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Abstract 
 

Currently, restricting the utilisation of fossil fuels and thereby limiting global warming to remain below 

2ºC stands as one of the most crucial challenges confronting us. The electricity sector is one of the main 

contributors of CO2 emissions, but it is changing in a rapid pace with a decarbonizing rate which is faster 

compared to all other fossil sectors. To facilitate the decarbonizing of the electricity sector, optimisation 

models can provide a valuable framework to gather information about the futuristics of the electricity 

market. As optimisation models can handle all sort of characteristics like demand and supply which 

should always be the same, certain policies, energy security, economic development and costs they play 

an important role in the transition toward more renewables and less fossil fuels. However, these 

optimisation models do not always present the right solution as societal factors are mostly missing, 

which can lead to misleading results. 

In this paper we will specifically look at the D-EXPANSE optimisation model from the University of 

Geneva and incorporate two societal aspects. This will be implemented as a hindcasting exercise to 

examine whether or not it will improve the model compared to the regular model where no societal 

factors are implemented. This is applied on 31 European countries from 1990 until 2019. The societal 

aspects that are included in the D-EXPANSE model are public acceptance and heterogeneity of actors. 

Public acceptance is incorporated in the optimisation model with specifically limiting the CO2 emissions 

per country with the help of survey data provided from 2009 until 2023 in combination with the set 

global European emission targets. Heterogeneity of actors is implemented by specifically adjusting the 

weighted average cost of capital per technology per country per year. 

The main results are that it is still unclear whether or not the implementation of societal factors improves 

the accuracy of the model as a whole. For the implementation of public acceptance 9 out of the 18 

countries experience a positive change regarding the error compared to the model where no societal 

factors are implemented. For the implementation of heterogeneity of actors 13 out of the 26 countries 

experienced an improvement, and for the combination of both factors 12 out of the 22 countries showed 

improvements. With this in mind, it is not justifiable that the implementation of public acceptance and/or 

heterogeneity of actors in this way improves the model which is shown as a hindcasting exercise. 

This thesis fails to provide evidence supporting the idea that the inclusion of societal factors enhances 

the capabilities of optimisation models. This contradicts existing literature, which emphasizes that the  

incorporation of societal factors is a primary reason why optimisation models struggle to accurately 

predict the future. One potential explanation for this discrepancy in our findings may lie in the specific 

methods used to implement actor heterogeneity and public acceptance in the model. For the public 

acceptance model, it is shown that there is still room for improvement with a different upper limit for 

the amount of CO2 emissions per country. This can increase accuracy up to 5 percentage points. 

Therefore, future research should focus on refining the implementation of societal factors, especially 

considering the accelerating pace of decarbonisation in the electricity sector. Factors such as supply and 

demand, electricity costs, and energy security remain crucial features that cannot be underestimated. 

Moreover, with the increasing integration of renewables into the electricity generation, societal factors 

will continue to exert a growing influence on the progress and implementation. 
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1 Introduction 
 

The utilization of fossil fuels for energy production is the primary driver of climate change. However, 

in light of the Paris Agreement and the establishment of European targets, there is the need to shift 

towards a more sustainable world (Raiser et al., 2020). The core objective of these agreements is to limit 

global warming below 2ºC, with an even more ambitious target of staying below 1.5ºC. Achieving these 

agreements requires a full elimination of green house gasses of all sectors within the economy. Among 

these sectors, the electricity sector emerges as a significant contributor to CO2 emissions, accounting for 

40% of total greenhouse gas output (IEA, 2023). Currently, the decarbonisation of electricity and heat 

generation is progressing at a faster pace than in other sectors, making it the most cost-effective way of 

reducing carbon emissions (Plazas-Niño et al., 2022; Russo et al., 2022). This accelerated 

decarbonisation is primarily driven by the adoption of renewable energy sources, such as wind farms 

and solar panels (Lamb et al., 2021).  

 

Researches can offer policymakers a framework using energy models. These models provide specific 

electricity mixes solutions were multiple objectives, inputs and constraints can be added. These models 

serve as valuable tools for establishing a framework within the electricity sector (Pfenninger et al., 

2014). However these models fall short of aligning with real-world data, are surrounded by uncertainty 

and provide limited flexibility (J. F. DeCarolis, 2011; Trutnevyte, 2016). To provide more flexibility to 

policymakers, multiple solution can be presented with the use of modelling to generate alternatives 

(MGA) (J. F. DeCarolis et al., 2016; Neumann & Brown, 2021; Yue et al., 2018). MGA is a way of 

systematically exploring the near optimal solution where many different outcomes are presented, with a 

chosen higher cost than that of the cost optimisation mode. There are many different energy models on 

the market, but we chose to use an energy system optimisation model (ESOMs), namely D-EXPANSE. 

This was facilitated by the University of Geneva, as the research group of renewable energy system have 

developed and worked on this model.  

 

More information about different type of energy models can be found in Section 1.1. Section 1.2 

highlights how the discrepancy between the modelled and actual electricity mixes are misaligned which 

is partly due to the failure to incorporate societal factors into energy system optimisation models (Geels 

et al., 2020; Krumm et al., 2022; Pfenninger et al., 2014). Among these societal factors, the two most 

important factors are public acceptance and heterogeneity of actors (Geels et al., 2020; Krumm et al., 

2022; Trutnevyte, 2016; Vivien Fisch-romito et al., 2023). The literature review of societal factors in 

Section 2 provides a more in-depth analysis of these societal factors. As last, in Section 1.3,  the research 

gaps and questions are explained. In the introduction we utilise the flow diagram in Figure 1, which 

shows the structure of the introduction. 
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Figure 1 Flow diagram for the introduction with the colors representing the representative section. ESOMs 

stands for energy system optimisation models. 
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1.1 Energy system models 
 

To facilitate the transition to a more sustainable world energy system models represent a useful tool to 

evaluate feasible future energy scenarios. Further, policymakers should address security and 

affordability of the energy system (Jing et al., 2021). There are numerous energy models to facilitate 

this framework, but energy system optimisation models (ESOMs) have found extensive application in 

providing valuable insights into climate and energy policies across various levels, including local, 

national, and global scales (Krumm et al., 2022; Yue et al., 2018). ESOMs possess several analytical 

advantages. They establish a consistent framework for evaluating techno-economic performance across 

all the processes they represent. Moreover, they have the versatility to encompass a wide range of energy 

scenarios, thereby enabling the incorporation of diverse energy and environmental policies. ESOMs are 

characterized by their comprehensive coverage of technology and can model an entire energy system, 

providing the means to assess various feasible energy scenarios (Plazas-Niño et al., 2022). These energy 

scenarios serve as a valuable tool for planning the future energy mix across a range of diverse 

assumptions, enabling a deeper understanding of the potential impact on the energy landscape (J. 

DeCarolis et al., 2017; Li, 2017; Wen et al., 2022). There is a variety of ESOMs available today including 

TIMES (MARKEL) (Tash et al., 2019; Yu et al., 2020), Calliope (Lombardi et al., 2019), TEMOA 

(Cotterman et al., 2021), ENGINE (Koecklin et al., 2021), GENeSYSMOD (Auer et al., 2020) and D-

EXPANSE (Trutnevyte, 2013). For our research, we will use D-EXPANSE which builds on previous 

work from D-EXPANSE as described in Trutnevyte, (2013). D-EXPANSE is later developed by Li & 

Trutnevyte, (2017); Trutnevyte, (2016); Wen et al., (2022, 2023) and is an electricity system optimisation 

model for 31 European countries. We use D-EXPANSE as our research is conducted in corporation with 

the University of Geneva and they developed and are working on D-EXPANSE.  

 

The primary focus of ESOMs is to optimize the operation and expansion of the energy system while 

considering a range of objectives and constraints, where the primary focus on objectives is cost 

minimization. Typically, a single solution is computed, driven by the objective function, and it often 

represents the most cost-efficient outcome within the defined constraints. This single solution can hold 

the specific generation and capacity which accommodates the most cost-efficient outcomes. The cost-

optimal solution is sometimes confined to a narrow cost range, meaning that slight modifications in the 

objective function or input parameters can heavily influence the cost-optimal solution (Pfenninger et al., 

2014). These cost-optimal solutions tend to underplay the inherent uncertainty and the wide range of 

potential outcomes within an electricity system (Berntsen & Trutnevyte, 2017; J. F. DeCarolis, 2011; 

Trutnevyte et al., 2016). Furthermore, the cost-optimal solution is surrounded by uncertainty for reasons 

like social economic factors, resource availability, technological innovation and big disruptions in the 

energy sector like COVID (J. DeCarolis et al., 2017; J. F. DeCarolis, 2011; Lombardi et al., 2020). 

Therefore, it is good to mention that these energy models provide insight into a hypothetical future that 

does not exist. 

 

1.1.1 Uncertainty in energy system optimisation models 

Regarding the uncertainty of ESOMs, there are two types of uncertainties, parametric and structural 

uncertainty (Yue et al., 2018). Structural uncertainties refer to model uncertainties regarding equations 

which define the model structure. Parametric uncertainties refer to uncertainties regarding the input 

parameters. From these two uncertainties addressing structural uncertainty is a more challenging task 

(J. F. DeCarolis, 2011). One potential approach to limit these uncertainties is to construct larger and 

more complex models, but this may offer limited additional insights into alternative ways to structure 

and analyse the system and may not necessarily eliminate structural uncertainty (J. DeCarolis et al., 
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2017; J. F. DeCarolis, 2011). In dealing with uncertainties in ESOMs, six approaches have been 

identified (J. DeCarolis et al., 2017; Neumann & Brown, 2021; Yue et al., 2018): Stochastic 

programming (SP), Monte Carlo analysis (MCA), modelling to generate alternatives (MGA), robust 

optimisation (RO), global sensitivity analysis (GSA) and scenario analysis.  

 

All these methods described represent parametric uncertainty, except for MGA which addresses the issue 

of structural uncertainty. MGA operates by using the optimal solution as an anchor point to generate a 

set of alternative solutions within a certain region. The size of this region is determined by the amount 

of slack. Slack is defined as the amount of which the cost (or other output parameters) the MGA can 

overshoot (Berntsen & Trutnevyte, 2017; Neumann & Brown, 2021). Another approach by 

implementing MGA is to assess which technologies are necessary, which ones can be excluded from the 

electricity mix, and which ones are more preferred regarding political will (Lombardi et al., 2020). By 

using MGA and considering the slack, policymakers can evaluate how much additional investment is 

required to achieve the desired solution and make informed decisions (Lombardi et al., 2020; Neumann 

& Brown, 2021). Nowadays, the implementation of MGA in ESOMs has become a widespread practice, 

as shown by multiple papers (Berntsen & Trutnevyte, 2017; J. F. DeCarolis, 2011; Li & Trutnevyte, 

2017; Trutnevyte, 2016). In these studies, MGA is typically used to show maximally different solutions, 

helping to identify possible solutions within a specified cost range (Neumann & Brown, 2021; 

Trutnevyte, 2016).  

 

1.2 Societal factors 
 

While the significance of ESOMs continues to grow with the ongoing climate challenges, the aspect of 

societal aspects inside ESOMs remain absent (Krumm et al., 2022). This is particularly remarkable 

because renewable energy projects are becoming increasingly reliant on societal elements, which serve 

as both driving and limiting forces in the transition (Wüstenhagen et al., 2007). People can actively 

contribute as prosumers and co-owners of energy projects. Conversely, public perception can act as a 

barrier to the integration of PV and wind farms (Krumm et al., 2022; Pfenninger et al., 2014). Neglecting 

these societal factors in the future will only lead to widening disparities and hinder the progress of the 

energy transition, potentially resulting in misguided policy decisions (Barazza & Strachan, 2020; 

Krumm et al., 2022; Trutnevyte et al., 2019). Regarding these societal factors, our literature review 

(Geels et al., 2020; Krumm et al., 2022; Trutnevyte et al., 2019; Vivien Fisch-romito et al., 2023), has 

identified three primary drivers of the most significant societal factors in ESOMs:  

• Public acceptance 

• Heterogeneity of actors  

• Transformation dynamics  

 

We will solely focus on two subjects: heterogeneity of actors and public acceptance. Transformation 

dynamics lies outside the scope of our research. Public acceptance pertains to the public’s sentiment 

regarding particular energy technologies or energy combinations and whether they express support or 

opposition towards them. Additional information can be found in Section 2.2. On the other hand, 

heterogeneity of actors refers to the presence of multiple actors in the electricity market, some of whom 

may not always make rational and cost-optimal solution decisions. However, ESOMs operate under the 

assumption of a single social planner who makes decisions that are both cost-optimal and rational. 

Further details on this topic can be found in Section 2.1.  An overview of the research gaps and questions 

is presented in Section 1.3. 
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1.3 Research gaps and research questions 
 

This study primarily aims to address two research gaps within the field of incorporating societal factors 

into ESOMs. Firstly, while existing literature has examined the integration of actor heterogeneity into 

agent-based modelling, there exists a gap when it comes to incorporating the heterogeneity of actors 

within ESOMs, this is normally not done as ESOMs use a single objective optimisation (Krumm et al., 

2022). Secondly, despite several instances of implementing public acceptance into ESOMs (Baur et al., 

2022; Cotterman et al., 2021; J. F. DeCarolis, 2011; Koecklin et al., 2021; Krumm et al., 2022; Segreto 

et al., 2020), a gap persists in understanding how to account nationally specific climate public acceptance 

across Europe and how these considerations relate to ESOM errors (Geels et al., 2020; Krumm et al., 

2022; Trutnevyte, 2016).  

 

To address the existing research gaps, we have incorporated several enhancements within the D-

EXPANSE model (which is in more detail explained in Section 3.1). Upon analysis, it becomes evident 

that the model lacks specific resolution within individual countries, thus failing to account for the impact 

of local-level (community) public acceptance. Consequently, survey data at the country-specific level, 

tailored more toward general opinions, across the majority of European countries, would be more 

applicable to integrate in our model. Combining this with the insights from two papers (Bergquist et al., 

2022; Furnham & Robinson, 2022), revealed a correlation between public opinion on climate change 

belief and political affiliation. This connection suggests that such beliefs find representation in politics, 

where politicians may enact laws in line with public sentiment. Further, to leverage the findings of these 

surveys on public opinions regarding the seriousness of climate change, we have integrated them within 

the framework of CO2 constraints, in conjunction with the European targets. Although various 

integration methods are possible, the European targets functions as a reference for determining the 

allowable CO2 emissions per country. This reference can be adjusted based on public perceptions of the 

severity of climate change. For more detailed information regarding the integration of public acceptance 

can be found in Section 3.2. 

