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Abstract

The electricity generation from wind has seen significant growth over the past two decades with a
compound annual growth rate of over 21%, and this trend is projected to continue, aligning with
the goals of the European Green Deal. In the context of offshore wind turbines, operational and
maintenance costs can account for up to 30% of the total costs throughout the project’s lifecycle.
This highlights the need for the development of efficient condition monitoring methods aimed at
mitigating maintenance expenses.

The gearbox is one of the most failure-prone components in wind turbines, leading to extended
downtimes and substantial financial outlays. When the components of the gearbox degrade, the
heat generated within the gearbox increases. This increase leads to higher oil temperatures, making
the temperature signal a suitable indicator of the gearbox health condition. The main objective of
this thesis is to design a physics-based normal behaviour model (NBM) for the estimation of the
wind turbine gearbox oil temperature and to use field data to validate its effectiveness. The energy
conservation principle is applied to the gearbox to formulate an equation for the calculation of
the gearbox oil temperature. To account for some unidentified design specification of the gearbox,
such as gears and bearings dimensions, resulting in unknown parameters within the equation, the
equation is fitted to available historic data from the Supervisory Control and Data Acquisition
(SCADA) system to determine those parameters. The model uses as input an array of operational
measured signals available in the SCADA system, including rotor speed, power output, nacelle
temperature and inlet oil temperature, which is the temperature of the oil after running through
the cooling system.

The model is validated by analysing its performance in estimating the oil temperature in a test
dataset which has not been used for the model development according to a cross-validation scheme.
Additionally, the weight of each equation term on temperature calculations is evaluated. This
allowed us to understand the relative importance of different components, aiding in the refinement of
the equation by excluding terms that have a negligible weight in the temperature calculation using
the Akaike’s Information Criterion. In order to investigate how well the physical characteristics of
the gearbox are represented by the model, the coefficients of the energy balance equation derived
from fitting it to the field SCADA data are compared to the parameters calculated using known
characteristics of a reference gearbox. The comparison results indicate that the model’s parameters
are generally within the same order of magnitude as the reference values, highlighting the model’s
capability to capture and represent the gearbox’s physical characteristics with good accuracy. To
provide a benchmark, the performance of the physics-based model is also compared to that of two
data-driven models using artificial neural networks (ANNs) for temperature prediction proposed in
the literature. The results show that the proposed physics-based model outperforms both ANN
models, achieving 14% and 59% lower root mean squared error and a reduction in time required
for training of 70% and 95% when compared to the two ANN NBMs respectively. A case study
demonstrates the model’s effectiveness in accurately predicting the gearbox oil temperature with
a mean absolute percentage error of 0.75% when the inlet oil temperature signal is available in
the dataset. However, in a second case study where this critical signal is missing, the model’s
performance is negatively affected because the cooling system’s influence on the oil temperature
could not be accurately incorporated. This emphasizes the importance of including the inlet oil
temperature signal for robust temperature estimation.
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Nomenclature

Table 1: List of symbols

Symbol Description Unit
Aca Gearbox housing wall area. mm
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C1,2 Factors that depend on oil immersion depth and width of the gears. -
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Csp Oil splash factor. -
d Bearing bore diameter . mm
dm Bearing mean diameter. mm
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D Bearing outside diameter. mm
e Euler number (e=2.718) . -
f0 Coefficient of bearing no load losses. -
f1 Coefficient of bearing load dependent losses. -
F Force. N
Fn Gear tooth normal force. N
Ft Force at pitch circle. N
Hv Geometrical loss factor. -
k Heat transmission coefficient. W/(m2K)
Krs Replenishment/starvation constant. -
n Rotational speed. rpm
N Number of data-points in regression analysis. -
P Power. W

Plosses Power losses in the gearbox. W
Pinput Mechanical power at the input shaft of the gearbox. W
PV Total power losses in the gearbox. W
PV Total power losses in the gearbox. W
PV D Losses from seals. W
PV LP Load-dependent losses of bearings. W
PV L0 No-load losses of bearings. W
PV Z0 No-load losses of of gear mesh. W
PV ZP Load-dependent losses of gear mesh. W
q Heat flux. W

Qdiss Heat dissipation. W
r̂ Mean residual. -
ri Residual at time i. -
R Thermal resistance. K/W
R2 Coefficient of determination. -
Ra Average roughness of pinion and gear wheel. µm
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Tgear Gearbox temperature. °C
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TH Hydraulic loss torque. N ·m
TV LP Load-dependent loss torque of bearings. N ·m
TV L0 No-load loss torque of bearings. N ·m
vg Sliding speed. m/s
vt Tangential speed. m/s
vt0 Reference tangential speed (vt0=10m/s). m/s
vΣ Sum velocity. m/s

x1,2,...,p variables or regression analysis. -
XL Lubricant factor. -
ȳ Mean of the observed values. -
yi actual target value of regression analysis. -
ŷi actual target value of regression analysis. -
αt Transverse pressure angle. °
αwt Working pressure angle. °
βb Helix angle at base circle. °

β1,2,...,p Parameters of regression analysis. -
η Efficiency of the gearbox. -
ηoil Dynamic viscosity of oil. mPa · s
λ Smoothing factor. -
µ Coefficient of friction. -

µmz Mean coefficient of friction. -
ν Kinematic viscosity of the oil. mm2/s
ρ Radius of curvature at pitch point. mm

ρC,red Equivalent radius of curvature at pitch point of contact. mm
ω Rotational speed. rad/sec
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Table 3: List of abbreviations

Abbreviation Definition
LCOE levelized cost of electricity
O&M operations and maintenance

SCADA supervisory control and data acquisition
NBM normal behaviour model
CBM condition based maintenance
CMS condition monitoring system
TNM thermal network modelling
ANN artificial neural network
FSRC full signal reconstruction

FF feed-forward
LR layer-recurrent

NARX Nonlinear AutoRegressive with eXogenous input
STIR subspace trust-region interior reflective
MSE mean squared error

RMSE root mean squared error
MAPE mean absolute percentage error
STDE standard deviation of the error
AIC Akaike information criterion
CV cross-validation
TSS time-series split

BTSS blocking time-series split
CoV Coefficient of Variance
EDP Energias de Portugal



Chapter 1

Introduction

1.1 Motivation
The increasing awareness of climate change is forcing governments to focus more on sustainable
energy technologies, with the power sector contributing to 39.3% of the total global CO2 emission
in 2022 [1]. The global power sector is expected to transform from fossil-based to zero-carbon
by the second half of this century, with renewable energy playing a major role in controlling and
reducing the negative consequences of climate change. Renewable Energy Sources are a promising
alternative to fossil fuels in tackling climate change. According to the European Green Deal, all
members of the EU countries are obligated to reduce their greenhouse gas emissions by at least
55% by 2030 compared to the 1990 emissions. The ultimate aim is for them to achieve climate
neutrality by 2050 [2]. This requires a substantial increase in both solar and wind energy generation
in order to reduce the energy generated from fossil fuels, with the total renewable energy output
projected to triple by 2030 [3]. This ambitious target is crucial for limiting global temperature rise
to below 1.5°C. The energy generated by wind has been already increasing rapidly over the past 20
years with a compound annual growth rate of over 21% [4]. Figure 1.1 shows the increase of both
the installed wind power global capacity and the annual additions in the past 11 years.

Figure 1.1: Global wind power capacity [5].

The installation costs per kW and levelised cost of electricity (LCOE) of wind power have reduced

1
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significantly in the last decade, and the capacity factor has improved as well due to technological
advancement and an increase in hub height [6]. Onshore wind energy has tripled in installed
capacity in the past decade and is on the rise however, acquiring land for wind farms is a major
constraint. Offshore wind has a higher capacity factor, and more favourable conditions while its
LCOE decreased by 60.1% and its installation cost by 41.4% in the past 11 years as shown in
the first and third plots of Figure 1.2. In addition, offshore wind farms do not face the problem
of low land availability and public resistance as they are located far from shore. In fact, offshore
wind energy has grown more rapidly than onshore wind energy in the last decade. Many European
countries are increasing their installed wind capacity by exploiting the advantages of offshore wind,
which has grown twentyfold in the past 12 years, from 3.1 GW to 63.2 GW [7]. However, offshore
wind turbines operate in harsh weather and sea conditions, and this can lead to breakdowns, which
reduce their reliability.

Figure 1.2: Renewable’s characteristics trends [8].

As the industry trend is towards bigger and more powerful turbines, which are more prone to failure
than smaller ones [9], [10], improving their reliability is crucial for the development of offshore
farms but also onshore in the case wind farms are located in remote areas, such as mountains
and islands. Furthermore, due to the weather conditions, there are months when it is nearly
impossible to access offshore wind turbines, and this increases the need to address reliability issues.
The lack of reliability, accessibility and availability leads to higher Operations and Maintenance
(O&M) costs, which constitute a significant portion of wind farm project costs reaching up to
30%. By 2025, O&M costs are expected to globally reach 27.4 billion USD [11]. To keep wind
energy financially viable and promote its growth, O&M costs must be reduced by enhancing the
availability and reliability of wind turbines. Wind turbines typically have a designed lifetime of
20-25 years, but certain components may fail long before that, leading to significant downtime. The
gearbox and generator components have the highest downtime while the gearbox is also the most
costly component to repair as shown in Figures 1.3 and 1.4. Simultaneously, the gearbox is the
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component with the highest failure rate, accounting for 12% of the total failures [12]. Therefore,
improving the reliability of these components is crucial to minimising O&M costs and ensuring the
financial viability and growth of wind energy.

Figure 1.3: Cost of maintenance of the main wind turbine components [13].

Figure 1.4: Downtime and repair time of the main wind turbine components [11].

There are several ways to improve the reliability of wind turbines such as higher manufacturing
quality and proper load design [14]. One of the most widely explored methods though, is adopting
effective condition monitoring approaches. Condition monitoring is the process of regularly moni-
toring the condition of a machine or component to detect any signs of wear, damage, or malfunction
[15]. In the context of wind turbines, condition monitoring is essential to ensure their efficient and
reliable operation, particularly in harsh environments such as offshore. By monitoring the condition
of wind turbine components, such as the gearbox, it is possible to detect potential faults and defects
before they lead to unscheduled downtime or costly repairs. This can reduce the O&M costs of the
wind turbines and make them a more attractive investment in order to take a bigger share of the
total electricity generation. This thesis focuses on the condition monitoring of the gearbox. This is
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done using data recorded from the turbine Supervisory Control And Data Acquisition (SCADA)
system. This system is included in all wind turbines and usually provides 10-minute average signals
for several components of the wind turbine, including the gearbox. Further information on the
different condition monitoring techniques is described in the literature review provided in Chapter 2.

1.2 Thesis scope and research questions

The main objective of this thesis is to design a physics-based normal behaviour model (NBM) for
temperature calculation of wind turbine gearbox oil and use field data to validate its effectiveness.
This physics-based model combines the use of SCADA signals and the application of heat balance
principles to create a comprehensive approach for condition monitoring purposes. The normal
behaviour can also be referred to as healthy behaviour which is the operation of the wind turbine
long before a failure occurs or the components have degraded. To achieve this goal, first, a literature
review of the existing methods is conducted, with a focus on the use of both physics-based and
data-driven NBMs for gearbox condition monitoring. Then, a physics-based model is developed to
calculate the temperature of the gearbox oil under normal behaviour conditions, using operational
and environmental conditions as inputs. This model is then applied to real SCADA data from a
healthy wind turbine gearbox using a training dataset. The effectiveness of the model in estimating
the oil temperature under healthy conditions is then evaluated using a testing dataset. The
difference between the modelled and the actual measured temperature, also known as residual, is
calculated for the testing period and then used to assess the effectiveness of the model.

To achieve the goal of this thesis, the following sub-questions need to be addressed.

• Why should a physics-based model be developed for gearbox oil temperature calculation?

• How can a NBM of a wind turbine gearbox oil temperature be developed using a physics-
based approach?

• How can the accuracy of a physics-based NBM be evaluated?

• What is the effect of each term of the heat balance equation in the calculation of gearbox
oil temperature?

• Do the calculated parameters of the model accurately represent the physical characteristics
of the gearbox?

• How does the performance of the proposed physics-based model compare to existing
data-driven NBM approaches?

• Can a physics-based NBM using SCADA data accurately predict the gearbox oil temper-
ature?

• How is the performance of the physics-based model affected when the input oil temperature
signal is not available in the dataset?
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The proposed research aims at the development of an effective temperature calculation model.
By using a physics-based analysis, this research aims at leveraging both the physical principles
governing the system and the available SCADA data to develop an accurate approach to predict
the gearbox oil temperature under healthy operating conditions which can be used for detecting
and diagnosing faults, ultimately leading to improved turbine performance and reduced O&M costs.

1.3 Thesis structure

The following is a breakdown of the report’s structure. Chapter 2 includes a literature review of the
existing research on condition monitoring of wind turbine gearboxes. Necessary information for the
reader regarding the theoretical background is included in Chapter 3. Then, Chapter 4 describes
the methodology proposed in this project including the description of the physics-based model.
Chapter 5 presents the results of implementing and evaluating the proposed NBM, along with a
comparative analysis against two data-driven NBMs. Finally, Chapter 6 provides the conclusions,
discusses the key takeaways of this project and the recommendations for future work.



Chapter 2

Literature Review

This Chapter includes a literature review of the methods used for condition monitoring in wind
turbine gearboxes. First, a short description of the gearbox technology used in wind turbines is
provided followed by a discussion of their typical failures. Then, the different maintenance strategies
typically used in the industry are discussed. The review continues with an introduction to wind
turbine condition monitoring and a description of the different methods proposed in the literature.
Finally, the current challenges and limitations of the existing approaches are discussed and research
gaps are identified.

2.1 Wind turbine gearbox

Wind turbine gearboxes convert the low-speed blade rotations to high speeds while reducing the
torque. This is necessary as the majority of the generators used in wind turbines are high speed
and low torque, whereas the rotor of the wind turbine has low speed and high torque. Initially,
wind turbine manufacturers tried to build wind turbines with high rotational speed in order to
minimise the need for high-ratio gearboxes. This changed with the development of low-cost and
high-efficiency gearboxes [16]. In Figure 2.1 the internal components of the nacelle are displayed
including the position of the gearbox. Inside the gearbox, there are several components susceptible
to failure. These include the bearings, the gears but also the lubricating oil [17]. A survey on the
gearbox failures by the National Renewable Energy Laboratory shows that more than three-quarters
of the gearbox failures are caused by bearing problems [18]. The pie chart in Figure 2.2 shows the
distribution of the causes of gearbox failures.

6
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Figure 2.1: Wind turbine nacelle components [19].

The main causes of bearing failures are plastic deformation, wear, cracks and fractures, electric
erosion, lubrication issues and contact fatigue. Plastic deformation can either be general surface or
local surface deformation. The former usually occurs when the oil film is below a limit and the
latter is due to bad assembly, misalignment or overload. Wear is the process of material removal
from the bearing due to friction. Cracks are generated because of the stress in combination with
the temperature exceeding the limit of the material. Fractures and cracks are divided into fatigue
fractures, forced fractures and thermal cracks. Finally, electric erosion is caused by either excessive
voltage or current leakage. Lubrication issues include insufficient lubrication, over-lubrication,
ineffective lubrication due to the mixing of different lubricants and lubricant contamination from
moisture and debris [20].

In the case of the gears, the main causes of failures are fretting corrosion, bending fatigue, scuffing
and micropitting [17], [21]. Fretting corrosion starts from the lack of lubrication due to the oxidation
of the material from air. It usually happens when the turbine is parked and the gears are not
lubricated. Bending fatigue occurs in areas with high stresses. In gears, this is usually at the roots
of the gear teeth. It starts as a crack and propagates until the tooth fractures. The main reasons
for fatigue bending failure are bad design, a misalignment, assembly error or overload. The source
of scuffing is overheating, which causes a small lubrication film further increasing the temperature
and causing weld between the metals in contact. Finally, micropitting is also caused by a lack of
sufficient thickness of the lubricant layer. However in this case the high shear stresses affect the
contact areas [22].

A failure can also be caused by the lubrication due to contamination of the oil by wear debris, dust
and water or due to foam generation [17]. This results in temperatures higher than those expected
under normal operating conditions.
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Figure 2.2: Wind turbine gearbox damage distribution statistics [18].

2.2 Maintenance Strategies

There are three main types of maintenance strategies: reactive maintenance, preventive maintenance,
and predictive or maintenance [23]. Each of these strategies has its advantages and disadvantages.

• Reactive or correcting maintenance was the first form of maintenance dating back to the
first machines ever made by humans. In this case, only when the part fails it is repaired or
replaced. This maintenance strategy is not planned and only happens after a breakdown
has occurred. It is cost-effective only when the number of failures in a system is really small.
Implementing this strategy in offshore wind turbines would result in large downtimes due to
the logistics required for accessing and maintaining the components.

• Preventive maintenance, also referred to as planned maintenance, involves scheduling main-
tenance at regular intervals to prevent failures, regardless of the actual health condition of
the system. This results in an increase in the cost by replacing parts, even if some may not
require replacement. Selecting an appropriate time interval for maintenance poses a challenge,
particularly in the case of wind turbines, as they operate in constantly changing conditions.
When this strategy is used, the interval is selected by trying to minimise the total cost of
maintenance which consists of the extra cost of spare parts and the cost of not operating
[24]. This strategy is cost-effective only when the frequency of failures in a system is really
high and there is certainty about these failures. In this scenario, there would not be many
unnecessary replacements due to the high certainty while the large number of failures would
result in frequent unexpected stops in the case of reactive maintenance.

