
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Exploring Feasibility of
FPGAs in Implantable
Medical Devices
MSc Computer Engineering
David Veselka

Exploring Feasibility of

FPGAs in Implantable
Medical Devices

by

David Veselka
to obtain the degree of Master of Science

at Delft University of Technology,
to be defended publicly on Wednesday July 28, 2021 at 11:00 AM.

Student number: 4280199
Project duration: March 23, 2020 – July 28, 2021
Thesis committee: Prof. dr. ir. J. S. S. M. Wong TU Delft, supervisor

Prof. dr. ir. T. G. R. M. van Leuken TU Delft
Dr. ir. R. Bishnoi TU Delft
Prof. dr. ir. C. Strydis Erasmus MC
Ir. M. A. Siddiqi Erasmus MC, daily supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Implantable Medical Devices (IMDs) are deployed in patients to treat a range of medical conditions.
Technological advancements have enabledmanufacturers to fit IMDs with specialized hardware that ac-
celerates compute-intensive medical therapies next to a software-run host processor. However, mostly
hardware acceleration is found in the form of ASIC peripherals next to a host processor in state-of-the-
art IMDs, while low-power FPGAs could provide a comparable performance gain with the added benefit
of the upgradability of functionality. Existing literature about low-power FPGAs focuses on new algo-
rithms or performance improvements, while largely ignoring power and energy analysis, the latter being
the most limiting factor in the IMD environment. This thesis investigates under what conditions FPGAs
could be added to IMDs by developing two use cases: an FPGA securing wireless communication, and
accelerating a neural network aiding medical therapies that depend on pattern detection. These cases
are evaluated on FPGA, eFPGA and MCU with ASIC peripheral platforms, from which performance,
energy usage and prospected IMD battery life is derived. On one end, it was found that AES encryption
used 4.4 times the energy of an MCU hardware-accelerated implementation while being 17% slower.
However, employing lightweight ciphers on the FPGA closes this gap. Furthermore, adding an FPGA
results in only a 7.5% decrease in battery life when the FPGA is shut off during idling to combat its high
static current draw. Running an FPGA-accelerated neural network is feasible if the active time is 6.5
minutes per day. With weekly recharging, continuous monitoring is possible. Using an eFPGA, which
is an embedded FPGA fabric integrated within an MCU, results in using only 12% to 21% of the FPGA
package area and is almost 2 times as energy efficient under 2 minutes daily usage as an FPGA. As
FPGAs in IMDs is a novel field, research was done in legal regulation of IMDs, where it was found
that existing regulations on software devices also applies to FPGAs. Therefore, all obstacles of the
technical and legal kind have been removed that hold IMD manufacturers from using FPGAs in their
devices.

David Veselka
Delft, July 2021

i

Contents

Abstract i

Nomenclature iv

List of Figures v

List of Tables vii

Acknowledgements viii

1 Introduction 1
1.1 Implantable Medical Devices . 1
1.2 Problem statement . 2

1.2.1 Research questions . 3
1.2.2 Project Goal and Scope . 3

1.3 Methodology . 4
1.3.1 Case 1: security primitives . 4
1.3.2 Case 2: Artificial Neural Network . 4
1.3.3 Evaluation. 5

1.4 Thesis structure. 5

2 Background 6
2.1 Ultra-low-power FPGA and eFPGA technology. 6

2.1.1 Processing hardware developments. 6
2.1.2 FPGAs . 7
2.1.3 eFPGAs . 7

2.2 Cryptography for ultra-low-power hardware . 8
2.2.1 Symmetric block ciphers . 8
2.2.2 Hash functions . 9
2.2.3 Public-key cryptosystems . 9
2.2.4 Practical lightweight cryptography in literature . 10

2.3 Artificial Neural Networks and their application in low-power environments 11
2.3.1 The artificial neuron . 11
2.3.2 ANN types . 12
2.3.3 Network training and inference . 13
2.3.4 Artificial Neural Networks in IMDs . 14

2.4 Wireless energy harvesting . 15
2.5 Conclusions. 16

3 Design 17
3.1 Design overview and experiment goals . 17
3.2 Selected algorithms . 18

3.2.1 AES-128 . 18
3.2.2 SIMON-64/128 . 20
3.2.3 PHOTON-128. 21
3.2.4 Lattice CNN Compact Accelerator . 23

3.3 Selected interfaces . 23
3.3.1 Off-die: UART . 24
3.3.2 On-die: AHB-Lite . 26

ii

Contents iii

3.4 Selected platforms . 32
3.4.1 MCUs . 32
3.4.2 FPGAs . 33
3.4.3 eFPGAs . 33
3.4.4 LSE and Synplify Pro. 33

3.5 Menta eFPGA . 33
3.5.1 Menta eFPGA design tools . 34
3.5.2 Menta eFPGA topology . 35
3.5.3 LUTs and DFFs calculation of Menta CNN numbers 37
3.5.4 Resulting eFPGA architectures . 38

3.6 Current measurements. 39
3.6.1 MCU measurements . 40
3.6.2 FPGA measurements . 40
3.6.3 eFPGAs . 40
3.6.4 Crypto cores measurement preparations . 41
3.6.5 Compact CNN accelerator measurement preparations. 42

3.7 Conclusions. 42

4 Results 45
4.1 Calculating and Reducing Results . 45

4.1.1 FPGA resource usage . 45
4.2 Q1: Can FPGA fabric be used in IMDs in terms of energy and execution time? 49

4.2.1 Algorithm execution time . 49
4.2.2 Energy consumption . 49

4.3 Q2: How big are the improvements of an eFPGA over an FPGA with regard to energy
consumption and area? . 54
4.3.1 eFPGA area . 54
4.3.2 eFPGA power. 55
4.3.3 CNN-equipped FPGA vs eFPGA battery life . 57

4.4 Q3: In what cases is daily FPGA reconfiguration beneficial in IMDs? 58
4.4.1 Configuration latency . 59
4.4.2 Configuration energy . 61

4.5 Q4: Having an FPGA-equipped IMD, what are the difficulties in aspect to legal certifica-
tion? . 62
4.5.1 Classification of IMDs according to MDR2017/745 62
4.5.2 Regulations considering hardware and software in IMDs 63
4.5.3 Considering FPGAs as software under regulation 65

4.6 Conclusions. 66

5 Conclusion 69
5.1 Summary . 69
5.2 Main Contributions . 71
5.3 Future work . 72

References 78

A RTL schematics Crypto IP cores + UART 79

B Source code of UART and AHB-Lite interfaces 83
B.1 UART interfacing components . 83

B.1.1 AES . 83
B.1.2 SIMON-64/128 . 85
B.1.3 PHOTON-128. 87

B.2 AHB interfacing components. 90
B.2.1 AES-128 . 90
B.2.2 SIMON-64/128 . 92
B.2.3 PHOTON-128. 95

Nomenclature

Abbreviations

Abbreviation Definition
AES Advanced Encryption Standard
AHB AMBA High-performance Bus
ANN Artificial Neural Network
ASIC Application-specific integrated circuit
CNN Convolutional neural network
FDA Food and Drug Administration
FPGA Field-programmable gate array
FSM Finite-state machine
HDL Hardware description language
HW Hardware
IMD Implantable medical device
IP Intellectual property
LUT Lookup Table
MCU Microcontroller unit
PCB Printed circuit board
RTL Register-transfer level
SW Software
UART Universal asynchronous receiver-transmitter

iv

List of Figures

1.1 Various neural implants and the location where they interface the central nervous system.
[3] . 1

2.1 Schematic representation of encrypting data with a block cipher [32] 9
2.2 Symmetric and Asymmetric Cryptosystem Scheme Asymmetric cryptography [37] . . . 10
2.3 Schematic representation of an artificial neuron [44] . 11
2.4 Commonly used activation functions [44] . 12
2.5 Feedforward neural network with one input, one output and one hidden layer. [45] . . . 13
2.6 Steps in classifying an image with a CNN [46] . 13
2.7 The training and inference phases of a neural network [47] 14

3.1 Top-level schematic view of the hardware of a modern IMD 18
3.2 Top-level schematic view of AES-128 IP core . 19
3.3 Top-level schematic view of SIMON-64/128 IP core . 20
3.4 Top-level schematic view of PHOTON-128 IP core . 21
3.5 Original configuration with externally gated clock signal 22
3.6 Modified configuration with system clock signal . 22
3.7 Lattice SensAI toolflow [75] . 23
3.8 Diagram showing UART timing [77] . 24
3.9 Top-level schematic view of UART module used . 24
3.10 Key-or-Text logic for AES . 25
3.11 AHB-Lite top-level overview [79] . 27
3.12 AHB-Lite interfaces [79] . 27
3.13 AHB-Lite pipelining of address and data phases [79] . 28
3.14 Simplified FSM describing the AHB-Lite interface for AES 28
3.15 Top-level schematic view of AES + AHB-Lite . 29
3.16 Top-level schematic view of SIMON + AHB-Lite . 29
3.17 FSM describing the PHOTON initialization interface . 30
3.18 Top-level schematic view of AES + AHB-Lite . 30
3.19 Simplified FSM describing the AHB-Lite interface for PHOTON 31
3.20 Top-level schematic view of PHOTON + AHB-Lite . 32
3.21 Origami Designer with an open project . 34
3.22 Origami Programmer with an open project . 35
3.23 A reference Menta architecture, outlining its different building blocks 36
3.24 A CNN-fitting architecture with RAM and DSP hard macros 37
3.25 Current measurement points on the iCE40UP5K-B-EVN evaluation board 41
3.26 Modified RTL schematics for AES current measurements 44

4.1 Maximum operating frequencies of all crypto core assemblies on the iCE40UP5K FPGA 47
4.2 LUT and DFF resource usage on iCE40 FPGA and Menta eFPGA platforms 48
4.3 DSP and RAM resource usage on iCE40 FPGA and Menta eFPGA platforms 48
4.4 Crypto IP core execution time on MCU and FPGA platforms 49
4.5 Crypto IP core energy consumption, MCUs and FPGA 50
4.6 FPGA energy consumption of crypto IP cores versus Lattice CNN 51
4.7 IMD battery life with and without FPGA . 53
4.8 IMD battery life when power gating the FPGA . 54
4.9 Area of Menta eFPGA architectures relative to Lattice iCE40UP5K FPGA 55
4.10 Static power of Menta architectures on all available process technologies 56
4.11 Total power of Menta architectures on all available process technologies 57

v

List of Figures vi

4.12 Battery life of an IMD with neural network-equipped (e)FPGA. For the eFPGA platform,
a 30% activity factor has been used . 58

4.13 Execution time of all crypto cores, considering FPGA reconfiguration 60
4.14 Energy consumption during AES encryption, considering FPGA reconfiguration 62
4.15 Rules for classifying medical devices according to MDR2017/745, Annex VIII regulation

[89] . 64
4.16 Classes of medical devices according to MDR2017/745 regulation [89] 68

A.1 AES + UART assembly schematic . 80
A.2 SIMON + UART assembly schematic . 81
A.3 PHOTON + UART assembly schematic . 82

List of Tables

2.1 Ultra-low-power FPGAs used in literature . 7
2.2 Low-power FPGA and eFPGA options . 8
2.3 Hardware implementations of lightweight cryptography ciphers 10
2.4 Wireless energy harvesting in literature . 16

3.1 Selected algorithms . 19
3.2 AES-128 ports description . 19
3.3 SIMON-64/128 ports description . 20
3.4 PHOTON-128 ports description . 21
3.5 Specifications of selected Gecko MCUs . 32
3.6 Specifications of selected Lattice FPGA . 33
3.7 Overview of Menta architecture design parameters . 38
3.8 Input design parameters for the three Menta architectures designed for our experiments 39
3.9 Resulting properties of the three eFPGA architectures designed for our experiments . . 39
3.10 Available measurement data points . 40
3.11 Static & dynamic current values for Tiny & Giant Gecko @ 13MHz (in mA) 40
3.12 Cycle count for single cryptographic operation . 41

4.1 Obtaining the estimation factor for resource usage of CNN on Menta fabric 47
4.2 Static and dynamic current values for two IMD hardware scenarios 52
4.3 iCE40UP configuration time for SPI Master and Slave modes 59

vii

Acknowledgements
First of all, I am grateful to God for the grace and perseverance that were necessary to complete this
thesis.

