seam cells. We measured the timing of division in hours after hatching (Fig.
3.3C).
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Figure 3.4: Analysis of seam cell division timing. (A) Animal-to-animal
variability in cell division time in the first three divisions of the V3 lineage.
(B) Analysis of cell division timing. For each seam cell division i , we plot the
relative division time Ti , j −〈Ti , j 〉 (black markers), where Ti , j is the cell division
time and 〈Ti , j 〉 is the division time averaged over all nine lineages, H1-T, on both
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Figure 3.5: Variability in the sequence of seam cell divisions. (A) Colormap
showing the sequence of seam cell divisions in the L1 larval stage, for two
sides (left/right) in N=8 animals. Seam cell rows belonging to the same animal
are connected by black solid arrows. Cells are color-coded according to the
division sequence. The last column represents the mean division sequence. The
columns labeled with (B), (C) or (D) correspond to the lineages shown in the
corresponding panels. (B), (C), (D) Examples of animals with a typical (B) and
atypical sequence (C,D) of seam cell divisions in the L1 larval stage. In Panel
(B), V5 divides first. In Panel (C), V3 and V4 divide simultaneously 20 minutes
before V5. In Panel (D), T divides first.

3.2 Timing of seam cell divisions
The ability to detect the exact time of division relative to the hatching time allows
us to study both systematic differences in timing between seam cell lineages and
variability within each lineage between different animals. To study the animal-to-
animal variability, we performed our lineage analysis for multiple animals. We
measured the division time variability of each cell lineage and found a typical
standard deviation of ~30 minutes, with largest differences in timing of division of
~2 hours (Fig. 3.4A).

To study the cell-to-cell variability, we measured, at each division cycle, the
division time of each individual seam cell with respect to the average division time
of all the seam cells within the same animal, according to the equation:

∆Ti , j = Ti , j −〈Ti , j 〉 (3.3)

where Ti , j is the actual time of division of the seam cell i at the division cycle j and
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〈Ti , j 〉 is the average time of division of all the seam cells at the division cycle j :

〈Ti , j 〉 =
∑

Ti , j

N j
(3.4)

where N j represents the number of mother seam cells in the division cycle j . A
negative or positive value of ∆Ti , j corresponds to a cell that divided earlier or later
than the average time of division within the same animal, respectively. For the
second larval stage, we considered the first symmetric division.

We found systematic cell-to-cell variation, with seam cells of different lineages
following a specific division sequence (Fig. 3.4B). In particular, the seam cells at
the center of the body, i.e. V2, V3 and V4, divided on average earlier than cells
on the outer parts, i.e. H1, H2, V6 and T. We also found that such a systematic
variability is more pronounced in the first two division cycle, while at later stages
seam cell divisions are more synchronized. The fact that cell divisions are more
synchronized during the third and fourth larval stages compared to earlier stages is,
to our knowledge, a novel observation. This suggests that there are stage-dependent
differences in the temporal regulation of the seam cell divisions.

The main deviation from the stereotypical division sequence is V5, which
typically divided first in the L1 larval stage (Fig. 3.5A). This suggests that the
temporal regulation of V5, at least in the first division cycle, is different from that of
the other seam cells. However, we observed significant variability around the mean
division timing, leading to deviations from the average division sequence. In 3 cases
out of the 16 lineages analyzed, we observed another seam cell dividing before V5
in the L1 stage (Fig. 3.5B,C,D).

In conclusion, our technique improves the classical lineage analysis technique,
making it semi-automated and more high-throughput. The ability to precisely detect
the timing of division and quantitatively measure its variability can contribute towards
understanding the temporal cues that trigger seam cell divisions.

3.3 Mutant with variable seam cell lineage
In the previous section, we showed that our technique improves lineage analysis of
wild type animals and allows the quantification of animal-to-animal and cell-to-cell
variability. Next, we tested whether our technique could aid the analysis of mutations
that impact the seam cell lineage. Mutants in which the seam cell lineage deviates
from the stereotypical lineage are important to examine the regulatory mechanisms
that drive the proper division of the seam cells. However, lineage analysis of mutant
strains is challenging due to the laborious manual work that the standard approach
requires [122]. This represents a bottleneck already for the analysis of mutant strains
with an invariant phenotype, i.e. strains in which cell division errors occur in a
reproducible manner. However, lineage analysis of mutants in which cell lineages
are impacted in a variable manner is virtually impossible because the exact cell
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Figure 3.6: Seam cell lineaging in mutant animals. (A) Errors in the V1
lineage in the MBA48 seam cell lineage mutant carrying a wIs51[SCMp::GFP]
nuclear seam cell marker. Time is indicated in hours after hatching. Red markers
indicate the seam cells in the lineage. The third division (14 hours after hatching)
is symmetric instead of asymmetric for both seam cells, resulting in four seam
cells at the L4 stage. (B) Representation of the division errors observed. Red
lines represent lineage errors. The final number of seam cells is indicated for
each lineage in red. The lineage for animal 2 corresponds to the images shown in
Panel (A). (C) Occurrence of lineage errors. For each lineage and larval stage,
color represents the probability of errors. Also shown are the mean probability of
errors for each larval stage (right-most column) and each lineage (bottom row).

lineages are different between animals and therefore many animals need to be
analyzed in order to obtain a full understanding of the effects of such mutations.
In this section we show that, with our technique, variable lineage mutants can be
analyzed and therefore the effect of these mutations on the seam cell lineages can be
determined.

In collaboration with the group of Michalis Barkoulas (Imperial College London),
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we focused on an uncharacterized mutant strain, MBA48. Previous analysis showed
that this mutant exhibits variable seam cell numbers in young adult animals. Indeed,
we found that the number of seam cells in young adults was always higher than
expected (average and standard deviation of 19.8±2.0), suggesting that symmetric
divisions are more frequent than in wild type animals (Fig. 3.6A).

To determine the origin of variability in MBA48 mutants, we reconstructed
the full seam cell lineage for multiple animals and compared it with its wild type
counterpart. We found that mistakes can be grouped in two distinct categories: seam
cells (i) often perform a symmetric division instead of an asymmetric division (62
times out of 456 divisions) and (ii) instead of performing an asymmetric division,
occasionally seam cells do not divide (9 times out of 456 cell divisions) (Fig. 3.6B).
The first error has a clear effect on the seam cell lineage outcome: the number
of seam cells is doubled and this can be observed with the screening technique
previously used by an increase of the number of seam cells in young adult animals.
However, the second error, i.e. the case in which a seam cell does not divide when
it is supposed to, does not affect the number of seam cells and therefore cannot
be observed by counting the number of seam cells in a particular larval stage (Fig.
3.6B).

In order to study the spatial and temporal distribution of such errors, we scored
the probability of a single error as a function of larval stage and seam cell lineage.
To do so, we defined a lineage error as the first point at which the (sub-)lineage
deviated from the wild-type lineage. For instance, if an additional seam cell was
erroneously generated, we did not score for errors in the sublineage produced by that
seam cell. To achieve that, we calculated the probability P (l , s) of a lineage error
occurring in seam cell lineage l at larval stage s as follows. For each seam cell i , for
example V2.pp, in animal w , we assigned a division class di = 0,1,2 for no division,
symmetric division and asymmetric division, respectively. We did so for all seam
cells in wild-type (WT) and mutant (M) animals. The error probability is then given
by

P (l , s) =
∑

w
∑

i∈Cl ,s
(1−δdW T

i ,d M
i

)∑
w

∑
i∈Cl ,s

1
(3.5)

where δn,m is the Kronecker delta and Cl ,s =C W T
l ,s ∩C M

l ,s is the list of seam cells that
are present in both the wild-type lineage and the mutant animal w .

We found that division errors occurred randomly, but predominantly in the L3
and L4 larval stages and were distributed unequally over the different lineages, most
strongly impacting the H1 and V6 lineages (Fig. 3.6C). These results show that
the regulation of seam cell divisions is stage- and lineage-dependent. The sort of
analysis used in this section can help elucidate the role of specific genes in the stage-
and lineage-dependent regulation of the seam cells.
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3.4 Conclusions
Here, we have shown that our time-lapse microscopy technique can aid the study of
cell lineage regulation in C. elegans. We have shown that our technique greatly im-
proves the standard cell lineaging approach, which relies on the manual observation
of single larvae, in two crucial aspects. First, our technique improves the throughput,
as multiple animals can be followed in parallel. Second, while with the standard
technique cells are typically followed for few hours due to the laborious manual
imaging, with our automated imaging technique it is possible to follow the lineage
during the full post-embryonic development. This makes it possible for the first time
to study a variety of aspects related to cell division and differentiation processes.
Such studies include, but are not limited to, the analysis of the mechanisms by
which temporal cues coordinate cell divisions, the quantification of the robustness of
these mechanisms, and the analysis of the regulation of symmetric and asymmetric
divisions in stem cell lineages.

In this chapter, we applied our technique to the analysis of the seam cell lineage, a
simplified model system for the study of stem cell behavior. First, we performed full
seam cell lineage analysis of multiple wild-type animals. We found that, while each
seam cell follows a stereotypical division pattern, the timing of each division shows
high animal-to-animal variability. This result suggests that, while robust mechanisms
have evolved that ensure a reliable overall outcome of the seam cell lineages, the
timing of each seam cell division is subject to variability. It would be interesting in
the future to examine whether this variability is intrinsic to the seam cell lineages
or whether a global and noisy temporal cue is responsible for the variability in the
timing of division of each seam cell. Despite the high cell-to-cell variability, we
found that cells in the same animal follow a stereotypical division sequence, with
some seam cells dividing on average earlier than others. Such systematic differences
are more pronounced during the first 2 larval stages, while at later stages all seam
cell divisions are more synchronized. These observations suggest that there are
stage- and lineage-dependent differences in the temporal regulation of the seam cell
divisions. It would be interesting to study the underlying mechanisms responsible
for such systematic variability, and elucidate whether each seam cell is subject to a
different temporal cues or whether each seam cell responds in a slightly different
way to the same global temporal cue.

Finally, we applied our technique to the analysis of mutants in which random
division errors occur in the seam cell lineages. The fact that mutations exist which
cause random errors in the lineage of the seam cells, suggests that single seam cells
are subject to noise and that wild-type animals developed a mechanisms to suppress
it in order to reach a robust and stereotypical lineage. Therefore, the lineage analysis
of variable lineage mutants can provide insights on the robustness of stem-cell like
division patterns. We found that, for the particular mutant we chose, only two kinds
of errors can happen: either a seam cell does not divide at a particular division cycle,
or a seam cell performs a symmetric division instead of an asymmetric one. Using
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3 Lineaging of stem-cell-like divisions

the ability of our approach to pinpoint when and in which lineage errors occur, we
found that errors are not randomly distributed, but instead are more likely to happen
at late larval stages and in particular seam cell lineages. This result suggests that
there are stage- and lineage-dependent differences in the regulation of the seam cell
division and differentiation. In collaboration with the group of Michalis Barkoulas
(Imperial College London), we aim to apply our technique to other mutants and
therefore elucidate the role of some key regulators in the seam cell division and
differentiation processes.
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4
Quantitative analysis of oscillatory gene
expression

This chapter is part of the following publication:
"N. Gritti, S. Kienle, O. Filina and J. S. van Zon,

Long-term time-lapse microscopy
of C. elegans post-embryonic development.

Nat. Commun. 7:12500 doi: 10.1038/ncomms12500 (2016)."

In the context of multicellular organisms, dynamic gene expression is often
exploited by single cells to perform a variety of different actions in a coordinated
manner. Such actions can be performed once during the entire life of the organisms,
or can be repeated multiple times. An example of the first class is metamorphosis
of insects, that is regulated by specific hormones and a complex signaling cascade
[126]. Examples of repeated events span over a wide range of length and time scales,
from the cyclic heart beat to the sequence of cell divisions in a developing organism.

When a particular task has to be repeated multiple times, a natural way to provide
a temporal cue is to exploit oscillatory gene expressions with a period correspondent
to the time interval between two consecutive events. A classical example of such
a biological timer is the circadian clock, a widespread mechanism designed to
adjust the behavior and metabolism of many organisms to the day and night cycle
[127, 128].

Gene expression oscillations not only control rhythmic behavior of cells, tissues
and organs in adult organisms, but are also exploited in the context of development.
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4 Quantitative analysis of oscillatory gene expression

For example, gene expression oscillations are used to regulate the interactions
between different components of the Notch and Wnt signaling pathway to control the
segmentation clock of many organisms. The segmentation clock in most vertebrates
species, for instance, is regulated by spatial waves of gene expression travelling from
head to tail which lead to the periodic formation of the somites in the spinal cord
[129].

The correct timing of these cellular events is important to ensure proper
development. Therefore, a control mechanism capable of synchronizing the gene
expression in multiple cells is necessary. As these developmental events are so
important for the survival of the organism, such molecular mechanisms are designed
to strongly suppress molecular noise. Some biological timers, such as the circadian
clock, have been extensively studied, resulting in a detailed understanding of
the control mechanisms involved [130]. However, how timing in development is
regulated is still open questions.

C. elegans development is a highly dynamic and remarkably robust process
which involves a variety of events. Thanks to its fast development, simple body plan,
body transparency and availability of mutants with abnormal timing of development,
C. elegans is an ideal model system to study developmental timing. In particular, the
effect of genetic mutations on single-cell events have been subject of extensive
studies. For example, certain mutations cause seam cells to skip larval stage-
dependent divisions, or to repeat divisions occuring in early larval stages also in later
larval stages. Because of their atypical developmental progression, such mutants
were termed heterochronic [131].

A striking characteristic of C. elegans development is its cyclical nature. At
the end of each of the four larval stages, animals enter the lethargus stage, during
which the molting occurs. At the end of the lethargus stage, animals undergo an
ecdysis event, i.e. they shed the old cuticle, and enter the next larval stage. The
mechanisms that regulate these developmental events have been subject of extensive
studies. Since a larval stage starts at the moment of ecdysis, one expects that proper
temporal cues instruct the relevant cells to execute the molt. Moreover, a molting
clock has to be coordinated between different cells in the animal’s body in order
to undergo ecdysis events at the right developmental time, i.e. when all cells are
ready to execute the next larval stage program. Recently, some genes have been
recognized that are responsible for the correct coordination of the developmental
clock controlling the molting cycle [132]. Such genes are called molting cycle genes.
For instance, it has been shown that lin-42, a gene related to the circadian clock gene
PERIOD, has an oscillatory expression dynamics and the deletion of this gene causes
molts to occur in an arrythmic manner [133]. Moreover, it has been shown that the
activation of this gene is important for many aspects of seam cell divisions, from the
timing of divisions, to their spatial arrangement and fate determination [134, 135].

Recent studies showed that ~20% of all detectable genes oscillate during devel-
opment [136, 137]. It was found that most of these genes showed an oscillation
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period of ~8 hours, compatible with a molting cycle function. Moreover, expression
dynamics could be characterized using their phase, i.e. at what point in each larval
stage the expression peak occurs. Hendriks et al. found that genes oscillate at all
possible phases, suggesting that oscillations have multiple roles during larval stage
development, rather than only in regulating the molt. Many questions regarding
the origin and the functional role of these oscillatory gene expressions during
development remain unanswered. In particular, what are the mechanisms responsible
to generate and maintain these oscillations? Are the mechanisms involved in the
circadian clock similar to those involved in the gene expression oscillations during
C. elegans development? In particular, this question is motivated by the observation
that the C. elegans gene lin-42 is related to the circadian clock gene PERIOD.