• Predictive maintenance, also known as condition based maintenance (CBM), is the most
effective maintenance strategy. In this case, the maintenance occurs before the component
fails but not when it still has a long remaining useful lifetime. This is achieved by monitoring
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the system using sensors or on-site inspections. When a deviation from the normal behaviour
is observed, an alarm for a potential failure is raised. So, it is a strategy that stands between
corrective and preventive maintenance. This way, the cost of maintenance is reduced by the
avoidance of catastrophic failure but also unnecessary maintenance.

Figure 2.3 shows the cost of maintenance for the three different maintenance strategies. If assisted
by prognostics for the estimation of the remaining useful lifetime and maintenance scheduling,
CBM can reduce the costs significantly compared to the corrective approach. [25]

Figure 2.3: Cost for different maintenance strategies. Reproduced from [25].

2.3 Wind Turbine Condition Monitoring

Condition monitoring is an essential part of wind turbine operation, as it helps identify their health
state. This can either be done online with the use of sensors or on-site with inspections happening
periodically by experienced personnel and/or drones. The on-site inspections are usually more
expensive for the operators as wind farms are usually installed in remote locations characterised by
harsh weather conditions [26]. Several operators rely on online condition monitoring to enhance
maintenance practices. It enables companies to monitor various parameters such as vibrations, oil
quality, and temperatures in critical assemblies. By analysing this data, the health of the assets can
be deducted, allowing for the estimation of remaining useful life or the identification of irregularities
that may necessitate scheduled maintenance. This proactive approach to maintenance based on
real-time monitoring helps optimise the asset performance and prevent unexpected failures [27].
The two monitoring systems that are most widely used in the industry are the SCADA system and
the condition monitoring system (CMS).

• SCADA system. SCADA systems play a crucial role in monitoring and controlling wind
turbines. These systems enable real-time data acquisition, remote control, and supervision
of wind turbine operations. They collect data on various parameters like environmental



Page 10

conditions, such as ambient temperature and wind speed, electrical characteristics, such
as power output and current in each phase of the generator, temperatures from various
components such as the gearbox sump oil and high-speed bearing, and finally control variables
such as generator speed, and cooling pump status of the gearbox [28], [29]. This information
is essential for efficient turbine performance. The SCADA usually provides 10-minute average
values taken from 1Hz measured signals. In some cases, the minimum, the maximum and the
standard deviation of each 10-minute time period are also provided. In addition, SCADA
systems do not require additional costs of installing extra sensors because it is a standard
feature of all wind turbines.

• CMS. Condition monitoring systems are installed independently in the wind turbines
and usually they require the installation of several sensors in the wind turbine such as
accelerometers for vibration analysis on the bearings, and oil quality sensors for debris and
dust in the oil. There are several other less common types of analysis used by CMS such as
acoustic emission, thermography, shock pulse, X-ray Micro-Tomography and Fiber Bragg
grating sensor measurement. Usually, they are purpose-built systems providing high-frequency
data of each component they monitor. Depending on the CMS the frequency can range from
1Hz to 30kHz [30].

Both SCADA systems and CMS have their respective advantages and disadvantages in the context
of wind turbines. The SCADA system offers the advantage of being pre-installed in the turbines,
eliminating the need for additional installation and operational costs [26]. Moreover, the storage
required for the data generated by SCADA systems, typically in 10-minute averages, is relatively
small. However, this limited frequency of data can also be a drawback as it restricts the system’s
capabilities for fault detection and prognostics [31]. Finally, condition monitoring reliant on SCADA
data may not be universally applicable across all wind turbines, as the available signals within the
SCADA system can vary between different turbine installations [28].

Conversely, CMSs require an initial investment that operators may be hesitant to undertake. Addi-
tionally, the storage requirements for high-frequency data in CMSs can be substantial. Transmitting
1Hz signals alone can consume around 1.8GB of storage per turbine per month [32]. Considering that
wind farms often consist of numerous turbines, the storage demands further escalate. Nevertheless,
CMSs benefit from the utilization of established methods like vibration analysis, which have proven
effective in other industries [33].

This thesis aims at using the availability of SCADA data for monitoring. The main reason for this
choice is the availability of SCADA in all wind turbines. The full potential of SCADA data needs
to be investigated along with the effectiveness of analyses that do not require the extra cost of
installing a CMS. Meanwhile, there are several studies suggesting the use of SCADA signals for
condition monitoring of wind turbines, such as [26], [34], [35].

According to [28], [36] there are five main approaches for the use of SCADA data for condition
monitoring:

• Trending

• Clustering
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• Normal behaviour modelling

• Damage modelling

• Alarms assessment

These methods are described with some examples from the literature in the following subsections.

2.3.1 Trending

The trending method is a technique used in condition monitoring to analyse and interpret data
patterns over time. It involves observing and tracking the changes and trends exhibited by specific
parameters or variables of interest. In the context of wind turbines, trending is typically applied to
SCADA data. By plotting and analysing the historical data collected from wind turbines, trending
allows for the identification of patterns, deviations, and potential anomalies. These trends can
provide valuable insights into the health and performance of the turbines. Trending methods can
involve techniques such as regression analysis, scatter diagrams, principal component analysis, or
bin averaging. Interpreting the trends requires careful analysis and domain expertise to differentiate
between normal variations and abnormal behaviour. It may involve comparing current data with
historical benchmarks, setting thresholds for alarm conditions, and manual interpretation of the
filtered results [36].

One study using trending is [37]. It uses SCADA data in combination with a physical model to
analyse the gearbox oil temperature increase for fault predictions. This model takes into account
the energy flow in and out of the gearbox to show that the reduction of the efficiency due to a fault
results in higher temperatures for the same power output. Also, it shows that the temperature
increase is proportional to the rotational speed of the rotor assuming a fixed efficiency for the
gearbox. Even though considering a constant efficiency in the gearbox is not realistic, as it varies
with the output power, in this study it is sufficient to show the intended trend. By binning the
gearbox oil temperature based on different power outputs and comparing the temperatures at 3,
6, and 9 months before failure, the analysis reveals a noticeable upward trend in temperature,
particularly 3 months before failure occurs.

Qiu et al. [38] develop a thermophysical model of the gearbox using the basis of the approach
in [37]. In this study, the efficiency of the gearbox is not considered constant but rather varies
depending on power output according to [16] which states that half of the power loss in the gearbox
is constant and the other half is linearly proportional to the power output. In this model, the
power losses in the gearbox are calculated based on the efficiency and are equal to the dissipated
energy. The dissipation is due to three main components:

1. Heat convection and conduction to the environment outside the gearbox, where the tempera-
ture of the nacelle is assumed to be the same as the ambient temperature.

2. Heat exchange with the oil cooling system, assuming constant inlet oil temperature and flow
rate.

3. Heat conduction to adjacent components.

This paper shows the potential of using the proposed method for wind turbine fault detection as the
simulated values of oil temperature are close to the real measurements from 9 and 6 months before
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a failure, however, 3 months before the failure the real temperature is higher than the simulated
one for all the range of power outputs.

Wilkinson et al. [39] compares three different fault detection methods for bearings in the gearbox
and the generator. One of the methods is trending, where the temperature of a component is
compared to the average temperature of the same component in all the wind turbines in the wind
farm. A significant deviation from the average temperature indicates a faster degradation of a
specific turbine and a potential failure. However, the authors find this approach to be inaccurate
and subsequently dismissed its effectiveness due to the significant variability in operating conditions
experienced by each individual wind turbine.

Corley et al. [40] propose a thermal network modelling (TNM) approach for the gearbox of a small
wind turbine and the results are validated with an experiment setup. The TNM of the gearbox
is based on [41] and is represented by an equivalent electrical circuit where each component is a
node, the heat transfer is the current and the temperature difference between components is the
voltage. The model requires the calculation of the losses in each component of the gearbox. Then,
for constant operating conditions, the increase in temperature is calculated over time until the
equilibrium temperature. The effect of degradation on the high and low-speed gearbox bearings
is tested by adding heat generation on their node in order to observe how it affects the modelled
temperature of the oil sump. A later study [42] utilising trending is conducted for the use of
TNM in combination with SCADA data for fault detection in wind turbines. The TNM uses the
signals from temperature sensors on several components of the gearbox which are indicated as
nodes, to calculate the heat generated in each node. To evaluate how the model performed, the
calculated heat generated in each node during healthy operation and one month before the failure
are compared. This showed a significant increase in the heat generated from the faults. The authors
mention that faults can be easier to detect using the heat domain instead of the temperature
domain. [43] compares the effectiveness of a TNM with that of a machine learning model. Then
the heat generation calculated in each node is used as input in the machine learning model and
observed the importance of feature is high for the loss calculated from the TNM but varied between
different wind turbines.

Using trending for condition monitoring has proven to be successful in detecting faults and
especially using temperature signals of the drivetrain. Nonetheless, various studies indicate that
manual interpretation is necessary while, employing a numerical representation of trends has not
demonstrated clear improvement as it leads to frequent false alarms [28].

2.3.2 Clustering

Clustering is a data analysis technique used to identify groups or clusters within a dataset. In
the context of SCADA data analysis for condition monitoring, clustering algorithms are applied
to automate the classification of ”normal” and ”faulty” observations. Clustering algorithms work
by grouping similar data points together based on certain characteristics or features. The goal
is to maximise the similarity within clusters while maximising the dissimilarity between different
clusters. The clustering process involves assigning data points to clusters iteratively until a stopping
criterion is met. Various clustering algorithms exist, such as k-means clustering used in [44] and
self-organising maps which is the second method introduced in the comparison by [39].
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Clustering methods still require human intervention and the interpretation of results is not easy.
Additionally, utilising fault data for training clustering algorithms may not always be feasible in
real-world industrial settings. Therefore, further research and development are needed to refine
and improve clustering methods for effective condition monitoring.

2.3.3 Normal Behaviour Modelling

Normal Behaviour Modelling (NBM) is a methodology used in condition monitoring of offshore
wind turbines to model a desired variable. The basic idea is to create a model that represents
the expected behaviour of the parameter under normal operating conditions. This model is built
based on historical data and can be used to predict the desired target variable. The models used
in the literature for the variable calculation are usually in two categories. The first one includes
data-driven methods like artificial neural networks (ANNs), support vector machines, decision
trees, random forests and gradient boosting [45] while the second category includes physics-based
models which use physical principles of the system combined with historical data for the training
to calculate the desired variable. Physics-based NBM can also be developed without the need
for historical data in case all the necessary information about the components of the system is
available.

The monitoring process in NBM involves comparing the measured signal with the modelled signal as
shown in Figure 2.4. The difference between the two, known as the residual, acts as an indicator for
potential faults or anomalies. Under normal conditions, the residual is expected to be approximately
zero within a given tolerance. However, if there are changes in the conditions or the occurrence of
failures, the residual will deviate from zero [46].

Figure 2.4: Normal Behaviour model schematic [47]

Data-driven NBM

There are several studies that use NBM and SCADA data for fault detection in wind turbines.
Garcia et al. [48] propose an intelligent system for predictive maintenance application and test it
on the wind turbine gearbox. The system is based on a NBM, which uses ANNs for the prediction
of the target variables. The three models presented for the gearbox are the bearing temperature
model, the thermal difference model and the cooling oil temperature. The thermal difference is
described as the difference between the temperature of the oil before and after the cooling system.
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Using the outputs of the three models they manage to detect the upcoming failure 26 hours before
it occurs.

Garlick et al. [49] propose a condition monitoring technique referred as model-based that uses the
generator temperature to estimate the temperature of the generator’s bearing. This is done using a
linear autoregressive exogenous input model with unknown parameters that are calculated with the
least squares method and using SCADA data for training. The study concludes that this method
needs human assistance to identify upcoming failures. It is suggested the use of a sliding window
mean average of the residuals and the use of a threshold with alarms when it is exceeded many
times in a certain period of time.

Schlechtingen and Santos [50] compare the use of linear regression and two different neural network
models for condition monitoring. For this study, SCADA data are used to calculate the temperature
of the generator and gearbox bearings in a healthy state. The two neural network methods are a
full signal reconstruction (FSRC) and an autoregressive NBMs. The results of the three models are
evaluated based on their success in predicting failure using the error for every 10-minute period and
the daily average of the error. Overall, the linear regression model is found to be the least reliable
and could only perform well in simple models. The autoregressive model performed similarly well
with the FSRC model however, the latter is more likely to raise a false alarm due to the effects of
seasonality. Finally, the authors suggest that only when the target variable has an autoregressive
behaviour like variables with high inertia, the autoregressive NN model to be used over the FSRC
model.

Tautz-Weinert and Watson [47] perform a comparative study between several data-driven NBMs
which calculate the temperature of the bearing and the winding of a generator. The developed
models are a simple linear NBM, a feed-forward (FF) and a layer-recurrent (LR) ANN NBM, a
Gaussian process regression NBM, a Support Vector Machine NBM and an Adaptive Neuro-Fuzzy
Inference System NBM. The input signals used for the models are chosen using a cross-correlation
analysis between the SCADA signals and the target variables. The best performing methods are
found to be the linear and the two ANNs. More than 100 turbines are tested and for some the
LR-ANN performs better while for others, the FF-ANN is superior. For most turbines though, the
LR-ANN has a superior performance.

McKinnon et al. [51] compares the use of two types of ANNs NBMs. The first one is a FSRC
NBM and the second is a Nonlinear AutoRegressive with eXogenous inputs (NARX) model. In
this study, the effect of the training length is investigated as well as the resolution of the data. The
training lengths tested are 6 and 12 months while the resolutions are 10 and 60-minute averaged
data. The best performance in predicting the target variable is achieved by using NARX model
with a resolution of 10-minute averaged signals and a training period of 12 months. However, the
authors suggest the use of FSRC model when only a lower resolution signal is available.

Physics-based NBM

Wilkinson et al. [39] propose a NBM, referred as physical model, based on a correlation analysis and
the available SCADA signals. The model is applied in several components such as the main bearing,
bearings and oil of the gearbox and bearings and windings of the generator. The temperature of
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the component of interest is calculated as

Test =
R2

1 (m1x1 + c1) + R2
2 (m2x2 + c2) + · · · + R2

i (mixi + ci)

R2
1 + R2

2 + · · · + R2
i

(2.1)

where Ri is the coefficient of determination and mi is the gradient of the correlation of each signal
used for the temperature prediction. The signals used in this prediction depend on the physics of
the component. The reason this model is referred as a physical model in the paper is because the
order of the polynomial used for each input signal in the equation is chosen based on the physical
relation between the input and output signal. However, no further information is provided about
this choice. The model parameters are calculated using data from a period of healthy operation of
the wind turbine. Afterwards, the rolling average of the residual is calculated in order to identify
how the actual data deviate from the estimated temperature over time. This study also uses the
state of the cooling system which is a binary signal converted into a continuous signal by using
a low-pass rectangular window filter. The study includes three approaches. The first uses signal
trending, the second is an ANN NBM and the third is the physical method described above. Among
the three proposed approaches, the physical model is the one with the highest precision to predict
an upcoming failure but it is also the hardest to implement as it requires knowledge about the
physical relations between the signals. The time of the failure identification ahead of the actual
failure, ranges from 0 to 24 months for the gearbox with most of the detections happening 10-12
months before failure.

Cambron et al. [52] develop a physics-based model for the calculation of the temperature of
the main bearing. This study is another example of a NBM where the predicted temperature is
dynamically calculated and compared to the actual temperature taken from the SCADA data. The
model uses the principle of energy conservation to formulate the equation for the calculation of the
bearing temperature. The temperature of the bearing is calculated as

Tb(t) = β1Tb(t− 1) + β2Tnac(t) + β3ω
2(t) + β4P (t) (2.2)

where Tb is the temperature of the main bearing, Tnac is the temperature of the nacelle, ω is the
rotational speed of the rotor, P is the electrical power output and β1 − β4 are unknown parameters
which are calculated by fitting the equation to the available SCADA data in a period of healthy
operation of the wind turbine. The fitting is performed using the least squares algorithm. The
model inputs are the temperature of the bearing in the previous timestep, the air temperature in
the nacelle, the rotational speed of the rotor and the power output found in Equation 2.2. The
model performance is assessed using the root mean square error, the coefficient of determination
R2 and the Durbin-Watson test which calculates the autocorrelation of the residuals. For fault
detection, an exponentially weighted moving average control chart is used. The model is tested in
two cases where it is able to detect the fault 30 days and 50 days ahead of the failure, respectively.
Finally, the authors suggest a similar model to be developed for gearboxes which are more prone to
failures compared to main bearings.

The more recent studies on NBM mainly use AI techniques. These can be shallow machine learning
models like random forest [53] and gradient boosting [54] but also deep neural networks like transfer
learning [55] and multi-target neural network [56]. While the latest literature primarily emphasises
machine learning techniques, it remains necessary to establish their practical suitability for real-
world implementation. This necessity arises not only from the substantial data requirements for
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effective training but also from the time required for this training before they can be implemented in
a new project. In addition, machine learning algorithms are often regarded as ’black box’ methods.
These models can provide accurate predictions, but they do so without offering easily interpretable
insights into the underlying relationships or factors driving their results [45]. Finally, NBM has
proven effective in detecting failures, but it comes with challenges such as reliance on training data
and manual threshold setup, leading to potential issues like missed failures and false alarms.