 

Regarding the incorporation of actor heterogeneity, we encountered challenges due to the presence of a 

single social planner. This posed difficulties in distinguishing between multiple players with varying 

hurdle rates and preferences, as shown by the work of (Barazza & Strachan, 2020). Nonetheless, the 

variation in hurdle rates, presented an avenue for general-level modifications. Consequently, we turned 

to data from Polzin et al., (2021) to access specific Weighted Average Cost of Capital (WACC) values 

across countries and technologies. This information replaced the uniform discount rate, introducing 

diversity among different market players (the countries and technologies), rather than treating all 

countries and technologies as identical market players. These discount factors play an important role in 

distinguishing between technologies within a country, as shown by García-Gusano et al., (2016); Mier 

& Azarova, n.d.; Trutnevyte, (2016), which emphasize the significance of the discount factor in ESOMs 

for calculating the optimal energy mix. More information about the integration of heterogeneity in D-

EXPANSE can be found in Section 3.3. 

 

These two new model version, public acceptance and heterogeneity of actors, in the D-EXPANSE model 

undergo evaluation against the original D-EXPANSE model. These two model versions will be 

employed in a hindcasting exercise to determine their impact on the overall performance of the model. 

Through this assessment using actual data, we will analyse the model’s performance by measuring 

discrepancies between capacity and generation of the actual data and model data. Error calculations will 

be conducted for each country, allowing us to scrutinize the effectiveness of the two D-EXPANSE 
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versions and the original D-EXPANSE model. This process will help in selecting the optimal model 

based on the findings (Chaturvedi et al., 2013). 

 

In light of these research gaps, our study seeks to answer the following research questions: 

• What is the effect of country-specific CO2 limits, based on the combination of European targets 

and the perceived severity of climate change, on an electricity system optimisation model?  

• What is the impact of using differentiated weighted average cost of capital, based on technology 

and country, in comparison to a uniform discount factor in an electricity system optimisation 

model? 

• How does the introduction of public acceptance and heterogeneity of actors in an electricity 

system optimisation model impact model accuracy when applied to 31 European countries? 

• What is the range of near-optimal solution of the relative error, when implementing public 

acceptance and/or heterogeneity of actors in an electricity system optimisation mode, as 

opposed to the reference model version? 

 

The paper is structured as follows: the detailed explanation of the D-EXPANSE model used is shown in 

Section 3.1, the construction of a new model version for public acceptance and heterogeneity of actors 

are shown in respectively Section 3.2 and 3.3. Section 3.4  discusses the MGA within the model, whereas 

Section 3.5. outlines the process of calculating the error for comparing the different model version to 

the real-world data. The key results and discussion for the new model version of public acceptance is 

shown in Section 4.2, while the results of the model version of the heterogeneity of actors is shown in 

Section 4.3, a combination of the two factors is presented in Section 4.4. The discussion and possible 

future work are discussed in Section 4, and as last the conclusion of the research can be found in Section 

6. 
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2 Literature review of societal factors 
 

This section will describe the two societal aspects that are implemented into the D-EXPANSE model. 

The first explanation is about heterogeneity of actors in Section 2.1. The second societal factor is 

public acceptance which is explained in Section 2.2. An overview of the topics for the literature review 

can also be found in Figure 2 

 

Figure 2 Literature review of the two societal aspects. 

 

2.1 Heterogeneity of actor 
 

Heterogeneity of actors refers to the variation in characteristics, behaviours, and decision-making 

processes among different actors, which can influence their participation in the energy system. Although 

ESOMS assumes that all actors act rationally and strive for cost optimisation, real-world decision-

making involves multiple parties and can be influenced by various factors excluding money. Each 

individual actors aims to maximize its utility, and in a scenario of perfect competition and perfect 

information, cost minimisation would naturally occur. However, this ideal scenario does not align with 

the complexities of the real world but is imposed by the model. In reality, some actors may prioritise 

branding or perceived reliability over cost optimisation, or they may be motivated by social or 

environmental factors, such as a desire to reduce their carbon footprint. Thus, actors are not solely 

influenced by costs, and these complex factors can slow down decision-making in reality compared to 

what models may suggest and therefore generate errors on the long term (Li, 2017; Li & Strachan, 2017; 

Trutnevyte, 2016). Moreover, individual consumer behaviour can affect energy demand and technology 

adoption, while policymakers’ decisions can impact the regulatory environment and availability of 

funding for energy projects (De Cian et al., 2020; Li & Strachan, 2017; Stavrakas et al., 2019). 

Implementing the behaviour of actor and agency in these models is hard but crucial as it could 

significantly delay the climate mitigation efforts (Hirt et al., 2020). 

 

Heterogeneity of actors is often implemented in agent based models (e.g. BRAIN (Barazza & Strachan, 

2020), ATOM (Stavrakas et al., 2019), BSAM (Nikas et al., 2020)). These models excel at representing 

autonomous and diverse agents, including their initial beliefs, resistance and investment probabilities. 

However, agent-based models come with certain drawbacks, such as their inability to adequately 

represent the electricity system, which holds true for ESOMs as well (Barazza & Strachan, 2020; De 

Cian et al., 2020). Additionally, their solutions are not necessarily optimal but instead consist of 

scenarios with multiple assumptions, rendering them challenging to interpret (Ma & Nakamori, 2009), 

and issued related to parametrisation (Ringler et al., 2016). Furthermore, previous research has explored 

agent-based modelling with the integration of heterogeneous actors, either through narrative scenarios 

or by introducing different market players with varying preferences (Barazza & Strachan, 2020; Michas 

et al., 2020; Nikas et al., 2020; Stavrakas et al., 2019). This resulted in possible barriers to effective 
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decarbonisation and lower the speed (Barazza & Strachan, 2020). Hence, delving into the integration of 

heterogeneous actors within ABMs may lack appeal, and we do not have any ABMs available to us. 

 

The incorporation of actor heterogeneity within ESOMs is especially prevalent as prior research 

primarily focused on specific countries or regions (Mier & Azarova, n.d.; Tash et al., 2019). Therefore, 

there exists a gap in integrating actor diversity across different countries in ESOMs (Krumm et al., 2022; 

Stavrakas et al., 2019). This gap can be attributed to challenges in accommodating various market 

participants within ESOMs. One of the most critical limitations, emphasized by  Mercure et al., (2016), 

is that optimisation models in the decision-making process utilize a single social planner which produces 

normative solutions. Normative solutions focus on identifying optimal strategies that align with 

established norms, regulations, and standards, while descriptive solutions aim to understand the 

operation and behaviour of energy systems. While both of these solutions are viable, the presence of a 

single social planner makes it more challenging to accommodate multiple market players. 

 

Currently, many ESOMs utilize uniform discount rates that are consistent across all countries and 

technologies, however this approach fails to capture the real-world diversity of discount rates (García-

Gusano et al., 2016; Li & Strachan, 2017; Trutnevyte, 2016). Especially, as significant differences in 

discount rates exist between countries, even within Europe (Ondraczek et al., 2015). Our objective is to 

address the challenge of actor heterogeneity by introducing differentiated weighted average cost of 

capital (WACC) into our ESOM. In this context, we evaluate the impact of differentiated discount rates 

across technologies and countries. WACC represents the expected rate of return that an investor 

anticipates from their investment (more information about the distinction of WACC and discount factors 

can be found in Section 3.3). It is used in discounting future cash flows and holds particular significance 

for renewable energy projects (Ondraczek et al., 2015). The value of the WACC is a critical parameter 

in ESOMs, as it can significantly alter the determination of which technology is considered the most 

economically viable among others (García-Gusano et al., 2016; Trutnevyte, 2016). Research conducted 

with model-based approaches has demonstrated that the cost-optimal solution within ESOMs are highly 

sensitive to the assumed cost of capital (García-Gusano et al., 2016; Hirth & Steckel, 2016; Iyer et al., 

2015; Steffen, 2020).  

 

This differentiating becomes even more significant when considering the financing disparities between 

conventional fossil fuel power plants and renewable power plants. The primary distinction between these 

two types of technologies lies in the fact that renewable energy technologies are highly capital -intensive 

(CAPEX) at the start, with no ongoing fuel costs, whereas fossil fuel technologies have higher operation 

and maintenance costs (including fuel costs) (O&M) and are therefore less capital-intensive. An 

important parameter for distinguishing between power plants in terms of their cost-effectiveness in 

generating electricity is the levelized cost of electricity (Є/kWh) (LCOE). The formula for calculating 

the LCOE is shown in Equation 1 (Aldersey-Williams & Rubert, 2019):  

 

𝐿𝐶𝑂𝐸 =
∑

𝐼𝑡+𝑀𝑡+𝐹𝑡
(1+𝑟)𝑡

𝑛
𝑡=1  

∑
𝐸𝑡

(1+𝑟)𝑡
𝑛
𝑡=1

     (1) 

 

Here I represent the initial costs, M is the maintenance and operations expenditures, F the fuel costs, E 

the electrical energy generated, r the discount rate/WACC over the project all over each year t for the 

expected lifetime n. In projects that involve substantial investments, which is often the case, the capital 

expenditure is significantly influenced by the cost of capital (Mazzucato & Semieniuk, 2018). A higher 
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WACC will therefore result in an increase in the LCOE, greatly impacting project financing and the 

overall competitiveness of the power plant (García-Gusano et al., 2016; Keppo & Strubegger, 2010; 

Ondraczek et al., 2015). Given that renewables are capital-intensive at the start; the cost of capital 

constitutes a substantial portion of the LCOE for renewable energy projects. Consequently, a higher 

WACC tends to favor fossil fuels to a greater extent, while a lower WACC tend to favor renewable 

power plants. This dynamic is particularly pronounced in developing countries, where the WACC tend 

to be higher compared to more developed economies (Polzin et al., 2021). Considering that mostly 

renewable energy projections are inaccurate in ESOMs (Gilbert & Sovacool, 2016; Trutnevyte, 2016), 

there is a case to be made for exploring the impact of varying WACC values on the outcomes of these 

models. Differentiated (WACCs) are employed to represent various market players for each technology 

and in each country, illustrating the diversity among technologies across different nations. 
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2.2 Public acceptance 
 

With the continued growth of renewable energy, numerous studies have highlighted the importance of 

incorporating public acceptance into energy models (Devine-Wright, 2008; Schubert et al., 2015; Süsser 

et al., 2022a). Public acceptance refers to the degree to which a community or society is willing to accept 

and support a specific energy technology or policy. It encompasses various factors, including public 

perception, attitudes, beliefs, values, trust, and participation in decision-making processes. Neglecting 

to consider this aspect can introduce inaccuracies into energy models, affecting their performance in 

depicting the energy transition, including its speed, impacts, technological options for the energy 

transition, potential for renewables and producing overly optimistic and potentially deceptive outcomes 

(Süsser et al., 2022b). Ultimately, these inaccuracies can impact the decisions made by policymakers 

who get information from these energy models to shape a more sustainable future (Cotterman et al., 

2021; Wolsink, 2012). 

 

The relevance of public acceptance is particularly pronounced in the context of renewable energy 

sources. For one, renewable energy projects tend to be smaller in scale, resulting in an increased number 

of project sites. Additionally, since most renewable energy projects have relatively low energy densities, 

their visual impact is more noticeable compared to fossil fuels projects equivalent capacity. Furthermore, 

the fuel required for fossil fuels generation is extracted from underground sources, remaining largely 

unseen, while renewable energy harness energy directly at the source, making it more visible 

(Wüstenhagen et al., 2007). A comprehensive understanding of public acceptance can be derived from 

the extensively referenced paper by (Wüstenhagen et al., 2007), which categorizes public acceptance 

into three main categories: Socio-political, community and market acceptance.  

 

Socio-political acceptance represents the broadest level of social acceptance and involves the acceptance 

of technologies and policies across key stakeholders, policymakers, and public opinion. While there is 

a strong consensus about climate change (as shown in 3.2.1), research papers indicate a distinction 

between general and local acceptance. Particularly, local acceptance tend to be lower than general public 

opinion as observed by (Baur et al., 2022), although other papers suggest the opposite (Carley et al., 

2020; Wolsink, 2006, 2012). The acceptance of local projects does not always align with socio-political 

acceptance, even when surveys indicate general approval of the technology. Hence, a clear distinction 

exists between socio-political and community (local) acceptance (Baur et al., 2022; Devine-Wright, 

2008; Segreto et al., 2020). Community acceptance focuses on the specific approval of siting decisions 

and projects. In this context, knowledge, trust in the stakeholders and positive perceptions about the 

benefits of renewable projects are positively correlated with the support for these projects, with variation 

in outcomes across different renewables technologies (Carley et al., 2020). Thirdly, market acceptance 

pertains to the process by which new energy technologies or innovations are adopted and integrated into 

the market, and the extent to which consumers and companies accept them. In the context of this 

research, market acceptance holds a less prominent role, as the market acceptance of renewable energy 

sources is currently widespread (Schumacher et al., 2019).  