From Erasmus MC, I would like to thank prof. dr. Christos Strydis for overseeing the technical part
of my thesis and tracking and steering my progress where needed. Likewise, I thank Ali Siddiqi for his
daily supervision and being always available to answer my questions about any part of my research.
With their help, the quality and efficiency of the conducted research has greatly improved.

I would also like to thank prof. dr. Stephan Wong and dr. Rajendra Bishnoi from TU Delft for their
supervision and helping me to keep up the pace in thesis writing, specifically towards the end. Without
their help, I would definitely not having finished my thesis by now.

I would also like to thank the employees from Menta S.A.S. for their generosity in giving me time
to use their eFPGA design tools, enabling small eFPGA energy analysis which is novel in literature.
Especially thanks to Catherine le Lan, who gave me technical support in weekly meetings and more
when it was needed.

Finally, I must expressmy very profound gratitude tomy friends, family andmy girlfriend for providing
me with unfailing support and encouragement throughout the process of researching and writing this
thesis, without whom this would not have been possible.

viii

1
Introduction

1.1. Implantable Medical Devices
ImplantableMedical Devices (IMDs) are deployed in patients to treat a range of medical conditions. Like
other electronic devices, IMDs benefit from technological advancements that make extending features
and functionality possible. Likewise, many new methods for examining and treating health conditions
have emerged, with implants serving as pacemakers, neurostimulators (Figure 1.1) and drug admin-
istering devices. Since the 1990s, IMDs have featured MCUs at their core [1]. This enables recent
devices to have features such as software upgradability [2], wireless connectivity for live monitoring
and the possibility for more computational intensive algorithms incorporated in neurostimulators.

Figure 1.1: Various neural implants and the location where they interface the central nervous system. [3]

First, the incorporation of a wireless channel brings a number of advantages. Through a communi-
cation channel, interventions like upgrading firmware, extending functionality and correcting bugs can
be performed without physical hardware replacement. Remote monitoring via a specific reader device
or even via a smartphone is already implemented in recent IMDs [2]. A feature added in recent IMDs
is wireless power transfer which allows the IMD to harvest energy, saving on battery charge and ex-
tending the lifetime of the implant [4]. These advantages can be summarized in a general result: not

1

1.2. Problem statement 2

having to perform surgery if one of the named interventions needs to be performed.
However, having wireless connectivity also has negative consequences. When active, wireless com-
munication is responsible for the major part of the total power consumption of an IMD. To avoid rapid
battery depletion, communication duration has to be kept to a minimum and energy efficient protocols
have to be used. Additionally, a wireless link opens the door to potential adversaries that can try to
compromise the implant. Due to hardware restrictions, even recently developed implants did not im-
pose security on their wireless links. This poses a risk to getting hijacked with inexpensive equipment
[5]. Even if some form of security is implemented, weaknesses in a standard protocol like Bluetooth
Low Energy (BLE) cause many devices to be vulnerable [6]. Therefore, research is needed on the
feasibility of making an IMD both energy efficient and secure.

Second, with the rapid increase in computational performance-per-watt in the semiconductor in-
dustry, advanced algorithms become feasible to run on low-power hardware. Problems like seizure
detection and prediction can be integrated in IMDs when using specialized hardware [7]. Moreover,
artificial neural networks (ANNs), renowned for their pattern detection ability superior to conventional
algorithms, are within reach [8]. Integrating ANNs within IMDs would open a realm of possibilities for
medical treatments that were computationally infeasible before. But, ANNs are generally known for
their high arithmetic intensity, thus profiting from hardware acceleration for gains in performance and
energy efficiency. As the IMD environment is tightly constrained, especially in terms of available en-
ergy, hardware acceleration would most likely improve feasibility of ANNs in IMDs.
However, no published literature combines hardware-accelerated artificial neural networks with the
tightly constrained environment of IMDs, featuring seizure prediction or equivalent medical therapies.
Neural networks are shown to operate on a low-power FPGA [9], but no analysis is made with regard
to prospected IMD battery life and the impact of FPGA hardware acceleration thereupon. Therefore,
additional research is needed on the conditions under which an ANN can be deployed on an FPGA-
equipped IMD.

In the following sections of this chapter, the main trends and challenges in IMD hardware will be
highlighted and focus will be put on the use of FPGAs alongside standard microprocessors found in
modern IMDs. Due to the reconfigurable nature of FPGAs, algorithms can be parallelized more than
CPUs at a similar footprint and energy consumption. FPGAs will be considered for two purposes:
securing a wireless communication interface and as a functional unit that accelerates medical therapy,
with primary focus on the communication interface. The goal is not to reinvent the wheel in the sense
that the processor, algorithms and peripheral interfaces will all be built from the ground up. Instead
the state-of-the-art in wireless IMD security and functional algorithms will be reviewed and a selection
implemented on reconfigurable hardware to gain performance and power consumption figures. Next
to technical evaluation, research on the legal certification process is performed to determine whether
an FPGA-equipped IMD needs extra legislative steps to be allowed on the market.

1.2. Problem statement
An IMD with wireless connectivity should have strong enough security mechanisms to avoid security
breaches. Subsequently, functionality and security hardware has to adhere to the tightly energy con-
strained environment. Current IMDs, however, are mostly limited by underpowered hardware and
battery life restrictions. ASICs and even FPGAs have been proposed as auxiliary devices in IMDs to
provide more computing power and higher energy efficiency than CPUs. ASICs have a high upfront
cost and do not have the possibility to have their functionality fundamentally changed without physical
access. FPGAs have the potential to overcome these shortcomings, but no research provides a com-
plete picture on FPGAs in IMDs in terms of functionality while taking into account medical certification,
detailed energy consumption and the possibility of hardware reconfiguration without physical access.
The problem statement that is proposed is therefore formulated as follows:

Can FPGAs be used as a reconfigurable fabric within IMDs?

The novelty of this research direction lies in the completeness of exploring the feasibility of IMD FP-
GAs, not only on functionality, energy consumption or reconfigurability but combining all three, among

1.2. Problem statement 3

other factors. By having a complete picture, IMD manufacturing companies could consider FPGAs as
most beneficial for a certain use case. This research will try to uncover in what cases an FPGA provides
clear advantages for usage in IMDs.

1.2.1. Research questions
To be able to answer the problem statement properly, it has to be broken down in several research
questions. These questions are tied to different aspects that determine feasibility of FPGA-equipped
IMDs. Classical properties like performance gain and reconfigurability drive the interest in FPGAs,
but putting them in IMDs is only a good idea if energy demand is not too high and the corresponding
performance gain is significant. Furthermore, potential legal regulation obstacles need to be removed
to answer the problem statement positively.

The research questions are formulated as follows:

1. Can FPGA fabric be used in IMDs in terms of energy and execution time?
The main features for wanting to integrate FPGAs in IMDs is the prospected performance gain
with parallelizable algorithms together with the flexibility of reconfigurability. For this reason, we
will evaluate performance differences compared to ASIC and CPU implementations common in
modern IMDs. In addition, we will look at FPGA resource usage of all created hardware implemen-
tations to evaluate whether they fall within the resource count bound of our low-power reference
FPGA [10]. Moreover, mainly constraining performance is the limited energy available from the
small integrated battery, that is supposed to provide a multi-year operation time before needing
to be replaced. These points will be addressed in the first research question.

2. How big are the improvements of an eFPGA over an FPGA with regard to energy consump-
tion and area?
Regarding area, the available physical size in an IMD is another determining requirement for el-
igible FPGAs. IMDs often have less than 10cm2 of PCB area, ruling out adding FPGAs with a
large package size. However, FPGA solutions exist that do not involve adding an extra physical
chip. Instead, an embedded FPGA, eFPGA for short, is integrated onto the same silicon die as
the host processor during manufacturing. This technology could possibly provide advantages in
area and energy consumption which has a direct impact on IMD battery life. Furthermore, per-
formance with regard to latency and throughput is greatly improved. For the area comparison, a
look is taken at the respective silicon areas without surrounding components. In answering the
second research question, the gains and benefits of eFPGAs compared to regular FPGAs will be
examined to see whether eFPGAs contribute significantly to feasibility.

3. In what cases is daily FPGA reconfiguration beneficial in IMDs?
A unique feature of FPGAs not found in regular microprocessors or ASICs is hardware reconfig-
urability. This provides the possibility to run any design with the performance of hardware im-
plementations and with the ease of upgrading similar to software implementations. Designs can
be swapped on the fly for extended functionality or obsolete implementations can be upgraded
without having to resort to slower software implementations. However, where reconfiguration
is trivial for high-performance platforms, it is not for the ultra-low-power domain of IMDs due to
energy constraints. This leads to the third question.

4. Having an FPGA-equipped IMD, what are the difficulties in aspect to legal certification?
Next, the certification process that all IMDs have to go through before being put on the market
is analyzed. A federal regulatory body has to certify a complete device with its hardware and
software. If FPGAs would be used in commercial IMDs, they would likely require to being certified
for every hardware configuration that is used. If individual bitstreams can be separately certified,
this would mean that the complete functionality of an IMD could be changed without a change in
physical hardware. In answering the fourth question, the legal aspect is tackled.