2.3.4 Damage modelling

Several studies developing models for the degradation of wind turbine components have been
proposed in the literature. They analyse the root causes of the failures and investigate the physics
that lead to that failure. Damage modelling involves developing mathematical or physics-based
models to understand and predict the behaviour and degradation of various components within a
wind turbine. The development of such models is really complex as it requires a combination of
engineering knowledge, field data, material fatigue expertise, and computational tools.

Gray and Watson [57] investigate the root cause of failures in various components of wind turbines.
Then, the physics of failure is used in order to develop a damage model for the gearbox bearings.
This model for the degradation of the bearing is based on the Lundberg-Palmgren rule. The
probability of failure is then estimated based on the Kaplan-Meier estimator. This methodology is
applied in a case study involving a wind farm of 160 wind turbines, six of which have a gearbox
failure in a short time span. With this approach, it becomes feasible to calculate the real-time
probability of failure based on the applied load and the accumulated damage.

Sepulveda et al. [58] use a physics-based model to calculate the accumulated damage on the
bearings and the gears of the gearbox. This model uses historical data from SCADA to make
batches for different power outputs of the wind turbine and calculates the frequency of occurrence
for each batch. Then, by using the N-S curves of the materials and the Miner’s rule the total
damage is calculated. The same is done for future accumulative damage by using FAST simulation
tool to generate a load spectrum. In order to perform the load calculation, this model requires the
knowledge of the exact type and size of each gearbox component, which is not usually available to
wind farm operators.

Jantara et al. [59] use damage mechanics to estimate the remaining useful lifetime of gears. A finite
element model is developed to calculate the strains on the gears of wind turbine gearboxes under
certain scenarios like overloading, poor lubrication, and misalignment. Then, the resulted stresses
are used for the calculation of the accumulated damage and the stress-cycles curves. Finally, it is
possible to calculate the remaining useful lifetime based on that information. This research shows
that the angular misalignment has the biggest impact on the lifetime of the gears. Even though this
study shows that it is possible to estimate the remaining useful lifetime, just like the other studies
in this category it is necessary to have access to the exact dimensions of the components of interest.

2.3.5 Alarm Assessment

The assessment of alarms can either be done using the status of the wind turbine which is generated
from the SCADA system or using the outputs of NBM. The former is also mentioned in the
literature as status code processing and is used in [60], [61]. The latter is used in several studies
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such as [48], [62].

Status code processing for wind turbine condition monitoring involves analysing codes generated by
SCADA systems. These codes, which represent various turbine states and alarms, are scrutinised
to assess operational health, detect faults, and inform maintenance decisions. Methods such as
time-sequence analysis, Bayesian probability analysis [60], and ANNs [63] are employed to extract
valuable insights from these codes. Challenges include data dependency, varying code generation
practices among manufacturers, and the need for more detailed algorithms in commercial products
[28].

Using expert systems and outputs of NBMs involves applying predefined rules and fuzzy logic within
a computational framework. Several studies implement expert systems to assess the output of their
various modelling approaches, such as ANN [48] and Adaptive Neuro-Fuzzy Interference Systems
[62]. These systems use fuzzy rules and membership functions to diagnose anomalies, predict the
remaining lifetime, and plan maintenance. By analysing prediction errors, integrating health degrees
or risk indicators, and considering various ANN models or training data, expert systems simplify
the interpretation of condition monitoring results. They offer a structured approach to integrate
SCADA condition monitoring into maintenance strategies, aiding in effective decision-making and
cost-efficient maintenance planning.

There are also more recent studies implementing assessment of alarms. [64] combine the use
of alarms from status signals with the output of two ANN models to develop fuzzy logic-based
methodology. The first ANN analyses vibration data and the second SCADA data. [65] uses
alarms from the status signals of the SCADA system to compare the use of time-sequence analysis
with the use of probability-based analysis. Overall, alarm assessment for condition monitoring has
demonstrated advantages in the context of fully autonomous fault detection systems and is easier
to implement in real-world wind farms when compared to the previous categories of condition
monitoring systems [36].

2.4 Discussion

The foundation of effective wind turbine maintenance lies in selecting the most suitable strategy.
The literature review suggests that predictive maintenance outperforms preventive and reactive
maintenance strategies. Predictive maintenance’s proactive nature, driven by real-time data and
condition monitoring, allows for the early detection of faults and deviations.

Predictive maintenance can be performed either using a CMS or using the SCADA system which is
installed in all turbines. Even though SCADA data include less information than a dedicated CMS
as the data are stored in 10-minute intervals, it is worth exploring the full potential of the SCADA
data for condition monitoring purposes before investing the extra cost and effort associated with
CMS installation.

Condition monitoring in wind turbines encompasses various approaches, including trending, cluster-
ing, NBM, damage modelling, and alarm assessment, each with its unique strengths and limitations.
Trending involves analysing data patterns over time, often relying on historical SCADA data to
identify trends, deviations, and anomalies. Clustering, on the other hand, automates the classi-
fication of normal and faulty observations through data grouping. NBMs, whether data-driven
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or physics-based, aim to model normal turbine behaviour, making them effective at detecting
deviations from the healthy state. Damage modelling involves developing physics-based models
to understand and predict the behaviour and degradation of various components within a wind
turbine, offering a deep understanding of failure mechanisms. Alarm assessment methods, such
as status code processing and expert systems, focus on analysing SCADA-generated alarms and
NBMs output for fault detection and maintenance planning.

Both Trending and Clustering require human intervention for the interpretation of the models.
This means that their implementation in real-world scenarios can not be automated. Damage
modelling is the method used so far the most for remaining useful lifetime estimation however, it
requires precise knowledge of the components included in the system which is not usually the case
for wind turbine gearboxes. NBM can sometimes be challenging to develop and interpret but in
combination with expert systems, they result in effective condition monitoring of wind turbines.

Physics-based NBMs in wind turbine condition monitoring are based on engineering principles,
offering an understanding of the system’s behaviour. These models, while interpretable and accurate
under known conditions, often require specific data and parameter calibration. By using historical
data this limitation can be overcome. In contrast, data-driven models rely solely on historical data,
offering flexibility and adaptability to changing conditions. They can handle noisy data and can
be used for various systems, though they have a ”black-box” nature. The choice between these
approaches hinges on the availability of data, system complexity, and the need for interpretability.

Based on the conducted literature review, it is observed that generally physics-based models have
very good performance when used for the main bearing [52] and bearings of the gearbox and
generator [39], [42]. This holds true for both trending and NBMs. At the same time, there is no
available study on a NBM of the gearbox oil temperature that uses a physics-based approach. This
has the potential to achieve similarly good results with studies on other components of the wind
turbine.



Chapter 3

Theoretical Background

Before proceeding to the description of the methodology used in this study, it is necessary to
provide some background information about the methods that will be used. First, the first law of
thermodynamics is presented as it is the base for the development of an equation that calculates the
gearbox oil temperature in the methodology. In addition, the sources of power loss in the gearbox
and the heat dissipation are introduced. These are included in Section 3.1. Then, Section 3.2
introduces regression analysis which is used to calculate the unknown parameters of the equation for
the calculation of the temperature of the oil. In addition, the methods used to evaluate the model
performance are introduced in Section 3.3. Finally, an introduction to artificial neural networks is
provided in Section 3.4. ANNs are used to develop a NBM and compare its performance with that
of the physics-based NBM developed in this study.

3.1 Gearbox energy balance

Just like any system, the gearbox is governed by the first law of thermodynamics which is also
known as the conservation of energy principle. This principle dictates that the difference between
the total energy inflow and the total energy outflow from the system over the course of a process
is equal to the overall change in the system’s total energy. According to Cengel [66], for a closed
system with a fixed mass, the energy conservation equation can be written as

Ein − Eout = ∆U = mC∆T (3.1)

where Ein and Eout are the energy inflow and outflow of the system, m is the mass of the system,
C is the specific heat capacity, and ∆T is the change in temperature. Equation 3.1 can be written
in the rate for as

Ėin − Ėout = mC
dT

dt
(3.2)

For a wind turbine, the power flow is shown in Figure 3.1.

19
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Figure 3.1: Power flow in a wind turbine drivetrain

Wind is converted into mechanical power through the rotor. Then, the power is transferred through
the gearbox to the generator where it is converted to electricity. However, within the gearbox,
a portion of the mechanical power is lost due to friction and it converts to heat. This heat is
dissipated to the environment by the cooling system but also through convection and conduction to
the surroundings. So, if we consider a control volume that includes only the gearbox, Equation 3.2
can be written as

Pin − Pout − Q̇diss = mC
dTgear

dt
(3.3)

where Pin and Pout are the power input and power output of the gearbox respectively, Q̇diss is the
heat dissipated from the gearbox, m is the mass of the gearbox and C is the specific heat capacity
of the gearbox. The difference between the input and output power of the gearbox is equal to the
power losses in the gearbox so Equation 3.3 can be written as

PV − Q̇diss = mC
dTgear

dt
(3.4)

where PV is the power loss in the gearbox. The sources of power loss in the gearbox and the heat
dissipation from the gearbox are introduced in the following subsections.

3.1.1 Gearbox losses

In this section, the different sources of power loss inside the gearbox are described and the relevant
equations are provided. The source of the power loss, PV , in a gearbox is shown in Figure 3.2.
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Figure 3.2: Sources of power loss in gearbox [67]

The losses consist of the load-dependent and the no-load losses of the gear mesh, PV ZP and
PV Z0, the load-dependent and the no-load losses of the bearings, PV L0 and PV LP , as well as the
load-independent losses of the seals, PV D, while the auxiliary losses are usually disregarded [40],
[68]–[72]. So, the total power loss is calculated as

PV = PV Z0 + PV ZP + PV L0 + PV LP + PV D (3.5)

Gear losses

The load-dependent losses of the gears are generated from friction in the meshing of the gears,
whereas no-load losses are from oil churning which includes oil splash and squeeze [71].

The load-dependent losses are calculated using the Coulomb law according to ISO/TR 14179-2:2001
standard [73] as:

PV ZP = PinµmzHv (3.6)

where Pin is the input power coming from the rotor, µmz is the mean coefficient of friction, and Hv

is the geometrical loss factor, which is constant. The Equation 3.6 is also used extensively in the
literature for the calculation of the load-dependent losses of the gears [40], [68], [70]. PV ZP refers
to the power loss of one gear meshing point, so the total load-dependent power loss of the gears is
the sum of the losses in each meshing point. The terms of Equation 3.6 are further analysed below.
First, µmz is calculated as

µmz = 0.048

(
F/b

vΣρ

)0.2

η−0.05
oil Ra0.25XL (3.7)

where b is the width of the gear teeth, ηoil is the dynamic viscosity of the oil, Ra is the average
roughness of pinion and gear wheel, XL is the lubricant factor, ρ the radius of the curvature at
pitch point and F the force on the meshing point. The sum velocity of the meshing point of the
gears, vΣ is calculated as

vΣ = 2 · vt · sinαwt (3.8)

where, vt is the tangential speed of the gear and αwt is the working pressure angle.
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There are several studies on the calculation of no-load losses. In this study, the calculation is
performed using the ISO/TR 14179-2:2001 standard [73] which has been used in a study developing
a thermal model of the gearbox [40]. There are also more recent methods, such as [74], [75], that
use multiple equations from which one is chosen based on the operating conditions. However, wind
turbines operate under constantly changing conditions so the use of such methods is not considered
suitable for this study. According to ISO/TR 14179-2:2001 the total no-load losses are described by

PV Z0 = TH · ω (3.9)

where ω is the rotational speed of the gear and TH is the hydraulic torque loss given by

TH = CSpC1e
C2

(
vt
vt0

)
(3.10)

where CSp, C1 and C2 are constants depending on the oil immersion depth and the width of the
gears, vt is the tangential speed which is proportional to the rotational speed of the rotor and vt0 is
the reference tangential speed which is assumed equal to 10m/s.

Bearing losses

The calculation of the power loss in gearbox bearings is performed using an approach proposed
in ISO/TR 14179-2:2001 [73], which is also used in [76] and [40]. The loss is divided into no-load
losses (PV L0) and load-dependent losses (PV LP ). The no-load losses are calculated as

PV L0 = TV L0 · ω = 1.6 · 10−8 · f0 · d3m · ω for voiln < 2000mm2/s ·min

PV L0 = TV L0 · ω = 10−10 · f0 · (voiln)2/3d3m · ω for voiln ≥ 2000mm2/s ·min
(3.11)

where TV L0 is the torque loss, f0 is a constant that depends on the bearing type and the bearing
lubrication, n is the rotational speed of the bearing [rpm], dm is the bearing mean diameter [mm],
and ω is the rotational speed [rad/sec].

As for the load-dependent losses, they are calculated as

PV LP = TV LP · ω = f1 · Fα · dβm · 10−3 · ω (3.12)

where f1, α and β are constants that depend on the bearing type and F is the load applied on the
bearing [N].

Seal losses

Seals are mechanical components designed to prevent the leakage of lubricating oil and the ingress
of contaminants like dust, dirt, or moisture into the gearbox. Lip seals are placed on the input and
output shafts. Due to the rotation of the shaft, there is friction between the shaft and the seals
which generates losses. These seal losses are calculated as

PV D = 7.69 · 10−6d2shn (3.13)

where dsh is the shaft diameter [mm] and n is the rotational speed [rpm]. This equation is widely
used in the literature for the calculation of the seal losses [40], [72], [77] and is known as Simrit
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equation.

Oil Viscosity

In some of the aforementioned equations, the dynamic and kinematic viscosity of the oil are present.
The dynamic viscosity ηoil of Equation 3.7 can be expressed as a function of kinematic viscosity νoil
with

ηoil = ρoil·νoil (3.14)

where ρoil is the density of the oil [78]. The effect of temperature on the dynamic viscosity of an oil
can be estimated with the Arrhenius equation [79] as

ηoil = A·exp
(

Ea

RToil

)
(3.15)

where A is a constant, Ea is the activation energy, R is the universal gas constant and Toil is the
temperature of the oil. By dividing both sides of the equation with ρoil and using Equation 3.14 we
get

ηoil
ρoil

=
A

ρoil
exp

(
Ea

RToil

)
⇒ νoil = Aνexp

(
Ea

RToil

)
(3.16)

where Aν is a constant if a constant oil density is assumed.

3.1.2 Gearbox heat dissipation

The heat generated within the gearbox due to the losses is first transferred to the lubrication oil
circulating in the gearbox [73] and then dissipated to the external environment in two ways: a)
through the gearbox housing and the coupling shafts, mostly through convection and conduction,
to the air within the nacelle and other components in contact with the gearbox, and b) through
the cooling system. The heat dissipation through radiation can be neglected as suggested in [38],
because of its low relative contribution to the total heat transfer. According to [38], [73], the heat
dissipated through convection and conduction to the nacelle is calculated as

Q̇nac = k0·Aca(Toil − Tnac) (3.17)

where k0 is the heat transmission coefficient which includes the internal heat transfer, the heat
transfer between housing and the oil, the heat conduction through the housing wall, and the
external heat transfer to the environment, and Aca is the gearbox housing wall area. Both k0 and
Aca are assumed to be constant. Toil is the oil sump temperature and Tnac is the temperature of
the nacelle.

The heat dissipated through the cooling system [66] is calculated as

Q̇cool = ṁCp∆t = ṁCp(Toil − Toil,inlet) (3.18)

where ṁ is the mass flow rate of the oil in the cooling system, Cp is the specific heat capacity of
the oil and Toil,inlet is the oil inlet temperature. The total heat dissipated from the gearbox can
then be calculated as

Q̇diss = Q̇nac + Q̇cool = k0·Aca(Toil − Tnac) + ṁCp(Toil − Toil,inlet) (3.19)
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3.2 Regression Analysis

Regression analysis is a statistical technique that describes a dependent variable based on a number
of independent variables. In this thesis, it is used to calculate the unknown parameters in the
equation for the calculation of the gearbox oil temperature. These unknown parameters represent
the unknown characteristics of the gearbox which are required for the calculation of the gearbox oil
temperature. In this section, the application of regression analysis in our study is discussed, with a
focus on the least squares method. An example of a multiple linear regression formula is

y = β0 + β1x1 + β2x2 + ... + βpxp + e (3.20)

where y is the dependent variable, x1, x2, ..., xp are the independent variables, β0, β1, ..., βp the
unknown parameters and e the error term.

When the relationship between the dependent and the independent variables is not linear, non-linear
regression is used. Examples of non-linear relationships are exponential, logarithmic, trigonometric
or power functions.

The least squares method is a regression analysis method that minimises the sum of the squared
difference between the observed value yi and the predicted value ŷi

F (β) =
N∑
i=1

(yi − ŷi)
2 =

N∑
i=1

(yi − f(xi, β))2 (3.21)

to estimate the regression parameters (β0, β1, ..., βp). β is a vector including the regression parameters
and vector xi include the independent variables. The least squares method can be used for both
linear and non-linear regression. In this study, a non-linear least squares method is used to calculate
the optimal parameters. The non-linear least squares method relies on iterative algorithms like
Gauss-Newton, Levenberg-Marquardt, Subspace Trust-Region interior Reflective (STIR), Conjugate
Gradient or Nelder-Mead Simplex. Starting from an initial estimate of the unknown parameters,
these algorithms iteratively refine the solution by modifying the parameters to minimise the sum of
squared error [80]. STIR stands out as an efficient option capable of handling a substantial number
of parameters and constrained problems. It strikes a balance between exploring and exploiting the
solution space, which enhances the probability of converging to the global minimum and prevents
becoming trapped in local minima [81].

