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Summary

The Marchenko method offers a new perspective on eliminating internal multiples.
Instead of predicting internal multiples based on events, the Marchenko method for-
mulates an inverse problem that is solved for an inverse transmission response. This
approach is particularly advantageous when internal multiples generate complicated
interference patterns, such that individual events cannot be identified.

Moreover, the retrieved inverse transmissions can be used for a wide range of
applications. For instance, we present a numerical example of the single-sided homo-
geneous Green’s function representation in elastic media. These applications require
a generalization of the Marchenko method beyond the acoustic case. Formally these
extensions are nearly straightforward, as can be seen in the chapter on plane-wave
Marchenko redatuming in elastic media. Despite the formal ease of these genera-
lizations, solving the aforementioned inverse problem becomes significantly more
difficult in the elastodynamic case.

We analyze fundamental challenges of the elastodynamic Marchenko method.
Elastic media support coupled wave-modes with different propagation velocities.
These velocity differences lead to fundamental limitations, which are due to differen-
ces between the temporal ordering of reflection events and the ordering of reflectors
in depth. Other multiple-elimination methods such as the inverse scattering series
encounter similar limitations, due to violating a so-called monotonicity assumption.
Nevertheless, we show that the Marchenko method imposes a slightly weaker form
of the monotonicity assumption because it does not rely on event-based multiple
prediction.

Another challenge arises from the initial estimate that is required by the Mar-
chenko method. In the acoustic case, this initial estimate can be as simple as a direct
transmission from the recording surface to the redatuming level. In the presence
of several wave-modes, an acoustic direct transmission generalizes to a so-called
forward-scattered transmission, which is not a single event but a wavefield with a
finite temporal duration. Former formulations of the elastodynamic Marchenko me-
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thod require this forward-scattered transmission as an initial estimate. However, in
practice, this initial estimate is often unknown.

We present an alternative formulation of the elastodynamic Marchenko method
that simplifies the initial estimate to a trivial one. This approach replaces the
inverse transmission, which is often referred to as a focusing function, by a so-
called backpropagated focusing function. This strategy allows us to remove internal
multiples, however, unwanted forward-scattered waves persist in the data. This
insight suggests that forward-scattered waves cannot be predicted by the Marchenko
method: either they are provided as prior knowledge, or they remain unaddressed.

The remaining forward-scattered waves may be eliminated by exploiting minimum-
phase behavior as additional constraint. This approach is inspired by recent devel-
opments of the acoustic Marchenko method that use a minimum-phase constraint to
handle short-period multiples. Generalizing this strategy to the elastodynamic case
is challenging because wavefields are no longer described by scalars but by matrices.
Hence, we start by analyzing the meaning of minimum-phase in a multi-dimensional
sense. This investigation illustrates that the aforementioned backpropagation turns
the focusing function into a minimum-phase object. This insight suggests that, from
a mathematical view point, the backpropagated focusing function can be seen as a
more fundamental version of the focusing function. Moreover, we present attempts
of using this property as additional constraint to remove unwanted forward-scattered
waves.

Given the remaining theoretical challenges of the elastodynamic Marchenko me-
thod, we analyze the performance of an acoustic approximation. We evaluate the
effect of applying the acoustic Marchenko method to elastodynamic reflection data.
For this analysis, we look for geological settings where an acoustic approximation
could be impactful. The Middle East is a promising candidate because, due to its
nearly horizontally-layered geology, elastic scattering effects are weaker for short-
offsets, which are the main contributors to structural images. Therefore, we con-
struct a synthetic Middle East model based on regional well-log data as well as
knowledge about the regional geology. In contrast to field data examples, the syn-
thetic study allows us to include or exclude elastic effects. Hence, we can inspect
the artifacts caused by an acoustic approximation. The results indicate that the
acoustic Marchenko method can be sufficient for multiple-free structural imaging in
geological settings akin to the Middle East.



Samenvatting

De Marchenko methode biedt een nieuw perspectief op het elimineren van interne
meervoudige reflecties (zgn. multiples). In plaats van het voorspellen van interne
meervoudige reflecties op basis van individuele reflectie aankomsten (zgn. events),
formuleert de Marchenko methode een inversie probleem dat wordt opgelost voor een
geïnverteerde transmissierespons. Deze benadering is buitengewoon geschikt wan-
neer interne meervoudige reflecties gecompliceerde interferentiepatronen genereren,
zodat individuele aankomsten niet geïdentificeerd kunnen worden.

Daarnaast kunnen de verkregen geïnverteerde transmissies worden gebruikt voor
een breed scala aan toepassingen. We presenteren bijvoorbeeld een numeriek voor-
beeld van de enkelzijdige homogene Greense functie representatie in elastische me-
dia. Deze toepassingen vereisen een generalisatie van de Marchenko methode die
verder gaat dan de akoestische situatie. Formeel zijn deze uitbreidingen bijna trivi-
aal, zoals te zien is in het hoofdstuk over Marchenko redatumen met vlakke golven
in elastische media. Ondanks het feit dat deze generalisaties formeel gemakkelijk
zouden moeten zijn, wordt het oplossen van het bovengenoemde inversie probleem
aanzienlijk moeilijker in het elastodynamische geval.

We analyseren fundamentele uitdagingen van de elastodynamische Marchenko
methode. Elastische media ondersteunen gekoppelde golfmodi met verschillende
voortplantingssnelheden. Deze snelheidsverschillen leiden tot fundamentele beper-
kingen, die het gevolg zijn van verschillen tussen de temporele volgorde van reflectie
aankomsten en de volgorde van reflectoren in de diepte. Andere eliminatiemethoden
voor meervoudige reflecties, zoals de inverse verstrooiïngsreeks (ook bekend als ISS),
ondervinden vergelijkbare beperkingen vanwege het schenden van een zogenaamde
monotoniciteitsveronderstelling. Desalniettemin laten we zien dat de Marchenko
methode een iets zwakkere vorm van de monotoniciteitsveronderstelling oplegt, om-
dat deze niet afhankelijk is van een op aankomsten gebaseerde voorspelling van
meervoudige reflecties.

Een andere uitdaging komt voort uit de initiële schatting die de Marchenko me-
thode vereist. Deze initiële schatting kan in het akoestische geval erg simpel zijn.
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Bijvoorbeeld, de directe transmissie van het opname-oppervlak naar het redatumen
niveau kan hiervoor gebruikt worden. In de aanwezigheid van verschillende golfmodi,
generaliseert een akoestische directe transmissie naar een zogenaamde voorwaarts
verstrooide transmissie, dus niet een enkele aankomst maar een compleet golfveld
met een eindige tijdsduur. Eerdere formuleringen van de elastodynamische Mar-
chenko methode vereisen deze voorwaarts verstrooide transmissie als een initiële
schatting. In de praktijk is deze initiële schatting vaak niet bekend.

We presenteren een alternatieve formulering van de elastodynamische Marchenko
methode die de initiële schatting vereenvoudigt tot een triviale. Deze benadering
vervangt de inverse transmissie, ook wel bekend als een focuseringsfunctie, door een
zogenaamde teruggepropageerde focuseringsfunctie. Met deze strategie kunnen we
interne meervoudige reflecties verwijderen, maar ongewenste voorwaarts verstrooide
golven blijven in de data aanwezig. Dit inzicht suggereert dat voorwaarts verstrooide
golven niet kunnen worden voorspeld met de Marchenko methode: ofwel ze worden
verstrekt als voorkennis, of ze blijven achterwege.

De resterende voorwaarts verstrooide golven kunnen worden geëlimineerd door
minimum-fase als extra voorwaarde op te leggen. Deze benadering is geïnspireerd op
recente ontwikkelingen van de akoestische Marchenko methode die een minimumfa-
sebeperking gebruiken om meervoudige reflecties met een klein onderling tijdverschil
te verwerken. Het generaliseren van deze strategie naar het elastodynamische ge-
val is een uitdaging omdat golfvelden niet langer worden beschreven door scalairen,
maar door matrices. Daarom beginnen we met het analyseren van de betekenis van
minimumfase in een multidimensionale betekenis. Dit onderzoek illustreert dat het
bovengenoemde terugpropageren de focuseringsfunctie verandert in een object met
minimale fase. Dit inzicht suggereert dat, vanuit een wiskundig oogpunt, de terugge-
propageerde focuseringsfunctie kan worden gezien als een meer fundamentele versie
van de focuseringsfunctie. Bovendien presenteren we pogingen om deze eigenschap
te gebruiken als extra voorwaarde om ongewenste voorwaarts verstrooide golven te
verwijderen.

Gezien de resterende theoretische uitdagingen van de elastodynamische Mar-
chenko methode, analyseren we de mogelijkheden van een akoestische benadering.
We evalueren het effect van het toepassen van de akoestische Marchenko methode
op elastodynamische reflectie data. Voor deze analyse zoeken we naar geologische
gebieden waar een akoestische benadering kan voldoen. Het Midden-Oosten is een
veelbelovende kandidaat omdat, vanwege de bijna horizontaal gelaagde geologie,
elastische verstrooiïngseffecten zwakker zijn voor data opgenomen door ontvangers
dichtbij de bron, die de belangrijkste bijdrage leveren aan structurele afbeeldingen.
Voor dit experiment construeren we een synthetisch Midden-Oosten model op basis
van boorputdata in de regio en kennis van de regionale geologie. In tegenstelling
tot studies met veld data, stelt de synthetische studie ons in staat om elastische ef-
fecten wel of niet mee te nemen. Daardoor kunnen we onbedoelde bijverschijnselen
inspecteren die worden veroorzaakt door onverklaarbare aankomsten. De resultaten
geven aan dat de akoestische Marchenko methode voldoende kan zijn voor struc-
turele beeldvorming zonder verstoring door meervoudige reflecties in geologische
omgevingen vergelijkbaar met het Midden-Oosten.
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1
Introduction

Multiple reflections can be considered as perverse forms of primary energy.

Jakubowicz, 1998

Our society relies on a wide range of geotechnical operations. These activities
include the exploration of natural resources such as hydrocarbon, water or heat
reservoirs, the storage of nuclear waste and CO2, subsurface monitoring, etc. Often
images of the subsurface are used to identify suitable locations for the aforemen-
tioned applications. By developing more accurate imaging methods, we can con-
tribute to localize target areas and to increase the safety and the efficiency of these
operations.

Imaging workflows start with seismic experiments, which allow us to inspect
the interior of the Earth. Often in those experiments, an active source emits a
wavefield that interacts with the medium (i.e. Earth) via propagation and scattering.
The history of this interaction is encrypted in the response of the medium. In
practice, the response is not recorded on an enclosing boundary, such that extracting
information from the recordings can become extremely challenging. In many cases,
the recordings are limited to reflection data, i.e. sources and receivers are located
at the surface of the Earth.

The term reflection data describes a wide range of acquisition designs. In the
early days, only a single or very few measurements were recorded per seismic experi-
ment. These recordings consist of individual channels, or time series, that represent
a set of 1D responses of the 3D subsurface. As a result, the respective seismic
processing tools usually rely on a 1D assumption, i.e. a horizontally-layered Earth
model. Considering that scattering effects beyond 1D are challenging for these ap-
proaches, it is no surprise that scattering interactions between different elastic wave
modes are even less well described.

Over the last decades, the quantity and the quality of reflection data have in-



2 Introduction

creased significantly. Since contemporary seismic surveys usually employ numerous
sources and receivers, reflection data no longer represent just a single channel but a
wavefield. Furthermore, modern acquisitions often record several components of the
wavefield such as pressure and particle velocity. These multi-component recordings
pave the way to also analyze elastic scattering effects. In parallel to the develop-
ments on the side of data acquisition, there has been a continuous development
of new seismic processing techniques that aim to extract as much information as
possible from the recorded data.

Modern seismic processing workflows can be divided into two major subprocesses.
Firstly, large scale (spatial) variations of the medium are estimated. This process
is often referred to as macro-velocity model building and relies on several tools
such as tomography [Sword, 1944; Dix, 1955; Billette and Lambaré, 1998], normal-
moveout analysis [Levin, 1971; Doherty and Claerbout, 1976; Sattlegger , 1978] and
full waveform inversion [Virieux and Operto, 2009].

Secondly, smaller scale (spatial) variations of the medium are typically analyzed
by migration-based techniques. These methods reconstruct the boundaries that
delineate changes in the medium parameters, in such a way, that the resulting
model is consistent with the reflection data, the macro-velocity model and the wave
equation [Schneider , 1978; Berkhout, 1982; Claerbout, 1985]. A key assumption
of traditional migration methods is a single-scattering approximation, i.e. it is
assumed that recorded waves are only reflected once [with exceptions such as full-
wavefield migration by Davydenko and Verschuur , 2017]. Hence, waves that are
reflected multiple times (=multiples) are treated as if they were reflected a single
time (=primaries), which leads to erroneous migration images.

Usually, there is a distinction between surface-related and internal multiples,
both of which can generate imaging artifacts. These multiple-related artifacts are
minor provided that: Either, the medium only scatters weakly, such that multiples
are negligible. Or, seismic velocity variations are sufficiently strong, and preferably
only increasing with depth. As a result, the normal-moveout of multiples is incon-
sistent with the macro-velocity model and only generates minor contributions to
the migration result. However, there are many geological settings where multiples
cannot be ignored and lead to severe migration artifacts. For example, in the Middle
East internal multiples form a severe problem because the geology is characterized by
sequential variations between high and low propagation velocities [El-Emam et al.,
2011]. Due to the importance of this issue, so-called multiple-elimination methods
are needed and have developed into an entire research field within geophysics.

The handling of multiples in seismic reflection data is a longstanding problem
[an overview is provided by Verschuur , 2013]. One of the first solution strategies has
been predictive deconvolution. This method is based on a 1D assumption, which
only in a few scenarios is reasonable, e.g. for the removal of multiples associated with
vertical propagation inside a water layer. With the appearance of multi-dimensional
acquisitions, wave-equation-based methods for multiple elimination came to light.

Firstly, there are methods for surface-related multiple removal. Early devel-
opments predict surface-related multiples via wavefield extrapolation, which subse-
quently are subtracted from the reflection data [Berkhout and de Graaff , 1982; Wig-



3

gins, 1988]. Later these model-driven approaches have been replaced by data-driven
methods. The latter ones include not only multiple prediction and subtraction
strategies [Verschuur et al., 1992], but also methods that suppress surface-related
multiples by sparse inversion [Lin and Herrmann, 2013]. All of these methods rely
on an estimate of the reflection coefficient of the surface, which particularly in the
marine case is often known.

Secondly, there are methods for the elimination of internal multiples. Typically
these methods do not require any information about the reflection coefficients in-
side the medium, but they often assume that surface-related multiples have been
removed. Methods such as the one by Jakubowicz [1998], or the inverse scattering
series [ISS, Weglein et al., 1997], predict internal multiples by combining triplets
of primaries. Subsequently, the predicted multiples are adaptively subtracted. By
applying this prediction-subtraction approach in a layer-stripping fashion, internal
multiples are recursively removed. In case of sparsely-distributed (non-periodic)
multiple generators, this strategy can perform well. However, as multiple gener-
ators become more numerous, challenges arise, e.g. when multiples coincide with
primaries. In this scenario, primaries may be erroneously removed by the adaptive
subtraction. Due to the layer-stripping approach, the removed primaries cannot be
used to predict multiples, i.e. the prediction error accumulates. An alternative is
provided by Marchenko-equation-based multiple-elimination methods, or briefly the
Marchenko method, which completely abandon the concept of triplet- i.e. event-
based multiple prediction.

The Marchenko method aims to remove internal multiples by retrieving an in-
verse transmission from the reflection response. The underlying multiple-elimination
strategy is as follows [Broggini and Snieder , 2012; Slob et al., 2014; Wapenaar et al.,
2014a]: First, the medium is partitioned in a shallower and a deeper part, which are
often referred to as overburden and target, respectively. Secondly, up- and downgo-
ing Green’s functions associated with measurements at the surface and at the depth
level, that separates the overburden from the target, are retrieved. Finally, all scat-
tering interactions with the overburden including internal multiples can be removed
via an Amundsen deconvolution of the retrieved Green’s functions [Wapenaar et al.,
2000; Amundsen, 2001].

The Green’s function retrieval represents the core of the Marchenko method.
Starting with reciprocity theorems, one can derive two representation theorems that
mutually relate the reflection response with the Green’s functions and the so-called
focusing functions. Since the Green’s and focusing functions are decomposed in
up- and downgoing components, they represent four one-way wavefields. Note that
the downgoing focusing function is the aforementioned inverse transmission through
the overburden. In practice, the two Green’s as well as the two focusing functions
are unknown. Hence, the two representation theorems form an underdetermined
inverse problem with two equations and four unknowns. A simple temporal mute
can be applied to the representation theorems that preserves the focusing functions
but partially removes the Green’s functions. In many cases, the remaining part
of the Green’s functions, i.e. the temporal overlap between Green’s and focusing
functions, is merely a direct wave through the overburden. This direct wave can
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often be estimated using a macro-velocity model, that can be obtained via the
above-mentioned methods for large scale medium characterization. As a result, the
two remaining unknowns, up- and downgoing focusing functions, can be retrieved
from the (partially muted) representation theorems. These modified equations form
a set of coupled Marchenko equations, which explains the name of this method.
During recent years, many aspects of the Marchenko method have been investigated.
In particular, there are already several field data examples [Ravasi et al., 2016;
Staring et al., 2018]. Moreover, modified formulations have been developed to:
alleviate the need for a macro-velocity model [van der Neut and Wapenaar , 2016],
account for dissipation [Slob, 2016; Cui et al., 2018], perform plane-wave imaging
[Meles et al., 2018], retrieve primary-only reflection data [Zhang and Slob, 2018],
handle short-period multiples [Dukalski et al., 2019; Elison, 2019], estimate the
source wavelet [Mildner et al., 2019a], monitor induced distributed double-couple
sources [Brackenhoff et al., 2019], etc.

The aforementioned developments of the Marchenko method only consider acous-
tic waves. Nevertheless, elastic media support compressional and shear waves, which
are mutually coupled. Hence, for accurate multiple-elimination, elastic effects must
be taken into account. This is particularly true when coupling between elastic modes
is strong. Early attempts of elastic multiple-elimination are presented by Ware and
Aki [1969]. However, their work is restricted to cases where the elastic modes are
decoupled (they considered vertically propagating waves in horizontally-layered me-
dia).

This thesis focuses on the extension of the Marchenko method to elastodynamic
waves. An early attempt of such an elastodynamic generalization has been made by
Da Costa Filho et al. [2014]. However, these authors did not consider the fact that
the elastodynamic Green’s and focusing functions share a temporal overlap that
is much more complicated than a direct wave. Since an estimate of this overlap is
required by the above-described Marchenko method, further developments are neces-
sary to make its elastodynamic extension an applicable multiple-elimination method.
It has been shown (prior to this thesis) that the overlap between the elastodynamic
Green’s and focusing functions consists of a so-called forward-scattered transmission
response [Wapenaar , 2014]. Although forward-scattered waves can also be generated
by acoustic media, they can often be ignored for sufficiently-simple geometries. In
contrast, coupled elastodynamic wave-modes can easily generate strong, and com-
plicated, interference patterns of forward-scattered waves, that significantly affect
the result of the Marchenko method [Wapenaar and Slob, 2015]. The objectives of
this thesis are to further investigate and to overcome the challenges of extending the
Marchenko method to elastic media. The thesis contains the following chapters:

• Chapter 2: Elastodynamic single-sided homogeneous Green’s function repre-
sentation.
In this chapter, a single-sided representation of the homogeneous Green’s func-
tion associated with sources and receivers inside an elastic medium is analyzed.
The theory part of this chapter follows from the theory presented by Wape-
naar et al. [2016a]. In contrast, the presented numerical examples of the
single-sided elastodynamic homogeneous Green’s function representation are
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unprecedented.

• Chapter 3: Elastodynamic Marchenko method using plane waves.
In this chapter, a Marchenko redatuming strategy using plane waves is de-
rived. The presented work is an elastodynamic extension of the plane-wave
Marchenko method by Meles et al. [2018]. This modification can be seen as
a combination of imaging with areal sources [Rietveld et al., 1992] and the
Marchenko method.

• Chapter 4: Comparison of monotonicity challenges encountered by the inverse
scattering series and the Marchenko de-multiple method for elastic waves.
This chapter compares the conditions required by the elastodynamic inverse
scattering series with those required by the elastodynamic Marchenko method.
Further, a modified Marchenko method is proposed that simplifies the com-
plicated initial estimate (the forward-scattered transmission) to a trivial one.
Next, we indicate a strategy that may eliminate not only internal multiples but
also unwanted forward-scattered waves. To proceed with the latter strategy a
so-called normal product must be uniquely factorized with a minimum-phase
condition, which is poorly understood beyond the scalar case.

• Chapter 5: Towards normal product factorization with minimum-phase con-
straint.
This chapter aims to solve the aforementioned problem of factorizing a normal
product. In general, this factorization problem is non-unique. To constrain
this problem, the generalization of minimum-phase behavior from scalars to
matrices is investigated. Furthermore, we present initial attempts of factoriz-
ing a normal product with a minimum-phase constraint.

• Chapter 6: Impact of mode conversions on structural imaging with Marchenko
de-multiple in geologies akin to the Middle East.
In this chapter, a synthetic case study is presented. For this analysis, synthetic
data are desirable because elastic effects can be included or excluded. This
study demonstrates that the acoustic Marchenko method can be sufficient to
reliably handle internal multiples that are generated by an elastic medium.
This work focuses on geological settings akin to the Middle East. The results
show that the acoustic Marchenko method can already be used as a power-
ful multiple-elimination method for elastodynamic reflection data acquired in
comparable geological settings.

• Appendices: An acoustic imaging method for layered non-reciprocal media
and Unified wave field retrieval and imaging method for inhomogeneous non-
reciprocal media.
In the appendices, the Marchenko method is modified to be applied in non-
reciprocal media. The author of this thesis developed software for wavefield
modeling in non-reciprocal media and conducted the presented numerical ex-
periments.
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Elastodynamic single-sided
homogeneous Green’s function
representation

Abstract The homogeneous Green’s function is the difference between an impulse
response and its time-reversal. According to existing representation theorems, the
homogeneous Green’s function associated with source-receiver pairs inside a medium
can be computed from measurements at a boundary enclosing the medium. How-
ever, in many applications such as seismic imaging, time-lapse monitoring, medical
imaging, non-destructive testing, etc., media are only accessible from one side. A
recent development of wave theory has provided a representation of the homoge-
neous Green’s function in an elastic medium in terms of wavefield recordings at a
single (open) boundary. Despite its single-sidedness, the elastodynamic homoge-
neous Green’s function representation accounts for all orders of scattering inside
the medium. We present the theory of the elastodynamic single-sided homoge-
neous Green’s function representation and illustrate it with numerical examples for
2D laterally-invariant media. For propagating waves, the resulting homogeneous
Green’s functions match the exact ones within numerical precision, demonstrating
the accuracy of the theory. In addition, we analyse the accuracy of the single-sided
representation of the homogeneous Green’s function for evanescent wave tunnelling.

Published as: Reinicke, C., and Wapenaar, K. (2019), Elastodynamic single-sided homogeneous
Green’s function representation: Theory and numerical examples, Wave Motion, 89, 245-264,
https://doi.org/10.1016/j.wavemoti.2019.04.001.
Note that minor changes have been introduced to make the text consistent with the other chapters.
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2.1 Introduction

The homogeneous Green’s function is the difference between an impulse response
and its time-reversal. In the absence of losses, the wave equation is symmetric in
time. Therefore, an impulse response to a source and its time-reversal satisfy the
same wave equation. By subtracting the wave equations for these two responses
from each other, we obtain a wave equation with a source term equal to zero, and
a solution: the homogeneous Green’s function.

In optics, Porter [1970] used a closed-boundary representation of the homoge-
neous Green’s function to retrieve the wavefield inside a medium. This representa-
tion has been the basis for inverse source problems [Porter and Devaney, 1982] as
well as inverse-scattering methods [Oristaglio, 1989]. Unfortunately, in many practi-
cal situations, there is only single-sided access to the medium. When measurements
are absent at a substantial part of the closed boundary, the retrieved homogeneous
Green’s function will suffer from significant artefacts. In particular in the presence
of strong internal multiple scattering, these artefacts become more severe.

The closed-boundary representation can be modified to become an integral rep-
resentation over the top and bottom boundaries of the medium if the medium has
infinite horizontal extent [e.g. Haines and de Hoop, 1996; Kennett et al., 1990]. Fur-
ther, a recent progress of wave theory has demonstrated that, after appropriate
modification of the homogeneous Green’s function representation, the integral con-
tribution from the bottom boundary vanishes [Wapenaar et al., 2016a]. The result
is a single-sided homogeneous Green’s function representation. This representation
correctly describes the wavefield inside the medium, including all orders of scatter-
ing, but excluding evanescent waves. The form of the single-sided representation is
similar to the closed-boundary representation. However, the single-sided representa-
tion uses a so-called focusing function instead of the time-reversed Green’s function
[Wapenaar et al., 2016a]. For acoustic waves, the focusing function can be retrieved
from a single-sided reflection response and an estimate of the direct arrival, using
the Marchenko method [e.g. Broggini and Snieder , 2012; Wapenaar et al., 2014b;
Vasconcelos et al., 2015]. In the elastodynamic case, the approximate focusing func-
tion can be retrieved in a similar way [Da Costa Filho et al., 2014; Wapenaar , 2014].
However, an exact retrieval of the elastodynamic focusing function requires addi-
tional information about the medium [Wapenaar , 2014]. In this paper, we assume
that the elastodynamic focusing function is available (obtained either approximately
by the Marchenko method or by direct modelling when the medium is known). The
single-sided representation theorem provides the mathematical framework to place
virtual sources and/or receivers inside the medium. Imaging techniques, e.g. for
medical or geophysical applications with limited access to the medium, could ben-
efit from this. Furthermore, virtual receivers inside a medium could be used for
time-lapse monitoring purposes, i.e. to observe changes in a medium over time.
Other potential applications could be forecasting the medium response to induced
sources, or the localisation of passive sources inside a medium such as an earthquake
[Brackenhoff et al., 2019].

We outline the theory of the single-sided homogeneous Green’s function rep-
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resentation for elastodynamic waves in lossless media. Further, we evaluate the
accuracy of the elastodynamic single-sided homogeneous Green’s function repre-
sentation numerically for 2D layered media. For the evaluation we use a directly
modelled homogeneous Green’s function as a reference. Eventually, we present an
example in which the wavefield has wavenumber-frequency components that are
evanescent only inside a thin layer between the recording boundary and the target
depth. We demonstrate that these evanescent wavenumber-frequency components
of the elastodynamic homogeneous Green’s function are accounted for by the single-
sided representation, except for small numerical errors.

2.2 Theory

This section consists of three parts. In the first part we show the definition of
the decomposed matrix-vector wave equation. In the second part we define the
elastodynamic homogeneous Green’s function, and in the third part, we introduce
the elastodynamic single-sided homogeneous Green’s function representation. A
detailed derivation of this representation can be found in 2A.

2.2.1 Matrix-vector wave equation for decomposed wavefields

We represent the elastodynamic wavefield using powerflux-normalised P- and S-
wavefield potentials. Besides, we choose the depth direction x3 as a preferential
direction of propagation. For this reason, we decompose the wavefield in downward
and upward propagating waves [de Hoop and de Hoop, 1994; Frasier , 1970; Wape-
naar , 1996b], and we define a 6×1 wave vector p containing decomposed wavefields
and a 6 × 1 source vector s containing sources for these decomposed wavefields,

p =

(
p+

p−

)
, p+ =

Φ+

Ψ+

Υ+

 , p− =

Φ−

Ψ−

Υ−

 , s =

(
s+

s−

)
. (2.2.1)

The superscript + refers to downgoing waves, the superscript − to upgoing waves.
The wavefield potentials Φ±, Ψ±, Υ± represent the P, S1 and S2 waves, respectively
(in cylindrical coordinates in a laterally-invariant medium, S1 and S2 waves are SV
and SH waves). The decomposed source terms s± are defined analogous to the
decomposed wavefields p±. After applying a forward Fourier transform from the
space-time to the space-frequency domain,

p(x, ω) =
∫

p(x, t)eiωtdt, (2.2.2)

the matrix-vector wave equation for decomposed wavefields can be written as,

∂3p(x, ω) − B p(x, ω) = s(x, ω). (2.2.3)

Here, i is an imaginary unit (i2 = −1), ∂3 denotes a spatial derivative in the x3
direction and the operator B = B(x, ω) accounts for the propagation and the mutual
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coupling of the decomposed fields [an expression of B can be found in Wapenaar
et al., 2016a]. The spatial coordinates are denoted by x = (x1, x2, x3)T , the time
is denoted by t and the frequency is denoted by ω. The superscript T denotes a
transpose. Further details about decomposed wavefields in 3D inhomogeneous media
can be found in [Wapenaar and Berkhout, 1989; Kennett et al., 1990; Fishman, 1993;
de Hoop and de Hoop, 1994; Fishman et al., 2000; Thomson, 2015].

2.2.2 Homogeneous Green’s function

Consider the decomposed matrix-vector wave equation with a delta source term,
s = Iδ(x − xs), where I is an identity matrix of appropriate size. The solution of
this equation,

∂3Γ(x, xs, ω) − B Γ(x, xs, ω) = Iδ(x − xs), (2.2.4)
is the Green’s matrix Γ(x, xs, ω) containing decomposed wavefields,

Γ(x, xs, ω) =

(
G+,+ G+,−

G−,+ G−,−

)
(x, xs, ω). (2.2.5)

Here, the first superscript describes the direction of the decomposed wavefields at the
receiver position x, the second superscript describes the direction of the decomposed
source fields at the source position xs. The 3 × 3 submatrices G±,± are defined as,

G±,±(x, xs, ω) =

G±,±
Φ,Φ G±,±

Φ,Ψ G±,±
Φ,Υ

G±,±
Ψ,Φ G±,±

Ψ,Ψ G±,±
Ψ,Υ

G±,±
Υ,Φ G±,±

Υ,Ψ G±,±
Υ,Υ

 (x, xs, ω), (2.2.6)

where the first subscript describes the wavefield potential at the receiver position x
and the second subscript describes the wavefield potential at the source position xs.
In this paper, we use 6×6 matrices to describe complete decomposed elastodynamic
wavefields (e.g. in Equation 2.2.5) and 3 × 3 matrices to describe their four decom-
posed parts (e.g. in Equation 2.2.6). Ignoring evanescent waves, the operator B and
its complex-conjugate B∗ are mutually related as follows [combining Equations 70
and 88 in Wapenaar , 1996a],

B = KB∗K. (2.2.7)
The superscript ∗ denotes a complex-conjugate. The matrix K as well as matrices
J and N which we will use later are defined as,

K =

(
O I
I O

)
, J =

(
I O
O −I

)
, N =

(
O I
−I O

)
, (2.2.8)

where O is a null matrix of appropriate size. The matrices K and J can be thought
of as a Pauli matrices, the matrix N is a symplectic matrix.

We complex-conjugate Equation 2.2.4 and substitute the operator B∗ using
Equation 2.2.7. By pre- and post-multiplying the result by the matrix K, we obtain,

∂3 [KΓ∗(x, xs, ω)K] − B [KΓ∗(x, xs, ω)K] = Iδ(x − xs). (2.2.9)
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Here, we used the identity KK = I. According to this equation, the quantity
KΓ∗(x, xs, ω)K is another solution of the wave equation. It is the Fourier transform
of a time-reversed Green’s function, but the diagonal as well as the off-diagonal
elements G±,± are interchanged. By subtracting Equation 2.2.9 from Equation
2.2.4 we obtain the homogeneous wave equation, i.e. a wave equation with a source
term equal to zero,

∂3Γh(x, xs, ω) − B Γh(x, xs, ω) = O. (2.2.10)

A solution of the homogeneous wave equation is the homogeneous Green’s function,

Γh(x, xs, ω) = Γ(x, xs, ω) − KΓ∗(x, xs, ω)K, (2.2.11)

which contains block-matrices as follows,

Γh(x, xs, ω) =

(
G+,+

h G+,−
h

G−,+
h G−,−

h

)
(x, xs, ω)

=

(
G+,+ − (G−,−)∗ G+,− − (G−,+)∗

G−,+ − (G+,−)∗ G−,− − (G+,+)∗

)
(x, xs, ω). (2.2.12)

Equation 2.2.11 states that, in the space-frequency domain, the homogeneous Green’s
function is the Green’s function minus its complex-conjugate, pre- and post multi-
plied by matrix K. From the source-receiver reciprocity relation of the decomposed
Green’s function [Wapenaar et al., 2016a],

Γ(x, xs, ω) = NΓT (xs, x, ω)N, (2.2.13)

and the identity KN = −NK, it follows that the homogenous Green’s function
obeys the source-receiver reciprocity relation,

Γh(x, xs, ω) = NΓT
h (xs, x, ω)N. (2.2.14)

2.2.3 Elastodynamic single-sided homogeneous Green’s function repre-
sentation

Consider a medium which is bounded by a reflection-free boundary ∂D0 at the
top (x3 = x3,0) as depicted in Figure 2.1a. Let R(x, x′, ω) be the reflection
response associated with a source for downgoing waves located at x′ just above
∂D0, and a receiver for upgoing waves located at x on ∂D0. We define the depth
level of x′ as ∂D′

0. In the notation of decomposed wavefields, we can state that
R(x, x′, ω) = G−,+(x, x′, ω). The direct (downgoing) wave from x′ to x on ∂D0
is part of the decomposed Green’s function G+,+(x, x′, ω) = Iδ(xH − x′

H). Here,
the subscript H refers to the horizontal components, i.e. xH = (x1, x2)T . Since
the medium is reflection-free above ∂D0, the decomposed Green’s functions asso-
ciated with sources for upgoing waves at x′ and receivers at x on ∂D0 are zero,
G±,−(x, x′, ω) = O. According to the matrix notation in Equation 2.2.12, we can
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write the homogeneous Green’s matrix Γh(x, x′, ω) for x at ∂D0 in terms of the
reflection response R(x, x′, ω) and an identity matrix I of appropriate size,

Γh(x, x′, ω) =

(
Iδ(xH − x′

H) −R∗(x, x′, ω)
R(x, x′, ω) −Iδ(xH − x′

H)

)
. (2.2.15)

Next, we introduce the focusing function F(x, xs, ω). The focusing function is
defined in a so-called truncated medium which is identical to the true medium for
x3,0 ≤ x3 < x3,s and homogeneous for x3 ≥ x3,s, where x3,s is the depth of the
focal point at xs (see Figure 2.1b). We assume that xs is located below ∂D0. The
decomposed focusing matrix consists of a down- and an upgoing part,

F(x, xs, ω) =

(
F+

F−

)
(x, xs, ω), (2.2.16)

with,

F±(x, xs, ω) =

F ±
Φ,Φ F ±

Φ,Ψ F ±
Φ,Υ

F ±
Ψ,Φ F ±

Ψ,Ψ F ±
Ψ,Υ

F ±
Υ,Φ F ±

Υ,Ψ F ±
Υ,Υ

 (x, xs, ω). (2.2.17)

The superscripts ± and the first subscript describe the wavefield direction and the
wavefield potential at the receiver location x, respectively. The second subscript
describes the wavefield potential at the focusing position xs. The downgoing focus-
ing function F+(x, xs, ω) for x at ∂D0 is the inverse of a transmission response of
the truncated medium between ∂D0 and the depth level x3 = x3,s [Wapenaar et al.,
2016a],∫

∂D0

T+(x, x′, ω)F+(x′, xs, ω)d2x′
H

∣∣∣∣
x3=x3,s

= I δ(xH − xH,s), (2.2.18)

and the complete focusing function F obeys the focusing condition,

F(x, xs, ω)|x3=x3,s = I1 δ(xH − xH,s). (2.2.19)

Here, we introduced the matrix I1 = (I, O)T . The upgoing focusing function
F−(x, xs, ω) is the reflection response of the downgoing focusing function in the
truncated medium. In a physical interpretation, the focusing function is the Fourier
transform of a wavefield injected at the surface ∂D0, which focuses at time zero at
the position xs (see Figure 2.1b). Note, that the first event of the focusing function
is injected at negative times.

Consider the homogeneous Green’s function Γh(x, xs, ω) related to a source
at xs inside the medium and receivers on the surface ∂D0 as depicted in Figure
2.2a. According to Equations 2A.17 and 2A.18 in the Appendix, the homogeneous
Green’s function Γh(x, x′, ω) recorded on the top boundary and the focusing func-
tion F(x, xs, ω) can construct a wavefield Γ1(x, xs, ω),

Γ1(x, xs, ω) =
∫

∂D′
0

Γh(x, x′, ω)F(x′, xs, ω)IT
1 d2x′, (2.2.20)
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∂D0

∂D′
0•x

′

•
... x ...

•
... x ...

R(x,x′, ω)

x3,0

x3,s

x3 True medium

(a)

∂D0•... x ...

•
xs

F+(x,xs, ω)

F−(x,xs, ω)

x3,0

x3,s

x3 Truncated medium

(b)

Figure 2.1: Reflection response and focusing function. (a) R(x, x′, ω) is the reflection re-
sponse of a medium which is reflection-free above ∂D0. The source is located at x′ on ∂D′

0
(just above ∂D0), the receivers are located at x on ∂D0. (b) The decomposed focusing func-
tion F(x, xs, ω) is defined in a truncated medium which is identical to the true medium for
x3 < x3,s, and reflection-free for x3 ≥ x3,s.

from which the homogeneous Green’s function Γh(x, xs, ω) can be represented as,

Γh(x, xs, ω) = Γ1(x, xs, ω) − KΓ∗
1(x, xs, ω)K. (2.2.21)

Evaluating the matrix products in Equations 2.2.20-2.2.21 reveals that the forward-
in-time propagating part of the homogeneous Green’s function Γh(x, xs, ω) is a
superposition of the non-zero sub-matrices of Γ1(x, xs, ω), i.e. G−,+(x, xs, ω) and
G−,−(x, xs, ω). Hence, Figure 2.2a also illustrates the wavefield Γ1(x, xs, ω).

The homogeneous Green’s function Γh(x, x′, ω) corresponds to sources and re-
ceivers at the surface (∂D0 ∪ ∂D′

0). A physical interpretation of Equation 2.2.20 is
that the focusing function focuses, or inverse-propagates, the sources of Γh(x, x′, ω)
from x′ to xs.

In analogy, according to Equations 2A.12 and 2A.13 in the Appendix, the re-
ceivers of the homogeneous Green’s function Γh(x, xs, ω) are focused on, or inverse-
propagated to, a virtual receiver location xr inside the medium, according to,

Γ2(xr, xs, ω) =
∫

∂D0

I2FT (x, xr, ω)NΓh(x, xs, ω)d2x, (2.2.22)

from which the homogeneous Green’s function Γh(xr, xs, ω) can be constructed,

Γh(xr, xs, ω) = Γ2(xr, xs, ω) − KΓ∗
2(xr, xs, ω)K. (2.2.23)

The quantity F(x, xr, ω) is the focusing function related to a focal point at xr. Fur-
ther, we introduced the matrix I2 = (O, I)T . Equations 2.2.20-2.2.23 together form
an elastodynamic single-sided homogeneous Green’s function representation: It ex-
presses the homogeneous Green’s function between xs and xr inside the medium
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∂D0•... x ...

•
xs

Γh(x,xs, ω)

0

x3,s

x3 True medium

(a)

∂D0

•
xs

•xr

Γh(xr,xs, ω)

0

x3,s

x3 True medium

(b)

Figure 2.2: Homogeneous Green’s functions. (a) Γh(x, xs, ω) is the homogeneous Green’s
function related to a source located inside the medium at xs and receivers located on the
surface ∂D0 at x. (b) Γh(xr, xs, ω) is the homogeneous Green’s function related to a source
located inside the medium at xs and a receiver located inside the medium at xr. Both
subfigures show the forward-in-time propagating part of the respective homogeneous Green’s
function.

in terms of the single-sided data Γh(x, x′, ω) at the upper boundary ∂D0 ∪ ∂D′
0.

An illustration of the homogeneous Green’s function Γh(xr, xs, ω) is displayed in
Figure 2.2b. By evaluating the matrix products in Equations 2.2.22-2.2.23 it can
be seen that the forward-in-time propagating part of the wavefield Γ2(xr, xs, ω) is
represented by all paths in Figure 2.2b that are associated with upward propagat-
ing waves at xr. The representation formed by Equations 2.2.20-2.2.23 involves
integrations along an open boundary of the medium, and therefore, only requires
single-sided access to the medium.