Another interesting aspect is related to the dynamics of single genes. In particular,
what is the variability in the time of the expression peak? Moreover, how uniform
is the expression in the animal’s body? In order to answer this question, the first
necessary step is the characterization of individual gene expression oscillations. To
this end, one needs (i) to quantify the variability in the period and amplitude of the
oscillations in single live animals with high temporal resolution and (ii) to quantify
the animal-to-animal variability by studying the expression dynamics in multiple
animals. However, so far, expression levels were quantified by measuring the
fluorescence expression of transcriptional reporter strains, or by RNA-sequencing
and quantitative PCR of a large number of developmentally synchronized animals.

In this chapter, we show that our new technique is capable of measuring gene
expression levels by quantifying fluorescence intensity in single animals throughout
the full post-embryonic development. Therefore our technique represents an ideal
tool to quantify the dynamics of such oscillations. For instance, it is possible to
measure the period, the level of synchronization throughout the whole body and the
animal-to-animal variability of oscillatory gene expressions. We apply our technique
to two different genes that have been previously shown to oscillate: mlt-10 and wrt-2.

First, we analyze the expression dynamics of mlt-10, a nematode-specific gene
required for proper molting, as well as for body shape determination, locomotion
and reproduction [138]. The protein MLT-10 is broadly expressed in the hypodermis
during the molt. We characterize the dynamics of mlt-10 expression using a
transcriptional reporter and we quantify the animal-to-animal variability in the
timing of the oscillation peaks. We find that mlt-10 oscillations in the posterior part
of the animal’s body are slightly delayed compared to the anterior part. Moreover,
we find high variability in the timing of the expression peak relative to hatching.
However, the timings of such peaks are highly correlated with the closest ecdysis
events.

Next, we focus on the expression dynamics of another oscillatory gene, wrt-2.
The protein WRT-2 is required for proper molting, normal growth and locomotion
[139]. wrt-2 is exclusively expressed in the seam cells, and hence it represents a great
opportunity to test whether our technique is capable of fluorescence quantification
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4 Quantitative analysis of oscillatory gene expression

in single cells. Recently, wrt-2 expression was found to oscillate during the third
and fourth larval stages [136]. To test whether oscillations occur at all four larval
stages, we analyze the dynamics of wrt-2 expression in individual animals using
a transcriptional reporter in which green fluorescent protein is targeted both to the
seam cell nuclei and membranes. Measuring the total fluorescence intensity in the
nuclei, we confirm that oscillations occur in all the larval stages and are synchronized
between all the seam cell lineages. Similar to the dynamics of mlt-10, we find that
the timing of oscillations are highly variable but also strongly correlated with the
ecdysis events. These results suggest that the developmental timing is affected by
noise, and that the timing of mlt-10 expression, wrt-2 expression and ecdysis are
impacted by a common noise source.

4.1 Experimental design and data analysis
To visualize gene expression levels of both mlt-10 and wrt-2, we used transcriptional
reporter strains. To study mlt-10 expression we used the strain mgIs49[mlt-10p::GFP-
PEST], previously used to characterize mlt-10 expression dynamics at the population
level [140], in which GFP is broadly expressed in the hypodermis. To study wrt-2
expression we used the strain heIs63[wrt-2p::H2B::GFP, wrt-2p::PH::GFP], in
which GFP is targeted to both the seam cell nucleus and membrane [141]. Since we
want to quantify expression during the full post-embryonic development, we used
medium chambers (250 µm x 250 µm x 20 µm) to provide enough food to sustain
development until adulthood. We used a 40X magnification objective (N.A. 1.3) and
imaged animals with a 20 min time interval until few hours after the last ecdysis
event.

We used fluorescence time-lapse microscopy to image the fluorescence signal
in the animal’s body at each time point. We computationally treated our images to
quantify the fluorescence intensity along the anteroposterior (A-P) and dorsal-ventral
(D-V) axis of the animal and in single cells. This step of the data analysis was
common for both strains and similar to the analysis described in Section 3.1. I will
now describe in detail the algorithm used to obtain images that are independent of
the body shape of the animal at each particular time-point.

To obtain images that are independent of the body shape of the animal, we
performed an average projection of the transmission stacks, and manually selected
10-20 points along the A-P axis of the animal (Fig. 4.1A). As described in the
previous chapter, the manually selected points were fitted to obtain a spline curve
x(s), which then represented the A-P axis. At each point along the A-P axis, the
D-V axis was defined by orthogonal segments 50 µm long (Fig. 4.1B). The (x ′, y ′)
coordinates of each point P ′ in the original image are then converted into the (s′, t ′)
coordinates in the A-P and D-V reference system. The A-P position s′ of each point
P ′ was given by

s′ = min
s

‖x(s)− r‖ (4.1)

66



4.1 Experimental design and data analysis

A

D

50 μm

B

x(s) x(s)

x(s)

x(s)

P’
P1 P2

P4P3

t’

s’

C
A

P

V

D

Figure 4.1: Straightening algorithm. (A) Average projection of a single
transmission stack of a mgIs49[mlt-10p::GFP-PEST] animal. Red dots indicate
manually selected points, yellow line indicates the spline curve fitted to the
red dots. (B) Detailed view of the image enclosed by white dashed square in
Panel A. Orange region indicates the part of the image containing the animal.
Yellow arrows in the orthogonal direction to the spline curve indicate the dorsal-
ventral (D-V) direction of the animal’s body at different anteroposterior (A-P)
positions. (C) Schematic overview of the interpolation algorithm. Pi indicates
pixels in the (x, y) coordinate system. P ′ indicates the pixel in the (s, t ) coordinate
system. As P ′ does not coincide exactly with any of the pixels Pi , the value of
P ′ was determined by 2D interpolation of the neighboring pixels Pi . (D) Single
computationally treated image corresponding to the animal shown in Panel A.
Top image: transmission illumination, bottom image: fluorescence intensity.

while the dorsal-ventral (D-V) position t ′ was given by

t ′ =±‖x(s′)− r‖ (4.2)

where r represents the coordinates (x ′, y ′) of the point P ′ and the sign of t ′ is defined
such that the D-V position of the anus is negative. In this way, all the post-processed
images will result with the anterior side to the left and the ventral side in the bottom
of the image. In order to maintain the same pixel size between the original image
and the post-processed image, we sampled the spline curve and the orthogonal
segments in such a way that the distance between each consecutive point is exactly
the dimension of one pixel in the original image.

The collection of points obtained was then used as a grid for all the images
in the original stack. The original coordinates (x ′, y ′) of point P ′ are not integers,
therefore we assessed the pixel value in the position P ′ using the values in the
neighboring pixels P1(x1, y1), P2(x1, y2), P3(x2, y1), P4(x2, y2) (Fig. 4.1C). To this
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4 Quantitative analysis of oscillatory gene expression

end, we performed a 2D linear interpolation according to the equation:

I (P ′) = 1

(x2 −x1) · (y2 − y1)
[x2 −x ′, x ′−x1]

[
I (P1) I (P2)
I (P3) I (P4)

][
y2 − y ′

y ′− y1

]
(4.3)

where I (P ) represents the value of the image I at the position P . The obtained value
I (P ′) was then used as pixel value in the position (s′, t ′) of the corresponding image
in the post-processed stack. In this way, we could reconstruct a stack independent
on the body shape of the animal and in which the value of each pixel is a reliable
approximation of the fluorescence intensity of the body of the animal (Fig. 4.1D).

4.2 Characterization of mlt-10 expression
To study the dynamics of mlt10 expression during post-embryonic development, we
used the transcriptional reporter strain mgIs49[mlt-10p::GFP-PEST], used previ-
ously to characterize mlt-10 expression dynamics at the population level [140]. We
were able to follow the expression dynamics of mlt-10 for all four larval stages and
observed a clear pulse in fluorescence intensity close to each ecdysis (Fig. 4.2).

To better visualize the dynamics of mlt-10 expression, we calculated the fluo-
rescence intensity along the A-P axis, by averaging the fluorescence signal along
the dorsal-ventral (D-V) and left-right (L-R) axis. We then created a kymograph
by aligning all the A-P fluorescence profiles as a function of time (Fig. 4.3A).
We found that the fluorescence signal is not homogeneously distributed along the
A-P axis but, for instance, the head of the animal showed a brighter fluorescence
signal, particularly during the L4-to-adult molt. Moreover, we observed the strongest
fluorescence signal close to the time of each ecdysis events (dashed horizontal lines).
To better analyze these features of mlt-10 gene expression dynamics, we analyzed the
level of synchronization along the A-P axis and the timing of each peak compared to
the subsequent ecdysis event.

4.2.1 Homogeneity of mlt-10 expression
To test whether the mlt-10 expression dynamics depends on the position along the
A-P axis, we quantified the average fluorescence intensity at different positions
along the body of the animal. In particular, the expression dynamics at different
A-P positions was determined by integrating the fluorescence intensity over a region
of 5% of body length, centered at positions at 25, 50 and 75% of body length (Fig.
4.3B). Indeed, we found that oscillatory dynamics appears uniform, that is, with a
phase independent of the A-P position.

To analyze more quantitatively the synchronization along the A-P axis, we
divided the body of the animal in 10 regions of 5% of body length, and performed
a cross-correlation analysis for each pair. Cross-correlation is a powerful tool to
determine whether two signals are delayed with respect to each other. For instance,
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50 μm

Figure 4.2: Visualization of mlt-10 expression during the course of
development. Images of a single animal at different time-points. Each image is
the overlap of the transmission (grey scale) and fluorescence (green) signal. Time
is indicated in hours after hatching. White arrows indicate the old cuticle that has
been shed after the most recent ecdysis event.

given two timeseries belonging to different parts of the body, A and B , the cross-
correlation function is defined as the convolution:

R(τ) =

〈(
A(t )−〈A〉)(B(t +τ)−〈B〉)〉

t

σAσB
(4.4)

where 〈A〉, 〈B〉 represent the time average of the two signals, while σA, σB represent
the standard deviation of the signals. The quantity R is then a function of the delay τ.
The value τ′ at which R reaches its maximum represents the characteristic delay of
the two curves. Applied to our case, this delay can be interpreted as the time it takes
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Figure 4.3: Synchronization of mlt-10 expression in a single animal. (A)
Kymograph of mlt-10 expression along the A-P axis as a function of time in the
mgIs49[mlt-10p::GFP-PEST] animal shown in Fig. 4.2. Dotted lines represent
the position of head and tail, and horizontal dashed lines represent the times
of each ecdysis events. Colored lines indicate the regions evaluated in Panel B.
Larval stages are indicated on the right of the kymograph. (B) mlt-10 expression
oscillations at different A-P positions for the animal in Panel A. (C) Cross-
correlation function for the yellow and cyan curves shown in Panel B. Inset:
highlight of the curve around the zero lag time. Solid black line indicates the
timing of the peak. (D) Timing of the highest peak of the cross-correlation
function for all possible combination of A-P positions along the body of the
animal shown in Panel A. Asterisk indicates the timing of the peak shown in
Panel C. The region enclosed by the dashed lines indicates the body section along
the A-P axis in which mlt-10 expression is synchronized.
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for the expression to move from the region A to the region B of the body. As an
example, the cross-correlation curve between the regions at 25% and 75% of body
length is shown in Fig. 4.3C. In this particular case, we found a characteristic delay
of 20 minutes (Fig. 4.3C, inset).

When performing the cross-correlation analysis for each pair of positions along
the body, we found that the posterior part of the body shows highly synchronized
expression (Fig. 4.3D, white area in dashed box), and that this expression is slightly
delayed compared to the anterior part of the body. The oscillations in the most
posterior part of the animal are delayed up to 40 minutes with respect to the head of
the animal.

4.2.2 Timing of the mlt-10 expression oscillations
To quantify the animal-to-animal variability in mlt-10 oscillations, we performed
time-lapse imaging over 15 animals. To analyze the time series of mlt-10 expression
in the whole body, we calculated the average of the fluorescence intensity over the
entire body for each time point. We found high variability both in the amplitude and
the period of the oscillations, especially at late stages in development (Fig. 4.4A).

We then asked whether the times of the peaks of expression are correlated to the
timing of the closest ecdysis event. Therefore, to detect the times of the four peaks,
we first performed a Gaussian filter to smoothen the data. When applying a filter to a
time series, each value of the filtered data is obtained by a weighted average of the
original data. In our case, the weights follow a Gaussian function with a full width
at half maximum σ= 60 minutes:

G(t ′) =
〈

F (t ) · exp
[−(t − t ′)2/(2σ2)

]
p

2πσ

〉
t

(4.5)

where F (t ) is the original time series, and G(t ) represents the filtered time series.
From G(t ), we then computed the timing of each local maximum and compared it to
the timing of the closest ecdysis event.

We observed significant animal-to-animal variability in the absolute timing of
the mlt-10 expression peak (Fig. 4.4A,B and Table 4.1). However, when the timing
of the peaks were compared to the timing of the most recent ecdysis event, we found
that variability was strongly reduced, suggesting that mlt-10 expression dynamics is
tightly correlated with the ecdysis events (Fig. 4.4C and Table 4.1). Therefore, while
the absolute time of an ecdysis event is highly variable, its timing with respect to the
mlt-10 expression peak is much more predictable.

4.3 Characterization of wrt-2 expression
The mlt-10 gene is expressed in many cells. To test whether we could follow gene
expression dynamics with single-cell resolution, we measured the expression level
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Figure 4.4: mlt-10 expression in multiple animals. (A) mlt-10 expression
integrated over the entire animal as a function of time for N=15 animals. The
mlt-10 expression dynamics (black line) and time of ecdysis (dashed lines) are
indicated for the animal shown in fig. 4.3. (B,C) Time distribution of the peaks
in mlt-10 (N=15) expression relative to (B) time of hatching and (C) time of the
most recent ecdysis event.

of wrt-2, which is expressed exclusively in the seam cells [139]. To measure the
expression level of wrt-2, we used the reporter strain heIs63[wrt-2p::H2B::GFP,
wrt2-p::PH::GFP], in which GFP is targeted both to the seam cell nucleus and
membrane [141].

To analyze the wrt-2 expression in single seam cells, we used the post-processed
images to manually label the V1-V5 seam cells. As the size and shape of the nuclei
changed over time, we used an image segmentation algorithm, the Otsu’s method
[108], on a 20 µm x 10 µm region around each cell to obtain a mask of the nucleus.
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L1 L2 L3 L4

Absolute timing [hours]
average 11.2 19.6 28.2 39.0

standard
deviation 0.5 0.8 1.3 1.8

Timing relative to ecdysis [hours]
average -1.2 -0.8 -1.1 -2.3

standard
deviation 0.2 0.2 0.1 0.3

Table 4.1: Statistics of mlt-10 expression peaks. Average and standard
deviation of timing of mlt-10 expression peaks (N=15).
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Figure 4.5: Image analysis of wrt-2 strain. Raw images and masks obtained
with the Otsu’s algorithm of single seam cells in the V2 lineage extracted from
the straightened images by manual labeling and automatic cropping. The images
shown correspond to the time of maximum wrt-2 expression. Time is in hours
after hatching. Left columns: seam cell closest to the objective. Right Columns:
corresponding seam cell on the other side of the sample. The label indicates
whether the seam cell is on the right (R) or left (L) side of the animal.