 

Given the nationwide resolution of our model (more described in Section 3.1), community acceptance, 

so projects on a local/regional scale, are impossible to implement. Hence, we will primarily focus on 

socio-political acceptance concerning the seriousness of climate change. We chose to focus on the 

severity of climate change because key parameters related to socio-political acceptance include policy-

specific beliefs, such as fairness, evaluations regarding climate change’s impacts, trust established 

through information exchange and public involvement, distributional justice and siting issues, where 

evaluations regarding climate change’s impacts is the highest most correlating parameter after fairness 
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(Bergquist et al., 2022; Segreto et al., 2020). While there has been some research on the integration of 

public acceptance into ESOMs (Krumm et al., 2022), existing approaches often use scenario analysis 

(Cotterman et al., 2021; Fitiwi et al., 2020; Schlachtberger et al., 2018) or consider various pathways 

to achieve net-zero emissions by 2050 (Tröndle et al., 2020). Another approach, as shown by Koecklin 

et al., (2021), involves adjustments to maximum capacity per region based on surveys. Notably, these 

studies have predominantly focused on regional and country-specific contexts. In this paper, our aim is 

to bridge the gap in country-specific public acceptance across Europe. Instead of relying on highly 

defined scenarios, we use country-specific maximum CO2 emissions based on overall public opinion 

regarding the seriousness of climate change throughout the years. As climate change’s impact is highly 

correlated with policies, it is reasonable to assume that if people are more concerned about climate 

change, more policies are implemented, leading to reduced CO2 emissions. First, we assess whether 

our model’s performance improves using this approach compared to the basic model. Furthermore, we 

test this hypothesis by examining the correlation between the actual reduction in CO2 emissions in the 

real-world and public opinion regarding climate change. 
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3 Methods 
 

To explore the impact of incorporating societal factors into the optimisation model D-EXPANSE, we 

examine five different model versions covering the period from 1990 to 2019 across 31 European 

countries. We will incorporate two societal factors; one is public acceptance and secondly is 

heterogeneity of actors. First, the original D-EXPANSE model which is called the reference model 

version is explained. Subsequently, two model versions which are related to public acceptance, the 

yearly budget public acceptance model and the cumulative budget public acceptance model are 

introduced. Additionally, a model version focused on heterogeneity of actors, the heterogeneity of actors’ 

model version is constructed. As last, heterogeneity of actors and public acceptance is combined in a 

model called cumulative budget public acceptance & heterogeneity of actors’ model. This integration of 

both models is created with the combination of the cumulative budget public acceptance model and the 

heterogeneity of actors’ model version. The details of these models are summarized in Figure 3. 

 
Figure 3 Structure of the methods with the five different model versions. The heterogeneity of actors & public 

acceptance model version is not separately explained as it is just the combination of the cumulative budget public 

acceptance model and the heterogeneity of actors’ model. The original model can be found in Section 3.1, the two 

public acceptance model versions in Section 3.2 and the heterogeneity of actors’ model version in Section 3.3  
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These four new model versions, so the model versions with the incorporation of a societal factor, are 

compared to the reference model version, which serves as the existing baseline. The public acceptance 

models are modified with a limitation of the amount of CO2 emissions which is specific per country 

regarding the opinion on climate change in combination with the European targets. The heterogeneity 

of actors’ model versions is adjusted regarding the differentiated discount factor across countries and 

technologies. An overview of the study can be found in Table 1. All these models provide one optimal 

solution which is surrounded by space for near-optimal solutions. These near optimal solutions are 

addressed with the help of MGA which is described in Section 3.4. Lastly the error in comparison to the 

real-world is computed which is explained in Section 3.5.  

 

 
 

We construct these four different models to assess the utility of integrating societal factors into energy 

optimisation models and to identify which societal aspects exerts the most influence in creating an 

energy system optimisation which is more accurate. Comparisons will be made among the various model 

features, and a hindcasting exercise will be conducted using actual country-specific data. This exercise 

consists in calculating the relative error between the actual data and the modelled data for capacity and 

generation. By analysing the relative error for each country and model, we can compare countries and 

evaluate the different models. This relative error is then traced back to the societal factors underlying 

each model version. These model versions are all originated from the original D-EXPANSE model 

developed by University of Genève’s research group (Wen et al., 2023).  

  

Societal factors Data 

Additional 

implementation 

to D-EXPANSE 

Model version 

name 

Method 

Section 

Result 

Section 

None - - 
Reference model 

version 
3.1 4.1 

Public 

acceptance 

Survey data 

European 

commission 

regarding climate 

change 

Limit on CO2 

emissions 

Yearly budget 

public acceptance 

model 

3.2 4.2.1 

Cumulative budget 

public acceptance 

model version 

3.2 
4.2.1 & 

4.2.2 

Heterogeneity 

of actors 

Data from 

(Polzin et al., 

2021) about the 

WACCs 

Differentiated 

discount factor 

Heterogeneity of 

actors’ model 

version 

3.3 4.3 

Public 

acceptance and 

Heterogeneity 

of actors 

Survey data 

European 

commission 

regarding climate 

change and data 

from (Polzin et 

al., 2021) about 

the WACCs 

Limit on CO2 

emissions and 

differentiated 

discount factors 

Cumulative budget 

public acceptance 

& heterogeneity of 

actors’ model 

version 

- 4.3 

Table 1 Structure of the methods and results for the different model versions. 
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3.1 The electricity optimisation system model D-EXPANSE 
 

The D-EXPANSE (Dynamic version of EXploration of PAtterns in Near- optimal energy ScEnarios) 

model is a cost optimisation-based model for the national electricity sector (Trutnevyte, 2016; Wen et 

al., 2022, 2023). D-EXPANSE is technology rich, meaning it encompasses a large variety of available 

technologies, which are country-specific. These technologies include brown coal, hard coal, gas, oil, 

biomass, biogas, nuclear, solar PV, onshore wind, offshore wind, nuclear, pumped hydro storage, run of 

river hydropower, hydro dam, geothermal and waste incineration. For hydro dams and pumped hydro 

storage, a significant altitude difference is required, for offshore wind power there has to be a sea. If a 

country does not have a nuclear power plant, it is not possible to build one from scratch. D-EXPANSE 

follows a bottom-up structure, which means it initially optimizes individual processes before integrating 

them to form the complete energy system. D-EXPANSE has perfect foresight, implying that the model 

knows all the parameters across the modelling time horizon. The model is a linear optimisation model 

with a yearly resolution. It optimizes for individual countries, providing a global country-level 

resolution. We include 31 European countries, encompassing the entire European Union (EU27), 

Iceland, Norway, Switzerland, and the United Kingdom, spanning the period from 1990 to 2019. For 

the electricity demand, the D-EXPANSE model generates two most representative days with 48 hours’ 

time resolution (time slices). These two representative days are constructed for each year via K-means 

clustering based on the historical hourly electricity demand per country (Wen et al., 2022). In the basic 

version of D-EXPANSE there are no societal factors included and serves as a comparison tool. This 

basic version of D-EXPANSE is called the reference model version.  

 

There is the possibility for import and export for each country (excluding Iceland). These connections 

represent a single node that can either be positive or negative, with specific capacity and generation 

values. The model does not specify the origin of these imports and exports. The interconnection with 

neighbouring countries is simplified to one transmission line for each country. The D-EXPANSE model 

has input data from two main categories: country-specific data (such as population, GDP per capita, 

annual supplied electricity, etc.) and technology-related data (like fuel costs, technology efficiency, 

carbon intensity of technologies, build rates, etc.). Details about this input data and its origins are 

available in (Jaxa-Rozen et al., 2022). The model’s outputs, include data on annual generation and 

installed capacity of each technology, total and annual CO2 emissions, total costs, investment costs etc. 

Additionally, we conducted a comparative analysis of the historical trajectory of the electricity system 

using real-world data as a reference to evaluate the output of the reference model version. The 

comparison of this model version with real-world data is presented in Section 4.1. 

 

Using the D-EXPANSE model, we can create retrospective cost-optimal scenarios with the potential for 

Modelling to Generate Alternatives (MGA) and compare them to national real-world transitions. MGA 

are model outputs which provide near optimal solutions. The MGA incorporates a slack value, which 

indicates the extent to which the MGA run can increase its costs compared to the cost-optimal solution. 

Initially, the cost-optimal run is executed, and its solution is integrated into the MGA alongside a 

specified slack value and a predetermined number of runs. This process aims to generate a range of 

alternative solutions to facilitate the range of near optimal solutions. During the MGA the goal is to 

explore a range of solutions that go beyond the optimal reference run in terms of cost (more information 

in Section 3.4). 
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3.2 Integrating public acceptance through climate change beliefs with CO2 

constraints 

 

We constructed two model versions aimed at integrating public acceptance from the original D-

EXPANSE model. Additionally, we performed a sensitivity analysis to assess the accuracy of these 

newly developed model versions. Both model versions utilize an upper limit on CO2 emissions, which 

is determined by existing climate change opinions combined with the European target. Within these two 

model versions, there are two different strategies. The first strategy imposes an annual budget constraint 

preventing the model from exceeding this limit each year, generating the yearly budget public 

acceptance model. The second approach establishes a cumulative constraint ensuring that the total sum 

of CO2 emissions generated by the model over the timeframe of 1990 until 2019 remains below the 

predefined limit (the predefined limit is the cumulative CO2 emissions from the constraint). This model 

version is called the cumulative budget public acceptance model. An overview of this approach is 

presented in the workflow of Figure 4. The detailed explanation about the construction of the constraint 

can be found in Section 3.2.1, the details of the two different model versions are explained in Section 

3.2.2. 

 

Figure 4 Workflow diagram of the implementation of public acceptance in D-EXPANSE. The methods in light 

grey colours are explained in Section 3.2.1, the methods in dark grey colours are explained in Section 3.2.2. 

There are two public acceptance model constructed, one where the cumulative CO2 emissions can not go over 

the cumulative upper limit, the cumulative budget public acceptance model. The other model is where the CO2 

emissions can not surpass the upper limit on a yearly basis, the yearly budget public acceptance model. 

In the sensitivity analysis we construct 25 distinct CO2 emissions upper limits. These limits are 

determined based on the CO2 emission of all countries in 2019 relative to their 1990 emissions, based 

on the lowest and the highest actual relative CO2 emissions countries. Notably, these 25 upper limits 

allow the model to emit varying amounts of CO2 emissions cumulatively. This means that we apply the 

cumulative budget public acceptance model across all 25 set upper limits, producing outcomes like 

electricity generation and capacity per technology. Subsequently, we analyse these results by comparing 

them to real-world data. This analysis involves calculating the error, which is explained in Section 3.5, 

between the model-generated capacity and generation and real-world capacity and generation to identify 

which upper limit (corresponding to CO2 emissions levels) generates the lowest error. Following from 

this calculation, we explore the potential of generating lower errors compared to the constraint which is 

constructed in Section 3.2.1. Further we aim to analyse if there is a correlation between the upper limit 

which generates the lowest error and the public opinion regarding climate change. Our primary objective 

in this methodological approach is to investigate the existence of a correlation between climate change 
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beliefs and actual emissions reductions. The detailed explanation about this approach is shown in 

Section 2.2.3, with the workflow diagram for the sensitivity analysis shown in. 

 

Figure 5 workflow diagram for the sensitivity analysis in Section 3.2.3. The sensitivity analysis is only conducted 

on the cumulative budget public acceptance model. The constraint with the lowest error is compared to the average 

score from the survey data regarding climate change. The cumulative budget public acceptance model can be 

found in Section 3.2.2 and the average score can be found in Section 3.2.1. 

 

3.2.1 CO2 constraint implementation based on public opinion on climate change. 

 

Survey data in combination with European targets will serve as the baseline for our incorporation of 

public acceptance. We selected survey data from the European Commission (Climate Action EU Survey, 

n.d.), primarily because it provides extensive coverage across most countries across multiple years, thus 

enabling us to access country-specific climate change opinion data. Additionally, Europe member 

countries have collectively set a series of multi-year targets, which for all countries combined should be 

achieved. This allows for compensation across member states. These European targets are shown in 

Table 2 and are conducted from (Delreux & Ohler, 2019).  

 

Year European targets 

1990 In 2000 back to 1990 levels 

1997 8% decrease by 2012 

2007 20% decrease by 2020 

2014 30% decrease by 2030 
Table 2 European targets with a percentage decrease in comparison to the 1990 values 

The integration of this target into the model involves the addition of a specific country constraint, 

aligning with the European targets. The first target is to revert to emissions levels equal to those of 1990. 

We chose to have a constraint before 2000 as investments need to be fulfilled until 2019. Therefore, the 

first ten years are important as they invest in energy technologies which still contribute to the electricity 

in 2019. We chose to have a constraint which has a sinusoidal increase of 20% in CO2 emissions. This 

approach provides some flexibility in modelling the electricity mix without excessively impacting the 

cumulative budget public acceptance model. For all the subsequent European targets, a linearization 

approach is applied. This means that the same percentage decrease of CO2 emissions is applied for each 

year. Implying that if you have an 8% decrease over 15 years (the second target), the model decreases 

CO2 emissions every year (relative to the 1990 levels) with 0.533%. The next CO2 target starts from 

100% emissions relative to 1990 levels and has a linearly decrease. In cases where multiple CO2 targets 
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overlap, the model prioritizes the most stringent one. A visual representation of this constructed 

constraint can be found in Figure 6. 

  
Figure 6 Visualization of the construction of the constraint with the CO2 targets set by the European Union. The 

black dotted vertical line represents the year a new target is set. 

All the European targets are periodically adjusted based on the European Commission's survey data, 

which provides insights on a two-year notice. This survey has been conducted from 2009 until 2023, 

featuring a series of questions on diverse topics related to climate change. The question we focus on is: 

“how serious a problem do you think climate change is at this moment?” They could answer from 1 (not 

a serious problem) – 10 (very serious problem). To assess the sensitivity of the model towards survey 

data input, we utilize four different scenarios to determine the mean values, which are explained in the 

Appendix. The scores which are given by the survey are subdivided into three groups (which were 

present on the data): in the range of 1-4: not a serious problem; 5-6: a fairly serious problem; 7-10 a very 

serious problem, the scores of ‘No Specific Preference (NSP)’ is left out. To transform the survey data 

to the constraint, it is converted as follow: the European target is the upper limit, where the baseline 

scenario without any requirement for reduction is the lower limit. The mean value for each country is 

computed for every two-year survey, and the constraint is subsequently adjusted based on this mean 

value. To clarify, when the mean value is 5, the constraint will represent a 50% reduction from the 

European targets (meaning that if the target implies an 8% decrease there will only be a 4% decrease). 

If the mean value reaches 10, it indicates 100% target implementation. Conversely, if the mean value is 

0, it sets the boundary at 0% of the target, having no constraint, and so on. These particular thresholds 

were selected because they serve as predefined points of reference, aligning with the upper limit of the 

European target and the baseline scenario (0% reduction).  