2.3 Numerical example

In this section, we show a numerical example of the elastodynamic single-sided
homogeneous Green’s function representation for a 2D laterally-invariant medium.
Further, we investigate the accuracy of the single-sided representation for wave-
number-frequency components of the elastodynamic homogeneous Green’s function
that are evanescent only inside a thin layer between the recording boundary and
the virtual receiver depth. From here on, we consider a 2D medium, i.e. in all
expressions of Section 2.2 the spatial coordinate x simplifies to x = (x1, x3)T and
the horizontal coordinate xH simplifies to x1. Besides, we only consider P and SV
waves, indicated by the subscripts Φ and Ψ, respectively. In the provided numer-
ical examples, we use modelled focusing functions. This allows us to analyse the
properties of the single-sided representation, independent of approximations of the
focusing function retrieval via the Marchenko method.
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2.3.1 Wavenumber-frequency domain expressions

Since we consider a laterally-invariant model the required data can be modelled
efficiently by wavefield extrapolation in the wavenumber-frequency domain [Kennett
and Kerry, 1979; Hubral et al., 1980]. However, in the theory section the single-sided
homogeneous Green’s function representation is formulated in the space-frequency
domain. To transform the expressions to the wavenumber-frequency domain, we use
the fact that all the presented expressions have a similar form, namely a product
of two space-dependent functions g(x1, x3, x′′

1 , x′′
3) and f(x′′

1 , x′′
3 , x′

1, x′
3), integrated

across a horizontal surface ∂D′′,∫
∂D′′

g(x1, x3, x′′
1 , x′′

3)f(x′′
1 , x′′

3 , x′
1, x′

3)dx′′
1 . (2.3.1)

In laterally-invariant media, integrals of the above form can be rewritten as a spatial
convolution, ∫

∂D′′
g(x1 − x′′

1 , x3, 0, x′′
3)f(x′′

1 , x′′
3 , x′

1, x′
3)dx′′

1 , (2.3.2)

which corresponds to a multiplication in the wavenumber domain [Arfken, 1985],

g̃(k1, x3, 0, x′′
3)f̃(k1, x′′

3 , x′
1, x′

3). (2.3.3)

Here, we introduced the horizontal wavenumber k1. Note, when we say wavenumber
domain, we refer to the horizontal-wavenumber domain (k1, x3) on the receiver side
(first coordinate). Wavefields in the wavenumber domain are written with a tilde
on top. Expressions in the space and wavenumber domain are mutually related via
the Fourier transform,

g̃(k1, x3, x′′
1 , x′′

3) =
∫

g(x1, x3, x′′
1 , x′′

3)e−ik1x1dx1. (2.3.4)

We model the required input data, the reflection response R̃(k1, x3,0, 0, x′
3,0, ω)

and the focusing functions F̃(k1, x3,0, 0, x3,s/r, ω), in the wavenumber-frequency do-
main by wavefield extrapolation. Since we model all fields for a source with a
horizontal space coordinate x1 = 0, we omit this coordinate in the following ex-
pressions. Next, we transform Equations 2.2.20-2.2.23 to the wavenumber domain
according to Equations 2.3.2-2.3.4. After evaluating Equations 2.2.20-2.2.23 in the
wavenumber-frequency domain, we transform the final result Γ̃h(k1, x3,r, x3,s, ω) to
the space-time domain via an inverse Fourier transform,

Γh(xr, xs, t) = 1
(2π)2

∫∫
Γ̃h(k1, x3,r, x3,s, ω) e−i[ωt−k1(x1,r−x1,s)] dk1dω. (2.3.5)

Here, we replaced the horizontal receiver coordinate x1,r in the exponent by the
horizontal offset between the receiver and the source, x1,r − x1,s, to account for the
actual horizontal position of the source x1,s.
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2.3.2 Results

We present a numerical example of the elastodynamic single-sided homogeneous
Green’s function representation. The result is compared to the exact homogeneous
Green’s function, which is computed by wavefield extrapolation. For a clear illus-
tration, we choose a simple model as depicted in Figure 2.3. Results for a more
complex model can be found in 2B. Note that we use superscripts (i) to refer to the
ith layer of the medium.

c
(1)
p = 1500m s−1

c
(1)
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c
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c
(4)
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c
(5)
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c
(5)
p = 3500m s−1

c
(1)
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c
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c
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c
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c
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c
(5)
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c
(5)
s = 1600m s−1

ρ(1) = 1000 kgm−3

ρ(1) = 1000 kgm−3

ρ(2) = 1500 kgm−3

ρ(3) = 1000 kgm−3

ρ(3) = 1000 kgm−3

ρ(4) = 1500 kgm−3

ρ(5) = 1000 kgm−3

ρ(5) = 1000 kgm−3

x3,0 = 0m

x3 = 500m

x3 = 1250m

x3 = 2000m

x3 = 2500m

x3 = 3000m

x3,s = 1500m

Figure 2.3: Layered model. The model depth ranges from 0 m to 3000 m, the lateral distance
ranges from −12 812.5 m to 12 800 m. The P-wave velocity, S-wave velocity and density
are denoted by c

(i)
p , c

(i)
s and ρ(i) respectively. The superscripts (i) refer to the ith layer of

the medium. The top boundary and the virtual source depth are denoted by x3,0 and x3,s,
respectively. Solid lines represent medium interfaces and dashed lines represent (scattering-
free) depth levels.

According to 2A, the single-sided homogeneous Green’s function representa-
tion ignores evanescent waves, which are associated with imaginary-valued vertical-
wavenumbers k3(cp/s, k1, ω) = i

√
k2

1 − ω2

c2
p/s

. Thus, all wavenumber-frequency com-
ponents that satisfy the relation,

|k1| >
ω

cmax
, (2.3.6)

should be excluded from the analysis. Here, cmax is the maximum propagation
velocity of the truncated medium.

In the following, before displaying a wavefield in the space-time domain, we mute
evanescent waves according to Equation 2.3.6 using the maximum P-wave velocity
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of the truncated medium cmax, apply an inverse Fourier transform according to
Equation 2.3.5 and convolve the resulting wavefield with a 30 Hz Ricker wavelet
[defined by Eq. 7 in Wang, 2015]. Note that, we create a virtual source as well
as a virtual receiver, meaning that there are two truncated media, bounded at the
bottom by x3,s and x3,r, respectively. The above mentioned maximum P-wave
velocity cmax is the overall maximum P-wave velocity of both truncated media.

The reflection response R̃ and the focusing functions F̃± are modelled by wave-
field extrapolation using the modelling parameters shown in Table 2.1.

Number of frequency samples 1025
Frequency sample interval 0.511 s−1

Number of wavenumber samples 2048
Wavenumber sample interval 0.245 × 10−3 m−1

Table 2.1: Modelling parameters.

The modelled reflection response R̃(k1, x3,0, x′
3,0, ω) contains P-wave and S-wave

recordings. The components associated with a P-wave source are superimposed and
shown in the space-time domain in Figure 2.4a. For clearer illustration, we only
show source-receiver offsets between −2000 m and +2000 m and times between 0 s
and 4 s. The reflection response contains primary reflections, converted reflections
and internal multiples. Mode conversions between P- and S-waves do not occur at
zero-incidence. Therefore, events with a gap at x1 = 0 m are easily identified as
converted waves.

Next, we define a virtual source inside the medium at xs = (0 m, 1500 m)T .
Thus, we model a focusing function F̃(k1, x3,0, x3,s, ω) with focusing depth equal
to 1500 m. The up- and downgoing P- and S-wave components of the focusing
function, that are associated with a P-wave focus, are superimposed and displayed
in the space-time domain in Figure 2.4b. Since the focusing function contains both
causal and acausal events it is displayed for times between −2 s and +2 s.

The reflection response and focusing function of Figure 2.4a and 2.4b are used to
compute a homogeneous Green’s function Γ̃h(k1, x3,0, x3,s, ω) related to the virtual
source at xs and receivers at the surface. The computation is performed as stated in
Equations 2.2.20-2.2.21. Figure 2.4c shows a superposition of the up- and downgoing
P- and S-wave components of the resulting homogeneous Green’s function in the
space-time domain. Only responses to a virtual P-wave source are displayed. Figure
2.4c illustrates that the acausal part of the homogeneous Green’s function is a time-
reversed and polarity-flipped version of the causal part.

Subsequently, we compute the single-sided representation of the homogeneous
Green’s function Γ̃h(k1, x3,r, x3,s, ω) associated with virtual receivers at x3,r =
1700 m according to Equations 2.2.22-2.2.23. We superpose the downgoing com-
ponents of the homogeneous Green’s function, G̃+,+

h (k1, x3,r, x3,s, ω)+G̃+,−
h (k1, x3,r,

x3,s, ω), and display the absolute value of the result in Figure 2.5. Here, we display
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Figure 2.4: Virtual source retrieval. (a) Reflection response R(x1, x3,0, x′
3,0, t). (b) focusing

function F(x1, x3,0, x3,s, t) for a focal point at xs = (0 m, 1500 m)T . (c) Homogeneous
Green’s function Γh(x1, x3,0, x3,s, t), obtained from the single-sided representation, for a
virtual source at xs = (0 m, 1500 m)T and receivers at the surface. Fields in (a) and (c)
are associated with a P-wave source, and the field in (b) is associated with a P-wave focus.
A k1-ω filter was applied to all displayed fields before transformation to the space-time
domain. The traces in Figures (a) and (c) were multiplied with a gain function (× e0.5|t|)
to emphasise the late arrivals. Note that the plots have different clipping.

the four elastic components separately. Due to the symmetry of the homogeneous
Green’s function Γ̃h(k1, x3,r, x3,s, ω) (see Equation 2.2.12), the sum of its upgoing
components, G̃−,+

h (k1, x3,r, x3,s, ω) + G̃−,−
h (k1, x3,r, x3,s, ω), produces an identical

result. Further, since the medium is horizontally-layered we only show positive
wavenumbers k1. In Figure 2.5, the amplitude of the ΦΦ, ΦΨ and ΨΦ components
of the quantity, G̃+,+

h (k1, x3,r, x3,s, ω)+G̃+,−
h (k1, x3,r, x3,s, ω), decreases rapidly for

|k1| > ω

c
(3)
p

, i.e. beyond the dashed red line. The velocity c
(3)
p is the maximum

propagation velocity in the truncated medium, and therefore, the line |k1| = ω

c
(3)
p

separates propagating from evanescent waves. As shown in 2A, the elastodynamic
single-sided homogeneous Green’s function representation does not take into account
wavenumber-frequency components that are evanescent on the boundaries of the do-
main (here x3 = x3,0 and x3 = x3,r). Thus, for wavenumbers |k1| > ω

c
(3)
p

the retrieved

quantity, G̃+,+
h (k1, x3,r, x3,s, ω) + G̃+,−

h (k1, x3,r, x3,s, ω), is not representing the an-
alytic elastodynamic homogeneous Green’s function. Further, in the wavenumber
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Figure 2.5: Analysis of the retrieved elastodynmaic homogeneous Green’s function. The
four figures show the single-sided representation of the elastodynamic homogeneous Green’s
function after summing its receiver-side downgoing components and taking the absolute
value of the result |G̃+,+

h (k1, x3,r, x3,s, ω) + G̃+,−
h (k1, x3,r, x3,s, ω)|. The elastodynamic ho-

mogeneous Green’s function is associated with a virtual source at xs = (0 m, 1500 m)T and
virtual receivers at x3,r = 1700 m. We only show positive wavenumbers k1. In addition, we
draw lines, k1 = ω

c
(i)
p/s

, defined by the P-/S-wave velocity c
(i)
p/s in the ith layer of the model.

The amplitudes in the plain yellow areas increase rapidly and were clipped for values greater
than one.

regime |k1| >> ω

c
(3)
p

, the quantity, G̃+,+
h (k1, x3,r, x3,s, ω) + G̃+,−

h (k1, x3,r, x3,s, ω),
becomes unstable. This instability could be due to either the behaviour of the
elastodynamic single-sided homogeneous Green’s function representation for evanes-
cent wavenumber-frequency components, or numerical instabilities, or both. Never-
theless, the analytic elastodynamic homogeneous Green’s function is characterised
by an exponential amplitude decay for evanescent wavenumber-frequency compo-
nents. The amplitude of the ΨΨ component of the quantity, G̃+,+

h (k1, x3,r, x3,s, ω)+
G̃+,−

h (k1, x3,r, x3,s, ω), is in the order of one for |k1| < ω

c
(2)
p

and increases rapidly for
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|k1| > ω

c
(2)
p

, beyond the indicated dotted red line. Hence, for the ΨΨ component

of the quantity, G̃+,+
h (k1, x3,r, x3,s, ω) + G̃+,−

h (k1, x3,r, x3,s, ω), the transition from
propagating to evanescent waves is defined by the P-wave velocity of the second
layer c

(2)
p , instead of the P-wave velocity of the third layer c

(3)
p . This is expected

because its ΨΨ component only requires an S-wave focus in the third layer of the
medium. Creating an S-wave focus in the third layer only allows for P-wave con-
versions above layer (3). As such, the highest P-wave velocity associated with an
S-wave focus in layer (3) is c

(2)
p . In other words, the unstable behaviour of the ΨΨ

component for |k1| > ω

c
(2)
p

(to the right of the dotted red line) is caused by waves
that are S-waves at the source, convert to P-waves in the second layer and convert
back to S-waves before reaching the receivers. For unconverted S-waves the highest
propagation velocity is c

(3)
s , i.e. those waves are propagating for |k1| < ω

c
(3)
s

(to the
left of the dashed blue line). However, these propagating S-waves are obscured by
the unstable behaviour of the parts of the ΨΨ component that convert to P-waves
in the second layer.

We evaluate the accuracy of the elastodynamic single-sided homogeneous Green’s
function representation by comparing it to the exact elastodynamic homogeneous
Green’s function. To that end, we model the elastodynamic homogeneous Green’s
function Γ̃h,mod(k1, x3,r, x3,s, ω) for an actual source at xs = (0 m, 1500 m)T . Next,
we compute the relative error of the single-sided representation of the elastodynamic
homogeneous Green’s function according to,

Ẽ(k1, x3,r, x3,s, ω) =
|(G̃+,+

h + G̃+,−
h − G̃+,+

h,mod − G̃+,−
h,mod)(k1, x3,r, x3,s, ω)|

|(G̃+,+
h,mod + G̃+,−

h,mod)(k1, x3,r, x3,s, ω)|
,

(2.3.7)
where the absolute value is evaluated element-wise. The resulting relative error
Ẽ(k1, x3,r, x3,s, ω) is shown in Figure 2.6. For |k1| < ω

c
(3)
p

, the single-sided repre-

sentation of the quantity, G̃+,+
h (k1, x3,r, x3,s, ω)+G̃+,−

h (k1, x3,r, x3,s, ω), is accurate
within a relative error Ẽ(k1, x3,r, x3,s, ω) of about 10−15, i.e. within numerical
precision. For |k1| > ω

c
(3)
p

, the relative error Ẽ(k1, x3,r, x3,s, ω) increases drasti-

cally, except for the ΨΨ component ẼΨΨ(k1, x3,r, x3,s, ω). As explained above, the
single-sided representation of the ΨΨ component of the homogeneous Green’s func-
tion Γ̃h,ΨΨ(k1, x3,r, x3,s, ω) only requires an S-wave focus in the third layer of the
medium, such that the ΨΨ component of the quantity, G̃+,+

h (k1, x3,r, x3,s, ω) +
G̃+,−

h (k1, x3,r, x3,s, ω), is accurate within numerical precision up to wavenumbers
defined by the P-wave velocity of the second layer of the medium, |k1| < ω

c
(2)
p

.

The resulting elastodynamic homogeneous Green’s function Γ̃h(k1, x3,r, x3,s, ω)
is a decomposed wavefield, described by up- and downgoing P- and S-waves. To
obtain the full homogeneous Green’s function G̃h(k1, x3,r, x3,s, ω), that is associated
with measurable wavefield quantities, we apply wavefield composition,

G̃h(k1, x3,r, x3,s, ω) = L̃(k1, x3,r, ω)Γ̃h(k1, x3,r, x3,s, ω)L̃−1(k1, x3,s, ω), (2.3.8)
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Figure 2.6: Relative error of the retrieved elastodynamic homogeneous Green’s function.
The four figures show the relative error defined by Equation 2.3.7. The red lines are k1 =

ω

c
(i)
p/s

defined by the P-wave velocity c
(i)
p in the ith layer of the model. The amplitudes

in the plain yellow area increase rapidly and were clipped for values greater than five.
Inside the white area the relative error could not be represented as a number due to limited
numerical precision (double-precision). Of course, these values are still defined but their
representation requires a higher numerical precision.

where L̃(k1, x3,r/s, ω) is the composition operator. Further details about wavefield
composition can be found in Wapenaar et al. [2016a]. The full homogeneous Green’s
function G̃h(k1, x3,r, x3,s, ω) relates force sources f and deformation sources h to
traction recordings τ and particle velocity recordings v,

G̃h(k1, x3,r, x3,s, ω) =

(
G̃τ ,f − (G̃τ ,f )∗ G̃τ ,h + (G̃τ ,h)∗

G̃v,f + (G̃v,f )∗ G̃v,h − (G̃v,h)∗

)
(k1, x3,r, x3,s, ω).

(2.3.9)
From Equation 2.3.9 follows that, in the space-time domain, the (τ , f) and (v, h)
components of the full homogenous Green’s function are anti-symmetric in time,
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and hence, vanish at time zero. This is undesirable for imaging applications because
imaging uses the wavefield at time zero for xr = xs. However, in the space-time
domain the (τ , h) and (v, f) components are non-zero at time zero for xr = xs, and
can be used for imaging.

After transforming the elastodynamic homogenous Green’s function to the space-
time domain Gh(xr, xs, t), we display its (v3, f3) component, Gv3,f3(xr, xs, t) +
Gv3,f3(xr, xs, −t), in Figure 2.7. The time slices illustrate the symmetry of the
homogeneous Green’s function Gv,f

h in time. At time zero the wavefield focuses. The
focus is distorted by linear artefacts. The artefacts occur because the homogeneous
Green’s function was filtered by a k1-ω mask that is determined by the maximum
propagation velocity at a given virtual receiver depth x3,r. The k1-ω mask mutes the
part of the propagating S-wavefield that overlaps with the evanescent P-wavefield,
causing linear artefacts in the space-time domain. According to Snell’s law, the
inclination angle α of these linear artefacts is determined by,

1
cp

= sin(α)
cs

. (2.3.10)

Using c
(3)
p = 2500 m s−1 and c

(3)
s = 1200 m s−1, we find that the linear artefact at the

focusing position at time zero has an inclination angle α = 28.7◦ (see Figure 2.7).
An inspection of the time slices, e.g. for t = 0.15 s and t = 0.45 s, demonstrates that
the single-sided representation of the elastodynamic homogeneous Green’s function
contains primary waves, converted waves, and multiply scattered waves.

We evaluate the accuracy of the elastodynamic single-sided homogeneous Green’s
function representation by comparing it to the exact elastodynamic homogeneous
Green’s function. To that end, we modelled the elastodynamic homogeneous Green’s
function for an actual source at xs = (0 m, 1500 m)T . The modelled elastodynamic
homogeneous Green’s function is subtracted from the elastodynamic homogeneous
Green’s function obtained from the single-sided representation. To exclude evanes-
cent waves, the result ∆Γ̃h(k1, x3,r, x3,s, ω) is element-wise multiplied by a k1-ω fil-
ter M̃ determined by the maximum propagation velocity of the medium. Next, we
compute the normalised Frobenius norm NF = 1√

4nt4nr
∥M̃◦∆Γ̃h(k1, x3,r, x3,s, ω)∥2

at each virtual receiver depth level x3,r, where the symbol ◦ denotes a Hadamard
product. The normalisation factor is a function of the number of time samples nt
and the number of space samples nr. We choose the normalisation factor

√
4nt4nr

because ∆Γ̃h(k1, x3,r, x3,s, ω) consists of four nt × nr block-matrices. In Figure 2.8,
we show the resulting residual norm as a function of virtual receiver depth x3,r.
The difference plot demonstrates that, for all modelled wavenumber-frequency com-
ponents of the propagating wavefield, the elastodynamic single-sided homogeneous
Green’s function representation is accurate within numerical precision. For the eval-
uation, we used the residual of the elastodynamic decomposed homogeneous Green’s
function ∆Γ̃h(k1, x3,r, x3,s, ω) instead of its composed equivalent to exclude effects
of the wavefield composition (see Equation 2.3.8) from the analysis. In this case,
however, the wavefield composition also performs within numerical precision.
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Figure 2.7: Single-sided representation of the elastodynamic homogeneous Green’s function.
The time slices show the single-sided representation of the elastodynamic homogeneous
Green’s function Gv3,f3

h (xr, xs, t) related to a virtual source (f3) at xs = (0 m, 1500 m)T

and virtual receivers (v3) placed on a grid with a depth range from 0 m to 3000 m and a
lateral distance range from −2000 m to 2000 m. The spatial sampling interval is 12.5 m in
both horizontal and vertical directions. The time slices were multiplied by a gain function
(×e1.5|t|) to emphasise the late arrivals. At time zero, we indicate the slope angle α of a
linear artefact caused by applying a k1-ω mask.
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Figure 2.8: Error analysis. Normalised Frobenius norm NF of the difference
∆Γ̃h(k1, x3,r, x3,s, ω) between the elastodynamic single-sided homogeneous Green’s func-
tion representation (see Figure 2.7) and its modelled equivalent as a function of virtual
receiver depth x3,r.
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Figure 2.9: Layered model. As Figure 2.3 but with an additional thin layer between x3 =
1250 m and x3 = 1300 m. For the sake of readability, the distances between the interfaces
are not proportional because the third layer is only 80 m thick.
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2.3.3 Evanescent wave tunnelling

In this section, we investigate tunnelling of evanescent waves using a new model (see
Figure 2.9). The new model is nearly identical to the model in Figure 2.3. However,
the layer between x3 = 1250 m and x3 = 2000 m is replaced by a thin layer ranging
from x3 = 1250 m to x3 = 1330 m and a thicker layer ranging from x3 = 1330 m to
x3 = 2000 m. For the thin layer, the P- and S-wave velocities are 2500 m s−1 and
1200 m s−1, respectively. For the layer below, the propagation velocities are smaller,
c

(4)
p = 2000 m s−1 and c

(4)
s = 1000 m s−1.
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Figure 2.10: Relative error of the retrieved elastodynamic homogeneous Green’s function.
As Figure 2.6, but this time for the model in Figure 2.9 with the thin high-velocity layer.
Note that also for tunnelled waves (the region between the dashed and dotted red lines) the
relative errors are very small.

Next, we evaluate the single-sided representation of the elastodynamic homo-
geneous Green’s function Γ̃h(k1, x3,r, x3,s, ω) according to Equations 2.2.20-2.2.23,
for a virtual source at x3,s = 1500 m and a virtual receiver at x3,r = 1700 m.
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To analyse the result, we model the elastodynamic homogeneous Green’s function
Γ̃h,mod(k1, x3,r, x3,s, ω) as a reference and compute the relative error Ẽ(k1, x3,r, x3,s,
ω) according to Equation 2.3.7. Figure 2.10 shows the resulting relative error.
For wavenumber-frequency components that are only propagating in the truncated
medium, i.e. |k1| < ω

c
(3)
p

, the relative error Ẽ(k1, x3,r, x3,s, ω) is in the order of 10−15,
as expected. For larger wavenumbers, |k1| > ω

c
(3)
p

, we would expect a rapid increase

of the relative error Ẽ(k1, x3,r, x3,s, ω) due to instabilities, similar to Figure 2.6.
However, Figure 2.10 shows that for wavenumbers, ω

c
(3)
p

< |k1| < ω

c
(2)
p

, the relative

error Ẽ(k1, x3,r, x3,s, ω) ranges from about 10−15 to about 10−6. The relative error
is not within numerical precision but still very small. We interpret this effect as
evanescent wave tunnelling. In the theory section, we excluded evanescent waves.
However, this restriction is only required on the boundaries on which the reciprocity
theorem of the correlation-type is evaluated (see 2A). Therefore, the theory does
not exclude evanescent wave tunnelling. Besides, the theory does not make any
assumption about the thickness of the tunnelled layer. In the presented numerical
example, we observed that the relative error of the tunnelling experiment depends
on the thickness ∆x3 of the tunnelled layer. This observation is expected because
the amplitude of the tunnelled evanescent waves is reduced by the factor,

exp

(
−
√

k2
1 − ω2

c2 ∆x3

)
. (2.3.11)

The single-sided representation compensates for this amplitude decay. For increasing
thickness of the tunnelled layer, i.e. stronger amplitude decay, the amplitude ratio of
tunnelled and propagating waves becomes smaller, and the numerical errors become
larger. To estimate the maximum amplitude decay in the presented example, we
maximise

√
k2

1 − ω2

c2 (see Equation 2.3.11) inside the wavenumber regime, ω

c
(3)
p

<

|k1| < ω

c
(2)
p

. Thus, we choose c = c
(3)
p , maximise the frequency ω = 1025 × 0.511 s−1

(see Table 2.1) and maximise the horizontal wavenumber k1 = ω

c
(2)
p

. The resulting
amplitude decay factor,

exp

(
−
√

k2
1 − ω2

c2 ∆x3

)

= exp

−

√(
1025 × 0.511 s−1

2000 m s−1

)2

−
(

1025 × 0.511 s−1

2500 m s−1

)2

× 80.0 m


= exp

(
−0.157 m−1 × 80.0 m

)
= 3.51 × 10−6, (2.3.12)

shows that, for tunnelling through the high-velocity layer of 80.0 m thickness, the
smallest amplitude ratio of tunnelled and propagating waves is already in the order
of 10−6.
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2.4 Discussion and conclusion

2.4.1 Discussion

We presented numerical examples of the single-sided homogeneous Green’s function
representation in elastic laterally-invariant media. Such 1D models are relatively
simple, but they allow us to model the required fields with very high numerical
accuracy via wavefield extrapolation. Nonetheless, the theory is valid for laterally
varying media, and has already been tested numerically for acoustic waves [Wape-
naar et al., 2016b]. In the future, we will extend the here presented numerical
example to elastic laterally varying media.

Here, we modelled the focusing functions. In practise, for the acoustic situation
the focusing functions can be retrieved from the reflection response combined with
a smooth velocity model via the Marchenko method, which is described by Broggini
et al. [2012a], van der Neut et al. [2015] and others. For example, Wapenaar et al.
[2016b] presented an acoustic single-sided homogeneous Green’s function represen-
tation that uses focusing functions retrieved via the Marchenko method. Da Costa
Filho et al. [2014] and Wapenaar [2014] extended the Marchenko method to elasto-
dynamic waves, however, it still requires more prior knowledge of the medium than
in the acoustic case. In the here presented numerical example, we used numerically
modelled elastodynamic focusing functions to analyse the properties of the elasto-
dynamic single-sided homogeneous Green’s function representation, independent of
approximations of the focusing functions. Currently, we are developing the (elas-
todynamic) Marchenko method further to minimise the required amount of prior
knowledge of the medium.

According to the theory, the single-sided representation of the elastodynamic
homogeneous Green’s function is accurate for waves that are non-evanescent at
the virtual source and receiver depth levels. In our first numerical experiment, we
only consider propagating waves and confirm the theory within numerical precision.
In our second experiment, we investigate wavefield components that are evanescent
inside a thin layer, but propagating at the virtual source and receiver depth levels. In
this case, the numerical result for the elastodynamic homogeneous Green’s function
using the single-sided representation performs well also for evanescent waves, except
for a small relative error. The latter experiment is a tunnelling experiment, which
performs better if the tunnelled layer is thin with respect to the inverse of the
absolute vertical wavenumber. Although evanescent wave tunnelling appears to be
possible in theory, in practice it will suffer from noise and it will not be possible
to retrieve the evanescent components of the focusing function via the Marchenko
method.

2.4.2 Conclusion

We presented a numerical example demonstrating that single-sided access to a
medium suffices to correctly retrieve the non-evanescent components of an elas-
todynamic homogeneous Green’s function with virtual sources and virtual receivers
inside the medium. Despite the single-sided access to the medium, all events of
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the homogeneous Green’s function including primaries, internal multiples and con-
verted waves are represented correctly. Waves that are evanescent, either on the
recording boundary, or at the virtual source/receiver depth level, are neglected by
the single-sided representation of the elastodynamic homogeneous Green’s function,
and hence, can lead to artefacts. Nevertheless, the evanescent components can be
filtered to suppress these artefacts. The remaining, i.e. propagating, components
can be used e.g. for imaging.

In addition, we observed in a numerical experiment that the elastodynamic
single-sided homogeneous Green’s function representation can tunnel evanescent
components through a thin layer. In theory, this tunnelling of evanescent waves
is independent of the thickness of the tunnelled layer. In practise, the single-sided
representation of tunnelled waves has limited numerical accuracy because it has
to compensate for the exponential amplitude decay of evanescent waves, which is
stronger for thicker layers. Hence, the tunnelled layer has to be sufficiently thin with
respect to the inverse of the absolute vertical wavenumber of the evanescent wave.
Note that we refer to tunnelling because the single-sided representation requires
that at the virtual source and receiver depth levels the elastodynamic homogeneous
Green’s function is propagating.

To conclude, we provided a mathematical framework to create virtual wavefield
measurements inside a medium that is only accessible from a single side. We foresee
potential applications in the fields of imaging, time-lapse monitoring, forecasting of
the medium response as well as localisation of passive sources.
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2A Elastodynamic single-sided homogenous Green’s function rep-
resentation

In the following, we summarise the derivation of the elastodynamic single-sided ho-
mogeneous Green’s function representation [Wapenaar et al., 2016a]. First, we show
the decomposed reciprocity theorems and introduce the two states that are used in
the derivation. Second, we explain the properties of the focusing function. Third,
we derive the elastodynamic single-sided homogeneous Green’s function representa-
tion by inserting the focusing function and the Green’s function in the decomposed
reciprocity theorems.
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2A.1 Reciprocity theorems and the two states

We define a domain D with infinite horizontal extent. The x3 axis is defined along the
depth direction as downward pointing. The domain is enclosed by ∂D0 (x3 = x3,0)
at the top, ∂Dr (x3 = x3,r) at the bottom and a cylindrical boundary ∂Dcyl with
infinite radius at the side. Besides, we introduce two wavefield states A and B with
independent decomposed wavefield vectors pA,B as well as independent decomposed
source vectors sA,B , both in the space-frequency domain. We assume the medium in
which these wavefields and sources exist is lossless, and that the medium parameters
of the states A and B are identical inside the domain D. Now we can formulate the
reciprocity theorems of the convolution- and correlation-type,∫

∂D
pT

ANpBn3d2x =
∫
D

(
sT

ANpB + pT
ANsB

)
d3x, (2A.1)

∫
∂D

p†
AJpBn3d2x =

∫
D

(
s†

AJpB + p†
AJsB

)
d3x. (2A.2)

Here, the dagger symbol † denotes transposition and complex-conjugation. On
the boundary ∂D, the derivation of the reciprocity theorem of the correlation-type
(Equation 2A.2) uses the symmetry relation L†K = JL−1, which only holds for
propagating waves [Wapenaar , 1996c]. Note that L = L(x, ω) is the operator ma-
trix that composes wavefields. Consequently, we neglect evanescent waves on the
boundary ∂D. The boundary ∂D consists of the top and bottom boundaries of
the domain, ∂D0 ∪ ∂Dr. Integral contributions over the cylindrical boundary ∂Dcyl

vanish (if the medium has infinite horizontal extent) because the integrand is propor-
tional to one divided by the radius squared (∝ 1

R2 ) whereas the cylindrical surface
is proportional to the radius (∝ R). In the boundary integrals, n3 is the x3 compo-
nent of the outward-pointing normal vector on the boundary ∂D (n3 = −1 on ∂D0,
n3 = +1 on ∂Dr).

The single-sided homogeneous Green’s function representation is derived by eval-
uating the two reciprocity theorems using a specific definition of states A and B.
First, we define state B in the actual medium. Let the upper boundary ∂D0 be at
x3 = x3,0. Above ∂D0, i.e. x3 ≤ x3,0, the state B medium is reflection-free. Below
∂D0, i.e. x3 > x3,0, the actual medium is inhomogeneous and elastic. We define
the state B wavefield to be the medium’s Green’s function Γ(x, xs, ω) related to a
source at xs with x3,s > x3,0, and a receiver at x,

pB = Γ(x, xs, ω), sB = Iδ(x − xs). (2A.3)

Second, we define state A. We choose a point xr below ∂D0. The state A medium
is defined equal to the state B medium for x3,0 ≤ x3 ≤ x3,r, and for x3 ≥ x3,r

the state A medium is reflection-free. Often, the state A medium is referred to as
the so-called truncated medium. The state A wavefield is defined as the focusing
function F(x, xr, ω). By definition the source term of the focusing function is zero,

pA = F(x, xr, ω), sA = 0. (2A.4)
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2A.2 Focusing function

The downgoing part of the focusing function F+(x, xr, ω) is the inverse of a trans-
mission response related to sources at the boundary ∂D0 and a receiver at xr,∫

∂D0

T+(x, x′, ω)F+(x′, xr, ω)d2x′
H

∣∣∣∣
x3=x3,r

= I δ(xH − xH,r), (2A.5)

and it obeys the focusing condition,

F(x, xr, ω)|x3=x3,r = I1 δ(xH − xH,r), (2A.6)

with F containing F+ and F−, see Equation 2.2.16. The upgoing focusing function
F−(x, xr, ω) is the reflection response of the downgoing focusing function in the
truncated medium.

In a physical interpretation the focusing function, when transformed to the time
domain, is a wavefield injected at ∂D0, which focuses at time zero at the location xr.
Figure 2.1b depicts the focusing function in a cartoon. The solid arrows represent
the downgoing focusing function F+. When the downgoing focusing function is sent
into the truncated medium it is partially reflected, leading to the upgoing focusing
function, indicated by dashed arrows in Figure 2.1b. In the absence of a coda, the
upgoing focusing function would be reflected downward again. Consequently, the
focusing function would not focus at xr. This scenario is prevented by sending a
coda of the downgoing focusing function into the medium to cancel the downward
reflections of the upgoing focusing function. The coda is also shown in Figure 2.1b.

For a 3D acoustic medium, the focusing function can be retrieved from the re-
flection response of the medium combined with a smooth velocity model via the
Marchenko method [e.g. Broggini and Snieder , 2012; Wapenaar et al., 2014b; Vas-
concelos et al., 2015]. For an elastic medium, the focusing function retrieval still
requires additional information about the medium [Wapenaar , 2014].

2A.3 Derivation

We insert states A and state B (Equations 2A.3, 2A.4) in the reciprocity theorems of
the convolution- and the correlation-type (Equations 2A.1, 2A.2) and evaluate them
in the domain Dr bounded by ∂D0 at the top and by ∂Dr at the bottom. Note that
the state A and state B media are identical in the domain Dr, which is a necessary
condition for Equations 2A.1-2A.2. Using the focusing condition of Equation 2A.6,
we find,

IT
1 NΓ(xr, xs, ω) − H(x3,r − x3,s)FT (xs, xr, ω)N =∫

∂D0

FT (x, xr, ω)NΓ(x, xs, ω) d2xH , (2A.7)

and,

IT
1 JΓ∗(xr, xs, ω) − H(x3,r − x3,s)FT (xs, xr, ω)J =∫

∂D0

FT (x, xr, ω)JΓ∗(x, xs, ω) d2xH . (2A.8)
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H(x3) is the Heaviside function. We multiply Equation 2A.8 by K from the right
and substitute the identities J = NK as well as JK = N,

IT
1 NKΓ∗(xr, xs, ω)K − H(x3,r − x3,s)FT (xs, xr, ω)N =∫

∂D0

FT (x, xr, ω)NKΓ∗(x, xs, ω)K d2xH . (2A.9)

We eliminate the term with the Heaviside function by subtracting Equation 2A.9
from Equation 2A.7. The resulting expression can be written in terms of the homo-
geneous Green’s function (using Equation 2.2.11),

IT
1 NΓh(xr, xs, ω) =

∫
∂D0

FT (x, xr, ω)NΓh(x, xs, ω) d2xH . (2A.10)

The multiplication by IT
1 N from the left in Equation 2A.10 deletes the upper subma-

trices of the homogeneous Green’s function Γh(xr, xs, ω). We retrieve the complete
matrix Γh(xr, xs, ω) by multiplying Equation 2A.10 by I2 from the left,

Γ2(xr, xs, ω) = I2IT
1 NΓh(xr, xs, ω) =

(
O O

G−,+ − (G+,−)∗ G−,− − (G+,+)∗

)
,

(2A.11)
and by using Equations 2.2.11 and 2.2.12,

Γh(xr, xs, ω) = Γ2(xr, xs, ω) − KΓ∗
2(xr, xs, ω)K. (2A.12)

From Equations 2A.10 and 2A.11 it follows that the Green’s function Γ2(xr, xs, ω)
is defined as,

Γ2(xr, xs, ω) =
∫

∂D0

I2FT (x, xr, ω)NΓh(x, xs, ω)d2x. (2A.13)

Equations 2A.12-2A.13 together form the single-sided homogeneous Green’s function
representation for Γh(xr, xs, ω). The right-hand side of Equation 2A.13 contains the
homogeneous Green’s function Γh(x, xs, ω), for which we can obtain a single-sided
representation in a similar way. First, in Equation 2A.10, we substitute x by x′ on
∂D′

0 (just above ∂D0), xs by x (on ∂D0) and xr by xs,

IT
1 NΓh(xs, x, ω) =

∫
∂D′

0

FT (x′, xs, ω)NΓh(x′, x, ω) d2x′
H . (2A.14)

Second, we multiply Equation 2A.14 by N from the right, transpose the result and
apply source-receiver reciprocity (NΓT

h (xs, x, ω)N = Γh(x, xs, ω)),

Γh(x, xs, ω)I1 =
∫

∂D′
0

Γh(x, x′, ω)F(x′, xs, ω) d2x′
H . (2A.15)

Multiplication by matrix I1 deletes part of the homogeneous Green’s function
Γh(x, xs, ω). The full matrix Γh(x, xs, ω) is constructed by multiplying by IT

1 from
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the right,

Γ1(x, xs, ω) = Γh(x, xs, ω)I1IT
1 =

(
G+,+ − (G−,−)∗ O
G−,+ − (G+,−)∗ O

)
, (2A.16)

and by using the definition of the homogeneous Green’s function (Equations 2.2.11,
2.2.12),

Γh(x, xs, ω) = Γ1(x, xs, ω) − KΓ∗
1(x, xs, ω)K, (2A.17)

where Γ1(x, xs, ω) is defined as,

Γ1(x, xs, ω) =
∫

∂D′
0

Γh(x, x′, ω)F(x′, xs, ω)IT
1 d2x′. (2A.18)

Equations 2A.17-2A.18 together form the single-sided homogeneous Green’s function
representation for Γh(x, xs, ω).

In summary, we derived a single-sided representation of the homogeneous Green’s
function Γh(xr, xs, ω) consisting of two steps. In the first step (Equations 2A.17-
2A.18) a virtual source is created inside the medium. In the second step (Equations
2A.12-2A.13) a virtual receiver is created inside the medium.

2B 20-layer model

The numerical experiment of the Section 2.3.2 is repeated for the 20 layer model
shown in Figure 2.11.

We model the reflection response and the required focusing functions to create
a virtual source at xs = (0 m, 1500 m)T and virtual receivers on a grid with a depth
range from 0 m to 3000 m and a lateral distance range from −2000 m to 2000 m. The
spatial sampling interval is 12.5 m in both the vertical and horizontal direction.

From the reflection response and the focusing function we compute the single-
sided representation of the elastodynamic homogeneous Green’s function Γ̃h(k1, x3,r,
x3,s, ω) and apply a k1-ω filter (determined by the P-wave velocity as a function of
the virtual receiver depth x3,r). We compose the result according to Equation 2.3.8
and obtain the full elastodynamic homogeneous Green’s function G̃h(k1, x3,r, x3,s, ω).
Next, we apply a transformation to the space-time domain and a convolution with
a 30 Hz Ricker wavelet. Figure 2.12 displays the (v3, f3) component of the resulting
elastodynamic homogeneous Green’s function Gv,f

h (xr, xs, t).
To analyse the accuracy of the single-sided representation, we model the elasto-

dynamic homogeneous Green’s function for an actual source at xs = (0 m, 1500 m)T .
We compute the difference between the modelled and the single-sided representa-
tion of the elastodynamic homogeneous Green’s function. To exclude the evanescent
wavefield, we element-wise multiply the residual ∆Γ̃h(k1, x3,r, x3,s, ω) by a k1-ω fil-
ter M̃, which is determined by the maximum propagation velocity of the medium.
Subsequently, we evaluate the normalised Frobenius norm NF = 1√

4nt4nr
∥M̃ ◦

∆Γ̃h(k1, x3,r, x3,s, ω)∥2 and show the result as a function of virtual receiver depth
x3,r in Figure 2.13. The error plot demonstrates that, also in case of the 20 layer
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Figure 2.11: Layered model. The model depth ranges from 0 m to 3000 m, the lateral distance
ranges from −12 812.5 m to 12 800 m. The P-wave velocity, S-wave velocity and density are
denoted by cp, cs and ρ, respectively.

model, the single-sided homogeneous Green’s function representation is accurate for
propagating waves within numerical precision.
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Figure 2.12: Single-sided representation of the elastodynamic homogeneous Green’s function.
The time slices show the result of the elastodynamic single-sided homogeneous Green’s func-
tion representation Gv,f

h (xr, xs, t) related to virtual source (f3) at xs = (0 m, 1500 m)T and
virtual receivers (v3) placed on a grid with a depth range from 0 m to 3000 m and a lat-
eral distance range from −2000 m to 2000 m. The spatial sampling interval is 12.5 m in
both horizontal and vertical direction. The time slices were multiplied by a gain function
(×e1.5|t|) to emphasise the late arrivals.
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Figure 2.13: Error analysis. Normalised Frobenius norm NF of the difference
∆Γ̃h(k1, x3,r, x3,s, ω) between the elastodynamic single-sided homogeneous Green’s func-
tion representation (see Figure 2.12) and its modelled equivalent as a function of virtual
receiver depth x3,r.
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3
Elastodynamic Marchenko method
using plane waves

Abstract The Marchenko method is capable to create virtual sources inside a
medium that is only accessible from an open-boundary. The resulting virtual data
can be used to retrieve images free of artefacts caused by internal multiples. Conven-
tionally, the Marchenko method retrieves a so-called focusing wavefield that focuses
the data from the recording surface to a point inside the medium. Recently, it was
suggested to modify the focusing condition such that the new focusing wavefield
creates a virtual plane wave source inside the medium, instead of a virtual point
source. The virtual plane wave data can be used to image an entire surface inside
the medium in a single step rather than imaging individual points on the surface.
Consequently, the imaging process is accelerated significantly. We provide an exten-
sion of plane wave Marchenko redatuming for elastodynamic waves and demonstrate
its performance numerically.