STIR algorithm is proposed in [82], where it is described in detail and compared to the Trust-Region
interior Reflective algorithm which does not introduce subspaces. In Trust-Region algorithms
the function F (β) we want to minimise is approximated by a simpler function q, which offers a
reasonable representation of F in a certain region, referred as neighbourhood N , around a point βk.
The approximation q is usually defined as the first two terms of the Taylor approximation of F at
βk. Then, a subproblem is introduced which includes minimising the simplified q as

min
s
{q(s), s ∈ N} (3.22)

where the step s is calculated and the the point βk is updated to βk + s if

F (β + s) < F (β) (3.23)
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In case this condition is not met, the previous point β is kept, the size of neighbourhood N is
reduced and the minimisation of q is repeated. These steps are repeated until the algorithm
converges to a solution.

Solving the trust-region subproblem can be quite demanding and often necessitates multiple
Hessian matrix factorisation, which can be computationally costly. To address this challenge, an
approximation technique is employed in STIR algorithm. This approximation method for computing
the trial step s involves confining the trust-region subproblem to a two-dimensional subspace instead
of the dimension of β. These subproblems are a way of dividing the optimisation task into smaller,
more manageable steps. The shape and size of the trust regions are determined based on two key
factors: the distance from the defined constraints and the direction of the gradient. This way, steps
directly into bounds are avoided and the whole two-dimensional space is explored. The convergence
of the optimisation problem is also improved by considering search directions that are reflected from
the defined constraints. Finally, to adhere to theoretical requirements and maintain the integrity of
the optimisation problem, the algorithm ensures that in none of the iterations are the constraints
violated.

3.3 Normal behaviour model accuracy
The evaluation of the model accuracy is a crucial step in the development of a NBM. This shows
how well the model can predict the output based on the given input. This is usually done using
SCADA data from a different period to the training which is called the testing period. Several
metrics have been used in the literature for the evaluation of the accuracy of a NBM. Most of the
metrics use the errors also referred as residuals of actual minus estimated values and are calculated
as

ri = yi − ŷi (3.24)

where ri is the residual at time i, yi is the actual value at time i and ŷi is the NBM predicted value
at time i Some of the most commonly used metrics are:

• Mean Squared Error (MSE), which is the mean of the squared difference between the predicted
and the actual value calculated as

MSE =

∑N
i=1 r

2
i

N
(3.25)

where N is the number of the data points. The MSE is sensitive to outliers due to the
exponent in the error. This metric is used by [83], [84] to calculate the accuracy of the
developed NBMs.

• Root Mean Square Error (RMSE), which is the square root of the mean squared difference
between the predicted and the actual value and is calculated as

RMSE =

√∑N
i=1 r

2
i

N
(3.26)

The RMSE has been used by several studies, such as [47], [49], [51], [52], [85], to evaluate the
performance of the developed NBMs. Just like MSE, RMSE is also sensitive to outliers due
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to the exponent in the residual. However, RMSE is more widely used than MSE because its
unit is the same as the actual and the estimated values. This way it is easier to compare the
magnitude of the error with the magnitude of those values.

• Mean absolute error (MAE), which is the average value of the absolute difference between
the predicted and the actual values

MAE =

∑N
i=1 |ri|
N

(3.27)

In [47], [86], MAE is used to compare the performance of different NBMs. MAE is less
sensitive to the outliers compared to RMSE and MSE because of the lack of the exponent in
the error.

• Mean absolute percentage error (MAPE), which gives an indication of the error in relation to
the magnitude of the actual value and is calculated as

MAPE =
1

n

N∑
i=1

∣∣∣∣riyi
∣∣∣∣ (3.28)

The MAPE is used in the literature to compare different ANNs models [86].

• The standard deviation of the error (STDE) is calculated as

STDE =

√∑N
i=1 (ri − r̄)2

N − 1
(3.29)

where r̄ is the mean residual. The STDE is used in some studies, such as [47], [62], as an
indication of the performance of the model.

• Akaike information criterion (AIC) which is calculated as

AIC = N ·ln(STDE2) + 2k (3.30)

where k is the number of model parameters. AIC is designed to strike a balance between the
goodness of fit of a model and its complexity, making it a valuable tool for choosing the most
appropriate model among a set of candidates. It penalises complex models, discouraging
overfitting while favouring models that effectively capture the underlying patterns in the
data. AIC provides a quantitative way to compare models and select the one that offers the
best trade-off between fit and simplicity. Lower AIC values indicate better-fitting models,
and the criterion is particularly valuable when comparing models with different numbers of
parameters.

A method to assess the effectiveness of a model is cross-validation (CV). It involves partitioning a
dataset into multiple subsets, known as folds. Each fold includes a training and a testing dataset.
This approach provides valuable insights into how well a model generalises to new, unseen data and
helps in detecting potential overfitting [87]. Overfitting occurs when a model performs exceptionally
well on the training data but poorly on unseen data. One popular variant of cross-validation is
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time series cross-validation, which is particularly useful for evaluating models using temporal data.
Time series CV makes sure that the data are always in chronological order and the testing set is
after the training set which is not always the case for other types of CV [88]. The two types of
time series CV are time-series split (TSS) and blocking time-series split (BTSS). A representation
of how the folds in each method are generated is shown in Figure 3.3. The blue lines represent
the training period and the red lines represent the testing period. In TSS CV, the training length
is gradually increased, while in BTSS CV the training length remains constant. In the case of
the BTSS, the training data can have overlaps between different CV folds. After the training and
testing periods are set, the metric used for the model performance is calculated for each fold. Then,
the mean value of the metric from the different folds is calculated as well as its standard deviation.

(a) Time-series split (b) Blocking time-series split

Figure 3.3: Example of time-series split and blocking time-series split [89].

In this study, CV is used to investigate the effect of changing training and testing periods on both
the performance of the model and the values of the calculated parameters coming from the least
squares fitting of the equation for the calculation of the gearbox oil temperature to the SCADA
data.

3.4 Artificial Neural Networks

ANNs are widely used in the literature for the construction of NBMs with some examples mentioned
subsection 2.3.3 of the literature review. In this study, 2 ANN models, namely the NARX-ANN
and the LR-ANN, are employed for comparative analysis with the physics-based NBM developed
in this research. This section gives an introduction to ANNs and then provides information about
the two ANN models used in this study.

ANNs are computational models inspired by the way our brains process information. They are at
the heart of modern machine learning and artificial intelligence, revolutionising our ability to solve
complex problems. Just as our brains consist of interconnected neurons, ANNs comprise artificial
”neurons”. These artificial neurons are interconnected in layers, forming the basic architecture of
an ANN and work together to understand data, make decisions, and solve tasks [90].
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The architecture of an ANN comprises layers of interconnected nodes, or neurons, organised into
three primary types of layers: the input layer, one or more hidden layers, and the output layer.
Neurons in the input layer receive and process the initial data. The connection between neurons
carries a weight that determines the strength of the connection. Neurons in the hidden layers
perform calculations by taking a weighted sum of their inputs and passing it through an activation
function, which introduces nonlinearity and allows the network to model intricate patterns and
dependencies in the data. The architecture of an ANN is determined by factors such as the number
of layers, the number of neurons in each layer, the type of activation functions used, and the
interconnections between neurons. An example of a ANN architecture with one hidden layer is
shown in Figure 3.4.

Figure 3.4: ANN architecture example

The two main categories of ANNs are the feedforward ANNs and the recurrent ANNs. Feedforward
neural networks are the most basic and widely used type of neural network. The information flows
in one direction, from the input layer through the hidden layers to the output layer. On the other
hand, recurrent neural networks are designed to handle sequential data where the order of input is
important. They include recurrent connections that allow information to cycle through the network.

In each layer of a neural network, a parameter known as the activation function plays a crucial role.
This function is responsible for transforming input values into output values, which then become
the input for the subsequent layer. These functions decide whether a neuron should become active,
influence the extent to which signals progress through the network, and ultimately shape the final
prediction. There is a variety of activation functions to choose from, each serving a specific purpose
based on the layer’s function. These functions include, among others, the threshold function, the
sigmoid function, and the rectifier functions[91]. The two activation functions used in this study
are the hyperbolic tangent used in the hidden layer and the pure linear in the output layer and are
displayed in Figure 3.5.
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Figure 3.5: ANN architecture example

Based on a given architecture, the ANN is trained using the input and target data. Training ANNs
is a fundamental process involving iterative learning from data. It encompasses presenting the
network with input data, propagating it through the network, comparing predictions with actual
target values, and fine-tuning weights to minimise prediction errors. This iterative training equips
ANNs with the capability to make increasingly accurate predictions.

Overall, the main advantages and disadvantages of ANNs are [92]:

Advantages:

• Pattern Detection: Neural networks excel at uncovering subtle patterns within complex
multivariate data.

• Flexibility: They offer versatility, suitable for both regression and classification tasks, making
them adaptable to a wide range of problems.

• Robustness: Neural networks are robust when it comes to noisy training data. They can
handle errors or missing values without significantly affecting their output.

• Non-Linearity: They are well-suited for handling non-linear data, and can accommodate
various input dimensions and layer configurations.

Disadvantages:

• Hardware dependency: ANNs, especially the more complex architectures, require heavy
computational resources for training, resulting in high costs and time requirements.

• Transparency: Due to their ”black-box” nature, the decision-making process of ANNs is less
transparent and their predictions are less explainable compared to other approaches.

• Data demands: ANNs demand substantial amounts of data for effective training, and tuning
their parameters to achieve optimal performance can be challenging and resource-intensive.
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Two models are used in this study: the LR-ANN and the NARX-ANN. The decision to use the
LR-ANN was based on [47] which compares several data-driven NBMs and shows that LR-ANN
has the best performance even though the performance is not consistent for all wind turbines that
are tested. NARX-ANN is widely used in the literature on NBMs, such as in [51], [93], [94], and
has demonstrated superior performance compared to feed-forward networks. In addition, these
studies provide sufficient information to replicate the methods used, which is not always the case
for data-driven NBMs found in the literature.

LR-ANNs are a specialised variant of recurrent neural networks designed to capture sequential
dependencies and temporal patterns in data. Unlike feed-forward networks, where information flows
only in one direction, LR-ANNs include recurrent connections within individual layers, enabling
them to model dynamic sequences and time-dependent patterns [95]. They are used in tasks
involving sequential data, such as natural language processing, speech recognition, and time series
prediction. The recurrent connections enable them to retain information from previous time steps
and use it to influence future predictions. Also, the use of this delayed feedback makes it possible
to take into account the system inertia [47].

Figure 3.6 shows the architecture of a LR-ANN. In the input Layer, the network receives inputs and
a delay is applied to these inputs (D). Each input is individually multiplied by its corresponding
weight (W). The recurrent connection incorporates a delay and they are associated with specific
weights. The output of the hidden layer at a given time step is used as input D time steps later,
effectively introducing a temporal memory mechanism. The inputs and the recurrent signal are
combined within the hidden layer. This combination involves summation, where the inputs and
recurrent signals are added. Additionally, a bias term (b) is introduced. The resulting sum is then
transformed using the activation function of the hidden layer, which is responsible for introducing
nonlinearity into the network. The output of the hidden layer is further processed. It is multiplied
by a weight specific to the output layer and combined with an output layer bias. Similar to the
hidden layer, this sum is subjected to an activation function, gives the network’s final output.

Figure 3.6: LR-ANN architecture [96]

The NARX neural network is a specialised type of recurrent neural network designed for modelling
and predicting time series data. It is particularly useful for problems where past observations of
the target sequences are required to make predictions. In addition to using past observations of
the target variable, NARX networks can also incorporate exogenous inputs, which are external
factors that influence the prediction. This makes them versatile for modelling complex systems
influenced by multiple variables [51]. Figures 3.7 and 3.8 reveal two distinct types for the NARX
ANN model: the series-parallel architecture, also known as the open-loop configuration, and the
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parallel architecture, alternatively referred to as the closed-loop configuration.

Figure 3.7: Series Parallel NARX-ANN architecture (open-loop) [97]

Figure 3.8: Parallel NARX-ANN architecture (closed-loop) [97]

In open loop configuration, the time history of the target variable is used as input for the ANN. The
delay defines which previous values are available as inputs. On the other hand, in the closed loop
configuration, the past predicted value of the output is used as input. This is the only difference
between the two configurations. The inputs after the implementation of delays are multiplied with
their corresponding weights and then summed. The bias of the hidden layer is also added and the
sum is transformed using the activation function. The output of the hidden layer is multiplied with
a weight and the bias is added. Finally, using the transfer function of the output layer, the sum is
transformed and the output is calculated.



Chapter 4

Methodology

The main objective of this thesis is to design a physics-based NBM of the gearbox oil temperature.
This model is based on the first law of thermodynamics and considers the heat generated in different
components of the gearbox as well as the heat dissipated to the environment. As input for the
model, SCADA data are used. Due to some unidentified technical specifications of the wind turbine
gearboxes, the equation for the calculation of the oil temperature has some unknown parameters.
These parameters are calculated by implementing a regression analysis to fit the equation to historic
SCADA data. The estimated temperature describes the behaviour of the oil temperature under
healthy conditions and can be used for condition monitoring purposes.

An overview of the methodological approach undertaken in this research is shown in Figure 4.1.
The process starts with the pre-processing of the available SCADA data which includes data
cleaning and data partitioning which are explained in Section 4.1. Then, the gearbox NBM for
the calculation of the oil temperature under healthy operating conditions is developed. Section 4.2
includes the derivation of the gearbox oil temperature equation as well as the estimation of the
unknown parameters of the equation. The testing dataset is then used to evaluate the effectiveness
of the model in predicting the gearbox oil temperature. Section 4.3 includes the different methods
used to evaluate the performance of the model. Finally, Section 4.4 includes the description of the
ANN NBMs used for a comparative study with the physics-based model developed in this research.

In this research, Python is selected as the primary programming language for the development and
analysis of the model. Python’s versatility and extensive ecosystem of scientific libraries make it a
suitable choice for the tasks involved in this study. The flexibility of Python allows us to implement,
customise, and optimise our model efficiently. However, the ANN models used in the comparative
study are developed in Matlab which offers a user-friendly toolbox.

32
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Figure 4.1: Overview of the Methodology

4.1 Pre-processing of the SCADA data

The pre-processing steps undertaken in this study are integral to ensuring the quality, reliability,
and relevance of the data used for analysis and modelling. Outlier removal, guided by the expected
range of each variable found in [62], is an essential measure to eliminate data points that may
introduce noise and inaccuracies into the results. By removing outliers, the dataset remains a
faithful representation of the real-world conditions under examination. The removal of data vectors
containing NaN values is important for maintaining data integrity. Missing values can lead to
inconsistencies and cause problems in calculations, justifying their exclusion. In addition, any
negative values of power output are replaced with zeros. This serves to align the data with the
physical constraints of the system, avoiding misleading results in calculations, particularly those
involving the losses calculation in the gearbox. Lastly, data partitioning into training and testing
sets is crucial to prevent information leakage and to assess model performance rigorously. It
ensures that models are evaluated on previously unseen data, providing a robust measure of their
effectiveness in real-world applications. Together, these pre-processing steps uphold the credibility
and robustness of the data, underpinning the quality of subsequent analyses and findings.

4.2 Physics-based normal behaviour model

The NBM calculates the oil temperature, based on its input signals coming from the SCADA system,
and the output of the model is then compared to the corresponding temperature measurements
from the sensor placed on the wind turbine gearbox. Figure 4.2 shows a schematic of the principle
of operation of a NBM.
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Figure 4.2: Normal Behaviour model schematic

As shown in Chapter 3, several characteristics of a gearbox are necessary to calculate the power
losses and the heat dissipated from the gearbox. If all the information is available, it is possible to
formulate an equation that using specific input calculates the gearbox oil temperature. However,
this study focuses on a different scenario where this information is not available and only relies
on information available in SCADA data. Regardless of the missing characteristics, an equation
for the gearbox oil temperature can still be formulated, however, in this case there will be some
unknown parameters in this equation. These parameters are calculated by fitting the equation to
the available SCADA data.

The formulation of the equation for the gearbox oil temperature calculation is based on the heat
balance equation

PV − Q̇diss = mC
dTgear

dt
(4.1)

which was introduced in Section 3.1. As suggested in [38], the gearbox temperature is assumed to
be the same throughout the gearbox and equal to the gearbox oil temperature, due to the high
conductivity of the gearbox material so the Equation 4.1 can be written as

PV − Q̇diss = mC
dToil

dt
(4.2)

PV and Q̇diss include multiple terms each one including many unknown parameters. In order to
reduce the number of those parameters, several of them are grouped together to make the regression
problem simpler. In addition, the variables of the equation for the losses need to be expressed as
functions of SCADA signals. This is performed in the following subsections.