 

The relative decrease from survey data in CO2 emissions compared to the European target across all 

countries, is shown in Figure 7. For all the countries during the years the mean response is relative 

positive regarding climate change seriousness as all the mean values are above the 6 or higher (scale 

was 1-10). Additionally, the disparity among the nations is relatively small, with the minimum value 6.3 
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(LVA), while the maximum mean value is 8.4 (PRT). Moreover, the two times the standard error 

(
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

√𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
)  are minimal, indicating that most data points are relatively tightly clustered around 

the mean value. The mean value over the two-year period adjusts the constraint, which is shown in 

Figure 6, based on the percentage of that mean value. For instance, if the mean value for those specific 

two years is seven, the European target is set to be only 70% stringent, resulting in an increase of CO2 

emissions of the upper limit by 30% relative to the European target. 

 

 
Figure 7. Countries and the opinion on climate change, mean value across 2009 until 2021. With error margins 

which represent 2 times the standard error. Note that the scale is form 50 until 100, while there is the possibility 

to score from 0 to 100. 

 

3.2.2 Two ways of incorporating the CO2 constraint 

 

As discussed in Section 3.2 the CO2 constraint is implemented in two ways. Firstly, the constraint is 

structured to set a yearly limit on the model's CO2 emissions. This ensures that this model version cannot 

exceed the constraint's CO2 emissions limit for each year. This model version is referred to as the yearly 

budget public acceptance model. For the second model version, the constraint is constructed such that 

the cumulative CO2 emissions of the constraint (CO2 emissions over 30 years 1990 –2019) cannot be 

exceeded by the cumulative CO2 emissions of the model version. This approach allows the model to 

adjust its emissions, emitting more CO2 at the beginning if it generates lower emissions in the future, or 

vice versa, in such a way that the two cumulative CO2 emissions are at least equal. This flexibility 

accommodates the European Union’s targets, which are not strictly annual but binding for the end of the 

periods. This version is set to be the Cumulative budget public acceptance model. The results of the 

yearly budget public acceptance model and the cumulative budget public acceptance model are 

compared in Section 4.2.1. 
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3.2.3 Sensitivity analysis on CO2 emission constraints 

 

Supplementary, our objective was to explore the possibility of adjusting the constraint to achieve the 

lowest error possible, as discussed in Section 3.2. This to assess how the variation compares to the 

constraint introduced in Section 3.2.1, while also examining any potential correlations between the 

amount of CO2 emissions which generates the lowest error and the survey data on the severeness of 

climate change. This correlation would yield that the more people are aware of climate change the more 

a country is associated with emitting lower amounts of CO2 emissions. To formulate the 25 linear 

constraints, we utilise the country with the actual highest and the country with the actual lowest CO2 

emissions ratios in 2019 relative to 1990 levels as upper and lower bounds. Cyprus exhibits the highest 

CO2 emissions compared to 1990 levels with 193%, while Spain has the lowest CO2 emissions compared 

to the 1990 levels with 30%. Within this range, 25 linearised constraints, so representing 25 CO2 

emission values, are constructed and visualized in Figure 8. These 25 constraints span the spectrum from 

the upper limit to the lower limit, all originating from 100% CO2 emissions in 1990. These constraints 

are applied to all countries, resulting in the generation of 25 distinct scenarios. The cumulative budget 

public acceptance model is used to generate the needed results. This implies that the CO2 emissions can 

surpass the constraint at certain levels as long as the total CO2 emissions of the constraint is not higher 

than the total CO2 emissions provided by the model.  

 

 

 

 
Figure 8 25 Constraints implemented to find the lowest error ranging from 193% until 30 % relative to 1990 CO2 emissions. 

All the constraints start from 100% in 1990 and are linearized. 
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3.3 Incorporating actor heterogeneity through differentiated WACCs.  
 

In heterogeneity of actors’ model version, there is no uniform discount factor anymore but a yearly 

differentiating WACC (weighted average cost of capital) is implemented. In the reference model version 

of D-EXPANSE a modelling assumption for the uniform discount rate is used with a value of 3.5% 

(Jaxa-Rozen et al., 2022; Wen et al., 2022). In the new version the values for the differentiated WACCs 

spanning the spectrum of 2009 until 2019 are provided by the authors of Polzin et al., (2021). The 

countries present in the dataset are: AUT, BEL, BGR, CYP, CRO, CZE, DEU, DNK, ESP, EST, FIN, 

FRA, GBR, GRC, HUN, IRL, ITA, LTU, LUX, LVA, MLT, NLD, POL, PRT, SVK, SVN, SWE and 

ROU, countries not present in the dataset but present in D-EXPANSE, like NOR, ISL and CHE are left 

out. Every country is provided with yearly differentiated specific risk-free rate. The WACC values are 

provided for each country and each technology. The technologies included are brown coal/hard coal (are 

the same values), gas, nuclear, hydro dam, hydro run off river, solar PV, onshore wind, offshore wind 

and biomass. Given that not all technologies in the optimisation model are given, we have to make 

certain assumptions. The WACC values of brown coal are the same for oil, biomass is the same as waste 

incineration, geothermal energy similar to gas, and biogas is transformed to biomass with the ratio 

4.9/4.7 (Sweet Edge, Swiss Energy Research for the Energy Transition, n.d.). Additionally, we set the 

value for import/export/storage at 0.05 (Projected Costs of Generating Electricity, 2020). As the values 

before 2009 are not available we assume that the value from 1990 to 2008 is the value in 2009.  

 

For renewable power plants (solar PV, onshore/offshore wind and biomass), a single WACC value in 

2015 is provided. This country and technology specific WACC is composed out of several factors, which 

are shown in Equation 2: 

 

 𝑊𝐴𝐶𝐶𝑐𝑡 = 𝑟𝑓𝑡 + 𝑝𝑡 + 𝑝𝑐 + 𝜖𝑐𝑡  (2) 

rf stands for the risk-free rate, this rate is the hypothetical rate of return on an investment which would 

have zero risk. It is a baseline for evaluating the potential returns of other investment which includes 

risks. Typically, goverments bonds have a very low default risk and are used as proxies for the risk-free 

rate which is here the case aswell. t Stands for the technology, pc Is the policy specific rate of a country. 

This premium reflects the investor’s perception on the risks of the specific country including the 

additional uncertainties, whereas pt is the risk including the market and the specific technology. With a 

randomized ϵ which is the residual of a company-specific risks. The single WACC value for the 

renewable power plants in 2015 is adjusted in the range from 2009 untill 2019 with the changing risk-

free rate from that country in the certain year. Incorporating the WACC values into D-EXPANSE 

requires the utilization of the discount factor. Normally, the discount rate is converted into a discount 

factor through the following Equation 3:  

 𝑑𝑓 =
1

(1+𝑑𝑟)𝑦𝑒𝑎𝑟𝑠  (3) 

We utilize the discount rate (dr), in the reference model set at 3.5%, and the discounted factor (df) to 

calculate the present value of future cash flows. While the WACC is not precisely the same as the 

discount rate, both are employed for discounting future cash flows. WACC is a more specific approach 

that considers the cost of capital for companies, whereas the discount rate is more broadly applicable 

and can encompass various rates of return in different financial scenarios (Ondraczek et al., 2015). As 

our focus is only on the discounting of future cash flows it is reasonable to assume that both are similar. 

With this case the discount factor can be calculated using the WACCs, instead of a general discount rate. 
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The differentiated WACCs per technology are shown for Ireland in Figure 9. Figure 10 shows the 

differences in WACC value across the countries for the technology gas.  

 

 
Figure 9 WACC values for different technologies across different years for Ireland. The values before the year 

2009 are assumption and are the same values as in 2009. 
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Figure 10 Differentiated WACC values across countries for the technology gas. The values before the year 2009 

are assumption and are the same values as in 2009. 

 

It clearly stands out that the uniform discount rate which is used in the reference model is lower side 

than the differentiated WACCs. The jump of WACC value for Ireland around 2010 is due to the 

economic crisis happening at that moment. Comparing these findings with the ECB (Key ECB Interest 

Rates, 2023) and the IEA (Projected Costs of Generating Electricity, 2020) the WACC values appear 

reasonable. Nevertheless, considering that the values from 1990 to 2009 are the same, there is still a big 

potential for being inaccurate due to the long timeframe.  
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3.4 Modelling to generate alternatives (MGA)  
 

The D-EXPANSE model has the possibility to explore near-optimal solutions. First a cost optimal 

scenario of the D-EXPANSE model is conducted, afterwards this cost optimal scenario is put into the 

MGA model where certain parameters are adjusted. The MGA model gives, with a uniform distribution, 

every technology on every year a number from the set {1,0,-1}. This set means that the technology 

generation is maximized {1}, minimised {-1}, or neutral {0} on that year within the given constraints. 

The MGA model can be run multiple times to create a diverse set of possible solutions. By optimising 

each different scenario, broad solutions are presented with each time a different outcome. For the 

implementation of heterogeneity of actors, the amount of MGA runs was set to 200 as well as for the 

reference model run. This means that there are 200 solutions presented with different maximum 

generation from different technologies with a small, under 15%, cost increase. For the public acceptance 

implementation 75 runs are emitted for each of the four scenarios (explained in the Appendix) generating 

300 MGA runs for each country.  

 

The cost objective function is adjusted to the corresponding slack, this means that the model does not 

provide the cost-optimal anymore but can have a slight increase of the costs compared to the cost-

optimal solution. In this MGA performance a slack of 15% in coherence with (J. F. DeCarolis, 2011; 

Mercure et al., 2016; Trutnevyte, 2016) is chosen. This slack enables the MGA to explore solutions 

where the cost is allowed to increase up to 15% (but not necessarily has to). In the context of the two 

public acceptance model versions (Section 3.2), we introduce a 15% slack not only for cost but also for 

the CO2 emissions. This slack on the CO2 emissions means that the upper limit of the cumulative budget 

public acceptance model can increase by a maximum of 15%. This approach aims to showcase a more 

diverse set of electricity mixes, as the CO2 upper limit may serve as the limiting factor in exploring 

alternative energy solutions. For the other model versions, so the reference model version and the 

heterogeneity of actors’ model version only the cost slack is used. By calculating the error via Section 

3.5, a comparison can be made with errors from the MGA with the possibility of increased costs and the 

error calculated for the cost optimal solution. The MGA results can be useful for policy makers as it can 

show a more political desirable solution with only a small increase of the cost (Lombardi et al., 2020).  
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3.5  Error calculation 
 

To facilitate a meaningful comparison between different models, it's essential to compute a universal 

parameter. The error metric allows for a comprehensive assessment of how models perform relative to 

one another. By applying the error metric to the actual transition data, it becomes possible to determine 

whether a model exhibit improved or poorer behaviour in comparison to the reference model. To 

calculate the error for optimisation models many different formulas exists. Following the paper from 

(Wen et al., 2022) the Symmetric mean absolute percentage error (sMAPE) is used as this describes the 

percentage error, shown in Equation 4. With a percentage error it is possible to compare the quantities 

of different countries, regardless of their magnitudes. 

 

𝑒𝑟𝑟𝑜𝑟 =  
|𝑦𝑖̂−𝑦𝑖|

(|𝑦𝑖̂|+|𝑦𝑖|)

2
+𝜖

     (4) 

Here, yi is the value for the actual world and 𝑦̂𝑖 is the value for the model output. 𝜖 Stands for a small 

value (in this case 𝜖 = 1e-6), to prevent a division by zero. This error is attributed to the generation and 

capacity. Specifically, it involves calculating the discrepancy between the actual generation and capacity, 

and the model's generation and capacity, for each year and technology, using the error formula. These 

differences are aggregated across all years and technologies, resulting in a cumulative error with both 

generation and capacity. This cumulative error is subsequently normalized against the maximum error, 

which is 2 per year per technology. Now, the errors are comparable for the different countries and 

different models. However, the sMAPE error has its limitations. For instance, consider a scenario where 

a relatively small technology generates either 2 GWh or 100 GWh in two different scenarios, however, 

in the real world it generates 0 GWh. When calculating the sMAPE for both cases, it yields a maximum 

error of 2. Nevertheless, it's important to note that the second case significantly further deviates from 

reality compared to the first case. 
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4 Results 
 

Continuing from Section 3, we present the outcomes and findings derived from the five model versions. 

These model versions include the original D-EXPANSE with no societal factors, two models which 

incorporate public acceptance, one version incorporating heterogeneity of actors and one which 

incorporates public acceptance and heterogeneity of actors. The results are explained in more detail as 

follows: First, showing the results of the original reference model version compared to the actual data 

in Section 4.1. Secondly, analysing the disparities between the cumulative budget public acceptance 

model and the yearly budget public acceptance model shown in Section 4.2.1. This is followed by a 

more in-depth analysis of the results of the cumulative budget public acceptance model in Section 4.2.2. 

Subsequently, the implementation of the differentiating WACCs which is implemented in the 

heterogeneity of actors’ model version is shown in Section 4.3. Lastly, we merge the influences of the 

heterogeneity of actors’ model version and the cumulative budget public acceptance model by applying 

both, as shown in Section 4.4. An overview of the different models and results is shown in Figure 11. 

 

 

 
Figure 11 Results workflow diagram. The results from a colour can be found in the corresponding result section. 

All the results undergo modelling to generate alternatives (MGA) analysis to construct the near optimal solution 

space around the cost-optimal point. 
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4.1 Reference model version compared to the real-world 
 

When executing the reference model, the first step involves examining the amount of CO2 emissions 

emitted and comparing it to real-world CO2 emissions. Table 3 shows that the countries are grouped in 

different categorises dependent on the actual CO2 emissions over the years and the CO2 emissions of the 

reference model version. There are four groups constructed, the first group has in the real-world an 

increase of emissions around 1995, but after 1995 dropped emission’s to around 90%, for the reference 

model version the emissions increase around 1995 and later drops to 120%. For the second group, the 

emissions of the real-world stay around the 100% and can drop to 60% in 2019, whereas the reference 

model version the CO2 emissions keep increasing. For the third group (which only consist out of 

Cyprus), the reference model version and the real-world emission keep increasing to 200%. The last 

group consist out of the countries which saw a decrease of the CO2 emissions for both the reference 

model version and the real-world. 

 

Table 3 Categorization of different countries and their actual CO2 emissions. Because the category underneath 

the constraint is so big, there are no specific technologies which stand out for all the countries. Further, the 

category is the least interesting as with the new version of the model nothing will change in the generation. 