1.2.2. Project Goal and Scope
The goal of of this thesis is to see in what areas (e)FPGAs, added to a traditional MCU-based IMD, are
advantageous over MCU-only IMDs. Quantitative results will be given in terms of performance gain
compared to traditional MCUs, energy consumption and expected battery life with and without FPGA
fabric. Designing an algorithm or IMD hardware/software architecture from scratch is considered out of

1.3. Methodology 4

scope for this thesis. Instead, most of the platforms and algorithms that are used in the conducted ex-
periments are pre-existing and openly available. The result from this thesis will mainly be an overview
on the most preeminent advantages that FPGAs will bring to the table in the resource-restricted environ-
ment of IMDs. Furthermore, the quantitative conditions under which FPGAs are feasible and beneficial
in IMDs will be obtained by the conducted experiments.

1.3. Methodology
As all research questions are geared towards an IMD-specific environment, typical use cases for an
IMD FPGA need to be defined. Noted in Section 1.1, two primary use cases will be emphasized in this
thesis: securing wireless communication and accelerating medical therapy. By designing experiments
that are based on these use cases, a realistic view of FPGA feasibility can be obtained. In the next
subsections the two use cases will be explained in more detail.

1.3.1. Case 1: security primitives
As has been mentioned in this chapter, wireless connections pose a security threat if no security mech-
anism is in place. Recent IMDs that have security often hide the details about the scheme used in
a ‘security through obscurity’ philosophy. The danger of this is that no external party can verify if the
security scheme is robust. Several cryptographic primitives, specifically focused on the hardware and
energy constraints of IMDs, have been proposed to be used in a freely available scheme [11] [12]. Also,
complete cryptographic schemes have been developed to have an alternative for current obfuscated
schemes [13] [14]. Hardware implementations of these open schemes and primitives have shown that
custom hardware, as opposed to a general-purpose processor, provides a major advantage in execu-
tion time and energy consumption[15][16][17].

Running security primitives on FPGAs is not new. However, doing this in IMDs is not done before
commercially, most likely due to added hardware complexity and a supposed increase in power con-
sumption. In this case, several open security primitives are selected and implemented on IMD-fitting
FPGA fabric, with a communication interface to connect to the host CPU. The well-known Advanced
Encryption Standard (AES) [18] is taken as reference, together with a lightweight block cipher (SIMON)
[19] and hashing algorithm (PHOTON) [20] for broader comparison. In addition, hardware communi-
cation interfaces are attached to all three blocks for an evaluation of a complete hardware block, as it
would appear in a real IMD. Evaluating this case will give insight in under what conditions it would be
beneficial to incorporate an FPGA into an IMD for secure communication.

1.3.2. Case 2: Artificial Neural Network
Inspired by biological neural networks, artificial neural networks (ANNs) are computing components
that analyze and process information. With ANNs, complex problems can be solved that would be diffi-
cult by human standards. In the field of IMDs these networks could be deployed for advanced pattern
detection in brain signals, for example to detect and predict incoming seizures [21, 22]. With ever-
increasing computational power of modern hardware, artificial neural networks become accessible to
smaller devices with a more stringent energy budget [23]. In literature and in this thesis, small neural
networks that occupy <10k LUTs and are targeted to run on platforms consuming <10mW will be called
tiny neural networks, TNNs for short. However, designing a TNN is a tedious task, let alone making one
specifically for the aforementioned purpose, seizure prediction. As has been said in Section 1.2.2, this
thesis is not design-centered. Instead, a readily-available implementation of a TNN will be evaluated
on FPGA fabric in terms of energy and resource usage. However, most TNNs are only available as
software implementation and those that exist in both hardware and software versions are mostly geared
towards higher-end hardware. For a full analysis, see Section 2.3. As a result, a sample project from
Lattice Semiconductor, Inc. will be loaded on a low-power FPGA from the same vendor. No equivalent
software implementation is available for comparison unfortunately, but the hardware implementation
can give a feasibility picture on its own. The main reason for not having a software-hardware com-
parison of a TNN, is because of unavailability: during the complete duration of this project, no TNN
with both implementations was available to us. An explanation of this unavailability can be attributed
to the novelty of TNNs in IMDs. To the best of our knowledge, no publicly available literature exists
that presents a IMD-focused TNN. By incorporating this use case, a look is taken at feasibility of future

1.4. Thesis structure 5

algorithms to be implemented in IMDs.

1.3.3. Evaluation
Both use cases will be elaborated on in a series of experiments. They consist, per use case, of compar-
ing functionally identical FPGA and software implementations (with and without hardware acceleration)
in terms of static and dynamic power draw, performance and most importantly, energy consumption. To
finally determine whether an implementation is feasible for IMDs, typical usage scenarios are drafted.
Through modeling idle and active usage, expected battery life is obtained for each experiment and plat-
form. Feasibility is hereby defined as: enabling an IMD battery life of 2.5 years or more, when
no recharging option is available.

1.4. Thesis structure
In Chapter 2, literature is explored and reviewed to gain background knowledge about recent techno-
logical trends in IMDs and motivation for the conducted experiments. Next, Chapter 3 outlines the
selected experiment platforms and algorithms. Furthermore, designed hardware descriptions and ex-
periment preparations are discussed. Chapter 4 contains results obtained from the experiments and
evaluation on these results is done. Finally, Chapter 5 concludes this thesis and states the directions
in which future work can be done.

2
Background

In Chapter 1, we stated a problem statement that is related to the feasibility of FPGAs in IMDs and
motivated why we would like to focus on it. In order to have better understanding of this problem
statement it is necessary to have a certain level of background knowledge about the following topics:

• Ultra-low-power FPGA and eFPGA technology is evaluated in Section 2.1 to explore the op-
tions in platform choice for hypothetical FPGA-equipped IMDs. Not only off-the-shelf FPGAs are
considered, but embedded FPGAs (eFPGAs) are introduced that have promising power and area
characteristics specifically for IMDs.

• Cryptography for ultra-low-power hardware enables secure communication of IMDs with the
outside world. To run cryptographic primitives on low-power hardware, lightweight algorithms
have been proposed and implemented in literature. In addition, existing standard primitives have
been adapted for low-power suitability. Both categories and a general introduction to the different
cryptographic primitive families will be discussed in Section 2.2, with focus on FPGA implemen-
tations.

• Artificial neural networks and their application in low-power environments has been a field
of recent interest and is explored in Section 2.3. First, a general introduction to neural networks
will be given to make the reader familiar with the matter. Thereafter, literature is reviewed fo-
cusing on hardware-accelerated low-power neural networks, with the goal of finding an FPGA
implementation of an IMD-suitable network for our experiments.

• Wireless energy harvesting is determining for the ability to run algorithms within an IMD without
using its integrated battery. As energy is a scarce resource in an IMD, measures have to be
taken to prevent adversaries from purposely draining the battery. In Section 2.4, the state-of-the-
art in energy harvesting technology for IMD-sized devices is explored to derive an upper bound
in power consumption for IMD FPGAs.

2.1. Ultra-low-power FPGA and eFPGA technology
2.1.1. Processing hardware developments
Processing in traditional IMDs mainly employ two solutions: MCUs with a software driven processor
and, more recently, MCUs with added hardware acceleration ASIC peripherals. MCUs allow for in-
expensive manufacturing, as these devices tend to be mass produced. Furthermore, changing func-
tionality or fixing bugs in its application software can be performed with minimal effort. However, with
a very strict and small power envelope allowed in IMDs, performance tends to be rather lacking and
functionality is limited to simple algorithms like pace making or uncomplicated neurostimulation [2]. On
the other end, ASIC processing blocks have been proposed for IMDs to alleviate the main processor
of compute-intensive tasks [24]. This way, execution time and energy costs are diminished. Hardware
acceleration blocks within MCUs, designed as ASICs, are more power efficient, smaller and faster than
equivalent software-only MCUs. If an IMD with an application specific device gets certified and is al-
lowed to the market, it can be reused again in newer models which may shorten time-to-market as the
possibility exists that no re-certification needs to happen. Among the disadvantages are: inflexibility in

6

2.1. Ultra-low-power FPGA and eFPGA technology 7

Table 2.1: Ultra-low-power FPGAs used in literature

Ultra-low-power FPGAs used in literature
FPGA model Reference Type of usage Clock speed (MHz) Power (mW) Energy usage (nJ)

Total Static Dynamic
CycloneV 5CEBA4 [26] Neurostimulation 7.8 43.86 40.14 3.72 -
IGLOO2 M2GL025 20.06 16.22 3.84 -
iCE40 HX-8K 3.62 2.24 1.38 -
XCS31400A [15] SHA-1 encryption 62.678 6.6 - - 132000
iCE40 [27] Sensor interface - 0.12 - - -
IGLOO AGL10 [28] Wireless message

management unit
- 0.101 0.008 0.093 -

Custom [29] 4-bit adder - 0.0076 - - 0.0029
iCE40 - 0.11 - - 0.0038
IGLOO - 0.5 - 0.0034
IGLOO AGLN250 [30] Neuroprocessor

for 32 channels
@25ksps

6.4 5.19 - - -

IGLOO AGL250V2 [31] Seizure detection
unit

0.0052 0.11 - 0.11 -

IGLOO AGLN250 [8] ANNs for person
identification

24.26 7.579 0.079 7.5 27.2

IGLOO M1AGL600 22.13 15.281 0.131 15.15 20.9
IGLOO M1AGL1000 21.2 30.213 0.213 30 23.5
iCE40 UltraPlus UP5K 33.8 9.577 0.277 9.3 8.1

hardware and inability to do fundamental bug fixes or feature upgrades. Next, the initial cost in engi-
neering effort is much higher than when using an FPGA for the same purpose. These reasons lead to
the decision to mainly consider a third solution in this section: FPGA devices, which are emerging in
low-power variants in recent years. FPGAs would be the ideal middle ground, retaining flexibility and
offer a considerable performance gain which is direly needed. The possibility of completely changing
its functionality by reconfiguration is especially useful in the IMD environment, where no physical ac-
cess for multiple years is preferred, as surgeries have to be avoided whenever possible. It has to be
noted however, that adding an FPGA to an IMD will possibly reduce battery life to the point where it is
infeasible to have an FPGA-equipped IMD run for multiple years without recharging. Especially high
static power is a well-known property of FPGAs. To investigate and show that FPGAs can be feasible
in IMDs under certain conditions, typical FPGA use cases for IMDs are designed and used for power,
area and performance measurements. As an addition, eFPGAs, short for embedded FPGAs, are con-
sidered, which can alleviate energy and area concerns that arise with adding an off-the-shelf FPGA
to an IMD. Two main use cases are distinguished, which are presented in Sections 1.3.1 and 1.3.2
respectively. To the best of our knowledge, no paper considers an extensive energy analysis using
IMD-suitable FPGAs. Instead, focus is often put on new algorithms or performance gains, mostly on
ASICs or MCUs [25, 15]. By going through each of our cases, process hardware developments are put
into an energy feasibility perspective.