Published as: Reinicke, C., Meles, G. A., and Wapenaar, K. (2018), Elastodynamic Plane Wave
Marchenko Redatuming: Theory and Examples, 80th EAGE Conference and Exhibition 2018.
Note that minor changes have been introduced to make the text consistent with the other chapters.
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3.1 Introduction

In many imaging applications the medium of interest is observed using reflection
measurements acquired on an open-boundary. Recently, a novel imaging technique,
the Marchenko method, has been developed with the aim to retrieve images free of
artefacts caused by internal multiples. The conventional Marchenko method creates
a virtual point source inside the medium, accounting for primary as well as multiply
scattered waves [Broggini et al., 2012b; van der Neut et al., 2015]. From the virtual
response an image at the virtual source location is computed [Behura et al., 2014].
Hence, the imaging process is performed point-wise. Meles et al. [2018] combine
the areal-source methods for primaries by Rietveld et al. [1992] with the spatially-
extended virtual source Marchenko method presented by Broggini et al. [2012b]
to create a virtual plane wave source at an arbitrary surface inside the medium.
Using the virtual plane wave response the entire surface can be imaged in one step
rather than imaging each point on the surface individually. We extend plane wave
Marchenko redatuming for elastodynamic waves, analogous to the elastodynamic
extension of conventional Marchenko redatuming by Wapenaar [2014].

3.2 Elastodynamic plane wave Marchenko redatuming: Theory

First, we will introduce the conventional elastodynamic single-sided Green’s function
representations that allow to create virtual point sources inside a medium. For a
detailed derivation we refer to Wapenaar [2014]. Second, we will modify these
equations such that they create virtual plane wave sources instead of virtual point
sources. Consider an elastic medium without losses. Suppose the medium has
infinite lateral extent and is bounded by a reflection-free surface ∂D0 at the top.
Moreover, we consider elastodynamic power-flux normalised wavefield potentials.
The single-sided Green’s function representations can be written as,

G−,+(x′, xf , ω) =
∫

∂D0

R(x′, x, ω)F+(x, xf , ω)d2x − F−(x′, xf , ω), (3.2.1)

{G−,−(x′, xf , ω)}∗ =
∫

∂D0

R∗(x′, x, ω)F−(x, xf , ω)d2x − F+(x′, xf , ω). (3.2.2)

Here, the one-way Green’s functions G−,±(x′, xf , ω) are 3 × 3 matrices,

G−,±(x′, xf , ω) =

G−,±
Φ,Φ G−,±

Φ,Ψ G−,±
Φ,Υ

G−,±
Ψ,Φ G−,±

Ψ,Ψ G−,±
Ψ,Υ

G−,±
Υ,Φ G−,±

Υ,Ψ G−,±
Υ,Υ

 (x′, xf , ω), (3.2.3)

where the superscript "+" describes downgoing waves, the superscript "−" describes
upgoing waves. The subscripts Φ, Ψ and Υ represent P-, S1- and S2-wavefield
potentials, respectively. The first super- and subscripts refer to the wavefield at the
receiver position x′ on ∂D0, the second super- and subscripts refer to the wavefield at
the source position xf inside the medium. The spatial coordinates and the frequency
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are denoted as x = (x1, x2, x3)T and ω, respectively. The superscript "T " denotes
a transpose and the superscript "∗" denotes a complex-conjugate. The quantity
R(x′, x, ω) is the reflection response of the medium recorded on ∂D0. The focusing
function F±(x, xf , ω) is defined in a truncated medium which is identical to the
physical medium between ∂D0 and ∂Df (x3 = x3,f ) but reflection-free above ∂D0
and below ∂Df . We formulate the focusing functions in the space-time domain to
emphasise its spatial and temporal behaviour. The downgoing part of the focusing
function F+(x′, xf , t) is the inverse of the transmission response T+(x, x′, t) of the
truncated medium [Wapenaar et al., 2016a],∫ t

−∞

∫
∂D0

T+(x, x′, t − t′)F+(x′, xf , t′) d2x′
Hdt′

∣∣∣∣
x3=x3,f

= δ(t) δ(xH − xH,f ) I.

(3.2.4)
The subscript "H" refers to the horizontal coordinates xH = (x1, x2)T and I is an
identity matrix of appropriate size. From Eq. 3.2.4 follows that the downgoing
focusing function satisfies the focusing condition,

F+(x, xf , t)
∣∣
x3=x3,f

= δ(t) δ(xH − xH,f ) I. (3.2.5)

Thus, the focusing function F(x, xf , t) focuses in time and in space. The upgoing
part of the focusing function F−(x, xf , t) is the reflection response of the downgoing
focusing function in the truncated medium. In physical interpretation the single-
sided Green’s function representations (Eqs. 3.2.1 and 3.2.2) can be understood as
follows. The focusing function focuses, or inverse propagates, the source-side of the
reflection response R(x′, x, ω) from the recording surface ∂D0 to the focusing point
xf inside the medium. Hence, a virtual source is created inside the medium at xf .
Following the acoustic plane wave Marchenko redatuming by Meles et al. [2018], we
suggest to define a modified focusing function F̄±(x, pH , x3.f , t) that focuses as a
plane wave in time but not in space. Therefore, the modified downgoing focusing
function obeys the modified focusing condition,

F̄+(x, pH , x3,f , t)
∣∣
x3=x3,f

= δ(t − pH · xH) I, (3.2.6)

where pH = (p1, p2)T denotes the horizontal ray-parameter. The conventional and
the modified focusing conditions in Eqs. 3.2.5 and 3.2.6 are very similar but the
temporal focus δ(t) is replaced by an offset-dependent focus in time δ(t − pH · xH)
and the spatial focus δ(xH − xH,f ) is removed. In the space-frequency domain, we
obtain the modified focusing function F̄±(x, pH , x3.f , t) by multiplying the focusing
function F±(x, xf , ω) by the plane wave ejωpH ·xH,f and by integrating the result
over the focusing surface ∂Df ,

F̄±(x, pH , x3,f , ω) =
∫

∂Df

F±(x, xH,f , x3,f , ω) ejωpH ·xH,f d2xH,f . (3.2.7)

Further, we define the plane wave responses Ḡ−,±(x, pH , x3,f , ω) that are associated
to a plane wave source δ(t − pH · xH,f ) at ∂Df and recorded at x on ∂D0,

Ḡ−,±(x, pH , x3,f , ω) =
∫

∂Df

G−,±(x, xH,f , x3,f , ω) ejωpH ·xH,f d2xH,f . (3.2.8)
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Next, we multiply Eqs. 3.2.1 and 3.2.2 by ejωpH ·xH,f , integrate the result over the
focusing surface ∂Df , use Eqs. 3.2.7 and 3.2.8 and find the modified single-sided
Green’s function representations,

Ḡ−,+(x′, pH , x3,f , ω) =
∫

∂D0

R(x′, x, ω) F̄+(x, pH , x3,f , ω)d2x

− F̄−(x′, pH , x3,f , ω), (3.2.9)

{Ḡ−,−(x′, −pH , x3,f , ω)}∗ =
∫

∂D0

R∗(x′, x, ω)F̄−(x, pH , x3,f , ω)d2x

− F̄+(x′, pH , x3,f , ω). (3.2.10)

Eqs. 3.2.9 and 3.2.10 are nearly equivalent to the conventional single-sided Green’s
function representations [Wapenaar , 2014]. However, the focusing function F is
replaced by a modified version F̄ that focuses in time but not in space. Besides,
the Green’s functions G−,± are replaced by the virtual plane wave responses Ḡ−,±

which are associated to a virtual plane wave source δ(t − pH · xH) at x3,f instead
of a virtual point source at xf .
The modified single-sided Green’s function representations (Eqs. 3.2.9 and 3.2.10)
are an underdetermined system that can only be solved if a separation operator
exists. For the acoustic case, Meles et al. [2018] postulate that such an operator
exists, and demonstrate its performance numerically. The (acoustic) separation op-
erator is based on the kinematics of a direct transmission associated to plane wave
source at the focusing depth and recorded at the surface ∂D0. Correspondingly, we
hypothesise that in the elastodynamic case a separation operator W̄ exists. The sep-
aration operator W̄ is based on the kinematics of a forward-scattered transmission
T̄−

fs(x′, pH , x3,f , ω) associated to a plane wave source defined by the horizontal ray-
parameter pH at ∂Df and recorded at ∂D0. Now we define the modified operator
W̄,

W̄Φ,Φ(x′, pH , x3,f , t) = H(td
Φ,Φ−ϵ−t+pH ·x′

H)−H(−td
Φ,Φ+ϵ−t+pH ·x′

H). (3.2.11)

For better readability we only defined one component of the modified operator W̄.
The remaining elements are defined analogously. The function H() is the Heaviside
function. The variable td

Φ,Φ is the travel time of the first event of the plane wave
response Ḡ−,−

Φ,Φ (x′, pH = 0, x3,f , t). In addition, we introduced a small positive
constant ϵ to account for the finite width of the wavelet. Note that the modified
operator W̄ is applied to the modified single-sided Green’s function representations
in form of a Hadamard product.

Under the assumption that the operator W̄(x′, pH , x3,f , t) exists the modi-
fied single-sided Green’s function representations can be solved analogous to the
conventional Marchenko scheme [Wapenaar , 2014] by replacing G−,±(x′, xf , ω) by
Ḡ−,±(x′, pH , x3,f , ω), F(x′, xf , ω) by F̄(x′, pH , x3,f , ω), and W(x′, xf , t) by W̄(x′,
pH , x3,f , t).
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3.3 Elastodynamic plane wave Marchenko redatuming: Numeri-
cal example

We evaluate the performance of the presented plane wave Marchenko redatum-
ing for an elastic 1.5D model shown in Fig. 3.1a, where we use the coordinates
x = (x1, x3)T . We model reflection data R(x′, x, t) for a point source (see Fig.
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Figure 3.1: (a) Layered model (1.5D) with a lateral distance range from −12 812.5 m to
12 800 m. The model parameters are P-wave velocity cp (red solid line), S-wave velocity
cs (black solid line) and density ρ (blue dashed line). The red dashed line indicates the
focusing depth x3,f = 1200 m. (b) Reflection response R(x′, x, t). To visualise the late
arrivals we applied a temporal gain e0.5t.

3.1b). We choose a focusing depth x3,f = 1200 m. For better visualisation, in all
figures we only show wavefields related to a P-wave source and a P-wave focus. The
initial downgoing focusing function F̄+

0 (see Fig. 3.2a) is computed by inverting the
forward-scattered transmission response T̄−

fs(x′, p1, x3,f , t) related to an incident
plane wave defined by the horizontal ray-parameter p1 = 5 × 10−5 s m−1. When we
inject the initial downgoing focusing function F̄+

0 on the surface ∂D0 in the trun-
cated medium and record it on ∂Df we observe a plane wave δ(t − p1x1) plus a
coda (see Fig. 3.2b), i.e. the initial downgoing focusing function does not focus in
time on ∂Df . Next, we evaluate five iterations of the modified Marchenko series
and use the resulting downgoing focusing function F̄+ (see Fig. 3.2c) to repeat
the experiment. Now we observe a temporal focus δ(t − p1x1) on ∂Df without a
coda (see Fig. 3.2d), indicating that we retrieved the correct downgoing focusing
function. We evaluate Eqs. 3.2.9 and 3.2.10 using the retrieved modified focus-
ing functions to obtain the virtual plane wave responses Ḡ−,±(x′, p1, x3,f , t). Fig.
3.2e shows a superposition of Ḡ−,+(x′, p1, x3,f , t) and Ḡ−,−(x′, p1, x3,f , t). The re-
trieved virtual plane wave responses include primary, multiply-scattered as well as
converted waves. To illustrate that the choice of the ray-parameter p1 is arbitrary
we repeat the above experiments using a different ray-parameter p1 = 0 s m−1 (see
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Figs. 3.2f-j). In this case we observe less events because at zero-incidence there are
no conversions between P- and S-waves.
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Figure 3.2: Initial modified focusing function F̄+
0 (x, p1, x3,f , t) for a ray-parameter p1 =

5 × 10−5 s m−1 at the surfaces (a) ∂D0 and (b) ∂Df . Modified focusing function
F̄+(x, p1, x3,f , t) at the surfaces (c) ∂D0 and (d) ∂Df . (e) Superposition of the up- and
downgoing virtual plane wave responses Ḡ−,±(x′, p1, x3,f , t). (f-j) Repetition of (a-e) for
a different ray-parameter p1 = 0 s m−1.

3.4 Conclusions

We extended the modified Marchenko redatuming by Meles et al. [2018] for elasto-
dynamic waves. By modifying the focusing condition we obtained modified single-
sided Green’s function representations that allowed to create virtual plane wave
sources (and receivers) inside the medium, only using the medium’s reflection re-
sponse recorded at an open-boundary and the forward-scattered transmission re-
sponse between the recording and the focusing surfaces. The virtual plane wave
responses are retrieved for single ray-parameters, i.e. they might be used for AVA
inversion. Further, the virtual plane wave responses can be used to image the fo-
cusing surface ∂Df in a single step. By imaging an entire surface, instead of a single
point, the imaging process is accelerated significantly.
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Comparison of monotonicity
challenges encountered by the inverse
scattering series and the Marchenko
de-multiple method for elastic waves

Für alles Schöne,
Muss man zahlen.

Rammstein, 2019.

Abstract The single-sided reflection response of strongly scattering media of-
ten contains complicated interferences between primaries and (internal) multiples,
which can lead to imaging artefacts unless handled correctly. Internal multiples can
be predicted, e.g. by the Jakubowicz method or by the inverse scattering series (ISS),
as long as monotonicity, i.e. "correct" temporal event ordering, is obeyed. Alterna-
tively, the (conventional) Marchenko method removes all overburden-related wave-
field interactions by formulating an inverse problem that can be solved if Green’s and
so-called focusing functions are separable in the time domain, except for an overlap
that must be predicted. For acoustic waves, the assumptions of the aforementioned
methods are often satisfied within the recording regimes used for seismic imaging.
Elastic media, however, support wave propagation via coupled modes that travel
with distinct velocities. Compared to the acoustic case, not only does the multiple
issue become significantly more severe, but also violation of monotonicity becomes
much more likely. By quantifying the assumptions of the ISS and the conventional

This chapter is currently under review for publication in Geophysics (submitted on 13 October
2019).
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Marchenko method, unexpected similarities as well as differences between the two
methods come to light. Our analysis demonstrates that the conventional Marchenko
method relies on a weaker form of monotonicity. However, this advantage must be
compensated by providing more prior information, which in the elastic case is an
outstanding challenge. Rewriting, or re-mixing, the conventional Marchenko scheme
removes the need for prior information but leads to a stricter monotonicity condi-
tion, which is now almost as strict as for the ISS. Finally, we present two strategies
how the re-mixed Marchenko solutions can be used for imperfect, but achievable,
de-multiple purposes.
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4.1 Introduction

Structural images are often derived from a single-sided reflection response. How-
ever, traditional imaging methods assume single-scattering reflections (primaries
only), such that other events, in particular multiples, create artefacts, which can be
significant when the imaging target is buried under a strongly scattering overbur-
den. In elastic media, this problem is worse: each interface couples compressional
(P) and shear (S) waves, increasing the number of (unwanted) events drastically.
Additionally, due to different propagation speeds of elastic modes, the (converted)
primaries associated with an individual reflector arrive at different times, distribut-
ing information about this reflector in time. Hence, imaging artefacts can arise not
only from (converted) multiples but also from converted primaries, i.e. forward-
scattered waves. Reflection data driven methods are not (yet) capable of predicting
forward-scattering but they are theorized to be able to handle (converted) multiples.

Wave-equation-based de-multiple methods, such as Jakubowicz [1998], or the
inverse scattering series [ISS, Weglein et al., 1997], predict and subtract internal
multiples under two assumptions,

[1] that the temporal ordering of primaries corresponds to the reflector ordering
in depth, and

[2] that internal multiples are recorded after their generating primaries (= pri-
maries associated with the internal multiple generators).

These requirements, known as monotonicity, are satisfied for acoustic waves, except
for special cases shown by Nita and Weglein [2009]. In elastic media, however, viola-
tion of monotonicity becomes much easier because of mode conversions. Regardless
of monotonicity, both the ISS and the Jakubowicz method are applied in a layer-
stripping fashion, which can be expensive and susceptible to error accumulation. To
our knowledge, there has been no proposal to track, or quantify, the accumulated
error.

A Marchenko-equation-based alternative for acoustic waves allows to remove
all internal multiples associated with an entire group of layers, without adaptive
subtraction [e.g. Broggini et al., 2012a; Wapenaar et al., 2013; Slob et al., 2014]. This
method formulates an inverse problem with two equations (derived from reciprocity
theorems) and four unknowns: up- and downgoing Green’s functions as well as so-
called up- and downgoing focusing functions. The Green’s and focusing functions
can be separated in the time domain, except for an unavoidable overlap (χ+). Given
this overlap, two unknowns can be eliminated by muting. Subsequently, two coupled
Marchenko equations are obtained and solved for the focusing functions, which once
found yield the Green’s functions. Upon multi-dimensional deconvolution of the
retrieved Green’s functions, overburden-related scattering interactions, including
internal multiples, can be removed. We refer to this approach as the conventional
Marchenko method.

The elastodynamic extension of the Marchenko method bears several challenges.
Firstly, speed differences between modes can lead to a second overlap (χ−), which
so far cannot be predicted without knowing the medium and only vanishes con-
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ditionally. Secondly, the previously-mentioned unavoidable overlap (χ+) between
Green’s and focusing functions is no longer easily predictable without significantly
more prior information, or additional constraints. Similar restrictions were encoun-
tered by prior work on inverse scattering of coupled modes. Nevertheless, these cases
ignored the overlaps, either by assuming sufficiently small velocity differences be-
tween modes [Zakharov and Shabat, 1973; Bava and Ghione, 1984], or by excluding
coupling [Ware and Aki, 1969].

To overcome the challenge related to the overlap χ+, we derive a re-mixed,
as opposed to the above-mentioned conventional, Marchenko method: the Green’s
and focusing functions are transformed such that the unavoidable, highly complex,
overlap (χ+) re-mixes into a trivial one. This strategy can be seen as a combination
and generalization of the Marchenko schemes by van der Neut and Wapenaar [2016]
and Dukalski et al. [2019].

The ISS as well as the conventional and re-mixed Marchenko methods tackle
the same de-multiple problem but appear to rely on different requirements. So
far, the requirements of the aforementioned methods are only formulated verbally,
which makes a direct comparison of the de-multiple methods difficult. Therefore,
we quantify these assumptions in a form of medium-, angle of incidence and reda-
tuming depth dependent separability conditions. This analysis demonstrates that
the monotonicity assumptions of the ISS are very similar to, but stricter than,
the separability condition of the conventional Marchenko method. After re-mixing,
the Marchenko method can be applied without prior medium information (no need
for the overlap χ+). Although, compared to the conventional Marchenko scheme,
the separability condition becomes stricter, it still remains slightly more relaxed
than the monotonicity assumption [1] of the ISS. This advantage of the (re-mixed)
Marchenko method comes from handling the overburden as one complex multiple
generator, rather than a stack of independent multiple generators.

Finally, we demonstrate how the solutions of the re-mixed Marchenko method
can be used to remove internal multiples, except for internal multiples that predate
their generating primaries. In contrast to the ISS, which encounters the same limi-
tation, see assumption [2], the re-mixed Marchenko method tracks the error caused
by the remaining internal multiples. This tracked error is expected to persist in field
data studies [e.g. Ravasi et al., 2016; Staring et al., 2018] but could be eliminated
by transforming the re-mixed solutions back to the conventional ones, using energy
conservation and the minimum-phase property of the focusing function, similar to
Dukalski et al. [2019]. The latter strategy relies on the reconstruction of a minimum-
phase matrix from its normal product, which is subject to ongoing research and will
be published elsewhere.

This paper is structured as follows: first, we briefly outline the conventional
Marchenko scheme, quantify its assumptions as a separability condition and in-
terpret the required initial estimate. Second, we derive the re-mixed Marchenko
scheme, which leads to a stricter separability condition. Third, we quantify mono-
tonicity conditions of the ISS, which we compare to the requirements of the afore-
mentioned (re-mixed) Marchenko method. Finally, we illustrate our findings with
numerical examples. In this analysis, we assume surface-related multiples are re-
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moved during preprocessing, and thus, use the terms multiples and internal multiples
as synonyms. Although we consider the simplest yet non-trivial case, horizontally-
layered elastic media, our analysis is already highly relevant for the Middle East
[e.g. see El-Emam et al., 2001], and extends qualitatively to more general cases.

Notation

We consider 2D lossless horizontally-layered elastic media in x-z coordinates. Ac-
cording to Snell’s law horizontal-slownesses sx (= horizontal ray-parameter) are
conserved,

sx =
sin
(
αp/s(z)

)
cp/s(z)

= constant, (4.1.1)

where the subscripts refer to P- and S-waves. Further, αp/s and cp/s are the prop-
agation angle with respect to the vertical axis (z) and the propagation velocity, re-
spectively. A representation in the horizontal-slowness intercept-time (sx, τ) domain
allows to separate 2D wavefields U(x, z, t) into a set of decoupled 1D wavefields,

U(sx, z, τ) =
∫ ∞

−∞
U(x, z, τ + sxx)dx. (4.1.2)

In this paper, we use the terms time and intercept-time interchangeably, and insist
on time-domain expressions because we will discuss temporal separations between
wavefields further onwards.

We restrict our analysis to propagating waves, i.e. |sx| ≤ 1
cp

(assuming cp > cs),
and neglect measurement-induced limitations, such as a finite bandwidth, because
here we wish to focus on a fundamentally physical (not measurement-borne) limi-
tation. Further, we work with power-flux normalized P- and S- one-way wavefields
[Frasier , 1970; Ursin, 1983], organized in 2 × 2 matrices per discrete horizontal-
slowness and time,

U(sx, z, τ) =

(
Upp Ups

Usp Uss

)
(sx, z, τ). (4.1.3)

The elements of the arbitrary wavefield U(sx, z, τ) are associated with source- (sec-
ond subscript) and receiver-side (first subscript) wavefield potentials (P and S).

Finally, we introduce a detail-hiding notation that omits coordinates and implies
temporal convolutions when two matrices U1 and U2 are multiplied, for example
U1U2 stands for, ∫ ∞

−∞
U1(sx, z, τ − τ ′)U2(sx, z, τ ′)dτ ′. (4.1.4)

4.2 Marchenko Green’s function retrieval

Suppose all the multiples due to the overburden above the redatuming depth zi shall
be removed. For this purpose, we might use the Green’s functions, G−,+(sx, z0, zi, τ)
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and
G−,−(−sx, z0, zi, τ), associated with down- "+" and upward "−" radiating sources
(second superscript) at the redatuming depth zi, respectively, and recordings of
upgoing waves "−" (first superscript) at the acquisition level z0 (see Fig. 4.1).
From these Green’s functions, a redatumed reflection response Rrd(sx, zi, τ), free of
overburden-related scattering, can be obtained via an Amundsen [2001] deconvolu-
tion,

G−,+ = −σzG−,−RT
rdσz. (4.2.1)

Here, we exploit wavefield symmetries in horizontally-layered media via a transpose
in P-S space (superscript "T") and via the Pauli matrix σz, which is multiplied
by a temporal, τ = 0, delta spike (for consistent detail-hiding notation). These
symmetries allow us to proceed with the retrieved Green’s functions G−,±, although
they are associated with horizontal-slownesses sx of opposite sign (a derivation can
be found in Appendix A). The challenge is to retrieve these Green’s functions from
a reflection response R(sx, z0, τ) recorded at a scattering-free surface z0 at the top,
which can be accomplished by a Marchenko method.

First, we highlight the underlying assumptions and the prior information re-
quired by the conventional Marchenko method. Second, we provide a physical inter-
pretation of the prior information, and third, we propose an alternative Marchenko
formulation, which trades prior information for stricter assumptions. It will be
shown that, both the conventional Marchenko method as well as its alternative for-
mulation rely on separability conditions, which we express quantitatively. In the
next section, this quantification will allow us to compare the requirements of the
Marchenko method to those of the ISS.

4.2.1 Quantitative separability condition

We briefly outline the elastodynamic Marchenko method, derived by one of the
authors [Wapenaar , 2014], and quantify the assumptions as a separability condition.

Instead of predicting multiples by combining all possible triplets of primaries
associated with the overburden [Coates and Weglein, 1996], the Marchenko method
solves an inverse problem formed by two equations, the convolution- and correlation-
type representation theorems,

G−,+ + F−
1 = RF+

1 , (4.2.2)(
G−,−)∗ + F+

1 = R†F−
1 , (4.2.3)

with four unknowns: the Green’s functions G−,± and the focusing functions F±
1 (sx,

z0, zi, τ). The latter ones are defined in a truncated medium that is identical to the
overburden, but scattering-free above z0 and below zi. The superscripts denote a
time-reversal (∗) and a time-reversal combined with a transpose in P-S space (†).
Further, an illustration of Eqs. 4.2.2-4.2.3 can be found in Fig. 4.1 for an acoustic
medium and in Figs. 4.2a and 4.3a for an elastic medium.

In an attempt to constrain Eqs. 4.2.2-4.2.3, two temporal projectors, P±, are
applied as a Hadamard matrix product in P-S space (details about the projectors
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Figure 4.1: Illustration of the (a) convolution- and (b) correlation-type representation the-
orems. This figure depicts an acoustic experiment to help the interpretation of the elastic
experiments shown in Figs. 4.2 and 4.3. The representation theorems describe a scattering
experiment: special fields (the focusing functions F±

1 ) are injected into a medium (see ar-
rows saying "in"), the arrow diagram in the centre depicts the scattering paths for a single
horizontal-slowness sx (marked with black arrows in sx-τ gathers) and another special field
scatters back to the recording surface z0 (see arrows saying "out"). Note that, all wavefields
are consistently color-coded in Figs. 4.1-4.3. The scattering of F+

1 (violet in panel a) and
F−

1 (red in panel b) by a (a) time-forwarding and (b) time-reversing medium results in su-
perpositions of focusing and Green’s functions, F−

1 +G−,+ and F+
1 +(G−,−)∗, respectively.

The top trace shows true (violet) and retrieved (orange) focusing functions F +
1,pp and F̄ +

1,pp,
respectively. The last event of F−

1 (event I) and the first event of G−,+ (event II) are
represented by red and green paths, respectively (also see sx-τ gathers). Similarly, the first
event of F+

1 (event III) and the last event of (G−,−)∗ (event V) are highlighted by violet
and green travel paths, respectively. The fastest multiple of (G−,−)∗ (event IV) propagates
along the blue path. At the recording surface z0, the overlap between focusing and Green’s
functions only contains a direct wave (events III and V). The overlap(s) between focusing
and Green’s functions appear to have a trivial sx-dependency (illustrated by the sx-τ gath-
ers), however, this will change in the elastic case (see Fig. 4.2). For illustration purposes,
all responses are convolved with a 30 Hz Ricker wavelet. Medium parameters can be found
in appendix C.
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Illustration of the convolution-type representation theorem (cs 6= 0)

(see Eqs. 6 and 8)
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Figure 4.2: (a) Idem as Fig. 4.1a for the same medium supporting elastic wave propagation
(arbitrarily chosen sp component shown). Compared to the acoustic experiment shown in
Fig. 4.1a, the number of scattering paths increased drastically because at each interface the
injected wavefield is reflected and transmitted as P- and S-waves. Moreover, creation of a
P-wave focus requires injection of P- (grey color for F +

1,pp) and S-waves (violet color for
F +

1,sp). Due to the mode coupling, the F−
1 /G−,+ separability is only violated for sufficiently

large horizontal-slownesses, |sx| > 2.54 × 10−4 s m−1 (indicated by black arrows inside the
top-right sx-τ gather). For smaller horizontal-slownesses, the separability conditions (see
Eqs. 4.2.7 and 4.2.8) are satisfied and the Marchenko method retrieves the correct focusing
function (see top trace). (b) Idem as panel (a), except that the thickness of the focusing
layer is reduced such that the first event of G−,+

sp (event II) predates the last event of
F −

1,sp (event I), leading to a temporal overlap (see black ellipse in the cartoon and and
red-green area overlap in sx-τ gathers). If we erroneously assume zero overlap χ− = O,
the Marchenko method forces the overlapping part of the Green’s function to become part of
the upgoing focusing function F̄−

1 . As a result, the retrieved downgoing focusing function
F̄+

1 contains an artefact (see orange arrow) that cancels a multiple generated by event II.
The other artefacts of the retrieved focusing function F̄+

1 (e.g. around τ = −1.25 s) are
caused by similar mechanisms but are not immediately easy to interpret here.
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can be found in Appendix B). In other publications, the projectors are also referred
to as window functions, both terms describe exactly the same thing. Without loss
of generality, the projectors preserve the focusing functions but mute the Green’s
functions, except for the temporal overlaps, P− [G−,+] = χ− and P+ [(G−,−)∗] =
χ+, such that Eqs. 4.2.2-4.2.3 simplify to,

χ− + F−
1 = P− [RF+

1
]

, (4.2.4)
χ+ + F+

1 = P+ [R†F−
1
]

. (4.2.5)

Note that, keeping the overlap χ− explicit will lead to key insights of this paper.
The solution strategy hopes that the overlaps χ± can be estimated, such that the
inverse problem resembles a set of coupled Marchenko equations that can be solved
recursively,

F+
1 =

∞∑
k=0

Ξk, with, Ξk = P+ [R†P− [RΞk−1]
]

, (4.2.6)

using Ξ0 = −χ+ − P+ [R†χ−
]

as initial estimate, and assuming convergence of the
series [which only has been shown for the acoustic case, Dukalski and de Vos, 2017].
From the retrieved solution F+

1 , the remaining unknowns can be constructed.
Estimating the overlaps remains very challenging. In order to proceed, the

Marchenko method firstly assumes χ− is a null matrix O, and secondly, requires χ+
as prior information (a physical interpretation of χ+ follows in the next subsection).

The assumption, χ− = O, demands that the focusing function F−
1 and the

Green’s function G−,+ remain separable in the time domain (see F−
1 /G−,+ sep-

arability in Figs. 4.1a and 4.2a). Although true for 1.5D acoustic media, this
assumption can be violated in 1.5D elastic media (see Fig. 4.2b), and only holds
under the separability condition,

i−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< 2 ∆z(i)s(i)

z,p, (4.2.7)

which is derived in Appendix B. Variables ∆z(k) and s
(k)
z,p/s denote the thickness

and the vertical-slownesses of P- and S-waves in the kth layer, respectively (the layer
labelling is depicted in Fig. 4.5a). The right-hand side of Eq. 4.2.7 describes the two-
way travel time of a P-wave through the ith layer (embedding the redatuming level),
and the left-hand side is the one-way travel time difference between a P- and an
S-wave propagating from the shallowest to the deepest interface of the overburden.

Note that, the Marchenko separability condition becomes more restrictive if iden-
tical projectors, P+ and P−, are used, and is domain-dependent [analogous to Sun
and Innanen, 2019]: the sx-τ domain is favorable, particularly in 1.5D media, be-
cause horizontal-slownesses can be treated separately, reducing the risk of a non-zero
overlap χ−. For example, in the space-time domain a non-zero overlap χ− becomes
much more likely e.g. due to events of the Green’s function G−,+ associated with
small angle of incidence predating events of the focusing function F−

1 associated
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with large angles of incidence. If measurements of several horizontal-slownesses are
available, a transformation to the hyperbolic Radon domain may slightly relax the
presented separability condition.

4.2.2 Physical interpretation of the overlap χ+

In 1.5D acoustic media, the overlap χ+ is a direct wave propagating from the reda-
tuming level zi to the acquisition surface z0.

Wapenaar and Slob [2015] demonstrate that, in elastic media, the unavoidable
overlap, χ+, does not simply consist of direct P- and S-waves, but of all waves
that forward-scatter from the redatuming level zi to the acquisition surface z0 (such
as events III and V in Figs. 4.1b and 4.3a). This physical interpretation of χ+
describes a special case and can become less intuitive in a general case: multiples
that propagate mainly as P-waves (such as event IV) may outpace forward-scattered
waves that propagate mainly as S-waves (such as event III), and thereby become
part of the overlap χ+, as depicted in Fig. 4.3b. We refer to these events as fast
multiples, and their occurrence is prevented if the separability condition,

i−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< 2 min

{
∆z(k)s(k)

z,p

∣∣∣ k ∈ [1, i]
}

, (4.2.8)

holds (derived in Appendix B). The minimum function, min{·}, selects the smallest
element of the given set, which in this case is the delay between the fastest multiple
and the fastest primary propagating from zi to z0.

If the separability condition in Eq. 4.2.8 is violated, the conventional Marchenko
method requires the fast multiples as prior information. Even in the special case
where Eq. 4.2.8 holds such that the overlap χ+ simplifies to only forward-scattered
waves, it still consists of 2n−1 events per elastic component, where n is the number
of reflectors inside the overburden. Thus, finding the initial estimate χ+ without
further constraints becomes very unrealistic for an unknown model.

4.2.3 Marchenko with trivial initial estimate

In this section, we modify the conventional Marchenko scheme to remove the need for
prior information contained by χ+, in exchange for a stricter separability condition.

We exploit the freedom to convolve the representation theorems in Eqs. 4.2.2-
4.2.3 with an arbitrary time-dependent matrix B(sx, zi, z0, τ) from the right,

U−,+ + V−
1 = RV+

1 , (4.2.9)(
U−,−)∗ + V+

1 = R†V−
1 , (4.2.10)

where we introduced V±
1 = F±

1 B, U−,+ = G−,+B and U−,− = G−,−B∗. This
approach allows us to arrive at a different set of equations and can be interpreted as
a form of preconditioning [Dukalski and de Vos, 2017]. Alike Dukalski et al. [2019],
Elison et al. [2019] and Mildner et al. [2019b], we assume an unknown, though later
recoverable, B, contrary to other authors who use a known B [van der Neut and
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Illustration of the correlation-type representation theorem (cs 6= 0)

(see Eqs. 7 and 9)
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Figure 4.3: (a) Idem as Fig. 4.1b but now the medium is elastic and contains an additional
interface (arbitrarily chosen sp component shown). Since the additional layer generates so
many extra events we do not draw all paths in the cartoon. In contrast to the acoustic case
in Fig. 4.1b, creation of a P-wave focus requires injection of P- (grey color for F −

1,pp) and
S-waves (red color for F −

1,sp). Due to P-S coupling at each interface, the overlap χ+, which
is bounded by the first event of F+

1 (event III) and the last event of (G−,−)∗ (event V),
contains not only of a direct wave, but all forward-scattered waves. The sx-τ gather shows
that the temporal separation between forward-scattered waves (e.g. events III, V and VI)
and multiples (e.g. event IV) decreases with increasing horizontal-slowness. (b) Idem as
panel Fig. 4.3a, except that the second interface from above has been moved downwards
creating a thinner layer (layer thickness reduced from 250 m to 50 m). As a result, the
overlap χ+ contains not only the forward-scattered waves but also fast multiples (see event
IV in ellipse). Approximating the overlap χ+ only by forward-scattered waves, i.e. ignoring
fast multiples such as event IV, leads to an erroneous focusing function F̄+

1 (see orange
and violet traces for comparison). Errors occur not only within the temporal extent of the
overlap χ+ but also at other times.
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Wapenaar , 2016; Singh et al., 2017; Ravasi, 2017; Meles et al., 2018; Reinicke et al.,
2018; Wapenaar and van IJsseldijk, 2019].

Next, we define the unknown B such that the overlap χ+ unfolds onto an identity.
This strategy can be seen as applying an unknown transformation (convolution with
B) that maps the typically unknown initial guess χ+ onto a trivial one. As a result,
the solutions are also transformed from F±

1 to V±
1 = F±

1 B. We emphasise that the
operator B is not a mere time-shift as in the acoustic scheme by van der Neut and
Wapenaar [2016], or a form of a wavelet as in the scheme by Dukalski et al. [2019]
and Elison [2019], but a much more general matrix filter. Now Eq. 4.2.10 can be
easily separated,

P+
B

[(
U−,−)∗

]
= χB

+ = I, (4.2.11)

P+
B

[
V+

1
]

= V+
1 , (4.2.12)

where I is an identity matrix multiplied by a temporal delta function. Note that
the projector P+

B can be very different from the projector P+ in Eq. 4.2.5 (details
about the projectors can be found in Appendix B). After applying a projector to
Eq. 4.2.9,

P−
B

[
U−,+] = χB

−, (4.2.13)
P−

B

[
V−

1
]

= V−
1 , (4.2.14)

we can simplify Eqs. 4.2.9 and 4.2.10 to,

χB
− + V−

1 = P−
B

[
RV+

1
]

, (4.2.15)
I + V+

1 = P+
B

[
R†V−

1
]

. (4.2.16)

Compared to Eqs. 4.2.4-4.2.5, the overlaps χ± are re-mixed into χB
− and χB

+ = I,
and thus, we refer to B as the re-mixing operator. For the special case that the
re-mixed overlap χB

− remains zero we can retrieve re-mixed solutions,

V+
1 =

∞∑
k=0

Ξk, with, Ξk = P+
B

[
R†P−

B [RΞk−1]
]

, (4.2.17)

using a trivial initial estimate Ξ0 = −χB
+. Further onwards, we will introduce a de-

multiple strategy that only requires the resulting re-mixed Green’s functions U−,±

as input.
The advantage of a trivial initial estimate, χB

+ = I, comes at a cost: although
unknown, the re-mixing operator is associated with a source at the surface at z0
and a receiver at the redatuming depth zi. Thus, B moves the focal point to
the acquisition surface. This process reduces the temporal separation between the
focusing function F−

1 and the Green’s function G−,+ by the temporal extent of the
re-mixing operator (see Fig. 4.4). As a result, an originally zero overlap, χ− = O,
can become non-zero, χB

− ̸= O. This is because the re-mixed Marchenko method
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Separability Satisfied Violated
condition

C
on

ve
nt

io
na

l Eq. 4.2.7 χ− = O χ− ̸= O with finite duration

Eq. 4.2.8 χ+ only contains χ+ contains forward-scattered
forward-scattered waves waves and fast multiples

R
e-

m
ix

ed

Eq. 4.2.18 χB
− = O χB

− ̸= O with finite duration

Unconditionally χB
+ = I not applicable

Table 4.1: This table summarizes the effect of satisfying, and violating, the separability
conditions of the conventional and the re-mixed Marchenko method.
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Figure 4.4: Effect of re-mixing on temporal separation, illustrated analogously to Figs. 4.2-
4.3. Re-mixing reduces temporal distance between F−

1 and G−,+ (see grey and black bar)
by the duration of the re-mixing operator (see black bar). We depict the first (superscript
α) and last (superscript Ω) events of F−

1 (red), G−,+ (green) and B (blue). The travel
times of the first and the last event of B are derived in Appendix B.

relies on a stricter separability condition than the conventional Marchenko method
(see Eq. 4.2.7), and it holds if (a derivation can be found in Appendix B),

i−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< ∆z(i)s(i)

z,p. (4.2.18)

The effect of satisfying, or violating, the aforementioned separability conditions
is summarized in Tab. 4.1.
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4.3 Inverse scattering series

The ISS relies on monotonicity assumptions [1] and [2] (see Introduction), which
have always been formulated verbally. We quantify these assumptions in a form
of two inequalities. Subsequently, we compare them against the conventional and
re-mixed Marchenko methods.

4.3.1 Quantifying monotonicity in terms of separability conditions

Consistent with the previous section, we aim to remove multiples related to the
overburden above zi. Monotonicity assumption [1] in the introduction requires that
the P-wave travel time through each layer inside the overburden is sufficiently long
to separate the (converted) primaries of adjacent reflectors in time (compare Figs.
4.5a and b), and has to hold for each elastic component. This requirement can be
formulated as a separability condition (derived in Appendix B),

j−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< ∆z(j)s(j)

z,p, ∀ j ∈ [2, i]. (4.3.1)

Monotonicity assumption [2] states that multiples are recorded after their generating
primaries and can be formulated as (derived in Appendix B),

i−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< min

{
∆z(k)s(k)

z,p

∣∣∣ k ∈ [1, i]
}

. (4.3.2)

Violating monotonicity causes erroneous multiple predictions at the arrival times
of primaries [e.g. see Fig. 16 in Sun and Innanen, 2019]. Match-subtracting
the mis-predicted multiples will remove the respective primaries, and consequently,
multiples generated by those primaries cannot be predicted.

Layer 0

Layer 1

Layer i − 1

Layer i

Layer i + 1

i0

i1

z0

zi

τ

z

(a)
τ

(b)
τ

(c)

Figure 4.5: Two primary reflections (arbitrarily chosen ss component) that, (a) obey and (b)
violate monotonicity assumption [1]. (c) A multiple that predates a primary of one of its
generators, violating monotonicity assumption [2]. Dashed and sinusoidal lines represent
P- and S-waves, respectively. Layers are labelled with respect to the redatuming depth zi.
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4.3.2 Analysis of Marchenko and ISS separability conditions

Now we compare the assumptions of the conventional and re-mixed Marchenko
methods (see Eqs. 4.2.7, 4.2.8 and 4.2.18) with the monotonicity assumptions of
the ISS (see Eqs. 4.3.1 and 4.3.2).

All of the aforementioned methods rely on separability conditions that have the
same term on the left-hand side. This term describes the travel time difference
between P- and S-waves propagating from the shallowest to the deepest reflector
of the overburden. Hence, the likelihood of violating these separability conditions
increases with depth and vertical-slowness differences between P- and S-waves (sz,s−
sz,p).