 

For the case of the group of Portugal, the disparity between the real-world and the reference model 

version primarily arises from the increased deployment of hard/brown coal in the reference model, while 

the real-world data has a higher level of waste incineration, gas and renewables (mostly PV and onshore 

wind) generation. For the group of Spain, especially, the deployment of nuclear and hard coal is 

prevalent in the reference model version whereas in the real world more PV and onshore wind is 

generated. For the group of Hungary, the real-world data generates more Biomass, PV and onshore wind, 

whereas the reference model version sees a greater increase in nuclear power. For Cyprus the difference 

Real-world CO2 

emissions 

CO2 emissions of 

reference model 

version 

Countries 

Under 

projection of 

the reference 

model version 

Over projection 

of the reference 

model version 

Increases heavily 

around 1995 up to 

140%~180%, 

decreases around 

2008 to be in 2019 

around 90%. 

Increase around 

1995 up to 

130%~140% 

decreases around 

2008 to be around 

120% in 2019. 

ESP, GRC, IRL, 

NLD 

Oil, Onshore 

wind, PV 

 

Nuclear, hard 

coal 

60%~100% in 2019 
120%~250% in 

2019 

AUT, CZE, ITA, 

LUX, MLT, PRT 

Waste 

incineration, 

gas, PV and 

onshore wind, 

storage 

Hard/brown coal 

Increases up to 

225% around 2010 

Increases up to 

200% around 

2010 

CYP 
Oil, PV, onshore 

wind 

Gas, biogas and 

hard coal 

Dropped to 

40%~70% 

emissions in 2019 

Dropped to 

60%~80% 

emissions in 2019 

HUN, GBR, EST, 

DNK, DEU, BGR, 

BEL, LVA, POL, 

SVN, HRV, LTU 

Biomass, PV 

and onshore 

wind 

Nuclear 
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is very prevalent for generation of gas for the reference model version, for the real-world it mostly 

generates biomass. In summary, the primary distinctions between the reference model version and the 

real world are that the reference model version underestimates PV and onshore wind, while over 

estimating waste incineration, biogas and hard coal generation.  

 

This difference between the real-world and the model outcomes is not due to differences in demand or 

costs, as these are incorporated into the model based on historical data. The demand peaks for most 

countries between 2005 and 2010 with a slight decrease of demand towards 2020. For the group of 

Portugal, the primary distinction arises from the greater utilisation of renewable energy sources in the 

real-world compared to the model’s representation. A key factor contributing to this difference is the 

hydro storage component. In practice, the utilization of hydro storage enables electricity providers to 

pump water to a higher altitude when electricity prices are low and release it to a lower altitude to 

generate electricity when prices are high. This method of pumping and generating electricity enables the 

power plant company to generate more revenue than simply producing electricity as required. However, 

in the model, there is no possibility to generate this kind of revenue. Consequently, in the model’s 

electricity mix there will be less hydro storage than in the case of the real-world. Especially for 

Luxembourg the hydro storage component is the biggest factor in the difference between the CO2 

emissions for the model and the real-world. In the case of Portugal itself, the government has introduced 

several advantageous incentives, such as feed-in tariffs for renewable energy production. Additionally, 

local municipalities benefit from a share of the income generated by wind energy projects, which has 

led to increased public acceptance of these renewable initiatives (‘30 Years of Policies for Wind Energy’, 

2013). Our model does not incorporate these governmental incentives since they are temporary in nature 

and are subject to rapid changes, like changing political landscape, whereas the model is designed for a 

more enduring perspective. This significant government support has propelled wind energy in the real 

world, contrasting with the model where such policies are absent, resulting in wind energy being less 

cost-effective in the model compared to reality. 

 

4.2 The two public acceptance models, yearly budget public acceptance model 

and the cumulative budget public acceptance model 
 

The model was initially designed to run for 31 countries, however when applied the CO2 constraint, 

several countries had to be excluded due to the model’s inability to find a viable solution. These excluded 

countries include CHE (due to the lack of survey data), FIN, FRA, NOR, SWE and ROU. The reason 

for the model’s failure to find a solution in these cases is that the reference model version generates a 

substantial increase in CO2 emissions for these countries compared to the 1990 levels. An example of 

this scenario is illustrated in Figure 12, where the reference model generates a significant increase in 

CO2 emissions. When attempting to restrict these CO2 emissions by imposing the constraint outlined in 

Section 3.2.1, the CO2 emissions are limited to such an extent that other constraints could no longer be 

fulfilled, thereby imposing an error on the model. The constraints that lead to these infeasible solutions 

across all countries are primarily related to the ramp rate of renewable technologies and capacity transfer 

over the years. Achieving a significant increase in renewables to generate the same amount of electricity 

within the given timeframe is not feasible, as the technologies cannot be deployed so rapidly in the D-

EXPANSE model. The limiting factor here is the ramp rate and the build rate which is too low to generate 

so much renewable electricity, to impose the CO2 constraint. The build rate for the renewables in Finland 

is 0.25 GW/year for PV and for onshore wind 0.75 GW/year, but the specific values are country specific. 

Additionally, the generation of the power plants should be between the minimum load factor and the 

maximum load factor. The minimum load factor for hard coal is at least 50%, this in combination with 

the imposed CO2 constraint will still generate too much CO2. The combination of these constraints 
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contributes to the errors. A potential solution to address this issue is to examine the parameters within 

the D-EXPANSE model and compare them to real data, checking for significant discrepancies. This can 

be crucial, as the observed actual CO2 emissions do not exhibit such a substantial increase. Furthermore, 

can it be that certain policies are implemented to stop the emitting of coal plants with money from the 

government. Then the minimum load factor is not required anymore, but is still required for the model.  

 

 
Figure 12 Yearly CO2 emissions for Finland. The values on the y-axis are percentage values compared to the 

initial CO2 emissions in 1990. 

 

The patterns observed in Figure 12 for Finland holds true for all other countries (France, Norway, 

Sweden and Romania) that could not conform to the imposed CO2 upper limit. The model generates a 

substantial increase in CO2 emissions compared to the 1990 levels, with Norway being an extreme case, 

exhibiting both a significant real-world emissions increase (a 60-fold increase) and model calculations 

emissions (up to 100-fold increase), which is shown in the Appendix. When comparing the real-world 

and the reference model version of Finland, we observe notable differences. Specifically, hard coal is 

more prevalent in the model, resulting in the observed surge in CO2 emissions in Figure 12. Furthermore, 

there is more export, import and biogas generation in the real world, contributing to lower CO2 

emissions. The CO2 emissions of import is the average CO2 emissions of the neighbouring countries.  

When comparing costs between the two scenarios, we find a 1.4-fold increase in costs for the real-world 

compared to the model run. This discrepancy in generation is shown for Finland in Figure 13. 

Furthermore, this difference in generation is partly due to there being a solid policy framework to impose 

carbon neutrality in 2035. This framework includes feed-in premiums and feed-in tariffs for renewables, 

such as biogas and wood-based fuels. Additionally, there is a CO2 tax on fossil fuels that steers the 

electricity production towards cleaner electricity production. Notably, biomass and biogas are excluded 

from that CO2 tax (Luc Pelkams et al., 2021).  Consequently, our model cannot accurately replicate real-

world outcomes, as these taxes and subsidies are not considered. Thus, due to these policies, the most 

cost-optimal solution according to the model will generate more CO2 emissions in comparison to the 

real-world.  
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Figure 13 Difference between the actual world and the model outputs relative to the demand. This means that -

50% indicates a 50% relative to the demand increase of a certain technology from the model compared to the 

reference model.  The demand for Finland goes from 70 TWH around 1995 to 90 TWH around 2010 and stays 

there. Negative values indicate more generation from the model as generation=real world- reference model. 
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4.2.1 Disparities between two model versions, yearly budget public acceptance model and 

the cumulative budget public acceptance model.  

 

As described in Section 3.2.2 two model versions incorporating public acceptance, the yearly budget 

public acceptance model and the cumulative budget public acceptance model are tested. One where the 

CO2 emissions cannot exceed the constraint value on a yearly basis (the yearly budget public acceptance 

model), and one where the total CO2 emissions cannot exceed the cumulative constraint values over 30 

years (the cumulative budget public acceptance model). To observe the two model's behaviour, we 

examine the case of Portugal. Portugal serves as a perfect example because it demonstrates the most 

improvement when implementing public acceptance in reference to the reference model version. A first 

indication of how these two models behave is shown in Figure 14. 

 
Figure 14 Yearly CO2 emissions relative to the values of 1990. Both the yearly budget public acceptance model 

and the cumulative budget public acceptance model are shown as well as the upper limit of the CO2 emissions 

for the yearly budget public acceptance model. This is the upper limit which the yearly budget model can not 

pass on a yearly basis, the cumulative budget model version can not pass the sum, so from 1990 to 2019, of these 

CO2 emissions.  

 

Figure 14 clearly indicates the impact of the two models. As one can see the blue line representing the 

yearly budget public acceptance model, consistently remains below the maximum upper limit of CO2 

emissions (as intended). In contrast, the cumulative budget public acceptance model exhibits some 

flexibility and occasionally surpasses this upper limit, as for this model the constraint is only active for 

the whole period and not binding every year. This flexibility is due to it being cheaper to in one year 

emit more CO2 and in the other year safe more CO2. This can have multiple origins like demand, weather 

and investments. This behaviour of both models is consistent throughout all countries. The cumulative 

budget public acceptance model is intended to better keep the shape of the reference model version curve 

intact and make investment decisions at a more cost-effective time step. This is a better real-world 

approximation as the upper limit set by the politicians is not binding for every year but it is good if the 

end goal (the target) is met. This is why we have selected this cumulative budget public acceptance 
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model to analyse the results. Both model versions do not differ that much and the errors regarding the 

real world are similar (both shown in the Appendix). The normalized mean error compared to the real 

world for all the countries for the yearly budget public acceptance model is 37.64%, with the standard 

deviation being 2𝜎 = 10.50%, whereas the same mean error for the cumulative budget public 

acceptance model is 37.44%, with 2𝜎 = 11.03%. Meaning that there quite large differences across the 

countries inside the models, but that the models in total do not differ that much from each other. Overall, 

the differences in generating electricity for the two models are substantial. In the case of Portugal, the 

relative difference between the two models over the whole time period in generation for all technologies 

is 13.2%. While the mean difference between the two models for all countries combined is 12.3% in 

terms of generation. For the installed capacity the relative change is only 6.68%. The costs of the yearly 

budget constraint are consistently higher than those of the cumulative budget constraint, exhibiting a 

mean increase of 2.1%. This discrepancy arises because the yearly budget constraint is more stringent 

in comparison to the cumulative budget constraint, leading to the higher costs. 

 

4.2.2 Detailed results of the cumulative budget public acceptance model 

 

Now that the cumulative budget public acceptance model is chosen, more detailed results can be 

produced. To generate the near optimal solution space around the cost optimal solution, MGA runs are 

performed. For the reference model version 200 MGA runs and for the cumulative budget public 

acceptance model 75 MGA runs. During this MGA there is a cost relaxation of 15 % and during the 

second MGA run there is an increase of the CO2 emission constraint of 15% as well (for more 

information see method 3.4). The results for the cumulative CO2 emissions for Portugal are shown in 

Figure 15. 

 
Figure 15 Cumulative CO2 emissions for Portugal. There are three different models presented, the actual CO2 

emissions, the reference model output, and the cumulative budget public acceptance model output. The reference 
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model undergoes an MGA with only 15% cost slack, whereas the cumulative budget public acceptance model 

has two MGAs one with only 15% cost slack and one with 15% cost slack and 15% CO2 slack. 

 

When considering all countries, with Portugal as an illustrative case, we observe distinct outcomes in 

the three MGA performances. The MGA performance on the reference model with a cost increase of 

15%, depicted by the grey area, displays the widest range of cumulative CO2 emissions. This is due to 

the absence of an upper limit on CO2 emissions, allowing for higher emissions compared to the 

cumulative budget public acceptance model. The sole restricting factor for this MGA is the 15% cost 

relaxation, rather than a CO2 emissions limit. In the green area, representing the MGA performance on 

the cumulative budget public acceptance model with a relaxation in the costs and CO2 emissions, there 

is a notable increase in cumulative CO2 emissions around 15% up to the cost-optimal solution. This 

aligns with the 15% CO2 slack integrated into this MGA performance and remains consistent across all 

countries. The blue area, the MGA performance on the cumulative budget public acceptance model with 

only the cost relaxation, the cost-optimal solution serves as the upper limit, with variations in outcomes 

occurring below this threshold for the cumulative CO2 emissions.  

All these differences across the three MGA performances are particularly noticeable for the countries 

not included in the group of Hungary in Table 3. This is because the group of Hungary does not 

experience significant changes when implementing the cumulative budget public acceptance model 

compared to the reference model version as the CO2 constraint is not active for this group. The CO2 

restriction is currently inactive, as both the real-world data and the modelled data show that opting for 

less CO2-intensive technologies is more cost-effective, leading to a reduction in CO2 emissions. 

Consequently, the cumulative CO2 emissions for all the MGA performances, for this group, overlap 

more than in the case of Portugal, due to the absence of a limiting CO2 factor, an example is shown in 

the Appendix. Given these observations, when choosing between the two MGA performances under the 

cumulative public acceptance model, the MGA performance with a 15% CO2 slack offers a more 

accurate representation of the uncertainty. This approach accounts for the possibility of exceeding the 

CO2 emissions limits set by constraints. When imposing the other MGA performance, the constraint 

might create the impression of minimal uncertainty beyond the cost-optimal run. However, in real-world 

scenarios, this constraint may not always be as strictly binding as the model assumes. To get an idea 

which MGA performance generates the lowest error Figure 16 shows the relative error compared to the 

real world for the cost-optimal solution and the two different MGA scenarios. 
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Figure 16 The relative error in comparison to the real-world, with the cost optimal cases a cross (in red). There 

are 75 MGA runs for the cumulative budget public acceptance model and 200 for the reference model, with two 

different amounts of CO2 slack 0% and 15%, with both 15% cost slack. A figure about all the four different 

scenarios can be found in the Appendix. 