2.1.2. FPGAs
To get a more concrete insight about the FPGAs that may be suitable to evaluate for IMDs, literature
was explored to gain insight in the different FPGAs used for low-power purposes. Table 2.1 shows
a selection of papers with their used FPGAs, their purpose and their energy and power consumption
figures. The power and energy figures presented in Table 2.1 vary greatly with clock speed and ap-
plication, so it is for indicative purposes only. From Table 2.1, it can be noted that two FPGA families
are of particular interest: The iCE40 from Lattice and IGLOO from Microsemi. Other FPGAs have a
static power consumption of more than 10mW, which will deplete an IMD battery very fast. As the
IGLOO FPGA family was not accessible to us due to availability issues, the Lattice iCE40 is taken as
the baseline FPGA in our experiments.

2.1.3. eFPGAs
eFPGAs, short for embedded FPGAs, have been showing up over recent years. They are marketed
as being faster and more efficient than a traditional setup of an external physical FPGA connected to
the MCU, because of integration of FPGA fabric inside the MCU. This could mean that no softcore has
to be implemented in FPGA logic if needed, because a hard CPU can be available next to an eFPGA.
For IMDs, this would result in a more efficient design that may offer a more powerful platform with a

2.2. Cryptography for ultra-low-power hardware 8

Table 2.2: Low-power FPGA and eFPGA options

FPGA vs eFPGA options
Manufacturer Evaluation board LUTs/LEs MACs Technology node
Achronix Yes up to 2.6M not mentioned TSMC 7nm FF, 12nm

FFC, 16nm FFC
QuickLogic Yes 1019 not mentioned TSMC 65nm, 40nm, GF

65nm, 40nm, 22FDX
Menta Yes 100-200k up to 1000+ Any
Adicsys No 100-100k not mentioned Any
FlexLogix Yes 182000 560 Sandia 180nm, TSMC

40nm, TSMC 28/22nm,
TSMC 16/12nm, GF
12nm

Microsemi IGLOO Yes 100-3000 not mentioned 130nm
Lattice iCE40 Yes 640-5280 up to 8 40nm

small energy budget. eFPGAs are available as IPs and therefore simulations are normally done in
an ASIC design flow. However, seeing that this process is very time intensive and out of scope for
this thesis, our eFPGA experiments will be conducted using software design tools made available by
eFPGA vendors. Physical measurements would be possible with evaluation boards, of which some
vendors have units listed. Table 2.2 shows the major eFPGA manufacturers together with our chosen
’traditional’ low-power FPGAs. Resource numbers indicated are for the available evaluation boards, as
any resource number could be specified while designing an eFPGA. The QuickLogic and Menta boards
are focused on small designs and would therefore be the best candidates to consider for IMDs, having
a similar number of LUTs as IGLOO and iCE40 FPGAs. However, no evaluation board was available
to us for our experiments, although Menta provided access to their design tools. As any technology
node is supported in theory, lack of an IMD-suited node will certainly not be a problem. Practical
implementations and power figures are not available to the best of our knowledge, so using the Menta
eFPGA design tools and reporting energy and performance figures for the cases in Section 1.3 would
give novel information on eFPGA feasibility in IMDs.

2.2. Cryptography for ultra-low-power hardware
Since the dawn of the computer age, modern cryptography has been used widely in securing digital
communication. Three categories of cryptographic algorithms are distinguished here: that of symmet-
ric block ciphers, hash functions and public-key cryptosystems. In this section, focus will be laid on
lightweight cryptography as suited for IMDs. Within all categories, an industry standard is discussed
and a lightweight version, if any, is selected as candidate for our experiments. Furthermore, complete
security schemes specifically targeted at IMDs will be highlighted.

2.2.1. Symmetric block ciphers
A block cipher is a symmetric cryptographic algorithm that uses the same key for encrypting and de-
crypting data. Incoming data is split in fixed-size blocks, after which every block is encrypted with the
same key as depicted in Figure 2.1. A similar procedure is repeated for decryption, with every block
being individually decrypted. Block and key size can be an equal number of bits, however, this is not
necessarily the case. The first publicly available block cipher is the Data Encryption Standard (DES)
cipher, which is in a modified form (triple DES) still in use today for electronic banking. However, the-
oretical weaknesses have been demonstrated in the cipher, prompting its replacement. In 2000, the
Rijndael algorithm [18] was chosen to replace DES in the Advanced Encryption Standard (AES). AES
is nowadays one of the most used block ciphers and the de-facto industry standard in this category.
Because it is seen as the reference benchmark among block ciphers, a lightweight version will be in-
cluded in our experiments.

2.2. Cryptography for ultra-low-power hardware 9

Figure 2.1: Schematic representation of encrypting data with a block cipher [32]

Although widely used, AES is not specifically optimized for operation on ultra-low-power hardware.
As a result, numerous lightweight block ciphers have emerged over time to address this issue [33, 34,
35, 11, 19, 12]. KLEIN is a family of lightweight block ciphers that is geared towards application in
RFID tags with tight resource constraints. However, its main focus is software implementations and
although openly accessible hardware variants exist, no matching software and hardware implementa-
tions were available to us. The same holds for LED and PRESENT which are optimized for hardware
implementations but were unavailable as well. A Midori repository has both software and hardware
implementations available, but the software implementation is only available as Python code, needing
conversion to C++ before we could include it in our experiments. According to [33], KATAN and KTAN-
TAN are among the most hardware-efficient block ciphers requiring less than 1000 gate equivalents
(GE). However, only SIMON had an openly accessible hardware and software implementation avail-
able, which is the main reason to select this cipher as lightweight block cipher representative in our
experiments.

2.2.2. Hash functions
Hash functions have a different goal from block ciphers. Instead of mapping plaintext to ciphertext
of equal length, hashing creates a fixed-size character string that is unique for each input of arbitrary
length, minimizing the chance for a collision (two inputs generating the same hash). Hashing is useful
for data integrity checking as a digital signature. A strong hashing function also makes it infeasible to
reconstruct the input data if only the output hash is available.
Multiple hashing function families are designed over the years, with newer ones replacing older, broken,
functions. The latest hashing function family that can be considered the industry standard is Keccak,
integrated in the SHA-3 standard [36]. Similar to AES in the block cipher category, SHA-3 is not geared
towards low-resource platforms. Specific lightweight hashing functions for these environments have
been developed. Judging from literature, lightweight hashing functions are less in number than block
ciphers, with the PHOTON family as only option with available hardware and software implementations.
Hence, the choice for our experiments is easy, with PHOTON [20] being representative of lightweight
hashing functions in our experiments.

2.2.3. Public-key cryptosystems
Following the publication of the Diffie-Hellman key exchange, cryptosystems which only required a se-
cret key for decryption began to be published. Instead of having a single secret key that is pre-shared
between parties to decrypt and encrypt, two keys are present in public-key systems: a public and
private key. Encrypting a message can be done by anyone using a public key, which as the name
indicates is known to everyone. Only for encryption, a secret key, paired to its public key, is needed.
In Figure 2.2 the difference with symmetric cryptosystems is indicated. A most prominent example is
the RSA algorithm, with many deduced variants.
As public-key cryptography tends to be more taxing on resources than symmetric cryptography and for
lack of available lightweight implementations, this category is not elaborated further on in our experi-
ments.

2.2. Cryptography for ultra-low-power hardware 10

Figure 2.2: Symmetric and Asymmetric Cryptosystem Scheme [37]

2.2.4. Practical lightweight cryptography in literature
Looking now at cryptography specific to IMDs, one specific field of interest is to guard wireless chan-
nels against attackers. Increased power consumption and lack of computation power are among the
reasons why security was often omitted. With ever increasing computational power, cryptographic
security becomes more viable in IMDs. Table 2.3 lists implementations of several (lightweight) secu-
rity schemes aimed for ultra-low-power operation. There is a noticeable difference between software
and hardware-accelerated implementations of the same protocol. AES-128 for example, which is not
designed to be a lightweight protocol, outperforms a software MISTY1 implementation in energy con-
sumption while the latter one is designed to be lightweight. When speaking of hardware acceleration,
one can make use of dedicated circuits (hard IPs or ASICs) or implement a scheme in an FPGA. The
latter is interesting because of greater flexibility. Looking at slice occupation of FPGA implementations,
it can be seen that normal symmetric ciphers fit well within low-power FPGAs with less than 400 slices
(one slice consisting of 2x LUT4 and 2x FF). Even a public key scheme like Elliptic Curve Cryptography
could possibly fit onto a bigger low-power FPGA. This shows that cryptographic schemes are excellent
candidates for low-power FPGA implementation.
The only eFPGA entry [38] is a result of a collaboration between Menta and Secure-IC, who devel-
oped an embedded custom block (eCB) that can be integrated into a Menta eFPGA the same way
as one would add a RAM or DSP block. This way, the LUT count needed for cryptography can be
reduced drastically, even beyond the other listed implementations. However, due to unavailability, no
evaluations are done on this implementations in this thesis.

Table 2.3: Hardware implementations of lightweight cryptography ciphers

Hardware implementations of lightweight cryptography ciphers
Reference Protocol HW accel. Platform Power (mW) Energy (uJ) Slices used
[15] SHA-1 Yes Spartan3 6.6 132uJ -
[16] AES-128 No - 50uJ -

AES-128 Yes Cortex-M0+ - 2uJ -
SPECK No - 11uJ -
MISTY1 No - 8uJ -

[39] Custom (PUFs) No Custom ASIC 1.18 – 11.37 ∼2pJ/bit -
[40] MISTY1 No Custom RISC 0.233 202uJ -
[17] PRESENT Yes - - 117

HIGHT Yes - - 91
Camellia Yes XC3S50-5 - - 318
TinyXTEA-3 Yes - - 254
AES-128 Yes - - 393

[41] ECC Yes AGLN250V2 - - 2681 – 5126
[42] SIMON Yes IBM 130nm ASIC library - - 1629 gates
[38] AES-128 Yes Menta eFPGA - - embedded custom block (eCB)

2.3. Artificial Neural Networks and their application in low-power environments 11

2.3. Artificial Neural Networks and their application in low-power
environments

Introduced in Section 1.3.2, artificial neural networks, ANNs for short, provide a promising approach for
solving complex problems where conventional algorithms are unsuccessful. Tasks like object detection,
image segmentation, speech recognition and other forms of classification can be carried out by neural
networks with great success. But, ANNs are known for rather high hardware resource usage and
power consumption. Hence, there has been an increased focus on making lightweight ANN models to
be able to run them on Internet-of-Things devices [8, 9] and eventually, IMDs. In this section, general
background on ANNs will be given and IMD-relevant networks will be highlighted to pick a candidate
network for our experiments.