We found that seam cells lying further away from the objective along the axial
direction show a degraded fluorescence signal, likely due to light scattering in the
animal’s tissues (Fig. 4.5). Moreover, as animals sometimes flip from one side to
the other, most often during the molt [142], the identity of the row of seam cells
closer to the objective changes over the course of development. We tried to apply
the segmentation algorithm to seam cells lying further away from the objective at
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time points in which the fluorescence intensity is at its maximum levels. We found
that the segmentation algorithm fails in detecting the nuclei of such cells (Fig. 4.5).
Therefore, we decided to quantify fluorescence only for the seam cells on the side of
the objective. To quantify the fluorescence intensity from the obtained masks, we
first removed from the masks the small regions disconnected from the nucleus and
computed the mean fluorescence intensity of the final mask.

4.3.1 Homogeneity of wrt-2 expression
The expression of wrt-2 in seam cells exhibited an oscillatory behavior (Fig. 4.6A).
We found that both the period and phase of wrt-2 oscillations agreed with previous
measurements of wrt-2 mRNA dynamics [136]. In particular, we observed four
distinct peaks of expression for all the seam cell lineages analyzed (Fig. 4.6B). As
for the mlt-10 analysis, we first measured to what extent wrt-2 expression oscillations
are spatially synchronized by comparing time series from different seam cell lineages.
Because we want to test whether oscillations are synchronized along the A-P axis, we
combined data on seam cells on the left and right sides of the animal. Moreover, most
of the seam cells undergo a symmetric division, therefore increasing the number of
seam cells in the lineage. To analyze the time series, we decided to average, in each
time-point, the fluorescence signal generated by all the seam cells in each lineage.

First, we correlated the time series for different seam cell lineages of 23 animals
(Fig. 4.6C). The correlation coefficient for seam cells close to each other (for instance
V1 and V2) was only slightly higher than the correlation coefficient for seam cells far
away from each other (V1-V5 in Fig. 4.6C). To exclude that this is a V1 dependent
behavior, we performed a cross-correlation analysis for all possible pairs of seam
cell lineages (Fig. 4.6D). In contrast with the results for mlt-10 expression, we did
not find a clear pattern (Fig. 4.6E), suggesting that wrt-2 expression in seam cells is
synchronized across the whole body of the animal.

L1 L2 L3 L4

Absolute timing [hours]
average 10.4 18.3 25.9 35.2

standard
deviation 0.6 0.7 1.1 1.6

Timing relative to ecdysis [hours]
average -1.2 -1.2 -1.5 -3.0

standard
deviation 0.2 0.3 0.3 0.3

Table 4.2: Statistics of wrt-2 expression peaks. Average and standard deviation
of timing of wrt-2 expression peaks (N=23).
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Figure 4.6: Synchronization of wrt-2 expression. (A) wrt-2 expression
oscillations in the posterior-most V2 seam cell in a heIs63[wrt-2p::H2B::GFP,
wrt-2p::PH::GFP] animal. Time is in hours after hatching. The label indicates
whether the cell is the left (L) or right (R) V2 cell. Scale bar, 5 µm. (B) Single
animal wrt-2 expression oscillations. White markers correspond to the images
in Panel A. The black line represents a sliding average with 1 hour window size
over V1-V5. (C) Correlation in wrt-2 expression between the V1 and V2 (red)
and V5 (grey) cells. Markers and correlation coefficient R are for N=23 animals
over all larval stages. (D) Cross-correlation function for the V1 and V5 time
series of the animal shown in Panels (A) and (B). Inset shows the characteristic
delay found for this particular pair of seam cell lineages (20 minutes). (E) Timing
of the highest peaks in the cross-correlation function for each pair of seam cell
lineages of the animal shown in Panels (A) and (B). Asterisk indicates the lag
time for the (V1, V5) pair shown in Panel D.
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4.3.2 Timing of wrt-2 expression peaks
Similar to the analysis perform for mlt-10, we analyzed the wrt-2 expression
dynamics for multiple animals to quantify the animal-to-animal variability. To
compare time series of different animals, we averaged the fluorescence intensity of
all the seam cells in the same time-point. We found significant animal-to-animal
variability, especially at later stages of development (Fig. 4.7A).

Therefore, we asked whether, as for mlt-10, variability in the timing of each
peak can be explained by an overall molting cycle effect, that is, if times at which
wrt-2 expression peaks correlate with the closest ecdysis event. To detect the time of
peaks of the wrt-2 gene expression, we applied a Gaussian filter with width of 1 h as
described in the previous section, and found the local maxima in proximity of each
ecdysis event (Fig. 4.7A).

Similar to mlt-10 expression oscillations, we observed that, while there existed
significant animal-to-animal variability in the exact time of the wrt-2 expression
peaks (Fig. 4.7B and Table 4.2), the expression peaks were nevertheless precisely
timed with respect to the ecdysis (Fig. 4.7C and Table 4.2).

4.4 Conclusions
In this chapter, we have shown that our technique allows for quantification of
fluorescence intensity, even in single cells. Our technique improves previous
approaches, that relied on quantification of gene expression in populations of animals,
in two ways. First, we can follow the expression dynamics in animals over the full
post-embryonic development with high temporal resolution. Second, instead of
obtaining population average values, we can quantify the expression dynamics in
single animals, making it possible for the first time to quantify the animal-to-animal
variability. We applied our technique to the study of two genes that show oscillations
in their expression, peaking once every larval stage. Such oscillations are speculated
to provide a developmental timer to single cells in the animal. We developed a
pipeline for the analysis of the data collected, which relies on multiple steps of
analysis, from computational post-processing of the images to quantification of
fluorescence signal.

First, we analyzed a gene, mlt-10, involved in the molting cycle and expressed in
the whole body of the animal. We found that oscillations in the posterior part of the
animal’s body are slightly delayed compared to the anterior part. Moreover, when
analyzing gene expression in multiple animals, we found high animal-to-animal
variability in the timing of oscillation peaks. Nevertheless, we found that timing of
the peaks are highly correlated with the timing of the closest ecdysis event.

Next, we focused on a second oscillatory gene, wrt-2, involved in normal growth
and proper locomotion. While mlt-10 is expressed in the whole body of the animal,
wrt-2 is only expressed in the seam cells. Therefore, by analyzing wrt-2 gene
expression pattern, we showed that our technique is capable of quantification of
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Figure 4.7: wrt-2 expression in multiple animals. (A) wrt-2 expression
averaged over all the seam cells as a function of time for N=23 animals. The
wrt-2 expression dynamics (black line) and time of ecdysis (dashed lines) are
indicated for the animal shown in fig. 4.6. (B,C) Time distribution of the peaks
in wrt-2 (N=23) expression relative to (B) time of hatching and (C) time of the
most recent ecdysis event.

fluorescence intensity in single cells. We followed the same analysis performed for
mlt-10. We found that wrt-2 oscillations are highly synchronized along the A-P
axis of the body. When analyzing multiple animals, we found that the timing of
each peak is affected by high animal-to-animal variability. Nevertheless, similar
to mlt-10, wrt-2 expression peaks are synchronized with the closest ecdysis events.
These results suggest that the times of the expression peaks of mlt-10 and wrt-2, as
well as the times of the ecdysis events, are affected by a variability generated by a
common noise source.
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4 Quantitative analysis of oscillatory gene expression

Our results raise a number of fundamental questions on the nature of the gene
expression oscillations. (i) What are the sources of the global variability we observed
in the period of the oscillations? (ii) Is the correlation between oscillatory gene
expression dynamics and ecdysis observed more generally, i.e. also for oscillatory
genes that do not peak close to the molt? (iii) Are oscillations regulated at the single
cell level by cell-autonomous timers, or is there a global temporal cue traveling
in the whole body? The combination of standard C. elegans biology techniques
and our time-lapse microscopy technique will be a powerful approach to answer
these questions. For instance, (i) different hypothesis about the sources of noise
can be tested by studying the gene expression dynamics of animals grown in our
microfabricated chambers. For instance, the effect of temperature changes and
food availability on the timing of the expression peaks can be studied by precisely
controlling temperature over the duration of the experiment and the amount of food
initially available. Moreover, (ii) cross-correlation analysis using animals carrying
transcriptional reporters for multiple oscillatory genes could shed some light on the
order in the timing of the peaks. Finally, (iii) our results show that mlt-10 oscillations
are slightly delayed in the posterior part of the body. Therefore, it is tempting to
hypothesize a model in which a global temporal cue travels from the head to the tail
of the animal. However, as the measured delay is in the order of 10-20 minutes, i.e.
the temporal resolution of our experiments, to test this model, experiments at higher
temporal resolution are needed. Moreover, this model would predict that expression
in lon mutants, which have a significantly longer body, would show higher delays
due to the longer spatial range that the traveling wave needs to cover. In general,
the ability we demonstrated in this chapter to follow gene expression oscillations in
single cells will be instrumental in addressing these questions.
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5
Quantitative study of the dynamics of the
AC/VU stochastic cell fate decision

This chapter is part of the following publication:
"S. Kienle*, N. Gritti*, Y. Goos and J. S. van Zon,

Quantitative analysis of a stochastic cell fate decision
during C. elegans development.

(in preparation)."

In the previous chapters, we applied our new microscopy technique to the study of
deterministic developmental processes. However, developmental processes exist that
are thought to be driven by molecular noise. A classical example of such processes
are stochastic cell fate decisions, in which a group of cells are born identical and
during the decision process randomly assume one fate out of a repertoire of possible
fates. It is hypothesized that these cell fate decisions are driven by the amplification of
stochastic molecular fluctuations by feedback loops in the underlying gene regulatory
network.

Stochastic cell fate decisions have been studied by means of a molecular biology
approach, which have been successful in revealing the key components and the
underlying gene regulatory network. However, stochastic cell fate decision processes
are strongly history-dependent. Therefore, in order to understand their driving
mechanism and dynamics, a quantitative approach capable of following the process
in time is needed. However, so far it has not been possible to image any stochastic
cell fate decision process over its full duration.
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5 Quantitative study of the dynamics of the AC/VU stochastic cell fate decision

The ability to quantify the dynamics of stochastic cell fate decisions could help
answer the following fundamental questions:

• What are the sources of noise driving stochastic cell fate decisions? For
instance, the key noise sources could be formed by stochastic variability in
gene expression, cell signaling or in other biological processes. Moreover,
how strong is the noise? Is it stronger compared to invariant developmental
processes, in which noise needs to be strongly suppressed?

• How are these fluctuations amplified? In particular, do gene regulatory net-
works underlying stochastic cell fate decisions share common motifs optimized
to amplify noise? Moreover, how robust are the underlying amplification
mechanisms?

• How is the timing of stochatsic cell fate decisions controlled? In many cases,
the cells specified in a stochastic cell fate decision are necessary for further
development. Therefore, cell specification typically needs to occur within a
limited time window, often on the order of few hours. How can an intrinsically
stochastic process provide robust cell fate specification within the limited time
allowed by development?

In order to address these questions, we applied our time-lapse microscopy
technique to the study of a simple stochastic cell fate decision: the AC/VU decision.
As we will describe in the next section, the genetics of this system is well understood,
making it uniquely suited for our approach.

In this chapter, I will first describe in detail the current understanding of the
AC/VU decision (Section 5.1). I will pay particular attention to the questions that
remain unanswered and what is needed in order to fully elucidate the mechanisms
underlying the AC/VU decision process. Next, I will describe the results obtained in
our group and the implications that these results have on our current understanding
of the AC/VU decision. In particular, we used two techniques that complement each
other. First, we used single molecule fluorescence in situ hybridization (smFISH),
a technique that allows to measure mRNA levels with single-molecule resolution,
to quantitatively study the key components of the gene regulatory network involved
(Section 5.2). Even though smFISH represents a great quantitative tool to study the
gene expression pattern, it requires the animals to be fixed, making it impossible to
quantify the dynamics of expression over the full duration of the process. Therefore,
we complemented this technique by applying our time-lapse microscopy technique
to the study of the dynamics of the core component involved (Section 5.3). Our
results indicate that at least two independent sources of noise are responsible for
the correct fate determination during the stochastic AC/VU decision. Finally, I will
discuss our results and propose additional experiments that could help elucidating
the mechanisms underlying the AC/VU decision (Section 5.4).
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5.1 The AC/VU stochastic cell fate decision

5.1 The AC/VU stochastic cell fate decision
During the development of C. elegans hermaphrodites, the gonad is formed on the
central part of the body to give rise to the reproductive machinery of the animal, which
consists of the uterus, the egg-laying apparatus and the germ line cells. Particularly
important for the development of the reproductive system is the anchor cell (AC),
an organizer cell with crucial roles for the formation of both the uterus and the
egg-laying apparatus.

The development of the gonad in hermaphrodites is initiated by two cells, Z1 and
Z4, that divide three times during the first larval stage (Fig. 5.1A,B). Each division
occurs along the anteroposterior axis of the animal, with cells named according to
their position along the anteroposterior (A-P) axis relative to the parent cell (e.g.
Z1.a and Z1.p, Fig. 5.1A,B). As a result of these divisions, the gonad primordium
at the beginning of the second larval stage is composed of 12 cells [143]. Ten of
these cells undergo invariant differentiation resulting in two so-called distal tip cells
(DTCs) that are positioned at the opposite sides of the gonad and are responsible
for the gonad elongation, four cells that will form the spermatheca, and four cells
that will become part of the uterus. The remaining two cells, called Z1.ppp and
Z4.aaa, lay in the center of the gonad on the ventral side and are born approximately
at the same time. Despite being initially equivalent and undifferentiated cells, during
the second larval stage Z1.ppp and Z4.aaa differentiate either into a ventral uterine
cell (VU) or in the anchor cell (AC). The AC is particularly important for proper
vulva development during the L3 larval stage. Interestingly, the fate determination
process of Z1.ppp and Z4.aaa shows stochastic animal-to-animal variability: among
a population of wild-type hermaphrodites, in 50% of animals Z1.ppp becomes the
AC and Z4.aaa becomes the VU cell, while in the rest of the population the fates
are reversed. Depending on the outcome of the differentiation process, the two
cells, together with their sister cells Z1.ppa and Z4.aap, assume one of two possible
morphological configurations of the so-called somatic primordium [143] (Fig. 5.1C).
Independent of the particular configuration assumed at the end of the second larval
stage, the three VU cells divide two times during the third larval stage and eventually
form the ventral side of the uterus (Fig. 5.1C, bottom image). For the sake of clarity,
in the rest of the chapter, we will follow the notation used in [144] and refer to
Z1.ppp and Z4.aaa as α cells and to their sister cells, Z1.ppa and Z4.aap, as β cells
(Fig. 5.1A,B).

5.1.1 An historical overview
Because of its relative simplicity, the AC/VU decision has become an important
model system for stochastic cell fate decision processes. Therefore, it has been the
subject of extensive studies that I will review in this section.