4.2.1 Gearbox losses

Gear losses

According to subsection 3.1.1, using equations 3.6, 3.7 and 3.8 the load-dependent gear losses can
be calculated as

PV ZP = Pin·0.048

(
F/b

2 · vt · sinαwt·ρ

)0.2

η−0.05
oil Ra0.25XL·Hv (4.3)

where b, ρ, Ra, XL, at and αwt are constants as geometrical features of the gears.
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It is assumed that the forces applied on the gears are proportional to the torque transferred through
the gearbox which is equal to the power output divided by the rotational speed as mentioned in
[57]. In addition, the tangential velocity vt is proportional to the rotational speed of the rotor nrotor.
These relations are written as

F ∝ T ∝ Pel

nrotor

⇒ F = aF
Pel

nrotor

(4.4)

vt = ω·Rgear ∝ nrotor ⇒
vt = avt·nrotor and ω = aω·nrotor

(4.5)

where aF and avt are the proportionality constants.

The input power from the rotor is usually not available in SCADA data so the electrical active
power output, Pel, is used instead. In addition, all the equations regarding the power losses used in
this model are given in relation to the rotational speed of the rotor (nrotor) which again is available
in the SCADA data and is proportional to the rotational speed of every component in the gearbox.

By applying the proportionality constants of Equations 4.4 and 4.5 in Equation 4.3, using Pel

instead of Pin and substituting Equation 3.14 for the viscosity we get

PV ZP = Pel·0.048

(
aFPel/(nrotor·b)

2ρ·sin(αwt)·avt·nrotor

)0.2

(ρoil·νoil)−0.05Ra0.25XL·Hv (4.6)

Now that the load-dependent gear losses are expressed as a function of Pel and nrotor, the constants
can be grouped using

a1 = 0.048·
(

aF
2ρ·sin(αwt)·avt·b

)0.2

ρ−0.05
oil ·Ra0.25XL·Hv (4.7)

where all the constants are positive and αwt is usually 20°, making a1 positive. So, by substituting
Equation 4.7 in Equation 4.6, it can be written as

PV ZP = a1Pel

(
Pel/nrotor

nrotor

)0.2

ν−0.05
oil = a1

P 1.2
el

n0.4
rotor

ν−0.05
oil (4.8)

where a1 is the parameter that is determined by the fitting of the equation for the calculation of
gearbox oil temperature to the SCADA data.

The no-load losses PV Z0 are calculated using Equations 3.9 and 3.10 as

PV Z0 = CSpC1e
C2(vt/vt0)·ω (4.9)

By applying the proportionality constants for the rotational speed and the tangential speed of
Equation 4.5, Equation 4.9 can be written as

PV Z0 = CSpC1e
C2(avt·nrotor/vt0)·aω·nrotor (4.10)
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Then, the constants are grouped together using

a2 = aω·Csp·C1 and a3 =
C2·avt
vt0

(4.11)

where all the constants are positive making a2 and a3 also positive. Finally, the no-load gear losses
are calculated as

PV Z0 = a2·nrotor·ea3·nrotor (4.12)

where a2 and a3 are calculated by the fitting of the equation to the SCADA data.

Bearing losses

Similarly with the gear losses, it is assumed that the rotational speed of every bearing in the gearbox
is proportional to the rotational speed of the rotor and the force on the bearings is proportional
to the torque applied on the shaft of the bearing. So, Equations 4.4 and 4.5 can also be used for
the bearing losses. Using the proportionality constants of these equations to express the bearing
load-dependent losses as a function of Pel and nrotor, Equation 3.12 can be written as

PV LP = f1·dβm·
(
aF

Pel

nrotor

)α

· 10−3aω·nrotor (4.13)

Then, by assuming one bearing type in the gearbox, the constants can be grouped together using

b1 = f1·aαF ·dβm·10−3·aω and b2 = α (4.14)

where all the constants are positive making b1 and b2 also positive. By substituting Equation 4.14
in Equation 4.13 we get the equation for the bearing load-dependent losses as

PV LP = b1

(
Pel

nrotor

)b2

nrotor (4.15)

where b1 and b2 are the parameters that are determined by the fitting of the equation to the SCADA
data.

From the 2 parts of Equation 3.11 for the no-load losses introduced in subsection 3.1.1, only the
second part is used. This can be explained based on the fact that the majority of losses come from
the final stage of the gearbox [71] where the rotational speed is at least 250rpm during operation as
observed in the SCADA data. Even the rotor that has the lowest rotational speed has a minimum
of 10rpm during operation. Also, the viscosity that is considered is from the lubricant ISO VG 320
synthetic Polyalphaolefin which is a usual choice for wind turbines [98]. The temperature of the oil
rarely exceeds 60 degrees Celsius and for this temperature the viscosity of the oil is 180mm2/s,
while for lower temperatures the viscosity is larger. This means that the product of n and νoil is
always higher than 2000 mm2/s·min.

The rotational speed of the bearing n[rpm] can be converted to ω[rad/s] as

n =
30

π
ω (4.16)
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By substituting Equation 4.16 in the second part of Equation 3.11 we get

PV L0 = 10−10·f0·(νoiln)2/3d3m·ω = 10−10·f0·d3m·
(
νoil

30

π
ω

)2/3

ω (4.17)

Then, the proportionality constant of Equation 4.5 is applied on Equation 4.17 as

PV L0 = 10−10·f0·d3m·
(
νoil

30

π
aω·nrotor

)2/3

aω·nrotor (4.18)

and the constants are grouped together using

b3 = 10−10·f0·d3m·aω
(

30

π
aω

)2/3

(4.19)

, where all the constants are positive, making b3 also positive. The equation for the bearings load
dependent losses is formulated as

PV L0 = b3·nrotor·(νoil·nrotor)
2/3 (4.20)

where b3 is the parameter that is determined by the fitting of the equation to the SCADA data.

Seal losses Just like gear and bearing losses, the rotational speed of the shaft where the seals are
attached is considered proportional to the rotational speed of the rotor according to Equation 4.5. By
replacing n[rpm] with ω[rad/s] using Equation 4.16 and substituting the proportionality constant
of Equation 4.5 in Equation 3.13, it is modified as

PV D = 7.69·10−6d2sh·n = 7.69·10−6d2sh·
30

π
ω = 7.69·10−6d2sh·

30

π
aω·nrotor (4.21)

Then, the constants are grouped together using

c = 7.69·10−6d2sh·
30

π
aω (4.22)

where all the constants are positive, making c also positive. Finally, the seal losses are calculated as

PV D = c·nrotor (4.23)

where c is the parameter that is calculated by the fitting of the equation to the SCADA data.

The total gearbox power loss is then calculated as the sum of the above-mentioned loss components
(Equations 4.6,4.12,4.15,4.20,4.23) as

PV = a1
P 1.2
el

n0.4
rotor

ν−0.05
oil + a2·nrotor·ea3·nrotor + b1

(
Pel

nrotor

)b2

nrotor + b3·nrotor·(νoil·nrotor)
2/3

+ c·nrotor

(4.24)
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4.2.2 Heat dissipation from the gearbox

As described in subsection 3.1.2, the total heat dissipation from the gearbox is calculated as

Q̇diss = Q̇nac + Q̇cool = k0·Aca(Toil − Tnac) + ṁCp(Toil − Toil,inlet) (4.25)

By grouping the constants using

k = k0·Aca and k1 = ṁCp (4.26)

,where k0, Aca, ṁ and Cp are all positive constants, making k and k1 also positive, the equation for
the total heat dissipation from the gearbox is written as

Q̇diss = k·(Toil − Tnac) + k1·(Toil − Toil,inlet) (4.27)

where k and k1 are the parameters that are determined by the fitting of the equation to the SCADA
data.

4.2.3 Gearbox oil Temperature Calculation

The gearbox oil temperature can be obtained by solving the heat balance Equation 4.2. By
substituting Equations 3.5 and 4.25 in Equation 4.2 we get

mC
dToil

dt
= PV − Q̇diss ⇒ (4.28)

mC
dToil

dt
= PV Z0 + PV ZP + PV L0 + PV LP + PV D − Q̇nac − Q̇cool

Then, Equations 4.6, 4.12, 4.15, 4.20, 4.23 and 4.27 are substituted in each term of the right-hand
side of the equation to get

mC
dToil

dt
= a1

P 1.2
el

n0.4
rotor

ν−0.05
oil + a2·nrotor·ea3·nrotor + b1

(
Pel

nrotor

)b2

nrotor (4.29)

+ b3·nrotor(νoil·nrotor)
2/3 + c·nrotor − k·(Toil,t − Tnac,t) − k1·(Toil,t − Toil,inlet,t).

SCADA data are sampled at 10-minutes intervals (∆t = 10 min). To adapt the original continuous-
time equation with dT/dt to discrete-time modelling, we introduce the discrete-time counterpart
with ∆T/∆t as

mC
Toil,t − Toil,t−1

∆t
= a1

P 1.2
el

n0.4
rotor

ν−0.05
oil + a2·nrotor·ea3·nrotor + b1

(
Pel

nrotor

)b2

nrotor (4.30)

+ b3·nrotor(νoil·nrotor)
2/3 + c·nrotor − k·(Toil,t − Tnac,t) − k1·(Toil,t − Toil,inlet,t)

This conversion is based on the assumption that over each 10-minute interval (∆t), the system’s
behaviour can be represented by a constant rate of change (∆T/∆t). By solving the equation for
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Toil,t we get

Toil,t =(
mC

∆t
Toil,t−1 + k·Tnac,t + k1·Toil,inlet,t + a1

P 1.2
el

n0.4
rotor

ν−0.05
oil + a2·nrotor·ea3·nrotor+ (4.31)

+ b1

(
Pel

nrotor

)b2

nrotor + b3·nrotor(νoil·nrotor)
2/3 + c·nrotor)/(

mC

∆t
+ k + k1)

The heat capacity and the mass of the gearbox are considered constant while ∆t = 10 min. So,
they can be grouped together using

a =
mC

∆t
(4.32)

, where m c and ∆t are positive constants making a also positive. The equation for gearbox oil
temperature can be written as

Toil,t =
a

a + k + k1
·Toil,t−1 +

k

a + k + k1
·Tnac,t +

k1
a + k + k1

·Toil,inlet,t+ (4.33)

+
a1

a + k + k1

P 1.2
el

n0.4
rotor

ν−0.05
oil +

a2
a + k + k1

·nrotor·ea3·nrotor +
b1

a + k + k1

(
Pel

nrotor

)b2

nrotor+

+
b3

a + k + k1
·nrotor(νoil·nrotor)

2/3 +
c

a + k + k1
·nrotor

To further simplify the equation, the parameters β1-β10 are introduced as

β1 =
a

a + k + k1
, β2 =

k

a + k + k1
, β3 =

k1
a + k + k1

, β4 =
a1

a + k + k1
, β5 =

a2
a + k + k1

(4.34)

β6 = a3 , β7 =
b1

a + k + k1
, β8 = b2 , β9 =

b3
a + k + k1

, β10 =
c

a + k + k1

and Equation 4.33 is formulated as

Toil,t =β1·Toil,t−1 + β2·Tnac,t + β3·Toil,inlet,t + β4
P 1.2
el

n0.4
rotor

ν−0.05
oil + β5·nrotor·eβ6·nrotor+ (4.35)

+ β7

(
Pel

nrotor

)β8

nrotor + β9·nrotor(νoil·nrotor)
2/3 + β10·nrotor

In order to enforce the constrain

β1 + β2 + β3 =
a

a + k + k1
+

k

a + k + k1
+

k

a + k + k1
=

a + k + k1
a + k + k1

= 1 ⇒ (4.36)

β1 + β2 + β3 = 1
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the final equation is written as

Toil,t =(1 − β2 − β3)Toil,t−1 + β2·Tnac,t + β3·Toil,inlet,t + β4
P 1.2
el

n0.4
rotor

ν−0.05
oil + β5·nrotor·eβ6·nrotor+ (4.37)

+ β7

(
Pel

nrotor

)β8

nrotor + β9·nrotor(νoil·nrotor)
2/3 + β10·nrotor

4.2.4 Parameter estimation

With Equation 4.37, formulated in subsection 4.2.3, the gearbox oil temperature can be calculated
if all the design specification of the gearbox is available to calculate parameters β1-β10. However,
this requires an in depth knowledge of the gearbox design which is rarely available. To account for
the unidentified gearbox specifications which lead to the unknown parameters β1-β10, the equation
is fitted to historic SCADA data. The data used for fitting the equation is the training data selected
during the data pre-processing.

The independent variables of this regression problem are:

• Gearbox oil temperature at the previous timestep (Toil,t−1)
• Nacelle temperature (Tnac,t)
• Gearbox inlet oil temperature (Toil,inlet,t)
• Electrical power output (Pel)
• Rotor rotational speed (nrotor)
• Oil kinematic viscosity (νoil)

From these, only the oil kinematic viscosity can not be found in the SCADA system but it can be
calculated using Equation 3.16. The dependent variable of the regression problem is the temperature
of the oil sump in the gearbox Toil,t.

The least squares method is employed to perform regression and determine the best-fitting parame-
ters for Equation 4.37. This is accomplished using the least squares function from the ’optimize’
package in the SciPy library. The function is capable of solving non-linear least squares problems
while considering boundaries on the parameters, and it employs the STIR algorithm for optimisation
which is described in Section 3.2.

The parameters a, k, k1, a1, a2, a3, b1, b2, b3 and c of Equation 4.34 are all positive as described in
Sections 4.2.2, 4.2.1 and 4.2.3. This means that also the parameters β1-β10 are positive as fractions
of positive parameters. Therefore, the lower bound for all the unknown parameters is set to zero.

4.3 Model Evaluation

An important part of this study is to evaluate the performance of the developed physics-based normal
behaviour model of the gearbox oil temperature. After the unknown parameters of Equation 4.37
are calculated using the training data, it is possible to calculate the modelled oil temperature and
compare it to the actual oil temperature using the residual as shown in Equation 3.24. The model
evaluation comprises four distinct approaches.
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1. Computation of various metrics to assess the model’s goodness of fit. The metrics used are the
RMSE, the MAPE, the STDE and the MSE which are described in Section 3.3. The values
of those metrics are also compared between the testing and the training period to identify
potential overfitting which occurs when a model performs exceptionally well on the training
data but poorly on unseen data. Finally, the average time to run the fitting is calculated to
compare it with other methods.

2. Reduction of number of parameters in the equation, followed by a comparison using the AIC,
described in Section 3.3, to determine the most suitable equation for the given dataset. A
parsimonious model is one that accomplices the desired performance with the fewest possible
parameters. Here the parameters obtained by the fitting of Equation 4.37 to different turbine
datasets are analysed. The parameters that obtain negligible values are excluded. Then, AIC
is used to examine how the model performance is affected by the reduction of the number of
parameters.

3. Cross-validation to explore the model’s performance under varying training periods and period
lengths as described in Section 3.3. Using the cross-validation as the third step, it is possible
to identify the robustness of the model. This is achieved by calculating the parameters
of Equation 4.37 for a given turbine under different training periods and analysing their
variability. Also the metrics of step one are calculated in each fold of the cross-validation.

4. Verification of the physical soundness of the parameters obtained from the regression analysis.
This step is considered necessary, as this model is a physics-based NBM and the goal of the
regression is to calculate the unknown parameters that represent the physical characteristics
of the gearbox. To accomplish this, the parameters of Equation 4.37 are calculated for a
wind turbine, for which detailed design information is provided in [71]. Some parameters are
calculated using also information from [38]. Then these parameters are compared with the
parameters derived from the regression analysis.

4.4 Comparison with ANN models
Another way to assess the performance of the model is to compare it with results from NBMs
proposed in other studies. However, every study uses a different dataset which has an effect on the
performance of each method. With this in mind, the same dataset has been used in two NBMs
proposed in the literature and the results compared with those of the model proposed in this study.
The two models that are replicated are the LR-ANN and the NARX-ANN model described in
Section 3.4. The ANN-based NBMs use the same input signals used in the physics-based model
developed in this study while the training and testing periods are also the same.

The architecture of the ANN models is chosen based on information found in literature. The
architecture of LR-ANN model shown in Figure 4.3 includes a hyperbolic tangent sigmoid (tansig)
activation function in the hidden layer and a linear activation function for the output layer. 6
neurons are used in the hidden layer while a delay of two steps is set for recurrence similarly with
[47]. The architecture of NARX-ANN model shown in Figure 4.4 includes the same activation
functions with the LR-ANN and has 10 neurons in the hidden layer similarly with [51]. In the
NARX model, the autoregression element can either be the time history of the target variable using
a delay or the calculated output of the model using a delay so, both of these were tested. This
delay is set as one timestep while no delay is used for the exogenous inputs.
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Figure 4.3: LR-ANN architecture in this study

Figure 4.4: NARX-ANN architecture

The ANN models are developed in Matlab using the functions layrecnet and narxnet for LR-ANN
and NARX-ANN, respectively. The pre-processing of the data for the ANNs is similar to that of
the physics-based model mentioned in Section 4.1. In addition for the ANN models, it is necessary
to normalise the input signals. The training period is kept the same with the physics-based model
however, it is randomly split between 80% train and 20% validation data, respectively as it is
necessary for the ANNs.