2.3.1. The artificial neuron
ANNs are modeled after the human brain and as such consist of a network of artificial neurons. The
basic building block of an ANN is the artificial neuron, of which a representation is shown in Figure 2.3.
Starting at the inputs, a neuron accepts external data that may be a part of the input data or outputs
of other neurons. Taking the case of seizure prediction, input data could be brain signals that are cap-
tured by implanted electrodes. These input values are weighted, where the weights determine how
important the contribution to the net input of each input is. Next, all weighted inputs are combined by
summation and fed to the activation function. Being a non-linear function, it can be tuned to get the
desired output for the designed problem. For different types of activation functions, see Figure 2.4. For
binary classification, a sigmoid activation function is suited as it stabilizes at zero and one for low and
high net input values. Likewise, the ReLU (Rectified Linear Unit) function is the most popular option
for deep neural networks [43]. The resulting output of a neuron gives indication of the class of its input
values and functions as pattern detection. Its output value can be passed to other neurons or used as
network output.

Figure 2.3: Schematic representation of an artificial neuron [44]

2.3. Artificial Neural Networks and their application in low-power environments 12

Figure 2.4: Commonly used activation functions [44]

2.3.2. ANN types
Combining multiple artificial neurons in a network enables more advanced pattern detection. Networks
can vary from one to multiple layers of neurons. Layers that are always present are the input and
output layer, with a number of optional hidden layers. A simple schematic is shown in Figure 2.5. These
networks all have different properties that make them suited for different computational problems. Over
time, many variants and classes have emerged. As a deep dive into the workings of neural networks is
considered out of scope for this thesis, only a few examples that are used in low-power environments
and assessed literature are highlighted, all based on the feedforward neural network topology. Some
examples are:

1. Feedforward Neural Network (FNN).
In this class of neural networks, data moves in one direction from input layer through any hidden
layers to the output layer, no loops or feedback is present here. The basic building blocks of
feedforward networks are neurons like described in Section 2.3.1. Every neuron in a layer has its
output connected to all neurons of the next layer like in Figure 2.5. This layer topology is called a
fully connected layer. An FNN is the simplest type of neural network, with many variants that add
other layer types for faster or more efficient operation on specific problems. In this thesis, focus is
put on this class of neural networks, as variants with simpler topology tend to have lower hardware
resource usage and power consumption which are strong requirements for the ultra-low-power
environment of IMDs.

2. Convolutional Neural Network (CNN).
A CNN is a type of feedforward neural network that, in addition to fully connected layers with reg-
ular neurons, adds convolutional layers that have a filtering and flattening effect. Used frequently
for 2D data like images, the convolutional layers create multiple convoluted (shifted) versions of
the input, which are reduced by pooling layers. This process can be done multiple times in mul-
tiple layers until the 2D input image is completely flattened. After convolution and pooling, the
flattened input is presented to one or more fully connected layers which perform the actual classi-
fication. An example is shown in Figure 2.6, where an input image is flattened by convolution and
pooling layers before being classified as a digit between zero and nine. CNNs are used mostly for
image classification, speech recognition and other two-dimensional problems, where they have
shown superior performance. The neural network used in the experiments in this thesis is of the
CNN class used for speech recognition, hence emphasis is put on this specific type of neural
network.

3. Binary Neural Network (BNN).
Although strictly speaking not a distinct type of neural network, a binary neural networks are aimed
at greatly reducing hardware cost of ANNs. Its weights and activation functions are stored as
binary values, instead of floating-point like the classical neural networks. An instant disadvantage
of this change is the prospected drop in classification accuracy, partly due to the fact that weights
cannot be precisely tuned. A major advantage is the reduction in neededmemory to store weights
and replacing floating-point computations with binary additions. Especially in the field of IMDswith

2.3. Artificial Neural Networks and their application in low-power environments 13

highly restricted hardware resources, BNNs could be providing the needed hardware reductions
to make ANNs feasible.

Figure 2.5: Feedforward neural network with one input, one output and one hidden layer. [45]

Figure 2.6: Steps in classifying an image with a CNN [46]

2.3.3. Network training and inference
After having designed the topology of a neural network, it cannot be used right away for its intended
classification task. Two phases can be distinguished: training and inference, of which a visual rep-
resentation is shown in Figure 2.7. First, the network needs to be trained, which is another word for
letting the network learn to recognize patterns. A set of training data that has already been classified by
hand is fed to the untrained network, after which the network output is compared with the ’real’, correct,
answer. If we take seizure prediction for example, a training data set could be a set of a large number
of brain signals, measured just before and during a seizure, mixed with signals during normal brain
operation. The output of the network can be a ’yes’ or ’no’ to the question of an input signal indicating

2.3. Artificial Neural Networks and their application in low-power environments 14

an upcoming seizure. Depending on the answer, the weights in the network are updated and a new
input is evaluated. This process continues until the desired success rate is achieved.
With a trained network, inference can be done, which boils down to actually using the network with
data outside of the training set. This step is considerably less computationally intensive than training
and is feasible to run on low-powered hardware [23]. With all neural networks considered in this thesis,
training is done offline (that is, on a powerful computer) while inference is online on the FPGA or CPU
itself.

Figure 2.7: The training and inference phases of a neural network [47]

2.3.4. Artificial Neural Networks in IMDs
IMD-suitable neural networks in literature
As mentioned in Section 1.2.2, designing an IMD-suited neural network is considered out of scope for
this thesis. Instead, literature was explored to gain insight in the state-of-the-art of tiny neural networks.
The goal of this exploration is to find a small neural network that has the following characteristics:

1. Having a functional identical software and portable FPGA hardware implementation
2. Fitting in the available resources of our baseline FPGA, the Lattice iCE40UP5K [10]
3. Consuming less than 10mW when active on the FPGA
4. Clear documentation of the project with testbench included

First of all, the search was directed at seizure detection implementations as this application is well
suited for ANNs. Solutions have been implemented on MCUs [21, 22]. A big name in microcontroller-
powered ANNs is TinyML [23], but only targeted at MCUs and not FPGAs. However, as we are looking
at an FPGA implementation for our experiments, these can only serve as baseline MCU data point
comparison. As neural networks tend to be resource and power hungry, the majority of them are not
suited for IMDs. Numerous FPGA neural networks can be found in literature which are too large in
LUT count [48, 49, 50], exceeding 10k LEs and geared towards higher-performance application. An-
other obstacle is using vendor-specific IP like RAMs and DSPs, which makes an implementation not
portable to another platform. Hard macros like RAMs and DSPs can be defined in generic VHDL or
Verilog code, but designs tend to be optimized for a particular platform, using vendor-specific code.
Most found implementations that are tiny enough to fit in the required resource range are targeted at
the Xilinx Zynq-7000 platform and written in HLS code [51, 52, 53, 54] or for the older Cyclone II [55].
No seizure prediction implementations have been found, which remains an open problem.

Looking specifically for BNNs to increase the chance of finding a tiny NN, implementations were
found that still required porting work [56] or were targeted at high-end FPGAs [57]. The best BNN can-
didate is the TiNNBiNN network [9], as that is targeted at the iCE40UP5K FPGA and thus would not
require any porting work and automatically fulfills the resource requirement. However, in the duration
of this thesis project, no source code was available to be able to use it for our experiments.

2.4. Wireless energy harvesting 15

The most promising ANN that is fitted specifically for our baseline FPGA and fulfills all requirements
but the first (no software implementation available), is the Lattice CNN Compact Accelerator IP [58].
Being a part of the Lattice SensAI stack and fitting in under 4000 LUT4 cells, this CNN could be a
good candidate for implementation in an FPGA-equipped IMD. No comparison can be made with a
functionally identical software implementation, but a general picture of feasibility of this CNN on an IMD
is certainly possible. The smallest project where this CNN is integrated is the Key Phrase Detector [59]
that listens for spoken key phrases and activates on a correct one in a simple yes/no fashion. Noting
that this project has been designed by Lattice for their own FPGAs, it is certain that no porting work is
needed to our baseline FPGA from the same vendor which is a substantial advantage over other ANNs.
By lack of an ANN that fulfills all four requirements, this one is chosen for our experiments.

ANN to HDL mapping engines
Another way to obtain an ANN that fulfills the four requirements listed in this section is that of mapping
engines, which convert a neural network description into C++ or HDL code. This way, both software
and hardware implementations can be derived from the same ANN description, fulfilling the first two
requirements. Picking the right network parameters can further fulfill the third requirement. The fourth
requirement does not allow the use of undocumented repositories, of which there are plenty.
The first mapping engine example is SeeDot from Microsoft [60], which is geared towards generating
FPGA and software implementations from a high-level mathematical network description. Furthermore,
its focus is primarily on low-precision machine learning for IoT devices, which translates to suitability for
resource-limited devices. Unfortunately, its repository is offline and therefore this mapping tool cannot
be used anymore.
Next, EdgeML [61] is available what seems to be the successor of SeeDot. Like the latter, EdgeML is
focused on IoT edge devices with little hardware and energy resources. Unlike SeeDot, this tool has an
active software repository. However, the generated FPGA implementations are only targeted at Xilinx
devices and will require extensive porting work to make them run on our baseline Lattice FPGA. As
these tools were only discovered later in the duration of this thesis, no time could be afforded to port
an implementation for use in our experiments.
Last, DL2HDL is a tool presented in [62] that maps ANNs described in PyTorch to HDL code. No equiv-
alent software implementation is generated by this tool, but another PyTorch to C++ converter could
be used for this. Again, due to the amount of time needed to get a design working and understood on
our baseline FPGA, no use was made of this tool.

2.4. Wireless energy harvesting
To guard against battery depletion by adversaries, there is the option of running the hardware that is
responsible for wireless communication on externally harvested power. Doing so to mitigate battery
Denial-of-Service attacks has been named Zero-Power Defense [63]. Also, the battery life of an IMD
can be extended by using harvested power. Energy harvesting can be done in different ways, via
an inductive, acoustic or RF channel [64][65]. Table 2.4 shows several energy harvesting setups in
literature. Most solutions use inductive power transfer (IPT) as this yields the most power transferred
from a reasonably close range. A relatively high power transferred is preferable, as this looses the
upper bound on IMD hardware power consumption. However, the use of capacitors can make up for a
lower transferred power at the cost of latency (waiting for the capacitor to charge). From Table 2.4, it
can be concluded that running an FPGA with several milliwatts of peak power will be very well possible
on harvested energy. This matches the typical power draw of low-power FPGA cases listed in Table 2.1.
In this research, the value of 6.15mW from [66] is taken as harvested power upper bound. Translating
this information to our experiments, this bound is only needed for the security case in Section 1.3.1 as
the FPGA case 2 in Section 1.3.2 is not used for communication. Instead, the implementation of Case
2 will not run on harvested power, but is limited by available energy in the IMD battery.