The re-mixed Marchenko scheme and the ISS can both be evaluated without
prior medium information, which makes for a fair comparison: the separability
condition of the re-mixed Marchenko scheme is nearly identical to the monotonicity
assumption [1] of the ISS (compare Eqs. 4.2.18 and 4.3.1). However, the condition
for the re-mixed Marchenko scheme (see Eq. 4.2.18) only needs to be obeyed by the
redatuming layer i, rather than by each layer inside the overburden (see Eq. 4.3.1).
For example, a sufficiently slim layer inside the overburden can be prohibitive for the
ISS while the re-mixed Marchenko method can handle it, as long as the redatuming
layer i provides sufficient temporal support, ∆z(i)s

(i)
s,p. Hence, the requirement of

the re-mixed Marchenko scheme, i.e. the separability of V−
1 from U−,+, can be seen

as a relaxed version of monotonicity condition [1].
In contrast, the separability condition of the conventional Marchenko method

is more relaxed due to the additional factor of two (compare Eqs. 4.2.7, 4.2.18
and 4.3.1). This relaxation emerges because the conventional Marchenko scheme
demands temporal separability in terms of one- instead of two-way travel time
(F−

1 ↔ V−
1 and G−,+ ↔ U−,+). However, the more relaxed separability condition

must be compensated by estimating the remaining overlap χ+, i.e. by providing
prior information. Hence, the re-mixed Marchenko method trades prior information
for a stricter assumption. This trade-off was not observed by van der Neut and
Wapenaar [2016] because they did not consider forward-scattered waves.

Further, elastic overburden removal via the ISS entails a high risk of violating
the monotonicity assumption [2], which is quantified by Eq. 4.3.2: with increasing
depth the right-hand side of the condition decreases or remains constant, while
the left-hand side increases. In other words, increasing depth leads to a higher
probability of fast multiples occurring, i.e. multiples outpacing their generating
primaries. Fast multiples can also be encountered by the conventional Marchenko
method, which requires them to be included in the initial estimate. The occurrence
of fast multiples in the conventional Marchenko method and the ISS differs by a
factor of two (compare Eqs. 4.2.8 and 4.3.2), which is again a matter of one- and
two-way travel times. The re-mixed Marchenko scheme cannot predict fast multiples
either, but stores them in the re-mixing operator B.

Note that, the discussed separability conditions only consider the temporal event
ordering, but neglect the amplitudes of the events. Errors due to violating the sepa-
rability conditions may be negligible close to zero-incidence where mode conversions
are weak, but become increasingly significant with increasing angle of incidence.



58
Comparison of monotonicity challenges encountered by the inverse scattering series and the

Marchenko de-multiple method for elastic waves

4.4 De-multiple strategies for re-mixed Marchenko scheme

Now we propose two de-multiple strategies derived from the re-mixed Marchenko
solutions. The first one only requires the re-mixed solutions but does not remove all
overburden interactions, and hence, further improvements are desirable. The second
one aims to remove all overburden interactions by exploiting energy conservation
and the minimum-phase property of the focusing function. The latter approach is
discussed conceptually and further details will be presented in the future.

4.4.1 Re-mixed Marchenko de-multiple method

The two Green’s functions G−,± are related by the redatumed reflection response
Rrd (see Eq. 4.2.1), that is free of overburden interactions, and thus, is a form
of overburden-borne multiple and forward-scattering elimination. In contrast, the
re-mixed Green’s functions U−,± are mutually related by a different, multiple-free,
reflection response. This relation can be seen by inserting an identity, B∗ (B∗)−1, in
Eq. 4.2.1, multiplying the result by B from the right, and substituting the Green’s
functions by their re-mixed versions,

U−,+ = −σzU−,− (B∗)−1 RT
rdσzB. (4.4.1)

Here, we introduced a convolutional and matricial inverse of B, where the super-
script "−1" denotes a Moore-Penrose pseudo-inverse. Unlike the Green’s function
G−,±, the re-mixed ones are easily calculable provided that the separability condi-
tion Eq. 4.2.18 holds. Upon deconvolution of Eq. 4.4.1, we obtain,

(B∗)−1 RT
rdσzB. (4.4.2)

This quantity is the desired redatumed reflection response, dressed with all over-
burden interactions described by B on the source- and receiver-sides. In a 1.5D
acoustic case, B simplifies to a time-shift defined by the overburden and a global
transmission-amplitude correction. In the elastic case, in the absence of fast mul-
tiples (see Eq. 4.2.8) B is an inverse forward-scattered transmission through the
overburden. This insight ties back to the statement in the introduction that forward-
scattering cannot be predicted by existing methods. If Eq. 4.2.8 is violated B also
carries the imprint of fast multiples (e.g. see Fig. 4.6). In particular media, forward-
scattered waves and fast multiples can by chance destructively interfere, bringing B
close to the inverse of a time-reversed direct transmission.

Moreover, the re-mixed Marchenko scheme allows to understand and track the
impact of forward-scattering and fast multiples via the re-mixing operator (see Eq.
4.4.2). In contrast, layer-stripping approaches suffer from erroneous primary pre-
dictions due fast multiples. These in turn may generate further mis-predictions,
accumulating an untraceable error.

4.4.2 Alternative de-multiple strategy

We conjecture it could be possible to remove all overburden interactions, including
forward-scattering and (fast) multiples, by exploiting further physical constraints:
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energy conservation and the minimum-phase property of the focusing function. In
the following, we make the first steps in this direction.

The up- and downgoing focusing functions conserve energy,(
F+

1
)† F+

1 −
(
F−

1
)† F−

1 = I, (4.4.3)

i.e. the net energy injected at z0 equals the transmitted energy at zi - a delta source
at time zero. Firstly, by evaluating energy conservation of the re-mixed focusing
function, V±

1 = F±
1 B, and using Eq. 4.4.3, we obtain the normal product of the

re-mixing operator, (
F+

1 B
)† F+

1 B −
(
F−

1 B
)† F−

1 B = B†B. (4.4.4)

Secondly, we find a convolutional and matricial Moore-Penrose pseudo-inverse of
B†B, and convolve the result by the re-mixed focusing function V+

1 from the left
and right,

F+
1 B

(
B†B

)−1 (F+
1 B
)† = F+

1
(
F+

1
)†

. (4.4.5)

The result is the normal product of the desired focusing function F+
1 and can be seen

as a generalized power spectrum. Note that, Eqs. 4.4.3-4.4.5 also hold for band-
limited wavefields. If the focusing function F+

1 can be retrieved from its normal
product F+

1
(
F+

1
)†, the desired Green’s functions and hence the redatumed reflection

response Rrd, free of all overburden interactions, can be obtained (from Eq. 4.2.1).
The focusing function F+

1 is an inverse transmission response,

T+F+
1 = I, (4.4.6)

where T+ is the transmission response of the truncated medium. In 1D acous-
tics, this relation implies that the focusing function is a minimum-phase scalar
function, except for a linear phase-shift, and hence, possesses a unique amplitude-
phase relationship via the Kolmogorov relation [Claerbout, 1985]. This property
allows Dukalski et al. [2019] and Elison [2019] to factorize the (scalar) normal prod-
uct F+

1
(
F+

1
)†, and thereby, predict short-period multiples that are generated in a

horizontally-layered acoustic overburden. In our case, the focusing function as a
matrix is still an inverse transmission, and therefore, remains a minimum-phase ob-
ject in a matrix sense. Tunnicliffe-Wilson [1972] proposes a method that factorizes
the normal products of a sub-class of minimum-phase matrices. The generalization
of this method is subject of ongoing research and will be published in the future.

4.5 Numerical examples

For horizontally-layered media, all required wavefields can be modelled efficiently by
wavefield extrapolation without band-limitation [Kennett and Kerry, 1979; Hubral
et al., 1980]. Further, we choose the P- and S-wave velocities as well as the
horizontal-slownesses such that all events are on-sample. This allows us to bet-
ter inspect the separability conditions of the conventional and re-mixed Marchenko
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methods because
measurement-induced limitations are absent.

First, we consider the experiment in Fig. 4.2a that satisfies the separability
condition of the conventional Marchenko method stated by Eq. 4.2.7. Using the
correct initial estimate χ+, which is obtained by applying the projector P+ to a
modelled Green’s function (i.e. the medium is known a-priori), the elastodynamic
Marchenko method finds the correct focusing function (see trace in Fig. 4.2a).
However, when repeating this experiment for the model in Fig. 4.2b, which violates
the separability condition in Eq. 4.2.7, the projector P− erroneously preserves the
first event of G−,+ (event II). Assuming, χ− = O, forces this event to become part
of the focusing function F̄−

1 (the bar distinguishes retrieved from true solutions).
To cancel multiples caused by this event, the retrieved F̄+

1 contains an artefact
(see orange arrow in Fig. 4.2b). Via the same mechanism, further artefacts are
introduced.

Second, for the experiment shown in Fig. 4.3a, which still satisfies the separabil-
ity condition in Eq. 4.2.7 as well as the condition in Eq. 4.2.8, the Marchenko series
(see Eq. 4.2.6) finds the correct solution (see trace in Fig. 4.3a), using the forward-
scattered part of the Green’s function (G−,−)∗ as initial estimate. By downward-
shifting the second interface, as depicted in Fig. 4.3b, Eq. 4.2.8 is violated and the
overlap χ+ is populated with fast multiples. If the initial estimate ignores these fast
multiples, the Marchenko series does not converge to the true solution. For exam-
ple, event IV, which is a (fast) multiple belonging to the Green’s function, is now
(erroneously) part of the focusing function (indicated by the orange-dotted line in
Fig. 4.3b). To compensate for these errors the Marchenko series introduces further
artefacts (particularly see errors after t = −0.6 s in Fig. 4.3b).

Third, we repeat the previous experiment with the re-mixed Marchenko scheme,
which simplifies the highly sophisticated initial estimate χ+ to a trivial one χB

+ = I.
We use the re-mixed solutions to remove multiples according Eq. 4.4.2. Since
there is only one reflector below the redatuming level one would hope to eliminate
all scattering effects except for a single primary (event A in Fig. 4.6). Indeed,
a significant amount of overburden interactions has been removed, revealing the
primary A, which was masked by a strong multiple (see traces and cartoon in Fig.
4.6). Nevertheless, the redatumed response still contains forward-scattered waves
(e.g. events B and D) as well as fast multiples (e.g. event C). These remaining
scattering effects are caused by re-mixing. The corresponding operator is angle-
dependent because it is implicitly defined by the overlap χ+ (see sx-τ gathers in
Fig. 4.3). Following the alternative de-multiple strategy, that aims to remove all
overburden interactions, we can already recover the normal product of the desired
focusing function F+

1 near-to-perfectly (no figure), with a relative error below 1 ppm
(for the model in Figs. 4.3b and 4.6). Experiments on retrieving the focusing
function from its normal product are beyond the scope of this paper.
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Figure 4.6: Reflection response (black traces) and de-multiple result (red traces) according
to Eq. 4.4.2 (arbitrarily chosen pp component, sx = 2 × 10−4 s m−1). Panel (a) shows a
close-up of the box in panel (b). Again, dashed and sinusoidal lines represent P- and S-
waves, respectively. The cartoon highlights (1) some of the overburden interactions removed
by the de-multiple scheme (black lines), and (2) the four strongest events remaining in
the redatumed result (red and blue lines): event A is the desired target-related primary
reflection, events B and D are forward-scattered waves, and event C (highlighted in blue) is
a fast multiple. Dotted lines point to the arrivals associated with the cartoon arrows. For
illustration purposes, all responses are convolved with a 30 Hz Ricker wavelet and a global
scaling factor is used to adjust the de-multiple result to the reflection response.
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4.6 Conclusion

Monotonicity, i.e. "correct" temporal ordering of events, is crucial for all of the
discussed de-multiple methods. Due to conversions between modes with different
propagation speeds, elastic media generate more reflection events than equivalent
acoustic media, which can be seen as temporal stretching of information. This
temporal stretching leads to a higher risk of undesired temporal event ordering and
becomes more severe with increasing speed differences between modes and increasing
redatuming depth. Through the analysis of these elastic effects similarities and
differences between the ISS and the Marchenko method came to light.

First, we quantified the separability condition of the conventional Marchenko
method and the monotonicity assumptions of the ISS. The resulting conditions
revealed that both the conventional Marchenko method and the ISS rely on a form
of monotonicity, but in terms of one- and two-way travel times, respectively. Hence,
the conditions for the conventional Marchenko method are more relaxed. However,
this advantage must be compensated by providing an initial estimate, i.e. prior
information, which becomes challenging in practice.

Second, we re-mixed the Marchenko scheme to remove the need for prior in-
formation, which allows for a fair comparison against the ISS. By re-mixing, the
Marchenko separability condition becomes stricter, but remains slightly more re-
laxed than the monotonicity condition of the ISS because the re-mixed Marchenko
scheme only requires the redatuming layer, instead of each layer in the overburden,
to be sufficiently thick (in terms of P-wave travel time).

Third, we presented two strategies how the re-mixed Marchenko equations can
be used for multiple elimination. The first one can be easily implemented and
removes all multiples that arrive after their generating primaries. Similar to the
ISS, multiples that predate their generating primaries as well as forward-scattered
waves cannot (yet) be predicted, however, the re-mixed Marchenko scheme stores
the respective error in the re-mixing operator. The second strategy aims to remove
all overburden-related effects, including forward-scattering and (fast) multiples, by
removing the re-mixing operator form the Marchenko solutions. For this purpose,
additional physical constraints are taken into account, namely energy conservation
and the minimum-phase property of the focusing function. The latter approach
suggests that the prediction of forward-scattered waves and fast multiples requires
minimum-phase matrix factorization, which is subject to ongoing research.

This analysis sheds light on fundamental challenges of the elastic de-multiple
problem but further developments are needed.
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4A Derivation of the redatuming relation

In this appendix, we derive the expression in Eq. 4.2.1 that relates the redatumed re-
flection response Rrd(sx, zi, τ) to the retrieved Green’s functions G−,±(±sx, z0, zi, τ).
For this derivation, we write all coordinates explicitly, but matrix products still im-
ply temporal convolutions according to Eq. 4.1.4.

The starting point is the more familiar redatuming relation,

G−,+(sx, zi, z0, τ) = Rrd(sx, zi, τ)G+,+(sx, zi, z0, τ). (4A.1)

Next, we use source-receiver reciprocity [e.g. see Wapenaar , 2014],

G∓,+(sx, zi, z0, τ) = ±
[
G−,±(−sx, z0, zi, τ)

]T
, (4A.2)

and to interchange source and receiver in Eq. 4A.1,

G−,+(sx, z0, zi, τ) =
[
G−,+(−sx, zi, z0, τ)

]T
=
[
G+,+(−sx, zi, z0, τ)

]T [Rrd(−sx, zi, τ)]T

= −G−,−(sx, z0, zi, τ) [Rrd(−sx, zi, τ)]T . (4A.3)

In horizontally-layered media, wavefields associated with positive and negative hori-
zontal-slownesses sx are mutually related via multiplication by a Pauli matrix σz

(multiplied by a temporal delta spike) from the left and right, which yields,

G−,+(sx, z0, zi, τ) =

= −σzG−,−(−sx, z0, zi, τ)σzσz [Rrd(sx, zi, τ)]T σz

= −σzG−,−(−sx, z0, zi, τ) [Rrd(sx, zi, τ)]T σz. (4A.4)

4B Derivation of separability conditions

In this appendix, we formulate the separability conditions of the ISS, and of the
original as well as the re-mixed representation theorems. Furthermore, we derive
explicit expression of the projectors P± and P±

B .
Consider a homogeneous layer (labelled by k) of thickness ∆z(k) as well as P-

and S-wave velocities c
(k)
p and c

(k)
s . For a plane wave with horizontal slowness sx,

P- and S-waves propagate with the vertical slowness,

s
(k)
z,p/s =

√(
c

(k)
p/s

)−2
− s2

x. (4B.1)

The resulting one-way travel time of such plane waves through layer k is,

τ
(k)
p/s = ∆z(k)s

(k)
z,p/s. (4B.2)
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In the following, we assume that the P-wave velocity,

cp =

√
λ + 2µ

ρ
, (4B.3)

is greater than the S-wave velocity,

cs =
√

µ

ρ
, (4B.4)

[de Hoop, 1995], which is the case for most materials: The shear modulus µ and the
density ρ are always positive. The first Lamé parameter λ can be negative but for
all natural materials known to the authors the relation λ > −µ holds.

4B.1 Separability of conventional representation theorems

In the following, we derive the separability conditions implied by the conventional
Marchenko scheme.

First, we analyze the separability of the focusing function F−
1 from the Green’s

function G−,+ on the left-hand side of Eq. 4.2.2. To guarantee separability, the last
and first events of the focusing and Green’s functions must satisfy the condition,

τΩ(F −
1,ab) < τα(G−,+

ab ), (4B.5)

for each elastic component combination ab. Here, the functions τα and τΩ denote
the first and last arrival times at the recording level z0, respectively. We sum the
one-way travel times along the travel path of the last event of F −

1,ab (e.g. for F −
1,sp

see event I in Fig. 4.2a, see Fig. 4.5 for layer labelling i0/1),

τΩ(F −
1,ab) = τ (0)

a +
i−1∑
k=1

τ (k)
s − τ

(i0)
b , (4B.6)

and along the travel path of the first event of G−,+
ab (e.g. for G−,+

sp see event II in
Fig. 4.2a),

τα(G−,+
ab ) = τ (0)

a +
i∑

k=1

τ (k)
p + τ

(i1)
b . (4B.7)

We substitute Eqs. 4B.6 and 4B.7 in Eq. 4B.5, replace the one-way travel times by
Eq. 4B.2 and obtain the separability condition of Eq. 4.2.7,

i−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< 2 ∆z(i)s(i)

z,p. (4B.8)

Second, we derive a condition under which the overlap χ+ simplifies to the
forward-scattered part of the Green’s function (G−,−)∗. This scenario requires that
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the fastest multiple of the (time-reversed) Green’s function (G−,−)∗ reaches the
recording level before the first event of the focusing function F+

1 (which defines the
first event of the overlap χ+),

τΩ

(
(G−,−

m,ab)∗
)

< τα(F +
1,ab). (4B.9)

Here, we use the subscript m to refer to the multiples of a wavefield. We sum the
one-way travel times along the path of the fastest multiple of the Green’s function(

G−,−
m,ab

)∗
(e.g. for (G−,−

m,sp)∗ see event IV in Fig. 4.3a),

τΩ((G−,−
m,ab)∗) = −τ (0)

a −
i−1∑
k=1

τ (k)
p − 2 min

{
τ (k)

p

∣∣∣ k ∈ [1, i]
}

− τ
(i0)
b , (4B.10)

and along the travel path of the first event of the focusing function F +
1,ab (e.g. for

F +
1,sp see event III in Fig. 4.3a),

τα(F +
1,ab) = −τ (0)

a −
i−1∑
k=1

τ (k)
s − τ

(i0)
b . (4B.11)

We substitute Eqs. 4B.10 and 4B.11 in Eq. 4B.9, express the one-way travel times
according to Eq. 4B.2 and arrive at the condition,

i−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< 2 min

{
∆z(k)s(k)

z,p

∣∣∣ k ∈ [1, i]
}

. (4B.12)

This condition can only be satisfied if the separability condition in Eq. 4B.8 holds.
If the separability condition in Eq. 4B.8 holds the projector P−, acting as a

Hadamard matrix product in P-S space, separates the convolution-type representa-
tion theorem in Eq. 4.2.2 according to,

P− [G−,+] = χ− = O, (4B.13)
P− [F−

1
]

= F−
1 . (4B.14)

We define the projector P− such that all events after the last arrival of the focusing
function F−

1 are muted,

P −
ab = H

(
−τ + τΩ(F −

1,ab)
)

= H

(
−τ + τ (0)

a +
i−1∑
k=1

τ (k)
s − τ

(i0)
b

)
, (4B.15)

where we use Eq. 4B.6. The function H(τ) denotes the Heaviside function, H(τ <
0) = 0 and H(τ ≥ 0) = 1. In analogy, the correlation-type representation theorem
in Eq. 4.2.3 can be separated with a projector P+,

P+ [(G−,−)∗] = χ+, (4B.16)
P+ [F+

1
]

= F+
1 , (4B.17)
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that mutes all events before the first arrival of the focusing function F+
1 ,

P +
ab = H

(
τ − τα(F +

1,ab)
)

= H

(
τ + τ (0)

a +
i−1∑
k=1

τ (k)
s + τ

(i0)
b

)
. (4B.18)

In the latter expression we use Eq. 4B.11.

4B.2 Separability of re-mixed representation theorems

In the Sec. 4.2.3Marchenko with trivial initial estimate, we introduced an unknown
operator B to transform the overlap χ+ between the focusing function F+

1 and
the Green’s function (G−,−)∗ to a trivial one. Thus, the re-mixed correlation-type
representation theorem in Eq. 4.2.10 is separable by definition, except for an identity
matrix. However, the separability of the re-mixed convolution-type representation
theorem in Eq. 4.2.9 is not guaranteed and is assessed below.

The re-mixed representation theorem in Eq. 4.2.9 is separable if the last event of
the re-mixed focusing function V−

1 arrives at the recording surface before the first
event of the re-mixed Green’s function U−,+,

τΩ(V −
1,ab) < τα(U−,+

ab ), (4B.19)

which can be re-written as,

τΩ(F −
1,as) + τΩ(Bsb) < τα(G−,+

ap ) + τα(Bpb). (4B.20)

Now, we define the first and last arrival times of the re-mixing operator B. The
re-mixing operator projects the Green’s function (G−,−)∗ onto an identity matrix
plus an acausal coda. Hence, the first event of the re-mixing operator coincides with
the first event of the inverse ((G−,−)∗)−1. For example, the first, but time-reversed,
event of Bps is depicted by path V in Fig. 4.3b. We sum the one-way travel times
along this path for an arbitrary component ab,

τα(Bab) = τ (i)
a +

i−1∑
k=1

τ (k)
p + τ

(0)
b . (4B.21)

Further, we heuristically assume that the re-mixing operator has the same temporal
extent as the overlap χ+ between the focusing function F+

1 and the Green’s function
(G−,−)∗, which is

∑i−1
k=1

(
τ

(k)
s − τ

(k)
p

)
. As a result, the one-way travel time of the

last event of the re-mixing operator is,

τΩ(Bab) = τ (i)
a +

i−1∑
k=1

τ (k)
s + τ

(0)
b . (4B.22)

Thorough empirical investigations confirm this result. Upon substituting Eqs. 4B.6-
4B.7 and Eqs. 4B.21-4B.22 in Eq. 4B.20 and using Eq. 4B.2, we find the separability
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condition for the re-mixed Marchenko scheme,
i−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< ∆z(i)s(i)

z,p. (4B.23)

Now we derive expressions for the re-mixed projectors P±
B . Analogous to the

derivation of the separability conditions, we use arrival times of first and last events
of specific wavefields to find the re-mixed projectors. From Eqs. 4.2.11-4.2.12 fol-
lows that the re-mixing operator B unfolds the overlap χ+ between the focusing
function F+

1 and the Green’s function (G−,−)∗, except for an identity matrix. In
consequence, the diagonal elements of the projector P+

B should only preserve positive
times, including time zero to account for Eq. 4.2.11,

P +
B,pp = P +

B,ss = H (τ) . (4B.24)

The first arrival times of the individual matrix elements, V +
ab = F +

1,acBcb, only differ
by an a-wave propagation of F +

1,ac and a b-wave propagation of Bcb, both through
the top layer. Hence, the diagonal elements of the projector P+

B in Eq. 4B.24 can
be generalized to an arbitrary projector element,

P +
B,ab = H

(
τ + (1 − δab)∆z(0)

(
s(0)

z,a − s
(0)
z,b

))
, (4B.25)

where δab denotes the Kronecker delta.
Next, we derive an expression for the projector P−

B . The re-mixing operator is
not designed to modify the focusing function F−

1 or the Green’s function G−,+ in
a special way. Therefore, in a general case the arrival time of the last event of the
re-mixed focusing function V −

ab = F −
1,acBcb is obtained by adding the last arrival

times of the focusing function F −
1,as and the re-mixing operator Bsb,

P −
B,ab = H

(
τ −

[
τΩ
(
F −

1,as

)
+ τΩ (Bsy)

])
(4B.26)

= H

(
τ − ∆z(0)

(
s(0)

z,a + s
(0)
z,b

)
− 2

i−1∑
k=1

∆z(k)s(k)
z,s

)
,

where we used Eqs. 4B.2, 4B.6 and 4B.22.
Although the expressions for the re-mixed projectors might appear complicated,

they can be constructed easily from: (1) a smooth P- and S-wave velocity model
combined with (2) an estimate of the position of the shallowest reflector and (3)
an estimate of the position of the reflector above the redatuming depth. The latter
estimate could be obtained e.g. by selecting a redatuming depth below a strong
reflector that can be easily localized. Compared to the conventional elastodynamic
Marchenko method the required a-priori knowledge is significantly reduced.

4B.3 From monotonicity to separability conditions

In this appendix, we quantify the monotonicity assumptions of the ISS as separa-
bility conditions.
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The monotonicity assumption [1] requires temporal ordering of primaries accord-
ing to the reflector ordering in depth. Hence, for an arbitrary elastic component of
the reflection response, Rab, the slowest primary associated with an interface j − 1
(at the bottom of layer j − 1) must reach the recording surface before the fastest
primary associated with the next, deeper, interface j (see Fig. 4.5),

τΩ(R(j−1)
ab ) < τα(R(j)

ab ). (4B.27)

The superscripts refer to (converted) primary reflections associated with the inter-
faces j − 1 and j. Now, we sum the travel times along the travel path of these two
primaries, leading to,

τΩ(R(j−1)
ab ) = τ (0)

a + 2
j−1∑
k=1

τ (k)
s + τ

(0)
b , (4B.28)

and,

τα(R(j)
ab ) = τ (0)

a + 2
j∑

k=1

τ (k)
p + τ

(0)
b . (4B.29)

Next, we substitute Eqs. 4B.28 and 4B.29 in Eq. 4B.27, replace the travel times by
Eq. 4B.2, and obtain a separability condition,

j−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< ∆z(j)s(j)

z,p. (4B.30)

Redatuming from the recording level z0 to zi requires that all interfaces between
these two depth levels satisfy monotonicity, i.e. Eq. 4B.30 becomes the separability
condition in Eq. 4.3.1.

The monotonicity assumption [2] requires that multiples are recorded after their
generating primaries. Hence, for redatuming to the depth level zi the slowest pri-
mary reflection associated with the interface i − 1 must predate the fastest multiple
generated by the same interface,

τΩ

(
R

(i−1)
ab

)
< τα

(
R

(i−1)
m,ab

)
, (4B.31)

where R
(i−1)
m,ab represents the multiples generated by the interface i − 1. Again, we

sum the travel times along the paths of these two events,

τΩ

(
R

(i−1)
ab

)
= τ (0)

a + 2
i−1∑
k=1

τ (k)
s + τ

(0)
b , (4B.32)

and,

τα

(
R

(i−1)
m,ab

)
= τ (0)

a + 2
i−1∑
k=1

τ (k)
p + 2 min

{
τ (k)

p

∣∣∣ k ∈ [1, i]
}

+ τ
(0)
b . (4B.33)
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Upon substituting Eqs. 4B.32 and 4B.33 in Eq. 4B.31 and replacing the travel
times by Eq. 4B.2, the monotonicity assumption [2] can be written as,

i−1∑
k=1

∆z(k)
(

s(k)
z,s − s(k)

z,p

)
< min

{
∆z(k)s(k)

z,p

∣∣∣ k ∈ [1, i]
}

, (4B.34)

which is the separability condition in Eq. 4.3.2. Note that, for multiple generators
above the interface i−1, the condition in Eq. 4B.34 is relaxed because the left-hand
side will remain constant or decrease, while the right-hand side will remain constant
or increase.

4C Medium parameters

This appendix contains the medium parameters used for the experiments shown in
Figs. 4.1-4.3 (see Tab. 4C.1 and 4C.2). Note that, the values of the medium pa-
rameters are adjusted to ensure all events associated with the horizontal-slowness,
sx = 2 × 10−4 m, are recorded on-sample. The values are within a reasonable range
but are not associated with any specific material. We used exaggerated density con-
trasts to generate strong, well-visible, events. In realistic media the contrasts may
be weaker but much more numerous. Hence, there will be many weak, as opposed
to a few strong, converted waves. The Marchenko method and the separability con-
ditions are independent of the number and strength of these events, and thus, our
analysis can be generalized for more realistic media.

z(m) cp(m s−1) cs(m s−1) ρ(kg m−3)
-∞ - 500 1993.63 898.38 4200
500 - 1700 1897.78 1099.20 1100

1700 - 2501.07 2500.00 1386.75 6000
2501.07 - ∞ 2695.26 1611.32 3500

Table 4C.1: This table contains the medium parameters used for the experiment shown in
Figs. 4.1 and 4.2a (for the acoustic experiment the shear wave velocity is set to zero).
The focusing depth is at zf = 1902.07 m. The experiment shown in Fig. 4.2b uses the
same medium parameters, except that the bottom interface is moved from z = 2501.07 m to
z = 2299.00 m.
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z(m) cp(m s−1) cs(m s−1) ρ(kg m−3)
-∞ - 500 1993.63 898.38 1100
500 - 1250.56 2500 1796.05 4200

1250.56 - 1503.15 1505.43 1050.85 1700
1503.15 - 2304.24 1900.00 1006.04 6000
2304.24 - ∞ 2695.26 1396.65 3500

Table 4C.2: This table contains the medium parameters used for the experiment shown in
Fig. 4.3a. The focusing depth is at zf = 1703.42 m. The experiment shown in Fig. 4.3b
uses the same medium parameters, except that the second interface from above is moved
from z = 1250.56 m to z = 1452.63 m.



5
Towards normal product factorization
with minimum-phase constraint

Abstract The Marchenko redatuming strategy presented in chapter 4 of this thesis
retrieves the so-called normal product of the desired solution. Reconstructing the
desired solution from its normal product forms a new problem that is addressed
in this chapter. In the scalar case, normal products simplify to autocorrelations.
The factorization of an autocorrelation is not unique, but can be constrained with
a minimum-phase condition. Firstly, we study a generalized concept of minimum-
phase for matrices. Secondly, we discuss the so-called Wilson algorithm that in
several, non-trivial, cases perfectly retrieves the desired minimum-phase matrix from
its normal product. Further, we discuss limitations of the Wilson algorithm.

This chapter is a documentation that will soon be turned into a publication.
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5.1 Introduction

In chapter 4 of this thesis, we propose a redatuming strategy that recovers a so-called
normal product of the desired solution. To proceed with this method, the desired
solution must be retrieved from its normal product. However, the factorization
of normal products is not unique, i.e. additional constraints are required. We
demonstrate that the desired solution possesses a minimum-phase property, which
we aim to use as a constraint for the factorization. This strategy is an extension of
the scalar case presented by Wapenaar et al. [2003] and Dukalski et al. [2018], where
normal products simplify to autocorrelations that can already be factorized with a
minimum-phase constraint [e.g. Skingle et al., 1977].

The concept of minimum-phase is not new to the geophysics community. Often
minimum-phase behavior is thought of as a property of a seismic wavelet [e.g. Yil-
maz, 2001]. However, minimum-phase behavior is a much more general mathemati-
cal property. For example, scattering matrices such as reflections and transmissions
can also be classified as (non-)minimum-phase functions. Claerbout [1968] demon-
strates that 1D acoustic transmission responses are minimum-phase functions when
measured from the onset of signal. This example highlights that minimum-phase
can be a property of an entire wavefield, as opposed to "just" a wavelet.

For our purposes, a generalization of minimum-phase behavior beyond the scalar
case is needed. It appears that this topic is hardly discussed within the geophysics
community. However, there is a significant amount of research on minimum-phase
matrices within control-theory. In this field, minimum-phase functions, which can be
matrices, are designed to dynamically control and stabilize systems [e.g. Bode, 1940;
Rosenbrock, 1969; Shaked and Soroka, 1986; Johansson, 1997]. By building on their
findings, we discuss minimum-phase behavior as a constraint for the factorization
of the aforementioned normal product.

This chapter is structured as follows. Firstly, we demonstrate the relevance and
the challenge of factorizing a normal product with a minimum-phase constraint.
Secondly, we review the mathematical definition of minimum-phase. Thirdly, we
summarize the factorization of minimum-phase scalar functions. Finally, we docu-
ment our gained knowledge about matricial minimum-phase behavior, and discuss
initial attempts of matricial normal product factorization. Despite our advances,
the latter problem is not fully solved and further research is needed.

5.2 Motivation and problem statement

We are interested in retrieving a transmission response using a minimum-phase
constraint. A necessary condition for minimum-phase behavior is the existence
of an inverse. Using a unified wavefield representation, we demonstrate that the
invertibility of transmission responses holds for all wave types in up to 3D space,
provided that wavefield decomposition exists. Subsequently, we explain why the
minimum-phase property can be extremely relevant not only as a constraint for
Marchenko redatuming, but as a universal tool for signal processing in general.

Note that, we use a detail-hiding notation that omits all coordinates. Moreover,
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all quantities are frequency-dependent, unless stated differently.

5.2.1 Invertibility of transmission responses

In a unified representation, the wave equation can be formulated in the space, x =
(x, y, z), frequency, ω, domain as,

∂zq − Aq = d. (5.2.1)

Here, we use the notation of Wapenaar et al. [2016a], where the vectors, q and d,
contain the wavefield and source components, respectively. The definition of the
operator, A, is not needed for the following derivation [details can be found in
Wapenaar et al., 2016a]. Further, we arbitrarily choose the z-axis as preferential
direction of propagation.

A crucial assumption is that the operator, A, is diagonalizable,

A = LHL−1, (5.2.2)

which implies that the inverse operator, L−1, exists everywhere in the medium.
The operator, L, is often interpreted as composition operator that constructs the
wave vector, q, from a so-called one-way wavefield, p [de Hoop and de Hoop, 1994;
Frasier , 1970; Wapenaar , 1996b],

q = Lp = L
(

p+

p−

)
. (5.2.3)

The one-way wavefield contains components propagating along a preferential direc-
tion (here the z-axis). For consistency with other chapters of this thesis, we define
a downward-pointing z-axis such that the one-way wavefield components are down-
(superscript +) and upgoing (superscript −).

Now we derive expressions for scattering operators to prove the invertibility of
transmission responses. This derivation assumes discontinuously changing medium
parameters, such that propagation and scattering effects are decoupled. Firstly,
consider a horizontal interface that partitions the medium into an upper (superscript
i) and a lower part (superscript i + 1). Using continuity of the wavefield q along
the z-direction, combined with Eq. 5.2.3, the fields just above the interface, p±

i , are
related with the fields just below the interface, p±

i+1,(
p+

i+1
p−

i+1

)
= L−1

i+1Li

(
p+

i

p−
i

)
. (5.2.4)

Secondly, we extend this expression for a package of N interfaces. For this purpose,
we define the operator, Wi = exp [Hi(zi+1 − zi)], that accounts for the one-way
wavefield propagation between two interfaces, i and i + 1, which are located at
zi and zi+1, respectively. Assuming that the top interface (subscript i = 0) is
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transparent, the wavefield at the top interface is mutually related with the field just
below the N th interface according to,(

p+
N

p−
N

)
=

N−1∏
i=0

(
L−1

i+1LiWi

)(p+
0

p−
0

)
. (5.2.5)

The operator in the above equation can be represented as a 2 × 2 block matrix,

N−1∏
i=0

(
L−1

i+1LiWi

)
=

(
A B
C D

)
. (5.2.6)

The diagonalization in Eq. 5.2.2 assumes that the operators, Li, are invertible.
Moreover, we exclude evanescent waves such that a band-limited inverse of the
diagonal propagation operators, Wi, exists. Under this assumption, the inverse
operator exists,[

N−1∏
i=0

(
L−1

i+1LiWi

)]−1

=

(
X−1 −Y

−D−1CX−1 D−1 + D−1CY

)
, (5.2.7)

where we made the substitutions, X =
(
A − BD−1C

)
and Y = X−1BD−1 [Bern-

stein, 2005]. Finally, we rearrange Eq. 5.2.5 to define a scattering matrix,(
p+

N

p−
0

)
=

(
T+ R∩

R∪ T−

)(
p+

0
p−

N

)
, (5.2.8)

which relates in- and outgoing fields via transmission operators from above (T+)
and below (T−) as well as reflection operators from above (R∪) and below (R∩).
The resulting expression,(

T+ R∩

R∪ T−

)
=

(
A − BD−1C BD−1

−D−1C D−1

)
, (5.2.9)

together with the existence of the inverses, D−1 and X−1, in Eq. 5.2.7, demonstrates
that the transmission responses, T±, are invertible. In contrast, the invertibility of
the reflection responses is not guaranteed.

Note that, the above derivation only relies on the diagonalization of the operator
A. The result is independent of the wave type, the normalization of L and the spa-
tial dimensionality. Hence, invertibility is a fundamental property of transmissions.

5.2.2 Retrieval of inverse transmissions

The Marchenko method aims to remove overburden-related scattering effects by
retrieving the inverse of the overburden transmission T+. This inverse is often
referred to as focusing function F+

1 [e.g. Wapenaar , 2014],

T+F+
1 = I, (5.2.10)
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where I is a band-limited identity operator. In this notation, matrix products in-
clude a spatial integration over the acquisition surface, however, this detail is of
minor importance in this chapter. From here onwards, we consider flux-normalized
wavefields [Frasier , 1970; Ursin, 1983], which simplifies our analysis because the
resulting one-way propagators preserve the reciprocity properties of the Green’s
function [Wapenaar , 1998].

In sufficiently simple cases, e.g. layered acoustic media and full bandwidth
recordings, the Marchenko method does not require additional constraints . How-
ever, in presence of band-limitation, short-period multiples can arise, that are not
handled correctly [Dukalski et al., 2019; Elison et al., 2020]. Moreover, in the elasto-
dynamic situation, errors occur because forward-scattered waves cannot be predicted
by the conventional Marchenko method [Reinicke, 2020, chapter 4 of this thesis].

The aforementioned authors propose to overcome these limitations by using ad-
ditional constraints. They show that the errors due to short-period multiples and
forward-scattering are stored in the form of a convolutional operator that blurs the
true (desired) solutions, F+

1 . In other words, the retrieved solution is a convolu-
tional product of the desired ones with an unknown operator. By evaluating the
correlation-type reciprocity theorem with both states equal to the true focusing
functions, one obtains a relation that can be seen as a generalized energy conserva-
tion [Dukalski et al., 2018]. Using this relation, one can recover the normal prod-
uct, F+

1
(
F+

1
)† [Eqs. 27-29 in chapter 4 of this thesis show this derivation in the

horizontal-slowness intercept-time domain, Reinicke, 2020]. Here, the superscript †
denotes a complex-conjugate transpose. Recovering the true focusing function, F+

1 ,
from its normal product, F+

1
(
F+

1
)†, forms a new problem.

In the elastodynamic case, the focusing function is a matrix, for which the normal
product factorization remains unsolved. Even in simple case of layered elastic media,
where each horizontal-slowness (sx) can be handled independently, the focusing
function is a 2 × 2 matrix in P-S space,

F+
1 =

(
F +

1,pp F +
1,ps

F +
1,sp F +

1,ss

)
. (5.2.11)

Here, P- and S-wave receivers and sources are denoted by the first and second
subscripts, respectively [for details see chapter 4 of this thesis Reinicke, 2020].

The factorization problem simplifies in the special case of acoustic waves. In
absence of shear wave components, the focusing function reduces to a scalar, F +

1 .
In consequence, the normal product simplifies an autocorrelation, i.e. an amplitude
(or power) spectrum,

F+
1
(
F+

1
)† → F +

1
(
F +

1
)∗ = |F +

1 |2. (5.2.12)

Without additional constraints, the factorization of the autocorrelation is still non-
unique. Dukalski et al. [2019] and Elison et al. [2020] overcome this challenge by
exploiting the minimum-phase property of the back-propagated focusing function.
Details about the back-propagation and its significance will be explained further
onwards.
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We aim to extend this strategy from scalars to matrices. The above-mentioned
method has been developed only for cases where also the eigenvalues of the focusing
function possess a minimum-phase property. This is advantageous because in this
case the normal product, F+

1
(
F+

1
)†, reduces to a set of independent autocorrelations,

|F +
1 |2, that can be factorized individually using existing 1D methods. In order

to generalize this strategy, we consider the minimum-phase property in a multi-
dimensional operator sense and present ideas how to exploit this property as a
constraint for normal product factorization.

Although this work is motivated by our research on the Marchenko method, we
emphasize that a generalization of minimum-phase factorization can be valuable to
a much wider range of signal processing techniques. An outstanding example is the
retrieval of a transmission response from reflection data [Wapenaar et al., 2003],
which could be extended beyond layered acoustic media.

5.3 Concept of minimum phase

Control theory and signal processing refer to the response of a linear time-invariant
(LTI) system as a transfer function. For example, in seismics, the Earth is an LTI
system because it is time-invariant on the time scale of the measurement. Each
frequency component, ω, of a transfer function, h, can be described independently.
Hence, transfer functions are preferably used in the frequency domain, which is
mutually related to the time (t) domain by the Fourier transform,

h(ω) =
∫ ∞

−∞
h(t)eiωtdt, i2 = −1. (5.3.1)

In general, transfer functions can be associated with single- or multi-input variables
and with single- or multi-output variables. Hence, the literature [e.g. Johansson,
1997] often refers to transfer functions as single-input single-output (SISO), multi-
input multi-output (MIMO), etc. (SIMO and MISO).

A special "family" of transfer functions is formed by minimum-phase operators.
By definition a minimum-phase operator is stable, causal and invertible with a stable
and causal inverse [Bode, 1945; Sherwood and Trorey, 1965; Skingle et al., 1977].
The simplest example is formed by scalar transfer functions (SISO). In this case,
the properties of a minimum-phase transfer function, h, can be defined explicitly:

[1]
∫

|h(ω)|dω < ∞ (stability),

[2] h(t < 0) = 0 (causality),

[3] h−1(ω) exists and satisfies [1] and [2].