The first studies focused on elucidating the time frame in which the decision is
made and the number of cells necessary for a proper decision process. These first
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5 Quantitative study of the dynamics of the AC/VU stochastic cell fate decision

experiments made use of cell ablation, a technique to selectively remove a cell of
interest by focusing a high intensity laser beam on it. Two main conclusions were
obtained. First, when either of the α cells is ablated before the formation of the
somatic primordium, the remaining α cell always assumes the AC fate, suggesting
that at this early stage of development cells did not commit to a fate yet [145].
However, when the AC is ablated after the somatic primordium is formed, the
second α cell is not capable of becoming an AC, suggesting that at this later stage of
development cells have terminally differentiated [146]. These results also suggest
that the presence of both α cells is required to specify the VU fate, but the presence
of one of them is sufficient to obtain an AC. Second, when both the β cells are
ablated, the two α cells always differentiate in one AC and one VU, while when
both α cells are ablated, β cells assume the AC fate only in small fraction of animals
[147]. These results suggest that both α cells are necessary and sufficient for the
proper AC/VU decision process, and that the AC and the VU fates are specified in a
mutually exclusive manner, i.e. the decision process always results in one AC and
one VU cell. This decision process is driven by cell-cell interactions between the
two α cells.

To study the molecular nature of the cell-cell interaction, other studies focused
on the analysis of the AC/VU decision process in mutant animals. In 1983, for
the first time, it was recognized that the gene lin-12 plays a major role during the
AC/VU decision [148]. The LIN-12 protein is part of the Notch signaling pathway,
a cell-cell interaction mechanism that is extremely conserved among many multi-
cellular organisms: developmental processes relying on this pathway can be found
in C. elegans, Drosophila and higher vertebrates up to humans [149]. In C. elegans,
the LIN-12/Notch protein is a trans-membrane receptor protein that mediates the
cell-cell interaction and is activated upon binding of a ligand molecule.

Specifically, lin-12 has been extensively studied over the years focusing on
mutant animals in which lin-12 activity is either elevated (gain of function mutants,
referred to as lin-12(gf)) or suppressed (loss of function, lin-12(lf)). Interestingly,
it was found that in both lin-12(gf) and lin-12(lf) mutant animals the AC/VU fate
determination was invariant. In particular, in lin-12(gf) mutants both α cells assumed
the VU fate, while in lin-12(lf) mutants both α cells assumed the AC fate [148, 150].
This result suggests that lin-12 activity is necessary and sufficient to specify the VU
fate. Other experiments exploited mosaic analysis, a technique to create animals in
which the two α cells have different lin-12 activity levels. In some cases, researchers
found animals in which one of the Z lineages (e.g. Z1) was lin-12(lf), while the other
lineage (e.g. Z4) showed wild-type lin-12 activity (lin-12(+)). In these animals,
consistent with the lin-12(lf) phenotype, the lin-12(lf) α cell always differentiated
into an AC. Moreover, the lin-12(+) α cell always becomes a VU cell [147]. This
result is a strong evidence of the presence of an AC-to-VU signal mediated by lin-12
activity and that this signal is necessary in order for a cell to assume the VU fate. If
this was not the case, the lin-12(+) α cell would have shown stochastic variability,
therefore assuming the AC or VU fate with equal probability.
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Figure 5.1: Gonad development and AC/VU decision. (A) Schematic of
gonad development during the first two larval stages. Names are given for cells
highlighted in gray. Anteroposterior direction is indicated on top of the image.
α and β cells are indicated at the bottom. (B) Cell lineages and total number
of cells in the gonad during the first two larval stages. (C) Gonad development
during the L2 and L3 larval stages. Cells in blue represents ventral uterine cells,
cells in red represent anchor cells. Depending on which cell becomes the AC, the
somatic primordium assumes one of two possible configurations (left and right
images, first two rows). Cell migrations are indicated by dashed lines. As the
gonad develops in the L3 stage, the VU cells divide two times and rearrange in
such a way that the two different initial configurations result in the same final
invariant configuration (bottom image).
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Even though the key role of lin-12 was recognized, the full molecular description
was still missing. In particular, the nature of the AC-to-VU signal and the regulatory
network involved had not been elucidated yet and therefore became the subject of
investigation. Greenwald et al. performed experiments using transcriptional and
translational reporters together with antibody staining to assess the expression and
protein accumulation pattern of lin-12 and the expression pattern of lag-2, a gene
predicted to encode a Notch ligand protein [151–153]. The animals analyzed were
temporally ordered according to the relative position of the α and β cells: animals in
which the somatic primordium was not formed yet were interpreted as animals at an
early stage of the AC/VU decision (Fig. 5.1C, first row). On the other hand, animals
in which a somatic primordium was formed were interpreted as animals in which the
AC/VU decision was completed (Fig. 5.1C, second row).

First, animals were created in which the promoter of either lag-2 or lin-12 drove
the expression of LacZ, and antibody staining against LacZ was used to detect
whether the promoter of interest was expressed in the α cells. Expression patterns of
lag-2 and lin-12 were found to change in a reciprocal manner. In particular, it was
found that both lag-2 and lin-12 were initially expressed in both α cells. However,
by the end of the AC/VU decision, lin-12 expression became restricted to the VU
cell, while lag-2 expression became restricted to the AC [151, 152]. Moreover,
LacZ antibody staining in a lin-12(lf) mutant showed that, while lin-12 is initially
expressed in both cells, it is not expressed in either cell during the decision process.
Therefore, while lin-12 activity is not necessary to start the lin-12 expression right
after the α cells are born, it is necessary to maintain lin-12 expression during the
AC/VU decision process. The mutually exclusive expression patterns of lag-2 and
lin-12 suggest that lin-12 activity in one cell downregulates lag-2 expression in that
same cell. Moreover, the results on lin-12(lf) mutants are a strong indication for
the existence of a positive feedback loop involving lin-12 where activated LIN-12
receptors induce expression of more lin-12 in that same cell.

Next, using antibody staining against the green fluorescence protein (GFP) in a
lin-12 translational reporter strain, the protein accumulation pattern of LIN-12 was
studied in paralyzed animals. Greenwald et al. found that, similar to the expression
pattern of lin-12, the protein LIN-12 initially accumulates in both α cells, while
by the end of the decision process it is found only in the VU cell. The similarity
between the patterns of the promoter activity and the protein accumulation suggests
that LIN-12 proteins are relatively unstable [153].

Even though the molecular players involved in the cell-cell interaction had been
found, it was not yet known how lin-12 activation in one cell could lead to the down-
regulation of lag-2 in that same cell. To this end, Greenwald et al. studied the protein
accumulation pattern of a transcription factor called HLH-2. In particular, they
studied how its spatiotemporal pattern compares to both lag-2 and lin-12 expression.
Three categories of animals were found. First, animals in which lag-2 and lin-12
were expressed in both cells, but HLH-2 was not found in either. Second, animals in
which lag-2 and lin-12 were expressed in both cells, while HLH-2 was present in
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Figure 5.2: Current model of the AC/VU stochastic cell fate decisions. (A)
α cells are born identical, i.e. both expressing lag-2 and lin-12 and neither
producing HLH-2. (B) A different in HLH-2 accumulation between the two cells
is the first detectable difference between the two α cells. LIN-12 is more highly
activated in one of the two α cells (Z1.ppp in the figure). As a consequence, two
positive feedback loops are activated. First, LIN-12 activation in Z1.ppp causes
higher lin-12 expression in the same cell. Second, LIN-12 activation in Z1.ppp
downregulates HLH-2 production in the same cell, which results in lower lag-2
expression. (C) The positive feedback loops result in an all-or-nothing decision
in which one cell (Z1.ppp) expresses only lin-12, therefore assuming the VU fate,
and the other cell (Z4.aaa) expresses only lag-2, therefore assuming the AC fate.
In all the panels, thickness of the arrow lines indicates the degree of activation of
that particular part of the network.
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only one cell. Third, animals in which lin-12 was expressed in one cell, while lag-2
and HLH-2 were present in the other cell. Moreover, HLH-2::LacZ transcriptional
reporter animals showed expression in both cells for the entire duration of the
decision, suggesting that HLH-2 is post-transcriptionally regulated [154]. Based on
the observation that lag-2 has 11 potential HLH-2 binding sites, Greenwald et al.
came to the conclusion that HLH-2 is a direct transcriptional activator for lag-2.

Therefore, the HLH-2 data were interpreted in a temporal manner: first, lag-2
is equally expressed in both α cells right after division (Fig. 5.2A). Second, a
variability in HLH-2 protein accumulation is the first detectable difference between
the α cells (Fig. 5.2B). Third, this variability is amplified in a positive feedback loop
such that the cell with more HLH-2 expresses more lag-2. This leads to stronger
activation of lin-12 in the neighboring cell, where it causes post-transcriptional
down-regulation of HLH-2, which in turn decreases lag-2 expression in the same
cell [155]. The amplification of small stochastic fluctuations therefore results in one
cell only expressing lag-2 and the other cell only expressing lin-12 (Fig. 5.2C).

Given that HLH-2 levels form the first detectable difference between the two α

cells, it was concluded that one of the sources of noise driving the AC/VU decision
was the HLH-2 accumulation. However, more sources of variability might be present
that contribute to drive the AC/VU decision process. In fact, another source of noise
was identified: the birth order of the α cells. Since the first common cellular ancestor
of the α cells is as far as four generation earlier, the time at which they are born
is different, with differences in the time of birth ranging from two minutes to two
hours. By analyzing wild type animals with differential interference constrast (DIC)
microscopy, it was found that this birth order highly influences the outcome of the
AC/VU decision, in that the second-born cell has greater probability of becoming
the AC (12 out of 13 animals) [154]. To explain this result, it was hypothesized
that, in the first first-born cell, lin-12 activation occurs earlier or at higher levels,
therefore leading to suppression of HLH-2 in the same cell and a disadvantage in
becoming the AC. Several hypotheses were offered to explain lin-12 activation. For
instance, LIN-12 accumulation in the first-born cell could provide higher probability
of LIN-12 activation. Alternatively, LIN-12 present on the surface of the first-born
cell could be activated by the LAG-2 present on the surface of other surrounding
cells. Another hypothesis is that the first-born cell activates LIN-12 due to cell cycle
progression, in particular as it has been shown in other systems in C. elegans that the
passage from the S phase to the G2 phase is necessary for LIN-12 activation [156].

5.1.2 Open questions
Thanks to the genetics experiments summarized in the previous section, the molecular
mechanisms involved in the AC/VU decision have been partly elucidated and a model
has been proposed that describes the possible dynamics during this stochastic cell
fate decision. The current model of the AC/VU decision can be summarized as
follows:
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1. The α cells are born approximately at the same time, both expressing similar
levels of lag-2 and lin-12 (Fig. 5.2A);

2. Small stochastic fluctuations in the activity of the key regulators, potentially
driven by differences in the birth order of the α cells, lead to higher LIN-12
activation in one α cell, α1, compared to the other α cell, α2 (e.g. α1 =Z1.ppp
and α2 =Z4.aaa in Fig. 5.2B). The difference in LIN-12 activation between
the two α cells triggers two positive feedback loops;

3. First, activation of LIN-12 in α1 maintains expression of lin-12 in the same
cell, potentially leading to more LIN-12 activation (Fig. 5.2B);

4. Second, LIN-12 activation in α1 post-transcriptionally downregulates HLH-2
accumulation in the same cell, which in turn results in lower lag-2 expression
in α1, resulting in lower LIN-12 activation in α2 (Fig. 5.2B);

5. As a consequence, HLH-2 is accumulated and lag-2 is expressed in α2;

6. All together, these positive feedback loops cause α1 to only express lin-12,
therefore assuming the VU fate, and α2 to only express lag-2, therefore
assuming the AC fate (Fig. 5.2C).

Even though this model represents the best understanding of the AC/VU decision
currently available, the following important questions remain unanswered.:

• What are the sources of noise driving the AC/VU decision? Birth order strongly
correlates with the cell fate determination, yet an animal was found in which
the first born cell assumed the AC fate even though the α cells were born
forty minutes apart. Hence, another source of variability must be responsible
for the cell fate determination in this class of animals. This leads naturally
to the question of how cell fates are determined when the α cells are born
approximately at the same time. Is a different source of noise driving the
AC/VU decision in these cases? Moreover, the birth order analysis showed
cases in which, even though the α cells were born only two minutes apart, the
second born cell assumed the AC fate. This raises the question on what is the
minimal detectable difference in the time of division that results in the second
born cell assuming the AC fate.

• How can an intrinsically stochastic mechanism ensure the specification of the
two cells within the allocated time? Both AC and VU cells are of paramount
importance for the proper formation of the reproductive system of C. elegans.
However, a limited amount of time is allocated by development for these two
cells to be specified. How variable is the time needed to reach the decision?
How can the amplification mechanism always ensure that a single AC and a
single VU are produced within the limited amount of time? Does the time to
resolve the decision depend on the initial conditions and on the strength of the
fluctuations?
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In order to address these questions, a quantitative description of the dynamics of
the key molecular players is needed. So far, the dynamics of the process has only
been reconstructed with antibody staining techniques [154]. However, this approach
is limited in two crucial ways. First, antibody staining techniques are not well
suited to perform a quantitative analysis of gene expression. Therefore, the relative
levels of expression in single cells are not accessible. This precludes the possibility
to quantitatively study the variability that an intrinsically stochastic process such
as the AC/VU decision shows. Second, in order to visualize the expression levels,
animals need to be fixed. Therefore, due to the strong stochastic nature of the AC/VU
decision, it is difficult to infer a temporal sequence of events from fixed images.

Instead, to fully elucidate the dynamics of the process, the expression levels of
the key molecular players need to be quantitatively analyzed over time in individual
live animals. In this chapter, we used two different quantitative approaches. (i) We
used single molecule fluorescence in situ hybridization (smFISH), a technique able
to visualize single mRNA molecules, to quantitatively analyze the variability in the
expression levels of the key molecular players. Even though smFISH represents
a unique tool to quantify the variability in the gene expression levels in different
animals, it requires the fixation of the animals. As a consequence, the dynamics
of the AC/VU decision process is not accessible. Therefore, (ii) we applied our
time-lapse microscopy technique to follow the gene expression levels of the key
regulators in single live animals over the full duration of the AC/VU decision. With
this approach, we aim to elucidate the dynamics of the process, and in particular we
aim to identify the key events occurring during the AC/VU decision that determine
the cell fate outcome.

5.2 Quantitative analysis of gene expression in fixed
animals with smFISH

The experiments shown in this section are part of a joint project with Dr. Simone
Kienle, a post-doctoral researcher in the group. All the smFISH experiments
presented here have been performed by Dr. Simone Kienle and hence the specific
approaches used to perform the experiments and analyze the data will not be
discussed. However, the interpretation of the data obtained has been performed
jointly. As the smFISH experiments are tightly interlinked with the time-lapse
experiments presented in Section 5.3, in this section I will briefly summarized the
key results from the smFISH experiments.

Single molecule fluorescence in situ hybridization (smFISH) is a technique to
visualize single mRNA molecules. The technique relies on the design of multiple
short DNA probes that are complementary to different regions of an mRNA of interest
[157] (Fig. 5.3A, top). Additionally, each probe is equipped with a fluorophore that
can be visualized with fluorescence microscopy techniques. Even though a single
fluorophore is hardly visible, multiple probes bind to a single mRNA, which is then
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A

mRNA

probes

dyes B lag-2 mRNA lin-12 mRNA
cell nucleus

Figure 5.3: single molecule FISH working principle. (A) Working principle
of smFISH. The probes (colored rectangles) are complementary to portions of
the mRNA of interest. Red dots represent the fluorescent dyes. (B) Maximum
projection of a fluorescent stack acquired for a single animal in which lag-2 and
lin-12 mRNAs have been labeled with Cy5 (green dots) and Alexa (red dots)
fluorescent dyes. Cell nuclei have been labeled with DAPI stain (blue regions).

labeled with as many fluorophores as the number of probes attached (Fig. 5.3A,
bottom). Therefore, a single mRNA is visible as a diffraction limited spot when
imaged with wide-field fluorescence microscopy. The key feature of this technique
is the capability to quantitatively measure the expression pattern of genes of interests
in single cells. Moreover, by labeling probes belonging to different gene transcripts
with different fluorophores, it is possible to visualize mRNAs of different genes in
the same cells.