2.5. Conclusions 16

Table 2.4: Wireless energy harvesting in literature

Wireless energy harvesting in literature
Reference Harvesting setup Harvested power

(mW)
Energy needed (uJ) Energy used for: Authentication time Capacitor

[15] 33mm coil pair tens of mW 132 One-time
challenge-
response authen-
tication & SHA-1
encryption

132ms -

[13] - - 108.3 One run of IMD-
fence protocol

15.7ms -

[16] miniature custom
IPT circuit

6.15 35 Reader 32-bit com-
mand, IMD 64-bit
response

10-500ms 10uF-460uF

[24] 915MHz RF setup 0.194 7.45 Entity authentica-
tion

[64], [66] miniature custom
IPT circuit

6.15 20.07 Entity authentica-
tion

5.27-8.85ms 10uF

[67] Thermoelectric
Generator

0.065 - AHRS and BLE 4.0
connectivity

-

[4] 1.5-3GHz RF mW range - BLE module - 0.1pF

2.5. Conclusions
In this chapter, we gained background knowledge on the following four subjects: Ultra-low-power FPGA
and eFPGA technology, cryptography for ultra-low-power hardware, artificial neural networks and their
application in low-power environments, and wireless energy harvesting.
FPGAs have become a viable option for the ultra-low-power domain with recent technology develop-
ments. They have been proposed for IMDs in literature, however, no extensive energy analysis on
FPGA-equipped IMDs has been done. To be able to answer our first and second research question
and contribute to this knowledge gap in literature, a baseline FPGA (Lattice iCE40UP5K) and eFPGA
technology is used in our to be conducted experiments.
In IMDs with wireless connectivity, securing its communication is of utmost importance, especially in
life-critical applications. Most commercial security implementations run on MCUs in software, which
makes all but the most basic primitives infeasible to run. Hardware accelerated blocks within MCUs
have been used for a tremendous performance and energy gain, however, no fast alternative is avail-
able in the case the accelerated primitive is broken during the lifetime of an implanted IMD. FPGAs
could combine the advantages of both CPUs and ASIC peripherals and as seen from literature, crypto-
graphic schemes are excellent candidates for low-power FPGA implementation, resource and energy
wise. As such, hardware-accelerated cryptography in IMDs is considered as first use case in this the-
sis.
No IMD-suitable hardware-accelerated neural network could be found that fulfills all of our four require-
ments in literature. Designing an efficient ANN on a low-power FPGA is a difficult task, judging from
the lack of well-documented suitable implementations. Looking at mapping engines to generate ANNs
that do fulfill all requirements, time was too limiting to be able to use one for our experiments. The best
readily available ANN that has a well-documented FPGA implementation is the Lattice CNN Compact
Accelerator IP. This IP is integrated in the Key Phrase Detector example project which will be taken as
reference ANN for the second use case in our experiments.
Wireless energy harvesting was discussed with the goal to mitigate battery drain by adversaries. A
typical continuous power draw was found to be 6.15mW from literature for the security primitives in
Case 1 (Section 1.3.1), which will be used as upper bound in this research. The power limit of Case 2
(Section 1.3.2) will not be defined by this limit but rather indirectly by prospected battery life calculations.

3
Design

In Chapter 1, we defined our problem statement and four research questions derived from it. To answer
our research questions, two use cases were introduced for which experiments are constructed in this
chapter: an IMD-FPGA serving to secure wireless communication, and a functional unit integrating a
hardware-accelerated CNN.

Having observed the technological trends of IMDs in Chapter 2, we have seen the need for IMD hard-
ware taking up increasingly advanced signal processing tasks, like pattern detection to help preventing
seizures. Likewise, the addition of wireless communication to IMDs calls for securing that communi-
cation channel with cryptography. However, extra algorithm processing leads to increasing CPU time
and energy consumption on already heavily power-constrained MCUs present in modern IMDs.

Before going to the experiments we discussed four topics relevant to our two use cases in Chap-
ter 2: low-power FPGAs, cryptography, artificial neural networks and wireless energy harvesting, all in
low-power environments. With this background, a baseline FPGA and four algorithms were selected
for our experiments. Furthermore, an upper bound of 6.15mW was set for Case 1 to mitigate battery
draw by adversaries.

In this chapter, our two use cases will be converted into a benchmark suite that consists of FPGA
implementations around three security primitives and one artificial neural network. The goal of this
benchmark suite is to be able to evaluate it on energy, area and resource usage to see under what
conditions said implementations are feasible in IMDs. For a discussion on these results, see Chapter 4.

In Section 3.1, an overview of a typical modern IMD is given and the part of interest for our design
is indicated. In Section 3.2 a technical overview of the selected security primitives and artificial neural
network is given. Next, an in-depth description of the from-scratch designed interfaces for the three
selected security primitives is presented in Section 3.3, together with the assembly of the interfaces to
all security primitives. Third, the different MCU, FPGA and eFPGA platforms which run the selected
algorithms are shown in Section 3.4. Further explanation on the eFPGA topology and tools used can be
found in Section 3.5. Necessary modifications to prepare the designed FPGA implementations of our
benchmark suite are described in Section 3.6. Conclusions on this chapter can be found in Section 3.7.

3.1. Design overview and experiment goals
To understand what IMD part is modeled in our designs, we have to know the basic topology of an
IMD. In Figure 3.1 a block diagram of a typical modern IMD architecture is depicted. Separate sensor,
actuator and memory parts are connected to the processor via a high-bandwidth interconnect. The
processor is the master device which runs the main algorithms and control loops. Communication to
the outside world happens through a transceiver which is optimized for low power consumption.

In this chapter, we will zoom in on the Extra Processing block, which is an auxiliary hardware device
that can accelerate parallelizable workloads. Normally, hardware acceleration is performed through
special ASIC blocks within MCUs but, as noted in Section 2.1.1, implementing this block on a low-

17

3.2. Selected algorithms 18

power FPGA suitable for IMDs is a novelty that is largely unexplored. The design presented in this
chapter is a benchmark suite that will make quantitative evaluation of FPGAs in IMDs possible. The
suite consists of security primitives and a CNN implementation that will run on the Extra Processing
hardware block, which is an FPGA in our case. The design presented in this chapter is not that of a
complete IMD architecture, but that of the Extra Processing block shown in Figure 3.1. This block is
then implemented on FPGA fabric and compared with functional identical software algorithms running
on reference IMD processors. Added to the Extra Processing block, bus interfaces are designed from
scratch to be able to connect it without much effort to an existing IMD architecture. In Figure 3.1, these
interfaces are represented by the dashed gray arrow. With our designs, we will be able to perform
power measurements and make accurate prediction on the impact on IMD battery life when adding
them in the Extra Processing block.

In
te

rco
n
n
e
ct

Sensors

Actuators

Processor

Transceiver

Data memory

Handheld
reader

EXTRA PROCESSING

Wireless
link

Implant
Battery

IMD

Figure 3.1: Top-level schematic view of the hardware of a modern IMD

3.2. Selected algorithms
For the first class of secure wireless communication, we selected three algorithms to represent a broad
spectrum of IMD-ready security primitive implementations. FPGA implementations are to be compared
to traditional implementations running on MCUs, meaning that C/C++ and HDL implementations of ev-
ery algorithm need to be available. The second class, that of machine learning, has existing implemen-
tations on tiny FPGAs [8]. However, an analysis considering the environment and energy constraints
of IMDs has never been done for tiny FPGAs to the best of our knowledge. Employing artificial neural
networks on IMD-suitable FPGAs is a novelty that is explored in this thesis. All selected algorithms are
listed in Table 3.1 and discussed subsequently in the subsections below. The FPGA implementations
will be discussed in detail, whereas the C/C++ codebases are drawn from previous research and will
not be further elaborated on here.

3.2.1. AES-128
Advanced Encryption Standard (AES) currently is one of the most used block ciphers [18]. Proposed
in 2001, AES is a family of ciphers with a fixed block size of 128 bits and three different key lengths
of 128,192 and 256 bits. To keep potential hardware resource usage to a minimum, the least complex
variant of AES is selected: AES-128, which has a key and block size of 128 bits.

3.2. Selected algorithms 19

Table 3.1: Selected algorithms

Algorithm Type
Block/hash

size
(bits)

Key
size
(bits)

Reason for selection

AES-128 Block
cipher 128 128

Widely used, simplest version (128-bit
key). Included to compare CPU, ASIC &

FPGA implementations.
SIMON-
64/128

Block
cipher 64 128 Lightweight alternative to AES. Included

to compare algorithm complexity.
PHOTON-

128
Hashing
algorithm 128 - Lightweight hashing alternative to SHA-3

(which is too costly for IMDs)
Key Phrase
Detector

Compact
CNN - - Good representative of ANNs for IMDs

(offline training, online inferencing).

Table 3.2: AES-128 ports description

Port name Direction Width
(bits) Data type Description

clk Input 1 clock System clock.
data_i Input 128 data vector Input plaintext

decrypt_i Input 1 toggle Indicates if encryption or decryption is
going to take place.

key_i Input 128 data vector Key used for encryption and decryption.

load_i Input 1 positive-
edge trigger Signals the start of a one-block operation.

reset Input 1 toggle Active low reset.
data_o Output 128 data vector Output ciphertext.

ready_o Output 1 positive-
edge trigger Signals stable output data available.

ready_o

clk

reset

load_i

decrypt_i

[127:0]
data_i[127:0]

[127:0]
data_o[127:0]

[127:0]
key_i[127:0]

aes

aes_inst

Figure 3.2: Top-level schematic view of AES-128 IP core

AES-128 FPGA IP Core
As a base, an AES-128 IP core from OpenCores.org was selected that is optimized for low resource
usage [68]. Originally written in SystemC, the code has been converted to Verilog by the author, which
is used as the basis for the design present in this project. The AES-128 core fits in less than 2600 LUTs
and does not use hard macros, which generally improves its portability between FPGA architectures.
A top-level block schematic of this core is shown in Figure 3.2. A description of all ports is found in

3.2. Selected algorithms 20

Table 3.2.
As can be noted from Table 3.2, input and output data is presented as a 128-bit vector, making it easy
to design an interface for this block, as the data only needs to be stable during operation. No advanced
clocking mechanism is needed to feed input data to the AES block and the same goes for output data
that can be read in one clock cycle. decrypt is set before operation to indicate the kind of operation
to take place. Decryption is, simply put, the inversion of the encryption operation and therefore can
make use of the same hardware as encryption. However, only the encryption mode is used in the
experiments as the SIMON IP core used [69] only implements encryption. The key can be changed for
every 128-bit input but has to be stable while the AES-128 IP core is running.