The inverse, h−1, is defined in the frequency domain and becomes a convolutional
inverse in the time domain. The properties [1]-[3] of a scalar minimum-phase func-
tion, h, impose a unique phase-amplitude relation [Smith, 2007]. In consequence,
the autocorrelation, hh∗, can be factorized uniquely. Recently, this factorization
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has been extended to account for band-limitation [Dukalski et al., 2018]. Neverthe-
less, we restrict our analysis to the simpler case of full bandwidth signals, without
excluding that band-limitation can be taken into account.

A typical example of a physical, delayed, minimum-phase function is the trans-
mission response [Claerbout, 1968]. Naturally, transmission responses are causal
and stable. Moreover, we demonstrated that inverse transmissions, i.e. focusing
functions F +

1 , exist. Except for a linear phase-shift, focusing functions are causal.
Further, since focusing functions have a finite duration [e.g. see Eq. 3 in Slob et al.,
2014], they are also stable. Hence, from the onset of signal onwards, i.e. after cor-
rection for a linear phase-shift, scalar transmission responses satisfy all criteria of a
minimum-phase function.

Extending the concept of minimum-phase to matrices, i.e. beyond SISO systems,
is a wide-ranging challenge [e.g. see Johansson, 1997]. The first difficulty arises from
generalizing the definition of minimum-phase, particularly stability and causality, to
matrices. The second, significantly more challenging, problem is the reconstruction
of a minimum-phase matrix from its normal product. Before discussing these matrix
generalizations, we revisit the scalar case to better illustrate the problem.

5.4 Minimum-phase factorization for scalars

Firstly, we discuss the degrees of freedom associated with the factorization of an
autocorrelation (=1D normal product). Secondly, we outline two methods that
uniquely factorize the autocorrelation of a minimum-phase function.

5.4.1 Degrees of freedom

Without further constraints, the factorization of the autocorrelation, i.e. the ampli-
tude spectrum, is not unique,(

F +
1 U(1)

)∗
F +

1 U(1) = F +
1
(
F +

1
)∗

. (5.4.1)

This expression illustrates that there is a freedom of multiplying the solution by a
U(1) element [Cornwell, 1997],

U(1) = eiϕ(ω), (5.4.2)

and a freedom of complex conjugation, that cancel out in the autocorrelation. These
degrees of freedom allow for an arbitrary phase spectrum. However, the minimum-
phase property of delayed focusing functions, F+

1 , constrains those freedoms.
For example, consider the transfer functions,

g = 1 + αeiωt1 , (5.4.3)
h = α + eiωt1 , (5.4.4)

which respectively contain two spikes, one at time zero and another one at time, t1.
Alternatively, these transfer functions can be written as discrete-time vectors,

g = (1, 0, ..., 0 , α, 0, ...), (5.4.5)
h = (α, 0, ..., 0, 1, 0, ...). (5.4.6)
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α 0 ... 0 1 0 ... h ∗ h−1
c

... 0 − 1
α2 0 ... 0 1

α 1
... 0 − 1

α2 0 ... 0 1
α 0

...
...

... 0 − 1
α2 0 ... 0 1

α 0

Table 4C.1: Convolution (denoted by "∗") between the functions h and h−1
c . The top row

represents the function h (see Eq. 5.4.6) in a discrete-time domain. The lower rows
represent the time-reversed inverse filter, h−1

c , for several temporal shifts with respect to
the function h. The convolution result shown in the right column is a temporal unit delta
function (except for errors that will remain at the boundary).

For both functions, one of the two spikes is scaled by a real number, α ∈ R. Al-
though both functions yield identical power spectra (i.e. autocorrelations in the
time domain),

|g|2 = |h|2, (5.4.7)

their phase spectra differ by the U(1) freedom, eiϕ, with,

ϕ = −i ln
(

α + eiωt1

1 + αeiωt1

)
(mod 2π). (5.4.8)

Assuming that |α| < 1 and t > 0, the transfer function g as well as its inverse,

g−1 = 1 +
∞∑

k=1

[
(−α)keikωt1

]
= 1 − αeiωt1 + α2e2iωt1 − ... , (5.4.9)

are stable and causal. Hence, the function g possesses a minimum-phase behavior
and can be reconstructed from the power spectrum in Eq. 5.4.7 (details on the
reconstruction will follow later). Although the function h is stable and causal, its
inverse is acausal,

h−1 = e−iωt1 +
∞∑

k=1

[
(−α)ke−i(k+1)ωt1

]
= e−iωt − αe−2iωt1 + α2e−3iωt1 − ... .

(5.4.10)

One could still design a causal inverse filter, h−1
c , however this filter is unstable,

h−1
c = 1

α
+

∞∑
k=1

[
(−1)k

αk+1 eikωt1

]
= 1

α
− 1

α2 eiωt1 + 1
α3 e2iωt1 − ... . (5.4.11)

The discrete-time convolutional model in Tab. 4C.1 illustrates that the filter, h−1
c ,

acts as an inverse on the function h. Neither the inverse h−1, nor the inverse
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Figure 5.1: Transfer functions, g (black) and h′ (red), shown in Eqs. 5.4.12 and 5.4.13.
These transfer functions are identical except for a scaling by a U(1) freedom, which affects
the phase spectrum as well as the time-domain shape of the functions.

filter h−1
c is simultaneously causal and stable. Hence, the function, h, is not a

minimum-phase function. For each amplitude spectrum, there are countless other
phase spectra, but only one is a minimum-phase function.

To highlight the frequency dependence of the U(1) element, we consider a nu-
merical example,

g(ω) = 1 + 1
2

eiω0.5 s, (5.4.12)

h′(ω) = g ei sin( ω
100 Hz ), (5.4.13)

where we use the scaled angular frequency f0 = ω0
2π = 100 Hz. Fig. 5.1 illustrates

that the functions, g and h′, posses identical amplitude spectra, but different phase
spectra. In this example, the U(1) freedom, applied in Eq. 5.4.13, changes the
time-domain shape of the minimum-phase function, g, significantly. The result, h′,
is not only acausal, i.e. obviously a non-minimum-phase function, but also contains
several additional events.
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We remark that the minimum-phase transfer function g of the previous exam-
ples (see Eqs. 5.4.3 and 5.4.12) is closely related to a focusing function F +

1 : in a
layered acoustic medium with two interfaces, the focusing function F +

1 has the same
mathematical form as the function g, except for a linear phase-shift and a global
scaling factor [e.g. see Eq. 3 in Slob et al., 2014]. The linear phase-shift and the
global scaling factor can be removed from the focusing function by back-propagation
with a direct transmission T +

d [van der Neut and Wapenaar , 2016],

V + = F +
1 T +

d . (5.4.14)

The back-propagated focusing function, V +, is a minimum-phase object, whereas
the focusing function, F +

1 , only possesses a minimum-phase behavior from the onset
of the signal onwards [Claerbout, 1968; Ware and Aki, 1969]. In the scalar case, the
effect of back-propagation may appear trivial. However, as we will see later, back-
propagation can become significantly more sophisticated and powerful beyond the
scalar situation discussed by Elison et al. [2020].

5.4.2 Phase-amplitude relation

In the scalar case, the minimum-phase properties defined by (i)-(iii) impose a unique
phase-amplitude relation.

A well known phase reconstruction method is the Kolmogorov [e.g. Skingle et al.,
1977],

Arg [g] = −H [log (|g|)] , (5.4.15)

that reconstructs the phase, Arg [·], of a minimum-phase function, g. Since the
natural logarithm, log (·), is only defined for arguments greater than zero, it implies
invertibility of g. Further, the Hilbert transform, H [·], retrieves a phase spectrum
such that the function, g, and its inverse are causal. Often, there is an incorrect
belief that the first event of a minimum-phase function is always the strongest one.
Although this is often the case, it does not follow from minimum-phase properties.

The focusing function, F +
1 , is an inverse transmission response. Hence, it satisfies

the Kolmogorov relation up to a linear phase-shift,

Arg
[
F +

1
]

= −H
[
log
(
|F +

1 |
)]

+ ωtd, (5.4.16)

which is defined by the onset time td of the focusing function. back-propagation
shifts the onset of signal to time zero such that the back-propagated focusing func-
tion, V +, satisfies Eq. 5.4.15 without linear phase-shift correction.

For example, consider the back-propagated focusing function, V +, associated
with a layered acoustic medium defined by P-wave velocity, cp, and density, ρ (see
Tab. 4C.2). In layered media, wavefields decouple per horizontal-slowness, sx, and
we arbitrarily consider, sx = 2 × 10−4 s m−1, to model the back-propagated focusing
function, V +, shown in Fig. 5.2. Subsequently, we reconstruct the phase Arg [V +]
from the amplitude spectrum |V +| using Eq. 5.4.15. The relative error between the
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Figure 5.2: back-propagated focusing function, V +, associated with the layered acoustic
model shown in Tab. 4C.2 and the horizontal-slowness, sx = 2 × 10−4 s m−1.

z (km) cp (m s−1) ρ (kg m−3)
−∞ - 207.88 1700 1100

207.88 - 507.88 3000 7050
507.88 - 918.81 2600 2400
918.81 - ∞ 3700 9000

Table 4C.2: Layered acoustic model that is used to generate the back-propagated focusing
function, V +, shown in Fig. 5.2. The depth positions of the interfaces are adjusted for
perfect sampling of wavefields associated with the horizontal-slowness, sx = 2 × 10−4 s m−1.

reconstructed and modeled functions, V̄ + and V +, is within machine precision,

∥V̄ + − V +∥2

∥V +∥2
= 6.1 × 10−15, (5.4.17)

where the symbol ∥ · ∥2 represents the L2-norm. Further, we denote reconstructed
fields with a bar on top to distinguish them from modeled ones.

The Kolmogorov relation in Eqs. 5.4.15 and 5.4.16 is very well suited for scalar
functions. However, to the author’s knowledge there is no generalization of the
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Kolmogorov relation to all matrices. One reason why such a matrix extension is
difficult, is because the derivation of the Kolmogorov relation rewrites the logarithm
of a product as a sum of logarithms,

log
(
F +

1
)

= log
(

|F +
1 |eiArg[F +

1 ]
)

= log
(
|F +

1 |
)

+ iArg
[
F +

1
]

. (5.4.18)

However, this step does not always hold for matrices because matrix multiplications
are non-commutative. Alternative methods that can be generalized to matrices are
provided by Wilson [1969] and Janashia et al. [2013].

We are particularly interested in the method by Wilson [1969]. This method
recursively reconstructs a minimum-phase function, g, from its power spectrum (au-
tocorrelation in the time-domain). Wilson [1969] uses the Newton-Raphson method
to derive a relation between the power spectrum, an estimate, gn, and its update,
gn+1,

gng∗
n+1 + gn+1g∗

n = gng∗
n + gg∗. (5.4.19)

Multiplication by (gn)−1 and (g∗
n)−1,

g∗
n+1 (g∗

n)−1 + (gn)−1
gn+1 = 1 + (gn)−1

gg∗ (g∗
n)−1

, (5.4.20)

leads to a superposition of a strictly causal term, (gn)−1
gn+1, with its time-reverse,

where causality follows from the minimum-phase property of the function g. The
acausal term can be removed by applying a mute, Θ [·], that represents multiplication
by the Heaviside function, H(t), in the time domain,

H(t) =


1, t > 0,
1
2 , t = 0,

0, t < 0.

(5.4.21)

By rearranging the result a recursive algorithm is obtained,

gn+1 = gnΘ
[
1 + (gn)−1 |g|2 (g∗

n)−1
]

. (5.4.22)

The aforementioned author shows that a trivial initial estimate, g0 = 1, is sufficient
to arrive at the desired solution g.

Now we use the recursive algorithm given by Eq. 5.4.22 to reconstruct the back-
propagated focusing function, V + (see Fig. 5.2), from its autocorrelation (see Fig.
5.3). The algorithm converges to machine precision within only seven iterations
(see bottom panel in Fig. 5.3). We do not show the retrieved solution because it is
undistinguishable from the modeled one in Fig. 5.2.

We illustrate the convergence of Eq. 5.4.22 via a simple example. Suppose the
minimum-phase function g, defined by Eq. 5.4.3, is reconstructed from its power
spectrum,

|g(ω)|2 = 1 + αeiωt1 + αe−iωt1 + α2. (5.4.23)
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Figure 5.3: autocorrelation of the back-propagated focusing function |V +|2 (top two panels)
and convergence of the Wilson reconstruction of V + (bottom panel). The autocorrelation
is associated with the back-propagated focusing function depicted in Fig. 5.2. Since the
phase spectrum of the autocorrelation is zero, it is not shown. Using the Wilson algorithm
(see Eq. 5.4.22), the back-propagated focusing function is reconstructed within machine
precision as indicated by the convergence plot.

The first iteration of Eq. 5.4.22 yields,

g1(ω) = 1 + αeiωt1 + 1
2

α2, (5.4.24)

which contains a quadratic error term, 1
2 α2, that decreases further with higher

iterations.

5.5 Minimum-phase factorization for matrices

Autocorrelations form a special case of normal products. Unfortunately, the fac-
torization of autocorrelations involves assumptions that do no generalize to normal
products. As a result, several "new" challenges must be overcome to factorize nor-
mal products. Firstly, we discuss the concept of minimum-phase for matrices. Sec-
ondly, we provide a physical interpretation of a general normal product. Thirdly,
we analyze the additional degrees of freedom, associated with normal product fac-
torization, that only exist in the multi-dimensional situation. Finally, we present
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a slightly modified version of the minimum-phase matrix factorization method by
Tunnicliffe-Wilson [1972]1.

In this analysis, we consider the simplest, non-trivial, matrix case, which is
formed by frequency-dependent 2 × 2 matrices,

M =

(
a b

c d

)
. (5.5.1)

Nevertheless, our analysis extends to arbitrary full-rank square-matrices. We do not
exclude that our analysis can be generalized to non-square matrices.

5.5.1 Matricial minimum-phase property

Diagonal matrices are a natural extension from scalars to matrices. An example
of a scalar (i.e. SISO) minimum-phase function is given by g defined in Eq. 5.4.3.
By arranging several minimum-phase functions alike g on the diagonal of a matrix,
we obtain a trivial example of a matricial (i.e. MIMO) minimum-phase object with
decoupled channels,

Λ =

(
1 − αeiωt1 0

0 1 + αeiωt1

)
, and |α| < 1. (5.5.2)

It may appear intuitive that the above matrix has a minimum-phase property. How-
ever, as we will show further onwards, there are less obvious cases of minimum-phase
matrices.

We start by discussing the meaning of stability, causality and invertibility in
a matrix sense. The matrix generalization of invertibility is straightforward and
simply requires a non-zero determinant,

det (M) = ad − bc ̸= 0, (5.5.3)

such that the matrix inverse exists,

M−1 = 1
det (M)

(
d −b

−c a

)
. (5.5.4)

In contrast, the meaning of stability and causality in a matrix sense is not imme-
diately clear. Existing literature defines the minimum-phase property of a matrix
via its determinant: A minimum-phase matrix possesses a (scalar) minimum-phase
determinant [Wiener , 1955; Rosenbrock, 1969; Horowitz et al., 1986]. On the one
hand, this definition is desirable because it keeps the minimum-phase property basis-
invariant,

det (M) = det
(
QMQ−1) , (5.5.5)

1The references Wilson [1969] and Tunnicliffe-Wilson [1972] are authored by the same person.
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where Q is an arbitrary invertible matrix of the same size as M. On the other
hand, this generalization does not restrict the phase behavior of individual matrix
elements. For example, suppose the matrix,

Q =

(
1 − 2αeiωt1 1
1 + αe−iωt1 1 + αe−iωt1

)
, (5.5.6)

is used to apply a frequency-dependent basis transformation to the minimum-phase
matrix, Λ, in Eq. 5.5.2. The resulting matrix,

QΛQ−1 =

(
2 − αeiωt1 − 1−2αeiωt1

1+αe−iωt1

1 + αe−iωt1 αeiωt1

)
, (5.5.7)

is still a minimum-phase matrix but it contains non-minimum-phase matrix-elements
(e.g. see acausal element 1 + αe−iωt1).

Moreover, defining minimum-phase matrices via their determinant has several
consequences. First of all, it follows that the determinant of a minimum-phase
matrix, M, satisfies the Kolmogorov relation (analogously to Eq. 5.4.15),

Arg [det (M)] = −H [log (|det (M) |)] . (5.5.8)

This highlights that scalars form a special case, in which the determinant simplifies
to M. Second, the determinant is equal to the product of the eigenvalues, λi, of a
matrix,

det (M) =
∏

i

λi. (5.5.9)

Hence, in a general 2 × 2 case, the two eigenvalues have an arbitrary frequency-
dependent phase-freedom Φ,

Arg [λ1] = −H [log (|λ1|)] + Φ, (5.5.10)
Arg [λ2] = −H [log (|λ2|)] − Φ. (5.5.11)

In special cases where all eigenvalues observe a minimum-phase property, the ab-
solute eigenvalues, |λi|, of a matrix, M, can be derived from the normal product,
MM†. Wapenaar et al. [2003] and Elison et al. [2020] investigate such a special
situation by restricting their analysis to (inverse) transmission responses of layered
acoustic media, where also the phase freedom vanishes, Φ = 0.

Here, we consider a more general case, which is formed by elastic layered media.
Alike layered acoustic media, wavefields still decouple per horizontal-slowness, and
without loss of generality, we restrict our analysis to a single horizontal-slowness,
sx = 2 × 10−4 s m−1. In contrast to layered acoustic media, wavefields are now
represented by 2×2 matrices in P-S space as shown in Eq. 5.2.11. For the following
numerical examples, we use the layered medium defined in Tab. 4C.3, where cs

denotes the S-wave velocity.
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z (km) cp (m s−1) cs (m s−1) ρ (kg m−3)
−∞ - 201.29 1718.42 900 1100

201.29 - 516.50 2978.57 1200 7050
516.50 - 925.33 2662.07 1500 2400
925.33 - ∞ 3676.02 1700 9000

Table 4C.3: Layered elastic model. The depth positions of the interfaces and the P-wave
velocities are adjusted for perfect sampling of wavefields associated with the horizontal-
slowness, sx = 2 × 10−4 s m−1.
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Figure 5.4: Focusing function F+
1 associated with the medium in Tab. 4C.3. Each panel

shows one elastic component in the time domain. The panels are arranged analogously to
the P-S matrix elements in Eq. 5.2.11.

Next, we model the focusing function, F+
1 (see Fig. 5.4). This response is the

inverse of a transmission response to a source at z = 0 m recorded at z = 979.56 m.
In Fig. 5.5, we depict the eigenvalues, λ1/2, as well as the determinant of the
focusing function, det

(
F+

1
)
. The eigenvalues do clearly not satisfy minimum-phase

properties, and the phase freedom Φ (see Eqs. 5.5.10 and 5.5.11) is significantly
more complicated than a linear phase-shift. Nevertheless, using the Kolmogorov
relation (see Eq. 5.5.8), it can be shown that the determinant is a minimum-phase
function from the onset of the signal at the time t0 (within machine precision),

∥Arg
[
det
(
F+

1
)]

+ H
[
log
(
|det

(
F+

1
)

|
)]

− ωt0∥2

∥Arg
[
det
(
F+

1
)]

∥2
=

5.6 × 10−14. (5.5.12)

The minimum-phase property of the determinant, after applying a linear phase-shift
correction, can be visualized in an Argand diagram (see Fig. 5.6). As expected for
a minimum-phase function, there is no intersection with the negative real axis.
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Figure 5.5: Eigenvalues (top two panels) and determinant (bottom panel) of the focusing
function, F+

1 , shown in Fig. 5.4. All quantities are shown in time domain.
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Figure 5.6: Argand diagram of the determinant, det(F+
1 ), without (left) and with (right) lin-

ear phase-shift correction, +ωt0. The real (Re) and imaginary (Im) parts of the (frequency-
domain) function are represented on the horizontal and vertical axes, respectively. A time-
domain illustration of the determinant, det(F+

1 ), is shown in Fig. 5.5.



88 Towards normal product factorization with minimum-phase constraint

Analogous to the acoustic case, the linear phase-shift correction of the deter-
minant, det(F+

1 ), can be compensated by back-propagation. However, there are
several possibilities to extend back-propagation to the elastic case. In the follow-
ing, we present the two elastic back-propagation schemes that we find to be most
insightful.

A simple extension is obtained by generalizing the direct transmission from an
acoustic, T +

d (see Eq. 5.4.14), to an elastic one,

T+
d =

(
τppeiωt(d)

p 0
0 τsseiωt(d)

s

)
. (5.5.13)

Here, t
(d)
p and t

(d)
s denote the travel time of a directly transmitted P- and S- wave,

respectively. Moreover, the real-valued scalars, τpp and τss, are defined by the
transmission coefficients. The resulting field,

V+
d = F+

1 T+
d , (5.5.14)

is shown in Fig. 5.7: Only its ss component (bottom-left matrix element) is a
scalar minimum-phase function (see red line in ss panel). The pp component is
close to a minimum-phase function. However, its phase spectrum contains minor
deviations from a minimum-phase phase spectrum (see red line in pp panel). This
deviation is caused by weak acausal events, which are highlighted by a black circle.
Further, the ps and sp components are clearly not minimum-phase functions, e.g.
their amplitude spectra contain zero elements, which cannot be inverted. Although
(some of) the individual matrix elements do not possess a minimum-phase property,
the determinant does (see Fig. 5.8). In contrast to the determinant of the focusing
function, det(F+

1 ), there is no need for a linear phase-shift correction because it is
already applied via the direct transmission,

Arg
[
det
(
V+

d

)]
= Arg

[
det
(
F+

1
)

det
(
T+

d

)]
= Arg

[
det
(
F+

1
)]

+ Arg
[
det
(
T+

d

)]
= Arg

[
det
(
F+

1
)]

+ ω(t(d)
p + t(d)

s )
= Arg

[
det
(
F+

1
)]

+ ωt0. (5.5.15)

Note that, the travel times of the direct P- and S-waves add to the onset time of the
determinant det(F+

1 ), t0 = t
(d)
p +t

(d)
s . The multiplication by the direct transmission,

T+
d , does also affect the eigenvalues. However, the eigenvalues of the field V+

d (see
Fig. 5.8), alike the eigenvalues of F+

1 , deviate from a minimum-phase function by
non-linear phase shifts, ±Φ.

In chapter 4 of this thesis, we introduce a more general back-propagated focusing
function,

V+ = F+
1 B. (5.5.16)

The diagonal elements of this quantity are equal to a unit delta function (in time)
plus a strictly causal coda. In special cases, the operator, B, reduces to a forward-
scattered transmission response T+

fs, i.e. a transmission response that includes mode
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Figure 5.7: Wavefield V+
d associated with the medium in Tab. 4C.3. The three vertical

blocks show the time-domain traces, the amplitude spectrum and the phase spectrum of the
field. Each block contains four panels that are associated with the four elastic components
and are arranged analogously to the P-S matrix elements in Eq. 5.2.11. The red lines
depict the deviation of the phase spectra from their respective minimum-phase spectra (only
shown for the diagonal elements pp and ss).
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Figure 5.8: Eigenvalues (rows one and two) and determinant (row three) of the wavefield,
V+

d , shown in Fig. 5.7. From left to right, the columns show the time-domain traces, the
amplitude spectra and the phase spectra. The red lines depict the deviation of the phase
spectra from their respective minimum-phase spectra. The operators indicate the mutual
link between the panels per column. The symbol ⊛ denotes temporal convolution.

conversions but excludes internal multiples. An example of a back-propagated focus-
ing function, V+, is depicted in Fig. 5.9, where B = T+

fs. In contrast to the response
V+

d in Fig. 5.7, not only the element V +
ss , but both diagonal elements are minimum-

phase functions (see comparison to minimum-phase phase spectra indicated by red
lines). We emphasize that the minimum-phase behavior of the diagonals is merely
an observation, but perhaps this is a characteristic of an arbitrary back-propagated
focusing function, V+. The individual off-diagonals remain non-minimum-phase
functions (see zeros in amplitude spectra and acausal events in V +

sp). The eigenval-
ues and the determinant of the back-propagated focusing function V+ are nearly
identical to those of the field V+

d (compare Figs. 5.8 and 5.10).

5.5.2 Properties of normal products

Now we discuss the properties of normal products, which can be seen as generalized
autocorrelations.

In the matrix case, there are two normal products, which are generally not equal,

MM† ̸= M†M. (5.5.17)

Hence, if both normal products are known, there are more equations to constrain
the reconstruction of the matrix, M. However, in case of the previously-mentioned
Marchenko method, only one normal product, F+

1
(
F+

1
)†, is retrieved. Therefore,

we restrict our analysis to the normal product, MM†.
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Figure 5.9: Idem as Fig. 5.7 but for V+.
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Figure 5.10: Idem as Fig. 5.8 but for V+.

The matrix, M, and its normal product, MM†, are closely related via their
singular values. To demonstrate this insight, we write matrix M in terms of its
singular-value decomposition [Stewart, 1993],

M = ΥΣΓ†, (5.5.18)

where the matrices, Υ and Γ, are unitary, and the diagonal matrix, Σ, contains the
singular values, σi > 0. Now the normal product can be written as,

MM† = Υ diag
(
σ2

1 , σ2
2
)

Υ†, (5.5.19)

which gives it the notion of a matrix-generalized power spectrum of matrix M.
Hence, the factorization of the normal product, MM†, can be seen as a phase
retrieval of the matrix M. Moreover, the singular values as well as the determinant,

|det
(
MM†)|2 = |σ1σ2|2, (5.5.20)

are basis-invariant, which demonstrates that the power spectrum of a matrix is
independent of the basis representation.

Next, we provide a numerical example of a normal product. Consider the matrix,

M =

(
1 + 0.5eiωt1 ei2ωt1

−e−i2ωt1 1 + 0.4ei4ωt1

)
, (5.5.21)

with t1 = 0.05 s, which is depicted in the time domain in Fig. 5.11. The normal
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Figure 5.11: Matrix M defined by Eq. 5.5.21. Each panel shows one element of the matrix
M in the time domain. The panels are arranged analogously to the matrix elements in Eq.
5.5.1.
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Figure 5.12: Idem as Fig. 5.11 but for the normal product, MM†, defined by Eq. 5.5.22.

product of M is given by,

MM† =(
2.25 + cos(ωt1) x

x∗ 2.16 + 0.8cos(4ωt1)

)
, (5.5.22)

with x = 0.4e−i2ωt1 + 0.5ei3ωt1 , and is shown in the time domain in Fig. 5.12.
Note that, the diagonals of the normal product, MM†, are phase-less. In contrast,
the off-diagonals of MM† have non-zero phase spectra (see definition of x) and
are mutually related via complex conjugation in the frequency domain, i.e. by a
time-reversal. Moreover, Fig. 5.13 shows the singular values of the normal product,
which are defined in Eq. 5.5.19.
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Figure 5.13: Singular values, σ2
1 (top panel) and σ2

2 (bottom panel) in the time domain. The
singular values are associated with the normal product, MM†, as defined by Eq. 5.5.22.

5.5.3 Degrees of freedom

Compared to the scalar case, the factorization of normal products has additional
degrees of freedom. Upon multiplication by an arbitrary unitary 2 × 2 matrix, i.e.
by a U(2) element, the normal product of the matrix, M, is preserved,

MU(2) (MU(2))† = MM†. (5.5.23)

Subsequently, we discuss the U(2) element, which describes the group of 2 × 2
unitary matrices. By definition the complex-conjugate transpose of a unitary matrix
is equal to its inverse,

U(2) [U(2)]† = I. (5.5.24)

An arbitrary U(2) element can be represented as a product of an SU(2) element
with a U(1) element [Cornwell, 1997],

U(2) = SU(2)U(1) =e−i γ+α
2 cos

(
β
2

)
−ei γ−α

2 sin
(

β
2

)
e−i γ−α

2 sin
(

β
2

)
ei γ+α

2 cos
(

β
2

)  eiϕ. (5.5.25)

The SU(2) element is a special U(2) element with a determinant equal to one. In
the above expression, the SU(2) element is parameterized with the Euler angles
α, β and γ [Hamada, 2015], and can be generated from exponentials, SU(2) =
e− i

2 σzαe− i
2 σyβe− i

2 σzγ , where σy/z are Pauli matrices,

σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5.5.26)
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Figure 5.14: Idem as Fig. 5.11 but for the matrix MSU(2) defined by Eqs. 5.5.21 and
5.5.27.

Using this parameterization, the SU(2) element can be interpreted as a series of
rotations around the z-, y- and again z-axis by γ

2 , β
2 and α

2 , respectively. Compared
to the scalar case (factorization of autocorrelations), the SU(2) introduces three
additional degrees of freedom.

We present a numerical example to illustrate the power of the degrees of freedom.
To this end, we multiply the matrix, M (see Eq. 5.5.21 and Fig. 5.11), by the
following SU(2) element (i.e. ϕ = 0),

SU(2) = e
i
2 σzsin( ω

100 Hz )e− i
2 σyπe− i

2 σzsin( ω
100 Hz )

=

(
0 −ei sin( ω

100 Hz )

e−i sin( ω
100 Hz ) 0

)
. (5.5.27)

Although this SU(2) element appears rather "simple", it drastically changes the
time-domain shape of the matrix M (compare Figs. 5.11 and 5.14). In contrast, the
normal product (see Fig. 5.12) and the determinant remain unchanged, which we
could confirm within machine precision. The challenge of normal product factoriza-
tion is to find the desired matrix, M, instead of a rotated version, MSU(2)U(1).

The above example may appear contradictory to the scalar example in Eq.
5.4.13. In this scalar example, the minimum-phase property of the function, g, was
destroyed by multiplication with the U(1) element, ei sin( ω

100 Hz ), which resembles the
SU(2) element in Eq. 5.5.27. However, there is a key difference between the two
examples: The determinant of the SU(2) element is one, i.e. the SU(2) element pos-
sesses a minimum-phase property. In contrast, the determinant of the U(1) element
is an acausal function, det

(
ei sin( ω

100 Hz )
)

= ei sin( ω
100 Hz ), i.e. non-minimum-phase.

The factorization of autocorrelations has a freedom of complex conjugation,
which does not generalize to normal products. This freedom is unique to the scalar
case because scalar multiplications are commutative. On the one hand, the indi-
vidual off-diagonal elements of the normal product are not necessarily symmetric in
time, which can be seen in Eq. 5.5.22 and in Fig. 5.12. Thus, the matrices, M and
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M∗, generate different normal products, MM† and
(
MM†)∗, respectively. On the

other hand, one may expect a freedom of applying a complex-conjugate transpose.
Nevertheless, the matrices, M and M†, also lead to different normal products, MM†

and M†M, respectively (see Eq. 5.5.17).

5.5.4 Minimum-phase matrix factorization

In this section, we discuss the factorization of a normal product, MM†, with a
minimum-phase constraint. First, we will attempt to constrain the above-discussed
degrees of freedom. Second, we will analyze a factorization method by Tunnicliffe-
Wilson [1972].

Constrain degrees of freedom

Initially, we aimed to constrain the degrees of freedom that are associated with nor-
mal product factorization (see Eq. 5.5.25). This strategy starts with the eigenvalue
decomposition of the normal product,

MM† = QΛQ†. (5.5.28)

By taking the principle square-root of the eigenvalues, we find a factorization solu-
tion,

M̃ = QΛ
1
2 Q†. (5.5.29)

However, the solution, M̃, is not necessarily the desired one, and it does not neces-
sarily possess a minimum-phase property. To map the solution, M̃, onto the desired
one, M, the degrees of freedom, SU(2) and U(1), must be retrieved (see Eq. 5.5.25),

M = M̃SU(2)U(1) = M̃SU(2)eiϕ. (5.5.30)

We proceed by assuming that the desired solution, M, possesses a minimum-
phase property. For this purpose, we evaluate the determinant of Eq. 5.5.30,

det(M) = det(M̃)e2iϕ. (5.5.31)

Next, we evaluate the phase spectrum of the above equation. The phase of the de-
terminant, det(M), can be determined via the Kolmogorov relation (see Eq. 5.5.8),

Arg [det(M)] = −H [log (|det(M)|)] . (5.5.32)

The phase of the right-hand side of Eq. 5.5.31 can be written as,

Arg
[
det(M̃)e2iϕ] = Arg

[
det(M̃)

]
+ 2ϕ. (5.5.33)

By equating Eqs. 5.5.32 and 5.5.33, and by using the identity,

|det(M)| = |det(MM†)| 1
2 , (5.5.34)
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we obtain,

ϕ = −1
2

(
H
[
log
(

|det(MM†)| 1
2

)]
+ Arg

[
det(M̃)

])
. (5.5.35)

Unfortunately, the above strategy is insufficient to fully constrain the normal
product factorization. The minimum-phase constraint of the determinant provides
only one equation, namely the Kolmogorov relation. Hence, this constraint does not
allow to further reduce the degrees of freedom, and three free parameters contained
by the SU(2) element remain unknown. Due to this limitation, we seek for an
alternative method, which is discussed in the following.

Wilson factorization

As mentioned in the scalar section, the Wilson factorization method (see Eq. 5.4.22)
can be generalized to matrices. The generalized Wilson algorithm can be written
as,

Mn+1 = MnΘ
[
I + (Mn)−1 MM† (M†

n

)−1]
, (5.5.36)

with M0 = I [details can be found in Tunnicliffe-Wilson, 1972]. Here, the function,
Θ, element-wise mutes acausal events and scales the time-zero components of the
diagonal elements by 1

2 . This scaling can be seen as a termination condition that
ensures that the recursion converges, i.e. for, Mn = M, the solution is not updated,

Mn+1 = MnΘ
[
I + (Mn)−1 MM† (M†

n

)−1]
= MnΘ [2I] = Mn. (5.5.37)

We wish to use the Wilson algorithm for the retrieval the back-propagated focus-
ing functions, V+

d and V+, from their respective normal products. In particular, we
are interested in retrieving the function, V+

d , because it is equal to the focusing func-
tion, F+

1 , up to a direct transmission (see Eq. 5.5.14). Hence, retrieving the field,
V+

d , would allow us to proceed with the Marchenko redatuming strategy presented
in chapter 4 of this thesis (assuming that the direct transmission can be estimated).
For our purposes, the retrieval of the field, V+, is less interesting because it can
already be obtained by the Marchenko method [see Reinicke, 2020, chapter 4 of
this thesis]. Interestingly, the Wilson algorithm appears to perfectly reconstruct the
field, V+, whereas the reconstruction of the field V+

d remains imperfect. Thus, we
firstly analyze the Wilson algorithm for the field V+, and secondly show our best
result of reconstructing the field V+

d .
We consider the back-propagated focusing function V+ (see Fig. 5.9) and its

normal product V+ (V+)† (see Fig. 5.15). To use the Wilson algorithm (see Eq.
5.5.36), an explicit definition of the mute, Θ, is required. The diagonal elements of
the mute, Θ, can be easily defined by the Heaviside function (see Eq. 5.4.21),

Θpp(t) = Θss(t) = H(t), (5.5.38)
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Figure 5.15: Normal product, V+ (V+)†, of the back-propagated focusing function shown in
Fig. 5.9. The panels are arranged analogously to Fig. 5.9.
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because the diagonal elements of the back-propagated focusing function are strictly
causal. Moreover, the Heaviside function accounts for the scaling of the diagonal
time-zero components by 1

2 , which is the aforementioned termination condition.
For the off-diagonal elements, we define the mute such that events prior to the first
arrival are muted,

Θps(t) =

{
1, t ≥ tps,

0, t < tps,
(5.5.39)

and,

Θsp(t) =

{
1, t ≥ tsp,

0, t < tsp.
(5.5.40)

Note that the off-diagonals of the mute do no contain the scaling factor, 1
2 , because

the aforementioned termination condition only affects the diagonals. The times, tps

and tsp, denote the travel times associated with the first event of the fields, V +
ps and

V +
sp , respectively [more details on the onset times tps and tsp can be found in chapter

4 of this thesis, Reinicke, 2020]. Using the mute Θ, we retrieve the back-propagated
focusing function according to Eq. 5.5.36. The convergence diagram (see Fig. 5.16)
demonstrates that, after only seven iterations, the Wilson-factorization retrieves the
correct solution, V+, within machine precision (for an illustration of V+ we refer
to Fig. 5.9 which shows its modeled version).

Next, we attempt to factorize the normal product, V+
d

(
V+

d

)†. As shown in Fig.
5.7, the element V +

d,pp contains acausal events (see black circle), which leads to a new
problem. One approach could be to define the pp component of the mute Θ such
that some acausal events are preserved, while its time-zero component still applies
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the scaling factor 1
2 as a termination condition,

Θpp(t) =


1, t ≥ tpp and t ̸= 0,
1
2 , t = 0,

0, t < tpp.

(5.5.41)

Here, tpp refers to the arrival time of the first event in V +
d,pp (see circle in Fig. 5.7).

Unfortunately, with this mute the recursive evaluation of Eq. 5.5.36 diverges (no
figure shown).

Hence, we modify our strategy. By applying another linear phase-shift, we obtain
a field, Ṽ+

d , with strictly causal diagonal elements,

Ṽ+
d = V+

d

(
e−iωtpp 0

0 1

)
. (5.5.42)

Note that, this linear phase-shift cancels in the normal product,

Ṽ+
d

(
Ṽ+

d

)† = V+
d

(
V+

d

)†
, (5.5.43)

and could be easily included in the definition of the field V+
d in Eq. 5.5.14. Sub-

sequently, the mute Θ can be defined analogously to Eqs. 5.5.38-5.5.40, where the
times, tps and tsp, are now defined by the first event of Ṽ +

d,ps and Ṽ +
d,sp, respec-

tively. A comparison between the retrieved result Ṽ+
d and the desired solution V+

d

is shown in Fig. 5.17. According to Eq. 5.5.42, one would expect to observe a
linear phase-shift between the fields Ṽ+

d and V+
d . Although the Wilson algorithm

does not reconstruct this phase-shift, the retrieved solution, Ṽ+
d , is nearly identical

to the desired one, V+
d . The strongest artifacts are due to early events that are

erroneously suppressed by the mute Θ (see grey areas in Fig. 5.17).
Finally, we inspect the error of the above experiment. The relative error between

the retrieved and desired fields is dominated by small artifacts (see Fig. 5.18).
Nevertheless, the determinant is reconstructed accurately (see Fig. 5.18). Even if
we simplified the off-diagonal mutes to,

Θps(t) = Θsp(t) =

{
1, t ≥ 0,

0, t < 0,
(5.5.44)

the correct determinant is retrieved (not shown). Hence, in both cases, the retrieved
solutions, Ṽ+

d,1 (first experiment) and Ṽ+
d,2 (second experiment), can be mapped

onto the desired one, V+
d , by multiplication with a residual SU(2) element. We

determine these SU(2) elements by deconvolution,

S̃1 =
(

Ṽ+
d,1

)−1
V+

d , (5.5.45)

S̃2 =
(

Ṽ+
d,2

)−1
V+

d . (5.5.46)
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Fig. 5.19 shows that the residual SU(2) elements, S̃1 and S̃2, are close to an identity
matrix. For the first experiment, the deviation of the residual SU(2) element from
an identity is smaller than for the second experiment. This observation suggests
that the more specific mute in the first experiment helped to better constrain the
solution.

5.6 Discussion, conclusions and outlook

We discussed minimum-phase behavior. This property imposes several constraints
that could be used e.g. in a range of inverse problems such as the retrieval of
a focusing function. Hence, we set out to review this property for scalars and
started to explore the multi-dimensional situation. For this purpose, we reviewed
developments from other research fields, in particular from control-theory, and tried
to adopt them for geophysics.

We demonstrated that minimum-phase behavior is not limited to scalar functions
but can be generalized to matrices. To this end, we analyzed various properties
such as the matrix elements, singular values, eigenvalues and determinants. In
special cases, the minimum-phase property of a matrix is reflected by its individual
eigenvalues [e.g. for transmissions of layered acoustic media, as in Wapenaar et al.,
2003; Elison et al., 2020]. However, in general, only the determinant of a matrix
is characteristic for its minimum-phase behavior. On the one hand, this result
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is desirable because it makes the minimum-phase property basis-invariant. On the
other hand, a minimum-phase determinant can be associated with countless different
matrices. Hence, a minimum-phase determinant describes a "group" of minimum-
phase matrices, rather than a single matrix.

This chapter is motivated by the retrieval of a focusing function, F+
1 . In partic-

ular, we are interested in exploiting properties of the focusing function as additional
constraint to proceed with the Marchenko redatuming strategy presented in chapter
4 of this thesis. Hence, it has been crucial to verify that (beyond the scalar case) the
focusing function, as an inverse transmission response, possesses a minimum-phase
property, up to back-propagation.

Furthermore, we investigated the factorization of a normal product with a mini-
mum-phase constraint. In particular, we inspected the Wilson algorithm. We ob-
served that, in some cases, this method perfectly reconstructs the desired minimum-
phase matrix. Nevertheless, in other cases, the Wilson algorithm reconstructs a
minimum-phase matrix, but not the desired one: The desired matrix was recon-
structed up to an SU(2) element. It appears that the Wilson algorithm favors
minimum-phase matrices that have minimum-phase diagonal elements. However,
the latter statement is based on our observations but has not been proven. More-
over, we observed that the residual SU(2) elements are close to identities. Hence,
the Wilson factorization may be suitable to approximate the focusing function F+

1 .
We will continue this research project in the future. Apart from investigating

fundamental properties of minimum-phase objects, we also intend to consider prac-
tical aspects such as band-limitation. Despite the remaining challenges, we believe
that minimum-phase behavior has the potential to be used as a powerful tool for
signal processing.
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Impact of mode conversions on
structural imaging with Marchenko
multiple-elimination in geological
settings akin to the Middle East

There is always a gap between theory and practice.

Claerbout, 1985.