 

Figure 16 shows the near optimal solutions around the cost optimal solution and the two MGA versions 

(one with only cost relaxation of 15% and one with cost and CO2 relaxation both 15%). The cost optimal 

solution, so the solution which is provided by the model, is shown as a red cross in Figure 16. Comparing 

the two MGA performances, there is not a wider spread of near optimal solutions for the MGA 

performance of only one relaxation in comparison to the MGA performance with both relaxations across 

all countries. This is curious as the MGA scenario with 15% extra increase in CO2 emissions has more 

possibilities to explore more diverse electricity mixes. One explanation of this phenomenon could be 

that the MGA performance with the increase of CO2 emissions only creates a small extra diverse 

electricity mix compared to the MGA performance with only the cost increase. This means that the 

relative error will not change that much, which is the case. Furthermore, in this case of Portugal the cost 

optimal error is lower than the divergence indicated by the MGA. This means that even with the 

possibility to increase the costs it not possible to generate lower error in comparison to the real-world. 

This indicates that there are other limiting factors limiting the cumulative budget public acceptance 

model to be more accurate. Such as other input parameters or constraints like load factor, learning rate 

and costs. For other countries the cost-optimal solution lies more in the middle of the width of the near-

optimal solutions. In the case of Portugal, the cumulative budget public acceptance model is an 

improvement compared to the reference model as the cost-optimal solution has a lower relative cost-

optimal solution. 

 

For all countries, the width of the relative error for the near-optimal solutions from all three MGAs is 

similar. Only the cost-optimal solution can notably differ between the reference model version and the 

cumulative budget public acceptance model. Two times the standard deviation (2𝜎) of the relative error 
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for a specific country is roughly the same across all three MGA performances, indicating that the range 

around the mean value for the MGA is the same in all cases, which is shown in Figure 17. The average 

two times standard deviation of the error across all countries for the MGA on the cumulative budget 

public acceptance model with only the cost relaxation is 0.0833, whereas the MGA on the same model 

but with both relaxations (costs and CO2) has a mean value of 0.07666. This demonstrates that the width 

around the cost-optimal solution of the relative error is a bit smaller for the MGA with both relaxations 

than for the MGA with only one relaxation. However, as there is only a relatively small sample size of 

the MGA (75 runs), the difference is not too large. The most important aspect is that the three MGA 

runs, so the one on the reference model and the two on the cumulative budget public acceptance model 

all have similar widths regarding the relative error to the real-world. 

 

 
Figure 17 Heatmap for two times the standard deviation of the near-optimal solutions of the MGA’s performance 

regarding the relative error in comparison to the real-world. All MGA run with 15% cost slack, for the 

cumulative budget public acceptance model one MGA has 0% CO2 slack whereas the other has 15% CO2 slack. 

The standard deviation is calculated for 75 MGA runs (middle scenario) and 200 MGA runs for the reference 

model. 

 

For all countries, a summary of the relative error from the cumulative budget public acceptance model 

in comparison to the reference model version is shown in Figure 18. There are three distinct groups 

prevalent, one where the implementation of public acceptance led to an enhancement of the accuracy, 

one group where there is no difference between the two models, and one group where the cumulative 

budget public acceptance model increased the error relative to the reference model version. The group 

which experienced a decrease of the error consist out of nine out of the 24 countries. These countries 

include AUT, CZE, HUN, ITA, LUX, NLD, POL, PRT, and SVK. Notably, Portugal (PRT) stands out 

as the country with the most significant improvement, achieving a 9.0 percentage points enhancement 

in performance, compared to the reference model version. The group in contrast, where the error 

increased, consists out of nine of the 24 countries. Among these countries are BGR, CYP, ESP, EST, 

GRC, IRL, LVA, MLT, SVN, where Cyprus experienced a substantial decline in model accuracy, with a 

9.7 percentage points decrease. The last group where nothing changed consist out of BEL, DEU, GBR, 

HRV, LTU and DNK. This is due to the constraint being inactive, signifying that the cumulative sum of 

the cost-optimal solution in the reference model version is already below the constraint's total emission. 

Consequently, this constraint will not influence the model's outcomes compared to that of the reference 

model version.  
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Figure 18 Relative error for the public acceptance model version in comparison to the reference model version. 

The grey line represents the middle of these values, under the grey line the error for the public acceptance model 

version is lower (green), above the line the points are red. The grey countries are where the constraint does not 

have an influence. The error is calculated in comparison to the real-world and normalized for the maximum 

error. 

 

For the cumulative budget public acceptance model the countries which display an improvement of the 

error tend to do so by, in comparison to the reference model version, decreasing the generation of hard 

coal, brown coal and oil, but increasing the generation of nuclear, hydro dam and gas, onshore wind. 

These countries align with the countries of the group of Portugal shown in Table 3, with the exception 

of Malta. This group experienced a big increase in CO2 emissions in the reference model versions, but 

the actual CO2 emissions did not undergo the same increase. The CO2 upper limit helps to limit this CO2 

increase and steer the cumulative budget public acceptance model version towards more accurate results. 

Conversely, for the group which experienced an increase of the relative error, was mostly due to the 

cumulative budget public acceptance model generating more onshore wind power generation. On the 

other hand, this model decreased generation in gas, brown/hard coal and oil. It is logical to expect that 

with the implementation of the upper limit fewer fossil fuels are employed, but it is intriguing to see that 

in the countries where errors increased, the cumulative budget public acceptance model appears to 

heavily invest in onshore wind plants. The group of countries where errors increased seems to be 

consistent with the group in Table 3 of Spain and the group of Cyprus, excluding the Netherlands. These 

countries experienced a substantial increase in CO2 emissions around 1995 in the real-world, with the 

reference model version more closely mirroring this path than the cumulative budget public acceptance 

model. Consequently, the cumulative budget public acceptance model’s error increases in comparison 
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to the reference model version. Lastly, for the group represented by Hungary in Table 3, there is minimal 

variation in electricity generation between the two models, with sometimes only a slight change for the 

import and export in certain years. In general, it is evident that this approach to implement societal 

factors into the D-EXPANSE model has no clear evidence of improving the model as a whole. While 

some countries benefit from this approach, others experience a decline in performance. 

 

 

4.2.3 Results of the sensitivity analysis on CO2 emission targets with the cumulative 

budget public acceptance model. 

 

In Figure 19, the outcomes of applying the 25 constraints to the cumulative budget public acceptance 

model and calculating the least error are shown. The percentage of CO2 emissions in 2019 regarding 

those of 1990 levels, is compared to the mean survey value across all years. Interestingly, the apparent 

correlation for R2 is -2, between the mean survey data and the extent of CO2 reduction. This implies that 

the less people care about climate change the more reduction of CO2 emissions is implied. This will be 

highly unlikely as Bergquist et al., (2022); Segreto et al., (2020) demonstrates that the severity of climate 

change is one of the influential factors affecting political party voting patterns. This pattern can be 

attributed to the limited sample size of the countries, and the survey data just not correlating with major 

voting patterns. Further, the findings suggest that our current approach with the constraint appears to be 

a bit too high as 11 out of the 18 countries analysed, show greater improvements in the model’s 

performance when subjected to a stricter constraint. These countries are POL, ITA, LUX, DEU, SVK, 

SVN, DNK, BGR, CZE, LVA and AUT. The other 7 countries have a decrease in the error if the 

constraint would have been less stringent. These countries are ESP, CYP, IRL, PRT, MLT, GRC, and 

NLD. Most countries only see a slight improvement of 5 percentage points in comparison to the 

cumulative budget public acceptance model, with the expectation being Luxemburg and Cyprus, where 

a change in the constraint can lead to a decrease in the relative error of up to 12 percentage points. 

Further, there is no clear correlation between the percentage of improvements in comparison to the 

cumulative budget public acceptance model and the extent of CO2 reduction and/or public opinion on 

climate change. With this sensitivity analysis, it is clear that our constraint is too conservative meaning 

that the constraint is still too high. A stricter constraint, so a constraint which limit the amount of CO2 

emissions more will increase the accuracy of the model. 
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Figure 19 Constraint with percentage of CO2 emissions compared to 1990 levels with the lowest error in 

comparison to the mean survey data excluding countries which had no improvement. The colorbar represents the 

amount of improvement in comparison to the cumulative budget public acceptance model. The grey area 

represents the constraint imposed by the mean survey data and which is currently active in the cumulative budget 

public acceptance model. The mean survey data ranged from 0 to 10 with the question: ‘how serious a problem 

do you think climate change is at this moment?’ 
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4.3 Implementing differentiated WACCs in the model for actor heterogeneity 
Figure 20 shows the error for the heterogeneity of actors’ model version in comparison to the reference 

model. Not all countries included in the Polzin et al., (2021) database are part of this study; the countries 

that are missing are CHE, LTU, and NOR, and they have been excluded from the research. 13 of the 26 

countries experienced an improvement in comparison to the reference model case. These countries 

include BGR, CYP, CZE, DNK, ESP, EST, FRA, GBR, ITA, LVA, MLT, POL and ROU. On the other 

hand, in 13 out of the 26 countries there was an increase in the error relative to the reference model 

version. These countries are: AUT, BEL, DEU, FIN, GRC, HUN, IRL, LUX, NLD, PRT, SVK, SVN 

and SWE. Observing the results, there are almost no outliers and most of the countries show a correlation 

between the error of the heterogeneity of actors’ model version and the reference model version. The 

exceptions are Greece, which experiences a 7.9 percentage points increase in the error. On the other 

hand, the main beneficiaries are Malta, where the errors have decreased by 6.5 percentage points, Cyprus 

by 4.3 percentage points, and Bulgaria by 6.4 percentage points. Notably, both islands (Cypress and 

Malta) see such a decrease in the error, these islands are small where a single investment can have large 

influence on the electricity mix. Overall, it is difficult to see a correlation between the countries and 

apparent error.   

 

 
Figure 20 Heterogeneity of actors’ model version relative to the reference model version. The grey line indicates 

the middle; under the grey line it is an improvement relative to the reference model version (indicated by green). 

The sMAPE error is relative to the real-world and normalized for the maximum error.  
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When analysing the electricity mixes for the heterogeneity of actor’s model in comparison to the 

reference model version different technologies stand out. We observe that for the group which 

experienced a decrease in the error with the heterogeneity of actors’ model version the technologies oil, 

brown/hard coal, onshore wind and nuclear generate more electricity in comparison to the reference 

model version. On the other hand, solar PV, hydro reservoir and gas are more present in the reference 

model version. For the countries which experience an increase in error, the technologies are difficult to 

estimate as most technologies are not consistent throughout the years. To assess the near-optimal errors, 

an MGA performance is conducted. To illustrate the range of near-optimal solutions from the MGA, an 

example is provided for Malta, which stands out as the best-performing country with the implementation 

of heterogeneity of actors. 

 

 
Figure 21 Relative error for the reference model version and the heterogeneity of actors’ model version with both 

200 MGA runs for Malta. The red cross indicates the cost optimal solution. 

 

Figure 21 shows that in this case, the heterogeneity of actors’ model outperforms the reference model 

version. Not only has the cost-optimal solution a lower error, but the range of near-optimal solution 

defined by the MGA has a relatively smaller width as well. This would imply that the heterogeneity of 

actors’ model increases the accuracy and limits the range of near-optimal solutions. Nevertheless, this 

is not the case as this only holds true for Malta which is a small island where a single investment can 

have large impact. For all the other countries the range of near optimal solutions looks like Figure 22. 

For these countries, the range of the near-optimal solution between the heterogeneity of actors’ model 

and the reference model version is the same and around 20%. For most countries, the only result that 

shows a meaningful change is the cost-optimal output results which are summarized in Figure 20. 

Overall, the performance of implementing the WACC to show differentiating actors does not show any 

total improvement in the model. Only half of the countries improved the model, whereas for the other 

half, it worsened the error. 
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Figure 22 Relative error for the reference model version and the heterogeneity of actors’ model version with both 

200 MGA runs for Ireland. The red cross indicates the cost optimal solution. 

 

4.4 Cumulative budget public acceptance model and heterogeneity of actors’ 

model version 
 

Figure 23 gives an impression on the error for the combination of the cumulative budget public 

acceptance model & heterogeneity of actors’ model version in comparison to the reference model 

version 11 of the 21 countries experienced a decreased error when implementing both parameters. These 

countries being: AUT, BGR, CZE, ESP, EST, GBR, ITA, LUX, LVA, POL, PRT and SVK. In contrast, 

the ten other countries experienced an increase in the error compared to the reference model version. 

These countries include BEL, CYP, DEU, DNK, GRC, HUN, IRL, MLT, NLD and SVN. The 

technologies which generate more electricity, in the countries with a decrease in the error, in the 

combination of the two models compared to the reference model are: onshore wind, oil and biomass. 

On the contrary, mostly gas-based electricity is generated to a greater extent in the reference model 

compared to the combination. For the countries which experienced an increase in the error compared to 

the reference model version, the technologies show a similar trend with the generation of on- and 

offshore wind, oil and nuclear generating more electricity in the cumulative budget public acceptance 

model & heterogeneity of actors’ model version and mostly gas generation more present in the reference 

model version. This result is fascinating, as gas generates less CO2 emissions compared to oil, but the 

cumulative budget public acceptance model & heterogeneity of actors’ model version which has a limit 

on CO2 emissions imposed by the constraint use more oil than gas, compared to the reference model 

version. This can happen due to the higher uncertainty surrounding the WACC value for oil, as it is 

assumed to be identical to that of hard coal.  
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Figure 23 Relative error of the cumulative budget public acceptance & heterogeneity of actors’ model version in 

comparison to the reference model version. The grey line represents the middle, under the grey line (in green) 

shows the countries which perform better in comparison to the reference model. The sMAPE error is calculated 

and normalized to the real-world. 