5.2.1 Quantitative analysis of smFISH data
To study the expression pattern of the key regulators of the AC/VU decision, we
performed smFISH experiments on multiple animals. In particular, we aimed to
measure the dynamics of the expression patterns of the two main regulators, the
receptor lin-12 and the ligand lag-2 (Fig. 5.3B). To this end, we performed two-
colors smFISH by labeling lag-2 mRNAs with Cy-5 smFISH probes and lin-12
mRNAs with Alexa-594 smFISH probes in wild-type animals. Next, we measured
the body length of each animal analyzed. Thanks to the fixed, larval stage-dependent
growth rate shown in Section 2.3.2, we could then infer a temporal sequence by
comparing the body length of fixed animals.

First, we quantified the absolute number of mRNA molecules in single cells as a
function of body length (Fig. 5.4A,C). We observed that both lag-2 and lin-12 show
high animal-to-animal variability in the number of mRNAs. Surprisingly, we found
(i) that lag-2 mRNAs are present also in the mother cells (black dots), which to our
knowledge is a novel observation, and (ii) that lag-2 expression in the mother cells
shows high cell-to-cell variability (black dots in Fig. 5.4C, average mRNA counts
and standard deviation 18±17).

Moreover, we observed that, for animals longer than 0.38 mm, a sub-population
of α cells showed much higher lag-2 expression compared to other α cells (Fig.

89



5 Quantitative study of the dynamics of the AC/VU stochastic cell fate decision

0.30 0.40 0.50
0

20

40

60

80A

0.30 0.40 0.50
−80

−40

0

40

80

Body length [mm] Body length [mm]

m
RN

A 
co

un
t

m
RN

A 
di

ffe
re

nc
e

B

0.30 0.40 0.50
0

20

40

60

80C

0.30 0.40 0.50
−80

−40

0

40

80

Body length [mm] Body length [mm]

m
RN

A 
co

un
t

m
RN

A 
di

ffe
re

nc
e

D

E F G

20

40

60

20

40

60

20

40

60

20 40 60 20 40 60 20 40 60
lag-2 mRNA counts lag-2 mRNA counts lag-2 mRNA counts

lin
-1

2 
m

RN
A 

co
un

ts

lin
-1

2 
m

RN
A 

co
un

ts

lin
-1

2 
m

RN
A 

co
un

ts
R = 0.02 R = -0.17R = 0.64

L < 0.38 mm L > 0.38 mm

lin-12

lag-2 lag-2

lin-12

Figure 5.4: Results of the smFISH experiments on wild-type animals. (A,C)
Number of mRNAs in Z1.pp and Z4.aa (black dots) and in the α cells (magenta
dots) as a function of body length. For each cell, both lin-12 (A) and lag-2 (C)
mRNAs are measured. The vertical dashed line represents the size threshold
(0.38 mm) used to discriminate between shorter and longer animals in which
both the α cells are already born. (B,D) Difference in mRNA levels between
pairs of cells in the same animal. The difference is always computed as the
mRNA level in the anterior cell minus the mRNA level in the posterior cell (e.g.
Z1.ppp-Z4.aaa). The identity of the cells of interest depend on whether the α

cells are born already. The identity of the cells is assessed by cell size, cell
positions and gonad morphology. In case neither of the two α cells was born yet,
we compared the levels between the two mother cells (black dots). Animals in
which one of the two α cells is born are also represented with black dots. In this
case we compared the other mother cell with the α cell that is already born. In
case both mother cells divided, we compared the levels between the two α cells
(magenta dots). (E-G) Correlation plots for the mRNA numbers of lag-2 and
lin-12 for the mother cells (E), α cells in animals shorter than 0.38 mm (F) and α

cells in animals longer than 0.38 mm (G). The correlation coefficient R is given
for each plot.
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5.4C, magenta dots on the right side of the vertical dashed line). That is, lag-2
expression assumed a bimodal distribution by the end of the AC/VU decision, which
is consistent with the current AC/VU decision model in which lag-2 expression
is eventually restricted to the AC. Surprisingly, we instead observed that lin-12 is
expressed in all the α cells analyzed, suggesting that both α cells in the same animal
express lin-12, even at the end of the decision process (Fig. 5.4A, magenta dots).
To further investigate the expression levels in the α cells within the same animal,
we computed the difference in the mRNA levels of lag-2 and lin-12 between the
anterior and the posterior cells. In general, we found that lag-2 is always more highly
expressed in one of the two α cells at later stages of the AC/VU decision (bodylength
> 0.38 mm, Fig. 5.4D). However, α cells within the same animal showed similar
levels of lin-12 expression at all stages of the AC/VU decision (Fig. 5.4B). This
result is at odds with previous observations, which reported that lin-12 expression is
eventually restricted to the α cell that will assume the VU fate.

To further investigate this discrepancy we examined the correlation between the
number of receptor mRNAs and ligand mRNAs in the same cell. If, as the current
model of the AC/VU decision suggests, lin-12 activation leads to lower expression
of lag-2, we expect a negative correlation in the expression levels of lag-2 and lin-12
in the same cell. That is, if one α cell shows high expression of lag-2, the lin-12
expression in the same cell should be low. To test this hypothesis we correlated
the number of lag-2 mRNAs and lin-12 mRNAs in the same cell at three different
temporal stages: in the mother cells (Fig. 5.4E), in the α cells for animals at early
stages in the AC/VU decision (Fig. 5.4F) and in the α cells for animals at later stages
(Fig. 5.4G). To discriminate between earlier and later stages, we chose a body length
threshold (0.38 mm), as in animals longer than this threshold lag-2 is predominantly
expressed in only one α cell (Fig. 5.4C,D). We did not find correlation between the
levels of lag-2 and lin-12 in any of these temporal stages, as summarized by the
small correlation coefficient (Fig. 5.4E-G).

5.2.2 smFISH experiments: conclusions and outlook
The current model of the AC/VU decision predicts that, by the end of the process,
both lag-2 and lin-12 are expressed in only one α cell in a mutually exclusive manner.
However, in this section, we have shown that lin-12 is expressed in both α cells
during the full duration of process. On the other hand, lag-2 expression is indeed
eventually restricted to only one α cell. While we do not exclude the possibility
that differential expression of lin-12 might occur at even later stages in development
or that lin-12 might be post-transcriptionally regulated, our results suggest that the
expression of lag-2 is more dynamic than the expression of lin-12. This result
poses the question on whether lag-2 is alone responsible for the cell-cell interaction
and therefore for the decision process. In this case, LIN-12 would be a passive
communication channel to relay the feedback signal formed by the lag-2 expression
levels from one cell to the other.
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5 Quantitative study of the dynamics of the AC/VU stochastic cell fate decision

In this section, we have also shown that mother cells express both the genes
encoding for the ligand and the receptor proteins. In particular, we found high
variability in the expression of the ligand lag-2. As a consequence, upon division,
a number of lag-2 mRNAs are likely inherited by the α cell. This observation
raises questions about the nature of the source of noise in the AC/VU decision: is it
possible that the α cells are not born identical, but rather they initially have different
potentials to assume the AC fate? In particular, could the α cell that inherits more
lag-2 mRNAs have an advantage in assuming the AC fate?

To address these questions, we studied the AC/VU decision in live animals over
time by means of fluorescence time-lapse microscopy. With time-lapse microscopy,
we can directly measure the correlation between the expression levels in the mother
cells and the final cell fates. Moreover, time-lapse microscopy analysis of gene
expression might help elucidate other aspects of the AC/VU decision that have so
far been inaccessible. Specifically, we can study the effect of the difference in the
division time on the dynamics of the process, in particular in animals in which the α
cells are born approximately at the same time. Moreover, as the second-born cell
has greater probability of assuming the AC fate, we can study the gene expression
dynamics in those exceptional animals in which the second-born cell assumes the
VU fate, hence testing whether additional sources of noise are responsible for the
correct AC/VU specification in these animals.

5.3 Gene expression dynamics by fluorescence
time-lapse microscopy

To quantify the expression dynamics of lag-2, we chose the already existing tran-
scriptional reporter strain arIs131 [lag-2p::2xNLS::YFP, ceh-22::GFP], in which the
production of the yellow fluorescence protein (YFP) is controlled by the expression
of the lag-2 promoter and the YFP proteins are driven to the cell nucleus. In order
to detect the position of the nuclei of cells that did not expressed lag-2, we crossed
this strain into the strain stIs10226 [his-72p::HIS-24::mCherry::let-858 3’ UTR +
unc-119(+)], which shows constant mCherry expression in all cell nuclei.

5.3.1 Experimental design and data analysis
In order to maximize the fluorescence signal collected from single cells, we used an
high magnification and high N.A objective (60X, N.A.=1.4). To ensure that animals
are always in the field of view of the camera when imaged with a 60X objective, we
confined them in small chambers (190x190x10 µm3). As we showed in Section 2.3.2,
animals in these chambers grow normally only until the L3 larval stage. However,
this did not represent a problem, as the AC/VU cell fate decision occurs during the
L2 stage.
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5.3 Gene expression dynamics by fluorescence time-lapse microscopy

Because of the presence of two fluorescence signals (YFP and mCherry), the
time-lapse imaging was performed using three different light sources: a red LED
(transmission image), a 488 nm laser (YFP excitation) and a 561 nm laser (mCherry
excitation). We used the YFP strain because no lag-2 transcriptional reporter strains
for GFP exist. With our laser we were able to excite YFP (optimal excitation at 515
nm) at 40% of its maximum. Therefore, in order to maximize the collection of the
emission signal, we used the highest laser power provided by our setup (100 mW).
Because of the high intensity of the laser, we needed to optimize the exposure time,
the time interval between consecutive time points and the number of slices acquired
in a single stack to obtain high signal-to-noise ratio and, at the same time, avoid
phototoxicity. We found that, using 5 ms exposure time, 10 minutes time interval
and 25 slices with 1 µm spacing, we did not affect the larval development of the
animals. At the same time, these settings were sufficient to always have the cells
of interest in the range of the stack, with sufficiently high signal-to-noise ratio, and
enough time resolution to study the dynamics of the lag-2 gene expression.

The total size of the images collected for a single worm added up to ~100 Gb.
Therefore, we developed Python graphical user interfaces to analyze single images
in the following manner:

• First, we used the transmission images to perform an average projection of
each stack and collect all the resulting images in a single time-lapse video.
From this collection of images, the hatching time and all ecdysis event times
were visually detected and annotated.

• Next, we loaded each movie in a graphical user interface and manually
annotated the position of the gonad in the image (Fig. 5.5A). We then used
this position to crop a portion of the image centered on the gonad and save it
in a separate .tif file. As these images consisted of 512x512 pixels, they
occupied less space on the computer drive, making it faster to load each stack
for further image analysis.

• Next, we loaded the new stacks in a user interface and manually annotated the
position and the identity of each cell based on the positions of the nuclei in
the whole body and relative to their positions in the previous time point (Fig.
5.5B).

• A sub-region of the image centered on the cells of interest was selected and
the outline of the cell was created. As the size of the cell nuclei can change
over time and between different cells, the dimension of the sub-region can be
chosen by selecting the number of pixels to visualize. Here, we typically used
5µm x 5µm. The cell outline can be computed in an automated way from the
YFP image with the Otsu’s algorithm or manually selected in case of failure
of the automated detection (Fig. 5.5C). This is typically the case when cells
lose their YFP fluorescence signal or when the mCherry fluorescence marker
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A B

C D

Figure 5.5: Image analysis work-flow. (A) User interface used to manually
select the gonad region (black dot). (B) Manual labeling of single cells. Both
fluorescence and transmission channels can be showed to help cell identification.
Overview of the animal’s position is shown on the right. (C) Cell outline detection.
Automatic detection using the currently displayed fluorescence channel can be
computed with the button in the bottom left corner. (D) Animal’s orientation
is annotated by the anterior (A), posterior (P) and dorsal (D) sides of the body
(white dots).

is particularly dim. The YFP fluorescence intensity was quantified in single
cell nuclei by averaging all the pixel values inside the cell outline.

• To visualize the dynamics of single cells, we detected the orientations of the
animal’s body in the image by annotating the anterior, posterior and dorsal
sides of the animal around the gonad. We then oriented each gonad region
such that the anterior side of the gonad is on the left, the posterior side on
the right and the dorsal side on the top of the image (Fig. 5.5D). Finally, we
cropped a 4µm x 4µm sub-region centered on the cell nuclei. All the frames
for a single cell were collected in a .tif movie and saved on the computer
drive.

In this way, we could reduce the ~100 Gb of raw imaging data in ~100 Kb
containing only the cells involved in the AC/VU decision process (Fig. 5.6).
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Figure 5.6: Fluorescence signal from single cell nuclei. Frames for the mother,
α and β cells are shown for (A) YFP and (B) mCherry channel. Cell divisions
are indicated by the solid lines between image rows.

5.3.2 Quantification of gene expression dynamics in single
animals

Using our time-lapse microscopy technique and image processing pipeline, we were
able to image the gene expression dynamics of lag-2 in the α and β cells, as well as
in the mother cells (Fig. 5.7A). We monitored the progression in the decision process
in two ways. First, we measured the average fluorescence intensity in the nuclei
as a function of time after the L2 ecdysis (Fig. 5.7B). Second, we measured the
normalized fluorescence intensity difference N (t ) as a function of time (Fig. 5.7C):

N (t ) = FA(t )−FP (t )

FA(t )+FP (t )
(5.1)

Here, FA and FP represent the fluorescence intensity in the anterior and posterior
cell, respectively. Positive values of N (t ) represent time-points in which the anterior
cell is brighter, while negative values of N (t ) represent time points in which the
posterior cell is brighter. The quantity N (t ) is defined in the interval (−1,1), and
it assumes values close to the boundaries (e.g. N (t ) ≈+1 or N (t ) ≈−1) when the
fluorescence intensity is detected only in one of the two cells, i.e. when the AC/VU
decision is completed. Because we are also interested in the expression dynamics of
the mother cells, the identity of each cell changes when the cell division occur. For
instance, the anterior cell is Z1.pp before division and Z1.ppp after division.

95



5 Quantitative study of the dynamics of the AC/VU stochastic cell fate decision

A

0

1

2

3

Fl
uo

re
sc

en
ce

 [a
.u

.]