Abstract The reflection response of elastic media with strong contrasts contains
numerous events due to mode conversions and multiple scattering. Correct handling
of strong elastic internal multiples is believed to be important for structural imag-
ing. However, applications of elastic internal multiple-elimination methods, e.g.
Marchenko-equation-type methods, are currently limited by unsolved theoretical
challenges. In contrast, the acoustic theory is significantly easier to implement and
relies on realistically-achievable preprocessing requirements. Therefore, it is desir-
able to identify relevant geological settings, where acoustic multiple-elimination can
suffice. Here, we consider geological environments akin to the Middle East, where
internal multiples remain a significant challenge, and analyze marine data because
only the acoustic component is measured. Similar strategies have already been ap-
plied in existing field data examples, nevertheless, it remains unclear whether the
resulting images are reliable. For this purpose, we build a synthetic model based
on regional well-log data and geological understanding. The synthetic model al-
lows us to model reflection responses with, and without, elastic scattering effects.
Next, we apply the acoustic Marchenko multiple-elimination method, migrate the

This chapter is in preparation for publication.
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results and compare the images between each other, and against a reference. This
analysis demonstrates that, for the considered geology, mode conversions only have
a minor effect on structural images retrieved via the acoustic Marchenko multiple-
elimination method. Moreover, this synthetic study allows us to analyze the nature
of internal multiples in comparable geological settings. Note that our conclusions
are expected to be model-dependent.
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6.1 Introduction

Internal multiples can generate undesired, highly complex, interference patterns,
which become worse in the presence of strong elastic effects and can create severe
imaging artifacts. Two regions where elastic multiples remain a major challenge
are offshore Brazil and the Middle East [El-Emam et al., 2011]. In both regions,
the imaging targets are buried under complex overburdens. This is a challenge
for multiple prediction methods [e.g. Jakubowicz, 1998], that identify individual
multiple generators to predict and adaptively subtract multiples: for example, a
primary could have the same kinematics as a predicted multiple, such that the pri-
mary would be erroneously subtracted. In contrast to predicting and adaptively
subtracting multiples, Marchenko-equation-based multiple-elimination methods re-
trieve an inverse transmission through an entire overburden by solving an inverse
problem [e.g. Wapenaar et al., 2014a; van der Neut and Wapenaar , 2016; Dukalski
and de Vos, 2017], i.e. there is no need for adaptive subtraction.

This advantage of Marchenko-type multiple-elimination methods relies on correct
scaling of the reflection response. Hence, accurate data preprocessing is essential
for Marchenko-type multiple-elimination methods, e.g. wavelet estimation, surface-
related multiple elimination, etc. These requirements remain challenging for land
seismics but can be accomplished for streamer (or other marine) data, provided
the crossline spacing is sufficiently small. Note that such streamer-like acquisitions
form a special case because the water layer acts as a filter that only allows for
measurements associated with pressure sources and receivers. Nevertheless, the
recorded data carries the imprint of elastic scattering inside the Earth.

The elastodynamic extension of Marchenko-type methods, alike other wave-
equation based multiple-elimination methods [e.g. the elastic inverse scattering
series, Coates and Weglein, 1996], relies on, (i) the availability of all components of
the reflection response and, (ii) monotonicity assumptions, i.e. "correct" temporal
ordering of events. Firstly, the requirement (i) is naturally violated for streamer
data, which only measures one out of nine elastic components. So far, the effect of
applying the Marchenko multiple-elimination method using an incomplete reflection
response remains unexplored (an example can be found in Appendix A). Secondly,
the monotonicity assumption (ii) often holds for acoustic waves but can be violated
much easier in the elastic case due to propagation speed differences between elastic
modes [Sun and Innanen, 2019; Reinicke, 2020, chapter 4 of this thesis].

In view of the theoretical challenges encountered by the elastic Marchenko method,
we suggest to apply the acoustic Marchenko multiple-elimination method to elas-
tic data. This approach can be seen as a hybrid Marchenko strategy and has al-
ready been followed in existing field data examples [e.g. Ravasi et al., 2016; Staring
et al., 2018]. However, are the results trustworthy? The answer to this question is
medium-dependent: for approximately horizontally-layered media, there are strong
arguments supporting the hybrid strategy. Firstly, due to speed differences between
modes, events associated with shear waves (S) tend to have lower apparent veloc-
ities than unconverted compressional waves (P). Therefore, events associated with
S-waves tend to have steeper dips in the space-time domain and will be partially at-
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tenuated by wavenumber-frequency filtering, which is a necessary preprocessing step.
Secondly, elastic effects only appear gradually with increasing angle of incidence, i.e.
in nearly horizontally-layered media, elastic effects are minor for short-offset record-
ings. Further, since migration boosts the recordings that are consistent with the
velocity model (in our case the P-wave velocity), events associated with conversions
to S-waves are attenuated. Therefore, the aforementioned hybrid Marchenko strat-
egy may be suitable for structural imaging but may not prove sufficiently reliable
for AVO analysis.

The Middle Eastern geology, unlike the geology offshore Brazil, is characterized
by dense, nearly-horizontal, layering with strong elastic contrasts, which makes it a
promising candidate to inspect the hybrid Marchenko multiple-elimination strategy.
For this analysis, we construct a synthetic Middle East model based on regional log
data (P- and S-wave velocities as well as density) and geological understanding. The
model is designed to be as close to reality as possible and contains several features
that are characteristic to the region, e.g. a distinctive velocity inversion [Christian,
1997]. To a large extent, our observations are in agreement with those of a parallel
study on field data from the same region (parallel project carried out by Staring et
al.), which demonstrates the relevance of our analysis in practice. Since this field
data example will be published independently, it is not discussed in this chapter .
Further, using a synthetic model gives us control over the shear wave velocity, cs ̸= 0
or cs = 0, and thus, allows us to model reflection responses with and without elastic
effects, respectively. Both, i.e. acoustic and elastic, reflection responses are used
as inputs for an acoustic Marchenko multiple-elimination method. The respective
results are compared between each other, and against a reference.

The structure of this chapter is as follows. Firstly, we summarize the theory of
the back-propagated Marchenko multiple-elimination method. Secondly, we explain
how the synthetic model is built and compare the acoustic with the elastic reflection
responses. Finally, the reflection responses are used to retrieve Marchenko multiple-
elimination results, which are analyzed in the data domain as well as in the image
domain.

6.2 Method

In this section, we outline the key steps of the elastic back-propagated Marchenko
scheme [for details see van der Neut and Wapenaar , 2016; Elison, 2019; Reinicke,
2020, chapter 4 of this thesis]. This back-propagated scheme is advantageous be-
cause it does not require an estimate of waves that forward-scatter from the acqui-
sition to the redatuming level. Hence, there is no need for prior model information.
Further, we discuss the special case of an elastic reflection response recorded in an
acoustic layer (water).

6.2.1 Elastic back-propagated Marchenko multiple-elimination theory

We consider 3D laterally-varying elastic media and describe wavefields as functions
of time, t, and space, xj = (x, y, zj). Here, we use subscripts to refer to the z-
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coordinate. We assume that the z-axis is pointing downward.
For the ease of the derivation, we assume source- and receiver-side decomposed

one-way wavefields [Frasier , 1970; Ursin, 1983]. In this chapter, we consider the
wavefield normalization defined by Wapenaar and Berkhout [1989, see chapter IV].
Nevertheless, the derived expressions also hold for flux-normalized fields (see ap-
pendix B). We organize the one-way wavefields in 3 × 3 matrices,

P(x, x′, t) =

PP,P PP,S1 PP,S2

PS1,P PS1,S1 PS1,S2

PS2,P PS2,S1 PS2,S2

 (x, x′, t), (6.2.1)

where the subscripts denote P, S1 and S2 wavefield potentials. The first and second
subscripts are associated with the wavefield potentials on the source- and receiver-
side, respectively. Hence, all matrix operations in this chapter are associated with
matrices in P- and S-wave (P-S) space. The first and second coordinates, x and x′,
denote the receiver and source coordinates, respectively.

The reflection response R(x0, x′
0, t) to a downward radiating source is recorded

as an upgoing field on the reflection-free surface z0 at the top of the medium (just
above the source).

Next, we define a target reflection response Rtar(x0, x′
0, t) recorded at z0. This

response propagates multiple-free through the overburden, and is corrected for
overburden-related transmission losses but contains all wavefield interactions with
the target. This response can be obtained from so-called back-propagated Green’s
functions U−,±(x0, x′

0, t) [defined in Reinicke, 2020, chapter 4 of this thesis] via an
Amundsen [2001] deconvolution,

U−,+(x0, x′
0, ω) = −

∫
∂D0

U−,−(x0, x′′
0 , ω)Rtar(x′′

0 , x′
0, ω)d2x′′

0 . (6.2.2)

We formulate the above expression per angular frequency ω [Noether , 1918]. For
an arbitrary field, P(x, x′, t), the mutual relation between the time and frequency
domains is given by the temporal Fourier transformation,

P(x, x′, ω) =
∫ ∞

−∞
P(x, x′, t)eiωtdt, (6.2.3)

with i2 = −1. In the special case of acoustic media, Eq. 6.2.2 is often rearranged
[e.g. compare to Eq. 32 in van der Neut and Wapenaar , 2016; Elison, 2019]. The
rearrangement involves source-receiver reciprocity of Green’s functions (which are
used to construct the U−,±(x0, x′

0, ω) fields) and commutation of multiplications.
The latter rearrangement is not possible in the general elastic case, where each
quantity is a matrix in P-S space.

The back-propagated Green’s functions U−,±(x0, x′
0, ω) are constrained by reci-

procity relations, which form an inverse problem. Together with the reflection re-
sponse R(x0, x′

0, ω) and so-called back-propagated focusing functions V±(x0, x′
0, ω),

the fields U−,±(x0, x′
0, ω) satisfy the convolution- and correlation-type representa-

tion theorems [van der Neut and Wapenaar , 2016; Elison, 2019; Reinicke, 2020,
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chapter 4 of this thesis],

U−,+(x0, x′
0, ω) + V−(x0, x′

0, ω) =
∫

∂D0

R(x0, x′′
0 , ω)V+(x′′

0 , x′
0, ω)d2x′′

0 , (6.2.4)

and,(
U−,−)∗ (x0, x′

0, ω) + V+(x0, x′
0, ω) =

∫
∂D0

R∗(x0, x′′
0 , ω)V−(x′′

0 , x′
0, ω)d2x′′

0 .

(6.2.5)

The latter expression excludes evanescent waves on the boundaries of the overbur-
den, ∂D0 and ∂Di (overburden and target are separated by ∂Di), and the superscript
"∗" denotes complex-conjugation.

The Marchenko method retrieves the back-propagated Green’s functions U−,±(x0,
x′

0, ω) by solving the inverse problem formed by Eqs. 6.2.4 and 6.2.5. By applying
temporal mutes Θ±(x0, x′

0, t), which act matrix element-wise, the representation
theorems can be rewritten as,

χ− + V− = Θ− [RV+] , (6.2.6)

χ+ + V+ = Θ+ [R∗V−] , (6.2.7)

where we use a detail-hiding notation that omits coordinates and integrals. Eqs.
6.2.6 and 6.2.7 together resemble a pair of coupled Marchenko equations that can
be solved for V+,

V+ =
∞∑

k=0

Ξk, with, Ξk = Θ+ [R∗Θ− [RΞk−1]
]

, (6.2.8)

and Ξ0 = −χ+ − Θ+ [R∗χ−
]
. To proceed, it is assumed that the overlap χ−

vanishes, which holds conditionally [see Reinicke, 2020, chapter 4 of this thesis], and
appears to be a sufficiently good approximation for the later presented experiment.
The remaining overlap χ+ can be approximated with an identity Ξ0(x′′

0 , x′
0, ω) ≈

−Iδ(x′′
0 − x′

0). In practice, the identity is spatio-temporally band-limited such that
short-period multiples lead to an erroneous solution when evaluating Eq. 6.2.8.
Although not implemented here, there is a strategy to correct for the short-period
multiple error, by constraining the solutions V± with energy conservation and the
minimum-phase property of V+. So far, the short-period multiple strategy has
been developed for up to 2D acoustic media with horizontally-layered overburdens
[Dukalski et al., 2019; Elison, 2019]. Finally, the remaining unknowns, V− and
U−,±, can be retrieved using Eqs. 6.2.4-6.2.6.

Next, we present a Marchenko double de-reverberation approach as alternative
to solving Eq. 6.2.2 for the target reflection response Rtar. Marchenko double de-
reverberation circumvents the deconvolution of the fields, U−,±, which can become
computationally expensive for large datasets and may not always be stable, e.g.
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due to band-limitation of the fields U−,±. The elastodynamic extension of the
Marchenko double de-reverberation method by Staring et al. [2018] can be written
as,

R(ddr)
tar (x0, x′

0, ω) =
∫

∂D0

(
V+(x′′

0 , x0, ω)
)T U−,+(x′′

0 , x′
0, ω)d2x′′

0 . (6.2.9)

To illustrate the term double de-reverberation, we replace the field U−,+(x′′
0 , x′

0, ω)
by Eq. 6.2.4,

R(ddr)
tar =

(
V+)T RV+ −

(
V+)T V−. (6.2.10)

This expression shows that the back-propagated focusing function, V+, is applied on
the receiver- and on the source-side of the reflection response, R. Marchenko double
de-reverberation removes multiples generated inside the overburden, but does not
attenuate multiples generated between overburden and target. Hence, this approach
can be seen as an approximation of the aforementioned deconvolution. In case of
band-limited fields, the result R(ddr)

tar has to be deconvolved with the wavelet of the
initial estimate χ+ to avoid double band-limitation.

The retrieved target reflection responses, Rtar and R(ddr)
tar , as well as the reflec-

tion response, R, are scaled differently (not only a global scaling difference). There-
fore, it is difficult to analyze the difference between the aforementioned responses.
However, in case of Marchenko double de-reverberation, the multiple predictions can
be represented explicitly. For this purpose, we expand the backprojected focusing
function,

V+ = χ+ + V+
coda, (6.2.11)

and use Eq. 6.2.4 as well as the mute Θ− to substitute the backprojected Green’s
function,

U−,+ = χ− + (1 − Θ−)
[
RV+] . (6.2.12)

We assume χ+ = Iδ(x′′
0 − x′

0) as well as χ− = O (same assumptions as above)
and use Eqs. 6.2.11-6.2.12 to rewrite Eq. 6.2.9 (omitting δ(x′′

0 − x′
0) for notational

convenience),

R(ddr)
tar = I(1 − Θ−) [RI]

+ I(1 − Θ−)
[
RV+

coda

]
+
(
V+

coda

)T (1 − Θ−) [RI]

+
(
V+

coda

)T (1 − Θ−)
[
RV+

coda

]
. (6.2.13)

The first term of this expression is a muted version of the reflection response,
that excludes arrivals prior to the two-way travel time through the overburden.
Hence, the remaining terms describe the multiples predicted by Marchenko double
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de-reverberation. This representation allows for a better analysis of the predicted
multiples. For a direct comparison to the reflection response, R, i.e. not only
in terms of kinematics but also in terms of amplitudes, the scaling of the spatio-
temporally band-limited identity, I, must be taken into account according to Eq.
6.2.13.

6.2.2 Special case: Elastic reflection response recorded in acoustic layer

As mentioned in the introduction, Marchenko-type multiple-elimination methods
require accurate data preprocessing. Using current acquisition and processing tech-
nologies, these requirements are achievable for marine data. However, from a the-
oretical view point the acquisition inside a water layer is problematic, which we
explain in this section.

The back-propagated focusing function V+ is constructed from inverse trans-
missions through the overburden [van der Neut and Wapenaar , 2016; Dukalski and
de Vos, 2017; Elison, 2019; Reinicke, 2020, chapter 4 of this thesis]. Since water
does not support shear waves, the elastic transmission response of the overburden
only contains one non-zero column in P-S space (see matrix organization in Eq.
6.2.1). Consequently, the determinant of the transmission is zero such that its in-
verse is no longer defined. Thus, it is unclear whether the back-propagated focusing
function V+ exists.

In the special case where not only the recording layer, but the entire medium,
is acoustic, Eqs. 6.2.4-6.2.8 reduce to equations for scalar fields. Since acoustic
transmissions are invertible, the back-propagated focusing function V + is defined. In
the acoustic case, we omit the subscripts "P, P ". Further, the acoustic formulation of
Eqs. 6.2.4-6.2.8 only requires a single projector, Θ = Θ+

P,P = Θ−
P,P , that is bounded

by a spatio-temporally band-limited identity and the two-way travel time between
the recording and redatuming levels [for details see Elison, 2019, who refers to Θ
with Φt0 ].

In practice, only the recording layer is acoustic and the measured reflection
response, RP,P , contains elastic effects. Evaluating the acoustic Marchenko method
using the elastic reflection response, RP,P , instead of the acoustic one, R, leads to
erroneous solutions, Ṽ ±, Ũ−,±, R̃tar and R̃

(ddr)
tar . In this notation, scalars without

a tilde on top are associated with fully acoustic media, and scalars with a tilde on
top are associated with elastic media below the recording layer. From here onwards,
we also write the elastic reflection response RP,P with tilde on top and omit the
subscripts, i.e. RP,P is now written as R̃.

6.3 Application to marine data of synthetic Middle East model

In this section, we build a 2D synthetic Middle East model (x-z space) with a water
layer on top to mimic a streamer acquisition. Further, we generate acoustic and
elastic reflection responses, R and R̃, recorded inside the water layer and apply
the back-propagated Marchenko multiple-elimination method to both of them. The
resulting Marchenko solutions as well as the resulting images are compared against
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each other, and against a modeled reference response.

6.3.1 Acoustic and elastic reflection responses of synthetic Middle East
model

We build a synthetic Middle East model with actual P- and S-wave velocities (cP/S)
as well as densities (ρ) from regional log data. Assuming that the Middle Eastern
geology is nearly layered, we copy the log data to several horizontal positions, intro-
duce small variations of layer thicknesses at each location and spline-interpolate the
resulting logs along the horizontal direction. Subsequently, we account for a gentle
regional dip, insert minor faults, riverbeds and small relief-structure reservoirs. The
resulting model is shown in Figs. 6.1a and b where the top layer is water.

In addition, we construct a reference medium (see Fig. 6.1c) to model a reference,
R

(ref)
tar , for the retrieved target reflection response, Rtar. The reference medium is

identical to the true model below the redatuming level ∂Di, but has a smooth
overburden and is acoustic (cs = 0 m s−1 in the entire reference medium). The
smoothness allows us to mimic the multiple-free propagation of the target response,
Rtar, through the overburden. However, the reference response, R

(ref)
tar , does not

correct for overburden-related transmission-losses. Hence, the responses R
(ref)
tar and

Rtar are expected to have identical kinematic events but different amplitudes.
In this controlled experiment, we can model acoustic and elastic reflection re-

sponses1, R(x0, x′
0, t) and R̃(x0, x′

0, t), respectively. Since the recording layer is
water with a transparent surface (absorbing boundary conditions), there is no need
for wavefield separation of the recorded elastic reflection response, which removes
unnecessary inaccuracies from our analysis. Further, we use a vertical dipole source2,
convolved with a 30 Hz Ricker wavelet. In this experiment, we employ 401 collocated
sources and receivers with spatial and temporal sampling rates of ∆x = 12.5 m and
∆t = 4 ms, respectively.

The resulting reflection responses R(x0, x′
0, t) and R̃(x0, x′

0, t) as well as their
difference are shown in Fig. 6.2. The strongest differences are steep events, due to
the lower propagation velocity of S-waves, and amplitude deviations at far-offsets,
due to stronger mode coupling at large angles of incidence. Waves that are evanes-
cent on the boundaries ∂D0 and ∂Di are excluded by the representation theorems,
and therefore, must be removed [Reinicke and Wapenaar , 2019]. This suppression of
evanescent waves can be achieved e.g. by the wavenumber-frequency filtering, which
attenuates the elastic effects, and thereby, reduces the difference between acoustic
and elastic reflection responses significantly (see second row in Fig. 6.2).

This effect becomes clearer by transforming the reflection responses to the wave-

1We used the modeling tool fdelmodc written by Jan Thorbecke. This software is openly
available on https://github.com/JanThorbecke/OpenSource/tree/master/fdelmodc.

2This scaling can be obtained via the fdelmodc settings, src_type=1, src_orient=4,
src_injectionrate=0, combined with a global scaling factor 2

ρ(x′
0) .
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Figure 6.1: Synthetic Middle East model: (a) P- and (b) S-wave velocity models. Dashed
white lines indicate the recording and redatuming levels ∂D0 and ∂Di. The dotted black
rectangle indicates the imaging area. (c) Reference P-wave velocity model with smooth
overburden. The density models are not shown but have the same geometry as the respective
P-wave velocity models.



6.3 Application to marine data of synthetic Middle East model 115

-1 0 1
0

1

x (km)

t
(s
)

R (unfiltered)

-1 0 1

x (km)

R̃ (unfiltered)

-1 0 1

x (km)

R̃�R (unfiltered)
�3

0

3
⇥10�4

0

1

t
(s
)

R (kx-f filtered) R̃ (kx-f filtered) R̃�R (kx-f filtered)
�3

0

3
⇥10�4

R R̃ R̃�R

0 0.5 1 1.5

�5

0

5

⇥10�2

t (s)Unfiltered

R R̃ R̃�R

0 0.5 1 1.5

�5

0

5

⇥10�2

t (s)kx-f filtered

Figure 6.2: Reflection responses of an acoustic medium (column one), an elastic medium
(column two) and their difference (column three). The responses are shown before (row
one) and after (row two) applying a (tapered) wavenumber-frequency (kx-f) filter, defined
by c = 3.50 km s−1 and fmax = 80 Hz. The space-time panels are clipped at 5 % of the
maximum value of the panel in the first column. The color-coded central traces allow for a
better amplitude comparison.
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Figure 6.3: Reflection responses after source wavelet deconvolution. The red dashed line
is defined by the maximum velocity on the boundaries ∂D0 and ∂Di (cp = 3.78 km s−1).
For wavenumber-frequency components that are passed by the kx-f filter (shown by a black
shadow in the bottom panel) the difference between R and R̃ remains small. The panels
are clipped at 50 % of the maximum value of R.

number-frequency (kx-f) domain,

R(kx, z0, x′
0, ω) =

∫ ∞

−∞

∫ ∞

−∞
R(x, z0, x′

0, t) × ei(ωt−kxx)dxdt. (6.3.1)

The highest velocity on the boundaries ∂D0 and ∂Di (cp ≈ 3.8 km s−1) defines the
onset of evanescent waves (defined by dashed red lines in Fig. 6.3). Beyond these
lines, i.e. outside of the cone defined by the dashed red lines, there are still propa-
gating waves associated with conversions to S-waves (P-S-P events). However, these
propagating waves are removed by the wavenumber-frequency filter (indicated by a
black shadow in the bottom panel of Fig. 6.3), which is defined by cp = 3.5 km s−1

and f = ω
2π = 80 Hz. The difference between the acoustic and elastic reflection

responses in Fig. 6.3 reveals that wavenumber-frequency filtering attenuates most
of the elastic effects. The high-cut frequency filter is necessary to avoid aliasing
and could be increased by denser spatial sampling. In addition, source wavelet
deconvolution has already been applied.

6.3.2 Retrieval of back-propagated focusing and Green’s functions

Now, we retrieve the back-propagated focusing and Green’s functions, Ṽ ±, U−,±,
Ṽ ± and Ũ−,±. To this end, we evaluate 20 terms of the scalar version of Eq. 6.2.8
and use Eqs. 6.2.4-6.2.6.

For recordings inside an acoustic layer, the existence of the back-propagated
focusing function Ṽ + is unclear. Nevertheless, Eq. 6.2.8 converges to an elastic
solution, Ṽ +, and the convergence is slightly faster than in the pure acoustic case
(see Fig. 6.4). We speculate that the faster convergence may occur because, due
to conversions to S-waves, P-wave amplitudes tend to be lower for the reflection
response R̃ than for R.
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Figure 6.4: Convergence of the back-propagated Marchenko series using the wavenumber-
frequency filtered reflection data of Fig. 6.2. The Marchenko series in Eq. 6.2.8 is started
with an identity as initial guess and only updates the coda of the back-propagated focusing
function V +

coda. Therefore, we measure the convergence via the L2 norm of the coda update
at each iteration.

Further, the retrieved acoustic (Ṽ ± and U−,±) and elastic (Ṽ ± and Ũ−,±) so-
lutions show a high level of agreement (see Fig. 6.5). Although the solutions Ṽ ±

and Ũ−,±, obtained from the elastic reflection response R̃, contain artifacts, which
are mainly visible as steeper events, they are comparable to the solutions, Ṽ ± and
U−,±, derived from the acoustic reflection response.

Fig. 6.6 shows the wavenumber-frequency spectra of the retrieved fields after
source-wavelet deconvolution. The spectra of the fields derived from acoustic and
elastic reflection responses are nearly identical and contain medium-characteristic
amplitude distributions. The most pronounced difference between solutions derived
from acoustic and elastic reflection data is formed by dot-like peaks that occur in
the solutions Ṽ ± and Ũ−,±. Note that, the back-propagated focusing and Green’s
functions, V +, U−,−, Ṽ + and Ũ−,−, contain two terms, namely a scaled identity
plus a coda (see Eq. 6.2.11). Since the wavenumber-frequency spectra of the scaled
identities are constant, except for spatio-temporal band-limitation, we only show
the spectra of the respective codas to better visualize their amplitude fluctuations.
White arrows point to coinciding peaks and troughs in the wavenumber-frequency
spectra of the back-propagated focusing and Green’s functions, V + and U−,+, that
will be relevant for the multiple-elimination step.

6.3.3 Multiple-elimination results in the data domain

From the back-propagated focusing and Green’s functions, V ±, U−,±, Ṽ ± and Ũ−,±,
we can construct the aforementioned target responses: by Marchenko double de-
reverberation, by least-square (lsqr) deconvolution of Eq. 6.2.2 and by modeling.
Due to the aforementioned scaling differences, we compare the target responses in
terms of events and interference patterns, but not in terms of amplitudes. In case of
Marchenko double de-reverberation, we compute the predicted multiples explicitly
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Figure 6.5: Fields retrieved via the acoustic Marchenko method using the acoustic (first
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the first row are clipped at their respective 99 percentile, the panels in the second row are
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Figure 6.6: Similar as Fig. 6.5 but after transformation to the wavenumber-frequency do-
main and source-wavelet deconvolution. A scaled and spatio-temporally band-limited iden-
tity was subtracted from the back-propagated focusing and Green’s functions, V +, U−,−,
Ṽ + and Ũ−,−, to better visualize their amplitude fluctuations. The dashed red lines are
associated with the same velocity as in Fig. 6.3 (cp = 3.78 km s−1) to simplify the compar-
ison of wavenumber-frequency spectra across figures. The white arrows point to maxima
and minima of the back-propagated focusing and Green’s functions that, as will be shown
later, are combined by Marchenko double de-reverberation (see Eq. 6.2.9) to approximately
reconstruct the wavenumber-frequency spectrum of the target reflection response R

(ref)
tar (see

Fig. 6.9).

according to Eq. 6.2.13, which allows us to analyze those multiples that are only
overburden-related. Further, we (de-)convolve the different target responses with
the source-wavelet to ensure that the compared responses underly the same band-
limitation.

Modeled target reflection response R
(ref)
tar

First, we compare a muted version of the reflection response, (1 − Θ)R, against the
reference target response, R

(ref)
tar . Note that, the mute, (1 − Θ), removes all arrivals

prior to the two-way travel time through the overburden.
The time domain panels in Figs. 6.7 and 6.8 show that the target response,

R
(ref)
tar , is nearly zero after about t = 1.3 s. Hence, after t = 1.3 s, almost all

events of the reflection response, (1 − Θ)R, are multiples. However, there are also
earlier multiples, indicated by white arrows in Fig. 6.7. The observed multiples
are not dominated by individual events but appear as a continuous train of events,
turning them into a more complicated interference pattern. This observation is
reaffirmed by the wavenumber-frequency spectra in Fig. 6.9: if the multiples were
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Figure 6.7: Target reflection responses obtained by muting data, Marchenko double de-
reverberation, deconvolution (via lsqr) and modeling in a reference medium. The multiples
predicted by Marchenko double de-reverberation are not dominated by individual events but
appear as a complicated interference pattern. The difference between the target reflection
responses obtained from the acoustic and elastic reflection responses is dominated by steeper
events associated with lower propagation velocities, i.e. by waves that convert to S-waves.
The dashed white lines indicate the maximum offset that will be used for migration fur-
ther onwards. The panels in the top row are clipped at their respective 99 percentile. The
elastic responses are clipped at the same value as the respective acoustic responses. The
color-coded lines label central traces that are shown in Fig. 6.8.
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Figure 6.8: Central traces of the target reflection responses shown in Fig. 6.7. The traces
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associated with the predicted multiples are normalized by the same factor as the respective
target responses obtained via Marchenko double de-reverberation, i.e. the normalization
factors for orange and red traces are identical. The small phase shift between the reference
responses , R

(ref)
tar , and the retrieved target responses, Rtar, R̃tar, R

(ddr)
tar and R̃

(ddr)
tar , can

be due to either the smoothening of the overburden, or short-period multiples or both.

individual events they would generate a rather white contribution to the spectrum.
Nevertheless, the multiples create sharp notches in the spectrum of the reflection
response (see white arrows).

Further, the wavenumber-frequency cone of the responses in Fig. 6.9 is signif-
icantly narrower than the cone of the recorded data in Fig. 6.3 (dashed red lines
serve as reference). This is expected because the target responses contain wavefield
propagation through the smooth overburden but only contain reflections from the
target below ∂Di. Therefore, the target reflection responses are associated with a
smaller (effective) aperture than the recorded data.

Marchenko double de-reverberation result R
(ddr)
tar

Second, we analyze the effect of Marchenko double de-reverberation. Compared to
the reflection response, (1−Θ)R, the target response obtained by Marchenko double
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Figure 6.9: Similar as Fig. 6.7 but after transformation to the wavenumber-frequency do-
main and source-wavelet deconvolution. Comparing muted reflection responses, (1 − Θ)R
and (1 − Θ)R̃, against the reference target response, R

(ref)
tar , shows that interferences with

overburden-related multiples cause minima in the wavenumber-frequency spectra (see white
arrows). These minima are filled by Marchenko double de-reverberation (see R

(ddr)
tar and

R̃
(ddr)
tar as well as white arrows in Fig. 6.6) and by deconvolution of U−,± and Ũ−,± (see

Rtar and R̃tar). The wavenumber-frequency spectra of the predicted multiples also contain
characteristic peaks and troughs that suggest that, in the space-time domain, the multiples
do not appear as individual events but rather as more complicated interference patterns. The
dashed red lines are associated with the same velocity as in Fig. 6.3 (cp = 3.78 km s−1). The
panels in the top row are clipped at their respective 99.9 percentile. The elastic responses
are clipped at the same value as the respective acoustic responses.

de-reverberation, R
(ddr)
tar , removes a significant amount of multiples: at early times

(and in terms of kinematics) the Marchenko double de-reverberation result near-
to-perfectly reconstructs the reference target response, R

(ref)
tar , revealing previously

hidden primaries (see white arrows in Fig. 6.7 and see Fig. 6.8). At later times,
many multiples persist because Marchenko double de-reverberation does not remove
multiples that are generated between the overburden and the target. The same effect
is visible in Fig. 6.8: at earlier times the multiple prediction approximately tracks
parts of the reflection response, (1 − Θ)R, but at later times the misfit between
predicted multiples and the reflection response increases.

Moreover, we observe a small phase shift between the reference response, R
(ref)
tar ,

and the Marchenko double de-reverberation response, R
(ddr)
tar . This phase shift could

be due to the smoothening of the overburden (see Fig. 6.1c), or incorrectly handled
short-period multiples, or both.

Next, we compare the wavenumber-frequency spectra of the reflection response,
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(1 − Θ)R, the back-propagated focusing function, V +
coda, and the Marchenko double

de-reverberation result, R
(ddr)
tar . The spectra illustrate that, via the back-propagated

focusing function, Marchenko double de-reverberation partially fills the notches cre-
ated by multiples (see Eq. 6.2.9 and white arrows in Figs. 6.6 and 6.9). Further,
frequency components above f = 60 Hz are not reconstructed, which could be due to
the tapered cut-off frequency at f = 80 Hz, the used source wavelet (30 Hz Ricker)
or short-period multiples.

Target reflection response Rtar

Third, we inspect the target response, Rtar, retrieved by deconvolution of Eq. 6.2.2.
This approach closely reconstructs the reference target response, R

(ref)
tar , at both

early and late times (see Figs. 6.7 and 6.8). Compared to Marchenko double de-
reverberation, this improvement in predicting multiples at later times is expected
because now multiples generated between the overburden and the target are also
taken into account. Remaining multiple artifacts may be due to short-period multi-
ples, violations of the assumption, χ− = 0, as well as limited aperture and recording
duration.

Moreover, we observe an enhancement in the retrieved wavenumber-frequency
spectrum (see Fig. 6.9): e.g. the deconvolution result near-to-completely fills the
notch generated by multiples (see white arrow at f = 20 Hz).

Here, we choose to evaluate the deconvolution with a least-squares (lsqr) solver.
This approach only reconstructs parts of the target reflection response that can be
derived from the, possibly imperfect, fields U−,±. Therefore, contrary to a direct
deconvolution, there is no need for stabilization, e.g. in case of band-limited fields.

The residual, i.e. the unexplained part of Eq. 6.2.2 is shown in Fig. 6.10. The
coherency of the residual is rather weak and the wavenumber-frequency spectrum
of the residual is dominated by frequencies above f = 60 Hz, which are not recon-
structed in the target reflection responses, R

(ddr)
tar and Rtar. To further analyze the

performance of the least-squares deconvolution, we measure its convergence by the
ratio between the L2-norm of the residual to the L2-norm of the left-hand side of Eq.
6.2.2. Fig. 6.10 shows that within ten iterations the least-squares solver converges
to 2 % to 3 %.

Further, we evaluate the least-squares deconvolution in the time domain [Paige
and Saunders, 1982a,b]. This is advantageous because, firstly, the unexplained
data can be analyzed via the residual, and secondly, all frequencies are handled
simultaneously.

Elastic target reflection responses (1 − Θ)R̃, R̃
(ddr)
tar and R̃tar

Fourth, we assess the difference of deriving the above discussed target reflection
responses from the acoustic or the elastic reflection response. Although we focus
on the target responses obtained via least-squares deconvolution, Rtar and R̃tar,
analogous observations can be made for the other target responses.

In the space-time domain (see Fig. 6.7), and for short-offsets, the target response
retrieved from the elastic reflection response is nearly identical to the one retrieved
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Figure 6.10: Residuals of the least-squares deconvolution of Eq. 6.2.2 using the fields, U−,±

and Ũ−,±, shown in Figs. 6.5 and 6.6. In the space-time domain panels, the residuals
are convolved with the source wavelet and clipped at the respective 99 percentile. In the
wavenumber-frequency domain panels, the residuals are not convolved with source wavelet
and clipped at the respective 99.9 percentile. Again, the dashed red lines are associated with
the same velocity as in Fig. 6.3 (cp = 3.78 km s−1). The bottom-right panel illustrates the
convergence of the least-squares deconvolution as a function of number of iterations.

from the acoustic reflection response. Their difference is dominated by steeper
events that almost vanish at zero-offset. Since these events are associated with
slower apparent velocities and tend to be weak for small angles of incidence, we
interpret that they are associated with conversions to S-waves.

An analogous observation is made in the wavenumber-frequency domain (see Fig.
6.9), where the difference vanishes close to kx = 0 m−1. Moreover, the spectrum of
the difference is characterized by incoherent dot-like peaks. This suggests that the
difference has low coherency in the space-time domain.

We remark that, due to a practical challenge, there is no elastic version of the
modeled reference, R

(ref)
tar . Modeling this response requires a smooth overburden,

i.e. smooth P- and S-wave velocity as well as density model. However, a smooth
S-wave velocity model, that features a gentle decrease to cs = 0 km s−1 inside the
water layer, causes instabilities in finite difference modeling because of too small
velocities. In contrast, the special case of cs = 0 km s−1 can be handled because
terms containing the S-wave velocity vanish.
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Figure 6.11: Images obtained from the target reflection responses in Fig. 6.7. The images
in the top row are clipped at their respective 99 percentile. The elastic responses are clipped
at the same value as the respective acoustic responses. A close-up of cp-model shows the
imaging area. The images are computed via the PSKDM algorithm.

6.3.4 Multiple-elimination results in the image domain

Now, the target reflection responses shown in Fig. 6.7 are migrated to the image
domain (see Fig. 6.11). We consider the imaging area indicated by the black
rectangle in Fig. 6.1a, which is shown as a close-up in Fig. 6.11. Here, we use
a pre-stack Kirchhoff depth migration (PSKDM) algorithm [e.g. Schneider , 1978],
combined with a smooth velocity model. Further, a maximum offset of ±1.6 km is
considered for the migration (see dashed white lines in Fig. 6.7).

Subsequently, we compare the resulting images. The images derived from the
reference target response, R

(ref)
tar , and from the reflection response, (1−Θ)R, clearly

demonstrate that the latter one suffers from artifacts caused by overburden-related
multiples (see first and last column in Fig. 6.11). Since the images are dominated by
finely-layered nearly-horizontal structures, a visual analysis is challenging. White
arrows highlight some of the dominant multiple-related artifacts. Marchenko dou-
ble de-reverberation removes these artifacts, and thereby, reveals previously hidden
structures (see second column in Fig. 6.11).

To visualize the multiple-borne artifacts, we migrate the explicitly computed
multiples predicted by Marchenko double de-reverberation (see third column in Fig.
6.11). This figure shows the complexity of the multiple-borne artifacts and highlights
that these multiples are not easily recognizable in the reflection response, (1 − Θ)R.

The images derived from the target response obtained by Marchenko double de-
reverberation, R

(ddr)
tar , and by least-squares deconvolution, Rtar, are nearly identical

(see second and fourth column in Fig. 6.11). Nevertheless, the latter one has a
slightly higher resolution (see white arrows in fourth column in Fig. 6.11), bringing
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Figure 6.12: Vertical-wavenumber spectra of the images in Fig. 6.11, computed according
to Eqs. 6.3.2 and 6.3.3. The vertical dashed lines highlight the main difference between
the kz-spectra in the top and bottom row, associated with an acoustic and elastic reflection
response, respectively.

it a bit closer to the reference image (see last column in Fig. 6.11).
The final images are not very sensitive to replacing the acoustic reflection re-

sponse, R, by the elastic one, R̃ (compare first and second row in Fig. 6.11). Using
the elastic reflection response leads to a minor reduction of continuity and resolu-
tion. Due to the difficulty to point to a different feature in the images, and due to
the dominantly horizontal structures, we opt for an alternative analysis: we apply
a 2D spatial Fourier transformation to the images I(x, z),

I(kx, kz) =
∫ ∞

−∞

∫ ∞

−∞
I(x, z)e−i(kxx+kzz)dxdz, (6.3.2)

take the absolute value and sum the result for all horizontal wavenumbers,∑
kx

|I(kx, kz)|. (6.3.3)

A comparison of the resulting kz-spectra (see Fig. 6.12) shows that the images
derived from acoustic and elastic reflection data mostly differ around kz = 0.16 m−1

(indicated by vertical dashed lines). This imperfect reconstruction of the vertical-
wavenumbers around kz = 0.16 m−1 may be the reason why the images derived
the elastic reflection response are not as sharp as those derived from the acoustic
reflection response.

Further, the images derived from the target reflection responses, R
(ddr)
tar and

Rtar, have smoother kz-spectra than the image derived from the reflection response,
(1−Θ)R. The smoothening of the kz-spectrum is another manifestation of increased
image resolution due to multiple elimination (in x-z space).
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6.4 Discussion

Our analysis assessed the accuracy of applying the acoustic Marchenko multiple-
elimination method to elastic data. This synthetic case study is essential to support
the reliability of respective field data examples.

We built a synthetic Middle East model, which allowed us to include and exclude
elastic effects. Next, we used the acoustic Marchenko method to remove multiples
from the acoustic and elastic reflection responses, which were compared against
each other and against a reference. For far-offsets, the retrieved target reflection
responses are sensitive to the elastic effects. However, for near-offsets, which are
the main contributors to migrated images, the target reflection responses retrieved
from acoustic and elastic data are nearly identical. We emphasize that these results
are model-dependent, and therefore, support field data examples of the acoustic
Marchenko method, which are associated with comparable geologies such as off-
shore Middle East. Since mode conversions between P- and S-waves are weaker
for smaller angles of incidence, nearly horizontally-layered media formed a very
promising candidate for our case study. For significantly different, e.g. Brazil-like,
geological settings the performance of the acoustic Marchenko method (or other
acoustic multiple-elimination methods) may be worse but a respective case study is
needed to draw any conclusions.

We defined a slightly peculiar target reflection response, which is free of over-
burden-generated multiples but contains direct propagations through the overbur-
den. Further, this response is corrected for overburden-related transmission losses.
We use this response because it can be easily obtained from the retrieved back-
propagated Green’s functions. Although the target response may appear unfamiliar,
it can be migrated as any other reflection response. Moreover, since overburden-
related transmission losses are absent, a reference response can be easily constructed
to analyze kinematics but not amplitudes. We also inspected a Marchenko double
de-reverberation strategy that can be seen as an approximation of the target re-
flection response. This strategy replaces a multi-dimensional deconvolution by a
convolution of different fields, which can reduce computational costs and increase
stability. This approach is an approximation because it ignores multiples generated
between the overburden and the target, which tend to arrive at later times. Hence,
if the imaging area does not expand over too large depth intervals, Marchenko dou-
ble de-reverberation can be a cheaper and still very accurate alternative to the
deconvolution approach.