The metrics used for the comparison of the models are RMSE, MAPE, STDE and MSE obtained
for the testing period, while the time required for training the ANN models is compared to the time
required for fitting the equation for the calculation of the gearbox oil temperature (Equation 4.37)
to the training data of the physics-based model.
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Results

In this chapter, the results of this study are described and analysed. They are divided into two case
studies that refer to two different datasets used in this project. For each case study the dataset is
described and the normal behaviour model described in Chapter 4 is applied.

5.1 Case study 1
This case study refers to the data from the Penmanshiel Wind Farm released by Cubico Sustainable
Investments Ltd [99]. This is a publicly available dataset which includes SCADA data from June
2016 to June 2021 from 14 wind turbines.

5.1.1 Data-set description

The 14 wind turbines placed in Penmanshiel (UK) are 2.05MW MM82 machines from Senvion
with a wind class of IEC Ia. Also, it is known that their gearbox has three stages [100]. The initial
plan was to install 15 wind turbines however turbine T03 was removed after an appeal [101]. The
available dataset includes 299 10-minute averaged SCADA signals in total. For some signals, the
minimum, the maximum, and the standard deviation for each 10-minute period is included as well.
The signals used in this study are:

• Average temperature of oil in gearbox (Toil)
• Average temperature in nacelle (Tnac,t)
• Average rotor rpm (nrotor)
• Average temperature of oil inlet in gearbox (Toil,inlet,t)
• Total active power (Pel)

These are the signals required in Equation 4.37 for the calculation of the gearbox oil temperature.

Even though the dataset includes data from 2016 to 2021, some of the signals required for the
model are available only from April 2018 to June 2021. This means that only this period is usable
for this study. Figure 5.1 shows the periods when all the required signals for this study are available
and when they are missing. By removing the data with missing values, the number of data points
reduces from 266435 to 156995-160684 depending on the turbine. In addition to the SCADA signals,

43
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status files from each turbine are also included in the dataset. These files have messages generated
automatically from the wind turbine which can be warnings and errors that occur. However, no
information about the maintenance or failures of the wind turbines is available.

Figure 5.1: Periods of missing and available signals for Penmanshiel dataset

For two of the turbines (T09 and T10), a change in the behaviour of the cooling system has been
observed. As shown in Figure 5.2 at the end of November 2019, the range of temperatures in
which the cooling system operates changes suddenly with the vertical line indicating the time of
the change. Before this incident, there are several manual stops for both turbines recorded in the
log data which is an indication that something was changed in the cooling system. Because of this
change, those 2 turbines will not be included in this study.

Figure 5.2: Oil inlet temperature for turbine T09 over time
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5.1.2 Normal behaviour model application and evaluation

In this dataset, there is no information about the turbine maintenance and failure occurrence. In
the log data there is no recorded warning regarding the gearbox so the wind turbines are considered
healthy. The first year of available data is used as the training period to fit the Equation 4.37
for the calculation of the oil temperature to the data, while one year of data is also used for the
testing period. The evaluation of the model is performed in four ways as described in Section 4.3.
First, some metrics that determine the goodness of fit are calculated. Furthermore, the number of
parameters of the equation are reduced to identify the most parsimonious model using the AIC.
Then, a cross-validation is performed to evaluate the model performance at different periods and
for different period lengths. Finally, the calculated parameters from the model are compared to the
parameters from a gearbox with known characteristics.

Once the equation is fitted to the data of the training period, the unknown parameters are computed
using the least squares technique. Subsequently, the predicted temperature of the gearbox can be
determined. The relationship between the actual and modelled temperatures of the gearbox oil for
turbine T01 within the testing dataset is illustrated in Figure 5.3 indicating a strong correlation
between them.

Figure 5.3: Comparison of the modelled and actual temperature of gearbox oil for Penmanshiel
dataset

The mean RMSE of all turbines is 0.554 and 0.562 for the training and testing periods, respectively.
The small difference (1.33%) between those two values indicates that the model is not overfitting.
In addition, for the testing period the MAPE is 0.75% and the STDE is 0.554 and this suggests a
good performance for the model. For comparison, previous studies using a NBM for gearbox oil
temperature have achieved lower performance as shown in Table 5.1. Even though this comparison
gives an indication of the good performance of the proposed model, the other studies use different
datasets. Hence, it is also worth comparing the performance with other NBMs while using the same
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dataset. This is implemented in subsection 5.1.3. The mean value of the time to fit the equation to
the data and calculate the unknown parameters is 9.93 seconds when training on 1 year of data. In
Figure 5.4, the RMSE values of the testing period as well as the time required for fitting to training
SCADA data are displayed for the different turbines. The training is performed using a laptop
with a 2.3GHz quad-core Intel Core i7. The variability in the time to fit can be attributed to the
non-linearity of the equation that is fitted. Also, the equation is fitted to the different turbines one
after the other and the limited computational power and temperature of the processor might affect
the time required for training.

Table 5.1: Comparison of performance metrics of the NBMs of different studies

Study Performance

[102] RMSE=2.21
[84] STDE=0.66
[62] STDE=2.09
[53] STDE=2.25

Figure 5.4: Comparison of RMSE and fitting time for different turbines

The second step of the model evaluation is to develop a parsimonious model, which is a model that
has good performance while using the smallest number of parameters. The values of the parameters
of Equation 4.37 obtained from the fitting, are investigated to identify which ones to exclude. The
parameters are calculated for all turbines, with the same training period length of one year. The
mean values, the standard deviation (σ) and the coefficient of variance (CoV) of each parameter of
Equation 4.37 are included in Table 5.2. CoV is the ratio of the standard deviation to the mean.
From the table, it is visible that 3 of the parameters have negligible values. These parameters are
β2, β4 and β10. As for the rest of the parameters, the CoV gets small values which indicates that
the calculated parameters are similar for the different turbines. The only exceptions are parameters
β5 and β7 and this is why further analysis of the robustness of the model is performed for each
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turbine individually using cross-validation in the next step of the evaluation. A heatmap with the
calculated parameters for all the turbines is shown in Section A.2 in Figure A.1.

Table 5.2: Mean, standard deviation (σ), and coefficient of variation (CoV) of the NBM equation
parameters referring to the 12 wind turbines

Parameter mean σ CoV
β1 8.2·10−1 1.0·10−2 1.2·10−2

β2 4.4·10−11 1.3·10−10 3.0·10+0

β3 1.8·10−1 1.0·10−2 5.6·10−2

β4 8.3·10−10 1.6·10−9 1.9·10+0

β5 1.3·10−5 1.0·10−5 8.4·10−1

β6 4.7·10−1 5.7·10−2 1.2·10−1

β7 2.8·10−4 1.8·10−4 6.5·10−1

β8 1.2·10+0 1.3·10−1 1.1·10−1

β9 3.5·10−4 5.5·10−5 1.5·10−1

β10 1.5·10−9 2.1·10−9 1.4·10+0

The values of the parameters do not give a clear indication of the weight of each term of the heat
balance in Equation 4.28. So, the heat generation from different sources within the gearbox are
calculated along with the heat dissipated from the gearbox. Both the generation and the dissipation
depend on the conditions at which the wind turbine operates. So, the values of each term are
calculated over a week with various conditions including high and low power generation and a wide
range of gearbox oil temperatures. Figure 5.5 shows the distribution of heat generation (P ), heat
dissipation (Q̇) and the rate of change of internal energy (U̇) of the gearbox. It can be observed
that the two turbines presented here show similar behaviour. The terms Q̇nac, PV ZP and PV D with
negligible values are those corresponding to parameters β2, β4 and β10 which also had negligible
values. Figure 5.5, in Appendix A.2 shows the behaviour of all 12 turbines which have similar
behaviour with turbines T01 and T02. U̇ represents the left hand side of Equation 4.28.
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(a) Turbine 01 (b) Turbine 02

Figure 5.5: Heat generation and dissipation terms of heat balance Equation 4.28

After this observation, the decision is made to exclude the terms associated to the negligible
parameter values. Before modifying the equation for the calculation of the oil temperature, first,
the reason behind these low values is investigated. The physical meaning of these parameters is the
following:

• β2: associated to the heat dissipation to the nacelle
• β4: associated to the load-dependent gear losses
• β10: associated to the losses from seals

While, the corresponding equations are:

• Q̇nac = k·(Toil − Tnac)

• PV ZP = a1Pel

(
Pel/nrotor

nrotor

)0.2

ν−0.05
oil = a1

P 1.2
el

n0.4
rotor

ν−0.05
oil

• PV D = c·nrotor

The first way to investigate the dependence of the temperature on the different signals is by
calculating the cross-correlation between the different inputs and the target signal using the data
from all wind turbines. This is shown in Figure 5.6 as a heatmap. The cross-correlation between the
oil temperature and the nacelle temperature is very low with a value of 7.6·10−4. This is probably
the reason why the value of β2 obtained by fitting to the SCADA data is negligible.
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Figure 5.6: Cross-correlation heatmap for the input and target signals with zero lag and the first
year of data

A second cross-correlation analysis is conducted, but this time instead of using the input and output
signals, the terms of the heat balance Equation 4.28 are used. The terms are:

• Load-dependent gear losses PV ZP =
P 1.2
el

n0.4
rotor

ν−0.05
oil

• No-load gear losses PV Z0 = nrotore
0.47·nrotor

• Load-dependent bearing losses PV LP =
(

Pel

nrotor

)1.2

nrotor

• No-load bearing losses PV L0 = nrotor(νoil·nrotor)
2/3

• Seal losses PV D = nrotor

For the terms of no-load gear losses and load-dependent bearing losses, the mean parameters from
Table 5.2 are used in the exponents. The heatmap generated from the cross-correlation matrix is
shown in Figure 5.7.
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Figure 5.7: Cross-correlation heatmap for terms of the balance equation with zero lag and the first
year of data

Figure 5.7 shows that the cross-correlation between the load-dependent gear losses PV ZP and
the load-dependent bearing losses PV LP is really close to 1 with a value of 0.9996. At the same
time, the cross-correlation between Toil,t and load-dependent bearing losses PV LP is slightly higher
compared to the cross-correlation between the Toil,t and load-dependent gear losses PV ZP . This is
an indication why during the fitting only one of the two terms gets value for the parameter which
contributes to the calculation of the temperature and it is the one with the higher correlation while
the other gets a negligible value.

The parameter β10 that describes the seal losses gets a value close to 0 in the fitting. To understand
why this occurs, it is important to remember one of the initial assumptions made in this study. It
is assumed that all the losses are converted to heat which is first transferred to the oil and then
dissipated to the environment through the oil. However, in the case of the seals, they are located
at the input and output shaft of the gearbox. This means that the heat generated from the friction
can be dissipated directly to the rotating shaft and the nacelle without first being absorbed by the
oil. Therefore, it does not result in a significant increase in the oil temperature.

The model is simplified by fitting 5 different equations to the training data. The first one is the
initial equation with all the parameters included formulated in subsection 4.2.3 as

Toil,t =(1 − β2 − β3)Toil,t−1 + β2·Tnac,t + β3·Toil,inlet,t + β4
P 1.2
el

n0.4
rotor

ν−0.05
oil + β5·nrotor·eβ6·nrotor+ (5.1)

+ β7

(
Pel

nrotor

)β8

nrotor + β9·nrotor(νoil·nrotor)
2/3 + β10·nrotor
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The second one does not include the parameter β4

Toil,t =(1 − β2 − β3)Toil,t−1 + β2·Tnac + β3·Toil,inlet + β5·nrotor·eβ6·nrotor+ (5.2)

+ β7

(
Pel

nrotor

)β8

nrotor + β9·nrotor(νoil·nrotor)
2/3 + β10·nrotor

the third one does not include the parameter β10

Toil,t =(1 − β2 − β3)Toil,t−1 + β2·Tnac + β3·Toil,inlet + β4
P 1.2
el

n0.4
rotor

ν−0.05
oil + β5·nrotor·eβ6·nrotor+ (5.3)

+ β7

(
Pel

nrotor

)β8

nrotor + β9·nrotor(νoil·nrotor)
2/3

the fourth equation does not include the parameters β4 and β10

Toil,t =(1 − β2 − β3)Toil,t−1 + β2·Tnac + β3·Toil,inlet + β5·nrotor·eβ6·nrotor+ (5.4)

+ β7

(
Pel

nrotor

)β8

nrotor + β9·nrotor(νoil·nrotor)
2/3

Finally, the fifth one does not include the parameters β2, β4 and β10.

Toil,t =(1 − β3)Toil,t−1 + β3·Toil,inlet + β5·nrotor·eβ6·nrotor + β7

(
Pel

nrotor

)β8

nrotor+ (5.5)

+ β9·nrotor(νoil·nrotor)
2/3

Figure 5.8 compares the model performance when using the 5 different equations. In addition,
Table 5.3 shows the percentage change of the metrics used to evaluate the performance of the
model and the time to run the fitting between the Equations 5.2-5.5 and the initial Equation 5.1 as
well as the AIC for the five equations. It is clear that there is almost no difference in the values of
the metrics but when using Equation 5.5 which includes the least number of parameters, a 63.5%
reduction in time compared to the original equation is achieved. In addition, the equation that
provides the largest negative value of AIC is Equation 5.5 which is the equation with the smallest
number of parameters. This was expected as AIC penalises based on the number of parameters
and in this comparison, the performance remains almost the same but the number of parameters
decreases.
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Figure 5.8: Comparison of metrics for different fitting equations

Table 5.3: Comparison of metrics and time to run for equations 5.1-5.5

RMSE(%) STDE(%) MAPE(%) MSE(%) Time(%) AIC
Eq. 5.1 - - - - - -74212
Eq. 5.2 -0.0073 -0.0018 0.0167 -0.0156 -54.4 -74223
Eq. 5.3 -0.0022 -0.0006 0.0020 -0.0063 -2.3 -74217
Eq. 5.4 -0.0073 -0.0017 0.0167 -0.0156 -58.9 -74227
Eq. 5.5 -0.0073 -0.0017 0.0167 -0.0156 -63.5 -74225

Taking into account the reduction in time using the equations with the smallest number of parameters
and also the fact that there is no difference in the performance of the model it was decided to adopt
the Equation 5.5 which does not include the parameters β2, β4 and β10. This equation also has the
lowest AIC value indicating a more parsimonious model. So, the following steps of this study are
utilising this equation.

The third method used to identify the robustness of the model is the time series cross-validation
which is explained in Section 3.3. This method partitions the data in subsets keeping them in
chronological order. The two CV methods used are the TSS and the BTSS. In the former method,
the duration of training is gradually increased starting from 10 months and adding 2 months until
the training gets to 24 months. In the latter method, the training length is kept 12 months but it
is shifted in time. The testing length is kept equal to one year for both BTSS and TSS. Figure 5.9
illustrates the training and testing periods for BTSS and TSS cross-validation described above.
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Figure 5.9: Training and testing periods for TSS and BTSS cross-validation

The results of these 2 methods are shown in Table 5.4 for turbine T01 which is the turbine in the
dataset with the least number of warnings in the log data. The table shows the mean values from
the different periods for each parameter. In addition, the standard deviation and the CoV are also
included in the table. It can be observed that in both cases the CoV is low for all the parameters.
This indicates that for a given wind turbine, the parameters do not vary much when changing
training periods. This is a positive sign for the robustness of the model as it is not sensitive to
different data of the same turbine. A similar behaviour is observed in all 12 turbines of the dataset.
All the calculated parameters are available in Appendix A.2 in Figures A.2 and A.3.