 

There is more variation between the error for the cumulative budget public acceptance model & 

heterogeneity of actors’ model version and the reference model version, the results are not as correlated 

as for Figure 20. The countries that stand out are Cyprus (6.9 percentage points) and Greece (7.0 

percentage points) which have a heavily increased error, in contrast, Bulgaria (6.4 percentage points) 

and Portugal (5.2 percentage points) experienced a substantial decrease in the error all compared to the 

reference model version. As this model versions exists with just the combination of the two models, the 

heterogeneity of actors’ and the cumulative budget public acceptance model version one would expect 

that the errors would add up. However, it is interesting to note that if you combine the errors equally for 

the heterogeneity of actors’ model version and the cumulative budget public acceptance model version 

it will not add up to the error indicated by the cumulative budget public acceptance model & 

heterogeneity of actors’ model version. For example, Austria has an increase in error of 0.9 percentage 

points for the heterogeneity of actors’ model version and for the cumulative budget public acceptance 

model version it has a decrease in the error of 5.3 percentage points, while the combination of the two 

models has a decrease of the error of 5.6 percentage points. Even with an increase of the error for the 

heterogeneity of actors’ model the combination still outperforms the cumulative budget public 

acceptance model. Further, for Cyprus it has a decrease in the error for heterogeneity of actors’ model 
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version by 4.3 percentage points and for the cumulative budget public acceptance model version an 

increase in the error of 9.7 percentage points but the combination results in an increase of the error of 

6.9 percentage points. For both Bulgaria and Greece, the MGA performance is shown. This as these are 

the best and worst performing countries when combining both models, they are shown in respectively 

Figure 24 and Figure 25. 

 

 
Figure 24 Relative error in reference to the real-world for Bulgaria. Both MGA have a cost slack of 15% one a 

CO2 slack of 0% (blue) and the other of 15% (green). The reference model version, the cumulative budget public 

acceptance & heterogeneity of actors’ model version are both presented. The cost optimal solution of the model 

is presented with the red cross. 
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Figure 25 Relative error in reference to the real-world for Greece. Both MGA have a cost slack of 15% one a 

CO2 slack of 0% (blue) and the other of 15% (green). The reference model version, the cumulative budget public 

acceptance & heterogeneity of actors’ model version are both presented. The cost optimal solution of the model 

is presented with the red cross. 

 

As provided, the width of the near optimal solutions around the cost optimal point for the cumulative 

budget public acceptance & heterogeneity of actors’ model version for both countries show similar width 

in the error as the width of the reference model version. This is true for all countries, generating a 

standard deviation of the relative error compared to the real-world which is similar across all three model 

versions. This aspect is shown in Figure 26. The cost optimal solution for both countries regarding the 

cumulative budget public acceptance & heterogeneity of actors’ model both are beneath the mean value 

for the near-optimal solutions, this indicates that the cost-optimal solution generates good results 

compared to the near-optimal solutions. There is almost no difference between the two MGAs on the 

cumulative budget public acceptance & heterogeneity of actors’ model, while one MGA has more 

flexibility as it is an extra slack on the CO2 emissions. This minimal difference between the three MGA’s 

is shown in Figure 26.  
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Figure 26 Heatmap for the 2𝜎 for the relative error of the 75 MGA runs for the cumulative budget public 

acceptance & heterogeneity of actors’ model version) and 200 MGA runs for the reference model version. All 

MGA are presented with 15% cost slack. For the MGA of the cumulative budget public acceptance & 

heterogeneity of actors’ model version one is with 0% CO2 slack and the other with 15% CO2 slack. 
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4.5 Model version comparison 
 

The primary outcome illustrating the model version's improvement compared to the reference model 

version can be observed in Figure 27. 

 

 
Figure 27 Heatmap for the three different model versions implementation, the error (calculated via Section 3.5) is 

compared to each other. The values are relative values in comparison to the reference model version. Negative 

values (in blue) mean an improvement of the model and positive values (in red) means a decline of accuracy. If 

the model could not run on a certain country the result is white. The results in light grey are where the new 

model does not have an in/decrease in accuracy and nothing changed in comparison to the reference model 

version. 

For the majority of countries, the incorporation of different model versions that consider societal factors 

only led to a percentage point change of less than five. As observed, not all countries have implemented 

every societal factor, resulting in cases where certain model versions cannot run, these cases are 

represented in white. The light grey values indicate that a certain model version could run, however, 

there was no meaningful difference between the appropriate model version and the reference model 

version (generating zero relative difference).  

It is challenging to identify any consistent factors correlating with the variations in error rates across 

countries when comparing all the model versions to the reference model. When analysing the southern 

European region, the following countries experience an increase in error rates for the cumulative budget 

public acceptance & heterogeneity of actors’ model: Greece, Malta and Cyprus. While Spain, Portugal 

and Italy experience an improvement of the accuracy. In another European region like the western 

region, with the countries, France, Belgium, Luxemburg, Austria, Germany, Denmark, United Kingdom, 

Ireland and Denmark, four countries experience an increase in error, and three show a decrease. 

Furthermore, metrics like GDP, population, or size do not exhibit correlation with error variation relative 

to the reference model version.   

No correlation is observed between the two model versions concerning public acceptance and 

heterogeneity of actors. An increase in the relative error in one model does not necessarily corresponds 

to an increase in the other model. Only when considering the combined models, the cumulative budget 

public acceptance & heterogeneity of actors’ model version, is a correlation seen between the individual 

model versions. This means that if both single model versions experience an error increase, the combined 

model will also experience an increase, and vice versa. However, when one model shows an increase 

and the other model (so the public acceptance model or the heterogeneity of actors’ model) a decrease, 

it remains uncertain whether the cumulative budget public acceptance & heterogeneity of actors’ model 
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version will exhibit an increase or decrease in error. This uncertainty is exemplified by the diverse results 

observed in Portugal, Malta, Luxemburg, Estland, Spain, Cyprus, Austria. 

For the different societal factors model versions, the characteristics of the relative error are shown in 

Figure 28. Figure 28 illustrates the relative error in comparison to the reference model version of the 

three societal models. Negative values indicate that it improves the model (therefore lowering the error).  

 

Figure 28 scatter plot of the relative error in comparison to the reference model version of the three societal 

models. Negative values indicate that it improves the model (therefore lowering the error).  

For the heterogeneity of actors’ model version, Bulgaria, Cyprus and Malta have a big decrease in the 

error relative to the reference model version, whereas Greece and Ireland have an increase in the error 

relative to the reference model version. The heterogeneity of actors’ model generated results for 26 

countries and 25 out of 26 countries gave a percentage point difference which is non-zero. The mean 

value percentage point relative to the reference model version is -0.368 percentage points. The standard 

deviation across all countries calculated via the MGA is quite high as the average standard deviation 

was 2.77 percentage points. As one can see this standard deviation is high in comparison to the mean 

value lies around zero, implying that the error can increase or decrease. Therefore, it is hard to conclude 

if this model implementation really improved the overall accuracy regarding the model outcomes.  

For the public acceptance model version, only 13 countries out of the 24 gave a relative error change 

which was non-zero. The countries which experienced the biggest improvement in the error are Portugal 

and Austria, whereas Cyprus and Ireland have a big increase in the error. The mean value for the 13 

countries is 0.377 percentage points. However, as the sample size is small the error width of the near-

optimal solution is high with a standard deviation of 3.68 percentage points. Regarding this mean error 

and standard deviation, it is unclear if the implementation of the public acceptance in this way enhanced 

the model as a whole.  
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For the combination of the public acceptance & heterogeneity of actors’ model version 22 out of the 22 

countries provided non-zero relative error change. The countries which have the biggest improvements 

are Austria (-5.5 percentage points), Bulgaria (-6.4 percentage points) and Portugal (-5.25 percentage 

points), whereas Cyprus (7.0 percentage points), Greece (7.0 percentage points) and Ireland (5.8 

percentage points) have the biggest increase in the error. The mean relative error value for the 22 

countries is -0.3388 percentage points. The width of the near-optimal solutions is characterized by a 

relatively high standard deviation of 3.5 percentage points. As the mean value is again around zero, the 

standard deviation indicates that it is hard to tell if the relative error will in or decrease.  
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5 Discussion and future work 
 

With the incorporating of societal aspects into our electricity system optimisation model, we conducted 

a performance accuracy comparison across five model versions: the reference model version, the yearly 

budget public acceptance model, the cumulative budget public acceptance model, the heterogeneity of 

actors’ model and the cumulative budget public acceptance & heterogeneity of actors’ model. These 

models are compared against the real-world or the reference model version across 31 countries over the 

period of 1990-2019. Our primary objective is to implement these model versions and compare it to 

gather information about the improvements that could be made for all countries. Here we try to answer 

the research questions phrased in Section 1.3 and discuss future work. 

The integration of public acceptance is constructed by implementing a country specific CO2 constraint 

on a cumulative and on a yearly basis. This constraint is altered with the public opinion on climate 

change. The differences in climate change opinion between countries is minimal and the value is quite 

high (around 7 on a scale from 1-10), therefore the differences in CO2 constraint remains small. The 

CO2 constraint led countries to limit their carbon emissions and transition towards more generation of 

gas, onshore wind and nuclear power plants. In terms of model accuracy compared to the reference 

model version, countries where the CO2 emissions stay low and the reference model version increasing 

the CO2 emissions the error is greatly reduced. These countries follow the European target quite well 

and therefore the constraint effectively matches these countries’ CO2 emissions. However, for other 

countries where the actual CO2 constraint did not follow the European target, the constraint increased 

the error. As last there were six countries where the constraint was not active at all. Consequently, the 

overall performance of the cumulative budget public acceptance model version did not exhibit a 

consistent enhancement across all countries. 

The implementation of heterogeneity of actors involved the incorporation of differentiated WACC 

values based on technology and countries from 2009 until 2019. The implementation of these 

differentiated WACCs aims to introduce a variable discount factor, as opposed to the uniform discount 

factor utilized in the reference model version. This adjustment leads to greater diversity across various 

technologies and results in distinct electricity mixes. However, the overall impact appears relatively 

modest, as shown in Figure 20, where most countries do not show any major outliers. Overall, there is 

more generation of onshore wind, nuclear and oil whereas PV and gas generation is less prevalent. This 

implies that the overall competitiveness of onshore, nuclear and oil is higher with the implementation 

of differentiated WACCs. Nonetheless, the overall model performance does not surpass that of the 

reference model version as only half of the countries observed a reduction in error, while the other half 

experienced an increase in error. 

Across the three model versions there remains uncertainty about the improved accuracy of the models 

in comparison to the reference model version. For the implementation of heterogeneity of actors and the 

implementation of public acceptance the improvement was for only 50% of the countries where the 

other 50% of the countries experienced an increase of the relative errors. It is hard to pinpoint one 

‘superior’ model which greatly outperforms the other ones. However, the heterogeneity of actors’ model 

version has a slight edge, as this model had the least number of big outliers and showed a correlation 

between the reference model and the heterogeneity of actors’ model version regarding the error and the 

mean value plus the standard deviation provided the best results. It still shows there is room for 

improvement when implementing societal factors into electricity optimisation models, as countries like 

Poland see a substantial decrease of the error when implementing heterogeneity of actors, implying that 

differentiating WACCs has a positive influence on the models outcome, which is consistent with (Mier 

& Azarova, n.d.; Trutnevyte, 2016). 
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The range of near-optimal solutions across the four model versions remained similar to the range of 

near-optimal solutions which is constructed on the reference model version. Only the case for Malta for 

the heterogeneity of actors’ model experienced a substantial decrease in the variance of near-optimal 

solutions. The reduction in variance can be attributed to Malta's small size, where a single investment 

can significantly impact the model. The two MGAs constructed both with 15% cost slack and one with 

15% CO2 slack showed similar results across all models. The MGA with the highest flexibility (the one 

with the CO2 slack) is preferable. This is evident in its representation of greater flexibility in line with 

the cumulative CO2 emissions and its ability to better capture the underlying uncertainty. As the error 

margin did not significantly reduce when imposing the CO2 slack, there are other factors which limit a 

better representation of the model. Using the cumulative budget public acceptance model countries such 

as Portugal and Greece demonstrate that the cost-optimal solution yields the minimal error compared to 

the MGA results. This observation suggests that there are additional limiting factors that hinder the 

model from achieving greater accuracy. 

For future work, it will be intriguing to explore the impact of stricter CO2 emissions targets for all 

countries as Figure 19 illustrates that there is still potential for improvement when imposing more 

stringent CO2 constraints. Notably, the incorporation of the mean survey data in the CO2 constraint did 

not yield improvements, as the variations between countries were minor, and there seems to be no 

correlation between public opinion and the reduction in CO2 emissions. Consequently, this aspect can 

be omitted, and the focus can be solely directed towards the European Union's targets, which will serve 

as a baseline constraint for countries. Furthermore, it would be worthwhile to investigate the potential 

implementation of a carbon tax or a European trading system (ETS) in a new model version instead of 

an upper emissions constraint. At first, it’s essential to estimate the carbon tax required to meet the CO2 

emissions targets. Subsequently, a carbon tax can become an effective tool for reducing emissions by 

imposing costs on emitters. This can generate revenue, which can be invested in green technologies such 

as PV and onshore wind, providing additional funding for greener solutions providing positive feedback. 

This approach aligns more closely with the European trading system (ETS), which is not precisely a 

carbon tax but rather a pricing mechanism for CO2 emissions between companies, providing the 

incentive for companies to reduce emissions. Additionally, with the help of MGA more political 

desirable solution can be presented, even if they entail a higher cost for the overall electricity system.  

 

There are more ways of incorporation public acceptance into electricity optimisation models. While our 

focus has been on climate change considerations in public acceptance, it’s essential to recognize that 

public acceptance encompasses a broader spectrum of issues, including not in my backyard (NIMBY) 

(Carley et al., 2020; Wolsink, 2006) and market acceptance. To address the NIMBY aspect more 

effectively, enhancing regional spatial resolution is key. A better regional spatial resolution will help to 

investigate how overall opinions and local opinions deviate and can be implemented in the model. Local 

acceptance can be incorporated through surveys, where the capacity of renewable power plants is 

determined by survey outcomes. Additionally, analysing general demographics such as gender, age, 

income and education level can help to estimate overall public opinion regarding renewable energy 

projects (Bergquist et al., 2022). These expanded approaches to public acceptance can significantly 

enrich the modelling process. 

 

Further research could focus on generating more historical data about the WACC values before 2009 

and explore alternative methods of implementing WACC in an ESOMS that account for the distinction 

between WACC values and the discount rate. Since, the lack of significant improvements from the 

heterogeneity of actors may be attributed to the limited data available, spanning only from 2009 to 2018 

and the values from 2009 are implemented for 1990 until 2009. This means that this value for 2009 has 

a large impact on the model’s electricity mix. Further, historical WACC values are difficult to prolong 
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to the future as large events like wars or oil crises could happen. This implies potential inaccuracies in 

WACC values before that period. Furthermore, it is essential to recognize that WACC values themselves 

are subject to uncertainties, and certain assumptions regarding these values could introduce errors into 

the model. Supplementary, both differences in WACCs between technologies and countries is explored 

at the same time, but it would be interesting to only implement one of these factors at the time.  