Time after L2 ecdysis [hours]

L1 L2

BZ1.pp Z4.aa

Z1.ppp Z4.aaa Z4.aapZ1.ppa

0-2 2 4 6 8

Time after L2 ecdysis [hours]
0-2 2 4 6 8

0

0.5

1.0

0.5

1.0N
or

m
al

ize
d 

flu
or

es
ce

nc
e

 d
iff

er
en

ce
 [a

.u
.] L1 L2 L3

CTi
m

e

α ββ α

A P

la
g-

2p
::Y

FP

Figure 5.7: Quantification of time-lapse microscopy data. (A) Fluorescence
images of single cells in the same worm over time. Cells in the same row belong
to the same time point. Identity of cells is indicated at the first and last time points.
Cell divisions are represented by solid black lines connecting the last image of
the mother cell with the first images of the daughter cells. (B) Quantification of
fluorescence intensity in Z1.pp (cyan dots), Z4.aa (orange dots), Z1.ppp (blue
dots) and Z4.aaa (red dots). Time is in hours after the L2 ecdysis. Arrows
indicates time-points shown in Panel (A). Solid lines represent Gaussain filter of
the raw data with a width of 15 minutes. (C) Normalized fluorescence difference
N (t ). Arrows indicates time points shown in Panel (A). The value for each time
point is computed as the fluorescence intensity difference between the anterior
and the posterior cell, divided by the sum of the two. Time is in hours after L2
ecdysis. Schematic of the fluorescence intensity in the anterior (A) and posterior
(P) cells is shown on the right side of the panel for N =+1 (top), N = 0 (center)
and N =−1 (bottom). The dynamics is divided in three qualitatively different
phases. First phase: neither cells divided, therefore cells of interest are Z1.pp
and Z4.aa (black dots and line). Second phase: one mother cell divided (Z1.pp
in the example), fluorescence difference is computed between the new-born α

cell and the other mother cell (Z1.ppp and Z4.aa in the example, cyan dots and
line). Third phase: the other mother cell divided, fluorescence difference is
computed between Z1.ppp and Z4.aaa (magenta dots and line). Vertical dashed
lines represent the L2 and L3 ecdysis events.
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Figure 5.8: Examples of different AC/VU decision dynamics. Time traces and
fluorescent images of mother cells and α cell for six animals showing different
AC/VU decision dynamics. Arrowheads indicate time points shown in the images
underneath. Vertical dashed lines represent times of L2 and L3 ecdysis. In the
images, a yellow asterisk indicates the first time point in which the α cell is born.
(A-C) Animals in which the second-born cell assumes the AC fate. (D) Animals
in which cells are born at the same time. (E-F) Animals in which the first-born
cell assumes the AC fate.

From the analysis of the smFISH data presented in the previous section, we found
that lag-2 mRNAs are already present in the mother cells. Similarly, in the time-lapse
microscopy data, we observed fluorescence intensity already in the mother cells,
suggesting that the lag-2 reporter is expressed already before division. Moreover,
both α and β cells show a fluorescence intensity significantly above the background
level right after division. However, by the end of the L2 stage, fluorescence is always
restricted to one of the α cells. At the L3 ecdysis, we always found the brighter
cell in the central position of the gonad and the other cells surrounding it, which is
consistent with the configuration of the somatic primordium observed previously
and with the typical position of the AC at the center of the gonad [151] (schematic
of the cell positions in the somatic primordium are shown in Fig. 5.1C).
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5 Quantitative study of the dynamics of the AC/VU stochastic cell fate decision

Because the AC/VU decision is an intrinsically stochastic process, many animals
need to be imaged in order to identify the sources of noise and to quantify its strength.
Therefore, we imaged multiple animals and quantified the fluorescence intensity in
the nuclei of the mother cells and the α cells. We observed high animal-to-animal
variability in the dynamics of lag-2 expression. In Fig. 5.8 six representative animals
are presented.

Among animals in which the second-born α cell assumes the AC fate, the
expression dynamics that results in this fate determination is highly variable. Three
categories can be found. First, animals in which the second-born cell, right after
division, shows higher expression than the first-born cell, and remains brighter
during the full duration of the decision, eventually assuming the AC fate (Fig. 5.8A).
Second, animals that show similar levels of expression between the two α cells, but
in which the second-born α cell eventually becomes brighter and assumes the AC
fate (Fig. 5.8B). Third, animals in which the second-born cell is initially dimmer,
and only during the decision it increases its fluorescence above the other α cell and
assumes the AC fate (Fig. 5.8C).

In some animals, the α cells are born at the same time, or at least within our
temporal resolution (10 minutes). For example, in the animals shown in Fig. 5.8D,
both α cells showed similar levels of YFP expression right after division, and only
after few hours we observed differential fluorescence intensity.

Among animals in which the first-born α cell assumes the AC fate, the expression
dynamics was diverse. In some cases the first-born α cell was already brighter right
after division and remained brighter throughout the decision, therefore assuming
the AC fate (Fig. 5.8E). In other cases the first-born α cell was initially dimmer,
and only in the mid-L2 stage did the dimmer cell show an increase in fluorescence,
eventually assuming the AC fate (Fig. 5.8F).

From these examples we conclude that the dynamics of lag-2 expression during
the AC/VU decision exhibits high animal-to-animal variability, even within animals
with the same correlation between birth order and cell fate determination. To test
the relevance of the birth order on the AC/VU decision, in the next section I will
perform a quantitative study of the effect of the time between births of the α cells on
the dynamics of the AC/VU decision.

5.3.3 Analysis of birth order and its effects
To analyze the effect of birth order on the AC/VU decision process, we analyzed
the expression dynamics in N=42 animals. For each animal, we performed the
quantitative analysis described in the previous section and extracted the normalized
fluorescence difference N (t ). We found that in 48% of the animals (20/42), the
anterior α cell (i.e. Z1.ppp) assumed the AC fate, while in 52% of the cases the
posterior α cell (i.e. Z4.aaa) did (Fig. 5.9A). Therefore, each α cell has equal
probability of assuming the AC or VU fate, consistent with previous results [143].
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Figure 5.9: Analysis of birth order. (A) Normalized difference for N=42
animals. Data are shown upon filtering with a Gaussian filter with 15 minutes
standard deviation. (B) Variability in time of division of Z1.pp and Z4.aa. Time
is represented in hours after L2 ecdysis. (C) Normalized fluorescence difference
at the L3 ecdysis as a function of the difference in time between births of the
anterior and posterior α cells ∆TB (i.e. T Z1.ppp

birth −T Z4.aaa
birth ). Therefore, positive

values represent animals in which Z4.aa divided before Z1.pp. (D) Time to
irreversible decision as a function of ∆TB . The time to irreversible decision is
relative to the second division time and is computed as the last time at which the
normalized difference crosses the 1/3 or −1/3 threshold, represented by solid
lines in Panel (A). In Panels (C) and (D), the light blue regions indicate animals in
which the absolute value if the time between births |∆TB | is less than 30 minutes.
In Panels (B), (C) and (D), red dots represent animals in which the first-born cell
assumes the AC fate.

To quantify the animal-to-animal variability in the division time of the mother
cells, we extracted the exact time of division relative to the L2 ecdysis. We found that
both mother cell divisions occur on average right after the L2 ecdysis and showed
animal-to-animal variability (0.53±0.65 hours for Z1.pp, 0.52±0.51 hours for Z4.aa).
Next, we tested whether the division times of mother cells are synchronized, by
comparing the division times within the same animal. We found that division
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5 Quantitative study of the dynamics of the AC/VU stochastic cell fate decision

times of mother cells in the same animal weakly correlate (R=0.26) (Fig. 5.9B).
Therefore, the birth order of the α is unbiased (in 18/42 animals Z1.pp divides first,
in 21/42 animals Z4.aa divides first and in 3/42 animals mother cells divide within
our temporal resolution).

To test whether birth order is a bias for the AC/VU decisions, we computed
the difference in time between births of the anterior and posterior α cells (∆TB =
T Z1.ppp

birth −T Z4.aaa
birth ) with the identity of the AC cell (Fig. 5.9C). To identify the AC cell,

we used the value of the normalized fluorescence difference at the L3 ecdysis, NL3,
i.e. when the primordium is formed and the AC/VU decision is complete. A positive
value of NL3 indicates that Z1.ppp assumed the AC fate, and a negative values of
NL3 indicates that Z4.aaa did (Fig. 5.9A). We found that in most of the cases (32/42
animals, ~76%), the second-born α cell assumed the AC fate, while only in 7/42
cases (~17%) the AC fate was assumed by the first-born α cell. In 3/42 cases (~7%),
cells divided within our temporal resolution, therefore we assumed that division
happened at the same time. Moreover, we found that the first-born cell assumed the
AC fate only in animals in which the absolute value of the time between births |∆TB |
was shorter than 30 minutes (Fig. 5.9C, red dots lying in the light blue region). In
26% of the animals with |∆TB | < 30 minutes, the first-born α cell assumed the AC
fate (7/26 animals). When mother cells divided more than 30 minutes apart, the birth
order predicts the cell fate decision with 100% accuracy, with the second-born α cell
always assuming the AC fate (16/16 animals).

Therefore, while the birth order is the dominant noise source driving the AC/VU
decision and greatly enhances the probability of the second-born cell to assume the
AC fate, the probability that the first-born cell assumes the AC fate increases if the
α cells are born at similar times. This raises the question whether the dynamics
of the AC/VU decision depends on the time between births ∆TB . For example, a
variable that might be depending on ∆TB is the time necessary to specify the cell
fates. To test whether this is the case, we studied the time it takes for each animal
to make an irreversible decision as a function of the time between births ∆TB . In
mathematics, this problem is called last passage time. Applied to our case, given
the random variable N (t ) and a threshold Nthr , we define the time to an irreversible
decision tdec as:

tdec =
{

min{ t ′ | N (t ) > Nthr ∀t > t ′ } if NL3 > 0

min{ t ′ | N (t ) <−Nthr ∀t > t ′ } if NL3 < 0
(5.2)

where NL3 represents the value of the normalized fluorescence intensity difference
N (t ) at the time of the L3 ecdysis. The dependence of the definition of tdec on NL3

is used to ensure that the proper threshold is used depending on whether Z1.ppp
eventually assumes the AC fate (NL3 > 0) or Z4.aaa assumes the AC fate instead
(NL3 < 0). To define the threshold Nthr , we chose the value of N at which one of the
α cells is twice as bright as the other α cell, therefore:

Nthr =
2−1

2+1
= 1

3
(5.3)
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Moreover, the time to irreversible decision tdec is measured relative to the time at
which the second α cell is born.

We found that if the α cells are born at approximately the same time, the time to
irreversible decision tdec is on average larger than if they are born more far apart
(3.6±1.2 hours for |∆TB | ≤ 30 min, 2.2±1.0 hours for|∆TB | > 30 min). This could
be explained with a model in which the birth order is only one of the sources of
noise that are responsible for the AC/VU fate determination. Analyzing animals
with |∆TB | < 30 minutes is a way of studying AC/VU decision processes in which
the strength of the predominant source of noise, birth order, is much reduced. As a
consequence, in these cases the AC/VU decision must rely on other, possibly weaker,
noise sources, therefore leading to a different dynamics of the cell fate specification.

In this section, we have shown that birth order is a strong bias for the AC/VU
decision process. In particular, when the time between births of the α cells |∆TB | is
higher than 30 minutes, the second-born α cell always assumes the AC fate. However,
for |∆TB | < 30 minutes, the AC/VU decision is more variable, as we observed that
the AC fate was assumed by the first-born cell in ~26% of the animals. Moreover,
we observed that the dynamics of lag-2 expression in the α cells is dependent on the
time between births ∆TB , as in animals in which |∆TB | < 30 minutes, the AC/VU
mechanism takes on average a longer time to irreversibly specify the cell fates than in
animals in which |∆TB | > 30 minutes. This suggests that other sources of noise bias
the AC/VU decision when α cells are born approximately at the same time. In the
next section, I will perform a quantitative analysis aimed to identify such alternative
noise sources.

5.3.4 Characterization of possible noise sources
Our smFISH experiments show that lag-2 is already expressed in the mother cells,
and that its expression levels are highly variable, both between different animals and
between mother cells within the same animal (Section 5.2 and Fig. 5.4). In general,
at the moment of division, the molecular content of a mother cell is partitioned
between the two newly born daughter cells. In fact, we observed that, at the moment
of division, lag-2 mRNAs in the mother cells were partitioned over the α and β

daughter cells (Fig. 5.10A). Because of the high variability in the expression levels
of the mother cells, it is plausible to assume that α cells inherit different lag-2 mRNA
levels. Therefore, we wondered whether this variability could cause the two α cells
to have different initial potentials of assuming the AC fate. That is, the variability
in the number of lag-2 mRNAs in the mother cells right before division might be
the additional source of noise responsible for the AC/VU decision. As animals
need to be fixed to perform smFISH experiments, it is not possible to answer this
question from the analysis of the smFISH data. However, our time-lapse microscopy
technique provides a tool to follow the expression levels in the mother cells and the
consequences that it has on the AC/VU decision process. Specifically, in this section,
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5 Quantitative study of the dynamics of the AC/VU stochastic cell fate decision

we want to test whether, for animals in which the α cells are born approximately
at the same time, the AC fate is assumed by the α cell whose mother cell showed
higher lag-2 expression levels. To test this hypothesis, all the analysis shown in this
section is performed only on the 26 animals in which the absolute value of the time
between births |∆TB | is less than 30 minutes.

First, we quantified the fluorescence intensity of mother cells within the same
animal in the lag-2 transcriptional reporter strain (Fig. 5.10B). In particular, we
quantified the fluorescence intensity in the mother cells averaged over the last hour
prior to division, 〈FZ1.pp〉1h and 〈FZ4.aa〉1h , and performed a correlation analysis
between mother cells within the same animal. Similar to the variability observed
on the number of lag-2 mRNAs with smFISH, we found that both mother cells
show high variability in expression levels, as measured in arbitrary units of absolute
fluorescence intensity (2.7±0.7 for Z1.pp and 3.6±1.4 for Z4.aa). Moreover, we
observed that the fluorescence intensity in mother cells within the same animal is
only weakly correlated (R = 0.25), suggesting that the lag-2 expression level in one
mother cell do not depend on the expression level in the other mother cell.

We then tested whether such variability is a source of noise for the cell fate
determination. To test this hypothesis, we computed the normalized fluorescence
difference between the anterior and the posterior mother cell:

Nm = 〈FZ1.pp〉1h −〈FZ4.aa〉1h (5.4)

and correlated Nm with the normalized fluorescence difference between the two α

cells at the L3 ecdysis, NL3 (Fig. 5.10C, black and red dots, N=26).
We found that in 50% of the animals (13/26), the mother cell of the future AC

showed higher fluorescence intensity than the other mother cell. On the other hand,
we found that in the other 50% of the animals, the α cell deriving from the brightest
mother assumed the VU fate. This shows that the relative fluorescence intensity of
the mother cells is not predictive of the cell fate determination for these animals.
This is the case even for animals in which the first-born cell assumed the AC fate
(Fig. 5.10B,C red dots). In fact, among these animals, we found cases in which the
mother cell of the future VU cell showed higher fluorescence than the other mother
cell (4/7). From this result, we conclude that the fluorescence level in the mother
cells is not predictive of the final fates assumed by the α cells.

