

bio-host glass

An upcycling foam glass, optimized for bioreceptive applications in the urban environment.

Green & blue network expansion

Outer-dike urban districts

Inner-dike urban districts

Compact city

Vision

Gains

12–24% higher stormwater retention than vascular or medium only roofs.

Definition of bioreceptivity

'ability of the material to be colonized by microorganisms'. (Guillitte, 1995)

Lichens and mosses forming a diverse biofilm on stone.

Conditions for bioreceptivity

Neutral pH

Environmental < > Material-focused

Glass waste as raw material

Glass Production per sector, Glass Alliance, 2021

Glass Waste per sector, Glass Alliance, 2021

ARUP, 2018.

Glass waste as raw material

Bristogianni T., 2019.

Diagram inspired by Linear and Circular process of float glass, 2020, originally from DeBrincat & Babic.

How can porous glass be manufactured out of glass waste to obtain bioreceptivity and which are the possible applications for this new material?

Research scales

Testing & experimenting process

Microstructure goal

Literature evidence

Open-porous glass-foams

Eggshells as foaming agent

Porosity gradient

Tested Parameters

Glass waste & foaming additives

Heating schedule

- Top Temperature
- Dwell time at Top temp.
- Cooling rate

Cullet / powder

- Granule size
- Weight percentages

Mould shape capabilities

Recipe & Production variables tested

Main Ingredient Foaming Agent Other additives soda-lime glass Calcite (caco₃) CaHPO₄ (for crystallization) Borosilicate (B₂O₃) dolomite (CaMg(CO₃)₂) vitrified bone ash CRT glass carbon black fly ash Cyclon mix* eggshells** concrete special black glass vermiculite

1. Recipe Test

optimization for max usage of waste

2. Process

optimization of pore structure & energy

^{*} Cyclon mix: by-product of recycling glass bottles, mainly containing SLS glass but heavily contaminated

^{**} egg-shells contain 95% of CaO, making them worthy of research for glass-foams

Samples

Microstructure Types

Process of testing Hydraulic Properties (***)

surface

Quick-testing for Permeability

Frosting Resistance

Type 01

Type 02

Type 03

Type 04

Moss growth on most promising reci-

Moss growth on most promising reci-

Moss growth on most promising recipes

Compressive strength test to assess its suitability

Compressive strength test to assess its suitability

Compressive comparison

Material Findings

01. Higher top temperatures

Material Findings

01. Higher top temperatures

02. Fast cooling & dwell time at top temperature

Material Findings

01. Higher top temperatures

02. Fast cooling & dwell time at top temperature

03. Combination of different particle sizes

according to glass sources

Increased Porosity network

bio-host glass catalogue

Meso-scale design & Mould experimentaion

raw material

tile's back surface (after foaming)

mould shape

3d-printed pattern
designed by A. Niarchou.

mixture (before foaming)

Facade tile mould-standardization

Assembly Process | Standard cladding system connections

02. Tile positioning

Mwww

tile side-view for interlocking shape with the system

Assembly Process | Lego-like connections by BILDA

01. Supporting framework

02. Tile positioning

tile top-view for the precicion slots

Assembly Criteria

Re-used & recycled parts

Minimum material usage

Data-driven design strategy for the macro-scale

Appendix - Moss growth results

3rd week

Rating of Specimens

Rating of Specimens

Rating of Specimens