 

There are multiple approaches for integrating heterogeneity of actors into ESOMs as demonstrated in 

the study by Tash et al., (2019). From this research more sophisticated methods for incorporating 

heterogeneity of actors, specifically different market players within countries can be explored. Through 

the analysis and differentiation of these various market participants, researchers can extract valuable 

insights regarding which actors exert the most significant influence on the energy system. This approach 

would provide a deeper understanding of the dynamics at play within each country's energy landscape 

and help identify strategies for optimizing the energy system based on the behaviour and decisions of 

these diverse market participants.  

 

The uncertainty surrounded by the cost optimal solution could be improved in the future. Now, only 

structural uncertainty analysis has been conducted, but parametric uncertainty also has an influence in 

the model’s output. D-EXPANSE provides the possibility to do MCA (Monte Carlo analysis) to get a 

quantitative measure of risk in the model’s outputs, a combination of MCA and MGA can be conducted 

in the same way as Li & Trutnevyte, (2017). For the uncertainty margin there appears to be no difference 

between the MGAs with CO2 slack 0 % and one with CO2 slack 15%, this is intriguing as the latter 

would have more room to generate more near-optimal solutions and thereby have the possibility for a 

larger error margin. Right now, this is not the case implying that the CO2 emissions constraint is not the 

limiting factor in exploring near optimal solutions. In addition, more MGA runs can be exploited to 

obtain a greater accuracy regarding the uncertainty range around the cost optimal solution as for now it 

is with 20% quite large. In certain countries such as Portugal, the cost optimal solution (so the solution 

which the model presents) generates the lowest error, even when there is greater potential for cost 

increase within the MGA. This suggests the presence of other limiting factors (like parametric 

uncertainty) impacting the model’s accuracy in modelling the real-world scenario. Nevertheless, this has 

its limitations as the model assumes that every parameter is known for the next 30 years. In real world 

scenarios, numerous variables can undergo significant changes, such as shift in demand and fluctuations 

in technology prices (Trutnevyte, 2016; Wen et al., 2022).  
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6 Conclusion 
 

In this study, we have examined the impact of incorporating the two societal factors, public acceptance 

and heterogeneity of actors, within the D-EXPANSE model for 31 European countries over the period 

of 1990-2019. We developed four model versions from the original D-EXPANSE model, with the 

integration of public acceptance, heterogeneity of actors and a combination of both these factors. The 

public acceptance model version is constructed from the D-EXPANSE model by country specific 

limiting the CO2 emissions with regard to public sentiment about climate change using a survey from 

2009 until 2021 in combination with European targets. Our findings regarding the integration of public 

acceptance reveal a decrease in the error for 9 out of the 18 countries compared to the reference model 

version. To assess the stringency of our CO2 limits, we conducted a sensitivity analysis with 25 

alternative constraints. Our findings indicate that for 11 out of the 18 countries analysed a more stringent 

constraint than the one implemented would have led to a decrease in error, and would thereby enhance 

the accuracy of our model version. In that regard our constraint on the CO2 emissions was too high and 

for future work a stricter CO2 constraint would enhance the results. 

 

Heterogeneity of actors is implemented in the original D-EXPANSE model with differentiated weighted 

average cost of capital (WACCS) across different technologies and countries with the data ranging from 

2009 until 2018. In the original D-EXPANSE model a uniform discount factor of 3.5% was used. The 

uniform discount value is replaced with varied WACCs per technology and country to reflect the 

heterogeneity of actors. The results show that 13 out of the 26 countries experienced an improvement of 

the error compared to the reference model version, with a strong correlation between the error of the 

reference model and the error of the heterogeneity of actors’ model. For the implementation of both 

societal factors, so public acceptance model version and the heterogeneity of actors’ model version 12 

out of the 22 countries have a decrease of the error compared to the reference model version.  

 

Overall, drawing definitive conclusions from the comparison of the three models with the reference 

model version proves challenging. None of the models, through this hindcasting exercise, provide 

convincing proof for the superiority of one model over the others. All models show a performance 

increase for only around half of the countries or slightly above half, compared to the reference model, 

while the other countries it increased the error. With the public acceptance model having more 

possibilities to decrease the error as is seen by the sensitivity analysis which was conducted.  

 

The literature review conducted in Section 2 emphasizes that both incorporating actor heterogeneity and 

accounting for public acceptance can significantly enhance model performance. Omitting these factors 

in future energy system optimisation models may lead to increased discrepancies in future analysis. 

Although the results demonstrate that the implementation of one or both societal aspects could lead to a 

decrease in error for a specific country by more than 7.5 percentage points, it is also noted that the error 

for a specific country could increase by more than 9 percentage points, compared to the reference model. 

Despite the inconclusive results, the literature suggests the importance of incorporating societal factors 

into energy system optimisation models. Because of the literature study societal aspects research needs 

to persist, and alternative approaches for the incorporation of societal factors should be explored, 

although the current thesis does not convincingly demonstrate an improvement in model accuracy 

through these specific implementations.  
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Furthermore, it remains essential to present not just a single solution but a spectrum of multiple potential 

electricity mixes, with a slight increase in costs. Providing multiple solutions demonstrates the diverse 

outcomes that could be achieved with a modest budget increase. Providing this range of possibilities 

enables policymakers to make better-informed decisions that can be more publicly accepted, even with 

a 10 percent higher price, instead of having only one electricity mix, with the lowest costs. The other 

solutions can have higher societal acceptance factors and therefore increase the transition to a more 

sustainable word. In the ongoing effort to combat climate change, societal factors become increasingly 

critical as we integrate more renewable energy sources into our electricity sector. These sources are 

particularly influenced by societal considerations. Therefore, it is valuable for modelers to explore ways 

to incorporate various societal factors on a country-specific and subnational scale. Policymakers use the 

framework provided by the optimisation model to make decisions about energy-related policies. With 

the right model, they can significantly enhance and smoothen the transition to a more sustainable world. 

 

To conclude, this research project integrated two key societal factors, namely public acceptance and 

actor heterogeneity, into the D-EXPANSE model. The objective was to examine the influence of societal 

factors on energy system optimization models and assess how their inclusion can enhance model 

accuracy. Existing literature underscores the importance of integrating societal factors into Energy 

System Optimization Models (ESOMs), especially in the context of the ongoing shift towards a more 

greener electricity mix. However, our research did not conclusively demonstrate a significant 

improvement in the accuracy of the model with the inclusion of societal factors. Despite this, the thesis 

makes a noteworthy contribution by demonstrating two distinct approaches to incorporating societal 

factors into an ESOM. Additionally, it highlights that the integration of modeling to generate alternatives 

(MGA) can lead to improved model accuracy and present more politically desirable solutions, with only 

a marginal increase in costs. These findings suggest potential directions for other modelers to explore 

alternative forms of incorporating societal factors to enhance model accuracy. 
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Own reflection 
 

In reflecting on my thesis journey, it becomes evident that it has been a very educational experience. 

This process has underscored the importance of structure in my work, the efficiency of my code, and 

the prompt resolution of any issues that may arise. I have come to realise that it is better to address 

problems at their root rather than opting for temporary workarounds. I have observed a notable 

improvement in my proficiency with Python, particularly in handling pandas’ data frames, and a 

deepening of my understanding of different models. Hands on experience with an optimisation model 

and reading about all the other models gave me valuable insights. The optimisation models are 

particularly interesting now, as I have read most papers about these models, and it is curious to see what 

other modellers assumptions are made in comparison to our own model. Further, I now approach 

research results with greater scepticism, delving more profoundly to understand the underlying factors 

rather than accepting them at face value. 

Contemplating what I would do differently, I recognize the significance of structured reading during the 

literature review. The initial lack of organisation in my reading approach resulted in the accumulation 

of less relevant papers. In the future, I intend to begin with comprehensive literature reviews to establish 

a solid foundation and structure. This strategy will assist in the early filtration and categorization of 

important materials, reducing unnecessary data accumulation and saving time. Furthermore, my 

exploration of various CO2 scenarios revealed that they often yielded minor differences. In hindsight, 

focusing on only one CO2 would have saved me a lot of computational time which could be attributed 

to something else. 

Challenges were an integral aspect of this journey. The initial implementation of the CO2 constraint, for 

instance, required a good understanding of the optimisation model and the Pyomo language. It was a 

trial-and-error process, and it took time to fully knew how it worked. However, as I started to better 

understand the optimisation model, the task of modifying the model became easier. Furthermore, after 

the initial implementation of the yearly budget public acceptance model, adjusting the other models 

proved to be significantly more straightforward. Another significant challenge lay in incorporating the 

heterogeneity of actors and accounting for public acceptance. While valuable insights were gained from 

discussions with colleagues, it became evident that certain aspects were either infeasible or too time-

consuming to be practical.  
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Appendix 
 

In Figure 29, Norway’s CO2 emissions from 1990 until 2019 are presented, with the actual data and 

the reference modelled data. 

 

Figure 29 yearly CO2 emissions of Norway, relative to the CO2 emissions in 1990. With in red the reference model version and 
in yellow the actual CO2 emissions. 

One can see that compared to the levels of 1990 the CO2 emissions have heavily increased. This 

increase in CO2 emissions is largely due to the amount of oil which is found in Norway’s territory 

from 1990 onwards (IEA, 2022). 
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The error of the yearly budget public acceptance model version against the reference model version is 

shown in Figure 30. 

 

 
Figure 30 public acceptance model version with a yearly budget constraint models the reference model. 

Countries that improved the model outcomes are in green and under the diagonal line. Countries which are red 

experienced an increase in the error compared to the reference model version. 

As one can see is the yearly budget public acceptance model, shows an improvement of 12 countries 

(AUT, BGR, CZE, DEU, HUN, ITA, LUX, POL, PRT, SVK, HRV and LTU) where for 11 countries 

(BEL, CYP, DNK, ESP, EST, GRC, IRL, LVA, MLT, NLD, SVN) it worsened the error. This is 

consistent with the cumulative budget public acceptance model version.  
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The error for the cumulative budget public acceptance model version against the yearly budget public 

acceptance model version is shown in Figure 31. 

. 

 

 
Figure 31 public acceptance model with two versions. The yearly budget constraint version on the x-axis, and 

the surface budget constraint on the y-axis. If the country is green the surface budget constraint generates a 

lower error, whereas if the country is red the yearly budget constraint generates a lower error. The grey 

countries are where the difference is zero. 

 

There are almost no outliers between the two-model version, implying that it does not matter so much 

which model you chose. There are ten countries which show a decrease in the error for the cumulative 

budget public acceptance model, and 11 countries which show a (slight) decrease in the error for the 

yearly budget public acceptance model. Furthermore, there are 3 countries which have no difference 

regarding the reference model version or these two model versions. 
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Four scenarios 
When looking at the survey data, an approach was constructed with four scenarios where each of the 

four scenarios calculated the mean value in a separate way. In this way we tried to access the 

sensitivity of the survey. The four scenarios constructed are: linear, middle, low and high. Each of 

these scenarios adopts a slightly different scaling factor for translating survey data scores into 

constraints, as illustrated in Table 4. The score the person in the survey has given is translated to the 

adjusted score per scenario.  

Table 4 Scores of the survey and the representative scores given by each of the four scenarios. 

 

When making the constraint for the public acceptance model there was already a tiny difference between 

the 4 scenarios but looking across the 4 scenarios outputs from the model, they are almost identical in 

the deployment of capacity and generation. To illustrate the differences between the four scenarios the 

relative error in relation to the reference model version across countries is calculated as follows:  

𝑅𝐸 =  
𝑦 − 𝑅𝑀

𝑅𝑀
 

Here, RM represents the reference model, y is the public acceptance model version output and RE stands 

for the relative error. This approach simplifies the assessment of whether the CO2 constraint led to model 

enhancement (indicated by a negative value, decreasing the error). The result is shown in Figure 32, as 

illustrated across the four models there is no significant difference.  

 
Figure 32 Heatmap for the relative error to the reference model across four different CO2 scenarios. 

In the end, the difference between the four scenarios was so small that this is left out of further research 

and the middle scenario is chosen.  

 

 

Scenarios Lower 

limit 

Not a serious problem A fairly 

serious 

problem 

a very serious problem Upper 

limit 

Score from 

survey 

1 2 3 4 5 6 7 8 9 10 

Linear 0 2 3 4 5 6 7 8 9 10 

Middle 0 2.5 2.5 2.5 5 5 7.5 7.5 7.5 10 

Low 0 1 1 1 4 4 7 7 7 10 

High 0 3 3 3 6 6 8 8 8 10 
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Figure 33 Cumulative CO2 emissions for Portugal. The four different CO2 scenarios are shown as well as the range of the 

two different MGA's. Further, the actual CO2 emissions, the reference model output, and the cumulative budget public 

acceptance model output are shown. 

 

 

For the group of Hungary in Table 3 an example of the cumulative CO2 emissions across four different 

scenarios is shown in Figure 34 for the case of Germany. 
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Figure 34 Cumulative CO2 emissions for Germany. The four different CO2 scenarios are shown as well as the range of 

the two different MGA's. Further, the actual CO2 emissions, the reference model output, and the cumulative 

budget public acceptance model output are shown. 

 

 

Here one can clearly see that all the three MGA performances overlap. This is due to that there is no 

limiting factor of the CO2 constraint. This means that the three models are the same meaning that the 

three MGAs will overlap. 
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Figure 35 The relative error in comparison to the real-world, with the cost optimal cases across (in red) four 

different scenarios. As well as different MGA runs (75 per scenario, 200 for the reference model), two different 

amounts of CO2 slack 0% and 15%, with both 15% cost slack. 

 

Further, looking at the differences between the four scenarios, the cost optimal runs and the MGA 

performances a couple of things stand out. First, there is almost no difference in the deployment of 

CO2 emissions for the cost optimal run for the cumulative budget public acceptance model across all 

four scenarios. Secondly, the MGA range around the cumulative budget public acceptance model 

remains similar across all four scenarios. Thirdly, analysing the results when calculating the relative 

error to the real world, there is again no notably difference in the cost optimal runs. The relative 

differences in the error are so minor they appear to be the same. 
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