3.2.2. SIMON-64/128
Designed by the NSA and published in 2013, SIMON was proposed as a lightweight block cipher opti-
mized for performance in hardware implementations [19]. Its sister algorithm, SPECK [19], is optimized
for software implementations. As an FPGA implementation of SIMON is going to be compared to its
software implementation, it would be a logical step to compare hardware SIMON against software
SPECK. But since no hardware variant is available of SPECK and both hardware and software are
available of SIMON, it is chosen to compare only the SIMON implementations to each other to limit the
number of variables.
SIMON can be seen as a lightweight alternative to AES, which could be promising for resource-constrained
devices like IMDs. The main reason for including SIMON in the experiments is to compare within the
group of block ciphers, what advantages a lightweight block cipher like SIMON has compared to the
standard of AES. Just like AES, SIMON is a family of ciphers with different block and key sizes, ranging
from 32/64 to 128/256 (block/key). As only the 64/128 variant was available as VHDL implementation,
this configuration was selected for the experiments.

rst

clk

done

[63:0]
Ciphertext[63:0]

[127:0]
Key[127:0]

[63:0]
Plaintext[63:0]

SIMON64_128Enc

simon

Figure 3.3: Top-level schematic view of SIMON-64/128 IP core

Table 3.3: SIMON-64/128 ports description

Port name Direction Width
(bits) Data type Description

clk Input 1 clock System clock.
Key Input 128 data vector Key used for encryption and decryption.

Plaintext Input 64 data vector Input plaintext.
rst Input 1 toggle Active high reset.

Ciphertext Output 64 data vector Output ciphertext.

done Output 1 positive-
edge trigger Signals stable output data available.

SIMON-64/128 IP Core
Both software and hardware implementations of SIMON are available, making a fair comparison feasi-
ble. From previous research considering fault injection in cryptographic hardware of lightweight ciphers
[42], its SIMON-64/128 hardware implementation is borrowed for this thesis [69]. Being a lightweight
cipher, the SIMON core is expected to consume significantly less resources than a ’standard’ block
cipher like AES. This assumption is confirmed later in Section 4.1.1. Compared to AES, this SIMON

3.2. Selected algorithms 21

implementation accepts plaintext blocks of half the size (64 bits), but uses a key of equivalent length.
Therefore, the differences in resource usage between AES and SIMONwill not only be due to the cipher
itself, but also to the fact that this SIMON IP core accepts smaller plaintext blocks. As will be shown
however in Sections 4.2.1 and 4.2.2, the number of rounds (and therefore the number of clock cycles)
will in any case be significantly lower than AES, having major energy benefits over the latter.
As with AES, plaintext and key are presented as vectors to the inputs of the IP core. A port list is pre-
sented in Table 3.3 and the top-level RTL view in Figure 3.3. As stated in Section 3.2.1, no decryption
option is provided, so only encryption performances are going to be compared. The input interface is
simplified compared to the AES IP core, with the rst signal also acting as load trigger. All other ports
are analogous to the AES IP core.

3.2.3. PHOTON-128
Secure hashing in an IMD might ultimately be possible with PHOTON [20], a lightweight hashing algo-
rithm that borrowsmechanisms fromAES for its permutation function and relies on the sponge functions
framework [70]. As insecure or broken primitives are not considered here, hashing algorithms like MD5
and SHA-1 are not implemented. ’Real’ SHA-2 and SHA-3 IP cores cannot fit in a tiny FPGA of around
5k LUTs, generally speaking. A relatively small implementation of SHA-3 was tried [71], but we were
unable to port it successfully to the Lattice FPGA platform. Hence, PHOTON was chosen as its au-
thors provide a software and hardware implementation, its lightweight focus and solid basis on modern
cryptography.

init

clk

nReset

nBlock

outReady
[3:0]

data_in[3:0]

[3:0]
data_out[3:0]

lwh

photon_inst

Figure 3.4: Top-level schematic view of PHOTON-128 IP core

Table 3.4: PHOTON-128 ports description

Port name Direction Width
(bits) Data type Description

clk Input 1 clock System clock.

data_in Input 4 serial nibble
stream Input message to be hashed.

init Input 1 Toggle Signals block operation, active
high.

nBlock Input 1 Toggle Signals data input, active high.
nReset Input 1 Toggle Active low reset.

data_out Output 4 serial nibble
stream Output hash.

outReady Output 1 Toggle Signals stable output data
available.

3.2. Selected algorithms 22

PHOTON-128 FPGA IP Core
Unlike the AES and SIMON IP cores seen before, the PHOTON core has a data port that does not
accept the input message in parallel at once. Instead, the input is clocked in over multiple cycles. For a
port list and top-level view, see Table 3.4 and Figure 3.4. This way of feeding input data makes sense
due to the nature of hashing algorithms: they are designed to create a fixed length hash output, 128
bits in this case, of an input message of arbitrary length that is not necessarily split up in predefined
blocks. In this experiment, a single input message of also 128 bits is used as sample data, just like
with the AES IP core. It would not be fair to compare a single-block AES operation to PHOTON with
a very large digest message and conclude that PHOTON is slower! For the actual test setup, refer to
Section 3.6.
The ports description and schematic view of PHOTON-128 are shown in Table 3.4 and Figure 3.4
respectively. The reset procedure is different from a simple level-active signal and an interface needs
to translate the message to be digested into a serial stream of half-bytes or nibbles. For the designed
interface, see Section 3.3.1 where the correct reset procedure and data handling is presented.

Removing clock gates in IP core
The IP core as provided by the author was working correctly, however some modifications were re-
quired. The design makes use of an array of linear-feedback shift registers (LFSRs) of which the shift-
ing behavior is controlled by clock gating separate counting registers if no data shift is required. The
problem with this is that the Menta synthesis tool (discussed in Section 3.5.1) routes every internally
generated clock as a separate clock signal, not using the eFPGA routing network. This is important
to ensure minimum clock skew and delay on the clock trees. For the PHOTON IP core, this results in
over 30 separate clock domains. As the maximum number of clocks in Menta eFPGA fabric is 8, clock
gates had to be removed and the clock gate enable signals rewired to the enable flag of the respec-
tive registers. In many synchronous designs, this is the preferred practice. The modification of such
a counting register is seen in Figures 3.5 and 3.6. Note that the clock signal is not the same in both
configurations: in the original it is externally gated whereas in the modified version, clk is the system
clock which is always active. The added enable signal acts now as activation for the counter register
inside. With this modification, the design is finally seen as having a single clock domain and made
synthesizable on the Menta platform.

clk

selDataIn

q[2:0]

[2]

un6_datain

D[2:0]

[2:0]
Q[2:0]

C

[1:0]

count_reg[2:0]

0 0[0]

1[0]
SEL

dataIn

Figure 3.5: Original configuration with externally gated clock signal

clk

enable

selDataIn

q[2:0]

[2]

un6_datain

D[2:0]
[2:0]

Q[2:0]

C

E

[1:0]

count_reg[2:0]

0 0[0]

1[0]
SEL

dataIn

Figure 3.6: Modified configuration with system clock signal

3.3. Selected interfaces 23

3.2.4. Lattice CNN Compact Accelerator
FPGA implementations of neural networks that are suited for tiny FPGAs are hard to get by as dis-
covered in Section 2.3.4, and as a result, the selected algorithm is a proprietary 6-layer Convolutional
Neural Network (CNN) provided by Lattice for their FPGAs. A reference implementation using this CNN
for key phrase speech detection was selected for our experiments [59]. This was the only available
artificial neural network that:

• Fits in a tiny FPGA (less than 5,000 LUTs)
• Is well-documented
• has usable example implementations

Unfortunately, no software implementation to compare with a reference MCU platform exists as only a
Lattice specific hardware implementation is available. Therefore, estimations will be made about the
execution time and energy consumption on other platforms that are considered in this thesis, namely
the MCU and eFPGA platforms. See Section 3.4.

Key Phrase Detector project with Lattice SensAI
The reference project used that contains the CNN, is a key phrase detector implemented on the Lattice
iCE40UP5K FPGA [10]. Because of the amount of time required to study and implement a reference
project with this CNN, this reference project was chosen instead. This implementation can distinguish
a maximum of four key phrases at an evaluation speed of 40 phrases per second from received micro-
phone input.
At the core of the detector is the 6-layer tiny convolutional neural network that is of particular inter-
est. This neural network, NN for short is trained offline with common available tools like TensorFlow
[72], Caffe [73] or Keras [74]. After a model is trained with reference data, a Lattice-specific tool, NN
Compiler, translates the trained model into correctly quantized weights and instructions. In parallel,
regular FPGA toolflow is followed to design the logic around the CNN. These two parts are combined
in one bitstream to realize a Lattice CNN-equipped project. The complete toolflow is called SensAI
and a graphical description is shown in Figure 3.7. For this thesis, a ready-to-go FPGA bitstream was
used to directly employ the project on the FPGA. Therefore, no interface logic was designed like for the
three security primitive IP cores in Section 3.3. Extensive explanations on the inner workings of ANNs
in general is out of scope for this thesis. For more explanation on the Key Phrase Detector project, the
curious reader can consult the manual [59].

Figure 3.7: Lattice SensAI toolflow [75]

3.3. Selected interfaces
Since a crypto core needs to interface with its host processor in our case, two communication interfaces
were considered and attached to the selected cryptographic block in separate implementations. These
interfaces accommodate the needs of two different environments: firstly that of inter-chip communica-
tion, which can go through PCB traces or longer cables. Such an environment places limits on the

3.3. Selected interfaces 24

number of interconnect wires and data throughput. Multiple standards have been developed for this
scenario like SPI, i2C and UART. The last one is chosen in this thesis to attach to all three crypto cores
for its simplicity. Secondly, the environment of on-die communication is considered. Multiple protocols
have been developed under the AMBA umbrella like APB, AHB and AXI with their different versions [76].
The version which has the smallest footprint and still provides enough functionality is AHB-Lite, also
selected in this project. As the main focus is on the functional IP cores themselves, the interfaces are
solely added to create a realistic resource usage picture. However, substantially more design work has
been put in interfaces compared to the IP cores, as the first have been designed mostly from scratch
where the latter were readily available IP cores.