Table 5.4: Parameters of Equation 5.5 calculated for different training periods using two methods:
TSS and BTSS

Parameter
TSS BTSS

Mean σ CoV Mean σ CoV
β1 8.2·10−01 1.2·10−03 1.5·10−03 8.1·10−01 2.6·10−03 3.1·10−03

β3 1.8·10−01 1.2·10−03 6.7·10−03 1.9·10−01 2.6·10−03 1.4·10−02

β5 2.0·10−05 2.0·10−06 1.0·10−01 2.1·10−05 1.4·10−06 6.9·10−02

β6 4.2·10−01 3.7·10−03 8.9·10−03 4.2·10−01 3.3·10−03 7.8·10−03

β7 5.7·10−04 3.2·10−05 5.6·10−02 5.6·10−04 7.0·10−05 1.3·10−01

β8 1.1·1000 1.2·10−02 1.1·10−02 1.1·1000 2.4·10−02 2.2·10−02

β9 2.8·10−04 6.0·10−06 2.2·10−02 2.9·10−04 8.7·10−06 3.0·10−02

Figure 5.10 shows how the RMSE changes with changing the training data using both TSS and
BTSS. The RMSE is calculated for the testing period of each fold. The box plot include the RMSE
for all 12 turbines. The variation appears low for the different training periods for all turbines.
Also, Table 5.5 shows the mean values, standard deviations, and CoV of the performance metrics
for different training periods. It can be observed that the CoV is low for all three metrics which
means that the model is able to perform well independently of the changing datasets. The same is
observed in the figures where only in the last two folds of both TSS and BTSS there is a slight
increase in the values of RMSE which could also be due to the degradation of gearbox components.
However, this is just an assumption as there is no information available about the health state of
the turbines.
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(a) Time-series split (b) Blocking time-series split

Figure 5.10: RMSE for different training periods using TSS and BTSS

Table 5.5: Mean values, Standard deviations, and Coefficients of Variation of the performance
metrics for different training periods using two methods: TSS and BTSS

Parameter
TSS BTSS

Mean σ CoV Mean σ CoV
RMSE 0.593 0.026 0.044 0.597 0.025 0.043
MAPE 0.784 0.027 0.035 0.789 0.024 0.031
MSE 0.354 0.032 0.089 0.359 0.030 0.085

The model used in this study is a physics-based normal behaviour model, so the parameters
calculated from the regression analysis had to be checked in order to understand whether they
accurately represent the physical characteristics of the gearbox. For that reason, the parameters
β5, β6 and β9 of Equation 5.5 are calculated for a reference gearbox with known characteristics as
described in [71]. The nominal power of the gearbox used in this study is 2.5MW. The gearbox
has 3 stages of which 2 are planetary and one is a spur gear stage, similarly to the 2MW MM82
wind turbines of the Penmanshiel wind farm considered in this study. The parameter β3 regarding
the cooling system is calculated based on [38]. The parameters calculated for this gearbox can
then be compared to the parameters calculated from the regression analysis. The calculation of
the parameters is described in Appendix A.1 and the results are shown in Table 5.6. The table
also shows the MAPE of the parameters obtained from the NBM when compared to the calculated
values of the rence gearbox.
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Table 5.6: Parameters calculated for reference gearbox

Parameter Value MAPE(%)

β1 8.01·10−1 1.8
β3 1.79·10−1 5.6
β5 3.84·10−5 70.7
β6 4.10·10−2 19.6
β8 [1,1.5] 8.2
β9 3.20·10−4 17.1

These values are plotted in Figure 5.11 together with the parameters calculated by the fitting of
Equation 4.37 to the data of each wind turbine. It can be observed that the calculated parameters
are of the same order of magnitude as those of the reference turbine. Of course, it was expected to
have some deviation as the reference turbine is different from the turbines in the dataset. Parameters
such as β5 and β6, corresponding to no-load losses from gears, are those with the largest deviation
from the reference turbine with MAPE of 70.8 and 19.6, respectively.
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Figure 5.11: Reference parameter values and parameter values from fitting Equation 5.5 to the
data of each wind turbine

In addition, the terms of the heat balance Equation 4.28 are compared between the reference turbine
and the values obtained from the model for the 12 turbines of the dataset. Figure 5.12 shows the
rate of change of the internal energy of the gearbox (U̇) for different temperature changes, the heat
dissipation through the cooling system (Q̇cool) for different temperature difference between the oil
sump and the oil inlet temperatures and the no-load losses of the gears (PV Z0) and the bearings
(PV L0) for different rotational speeds. It can be observed that even for PV Z0 , calculated using β5

and β6 which have the largest MAPE, the curve of the reference turbine does not significantly
deviate from the curves of the 12 turbines.
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Figure 5.12: Reference parameter values and parameter values from fitting Equation 4.37 in the
data of each wind turbine

5.1.3 Comparison with ANN models

To provide a benchmark, the performance of the physics-based model is also compared to that of
two data-driven models using ANN for temperature prediction. These models are a NARX-ANN
and a LR-ANN the architecture of which is provided in Section 4.4. As mentioned in Section 3.4,
the autoregression element in NARX-ANN can either be the time history of the target variable or
the calculated output of the model. Both were tested and the model using the time history had
significantly better performance. So, only this case is presented here.

The metrics used to compare the performance are RMSE, MAPE, STDE and MSE which are
presented in Table 5.7 along with time required for training the models. The metrics are calculated
for the testing period which in this case is one year of data. The table shows that the model with
the lowest values for all metrics is the physics-based NBM developed in this study and this indicates
its superior performance. For example, the physics-based model exhibits a 14.1% lower RMSE
compared to the NARX-ANN and a 58.9% lower RMSE than the LR-ANN. At the same time,
the the physics-based model takes the shortest time to train with around 70% less time than the
NARX-ANN and 95% less time than the LR-ANN. In Figure 5.13, the distribution of the residuals
of the testing period is displayed. It can be seen that the distribution with the sharpest peak is
that of the physics-based model. The sharpest peak indicates that a higher proportion of residuals
are closer to zero, suggesting that the model’s predictions align more closely with the actual values.
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The broader distribution of the ANN models indicate a higher variability in prediction errors,
implying a less accurate model. This again indicates a better performance of the model developed
in this study compared to the two ANN models.

Table 5.7: Comparison of metrics between different NBMs

RMSE STDE MAPE MSE Time(sec)
Physics-based 0.562 0.554 0.742 0.314 4.3
LR-ANN 1.368 1.364 1.545 2.180 92.5
NARX-ANN 0.654 0.651 0.876 0.431 14.5

Figure 5.13: Residual distribution for the 12 wind turbines

It is important to mention that when using an ANN for the NBM, retraining the model from the
beginning may yield different results. This variation arises due to the random initialisation of
weights and biases. On the other hand, the physics-based model will always give the same results
for a given dataset. Finally, the LR-ANN method poorly performed for three turbines however,
when the ANN was retrained with adjusted initialisation of weights and biases, they achieved
similar performance with the rest. This was not the case for NARX-ANN which managed to achieve
good performance from the first training of the ANN for all turbines.

5.2 Case study 2

The second case study refers to the dataset made available by Energias de Portugal (EDP) a
Portuguese electric utilities company. This is a publicly available dataset introduced during the
Hack the Wind 2018: Wind Turbine Failure Detection competition [103].
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5.2.1 Data-set description

The EDP dataset includes 2 years of SCADA data from 5 wind turbines (T01, T06, T07, T09 and
T11). These are 2MW wind turbines with a wind class of IEC II. Similarly to the wind turbines in
the Penmanshiel dataset, the gearbox has 3 stages as shown in the datasheet found in Appendix
A.4. The dataset includes 81 SCADA signals, given for a 10-minute average period. For some
signals in addition to the 10-minute average value, there is also the minimum, the maximum and
the standard deviation available.

The main difference between this and the Penmanshiel dataset is that this one does not include
the signal for the gearbox oil inlet temperature. This does not allow for Equation 4.37 to be used.
However, within this dataset a log is also available for each turbine, including remarks about its
operation, such as the operation of the gearbox cooling system and of the generator cooling fan,
and the turbine manual stops.

Finally, the dataset includes 1 year of previously detected failures, as shown in Table A.2 in
Appendix A.3. There are 4 gearbox failures. The first one is on turbine T01 where the gearbox
pump was damaged. The second one is on turbine T09 and the available information mentions
that gearbox was repaired without any further information on its problem. The third one is on
turbine T06 and it is mentioned that it is about damaged bearings. The forth annotated failure
refers to gearbox noise in the T09 turbine, without providing any further information.

5.2.2 Model modification

To compensate for the missing signal of this dataset, the operating state of the cooling system of
the gearbox found in the log file is used in the model. The cooling systems have two operational
states. When the temperature of the gearbox oil is low, the oil circulates through the cooling
system and the filters, but the cooling system fan is off, whereas, when the oil temperature exceeds
a certain value, the fan starts to operate [48], [104].

The log file does not store the signals for the state of the cooling system in 10-minute intervals like
the SCADA data. To make it compatible with the model, the log file is merged with the SCADA
dataset. This merging procedure aligns the irregular timestamps in the log file with the nearest
available timestamp in the SCADA dataset as shown in Figure 5.14. As a result, a unified dataset
was generated, maintaining a regular 10-minute timestep while incorporating relevant information
from both the SCADA data and the log file.
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Figure 5.14: Merging of log file with SCADA data

It is assumed that the heat exchange of the cooling system happens between the oil and the ambient
air and instead of using Equation 3.18 can be calculated according to

Q̇cool,1 = (1 − C)·k1·(Toil − Tamb)

Q̇cool,2 = C·k2·(Toil − Tamb)
(5.6)

where Tamb is the ambient temperature and C is a binary term which is equal to 0 and 1 when the
fan is off and on respectively. Q̇cool,1 is the heat dissipated through the cooling system when the
fan is on and Q̇cool,2 is the heat dissipated through the cooling system when the fan is off. So the
total heat dissipation is calculated as

Q̇diss = Q̇nac+Q̇cool,1+Q̇cool,2 = k0·Aca(Toil−Tnac)+(1−C)·k1·(Toil−Tamb)+C·k2·(Toil−Tamb) (5.7)

The two parameters k1 and k2 are assumed different for the 2 cooling system states and are
calculated by fitting the model to the data. These parameters depend on the characteristics of the
cooling system.

A new equation for the calculation of the gearbox oil temperature needs to be formulated for this
case study based on the heat balance Equation 4.28. By substituting 4.6, 4.12, 4.15, 4.20, 4.23 and
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Equation 5.7 we get

mC
dToil

dt
= PV − Q̇diss ⇒ (5.8)

mC
dToil

dt
= PV ZP + PV Z0 + PV LP + PV L0 + PV D − Q̇nac − Q̇cool,1 − Q̇cool,2 ⇒

mC
dToil

dt
= a1

P 1.2
el

n0.4
rotor

ν−0.05
oil + a2·nrotor·ea3·nrotor + b1

(
Pel

nrotor

)b2

nrotor

+ b3·nrotor(νoil·nrotor)
2/3 + c·nrotor − k·(Toil,t − Tnac,t) − (1 − C)·k1·(Toil,t − Tamb,t)

− C·k2·(Toil,t − Tamb,t)

Similarly with subsection 4.2.3, a constant rate of change (∆T/∆t) over each 10-minute interval
(∆t) is assumed so the equation is written as

mC
Toil,t − Toil,t−1

∆t
= a1

P 1.2
el

n0.4
rotor

ν−0.05
oil + a2·nrotor·ea3·nrotor + b1

(
Pel

nrotor

)b2

nrotor (5.9)

+ b3·nrotor(νoil·nrotor)
2/3 + c·nrotor − k·(Toil,t − Tnac,t) − (1 − C)·k1·(Toil,t − Tamb,t)

− C·k2·(Toil,t − Tamb,t)

By solving the equation for Toil,t we get

Toil,t =(
mC

∆t
Toil,t−1 + k·Tnac,t + (1 − C)·k1·Tamb,t + C·k2·Tamb,t (5.10)

+ a1
P 1.2
el

n0.4
rotor

ν−0.05
oil + a2·nrotor·ea3·nrotor + b1

(
Pel

nrotor

)b2

nrotor + b3·nrotor(νoil·nrotor)
2/3

+ c·nrotor)/(
mC

∆t
+ k + k1(1 − C) + k2·C)

The heat capacity and the mass of the gearbox are considered constant while ∆t = 10 min. So,
they can be grouped together using

a =
mC

∆t
(5.11)

similarly with subsection 4.2.3. The equation for gearbox oil temperature can be written as

Toil,t =(a·Toil,t−1 + k·Tnac,t + (1 − C)·k1·Tamb,t + C·k2·Tamb,t (5.12)

+ a1
P 1.2
el

n0.4
rotor

ν−0.05
oil + a2·nrotor·ea3·nrotor + b1

(
Pel

nrotor

)b2

nrotor + b3·nrotor(νoil·nrotor)
2/3

+ c·nrotor)/ (a + k + k1(1 − C) + k2·C)

The signals from the dataset used in this study are:

• Average temperature of oil in gearbox (Toil)

• Average temperature in nacelle (Tnac)

• Average rotor rpm (nrotor)
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• Average ambient temperature (Tamb)

• Total active power (Pel)

5.2.3 Normal behaviour model application and evaluation

The training period of the NBM is selected to be at least 6 months before any failure occurs as
suggested by [53] while its length is selected to be 1 year in order to include the weather pattern of
a whole year. The performance of the model is evaluated using a testing period after the training
period which is still 6 months ahead of any failure.

The evaluation of the model performance starts with the calculation of some metrics as described
in Section 4.3. Figure 5.15 shows the RMSE for all the turbines of the dataset when calculated
using testing dataset. The mean RMSE of all turbines is 0.749 and 0.772 for the training and the
testing period, respectively. There is only a 3% percentage difference between the two values which
indicates no over-fitting. In addition, the MAPE is 1.1% for the testing period suggesting a good
performance of the model.

Figure 5.15: RMSE values of different turbines of the dataset

A closer inspection of the modelled temperature with respect to the actual temperature measure-
ments shows that the model does not perform that well. In fact, the model has the tendency to
estimate the temperature in close proximity to the value of the previous timestep which is used as
input in the model. This is shown in Figure 5.16 where the modelled oil temperature is plotted
against both the actual oil temperature and the actual oil temperature of the previous timestep. It
can be observed that the correlation in plot a) is much lower than the correlation in plot b).
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Figure 5.16: Comparison of modelled and actual temperature of gearbox oil for T07

This can be explained by the inability of the model to take into account the effect of the different
states of the cooling system regardless of the two terms in the equation for the calculation of the
temperature which are supposed to take the cooling system into account. This can also be observed
in Figure 5.17.

Figure 5.17: Comparison of actual and modelled temperatures over time for T07 from EDP dataset

The most likely reason for the inability of the equation to properly fit the data is the way the log file
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is merged to the SCADA data. Each time the cooling system switches state, the nearest available
value from the 10-minute timestamp of the SCADA data is selected and given the corresponding
value. This modifies the time of the change between the states as shown in Figure 5.14 and it
appears not to be a valid assumption that the time in the log will be close to the 10-minute signals.
For that reason, it is concluded that this model is unable to perform well without the signal from
the inlet temperature of the oil in the gearbox.

For comparison, the actual and modelled temperatures of turbine T01 from the Penmanshiel dataset
are shown in Figure 5.18. When comparing the graphs for the two datasets, it can be observed
that in the case of the EDP data the modelled temperature is similar to the actual temperature
of the previous timestep. On the other hand, in the graph from Penmanshiel, where the inlet
oil temperature is available, the modelled temperature is much closer to the actual for the same
timestamp.

Figure 5.18: Comparison of actual and modelled temperatures over time for T01 from Penmanshiel
dataset

This can also be explained by calculating the weights of the previous timestamp temperature for
the 2 models. For the Penmanshiel dataset this weight is parameter β1 from Equation 5.5 while for
the EDP dataset is calculated as

wT,EDP =
a

a + k + k1 + k2·
(5.13)

In the case of EDP, the weight is 0.95 on average whereas in the case of Penmanshiel the weight is
0.8 on average. This means that for the case of the EDP dataset calculation of oil temperature
is mainly based on the previous timestep temperature whereas for the case of the Penmanshiel
dataset, the other signals used as inputs also contribute to the oil temperature calculation.



Chapter 6

Conclusions and Recommendations

This chapter includes the conclusions derived from this thesis by answering the research questions
stated in the introduction. Then, recommendations for future work are also provided based on the
outcome of the thesis.

6.1 Conclusions

The main objective of this thesis is to design a physics-based NBM of wind turbine gearbox oil
temperature and use field data to validate its effectiveness. In order to achieve that, several steps
are followed. First, a literature review is conducted which includes the different maintenance
strategies, and the methods proposed in the literature for wind turbine condition monitoring using
SCADA data. Then, the theory behind the main principles used in this thesis is provided in order
to introduce the methodology describing how the proposed model works and the methods used to
evaluate its effectiveness. Finally, the model is implemented in two case studies and its performance
is assessed.

In Chapter 1, the research questions of this study are stated. These questions are answered in this
chapter.

Why should a physics-based NBM be developed for gearbox oil temperature calculation?

Firstly, it is evident that the gearbox stands out as a crucial component in a wind turbine,
contributing to prolonged downtime and incurring the highest replacement costs per failure.
Recognising this, the development of effective methods for gearbox condition monitoring becomes
imperative. NBMs using SCADA data have demonstrated good results for various components
within the wind turbine gearbox and generator, particularly when integrated with expert systems.
However, most of these studies rely on data-driven NBMs, which can yield results that are challenging
to interpret. Furthermore, physics-based models have been implemented with trending, NBMs
and damage modelling. However, the first requires human intervention and the third detailed
information on the components of interest which are not usually available. Physics-based NBM
using SCADA data have the advantage of providing interpretable results unlike data-driven NBMs.
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This is also achieved without the need for detailed information on the gearbox by leveraging the
availability of the SCADA data. Finally, some studies developing physics-based NBMs of different
wind turbine components using SCADA data, suggest the development of a physics-based NBM of
the gearbox. Consequently, the development of such a model emerges as a logical and promising
endeavour.

How can a NBM of wind turbine gearbox oil temperature be developed using a physics-based
approach?

This study proposes the model described in Chapter 4. The model combines the use of the first
law of thermodynamics with historical SCADA data. First, the equation for the calculation of
the gearbox oil temperature is formulated considering the balance between the heat generated
in the gearbox from the losses in the bearings, the gears and the seals and the heat dissipated
from the gearbox through the cooling system and through convection and conduction. Then, the
equation is fitted to historical SCADA data using the least squares method to calculate its unknown
parameters emerging from the unknown technical specifications of the gearbox. Finally, having the
complete equation with known parameters it is possible to estimate the oil temperature on unseen
data using the input signals from the SCADA system.

How can the accuracy of a physics-based NBM be evaluated?