Next, we observed that, even though they are not involved in the AC/VU decision
and invariantly assume the VU fate, β cells also show fluorescence intensity right
after division. In particular, we observed that in many cases, α and β sister cells
showed a similar fluorescence intensity dynamics right after birth, in most of the
cases showing an increase in fluorescence in both cells, which eventually disappears
in all the β cells, as they always assume the VU fate (Example shown in Fig. 5.11A).
This observation is interesting for two distinct reasons. (i) The fact that α and β cells
show similar expression dynamics right after division suggests that a common factor
is regulating the expression at this stage. It is intriguing to hypothesize that the lag-2
mRNA level inherited from the mother cell form this common factor. (ii) The fact
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Figure 5.10: Analysis of the mother cell dynamics. (A) Distribution of lag-2
mRNAs during a cell division showing cell nuclei (blue) and lag-2 mRNAs
(green). In the example, the Z1.pp cell is undergoing division. (B) Correlation of
the fluorescence intensity in mother cells within the same animal prior to division.
(C) Normalized fluorescence difference at the L3 ecdysis as a function of the
normalized difference of the average fluorescence intensity of the mother cells.
Results are shown only for animals in which the division time of the mother cells
differs by less than half an hour. Schematic representations of the fluorescence in
the mother and α cells is shown on the top and the right sides of the panel.

that the fluorescence increase shows cell-to-cell variability makes this a candidate for
the additional source of noise responsible for the cell fate outcome when |∆TB | < 30
minutes, i.e. when the strength of the predominant source of noise is reduced.

We therefore performed a quantitative analysis to test whether the lag-2 expres-
sion dynamics of the α and β sister cells indeed shared some common patterns right
after birth. We computed a linear fit of the time traces of both α and β cells for the
hour after birth (Fig. 5.11A, green lines). We then quantified the dynamics of lag-2
expression by measuring the rate of fluorescence increase, i.e. the slopes of the linear
fit, for each α and β cell (e.g. SZ1.ppp and SZ1.ppa). Then, we performed a correlation
analysis to quantify to what extent the lag-2 expression in the first hour after birth is
similar in α and β sister cells (Fig. 5.11B).

According to the current model of the AC/VU decision, in which the β cells
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Figure 5.11: Analysis of the sister cell dynamics. (A) Example of a comparison
between the dynamics of β and α sister cells. In the two panels, the fluorescence
intensity is shown for the anterior (top) and posterior (bottom) α and β cells in
the same animal. Raw data are indicated with circles (α cells) and diamonds
(β cells). A Gaussian filter of the data is represented with solid (α cells) and
dashed (β cells) lines. A linear fit of the fluorescence intensity of the β cells for
the first hour after birth is indicated by green solid lines. From the linear fit, the
rate of fluorescence increase of the β cells is extrapolated (SZ1.ppa and SZ4.aap).
(B) Correlation of the rate of fluorescence increase S between α and β sister cells
in all the animals (N=26). The projection of a single point along the diagonal is
shown (cyan dashed line and cyan dot). Orthogonal arrows indicate the directions
of the spread of the points due to extrinsic (parallel to the diagonal) and intrinsic
(perpendicular to the diagonal) noise. (C) Normalized fluorescence difference
between the α cells at the L3 ecdysis (NL3) as a function of the difference in the
average rate of fluorescence increase in the α and β cells (∆S) in the same animal.
Red dots represent animals in which the first-born cell assumes the AC fate.
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do not play any role in the AC/VU decision process, we expected to find very low
values in the rate of fluorescence increase of the β cells Sβ, even when the rate of
fluorescence increase of the α cells Sα was high. However, with only one exception,
we always found positive values of Sβ for all the animals. Moreover, we found high
variability in the values of both Sα and Sβ. Inspired by the the quantitative analysis
performed by Elowitz et al. [15], we interpreted our data in terms of intrinsic and
extrinsic variability. In particular, we found considerable variability upon projection
of all the data points along the diagonal. That is, we found high extrinsic variability
(Example of a single projection is shown in Fig. 5.11B by the cyan dashed line and
dot).

Extrinsic variability is described as the variability due to a common source of
noise affecting both sister cells equally. Hence, we decided to test whether the
variation along the diagonal can predict the cell fate outcome. To this end, we
computed the average of the rate of fluorescence increase between the two anterior
sister cells:

Sant =
SZ1.ppp +SZ1.ppa

2
(5.5)

and between the two posterior sister cells:

Spost =
SZ4.aaa +SZ4.aap

2
(5.6)

in the same animal. Next, we computed the difference in average rate of fluorescence
increase between the anterior and posterior sister cells:

∆S = Sant −Spost (5.7)

and performed a correlation analysis of ∆S with the normalized fluorescence differ-
ence at the L3 ecdysis NL3 (Fig. 5.11C).

We found that the difference in average rate of fluorescence increase of the α

and β sister cells is not predictive of the cell fate determination. Even in animals in
which the first-born cell assumes the AC fate, ∆S did not correlate with the final fate
determination (red dots). In fact, against our hypothesis, in 4/7 animals the α cell
showing an higher average rate of fluorescence increase eventually assumed the VU
fate.

5.4 Conclusions
In this chapter, we studied a simple stochastic cell fate decision, the AC/VU decision,
using two complementary techniques: smFISH and time-lapse microscopy. smFISH
is an ideal tool to quantify the gene expression levels in single cells by counting the
number of mRNAs. While with this technique it is possible to quantify the animal-to-
animal variability in gene expression, it requires fixation of the animals. Therefore,
it is not possible with this technique to follow single animals over time. However,
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5 Quantitative study of the dynamics of the AC/VU stochastic cell fate decision

because of the strong stochastic nature of the AC/VU decision, the ability to follow
the process in time is necessary to elucidate its dynamics. Thus, we complemented
this technique using our new time-lapse microscopy approach. Specifically, we used
a transcriptional reporter strain in which the promoter activity of the core component
of the underlying gene regulatory network can be quantified with fluorescence
microscopy. We then followed its expression over time and quantified the correlation
between events happening at early stages of the AC/VU decision and the final
outcome of the process. In this way, we aimed to determine the sources of variability
that are responsible for the cell fate determination.

The AC/VU cell fate decision relies on the cell-cell interaction between two cells
(here called α cells) to always produce one anchor cell (AC) and one ventral uterine
cell (VU) in a mutually exclusive manner. This cell fate determination is mediated by
the Notch signaling pathway, which relies on the expressions of the receptor lin-12
and the ligand lag-2. With smFISH we found that (i) lag-2 is also expressed by the
mothers of the α cells, and that its expression levels are highly variable and (ii) the
expression levels of lag-2 and lin-12 show different dynamics during the AC/VU
decision. In particular, at the end of the decision process, lag-2 is only expressed in
the AC, while lin-12 is still expressed in both α cells.

We then applied our new time-lapse microscopy approach to study the dynamics
of expression of lag-2 in multiple animals, because our smFISH results show that
lin-12 expression is less dynamic, i.e. is not restricted to a single α cell at any
point of the AC/VU decision. We confirmed that, as previously shown, the birth
order of the α cells strongly biases the cell fates, as in most of the animals analyzed
the second-born α cell assumes the AC fate. However, birth order does not fully
determine the outcome of the AC/VU decision, especially when the α cells are born
approximately at the same time. In fact we observed that, among the animals in
which the time between birth of the α cells is less than 30 minutes, the first-born
cell assumes the AC fate in ~26% of animals. Moreover, by quantifying the time
required to irreversibly determine the cell fates, we found that the decision process
takes longer if the α cells are born at similar times.

The observation that the birth order does not fully correlate with the final outcome
suggests that an additional source of noise biases the decision when the α cells are
born at similar times. Our smFISH results show that some mother cells highly express
lag-2, while other cells have lower lag-2 expression. That is, lag-2 expression in the
mother cells shows high variability, even within the same animal. Upon division, a
number of lag-2 mRNAs are inherited by the α cells. Therefore the initial number of
lag-2 mRNAs in the α cells is also variable. This could represent the predominant
source of noise responsible for the cell fate specification if the α cells are born at
similar times.

We tested our hypothesis by correlating the expression dynamics in the mother
cells with the final outcome of the process. We found that the lag-2 expression
levels measured by the YFP reporter strain in the mother cells did not correlate with
the outcome. Next, we observed that for the next hour after birth, the fluorescence
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intensity in the α cells correlates with that in their sister cells (here called β cells).
In particular, we found that both α and β cells often show a fluorescence increase
for the first hour after birth. This suggests that a common source of noise, possibly
inherited from the mother cell, drives the expression dynamics of both cells right
after division. We observed high variability in the rate of fluorescence increase right
after birth. Therefore, we tested whether this variability is a quantity that correlates
with the cell fate outcome. However, we did not find a correlation between the rate
of increase right after birth and the final outcome.

Even though we did not find a correlation between the fluorescence intensity
at early stages of the AC/VU decision and the cell fate outcome, our results are
not conclusive and follow-up experiments will help identify the additional source
of noise responsible for the cell fate determination in animals in which α cells are
born at similar times. The most promising approach that will be tested in the future
is the analysis of the AC/VU decision in mutant animals in which the activity of
the core components of the gene regulatory network is affected. In particular, two
questions can be answered. (i) How is the correlation between birth order and cell
fate outcome affected in mutants in which the activity of a core component is elevated
or suppressed? (ii) How is the lag-2 dynamics affected by such mutations? Mutant
strains already exist in which the activity of LIN-12 is either elevated or suppressed.
Moreover, strains exist in which the lin-12 gene is deleted or multiple copies of the
same gene are inserted. Therefore, lin-12 represents the most obvious choice as for
the core component of the network to be perturbed. However, also the activities of
other core components of the network, such as HLH-2 and lag-2, can be modified.
For instance, RNA interference by bacterial feeding could be used to modify the
activity of such components of the network and observe how the dynamics of the
AC/VU decision process is perturbed.
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Summary

The development of multi-cellular organisms is an incredibly complex sequence
of tightly coordinated events that starts from a single fertilized cell and ends in an
adult organism capable of reproduction. All individuals within the same species are
remarkably similar, and mistakes rarely occur during their development. An active
research area of developmental biology is devoted to understanding what are the
underlying molecular mechanisms that generate such robustness.

However, stochastic molecular fluctuations, often called noise, are omnipresent
in biology. Random diffusion of molecules and the probabilistic nature of chemical
reactions cause all the fundamental biological processes, such as gene expression,
to be intrinsically stochastic. Recently, it has been shown, for instance in bacteria,
that such fluctuations can ultimately impact the behavior of an entire cell. As
a consequence, genetically identical cells exhibit strongly variable responses to
external inputs, even when subject to identical environmental conditions. Noise
is also present in developmental processes of multi-cellular organisms. Recently,
several examples demonstrated how developmental processes are affected by noise.
In some of these cases, developmental processes are adapted to suppress noise, for
example in the embryonic cell fate patterning of the fruit fly Drosophila melanogaster.
In contrast, other examples exist in which development is thought to be driven by
molecular noise, for instance during stochastic cell fate decisions.

The existence of noise in development raises a number of fundamental questions:
(i) What are the different sources of noise that impact development? What are
the relative strengths of such noise sources? (ii) How is noise suppressed in
developmental processes to achieve a robust outcome? (iii) Do developmental
processes exist that are driven by molecular noise? If so, how are small molecular
fluctuations amplified to impact the behavior of entire cells in developing organisms?

While a molecular biology approach has been highly successful in revealing the
key molecular players involved in development, a more quantitative approach is
needed to study their variability on the single-cell level. Moreover, to study a process
as highly dynamic as development, an approach is needed to follow developmental
processes over time. To this end, one needs to follow developing organisms with
enough spatial and temporal resolution to detect the dynamics of the process at the
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single-cell level. However, many of the model systems for studying development,
such as fruit flies, zebrafish and mice, have a large body size and a relatively slow
development. Therefore, in these model organisms experiments able to follow their
development with single-cell resolution are currently extremely challenging, if not
impossible.

In this thesis, we use the nematode Caenorhanditis elegans to study the role of
noise in development. C. elegans is an ideal model system for developmental studies,
because of its short life cycle, simple genetics and simple body plan. C. elegans
also represents a unique model system to study the role of noise in development,
for two main reasons. First, C. elegans development is largely invariant, meaning
that almost all cells divide and differentiate in a stereotypical manner. Hence, C.
elegans development is extremely robust, making it an ideal model system to study
how molecular noise is efficiently suppressed during development. In this thesis,
we did not directly examine mechanisms of noise suppression, but, as a starting
point, we characterized the levels of variability in two developmental processes
that show an invariant outcome. Second, a number of stochastic cell fate decisions
occur during C. elegans development. Therefore, it also represents an ideal model
system to study how small and continuous fluctuations are translated into digital cell
fate decisions impacting the entire cell. In this thesis, we address this question by
studying one specific stochastic cell fate decision, the so-called AC/VU decision. As
an essential requirement to perform these studies, we developed a new time-lapse
microscopy technique able to follow the full post-embryonic development of C.
elegans in multiple animals in parallel with high temporal resolution and single-cell
spatial resolution, something that was so far not possible.

In Chapter 2, I describe in detail our novel time-lapse microscopy approach,
which relies on (i) confining C. elegans larvae in microfabricated chambers with
enough food to sustain development and enough space to freely move, (ii) a mi-
croscopy setup optimized for fast image acquisition and (iii) image analysis to extract
the dynamics of developmental processes at the whole organism level as well as at the
single-cell level. In particular, I first describe in detail the design and the protocols
used to create the microfabricated chambers. Next, I focus on the design and the
performances of the imaging setup. Finally, I prove that C. elegans larvae develop
normally in our microfabricated chambers. To this end, I characterized development
of multiple animals, confined in chambers of different dimensions, by quantifying
three markers of developmental progression: growth rate, body elongation and larval
stage duration. Importantly, the data on C. elegans growth might form a starting
point for future studies aimed to elucidate the effect of food availability and diet on
development.

In Chapter 3, I test the capability of our setup to follow the dynamics of
single cells in animals developing in the microfabricated chambers. In particular, I
performed lineage analysis of seam cells, a model system for stem cell-like behavior,
in multiple animals over the full post-embryonic development. To this end, I
used fluorescence time-lapse microscopy of animals in which seam cell nuclei are
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fluorescently labeled. First, I performed a quantitative analysis of the time of division
of all the seam cells in multiple wild-type animals. I found that some seam cells
divide on average before others, suggesting that lineage-dependent temporal cues
are responsible for the temporal regulation of seam cell divisions. Next, I measured
the variability in timing of seam cell divisions in this developmental process that
otherwise has an invariant outcome. Moreover, I repeated the lineaging analysis
in mutant animals in which the seam cells do not follow the stereotypical division
pattern. In this case, I show that cell division mistakes occur more often in specific
seam cell lineages and at particular stages, suggesting that stage- and lineage-specific
mechanisms are responsible for the correct execution of the seam cell divisions.
In general, the ability to perform full lineage analysis in multiple animals will be
used in the future to elucidate the temporal cues and the mechanisms responsible for
correct seam cell divisions.

In Chapter 4, I demonstrate the capability of our setup to quantify the dynamics of
gene expression, down to the single-cell level. To this end, I measured the variability
in the expression levels of two genes that have been previously shown to oscillate
over the course of development. C. elegans development is divided in four larval
stages, punctuated by molts, during which a new skin is synthesized and the old skin
is shed. Genes that oscillate during development show four distinct peaks, once every
larval stage. Using fluorescence time-lapse microscopy in transcriptional reporter
strains, I quantified the oscillation dynamics of one gene that is expressed in the
whole body of the animal and another gene that is exclusively expressed in the seam
cell nuclei. For both genes, I found that the timing of the peaks of expression show
significant animal-to-animal variability. However, the peak times were found to be
strongly correlated with the time of the closest molt, suggesting that the times of
the peaks of expression as well as the times of the molts are all impacted by noise
generated by a common source. In the future, our technique will likely contribute to
understanding the mechanisms that generate these oscillations.