The data requirements of the presented method are high, but feasible. As for
other Marchenko applications, accurate data preprocessing was crucial, yet, real-
izable for marine data. To the authors, the computational costs seem relatively
low: for reflection responses associated with 401 sources, 401 receiver and 1001
time samples the total computational time on our local university cluster is below
half an hour, without having explored computational speed-up possibilities. During
the aforementioned run time, all operations from raw data to the final images are
performed for both, the acoustic and elastic reflection responses.
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6.5 Conclusions

We conclude that the acoustic Marchenko method can suffice to handle multiples in
marine data recorded in the Middle East. This insight is important for applications
because, despite recording data in an acoustic medium, there are imprints of elastic
scattering effects. Our conclusion extends to comparable, i.e. nearly horizontally-
layered, media. The data requirements can be fulfilled by current acquisition and
processing technologies. In addition, the presented results are in agreement with
field data examples from a parallel project by Staring et al. Note that, the field data
was recorded close to the location of the well-logs used for our synthetic model. Thus,
the similarities between independently obtained results emphasize the relevance and
reliability of the presented work.
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6A 1.5D Elastic multiple-elimination with an incomplete reflec-
tion response

We provide a brief example of elastic Marchenko multiple-elimination without all
components of the reflection response. Only a minimum of the underlying theory is
shown in this chapter but details can be found in Wapenaar [2014] and in chapter
4 of this thesis [Reinicke, 2020].

A simple, yet non-trivial, example is formed by horizontally-layered elastic media
in x-z space. Here, elastodynamic wavefields, P(x, x′, t), reduce to 2 × 2 matrices
(see Eq. 6.2.1) and can be described independently per horizontal-slowness sx. To
this end, we transform wavefields, P(x, x′, t) to the horizontal-slowness intercept-
time domain,

P(sx, z, x′, τ) =
∫ ∞

−∞
P(x, z, x′, τ + sxx)dx. (6A.1)

Similar Eq. 6.2.8 the focusing function F+
1 is retrieved via the Marchenko

method,

F̄+
1 =

∞∑
k=0

Ξk, with, Ξk = Θ+ [R†Θ− [RΞk−1]
]

, (6A.2)

using Ξ0 = −χ+. In contrast to V+ in Eq. 6.2.8, the focusing function F+
1 is not

back-propagated from the redatuming level to the acquisition surface. For this rea-
son the initial estimate χ+ is no longer an identity but (in simple cases) consists of
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all forward-scattered waves propagating from the redatuming level ∂Di to the acqui-
sition surface ∂D0. Further, the functions Θ± are temporal mutes, the superscript
"†" denotes a transpose combined with a time-reversal and the bar distinguishes the
retrieved from the true focusing functions F+

1 .
Now we model the reflection response R of the layered model described by

Tab. 4C.1 for a range of horizontal-slownesses and the recording depth z0 =
0 km. Note that, we parameterize the medium by P- and S-wave velocities, cp

and cs respectively, as well as density ρ. We choose the redatuming level at
zi = 1.9 km and retrieve the focusing function according to Eq. 6A.2 (see first
column in Fig. 6.13). The result is correct except for horizontal-slownesses, |sx| ≥
2.54 × 10−4 s m−1, which violate the monotonicity, i.e. separability, condition of the
Marchenko method.

In practice, components of the reflection response associated with S-wave sources,
Rps and Rss, are often absent. The Rps component may be reconstructed via source-
receiver reciprocity. However, the Rss component will remain missing, which leads
to an erroneous focusing function (see second column in Fig. 6.13), and therefore,
to artifacts in the multiple-elimination result. Similar errors are observed when
further components of the reflection response are ignored, i.e. when only the Rpp

component is used (see third column in Fig. 6.13).
Finally, we evaluate an acoustic, i.e. scalar, version of Eq. 6A.2 using the Rpp

component of the elastic reflection response. In contrast to the previous experi-
ment, the initial estimate χ+ and the projectors Θ± are now defined according to
the acoustic Marchenko method. Thus, the initial estimate χ+ only contains a time-
reversed direct P-wave propagating from the redatuming to the acquisition surface,
rather than all forward-scattered waves. Moreover, the definition of the projectors
Θ± is slightly different [defined as in Reinicke, 2020, chapter 4 of this thesis,
but ignoring the shear-wave velocity]. The retrieved focusing function (see fourth
column in Fig. 6.13) still has incorrect amplitudes, except for sx = 0 s m−1 where
elastic modes are decoupled. Nevertheless, the retrieved focusing function contains
less events because of the simplified initial estimate χ+. In this case, the retrieved
focusing function only contains the events associated with an acoustic medium. Fur-
ther, the violation of the (elastic) monotonicity condition for sx ≥ 2.54 × 10−4 s m−1

does not cause additional artifacts.
In all of these experiments, the artifacts gradually disappear with decreasing

angles of incidence, sx → 0 s m−1, which is expected because of the nature of elastic
scattering. The last experiment suggests that the acoustic Marchenko method,
using the Rpp component of an elastic reflection response, approximately retrieves
the acoustic focusing function. Due to the amplitude errors, the solution will be
unreliable for AVO analysis but may be sufficiently accurate for structural imaging.
These observations do not generalize to all elastic media but are expected to hold
for nearly horizontally-layered media, alike the above-presented synthetic example.
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z (km) cp (m s−1) cs (m s−1) ρ (kg m−3)
−∞ - 0.5 1994 898 4200
0.5 - 1.7 1898 1099 1100
1.7 - 2.5 2500 1387 6000
2.5 - ∞ 2695 1611 3500

Table 4C.1: Model of layered medium [identical to the model in Reinicke, 2020, chapter 4
of this thesis, Fig. 2a].

6B Wavefield normalization

In this appendix, we discuss the effect of the wavefield normalization on the back-
propagated Marchenko method. In the main part of the paper, we use a normal-
ization defined by Wapenaar and Berkhout [1989], which is often referred to as
pressure-normalization. We demonstrate that equations associated with the back-
propagated Marchenko method equally hold for flux-normalized fields, i.e. without
any modification.

The full one-way Green’s matrix contains all combinations of up- (−) and down-
going (+) source- and receiver components,

Gfl,p(x, x′, ω) =

(
G+,+

fl,p G+,−
fl,p

G−,+
fl,p G−,−

fl,p

)
(x, x′, ω). (6B.1)

We use subscripts p and fl to distinguish between pressure and flux-normalized
fields, respectively. The normalization is defined by the (de-)composition operators
L±1

fl,p(x, ω), that decompose the two-way Green’s matrix, G(x, x′, ω) [Ursin, 1983;
De Hoop, 1992; Wapenaar and Berkhout, 1989],

Gfl,p(x, x′, ω) = L−1
fl,p(x, ω)G(x, x′, ω)Lfl,p(x′, ω). (6B.2)

Hence, the one-way Green’s matrices associated with pressure- and flux-normalization
are mutually related via successive wavefield composition and decomposition,

Gp(x, x′, ω) = L−1
p (x, ω)Lfl(x, ω)Gfl(x, x′, ω) × L−1

fl (x′, ω)Lp(x′, ω). (6B.3)

It can be shown that the successive composition and decomposition operators,
L−1

p (x, ω)Lfl(x, ω), reduce to a diagonal operator,

L−1
p (x, ω)Lfl(x, ω) =

(
D3 O
O D3

)
(x, ω) (6B.4)

where D3 is a 3×3 diagonal operator matrix [Ursin, 1983; Wapenaar and Berkhout,
1989]. The structure of the diagonal operator allows us to scale the submatrices of
the one-way Green’s matrix, Gfl,p(x, x′, ω), independently,
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G±,±
p (x, x′, ω) = D3(x, ω)G±,±

fl (x, x′, ω)D−1
3 (x′, ω). (6B.5)

The diagonal operator D3 scales, but does not couple, the components of the
Green’s matrix. Further onwards, we will demonstrate that this insight justifies that
the back-propagated Marchenko method can be evaluated with flux- and pressure-
normalized reflection data without any modification.

Firstly, we consider the flux-normalized representation theorems [see Eqs. 32
and 33 in Wapenaar , 2014],

G−,+
fl (x0, xi, ω) + F−

1,fl(x0, xi, ω) =
∫

∂D0

Rfl(x0, x′′
0 , ω)F+

1,fl(x
′′
0 , xi, ω)d2x′′

0 ,

(6B.6)

and,(
G−,−

fl

)∗
(x0, xi, ω) + F+

1,fl(x0, xi, ω) =
∫

∂D0

R∗
fl(x0, x′′

0 , ω)F−
1,fl(x

′′
0 , xi, ω)d2x′′

0 ,

(6B.7)

where F±
1,fl and G−,±

fl are the focusing and Green’s functions, respectively. Upon
multiplying Eqs. 6B.6 and 6B.7 by an unknown operator Bfl(xi, x′

0, ω) from the
right, and integrating the result over the redatuming surface ∂Di,∫

∂Di

{·} Bfl(xi, x′
0, ω) d2xi, (6B.8)

we obtain the back-propagated representation theorems (in detail-hiding notation),

G−,+
fl Bfl + F−

1,flBfl = RflF+
1,flBfl, (6B.9)

and, (
G−,−

fl

)∗
Bfl + F+

1,flBfl = R∗
flF−

1,flBfl. (6B.10)

Note that, the operator Bfl back-propagates the focusing and Green’s functions,
V±

fl = F±
1,flBfl, U−,+

fl = G−,+
fl Bfl and U−,−

fl = G−,−
fl B∗

fl.
Secondly, we exploit the aforementioned insight (see Eq. 6B.5). Upon mul-

tiplying Eqs. 6B.9 and 6B.10 by D3 from the right and by D−1
3 from the left,

and by inserting the identity D3D−1
3 between matrix products, we obtain pressure-

normalized fields,

G−,+
p Bp + F−

1,pBp = RpF+
1,pBp, (6B.11)

and, (
G−,−

p

)∗ Bp + F+
1,pBp = R∗

pF−
1,pBp. (6B.12)

Since the matrix D3 only scales, but does not couple, the components of the one-way
fields, the temporal separations applied by the Marchenko method do not need to
be modified. Hence, using pressure- or flux-normalized reflection data merely affects
the normalization of the retrieved fields.



7
Conclusions and recommendations

This chapter highlights the main conclusions of this thesis. Furthermore, recom-
mendations and an outlook on future research are presented.

7.1 Conclusions

Marchenko-type methods pave the way for a change away from event-based and to-
wards wavefield-based multiple-elimination strategies. Instead of combining triplets
of primaries, i.e. individual events, the Marchenko method solves an inverse problem
for an inverse transmission response. This strategy is advantageous because it pre-
serves the correct amplitudes such that there is no need to adaptively subtract the
predicted multiples. Amplitude fidelity is particularly important in practice when
internal multiples cannot be identified as individual events but generate complicated
interference patterns (chapter 6). In the following, we summarize the three main
conclusions of this thesis.

Firstly, the formal generalization of the Marchenko method to the elastodynamic
case is rather simple, but solving the generalized inverse problem is difficult. For
example, we could formulate the single-sided homogeneous Green’s function rep-
resentation for elastodynamic waves (chapter 2). Another example is the freedom
to modify the aforementioned inverse problem, which also generalizes beyond the
acoustic case. The latter freedom was exploited by the elastodynamic extension
of the plane-wave Marchenko method (chapter 3) and the backpropagation scheme
(chapter 4).

In all of the aforementioned examples, solving the respective inverse problem
relies on separability conditions and the availability of an initial estimate. The sep-
arability conditions are a weaker form of the monotonicity assumptions required by
event-based multiple elimination methods. The advantage over event-based strate-
gies is due to treating the overburden as one complex multiple generator rather than
a stack of layers. Moreover, the original elastodynamic formulation of the Marchenko
method requires an estimate of a forward-scattered transmission response as initial
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estimate. The backpropagated scheme (derived in chapter 4) replaces this, usually
unknown, initial estimate by a trivial one.

Secondly, complete overburden-removal requires additional constraints. We demon-
strated that the backpropagated scheme partially removes overburden-related inter-
nal multiples (chapter 4). However, forward-scattered waves through the overbur-
den as well as fast multiples persist. Hence, the backpropagated Marchenko scheme
postpones the problem of estimating forward-scattered waves and fast multiples. To
overcome this challenge, further constraints are needed.

We showed that the desired focusing function as a matrix possesses, a so-far
unexploited, minimum-phase property (up to a compensating temporal shift). This
mathematical attribute is generated by the backpropagated focusing function, which
is in agreement with (acoustic) observations by Elison [2019] and suggests that the
backpropagated focusing function plays a fundamental role for Marchenko multiple-
elimination methods. In chapter 5, we presented initial attempts of exploiting this
property to remove the overburden-related wavefield interactions that are not ad-
dressed by the Marchenko method. In particular, we investigated how to retrieve
the desired focusing function from its normal product using a minimum-phase con-
straint. Note that a better understanding of minimum-phase properties would be
beneficial for a wide range of signal processing techniques.

Thirdly, we proposed to apply the acoustic Marchenko method to elastodynamic
reflection data. Even if the aforementioned minimum-phase constraint can be used,
the monotonicity condition remains (see chapter 4). In the presence of finely lam-
inated layers with high velocity contrasts, which are characteristic for the Middle
Eastern geology (e.g. see synthetic model in chapter 6), the (elastodynamic) mono-
tonicity requirements are easily violated. Nevertheless, by applying the acoustic
Marchenko method, we could remove a significant amount of multiple-related arti-
facts from the imaging result. In this controlled experiment, we could confirm that
the retrieved structural image is nearly insensitive to unexplained elastic effects.
Since the synthetic model is representative for geological settings in the Middle
East, this example underlines the economic relevance of the Marchenko multiple-
elimination strategy.

7.2 Recommendations and outlook

In this section, we summarize recommendations and ideas for future research. Firstly,
we discuss theoretical aspects, which are mainly associated with normal product fac-
torization. Secondly, we outline research questions that are relevant for Marchenko
multiple-elimination in practice.

7.2.1 Considerations for fundamental research

Geophysicists are familiar with reflection and transmission responses. The Marchenko
method can be used to retrieve the usually unknown transmissions from reflections.
However, this strategy solves an underdetermined inverse problem, such that the
retrieved solutions are often not the desired ones. To further constrain this prob-
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lem, one should consider the minimum-phase property of the desired solution, i.e.
the focusing function which is an inverse transmission. For this purpose, we started
to analyze the factorization of normal products with a minimum-phase constraint.
The latter investigation leads to a wide range of relevant research questions.

Firstly, in chapter 5, we presented an example of approximately retrieving the
focusing function (including forward-scattering) from its normal product. It should
be investigated whether this approximation is sufficiently accurate to proceed with
the redatuming strategy proposed in chapter 4. If this approximation is indeed
sufficiently accurate, the elastodynamic Marchenko method could be brought a step
closer towards applications. Note that the presented examples of normal product
factorization are based on experimental observations. Therefore, further theoretical
research, or at least further numerical experiments, are needed to evaluate whether
this approach generalizes to other media (different medium parameters).

Secondly, chapter 5 revealed that the Wilson factorization method for minimum-
phase matrices (associated with the backpropagated focusing function) utilizes the
same mute as the backpropagated Marchenko method in chapter 4. This parallel
combined with the fact that the backpropagated focusing function is a minimum-
phase object suggest that the Marchenko method can be seen as a minimum-phase
reconstruction method. Hence, further insights may be gained from the field of
control-theory, which has been discussing minimum-phase matrix reconstruction for
several decades.

Thirdly, our investigation of normal product factorization is limited to full-
bandwidth wavefields. For applications, this analysis must be generalized to account
for band-limitation. Note that band-limited normal product factorization is crucial
to exploit minimum-phase properties in practice, not only in the elastodynamic
case, but also in the 2D acoustic case. Besides, initial numerical experiments (not
presented here) indicate that further generalizations, e.g. to dissipative media, may
be possible. The latter approach has been tested for scalars. In these experiments,
we factorized the crosscorrelation, as opposed to the autocorrelation, of two distinct
minimum-phase functions.

7.2.2 Practical considerations

In this thesis, we presented several numerical examples. When conducting these
experiments, we made several observations that are beyond the scope of this thesis
but should be investigated further in the future.

Firstly, correct scaling of the reflection operator is essential for the Marchenko
method [also see Brackenhoff , 2016]. During the case study in chapter 6, we per-
formed a series of quality checks of the amplitude scaling. We found an analysis of
the water-bottom reflection particularly useful to easily recognize incorrectly scaled
reflection data. For this purpose, a zero-incidence component of the reflection data
is determined by stacking common-shot gathers along the receiver direction (posi-
tive and negative offsets are needed). The resulting water-bottom reflection should
approximately agree with the reflection coefficient derived from impedances.

Moreover, we recommend to investigate whether accurate, automated and fre-
quency-dependent scaling algorithms can be designed. In the presence of multi-
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component data such as ocean-bottom systems, automated scaling methods would
be extremely valuable and bring the Marchenko method closer to the end-users.

Secondly, the synthetic model in chapter 6 offers the opportunity to investi-
gate how well short-period multiples can be handled. Elison [2019] presents a
Marchenko strategy that accounts for short-period multiples under the assumption
of a horizontally-layered acoustic overburden. Using the nearly horizontally-layered
Middle East model, the robustness of the scheme by Elison [2019] can be analyzed.
It can be evaluated how well the short-period multiple scheme performs in the pres-
ence of small lateral medium variations, and how well the scheme handles elastic
effects.

Finally, synthetic experiments with the Middle East model could be made even
more realistic. For example, one could account for noise, imperfect sampling etc.
Such experiments help to evaluate the benefit that can be expected from applications
to field data from the Middle East, a region where the handling of internal multiples
can be a game changer.



A
An acoustic imaging method for
layered non-reciprocal media

Abstract Given the increasing interest for non-reciprocal materials, we propose
a novel acoustic imaging method for layered non-reciprocal media. The method
we propose is a modification of the Marchenko imaging method, which handles
multiple scattering between the layer interfaces in a data-driven way. We start by
reviewing the basic equations for wave propagation in a non-reciprocal medium.
Next, we discuss Green’s functions, focusing functions, and their mutual relations,
for a non-reciprocal horizontally layered medium. These relations form the basis
for deriving the modified Marchenko method, which retrieves the wave field inside
the non-reciprocal medium from reflection measurements at the boundary of the
medium. With a numerical example we show that the proposed method is capable
of imaging the layer interfaces at their correct positions, without artifacts caused
by multiple scattering.

Published as: Wapenaar, K., and Reinicke, C. (2019), An acoustic imaging method for layered
non-reciprocal media, EPL (Europhysics Letters), 125 (3), 34003, https://doi.org/10.1209/0295-
5075/125/34003.
Note that minor changes have been introduced to make the text consistent with the other chapters.



138 An acoustic imaging method for layered non-reciprocal media

L

t
t1

t2

t3

0

x

Figure A.1: A modulated 1D phononic crystal [after Nassar et al., 2017a]. An observer at a
fixed spatial position, indicated by the yellow dots, experiences a time-dependent medium,
whereas an observer moving along with the modulating wave, indicated by the red dots,
experiences a time-independent medium.

1.1 Introduction

Currently there is an increasing interest for elastic wave propagation in non-reciprocal
materials [Willis, 2012; Norris et al., 2012; Trainiti and Ruzzene, 2016; Nassar et al.,
2017a; Attarzadeh and Nouh, 2018]. We propose a novel method that uses the single-
sided reflection response of a layered non-reciprocal medium to form an image of
its interior. Imaging of layered media is impeded by multiple scattering between
the layer interfaces. Recent work, building on the Marchenko equation [Marchenko,
1955], has led to imaging methods that account for multiple scattering in 2D and 3D
inhomogeneous media [Broggini and Snieder , 2012; Wapenaar et al., 2013; van der
Neut and Wapenaar , 2016; Ravasi et al., 2016]. Here we modify Marchenko imaging
for non-reciprocal media. We restrict ourselves to horizontally layered media, but
the proposed method can be generalized to 2D and 3D inhomogeneous media in a
similar way as has been done for reciprocal media in the aforementioned references.

1.2 Wave equation for a non-reciprocal medium

For simplicity, in this paper we approximate elastic wave propagation by an acous-
tic wave equation. Hence, we only consider compressional waves and ignore the
conversion from compressional waves to shear waves and vice versa. This approxi-
mation is often used in reflection imaging methods and is acceptable as long as the
propagation angles are moderate.

We review the basics of non-reciprocal acoustic wave propagation. For a more
thorough discussion we refer to the citations given in the introduction. An exam-
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ple of a non-reciprocal material is a phononic crystal of which the parameters are
modulated in a wave-like fashion [Nassar et al., 2017a]. Figure A.1 shows a mod-
ulated 1D phononic crystal at a number of time instances. The different colors
represent different values of a particular medium parameter, for example the com-
pressibility κ. This parameter varies as a function of space and time, according to
κ(x, t) = κ(x−cmt), where cm is the modulation speed. The modulation wavelength
is L. We define a moving coordinate x′ = x − cmt. The parameter κ in the moving
coordinate system, κ(x′), is a function of space only. The same holds for the mass
density ρ(x′). Acoustic wave propagation in a modulated material is analyzed in a
moving coordinate system, hence, in a time-independent medium. In this paper we
assume the modulation speed is smaller than the lowest acoustic wave propagation
velocity. Moreover, for the acoustic field we consider low frequencies, so that the
wavelength of the acoustic wave is much larger than the modulation wavelength L.
Using homogenization theory, the small-scale parameters of the modulated material
can be replaced by effective medium parameters. The theory for 3D elastic wave
propagation in modulated materials, including the homogenization procedure, is ex-
tensively discussed by Nassar et al. [2017a]. Here we present the main equations
(some details are given in the supplementary material of the published paper). We
consider a coordinate system x = (x1, x2, x3) that moves along with the modulating
wave (for notational convenience we dropped the primes). The x3-axis is pointing
downward. In this moving coordinate system the macroscopic acoustic deformation
equation and equation of motion for a lossless non-reciprocal material read (leading
order terms only)

κ∂tp + (∂i + ξi∂t)vi = 0, (1.2.1)
(∂j + ξj∂t)p + ρo

jk∂tvk = 0. (1.2.2)

Operator ∂t stands for temporal differentiation and ∂i for differentiation in the
xi-direction. Latin subscripts (except t) take on the values 1 to 3. Einstein’s sum-
mation convention applies to repeated Latin subscripts, except for subscript t. Field
quantities p = p(x, t) and vi = vi(x, t) are the macroscopic acoustic pressure and
particle velocity, respectively. Medium parameters κ = κ(x) and ρo

jk = ρo
jk(x) are

the effective compressibility and mass density, respectively. Note that the effective
mass density may be anisotropic, even when it is isotropic at the micro scale. It
obeys the symmetry relation ρo

jk = ρo
kj . Parameter ξi = ξi(x) is an effective coupling

parameter.
We obtain the wave equation for the acoustic pressure p by eliminating the

particle velocity vi from equations (1.2.1) and (1.2.2). To this end, define ϑij as the
inverse of ρo

jk, hence, ϑijρo
jk = δik, where δik is the Kronecker delta function. Note

that ϑij = ϑji. Apply ∂t to equation (1.2.1) and (∂i + ξi∂t)ϑij to equation (1.2.2)
and subtract the results. This gives

(∂i + ξi∂t)ϑij(∂j + ξj∂t)p − κ∂2
t p = 0. (1.2.3)

As an illustration, we consider a homogeneous isotropic effective medium, with
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ϑij = δijρ−1. For this situation the wave equation simplifies to

(∂i + ξi∂t)(∂i + ξi∂t)p − 1
c2 ∂2

t p = 0, (1.2.4)

with c = 1/
√

ρκ. Consider a plane wave p(x, t) = p(t − sixi), with si being the
slowness in the xi-direction. Substituting this into equation (1.2.4) we find the
following relation for the slowness surface

(s1 − ξ1)2 + (s2 − ξ2)2 + (s3 − ξ3)2 = 1
c2 , (1.2.5)

which describes a sphere with radius 1/c and its centre at (ξ1, ξ2, ξ3). The asymmetry
of this sphere with respect to the origin (0, 0, 0) is a manifestation of the non-
reciprocal properties of the medium.

1.3 Green’s functions and focusing functions

The Marchenko method, which we discuss in the next section, makes use of specific
relations between Green’s functions and focusing functions. Here we introduce these
functions for a lossless non-reciprocal horizontally layered acoustic medium at the
hand of a numerical example. Figure A.2 shows the parameters of the layered
medium as a function of the depth coordinate x3. The half-space above the upper
boundary x3,0 = 0 is homogeneous. For convenience we consider wave propagation
in the (x1, x3)-plane (where x1 and x3 are moving coordinates, as discussed in the
previous section). Hence, from here onward subscripts i, j and k in equations (1.2.1)
and (1.2.2) take on the values 1 and 3 only.

For horizontally layered media it is convenient to decompose wave fields into
plane waves and analyze wave propagation per plane-wave component. We define
the plane-wave decomposition of a wave field quantity u(x1, x3, t) as

u(s1, x3, τ) =
∫ ∞

−∞
u(x1, x3, τ + s1x1)dx1. (1.3.1)

Here s1 is the horizontal slowness and τ is a new time coordinate, usually called
intercept time [Stoffa, 2012]. The relation with the more common plane-wave de-
composition by Fourier transform becomes clear if we apply the temporal Fourier
transform, u(ω) =

∫∞
−∞ u(τ) exp(iωτ)dτ to both sides of equation (1.3.1), which

gives

ũ(s1, x3, ω) =
∫ ∞

−∞
u(x1, x3, ω) exp(−iωs1x1)dx1. (1.3.2)

The tilde denotes the (s1, x3, ω)-domain The right-hand side of equation (1.3.2)
represents a spatial Fourier transform, with wavenumber k1 = ωs1, where each
wavenumber k1 corresponds to a specific plane-wave component. Similarly, each
horizontal slowness s1 in equation (1.3.1) refers to a plane-wave component.

Consider an impulsive downgoing plane wave, with horizontal slowness s1 = 0.22
ms/m, which is incident to the layered medium at x3,0 = 0. We model its response,
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Figure A.2: Parameters of the non-reciprocal layered medium.

employing a (s1, x3, ω)-domain modeling method [Kennett and Kerry, 1979], ad-
justed for non-reciprocal media (based on equations (1.2.1) and (1.2.2), transformed
to the (s1, x3, ω)-domain). The result, transformed back to the (s1, x3, τ)-domain, is
shown in Figure A.3(a) (for fixed s1). Since it is the response to an impulsive source,
we denote this field as a Green’s function G(s1, x3, x3,0, τ) (actually Figure A.3(a)
shows a band-limited version of the Green’s function, in accordance with physical
measurements, which are always band-limited). Note the different angles of the
downgoing and upgoing waves directly left and right of the dotted vertical line in
the first layer. This is a manifestation of the non-reciprocity of the medium. Figure
A.3(b) shows the decomposed fields at x3,0 = 0 and x3,A, where x3,A denotes an arbi-
trary depth level inside the medium (taken in this example as x3,A = 13.5 cm). The
superscripts + and − stand for downgoing and upgoing, respectively. For the down-
going field at the upper boundary we have G+(s1, x3,0, x3,0, τ) = δ(τ), where δ(τ) is
the Dirac delta function. For the upgoing response at the upper boundary we write
G−(s1, x3,0, x3,0, τ) = R(s1, x3,0, τ), where R(s1, x3,0, τ) is the reflection response.
This is the response one would obtain from a physical reflection experiment carried
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Figure A.3: (a) Green’s function G(s1, x3, x3,0, τ), for s1 = 0.22 ms/m. (b) Decomposed
Green’s functions at x3,0 = 0 and x3,A.
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out at the upper boundary of the layered medium, translating it to the moving coor-
dinate system and transforming it to the plane-wave domain, using equation (1.3.1).
The decomposed responses inside the medium, G±(s1, x3,A, x3,0, τ), which were ob-
tained here by numerical modeling, are not available in a physical experiment. In
the next section we discuss how these responses can be obtained from R(s1, x3,0, τ)
using the Marchenko method. For this purpose, we introduce an auxiliary wave
field, the so-called focusing function f1(s1, x3, x3,A, τ), which is illustrated in Figure
A.4(a). Here x3,A denotes the focal depth. The focusing function is defined in a
truncated version of the medium, which is identical to the actual medium above
x3,A and homogeneous below x3,A. The four arrows at the top of Figure A.4(a)
indicate the four events of the focusing function leaving the surface x3,0 = 0 as
downgoing waves; the arrow just below the dashed line indicates the focus. Figure
A.4(b) shows the decomposed focusing functions at x3,0 = 0 and x3,A. The down-
going focusing function f+

1 (s1, x3,0, x3,A, τ) at the upper boundary is designed such
that, after propagation through the truncated medium, it focuses at x3,A. The fo-
cusing condition at x3,A is f+

1 (s1, x3,A, x3,A, τ) = δ(τ). The upgoing response at the
upper boundary is f−

1 (s1, x3,0, x3,A, τ). Because the half-space below the truncated
medium is by definition homogeneous, there is no upgoing response at x3,A, hence
f−

1 (s1, x3,A, x3,A, τ) = 0. Note that the downgoing and upgoing parts of the focus-
ing function at x3,0 each contain 2n−1 pulses, where n is the number of interfaces
in the truncated medium.

In a similar way as for reciprocal media [Wapenaar et al., 2013; Slob et al.,
2014], we derive relations between the decomposed Green’s functions and focusing
functions. For this we use general reciprocity theorems for decomposed wave fields
ũ±(s1, x3, ω) in two independent states A and B. These theorems read(

ũ
+(c)
A ũ−

B − ũ
−(c)
A ũ+

B

)
x3,0

=
(
ũ

+(c)
A ũ−

B − ũ
−(c)
A ũ+

B

)
x3,A

(1.3.3)

and (
ũ+∗

A ũ+
B − ũ−∗

A ũ−
B

)
x3,0

=
(
ũ+∗

A ũ+
B − ũ−∗

A ũ−
B

)
x3,A

, (1.3.4)

respectively, where superscript ∗ denotes complex conjugation. These theorems,
but without the superscripts (c) in equation (1.3.3), were previously derived for
reciprocal media [Wapenaar , 1996a]. Whereas equation (1.3.3) holds for propagat-
ing and evanescent waves, equation (1.3.4) only holds for propagating waves. The
extension to non-reciprocal media is derived in the published supplementary ma-
terial. For non-reciprocal media, the superscript (c) at a wave field indicates that
this field is defined in the complementary medium, in which the coupling parameter
ξi, appearing in equations (1.2.1) and (1.2.2), is replaced by −ξi. The terminology
“complementary medium” is adopted from the literature on non-reciprocal electro-
magnetic wave theory [Kong, 1972; Lindell et al., 1995]. Note that, when wave fields
with a tilde are written without their arguments (as in equations 1.3.3 and 1.3.4),
it is tacitly assumed that fields indicated by the superscript (c) are evaluated at
(−s1, x3, ω).

To obtain relations between the decomposed Green’s functions and focusing func-
tions, we now take ũ±

A = f̃±
1 and ũ±

B = G̃±. The conditions at x3,0 and x3,A discussed
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above are, in the (s1, x3, ω)-domain, G̃+(s1, x3,0, x3,0, ω) = 1, G̃−(s1, x3,0, x3,0, ω) =
R̃(s1, x3,0, ω), f̃+

1 (s1, x3,A, x3,A, ω) = 1 and f̃−
1 (s1, x3,A, x3,A, ω) = 0. Making the

appropriate substitutions in equations (1.3.3) and (1.3.4) we thus obtain

G̃−(s1, x3,A, x3,0, ω) + f̃
−(c)
1 (−s1, x3,0, x3,A, ω)

= R̃(s1, x3,0, ω)f̃+(c)
1 (−s1, x3,0, x3,A, ω) (1.3.5)

and

G̃+(s1, x3,A, x3,0, ω) − {f̃+
1 (s1, x3,0, x3,A, ω)}∗

= −R̃(s1, x3,0, ω){f̃−
1 (s1, x3,0, x3,A, ω)}∗, (1.3.6)

respectively. These representations express the wave field at x3,A inside the non-
reciprocal medium in terms of reflection measurements at the surface x3,0 of the
medium. These expressions are similar to those in reference [Slob et al., 2014], except
that the focusing functions in equation (1.3.5) are defined in the complementary
medium. Therefore we cannot follow the same procedure as in Slob et al. [2014] to
retrieve the focusing functions from equations (1.3.5) and (1.3.6). To resolve this
issue, we derive a symmetry property of the reflection response R̃(s1, x3,0, ω) and
use this to obtain a second set of representations. For the fields at x3,0 in states A
and B we choose ũ+

A = ũ+
B = 1 and ũ−

A = ũ−
B = R̃. Substituting this into the left-

hand side of equation (1.3.3) yields R̃(s1, x3,0, ω) − R̃(c)(−s1, x3,0, ω). We replace
x3,A at the right-hand side of equation (1.3.3) by x3,M , which is chosen below all
inhomogeneities of the medium, so that there are no upgoing waves at x3,M . Hence,
the right-hand side of equation (1.3.3) is equal to 0. We thus find

R̃(c)(−s1, x3,0, ω) = R̃(s1, x3,0, ω). (1.3.7)

We obtain a second set of representations by replacing all quantities in equations
(1.3.5) and (1.3.6) by the corresponding quantities in the complementary medium.
Using equation (1.3.7), this yields

G̃−(c)(−s1, x3,A, x3,0, ω) + f̃−
1 (s1, x3,0, x3,A, ω)

= R̃(s1, x3,0, ω)f̃+
1 (s1, x3,0, x3,A, ω) (1.3.8)

and

G̃+(c)(−s1, x3,A, x3,0, ω) − {f̃
+(c)
1 (−s1, x3,0, x3,A, ω)}∗

= −R̃(s1, x3,0, ω){f̃
−(c)
1 (−s1, x3,0, x3,A, ω)}∗, (1.3.9)

respectively.

1.4 Marchenko method for non-reciprocal media

In the previous section we obtained four representations, which we regroup into
two sets. Equations (1.3.6) and (1.3.8) form the first set, containing only focusing
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functions in the truncated version of the actual medium. The second set is formed by
equations (1.3.5) and (1.3.9), which contain only focusing functions in the truncated
version of the complementary medium. All equations contain the reflection response
R̃(s1, x3,0, ω) of the actual medium (i.e., the measured data, transformed to the
(s1, x3,0, ω)-domain).

We now outline the procedure to retrieve the focusing functions and Green’s
functions from the reflection response, using the Marchenko method. The proce-
dure is similar to that described in reference Slob et al. [2014]. For details we refer to
this reference; here we emphasize the differences. The first set of equations, (1.3.6)
and (1.3.8), is transformed from the (s1, x3, ω)-domain to the (s1, x3, τ)-domain.
Using time windows, the Green’s functions are suppressed from these equations.
Because one of the Green’s functions is defined in the actual medium and the other
in the complementary medium, two different time windows are needed, unlike in
the Marchenko method for reciprocal media, which requires only one time window.
Having suppressed the Green’s functions, we are left with two equations for the two
unknown focusing functions f+

1 (s1, x3,0, x3,A, τ) and f−
1 (s1, x3,0, x3,A, τ). These can

be resolved from the reflection response R(s1, x3,0, τ) using the Marchenko method.
This requires an initial estimate of the focusing function f+

1 (s1, x3,0, x3,A, τ), which
is defined as the inverse of the direct arrival of the transmission response of the
truncated medium. In practice we define the initial estimate simply as δ(τ + τd),
where τd = τd(s1, x3,0, x3,A, τ) is the travel time of the direct arrival, which can be
derived from a background model of the medium. Since we only need a travel time, a
smooth background model suffices; no information about the position and strength
of the interfaces is needed. Once the focusing functions have been found, they can
be substituted in the time domain versions of equations (1.3.6) and (1.3.8), which
yields the Green’s functions G+(s1, x3,A, x3,0, τ) and G−(c)(−s1, x3,A, x3,0, τ). Note
that only the retrieved downgoing part of the Green’s function, G+, is defined in
the actual medium. Therefore the procedure continues by applying the Marchenko
method to the time domain versions of equations (1.3.5) and (1.3.9). This yields
the focusing functions f

+(c)
1 (−s1, x3,0, x3,A, τ) and f

−(c)
1 (−s1, x3,0, x3,A, τ) and, sub-

sequently, the Green’s functions G+(c)(−s1, x3,A, x3,0, τ) and G−(s1, x3,A, x3,0, τ).
Here the retrieved upgoing part of the Green’s function, G−, is defined in the ac-
tual medium. This completes the procedure for the retrieval of the downgoing and
upgoing parts of the Green’s functions in the actual medium at depth level x3,A

for horizontal slowness s1. This procedure can be repeated for any slowness corre-
sponding to propagating waves and for any focal depth x3,A.

Finally, we discuss how the retrieved Green’s functions can be used for imaging.
Similar as in a reciprocal medium, the relation between these Green’s functions in
the (s1, x3, ω)-domain is

G̃−(s1, x3,A, x3,0, ω) = R̃(s1, x3,A, ω)G̃+(s1, x3,A, x3,0, ω), (1.4.1)

where R̃(s1, x3,A, ω) is the plane-wave reflection response at depth level x3,A of the
medium below x3,A. Inverting this equation yields an estimate of the reflection
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response, according to

⟨R̃(s1, x3,A, ω)⟩ = G̃−(s1, x3,A, x3,0, ω)
G̃+(s1, x3,A, x3,0, ω)

. (1.4.2)

Imaging the reflectivity at x3,A involves selecting the τ = 0 component of the inverse
Fourier transform of ⟨R̃(s1, x3,A, ω)⟩, hence

⟨R(s1, x3,A, τ = 0)⟩ = 1
2π

∫ ∞

−∞
⟨R̃(s1, x3,A, ω)⟩dω. (1.4.3)

Substituting equation (1.4.2), stabilizing the division (and suppressing the argu-
ments of the Green’s functions), we obtain

⟨R(s1, x3,A, 0)⟩ = 1
2π

∫ ∞

−∞

G̃−{G̃+}∗

G̃+{G̃+}∗ + ϵ
dω. (1.4.4)

1.5 Numerical example

We consider again the layered medium of Figure A.2. Using the same modeling ap-
proach as before, we model the reflection responses to tilted downgoing plane waves
at x3,0 = 0, this time for a range of horizontal slownesses s1. The result, transformed
to the (s1, x3,0, τ)-domain and convolved with a wavelet with a central frequency
of 600 kHz, is shown in Figure A.5(a). To emphasize the multiples (only for the
display), a time-dependent amplitude gain, using the function exp{3τ/375µs}, has
been applied. Note the asymmetry with respect to s1 = 0 as a result of the non-
reciprocity of the medium. The last trace (for s1 = 0.22 ms/m) corresponds with
the second trace in Figure A.3(b).

We define the focal depth in the fourth layer, at x3,A = 13.5 cm. Using
the Marchenko method, we retrieve the focusing functions f±

1 (s1, x3,0, x3,A, τ) and
f

±(c)
1 (−s1, x3,0, x3,A, τ) from the reflection response R(s1, x3,0, τ) and the travel

times τd between x3,0 and x3,A. One of these focusing functions, f+
1 (s1, x3,0, x3,A, τ),

is shown in Figure A.5(b). The last trace (for s1 = 0.22 ms/m) corresponds with
the first trace in Figure A.4(b).

Using the reflection response and the retrieved focusing functions, we obtain
the Green’s functions G+(s1, x3,A, x3,0, τ) and G−(s1, x3,A, x3,0, τ) from the time
domain versions of equations (1.3.6) and (1.3.5), see Figure A.6 (same amplitude
gain as in Figure A.5(a)). From the Fourier transform of these Green’s functions, an
image is obtained at x3,A as a function of s1, using equation (1.4.4). Repeating this
for all x3,A we obtain what we call the Marchenko image, shown in Figure A.7(c). For
comparison, Figure A.7(a) shows an image obtained by a primary imaging method,
ignoring the non-reciprocal aspects of the medium, and Figure A.7(b) shows the
improvement when non-reciprocity is taken into account (but multiples are still
ignored). For comparison, Figure A.7(d) shows the true reflectivity with the same
filters applied as for the imaging results. Note that the match of the Marchenko
imaging result with the true reflectivity is very accurate. The relative errors, except
for the leftmost traces, are less than 2%.
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Figure A.5: (a) Modeled reflection response R(s1, x3,0, τ). (b) Retrieved focusing function
f+

1 (s1, x3,0, x3,A, τ).
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Figure A.6: (a) Retrieved Green’s function G+(s1, x3,A, x3,0, τ). (b) Idem,
G−(s1, x3,A, x3,0, τ).
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Figure A.7: Images of the layered non-reciprocal medium. (a) Primary image, accounting
for anisotropy but ignoring non-reciprocity. (b) Idem, but accounting for non-reciprocity.
(c) Marchenko image. (d) True reflectivity.

Note that we assumed that the medium is lossless. In case of a medium with
losses, modifications are required. For moderate losses that are approximately con-
stant throughout the medium, one can apply a time-dependent loss compensation
factor to the reflection response R(s1, x3,0, τ) before applying the Marchenko method
(assuming an estimate of the loss parameter is available). Alternatively, when the
medium is accessible from two sides, the Marchenko imaging method of Slob [2016],
modified for non-reciprocal media, can be applied directly to the data. This removes
the need to apply a loss compensation factor.