The accuracy of the developed physics-based NBM has been assessed in several steps. First, the
residuals, which are the differences between the actual observed temperatures and the temperatures
predicted by the model, are analysed to assess the model’s performance. Several metrics are
calculated to quantify accuracy and they include RMSE, STDE, MAPE, and MSE. These metrics
provide insight into how closely the model’s predictions align with actual values. These metrics
are computed separately for the training and testing periods to check for overfitting. Then, with
the goal to develop a parsimonious model, the impact of each term in the heat balance equation is
assessed to understand which components have the lowest influence on the temperature calculation,
while AIC is used to evaluate the effect of reducing the number of parameters in the model. This
helps determine whether simplifying the model improves or diminishes accuracy. Furthermore,
cross-validation techniques are employed to assess how the model’s performance varies with changes
in training and testing periods. This provides insights into the model’s generalisation capability. An
investigation into the physical representation of the model’s parameters is also conducted. Finally,
to gain further insights, the physics-based model is compared with two data-driven models using
the same set of metrics. This comparative analysis helps determine if the physics-based model
is as accurate as the models proposed in the literature. By following these steps and considering
a range of evaluation methods, the accuracy and reliability of the physics-based NBM can be
comprehensively assessed.

What is the effect of each term of the heat balance equation in the calculation of temperature?
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After fitting the equation to the SCADA data used for training, it became evident that certain
parameters, specifically β2, β4, and β10 of Equation 4.37 which correspond to the heat dissipated to
the nacelle, the load-dependent gear losses, and the seal losses, respectively, exhibited extremely low
values. The reasons for these low values were investigated through both cross-correlation analysis
and consideration of physical factors. The first parameter, β2, represents the heat dissipated to the
nacelle. Cross-correlation analysis revealed a very weak correlation between nacelle temperature
and oil temperature. This weak correlation suggests that the nacelle’s temperature has a limited
influence on the temperature of the oil, which may explain the low value of this parameter. The
second parameter, β4, which accounts for load-dependent gear losses, exhibited an almost perfect
correlation (close to 1) with another term in the heat balance equation, the load-dependent bearing
losses. This high correlation indicates that these two terms are closely related, and as a result, only
one of them significantly affects the output of the model. This redundancy could be the reason
behind the negligible value of β4. As for the third parameter, β10, associated with seal losses, the
low value might be attributed to the nature of heat generated by friction in the seals. It is plausible
that this heat is not effectively absorbed by the oil but instead dissipates directly to the exterior of
the gearbox through the attached shafts.

Do the calculated parameters of the model accurately represent the physical characteristics of
the gearbox?

It is important to examine the parameters derived from the regression analysis to check for their
consistency with the physical gearbox features. After comparing the values obtained from the
model with the values calculated from a gearbox with known characteristics, it is observed that
the values are in the same order of magnitude as the reference values, with the MAPE ranging
from 1.8% to 70.8% highlighting the model’s capability to capture and represent the gearbox’s
physical characteristics with good accuracy. Of course, it is expected to have some deviation as the
reference turbine is different from the turbines in the dataset.

How does the performance of the physics-based model compare to existing data-driven NBM
approaches?

The performance of the model is compared against 2 models from literature using ANNs for the
calculation of temperature. These 2 models are the LR-ANN and the NARX-ANN. The physics-
based model proposed in this study achieves better performance in all metrics with an RMSE 14.1%
and 58.9% lower than NARX-ANN and LR-ANN, respectively. At the same time, the training time
is significantly lower for the physics-based model as it needs 95% less time than the LR-ANN and
around 70% less time than the NARX-ANN.

Can a physics-based NBM using SCADA data accurately predict the gearbox oil temperature?

In case study 1, the evaluation of the proposed physics-based NBM demonstrates its effectiveness
for accurately predicting the gearbox oil temperature. This is proved by its low RMSE values, equal
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to 0.554 and 0.562 for the training and testing periods, respectively. These values indicate minimal
errors and no overfitting. Additionally, cross-validation reveals that variations in the training and
testing periods have little impact on the model’s performance. The mean RMSE of the folds is 0.593
with a CoV of 0.044 for TSS. Furthermore, the developed physics-based model outperforms two
ANN models proposed in the literature in predicting the gearbox oil temperature. This underscores
the model’s ability to effectively utilise the heat balance principle and historical SCADA data to
accurately calculate the unknown parameters of Equation 5.5 required for temperature prediction.

How is the performance of the physics-based model affected when the inlet oil temperature
signal is not available in the dataset?

In case study 2 the dataset does not include the inlet oil temperature signal. For that reason, the
model is modified and instead uses information from the log data also provided by the SCADA
system. The resulting model shows an RMSE which 33% higher than that of the first case study.
The weight of the previous timestep temperature which is present in the equation for the calculation
of the temperature, is 0.95 which results in a model that gives a value almost the same as the
previous timestep even when there are big changes in the temperature. This shows that the rest
of the input signals are not sufficient to calculate the temperature of the oil and the inlet oil
temperature is essential for a physics-based NBM of the oil temperature.

6.2 Recommendations

The purpose of this study is to develop a physics-based NBM that calculates the gearbox oil
temperature. This is achieved as demonstrated in Chapter 5. However, for this model to contribute
effectively to wind turbine condition monitoring, it is necessary to also prove its effectiveness for
fault detection. Unfortunately, this aspect is not addressed in this study due to the absence of
maintenance data for the wind turbines in the Penmashiel dataset. The following recommendations
are proposed for future research:

• Model validation against other datasets:It is recommended to replicate the evaluation
method employed for the physics-based model across multiple datasets containing the necessary
input signals. This step is crucial as the present study relies on a single dataset and the wind
turbines within this dataset are of the same type.

• Fault Detection: It is recommended to develop and test fault detection methods in
conjunction with the physics-based model proposed in this study. Various fault detection
techniques are available in the literature, which uses the residuals of NBMs. These methods
can range from straightforward approaches involving predefined threshold values for the
residuals [50], to more complex probabilistic approaches, such as control charts and the
Welch’s t-test[52], [84] or even health score systems [83]. The different methods should be
compared to identify which one has a better performance.

• Expert system development: As explained in Chapter 2, the most effective condition
monitoring methods combine the use of NBMs with expert systems which use fuzzy rules and
membership functions to diagnose anomalies, predict remaining lifetime, and plan maintenance.
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Such a system is necessary in order to use effectively the proposed NBM in real-world wind
farms, so it needs to be developed to accompany the model proposed in this study.

• Comparative analysis on fault detection: In addition to comparing the performance
of the physics-based model with data-driven methods in predicting oil temperature, it is
suggested to conduct an additional comparison. This comparison should focus on assessing
the accuracy of fault detection of the physics-based model and data-driven NBM like the
ANN models presented in this study. This comparison is vital since it aligns with the primary
objective of every condition monitoring system.

• Investigate different physics-based models: An analysis based on the first law of
thermodynamics can be performed in other components of the wind turbine such as the
generator and bearings. In addition, different physics-based models can be developed which
utilise the available signals from the SCADA system and the physical behaviour of the gearbox
such as physics-informed neural networks. However, this requires expertise in both the physics
of the system and machine learning.
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Appendix

A.1 Parameter calculation from reference tur-
bine

The calculation of the parameters of the Equation 4.31 is demonstrated below for the case of the
gearbox to estimate some reference values. Starting from parameter a, it is calculated as shown in
Equation A.1. The assumptions for these parameters are the mass of the gearbox M [105], the
uniform material and specific heat capacity cp for all the gearbox [106] and that the timestep is
constant and 10 minutes.

a =
Cp

dt
=

cp ·M
dt

=
0.49kJ/(kgK) · 23000kg

10 · 60sec
= 18.8kW/K (A.1)

For parameter k1, the calculation is based on [38] where some information about the cooling system
and the heat dissipation is provided. For this parameter, the density of the oil ρoil, the heat capacity
of the cooling medium coil and the flow rate V̇ are needed. In the study from which k1 is calculated,
the wind turbine has a nominal power output of 1.5MW. If we assume that the efficiency of the
gearbox is the same for the 2MW wind turbines in Penmashiel dataset, this means that the cooling
system needs to dissipate heat that is increased linearly with nominal power. In addition, this
study states that the cooling system operates constantly whereas in the case of the turbines in
Penmashiel, the cooling system turns on and off, so the same amount of heat needs to be dissipated
in less time. By assuming a duty cycle DC of 0.6 for the cooling system, k1 can be calculated as
shown in Equation A.2.

k1 = ρoil · V̇ coil ·
P2

P1

· 1

DC
= 900kg/m3 ·1.05 ·10−3m3/sec ·2kJ/(kgK) · 2

1.5
· 1

0.6
= 4.2kW/K (A.2)

Continuing with the gearbox losses, the parameters are calculated based on the gearbox in [71]. First,

80
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the parameters for the no-load losses of the gears PV Z0 are calculated according to Equation 3.10.

CSp =

(
4he

3hc

)1,5
2hc

lc

C1 = 0, 063

(
he

10

)
+ 0, 0128

(
b

10

)3

C2 =
he

800
+ 0, 2

(A.3)

he is the immersion depth of the gear, hc the radius of the larger gear, lc the hydraulic length and
b the width of the gear. From Equation 4.31, the parameters a2 and a3 are calculated as shown
in Equation A.4. This calculation is only done for the third stage of the gearbox as it can not be
applied for the planetary stages. In addition, [71] states that the churning losses from low speed
gears such as the planetary stages can be disregarded.

a2 = CSp · C1 · i3 ·
π

30

a3 = C2 ·
vt

nrated

(A.4)

The calculated values are a2 = 0.0009 and a3 = 0.41

The no-load bearing losses are calculated based on Equation 3.11. However, as explained in
subsection 4.2.1, only the bearings of the last stage are taken into account as the losses in the other
stages are insignificant. The equation is modified for the intermediate and the high speed shaft
according to Equation A.6 and Equation A.5 respectively.

PV L0,hss = 10−10f0 (νoilnhss)
2/3 d3m

πnhss

30
= 10−10f0(νoil · i1i2 · nrotor)

2/3d3m
π · i1i2 · nrotor

30
⇒

PV L0,hss = b3,hssf0 (νoilnrotor)
2/3 · nrotor

b3,hss = 10−10 (i1i2)
2/3 · d3m

π · i1i2
30

(A.5)

PV L0,is = 10−10f0 (νoilnis)
2/3 d3m

πnis

30
= 10−10f0 (νoil · i1i2i3 · nrotor)

2/3 d3m
π · i1i2i3 · nrotor

30
⇒

PV L0,is = b3,isf0 (νoilnrotor)
2/3 · nrotor

b3,is = 10−10 (i1i2i3)
2/3 · d3m

π · i1i2i3
30

(A.6)

In Table A.1 the parameters of each bearing are calculated but also the summed value of b3 from
Equation 4.37.
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Table A.1: Parameters for bearing no-load losses

HSS IS
Bearing 1 Bearing 2 Bearing 3 Bearing 1 Bearing 2 Bearing 3

b3 2.8 · 10−4 3.6 · 10−4 2.8 · 10−4 1.7 · 10−4 1.5 · 10−4 1.5 · 10−4

f0 5 5 6 5 6 6
sum 7.5 · 10−3

For the load depended bearing losses PV LP there are not sufficient information to be calculated
however the parameter b2 is known to range between 1 and 1.5 so b2 ∈ [1, 1.5] [73].
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A.2 Parameters from the model

Figure A.1: Calculated parameters for all turbines when Equation 4.37 is fitted in one year of data
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Figure A.2: Calculated parameters for turbine T01 when Equation 5.5 is fitted in different training
period of data using TSS
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Figure A.3: Calculated parameters for turbine T01 when Equation 5.5 is fitted in different training
period of data using BTSS
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Figure A.4: Heat generation and dissipation terms of heat balance Equation 4.28 for all 12 turbines
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A.3 Wind turbine failures

Table A.2: Failures of wind turbines components of EDP dataset

Turbine ID Component Timestamp Remarks
T11 GENERATOR 2016-03-03T19:00 Electric circuit error in generator
T06 HYDRAULIC GROUP 2016-04-04T18:53 Error in pitch regulation
T07 GENERATOR BEARING 2016-04-30T12:40 High temp. in generator bearing

(replaced sensor)
T09 GENERATOR BEARING 2016-06-07T16:59 High temp. generator bearing
T07 TRANSFORMER 2016-07-10T03:46 High temp. transformer
T06 GENERATOR 2016-07-11T19:48 Generator replaced
T01 GEARBOX 2016-07-18T02:10 Gearbox pump damaged
T06 GENERATOR 2016-07-24T17:01 Generator temp. sensor failure
T09 GENERATOR BEARING 2016-08-22T18:25 High temp. generator bearing
T07 TRANSFORMER 2016-08-23T02:21 High temp. transformer. Trans-

former refrigeration repaired
T06 GENERATOR 2016-09-04T08:08 High temp. generator error
T06 GENERATOR 2016-10-02T17:08 Refrigeration system and temp.

sensors in generator replaced
T09 GEARBOX 2016-10-11T08:06 Gearbox repaired
T09 GENERATOR BEARING 2016-10-17T09:19 Generator bearings replaced
T11 HYDRAULIC GROUP 2016-10-17T17:44 Hydraulic error in brake circuit
T06 GENERATOR 2016-10-27T16:26 Generator replaced
T09 GENERATOR BEARING 2017-01-25T12:55 Generator bearings replaced
T11 HYDRAULIC GROUP 2017-04-26T18:06 Hydraulic error in brake circuit
T07 HYDRAULIC GROUP 2017-06-17T11:35 Oil leakage in Hub
T01 TRANSFORMER 2017-08-11T13:14 Transformer fan damaged
T06 HYDRAULIC GROUP 2017-08-19T09:47 Oil leakage in Hub
T07 GENERATOR BEARING 2017-08-20T06:08 Generator bearings damaged
T07 GENERATOR 2017-08-21T14:47 Generator damaged
T01 TRANSFORMER 2017-08-11T13:14 Transformer fan damaged
T06 GEARBOX 2017-10-17T08:38 Gearbox bearings damaged
T06 HYDRAULIC GROUP 2017-08-19T09:47 Oil leakage in Hub
T07 GENERATOR BEARING 2017-08-20T06:08 Generator bearings damaged
T07 GENERATOR 2017-08-21T14:47 Generator damaged
T07 HYDRAULIC GROUP 2017-06-17T11:35 Oil leakage in Hub
T07 HYDRAULIC GROUP 2017-10-19T10:11 Oil leakage in Hub
T09 GEARBOX 2017-10-18T08:32 Gearbox noise
T09 GENERATOR BEARING 2017-01-25T12:55 Generator bearings replaced
T09 HYDRAULIC GROUP 2017-09-16T15:46 Pitch position error related GH
T11 HYDRAULIC GROUP 2017-04-26T18:06 Hydraulic error in brake circuit
T11 HYDRAULIC GROUP 2017-09-12T15:30 Hydraulic error in brake circuit

A.4 Data-sheets and Reference wind turbine gear-
box specifications



 

 
 

Rated power (kW) 2 000 
Cut-in wind speed (m/s) 4 
Rated wind speed (m/s) 12 
Cut-out wind speed (m/s) 25 
Wind class (IEC) IEC II (7.5 – 8.5 m/s) 

Diameter (m) 90 
Swept area (m²) 6 362 
Number of blades 3 

Rotor speed, max (rpm) 14.9 
Tip speed (m/s) 70 
Power density 1 (W/m²) 314.4 
Power density 2 (m²/kW) 3.2 

Type Planetary/spur 
Stages 3 

Type Asynchronous 
Speed, max (rpm) 2 016 
Voltage (V) 690 
Grid frequency (Hz) 50 

Hub height (m) 80 
Type Steel tube 
Shape Conical 
Corrosion protection Painted 
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The following tables include information about the reference gearbox found in [71]

Table A.3: Rotational and tangential speed on the gear mesh for an input speed of 20 rpm and
maximum Hertz pressures for the reference gearbox

Stage 1 Stage 2 Stage 3
Property Unit P/S P/R P/S P/R Helical

n rpm 111.4 34.9 610.4 190.6 610.4
vt m/s 1.867 0.974 6.302 3.251 24.933
p0 MPa 1028 699 921 624 567

P/S: Planet/Sun, P/R: Planet/Ring.

Table A.4: Gear geometric properties of the reference wind turbine gearbox

Parameter
Stage 1 Stage 2 Stage 3

Sun Planet Ring Sun Planet Ring Pinion Wheel
z 21 35 -96 23 38 -103 117 35
b 320 320 331.5 168.4 168.4 177.4 245 240
i 5.587 5.464 3.343
m 16 9 7
αz 20 20 20
βz 10 10 10
a′ 476 290 550
xz 0.71 0.8031 0.2093 0.6464 0.7693 -0.0639 0.769 0.7176
SF 1.68 1.19 1.89 1.98 1.39 2.18 2.74 2.91
SH 1.09 1.15 1.79 1.18 1.22 2.25 2.02 1.99

Table A.5: Rolling bearings of the reference wind turbine gearbox

Stage Rolling bearing Location Quantity
Stage 1 SKF NU 20/800 ECMA carrier 1

SKF NU 1080 MA carrier 1
SKF NU 2340 ECMA planets 3
SKF NU 2340 ECMA planets 3

Stage 2 SKF NU 244 ECMA carrier 1
SKF NU 1060 MA carrier 1
SKF NNCF 4930 CV planets 3
SKF NNCF 4930 CV planets 3

Stage 3 SKF NU 1060 MA pinion shaft 1
SKF 32960 pinion shaft 1
SKF 32960 pinion shaft 1
SKF NU 1036 ML wheel shaft 1
SKF NUP 236 ECMA wheel shaft 1
NSK QJ 1036 wheel shaft 1
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