In Chapter 5, I apply our approach to the study of a model system for stochastic
cell fate decisions: the AC/VU decision. During the AC/VU decision two cells,
referred to as α cells, are born identical but differentiate in a mutually exclusive
manner into one anchor cell (AC) and one ventral uterine (VU) cell. Interestingly, the
outcome of the decision process is variable, in that each α cell has equal probability
of assuming the AC or VU fate. The hypothesis is that initial fluctuations at the
molecular level are responsible to drive the decision process, making the AC/VU
decision an ideal model system to study how continuous fluctuations are translated
into discrete cell fates. Even though the molecular mechanisms of the system have
been extensively studied, using our time-lapse microscopy approach we can now
follow the dynamics of the process for the first time. Therefore, our approach has the
potential to gain significant new insights into the mechanism underlying the AC/VU
decision. In this chapter, we aimed to elucidate the sources of noise responsible
for the cell fate determination. In particular, we examined two possible sources of
noise: the birth order of the α cells and the stochastic expression of lag-2, one of
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the key components of the underlying gene regulatory network. First, we studied
the variability in the time of birth of the α cells. We confirmed that, as previously
shown, birth order strongly correlates with the outcome, in that the second-born α

cell has greater probability of assuming the AC fate. However, we found that if the
α cells are born at similar times, occasionally the first-born cell assumes the AC fate.
Therefore additional sources of noise must become more important when the α cells
are born at similar times. We explored whether the stochastic expression of lag-2
before the time of births of the α cells, i.e. in their mother cells, could form this
additional source of noise and, hence, bias the decision when the α cells are born
at similar times. However, we found that this is not the case, leaving the identity
of the additional sources of noise an open question. In the future, we will use our
technique to further elucidate the dynamics of the AC/VU decision and to identify
such additional sources of noise.
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De ontwikkeling van meercellige organismen is een ongelooflijk complexe serie
van nauw gecoördineerde gebeurtenissen die begint bij een enkele bevruchtte cel en
eindigt bij een volwassen organisme dat in staat is tot reproductie. Alle individuen
binnen dezelfde soort zijn opvallend eenvormig en fouten komen nauwelijks voor
tijdens de ontwikkeling. Een actief onderzoeksveld binnen de ontwikkelingsbiologie
is gewijd aan het begrijpen van de onderliggende moleculaire mechanisme die deze
robuustheid genereren.

Echter, stochastische moleculaire fluctuaties, vaak ruis genoemd, zijn alomtegen-
woordig in de biologie. Willekeurige diffusie van moleculen en de probabilistische
aard van chemische reacties veroorzaken dat alle fundamentele biologische pro-
cessen, zoals genexpressie, intrinsiek stochastisch zijn. Onlangs is aangetoond,
bijvoorbeeld in bacteriën, dat zulke fluctuaties uiteindelijk het gedrag van de gehele
cel kunnen beïnvloeden. Hierdoor kunnen genetisch identieke cellen sterk varië-
rende reacties vertonen op externe signalen, zelfs wanneer deze zich in identieke
omgevingscondities bevinden. Ruis is ook aanwezig in het ontwikkelingsproces
van meercellige organismen. Onlangs hebben verschillende voorbeelden getoond
hoe ontwikkelingsprocessen beïnvloed worden door ruis. In sommige van deze
gevallen worden de ontwikkelingsprocessen aangepast om ruis te onderdrukken,
bijvoorbeeld bij het ontstaan van ruimtelijke patronen van verschillende celtypen in
embryo’s van de fruitvlieg Drosophila melanogaster. Tegelijkertijd bestaan er ook
andere voorbeelden waarbij men denkt dat ontwikkeling juist gedreven wordt door
moleculaire ruis, zoals bijvoorbeeld tijdens celtype-beslissingen die een stochastische
uitkomst hebben.

Het bestaan van ruis in ontwikkeling roept verschillende fundamentele vragen
op: (i) Wat zijn de verschillende bronnen van de ruis die invloed hebben op de
ontwikkeling? Wat zijn de relatieve sterkten van zulke ruisbronnen? (ii) Hoe wordt
ruis onderdrukt in een ontwikkelingsproces om een robuust resultaat te verkrijgen?
(iii) Bestaan er ontwikkelingsprocessen die gedreven worden door moleculaire ruis?
Zo ja, hoe worden kleine moleculaire fluctuaties zo versterkt dat zij het gedrag van
de gehele cel binnen een zich ontwikkelend organisme kunnen beïnvloeden?

Ondanks dat de aanpak van de moleculaire biologie zeer succesvol is in het
openbaren van de moleculaire hoofdrolspelers die betrokken zijn bij de ontwikkeling,
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is een meer kwantitatieve aanpak nodig om de rol van variabiliteit op het niveau van
individuele cellen te onderzoeken. Bovendien, om een proces te bestuderen dat zo
dynamisch is als ontwikkeling is een aanpak nodig om ontwikkelingsprocessen in tijd
te kunnen volgen. Om die reden moet men organismen tijdens de ontwikkeling met
genoeg ruimtelijke en tijdsresolutie kunnen volgen om de dynamica van het proces op
cel-niveau cellen te kunnen vastleggen. Echter, de meeste modelsystemen die worden
gebruikt voor de studie van ontwikkeling, zoals fruitvliegen, zebravissen, en muizen,
hebben een grote lichaamsomvang en een relatief langzame ontwikkeling. Om die
reden zijn experimenten die het gedrag van enkele cellen tijdens de ontwikkeling
van deze modelorganismen volgen uitermate uitdagend, zo niet onmogelijk.

In dit proefschrift gebruiken wij de nematode worm Caenorhabditis elegans
om de rol van ruis in ontwikkeling te bestuderen. C. elegans is een ideaal model
system voor ontwikkelingsstudies, door de korte levenscyclus, de simpele genetica
en de eenvoudige lichaamsbouw. C. elegans vormt ook een uniek model systeem
om de rol van ruis in ontwikkeling te bestuderen, om twee redenen. Ten eerste is
de ontwikkeling van C. elegans grotendeels invariant, wat wil zeggen dat vrijwel
alle cellen delen en differentiëren op een stereotype wijze. Dit betekent dat de
ontwikkeling van C. elegans buitengewoon robuust is en maakt het daarom tot
een ideaal modelsysteem om te onderzoeken hoe moleculaire ruis efficiënt onder-
drukt wordt tijdens ontwikkeling. In dit proefschrift hebben wij niet direct de
mechanismen van ruisonderdrukking onderzocht, maar hebben wij, als uitgangspunt,
de hoeveelheid variabiliteit gekarakteriseerd in twee ontwikkelingsprocessen die
een verder invariante uitkomst hebben. Ten tweede kent de ontwikkeling van C.
elegans een klein aantal celtype-beslissingen die willekeurig zijn. Dit maakt C.
elegans ook een ideaal modelsysteem om te onderzoeken hoe tijdens deze stochastic
celtype-beslissingen kleine en continue fluctuaties worden omgezet in een discrete
celtype-beslissing die de gehele cel beïnvloedt. In dit proefschrift proberen wij
deze vraag te beantwoorden door een specifieke stochastische celtype-beslissing
te onderzoeken, de zogenaamde AC/VU beslissing. Als een essentiële vereiste
voor dit soort onderzoek, hebben wij een nieuwe ’time-lapse’ microscopietechniek
ontwikkelt, die het mogelijk maakt om de volledige post-embryonale ontwikkeling
van C. elegans te kunnen volgen in meerdere dieren tegelijkertijd, met hoge temporale
resolutie en met single-cel resolutie, iets wat tot nu toe niet mogelijk was.

In Hoofdstuk 2 geef ik een gedetailleerde beschrijving van onze nieuwe time-
lapse microscopietechniek, die gebaseerd is op (i) het vastzetten van C. elegans
larven in gemicrofabriceerde kamertjes die voldoende voedsel bevatten om de
hele ontwikkeling te doorlopen en genoeg ruimte om vrijelijk te kunnen bewegen,
(ii) een microscopieopstelling die geoptimaliseerd is voor snelle beeldopname en
(iii) beeldanalyse-technieken om de dynamica van het ontwikkelingsproces op het
niveau van zowel het gehele organisme als op het niveau van enkele cellen uit
de microscopiedata te distilleren. Ik beschrijf eerst in detail het ontwerp en de
protocollen die gebruikt zijn voor de microfabricage van de kamertjes. Vervolgens
beschrijf ik het ontwerp en de prestaties van de microscopieopstelling. Tenslotte laat
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ik zien dat C. elegans larven zich normaal ontwikkelen in onze gemicrofabriceerde
kamertjes. Specifiek heb ik de ontwikkeling gekarakteriseerd van meerdere larven,
die groeiden in kamertje van verschillende afmetingen, door de drie kenmerken
van de voortgang van de ontwikkelings te kwantificeren, namelijk de groeisnelheid,
lichaamslengte en duur van de opeenvolgende larvale stadia. Wij laten zien dat
deze meting aan groei van C. elegans een startpunt kunnen vormen voor toekomstig
onderzoek naar het effect van de beschikbaarheid van voedsel en van dieet op
ontwikkeling.

In Hoofdstuk 3 beproef ik de geschiktheid van onze microscopieopstelling
om de dynamica van enkele cellen te volgen in dieren die zich ontwikkelen in
de gemicrofabriceerde kamertjes. In het bijzonder heb ik een stamboom-analyse
uitgevoerd van de celdelingen van de zogenaamde ’zoom-cellen’, een modelsysteem
voor stamcel-achtig gedrag, in meerdere dieren en over de gehele post-embryonale
ontwikkeling. Hiervoor heb ik fluorescentie time-lapse microscopie gebruikt bij
dieren waarvan de celkernen van zoom-cellen fluorescent waren gemerkt. Ten
eerste, heb ik een kwantitatieve analyse uitgevoerd van de tijd van zoom-celdeling
in meerdere wild-type larven. Ik heb daarbij ontdekt dat sommige zoom-cellen
gemiddeld vroeger delen dan anderen, wat suggereert dat stamboom-afhankelijke
signalen verantwoordelijk zijn voor de temporale regulatie van zoom-celdelingen.
Vervolgens heb ik de variabiliteit in het precieze tijdstip van zoom-celdeling gemeten
in dit ontwikkelingsproces dat verder een invariante uitkomst heeft. Bovendien
heb ik de stamboom-analyse herhaald met mutanten waarin de zoom-cellen niet
het stereotype delingspatroon volgen. In dit geval, laat ik zien dat fouten in
celdelingen vaker voorkomen in specifieke zoom-celstambomen en tijdens specifieke
larvale stadia, wat suggereert dat stadium- en stamboom-specifieke mechanismen
verantwoordelijk zijn voor de correct uitvoering van zoom-celdelingen. In het
algemeen zal de mogelijkheid om complete stamboom-analyse van celdingen in
meerdere dieren uit te voeren in de toekomst kunnen worden gebruikt om de signalen
en mechanismen in kaart te brengen die voor zoom-celdingen verantwoordelijk zijn.

In Hoofdstuk 4 laat ik zien dat onze microscopieopstelling in staat is de dynamica
van genexpressie te kwantificeren, tot op het niveau van afzonderlijke cellen. Hier-
voor heb ik de variabiliteit gemeten in de expressieniveaus van twee verschillende
genen, waarvan eerder is aangetoond dat deze tijdens de ontwikkeling oscilleren.
De ontwikkeling van C. elegans is onderverdeeld in vier larvale stadia, die worden
onderbroken door een vervellingsproces, waarbij een nieuwe huid wordt aangemaakt
en de oude huid wordt afgeworpen. De genen die tijdens de ontwikkeling oscillaties
vertonen laten in het algemeen vier duidelijk te onderscheiden pieken zien, één
tijdens ieder larvaal stadium. Door gebruik te maken van fluorescerentie time-lapse
microscopie aan dieren die een kunstmatig signaal voor genexpressie bevatten, heb
ik de oscillatiedynamica gekwantificeerd van één gen dat in het gehele lichaam tot
expressie en een ander gen dat exclusief tot expressie komt in de kern van zoom-
cellen. Voor beide genen heb ik gevonden dat het tijdstip waarop de expressie piekt
sterk gecorreleerd is met de tijd van de dichtstbij liggende vervelling, wat suggereert
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dat zowel de tijdstippen van de expressiepieken als van de vervellingen worden
beïnvloedt door ruis uit een gemeenschappelijke bron. In de toekomst zal onze
techniek waarschijnlijk kunnen bijdragen aan het begrijpen van de mechanismen die
deze oscillaties voortbrengen.

In Hoofdstuk 5 pas ik onze aanpak toe op een modelsysteem voor stochastische
cel-typebeslissingen: de AC/VU beslissing. Tijdens de AC/VU beslissing worden
twee cellen, die α cellen worden genoemd, geboren als identieke cellen, maar
differentiëert één in een anchor cel (AC) en de andere in een ventral uterine (VU)
cel. Opvallend genoeg is de uitkomst van dit beslissingsproces variabel, in de
zin dat iedere α cel een gelijke kans heeft om het AC- of VU-type aan te nemen.
De hypothese is dat dit beslissingsproces wordt gedreven door initiële fluctuaties
op moleculair niveau, wat de AC/VU beslissing een ideaal modelsysteem maakt
om te bestuderen hoe continue fluctuaties worden omgezet in een discrete cel-
type beslissing. Ook al zijn de moleculaire mechanismen die aan dit systeem
ten grondslag liggen reeds uitvoerig bestudeerd, door gebruik te maken van onze
time-lapse microscopietechniek kunnen wij nu voor het eerst ook de dynamica
van dit proces volgen. Om die reden maakt onze nieuwe aanpak het mogelijk om
significante nieuwe inzichten te verkrijgen in de mechanismen die ten grondslag
liggen aan de AC/VU beslissing. In dit hoofdstuk pogen wij op te helderen welke
ruisbronnen verantwoordelijk zijn voor de bepaling van het uiteindelijke celtype.
Wij onderzochten met name twee potentiële ruisbronnen: de volgorde waarin de α
cellen worden geboren en de stochastische expressie van lag-2, één van voornaamste
componenten van het onderliggende genregulatienetwerk. Ten eerste, hebben wij
de variabiliteit bestudeerd in de precieze tijd waarop de α cellen worden geboren.
Wij bevestigen een eerdere observatie dat de geboortevolgorde sterk gecorreleerd is
met de uitkomst van het proces, in de zin dat de α cel die als tweede wordt geboren
een grotere kans heeft om het AC-type aan te nemen. Echter, wij vonden ook dat als
de α cellen op ongeveer gelijke tijden worden geboren, de eerstgeboren cel soms
het AC-type aanneemt. Dit betekent dat aanvullende ruisbronnen belangrijk worden
wanneer de α cellen in de tijd dicht op elkaar geboren worden. Wij onderzochten
of de stochastische expressie van lag-2 die wij waarnemen voor de geboorte van
de α cellen, d.w.z. in hun moedercellen, deze extra bron van ruis zou kunnen zijn
en hiermee de beslissing kan sturen wanneer de α cellen op gelijke tijden worden
geboren. Echter, wij vonden dat dit niet het geval was. Hiermee, blijft de identiteit
van de aanvullende ruisbronnen een open vraag blijft. In de toekomst zullen wij onze
techniek gebruiken om de dynamica van de AC/VU beslissing verder op te helderen
met het doel de aanvullende ruisbronnen te identificeren.
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