1.6 Conclusions

We have introduced a new imaging method for layered non-reciprocal materials.
The proposed method is a modification of the Marchenko imaging method, which
is capable of handling multiple scattering in a data-driven way (i.e., no informa-
tion is required about the layer interfaces that cause the multiple scattering). To
account for the non-reciprocal properties of the medium, we derived two sets of
representations for the Marchenko method, one set for the actual medium and one
set for the complementary medium. Using a symmetry relation between the reflec-
tion responses of both media, we arrived at a method which retrieves all quantities
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needed for imaging (focusing functions and Green’s functions in the actual and the
complementary medium) from the reflection response of the actual medium. We
illustrated the method with a numerical example, demonstrating the improvement
over standard primary imaging methods. The proposed method can be extended
for 2D and 3D inhomogeneous media, in a similar way as has been done for the
Marchenko method in reciprocal media.
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B
Unified wave field retrieval and
imaging method for inhomogeneous
non-reciprocal media

Abstract Acoustic imaging methods often ignore multiple scattering. This leads to
false images in cases where multiple scattering is strong. Marchenko imaging has re-
cently been introduced as a data-driven way to deal with internal multiple scattering.
Given the increasing interest in non-reciprocal materials, both for acoustic and elec-
tromagnetic applications, we propose to modify the Marchenko method for imaging
such materials. We formulate a unified wave equation for non-reciprocal materials,
exploiting the similarity between acoustic and electromagnetic wave phenomena.
This unified wave equation forms the basis for deriving reciprocity theorems that
interrelate wave fields in a non-reciprocal medium and its complementary version.
Next, we reformulate these theorems for downgoing and upgoing wave fields. From
these decomposed reciprocity theorems we derive representations of the Green’s
function inside the non-reciprocal medium, in terms of the reflection response at
the surface and focusing functions inside the medium and its complementary ver-
sion. These representations form the basis for deriving a modified version of the
Marchenko method to retrieve the wave field inside a non-reciprocal medium and
to form an image, free from artefacts related to multiple scattering. We illustrate
the proposed method at the hand of the numerically modeled reflection response of
a horizontally layered medium.

Published as: Wapenaar, K., and Reinicke, C. (2019), Unified wave field retrieval and imaging
method for inhomogeneous non-reciprocal media, The Journal of the Acoustical Society of America,
146 (1), 810–825, https://doi.org/10.1121/1.5114912.
Note that minor changes have been introduced to make the text consistent with the other chapters.
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2.1 Introduction

Acoustic imaging methods are traditionally based on the single-scattering assump-
tion [Claerbout, 1971; Stolt, 1978; Berkhout and Palthe, 1979; Williams and May-
nard, 1980; Devaney, 1982; Bleistein and Cohen, 1982; Maynard et al., 1985; Lan-
genberg et al., 1986; McMechan, 1983; Esmersoy and Oristaglio, 1988; Oristaglio,
1989; Norton, 1992; Wu, 2004; Lindsey and Braun, 2004; Etgen et al., 2009]. Mul-
tiply scattered waves are not properly handled by these methods and may lead to
false images overlaying the desired primary image. Several approaches have been
developed that account for multiple scattering. For the sake of the discussion it
is important to distinguish between different classes of multiply scattered waves.
Waves that have scattered at least once at the surface of the medium are called
surface-related multiples. This type of multiple scattering is particularly severe in
exploration geophysics. However, because the scattering boundary is known, this
class of multiples is relatively easily dealt with. Successful methods have been devel-
oped to suppress surface-related multiples prior to imaging [Verschuur et al., 1992;
Carvalho et al., 1992; Van Borselen et al., 1996; Biersteker , 2001; Pica et al., 2005;
Dragoset et al., 2010]. Waves that scatter several times inside the medium before be-
ing recorded at the surface are called internal multiples. Internal multiple scattering
may occur at heterogeneities at many scales. We may distinguish between determin-
istic scattering at well-separated scatterers, giving rise to long period multiples, and
diffuse scattering in stochastic media. Of course this distinction is not always sharp.
In this paper we only consider the first type of internal multiple scattering, which
typically occurs in layered media (which, in general, may have curved interfaces
and varying parameters in the layers). Several imaging approaches that account
for deterministic internal multiples are currently under development, such as the
inverse scattering series approach [Weglein et al., 1997; ten Kroode, 2002; Weglein
et al., 2003], full wave field migration [Berkhout, 2014; Davydenko and Verschuur ,
2017], and Marchenko imaging. The latter approach builds on a 1D autofocusing
procedure [Rose, 2002a,b; Broggini and Snieder , 2012], which has been generalised
for 2D and 3D inhomogeneous media [Wapenaar et al., 2012, 2014b; Broggini et al.,
2014; Behura et al., 2014; Meles et al., 2014; van der Neut et al., 2015; van der
Neut and Wapenaar , 2016; Thorbecke et al., 2017; van der Neut et al., 2017; Singh
et al., 2017; Mildner et al., 2017; ?]. This methodology retrieves the wave fields
inside a medium, including all internal multiples, in a data-driven way. Such wave
fields could be used, for example, to monitor changes of the material over time.
Moreover, in a next step these wave fields can be used to form an image of the
material, in which artefacts due to the internal multiples are suppressed. Promis-
ing results have been obtained with geophysical [Ravasi et al., 2016; Ravasi, 2017;
Staring et al., 2018; Brackenhoff et al., 2019; Wapenaar et al., 2018] and ultrasonic
data [Wapenaar et al., 2018; Cui et al., 2018].

To date, the application of the Marchenko method has been restricted to re-
ciprocal media. With the increasing interest in non-reciprocal materials, both in
electromagnetics [Willis, 2011; He et al., 2011; Ardakani, 2014] and in acoustics
and elastodynamics [Willis, 2012; Norris et al., 2012; Gu et al., 2016; Trainiti and
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Ruzzene, 2016; Nassar et al., 2017b,a; Attarzadeh and Nouh, 2018], it is oppor-
tune to modify the Marchenko method for non-reciprocal media. We start with a
brief review of the wave equation for non-reciprocal media. By restricting this to
scalar waves in a 2D plane, it is possible to capture different wave phenomena by
a unified wave equation. Next, we formulate reciprocity theorems for waves in a
non-reciprocal medium and its complementary version (the complementary medium
will be defined later). From these reciprocity theorems we derive Green’s function
representations, which form the basis for the Marchenko method in non-reciprocal
media. We illustrate the new method with a numerical example, showing that it has
the potential to accurately retrieve the wave fields inside a non-reciprocal medium
and to image this medium, without false images related to multiply scattered waves.

2.2 Unified wave equation for non-reciprocal media

Consider the following unified equations in the low-frequency limit for 2D wave prop-
agation in the (x1, x3)-plane in inhomogeneous, lossless, anisotropic, non-reciprocal
media

α∂tP + (∂r + γr∂t)Qr = B, (2.2.1)
(∂r + γr∂t)P + βrs∂tQs = Cr. (2.2.2)

These equations hold for transverse-electric (TE), transverse-magnetic (TM), horizontally-
polarised shear (SH) and acoustic (AC) waves. They are formulated in the space-
time (x, t) domain, with x = (x1, x3). Operator ∂r stands for differentiation in the
xr direction. Lower-case subscripts r and s take the values 1 and 3 only; Einstein’s
summation convention applies for repeated subscripts. Operator ∂t stands for tem-
poral differentiation. The wave field quantities (P = P (x, t) and Qr = Qr(x, t))
and source quantities (B = B(x, t) and Cr = Cr(x, t)) are macroscopic quantities.
These are often denoted as ⟨P ⟩ etc. [Willis, 2011], but for notational convenience
we will not use the brackets. The medium parameters (α = α(x), βrs = βrs(x)
and γr = γr(x)) are effective parameters. In general they are anisotropic at macro
scale (with βrs = βsr), even when they are isotropic at micro scale. Wave field
quantities, source quantities and medium parameters are specified for the different
wave phenomena in Table 1. For TE and TM waves, the macroscopic wave field
quantities are E (electric field strength) and H (magnetic field strength), the macro-
scopic source functions are Je (external electric current density) and Jm (external
magnetic current density), and the effective medium parameters are εo (permit-
tivity), µ (permeability) and ξ (coupling parameter). For SH and AC waves, the
macroscopic wave field quantities are v (particle velocity), τ (stress) and p (acoustic
pressure), the macroscopic source functions are F (external force density), h (exter-
nal deformation-rate density) and q (volume injection-rate density), and the effective
medium parameters are ρo(mass density), s (compliance), κ (compressibility) and
ξ (coupling parameter). For further details we refer Appendix A of the published
paper.

By eliminating Qr from equations (2.2.1) and (2.2.2) we obtain a scalar wave
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equation for field quantity P , according to

(∂r + γr∂t)ϑrs(∂s + γs∂t)P − α∂2
t P = (∂r + γr∂t)ϑrsCs − ∂tB, (2.2.3)

see Appendix A of the published paper for the derivation. Here ϑrs is the inverse
of βrs. Compare equation (2.2.3) with the common scalar wave equation for waves
in isotropic reciprocal media

∂r
1
β

∂rP − α∂2
t P = ∂r

1
β

Cr − ∂tB. (2.2.4)

In equation (2.2.3), ∂r + γr∂t replaces ∂r, with γr being responsible for the non-
reciprocal behaviour. Moreover, ϑrs replaces 1/β, thus accounting for anisotropy of
the effective non-reciprocal medium.

To illustrate the physical meaning of the parameter γr, we consider the 1D
version of equation (2.2.3) for a homogeneous, isotropic, source-free medium, i.e.

(∂1 + γ∂t)(∂1 + γ∂t)P − αβ∂2
t P = 0. (2.2.5)

Its solution reads

P ±(x1, t) = S
(

t ∓ x1

c
(1 ± γc)

)
, (2.2.6)

with S(t) being an arbitrary time-dependent function and c = (αβ)−1/2 the propa-
gation velocity of the corresponding reciprocal medium. Note that P +(x1, t) propa-
gates in the positive x1-direction with slowness (1 + γc)/c, whereas P −(x1, t) prop-
agates in the negative x1-direction with slowness (1 − γc)/c. Hence, γ determines
the asymmetry of the slownesses in opposite directions. Throughout this paper
we assume that |γr| is smaller than the lowest inverse propagation velocity of the
corresponding reciprocal anisotropic medium.

2.3 Reciprocity theorems for a non-reciprocal medium and its
complementary version

We derive reciprocity theorems in the space-frequency (x, ω)-domain for wave fields
in a non-reciprocal medium and its complementary version. To this end, we define
the temporal Fourier transform of a space- and time-dependent function P (x, t) as

P (x, ω) =
∫ ∞

−∞
P (x, t) exp(iωt)dt, (2.3.1)

where ω is the angular frequency and i the imaginary unit. For notational conve-
nience we use the same symbol for quantities in the time domain and in the frequency
domain. We use equation (2.3.1) to transform equations (2.2.1) and (2.2.2) to the
space-frequency domain. The temporal differential operators ∂t are thus replaced
by −iω, hence

−iωαP + (∂r − iωγr)Qr = B, (2.3.2)
(∂r − iωγr)P − iωβrsQs = Cr, (2.3.3)
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with P = P (x, ω), Qr = Qr(x, ω), B = B(x, ω) and Cr = Cr(x, ω). A reci-
procity theorem formulates a mathematical relation between two independent states
[Fokkema and van den Berg, 2013; de Hoop, 1995; Achenbach and Achenbach, 2003].
We indicate the wave fields, sources and medium parameters in the two states by
subscripts A and B. Consider the quantity

∂r(PAQr,B − Qr,APB). (2.3.4)

Applying the product rule for differentiation, using equations (2.3.2) and (2.3.3)
for states A and B, using βsr = βrs [Nassar et al., 2017a; Kong, 1972; Birss and
Shrubsall, 1967], integrating the result over domain D enclosed by boundary ∂D
with outward pointing normal vector n = (n1, n3) and applying the theorem of
Gauss, we obtain∮

∂D
(PAQr,B − Qr,APB)nrdx = (2.3.5)

iω

∫
D

(
(αB − αA)PAPB − (βrs,B − βrs,A)Qr,AQs,B

)
dx

+iω

∫
D
(γr,B + γr,A)(PAQr,B − Qr,APB)dx

+
∫
D
(Cr,AQr,B − Qr,ACr,B + PABB − BAPB)dx.

This is the general reciprocity theorem of the convolution type. When the medium
parameters α, βrs and γr are identical in both states, then the first integral on the
right-hand side vanishes, but the second integral, containing γr, does not vanish.
When we choose γr,A = −γr,B = −γr, then the second integral also vanishes. For
this situation we call state B, with parameters α, βrs and γr, the actual state, and
state A, with parameters α, βrs and −γr, the complementary state [Kong, 1972;
Lindell et al., 1995] (also known as the Lorentz-adjoint state [Altman and Suchy,
2011]). We indicate the complementary state by a superscript (c). Hence∮

∂D
(P (c)

A Qr,B − Q
(c)
r,APB)nrdx = (2.3.6)∫

D
(C(c)

r,AQr,B − Q
(c)
r,ACr,B + P

(c)
A BB − B

(c)
A PB)dx.

This reciprocity theorem will play a role in the derivation of Green’s function repre-
sentations for the Marchenko method for non-reciprocal media (section 2.4). Here
we use it to derive a relation between Green’s functions in states A and B. For the
complementary state A we choose a unit monopole point source at xS in D, hence
B

(c)
A (x, ω) = δ(x − xS), where δ(x) is the Dirac delta function. The response to this

point source is the Green’s function in state A, hence P
(c)
A (x, ω) = G(c)(x, xS , ω).

Similarly, for state B we choose a unit monopole point source at xR in D, hence
BB(x, ω) = δ(x − xR) and PB(x, ω) = G(x, xR, ω). We substitute these expressions
into equation (2.3.6) and set the other source quantities, C

(c)
r,A and Cr,B , to zero.
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Further, we assume that Neumann or Dirichlet boundary conditions apply at ∂D,
or that the medium at and outside ∂D is homogeneous and reciprocal. In each of
these cases the boundary integral vanishes. We thus obtain [Slob and Wapenaar ,
2009; Willis, 2012]

G(c)(xR, xS , ω) = G(xS , xR, ω). (2.3.7)

The left-hand side is the response to a source at xS in the complementary medium
(with parameter −γr), observed by a receiver at xR. The right-hand side is the
response to a source at xR in the actual medium (with parameter γr), observed
by a receiver at xS . Note the analogy with the flow-reversal theorem for waves in
flowing media [Lyamshev, 1961; Godin, 1997; Wapenaar and Fokkema, 2004].
Next, we consider the quantity

∂r(P ∗
AQr,B + Q∗

r,APB). (2.3.8)

Superscript ∗ denotes complex conjugation. Following the same steps as before, we
obtain ∮

∂D
(P ∗

AQr,B + Q∗
r,APB)nrdx = (2.3.9)

iω

∫
D

(
(αB − αA)P ∗

APB + (βrs,B − βrs,A)Q∗
r,AQs,B

)
dx

+iω

∫
D
(γr,B − γr,A)(P ∗

AQr,B + Q∗
r,APB)dx

+
∫
D
(C∗

r,AQr,B + Q∗
r,ACr,B + P ∗

ABB + B∗
APB)dx.

This is the general reciprocity theorem of the correlation type. When the medium
parameters α, βrs and γr are identical in both states, then the first and second
integral on the right-hand side vanish. Hence∮

∂D
(P ∗

AQr,B + Q∗
r,APB)nrdx = (2.3.10)∫

D
(C∗

r,AQr,B + Q∗
r,ACr,B + P ∗

ABB + B∗
APB)dx.

Also this reciprocity theorem will play a role in the derivation of Green’s function
representations for the Marchenko method for non-reciprocal media.

2.4 Green’s function representations for the Marchenko method

We use the reciprocity theorems of the convolution and correlation type (equations
(2.3.6) and (2.3.10)) to derive Green’s function representations for the Marchenko
method for non-reciprocal media. The derivation is similar to that for reciprocal
media [Wapenaar et al., 2014b]; here we emphasise the differences. We consider a
spatial domain D, enclosed by two infinite horizontal boundaries ∂D0 and ∂DA (with
∂DA below ∂D0), and two finite vertical side boundaries (at x1 → ±∞), see Figure
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Figure B.1: Modified configuration for the reciprocity theorems.

B.1. The positive x3-axis points downward. The normal vectors at ∂D0 and ∂DA are
n = (0, −1) and n = (0, 1), respectively. The boundary integrals in equations (2.3.6)
and (2.3.10) along the vertical side boundaries vanish [Wapenaar and Berkhout,
1989]. Assuming there are no sources in D in both states, the reciprocity theorems
thus simplify to∫

∂D0

(P (c)
A Q3,B − Q

(c)
3,APB)dx =

∫
∂DA

(P (c)
A Q3,B − Q

(c)
3,APB)dx (2.4.1)

and ∫
∂D0

(P ∗
AQ3,B + Q∗

3,APB)dx =
∫

∂DA

(P ∗
AQ3,B + Q∗

3,APB)dx. (2.4.2)

For the derivation of the representations for the Marchenko method it is convenient
to decompose the wave field quantities in these theorems into downgoing and upgoing
fields in both states. Consider the following relations

q = Lp, p = L−1q, (2.4.3)

with wave vectors q = q(x, ω) and p = p(x, ω) defined as

q =

(
P

Q3

)
, p =

(
U+

U−

)
. (2.4.4)

Here U+ = U+(x, ω) and U− = U−(x, ω) are downgoing and upgoing flux-normalized
wave fields, respectively. Operator L = L(x, ω) in equation (2.4.3) is a pseudo-
differential operator that composes the total wave field from its downgoing and upgo-
ing constituents [Corones et al., 1983; Fishman et al., 1987; Wapenaar and Berkhout,
1989; Fishman, 1993; De Hoop, 1992; de Hoop, 1996; Wapenaar , 1996c; Haines and
de Hoop, 1996; Fishman et al., 2000]. Its inverse decomposes the total wave field
into downgoing and upgoing fields. For inhomogeneous isotropic reciprocal media,
the theory for this operator is well developed. For anisotropic non-reciprocal media,
we restrict the application of this operator to the laterally invariant situation. In
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Appendix B (see publication) we use equations (2.4.3) and (2.4.4) at boundaries
∂D0 and ∂DA to recast reciprocity theorems (2.4.1) and (2.4.2) as follows∫

∂D0

(
U

+(c)
A U−

B − U
−(c)
A U+

B

)
dx =

∫
∂DA

(
U

+(c)
A U−

B − U
−(c)
A U+

B

)
dx (2.4.5)

and ∫
∂D0

(
U+∗

A U+
B − U−∗

A U−
B

)
dx =

∫
∂DA

(
U+∗

A U+
B − U−∗

A U−
B

)
dx. (2.4.6)

Equation (2.4.5) is exact, whereas in equation (2.4.6) evanescent waves are neglected
at boundaries ∂D0 and ∂DA. Note that the assumption of lateral invariance only
applies to boundaries ∂D0 and ∂DA; the remainder of the medium (in- and outside
D) may be arbitrary inhomogeneous.

In the following we define ∂D0 (at x3 = x3,0) as the upper boundary of an
inhomogeneous, anisotropic, non-reciprocal, lossless medium. Furthermore, we de-
fine ∂DA (at x3 = x3,A, with x3,A > x3,0) as an arbitrary boundary inside the
medium. We assume that the medium above ∂D0 is homogeneous. For state B
we consider a unit source for downgoing waves at xS = (x1,S , x3,S), just above
∂D0 (hence, x3,S = x3,0 − ϵ, with ϵ → 0). The response to this unit source at
any observation point x is given by U±

B (x, ω) = G±(x, xS , ω), where G+ and G−

denote the downgoing and upgoing components of the Green’s function. For x at
∂D0, i.e., just below the source, we have U+

B (x, ω) = G+(x, xS , ω) = δ(x1 − x1,S)
and U−

B (x, ω) = G−(x, xS , ω) = R(x, xS , ω), with R(x, xS , ω) denoting the reflec-
tion response at ∂D0 of the medium below ∂D0. At ∂DA, we have U±

B (x, ω) =
G±(x, xS , ω). For state A we consider a focal point at xA = (x1,A, x3,A) at ∂DA.
The medium in state A is a truncated medium, which is identical to the actual
medium between ∂D0 and ∂DA, and homogeneous below ∂DA. At ∂D0 a down-
going focusing function U+

A (x, ω) = f+
1 (x, xA, ω), with x = (x1, x3,0), is incident

to the truncated medium. This function focuses at xA, hence, at ∂DA we have
U+

A (x, ω) = f+
1 (x, xA, ω) = δ(x1 − x1,A). The response to this focusing function at

∂D0 is U−
A (x, ω) = f−

1 (x, xA, ω). Because the truncated medium is homogeneous
below ∂DA, we have U−

A (x, ω) = 0 at ∂DA. The quantities for both states are
summarised in Table 2.

Note that the downgoing focusing function f+
1 (x, xA, ω), for x at ∂D0, is the

inverse of the transmission response T (xA, x, ω) of the truncated medium [Wapenaar
et al., 2014b], hence

f+
1 (x, xA, ω) = T inv(xA, x, ω), (2.4.7)

for x at ∂D0. To avoid instabilities in the evanescent field, the focusing function is
in practice spatially band-limited.

Substituting the quantities of Table 2 into equations (2.4.5) and (2.4.6) gives

G−(xA, xS , ω) + f
−(c)
1 (xS , xA, ω) =∫

∂D0

R(x, xS , ω)f+(c)
1 (x, xA, ω)dx (2.4.8)
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and

G+(xA, xS , ω) − {f+
1 (xS , xA, ω)}∗ =

−
∫

∂D0

R(x, xS , ω){f−
1 (x, xA, ω)}∗dx, (2.4.9)

respectively. These are two representations for the upgoing and downgoing parts
of the Green’s function between xS at the acquisition surface and xA inside the
non-reciprocal medium. They are expressed in terms of the reflection response
R(x, xS , ω) and a number of focusing functions. Unlike similar representations for
reciprocal media [Slob et al., 2014; Wapenaar et al., 2014b], the focusing functions in
equation (2.4.8) are defined in the complementary version of the truncated medium.
Therefore we cannot use the standard approach to retrieve the focusing functions
and Green’s functions from the reflection response R(x, xS , ω). We obtain a second
set of representations by replacing all quantities in equations (2.4.8) and (2.4.9)
by the corresponding quantities in the complementary medium. For the focusing
functions in equation (2.4.8) this implies they are replaced by their counterparts in
the truncated actual medium. We thus obtain

G−(c)(xA, xS , ω) + f−
1 (xS , xA, ω) =∫

∂D0

R(c)(x, xS , ω)f+
1 (x, xA, ω)dx (2.4.10)

and

G+(c)(xA, xS , ω) − {f
+(c)
1 (xS , xA, ω)}∗ =

−
∫

∂D0

R(c)(x, xS , ω){f
−(c)
1 (x, xA, ω)}∗dx, (2.4.11)

respectively. Because in practical situations we do not have access to the reflec-
tion response R(c)(x, xS , ω) in the complementary medium, we derive a relation
analogous to equation (2.3.7) for this reflection response. To this end, consider the
quantities in Table 3, with xS and xR just above ∂D0, and with ∂DM denoting a
boundary below all inhomogeneities, so that there are no upgoing waves at ∂DM .
Substituting the quantities of Table 3 into equation (2.4.5) (with ∂DA replaced by
∂DM ) gives

R(c)(xR, xS , ω) = R(xS , xR, ω). (2.4.12)

Equations (2.4.8) − (2.4.11), with R(c)(x, xS , ω) replaced by R(xS , x, ω), form the
basis for the Marchenko method, discussed in the next section.

2.5 The Marchenko method for non-reciprocal media

The standard multidimensional Marchenko method for reciprocal media [Slob et al.,
2014; Wapenaar et al., 2014b] uses the representations of equations (2.4.8) and
(2.4.9), but without the superscript (c), to retrieve the focusing functions from the
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reflection response. Here we discuss how to modify this method for non-reciprocal
media. We separate the representations of equations (2.4.8) − (2.4.11) into two sets,
each set containing focusing functions in one and the same truncated medium. These
sets are equations (2.4.9) and (2.4.10), with the focusing functions in the truncated
actual medium, and equations (2.4.8) and (2.4.11), with the focusing functions in
the truncated complementary medium. We start with the set of equations (2.4.9)
and (2.4.10), which read in the time domain (using equation (2.4.12))

G+(xA, xS , t) − f+
1 (xS , xA, −t) =

−
∫

∂D0

dx
∫ t

−∞
R(x, xS , t − t′)f−

1 (x, xA, −t′)dt′ (2.5.1)

and

G−(c)(xA, xS , t) + f−
1 (xS , xA, t) =∫

∂D0

dx
∫ t

−∞
R(xS , x, t − t′)f+

1 (x, xA, t′)dt′, (2.5.2)

respectively. We introduce time windows to remove the Green’s functions from
these representations. Similar as in the reciprocal situation, we assume that the
Green’s function and the time-reversed focusing function on the left-hand side of
equation (2.5.1) are separated in time, except for the direct arrivals [Wapenaar
et al., 2014b]. This is a reasonable assumption for media with smooth lateral vari-
ations, and for limited horizontal source-receiver distances. Let td(xA, xS) denote
the travel time of the direct arrival of G+(xA, xS , t). We define a time window
w(xA, xS , t) = u(td(xA, xS) − tϵ − t), where u(t) is the Heaviside function and tϵ

a small positive time constant. Under the above-mentioned assumption, we have
w(xA, xS , t)G+(xA, xS , t) = 0. For the focusing function on the left-hand side of
equation (2.5.1) we write [Wapenaar et al., 2014b]

f+
1 (xS , xA, t) = T inv(xA, xS , t)

= T inv
d (xA, xS , t) + M+(xS , xA, t), (2.5.3)

where T inv
d (xA, xS , t) is the inverse of the direct arrival of the transmission response

of the truncated medium and M+(xS , xA, t) the scattering coda. The travel time of
T inv

d (xA, xS , t) is −td(xA, xS) and the scattering coda obeys M+(xS , xA, t) = 0 for
t ≤ −td(xA, xS). Hence, w(xA, xS , t)f+

1 (xS , xA, −t) = M+(xS , xA, −t). Applying
the time window w(xA, xS , t) to both sides of equation (2.5.1) thus yields

M+(xS , xA, −t) =

w(xA, xS , t)
∫

∂D0

dx
∫ t

−∞
R(x, xS , t − t′)f−

1 (x, xA, −t′)dt′. (2.5.4)

Under the same conditions as those mentioned for equation (2.5.1), we assume
that the Green’s function and the focusing function in the left-hand side of equation
(2.5.2) are separated in time (without overlap). Unlike for reciprocal media, we
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need a different time window to suppress the Green’s function, because the latter
is defined in the complementary medium. To this end we define a time window
w(c)(xA, xS , t) = u(t(c)

d (xA, xS) − tϵ − t), where t
(c)
d (xA, xS) denotes the travel time

of the direct arrival in the complementary medium. Applying this window to both
sides of equation (2.5.2) yields

f−
1 (xS , xA, t) =

w(c)(xA, xS , t)
∫

∂D0

dx
∫ t

−∞
R(xS , x, t − t′)f+

1 (x, xA, t′)dt′. (2.5.5)

Equations (2.5.4) and (2.5.5), with f+
1 given by equation (2.5.3), form a set of two

equations for the two unknown functions M+(x, xA, t) and f−
1 (x, xA, t) (with x at

∂D0). These functions can be resolved from equations (2.5.4) and (2.5.5), assuming
R(x, xS , t), R(xS , x, t), td(xA, xS), t

(c)
d (xA, xS) and T inv

d (xA, xS , t) are known for all
x and xS at ∂D0. The reflection responses R(x, xS , t) and R(xS , x, t) are obtained
from measurements at the upper boundary ∂D0 of the medium. This involves de-
convolution for the source function, decomposition and, when the upper boundary
is a reflecting boundary, elimination of the surface-related multiple reflections [Ver-
schuur et al., 1992]. Because the deconvolution is limited by the bandwidth of the
source function, the time constant tϵ in the window function is taken equal to half
the duration of the source function. This implies that the method will not account
for short period multiples in layers with a thickness smaller than the wavelength
[Slob et al., 2014]. The travel times td(xA, xS) and t

(c)
d (xA, xS), and the inverse

of the direct arrival of the transmission response, T inv
d (xA, xS , t), can be derived

from a background model of the medium and its complementary version (once the
background model is known, its complementary version follows immediately). A
smooth background model is sufficient to derive these quantities, hence, no infor-
mation about the scattering interfaces inside the medium is required. The iterative
Marchenko scheme to solve for M+(x, xA, t) and f−

1 (x, xA, t) reads

f−
1,k(xS , xA, t) =

w(c)(xA, xS , t)
∫

∂D0

dx
∫ t

−∞
R(xS , x, t − t′)f+

1,k(x, xA, t′)dt′, (2.5.6)

M+
k+1(xS , xA, −t) =

w(xA, xS , t)
∫

∂D0

dx
∫ t

−∞
R(x, xS , t − t′)f−

1,k(x, xA, −t′)dt′, (2.5.7)

with

f+
1,k(x, xA, t) = T inv

d (xA, x, t) + M+
k (x, xA, t), (2.5.8)

starting with M+
0 (x, xA, t) = 0. Once M+(x, xA, t) and f−

1 (x, xA, t) are found,
f+

1 (x, xA, t) is obtained from equation (2.5.3) and, subsequently, the Green’s func-
tions G+(xA, xS , t) and G−(c)(xA, xS , t) are obtained from equations (2.5.1) and
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(2.5.2). Note that only G+(xA, xS , t) is defined in the actual medium. To obtain
G−(xA, xS , t) in the actual medium we consider the set of equations (2.4.8) and
(2.4.11), which read in the time domain (using equation (2.4.12))

G−(xA, xS , t) + f
−(c)
1 (xS , xA, t) =∫

∂D0

dx
∫ t

−∞
R(x, xS , t − t′)f+(c)

1 (x, xA, t′)dt′ (2.5.9)

and

G+(c)(xA, xS , t) − f
+(c)
1 (xS , xA, −t) =

−
∫

∂D0

dx
∫ t

−∞
R(xS , x, t − t′)f−(c)

1 (x, xA, −t′)dt′, (2.5.10)

respectively. The same reasoning as above leads to the following iterative Marchenko
scheme for the focusing functions in the truncated complementary medium

f
−(c)
1,k (xS , xA, t) =

w(xA, xS , t) ×
∫

∂D0

dx
∫ t

−∞
R(x, xS , t − t′)f+(c)

1,k (x, xA, t′)dt′ (2.5.11)

M
+(c)
k+1 (xS , xA, −t) =

w(c)(xA, xS , t)
∫

∂D0

dx
∫ t

−∞
R(xS , x, t − t′)f−(c)

1,k (x, xA, −t′)dt′, (2.5.12)

with

f
+(c)
1,k (x, xA, t) = T

inv(c)
d (xA, x, t) + M

+(c)
k (x, xA, t), (2.5.13)

starting with M
+(c)
0 (x, xA, t) = 0. Here T

inv(c)
d (xA, x, t) can be derived from the

complementary background model. Once the focusing functions f
+(c)
1 (x, xA, t) and

f
−(c)
1 (x, xA, t) are found, the Green’s functions G−(xA, xS , t) and G+(c)(xA, xS , t)

are obtained from equations (2.5.9) and (2.5.10).
We conclude this section by showing how G+(xA, xS , t) and G−(xA, xS , t) can

be used to image the interior of the non-reciprocal medium. First we derive a
mutual relation between these Green’s functions. To this end, consider the quantities
in Table 4. Here R(c)(x, xA, ω) in state A is the reflection response at ∂DA of
the complementary medium below ∂DA, with xA defined just above ∂DA and the
medium in state A being homogeneous above ∂DA. Substituting the quantities
of Table 4 into equation (2.4.5) (with ∂D0 and ∂DA replaced by ∂DA and ∂DM ,
respectively) and using equation (2.4.12), gives

G−(xA, xS , ω) =
∫

∂DA

R(xA, x, ω)G+(x, xS , ω)dx, (2.5.14)
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or, applying an inverse Fourier transformation to the time domain,

G−(xA, xS , t) =
∫

∂DA

dx
∫ t

−∞
R(xA, x, t − t′)G+(x, xS , t′)dt′. (2.5.15)

Given the Green’s functions G+(x, xS , t) and G−(xA, xS , t) for all xA and x at ∂DA

for a range of source positions xS at ∂D0, the reflection response R(xA, x, t) for all
xA and x at ∂DA can be resolved by multidimensional deconvolution [Wapenaar
et al., 2000; Amundsen, 2001; Holvik and Amundsen, 2005; Wapenaar and van der
Neut, 2010; van der Neut et al., 2011; Ravasi et al., 2015]. An image can be obtained
by selecting R(xA, xA, t = 0) and repeating the process for any xA in the region of
interest.

We discuss an alternative imaging approach for the special case of a laterally
invariant medium. To this end we first rewrite equation (2.5.14) as a spatial convo-
lution, taking x1,S = 0, hence

G−(x1,A, x3,A, x3,S , ω) =∫ ∞

−∞
R(x1,A − x1, x3,A, ω)G+(x1, x3,A, x3,S , ω)dx1. (2.5.16)

We define the spatial Fourier transform of a function P (x1, x3, ω) as

P̃ (s1, x3, ω) =
∫ ∞

−∞
P (x1, x3, ω) exp(−iωs1x1)dx1, (2.5.17)

with s1 being the horizontal slowness. In the (s1, x3, ω)-domain, equation (2.5.16)
becomes

G̃−(s1, x3,A, x3,S , ω) = R̃(s1, x3,A, ω)G̃+(s1, x3,A, x3,S , ω), (2.5.18)

or, applying an inverse Fourier transformation to the time domain,

G−(s1, x3,A, x3,S , τ) =
∫ τ

−∞
R(s1, x3,A, τ − τ ′)G+(s1, x3,A, x3,S , τ ′)dτ ′. (2.5.19)

Given the Green’s functions G+(s1, x3,A, x3,S , τ) and G−(s1, x3,A, x3,S , τ), the re-
flection response R(s1, x3,A, τ) for each horizontal slowness s1 can be resolved by
1D deconvolution. An image can be obtained by selecting R(s1, x3,A, τ = 0) and
repeating the process for all s1 and for any x3,A in the region of interest.

2.6 Numerical example

We illustrate the proposed methodology with a numerical example, mimicking an
ultrasound experiment. For simplicity we consider a horizontally layered medium,
consisting of three homogeneous layers and a homogeneous half-space below the
deepest layer. The medium parameters of the layered medium, α(x3), βrs(x3) and
γr(x3) are shown in Figure B.2. In many practical situations the parameters β31(x3)
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Figure B.2: Solid lines: parameters α(x3), β11(x3), β33(x3), β31(x3), γ1(x3) and γ3(x3) of
the layered medium. Dotted lines: smoothed medium parameters, used to model the initial
estimate of the focusing functions.

and γ3(x3) will be zero, but we choose them to be non-zero to demonstrate the gen-
erality of the method. We define a source at xS = (0, 0) at the top of the first
layer, which emits a time-symmetric wavelet S(t) with a central frequency of 600
kHz into the layered medium. We use a wavenumber-frequency domain modelling
method [Kennett and Kerry, 1979], adjusted for non-reciprocal media, to model
the response to this source. The modelled reflection response, R(x, xS , t) ∗ S(t) at
∂D0 (the asterisk denoting convolution), is shown in Figure B.3. To emphasise the
multiple scattering, a time-dependent amplitude gain has been applied, using the
function exp{3t/375µs}. Note that the apices of the reflection hyperbolae drift to
the left with increasing time, which is a manifestation of the non-reciprocal medium
parameters. Because the medium is laterally invariant, the response to any other
source at the surface is just a laterally shifted version of the response in Figure B.3.
We apply the Marchenko method, discussed in detail in the previous section, to
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Figure B.3: The modeled reflection response R(x, xS , t) ∗ S(t) at ∂D0. Note the asymmetry
with respect to the dashed line due to the non-reciprocal medium parameters.

derive the focusing functions f±
1 (xS , xA, t) and f

±(c)
1 (xS , xA, t) for fixed xS = (0, 0)

and variable xA. As input we use the reflection response R(x, xS , t) ∗ S(t) of the
actual medium and the direct arrivals Td(xA, x, t) and T

(c)
d (xA, x, t), modelled in

a smoothed version of the truncated medium and its complementary version (the
smoothed medium is indicated by the dotted lines in Figure B.2). For simplicity we
approximate the inverse direct arrivals T inv

d (xA, x, t) and T
inv(c)
d (xA, x, t) in equa-

tions (2.5.8) and (2.5.13) by the time-reversals Td(xA, x, −t) and T
(c)
d (xA, x, −t).

For tϵ in the time windows w(xA, xS , t) and w(c)(xA, xS , t) we choose half the dura-
tion of the symmetric wavelet S(t), i.e., tϵ = 0.65µs, and the Heaviside functions are
tapered. Because we consider a laterally invariant medium, the integrals in the right-
hand sides of equations (2.5.6), (2.5.7), (2.5.11) and (2.5.12) are efficiently replaced
by multiplications in the wavenumber-frequency domain. In total we apply 20 iter-
ations of the Marchenko scheme to derive the focusing functions f±

1 (xS , xA, t)∗S(t)
and the same number of iterations to derive f

±(c)
1 (xS , xA, t) ∗ S(t). These focusing

functions are substituted into equations (2.5.1) and (2.5.9) (of which the integrals
are also evaluated via the wavenumber-frequency domain) to obtain the wave fields
G+(xA, xS , t)∗S(t) and G−(xA, xS , t)∗S(t). The superposition of these wave fields
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Figure B.4: Snapshots of {G+(xA, xS , t) + G−(xA, xS , t)} ∗ S(t), retrieved via equations
(2.5.1) and (2.5.9), for xS = (0, 0) and variable xA.
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Figure B.5: Downgoing and upgoing wave fields at x3,A = 13 cm. (a)
G+(x1, x3,A, x3,S , t) ∗ S(t), (b) G−(x1, x3,A, x3,S , t) ∗ S(t), (c) G+(s1, x3,A, x3,S , τ) ∗ S(τ),
(d) G−(s1, x3,A, x3,S , τ) ∗ S(τ).

is shown in grey-level display in Figure B.4 in the form of snapshots (i.e., wave fields
at frozen time), for fixed xS = (0, 0) and variable xA. The amplitudes are clipped
at 8% of the maximum amplitude. This figure clearly shows the propagation of the
wave field from the source through the layered non-reciprocal medium. The wave-
fronts are asymmetric as a result of the non-reciprocal medium parameters (for a
reciprocal medium these snapshots would be symmetric with respect to the vertical
dashed lines). Multiple scattering between the layer interfaces is also clearly visible.
The interfaces, indicated by the solid horizontal lines in each of the panels in Figure
B.4, are only shown here to aid the interpretation of the retrieved Green’s functions.
However, no explicit information of these interfaces has been used to retrieve these
Green’s functions; all information about the scattering at the layer interfaces comes
directly from the reflection response R(x, xS , t) ∗ S(t). The snapshots also exhibit
some weak spurious linear events (indicated by the arrows in Figure B.4), which are
mainly caused by the negligence of evanescent waves and the absence of very large
propagation angles in the reflection response.

Next, we image the interfaces of the layered medium, following the approach for
a laterally invariant medium described at the end of the previous section. Figures
B.5a,b show the downgoing and upgoing wave fields G+(x1, x3,A, x3,S , t) ∗ S(t) and
G−(x1, x3,A, x3,S , t)∗S(t), respectively, for x3,A = 13 cm (the depth of the horizontal
dotted lines in Figure B.4). The horizontal dotted lines in Figures B.5a,b indicate
the times of the snapshots in Figure B.4. Figures B.5c,d show the downgoing and
upgoing wave fields G+(s1, x3,A, x3,S , τ) ∗ S(τ) and G−(s1, x3,A, x3,S , τ) ∗ S(τ), re-
spectively, for a range of horizontal slownesses s1. From these wave fields we derive
the reflection response R(s1, x3,A, τ) by inverting equation (2.5.19) for each hori-
zontal slowness s1. The image at x3,A is obtained as R(s1, x3,A, τ = 0). We repeat
this for all x3,A between 0 and 25 cm, in steps of 0.25 mm. The result is shown
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Figure B.6: Images in the (s1, x3)-domain of the layered medium of Figure B.2. (a)
Marchenko imaging, accounting for non-reciprocity. (b) Reference reflectivity. (c) Primary
imaging, ignoring non-reciprocity. (d) Primary imaging, accounting for non-reciprocity.

in Figure B.6a. This figure clearly shows images of the three interfaces in Figure
B.2. For comparison, Figure B.6b shows, as a reference, the true reflectivity. The
relative amplitude errors of the imaged interfaces are between 0.5% and 2%, except
for slownesses |s1| > 0.2 ms/m, close to the evanescent field. Figure B.6c shows the
result of standard primary imaging, ignoring non-reciprocity. The trace at s1 = 0
contains images of the three interfaces at the correct depths, but it also contains false
images caused by the internal multiples. Moreover, the traces for s1 ̸= 0 contain
images at wrong depths only. Finally, Figure B.6d is the result of primary imaging,
taking non-reciprocity into account (by applying one iteration with our method).
The three interfaces are imaged at the correct depths for all horizontal slownesses,
but the false images are not suppressed.

2.7 Conclusions

Marchenko imaging has recently been introduced as a novel approach to account
for multiple scattering in multidimensional acoustic and electromagnetic imaging.
Given the recent interest in non-reciprocal materials, here we have extended the
Marchenko approach for non-reciprocal media. We have derived two iterative Marchenko
schemes, one to retrieve focusing functions in a truncated version of the actual
medium and one to retrieve these functions in a truncated version of the comple-
mentary medium. Both schemes use the reflection response of the actual medium as
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input, plus estimates of the direct arrivals of the transmission response of the trun-
cated actual medium (for the first scheme) and of the truncated complementary
medium (for the second scheme). We have derived Green’s function representa-
tions, which express the downgoing and upgoing part of the Green’s function inside
the non-reciprocal medium, in terms of the reflection response at the surface of the
actual medium and the focusing functions in the truncated actual and complemen-
tary medium. From these downgoing and upgoing Green’s functions, a reflectivity
image of the medium can be obtained. We have illustrated the proposed approach at
the hand of a numerical example for a horizontally layered non-reciprocal medium.
This example shows an accurate wave field, propagating through the medium and
scattering at its interfaces, retrieved from the reflection response at the surface.
Moreover, it shows an accurately obtained artefact-free reflectivity image of the
non-reciprocal medium, which confirms that the proposed method properly handles
internal multiple scattering in a non-reciprocal medium.
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