3.3.1. Off-die: UART
A universal asynchronous receiver/transmitter is a digital device used for asynchronous bidirectional
communication. Data is transferred in sequential fashion at a previously agreed data rate, breaking up
the data in frames. A start and stop bit indicate the start and end of a frame. In most cases and also in
this project, a frame consists of eight bits forming a byte, like in Figure 3.8.

start bit bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 stop bit

Figure 3.8: Diagram showing UART timing [77]

The goal of the UART interface is to abstract away the ports of the connected IP core and provide a
TX and RX wire for incoming and outgoing data. At the core of every serial interface that will be visited
in the following sections, is a simple UART with the ports shown in Figure 3.9 [78].

clk

reset rx_enable

tx_enable

tx_ready

rx tx

[7:0]
rx_data[7:0]

[7:0]
tx_data[7:0]

basic_uart

basic_uart_inst

Figure 3.9: Top-level schematic view of UART module used

Operating the UART block is simple. For data to be transmitted, tx_data has to be held stable and
tx_enable pulled high to start a transmission. During transmission, tx_ready is held low to indicate that
the UART is busy. Once all bits have been clocked out of the tx port, tx_ready will pulled high again.
The same procedure applies to the RX side, but all steps in reverse.
This UART has no TX/RX data buffers, which is a conscious design choice to reduce the total resource
footprint. To see why this is not a limitation, note that the UART can never transfer data faster than an
IP core can encrypt/decrypt incoming data, hence no need for an input buffer. The same goes for the
output, which can always be read faster than the UART transfer speed. Timing complexity on the host
processor side will slightly increase as not all data can be fed to the crypto core at once, but this can
easily be mitigated in software.

3.3. Selected interfaces 25

AES + UART
Interfacing the AES-128 IP core as described in Section 3.2.1 boils down to the atomic operation of
converting sixteen UART bytes to a 128-bit input vector. The same goes for the TX side: a freshly
encrypted/decrypted block of data needs to be byte-serialized and presented to the basic_uart block.
Interfacing between the basic UART block and AES IP core was realized by creating two blocks: RX and
TX interface, of which the source code can be viewed in Appendix B.1.1. With state sequencing in the
RX interface, it is ensured that sixteen consecutive bytes are captured from the RX port to construct a
128-bit input for the AES IP core. Similarly, the TX interface acts as a 128-to-8-bit converter, presenting
output data byte sequential to the UART block. A complete graphical overview of the UART interface
for AES is given in Figure A.1b. This design will serve as the basis for the other two designs presented
in Section 3.3.1 and Section 3.3.1. A small block named ext_busy can also be seen in Figure A.1b. No
extra functionality is added here, as this block only converts internal done and load signals to a single
level-sensitive signal that indicates if the external core, in this case AES, is busy. This is useful for
debugging purposes, as well as any external device that would monitor the status of the AES + UART
block.
Furthermore, not only input ciphertext/plaintext can be fed though the RX line of this UART interface,
but updates of the key can also be done. To make this possible, a simple multiplexer was put at the
data output of the complete UART interface seen in Figure A.1b. For placement of all blocks in the
top-level design, see Figure A.1a. For obvious security reasons, the key should be write-only. Next,
the key needs to be held in a register to allow the input plaintext/ciphertext to change while the key
stays static. In Figure 3.10 the resulting internals of the Key-or-Text (KorT for short) are shown.

Figure 3.10: Key-or-Text logic for AES

SIMON + UART
Similar to interfacing the AES-128 IP core, the SIMON IP core needs a block that converts an incoming
serial UART data signal to parallel text and key vectors. The main difference with AES lies in the halving
of the block size, from 128 to 64 bits. These changes are reflected in the source code in Appendix B.1.2.
For the RX interface, this means that eight consecutive bytes are captured from the UART rx_data port,
which are converted to a 64-bit vector. In a similar fashion, the TX interface converts a 64-bit vector
to eight sequential bytes, which are again converted to a bit-serial TX signal by the basic UART block.
The schematic of the UART interface for SIMON can be seen in Figure A.2b.
Looking at the ext_busy block, the attentive reader could have noticed the load_in input is now coming
externally instead of being driven by the UART interface of Figure A.2b. The reason for this change is
that the reset signal of the SIMON block is shared with loading the crypto engine. There is no additional
load signal, but the SIMON IP core has to be held in reset once input plaintext has been constructed
and is stable at the input.

3.3. Selected interfaces 26

Regarding the selection to write key or plaintext, the simple multiplexer structure of Figure 3.10 was
expanded with a simple state machine to ensure that a 128-bit key write was done by taking two con-
secutive 64-bit vectors coming from the UART interface. A plaintext write is done by simply passing
the 64-bit vector from the UART interface to the data_in port of the SIMON block in Figure 3.3. Going
up one level, the SIMON IP core with attached UART interface is shown in a top-level schematic in
Figure A.2a.

PHOTON + UART
Compared to the AES and SIMON interfaces described in Section 3.3.1, the PHOTON UART interface
seems to have the same blocks judging from Figure A.3b, except for the data port sizes which are now
only four bits wide. However, the internals of the RX and TX interfaces are substantially different, which
can be verified by viewing the source code in Appendix B.1.3. Unlike AES and SIMON, the PHOTON
IP core has data input and output ports which do not present or read all data bits in the same clock
cycle. The reason is that an input message of a hashing block can be of arbitrary size, unlike the AES
and SIMON block ciphers shown before, which have fixed input and output block sizes. Data is instead
clocked in nibble-wise serially, so four bits at a time.
Looking at the RX interface in Figure A.3b, the main bottleneck for presenting data to lwh, the PHOTON
IP core, is the UART baud rate. Knowing that this baud rate is significantly lower than the system clock
speed, the interface waits for one incoming byte from basic_uart and stores it in an internal register in
two clock cycles following. This repeats until the desired input message length is reached, which is in
this case hardcoded in the RX interface at 36 nibbles. The internal PHOTON state matrix consists of
36 nibbles of which 32 are the 128-bit input message. When the nibble threshold is reached, lwh is put
in ’data input mode’ and all stored nibbles, 36 in this case, are clocked in sequentially. As stated before
in Section 3.2.3, the reset procedure is more complicated than a simple single-bit signal. Instead, three
signals, namely nReset, nBlock and init control the reset, data loading and reading from the PHOTON
IP core. Similar to the RX side, the TX interface gathers all lwh-output nibbles sequentially and stores
them in a 128-bit register. Once the register is filled, data is sent to basic_uart, one byte at a time,
waiting to transmit the next byte until basic_uart has transmitted the current byte out of its TX UART
port. No matter how large the input message was, the output will always be sixteen bytes or 128 bits.

3.3.2. On-die: AHB-Lite
In the scenario of an eFPGA integrated in an MCU on the same die, communication bandwidth and la-
tency specifications are greatly improved compared to off-die communication. As stated in Section 3.3,
the AHB-Lite protocol was chosen for its suitability to resource-constrained platforms. An AHB-Lite
interface was designed from scratch and adapted slightly per crypto IP core, to abstract away the inter-
facing details from the AHB-Lite bus.

AHB-Lite general overview
AMBA AHB-Lite is a bus interface that supports a single bus master and provides high-bandwidth
operation [79]. This master is typically a host CPU that interfaces with one or multiple slaves which
can be memory devices, external interfaces of any sort and high-bandwidth peripherals. A schematic
overview is shown in Figure 3.11. In the case of this design, the attached peripheral will be one of the
three crypto IP cores disscussed in Section 3.2. Hence, an AHB-Lite slave interface is designed and
presented, whereas the AHB-Lite master is not implemented. The reason is that only the peripheral, a
crypto IP core in this case, is implemented in FPGA fabric. It is assumed that the host CPU will already
have a master AHB-Lite interface integrated. A master interface initiates operations and has added
control logic compared to a slave interface, making its resource usage higher. Figure 3.12a shows the
master interface with ports. Figure 3.12b shows the slave interface. If there is only a single slave, the
two interfaces can connect directly to each other, eliminating the need for a multiplexer and decoder in
between.
One of the main contributors to the performance of AHB-Lite is the pipelining of addressing and data
phases. When initiating a transfer, the master first sends out an address on the HADDR bus. The
next clock cycle, data is transferred over HWDATA or HRDATA, depending on the operation being
read or write. During data transfer, the address for the next data transfer is already put onHADDR. In
Figure 3.13 this behavior can be seen, where the address phase of block B is occurring simultaneously
with the data phase of block A. In the next sections, the specific modifications that make all three AHB-

3.3. Selected interfaces 27

Lite interfaces different will be outlined and design considerations shown. For source codes, refer to
Appendices B.2.1 to B.2.3.

Figure 3.11: AHB-Lite top-level overview [79]

(a) Master interface

(b) Slave interface

Figure 3.12: AHB-Lite interfaces [79]

3.3. Selected interfaces 28

Figure 3.13: AHB-Lite pipelining of address and data phases [79]

AES + AHB-Lite
Just like the UART interface for AES in Section 3.3.1, the AHB-Lite slave interface for AES will be the
basis on which the SIMON and PHOTON interfaces will be built on. Unlike the UART interface, the
AHB-Lite slave interface has no basic premade building block inside. Instead, it was designed from
scratch based on the protocol definition [79]. In Figure 3.14, a diagram of the simplified FSM created is
shown. Five states can be distinguished with two intermediate states (DECRY PT and ENCRY PT),
which are sequenced automatically when going from IDLE to WRITETEXT . The starting state
is IDLE, where the FSM listens to valid values of HADDR, HWRITE, HBURST and HTRANS.
These signals determine what state is entered in the next clock cycle. InWRITETEXT , input plaintext
or ciphertext, depending on whetherDECRY PT or ENCRY PT was passed first, is written to the 128-
bit register that holds one data block of input for the AES IP core. This is done in four steps (or a burst
of four beats to stick to AHB terminology), as the AHB-Lite data line width is 32-bits to conform with
common 32-bit CPU architectures. Reading the output value of the AES IP core and presenting it to
the outside AHB bus is done in READTEXT , in a burst of four 32-bit beats. READSTATUS results
in two bits of information: whether the AES block is in decryption (1) or encryption (0) mode and if the
block is busy (1) or idle (0). Most probably the least used state is WRITEKEY : having the same
steps as WRITETEXT , but writing to the key instead of text register. The distinct WRITETEXT
and WRITEKEY states also replace the functionality found in the Key-or-Text (KorT) block found in
the UART interfaces in Section 3.3.1.
Attaching the freshly designed AHB-Lite interface to its AES IP core, the RTL top-level overview is
shown in Figure 3.15. The top-level ports will be the same for all implementations with AHB-Lite in this
project: 32-bit address and data, and the minimum necessary control signals.

IDLE

READ
STATUS

WRITE
TEXT

READ
TEXT

WRITE
KEY

DECRYPT ENCRYPT

Figure 3.14: Simplified FSM describing the AHB-Lite interface for AES

3.3. Selected interfaces 29

clk

rst

HSEL

HADDR[31:0]

HWRITE

HSIZE[2:0]

HTRANS[1:0]

HBURST[2:0]

HWDATA[31:0]

HRESP

HREADY

HRDATA[31:0]

ready_o

clk

reset

load_i

decrypt_i

[127:0]
data_i[127:0]

[127:0]
data_o[127:0]

[127:0]
key_i[127:0]

aes

aes_inst

rst

clk

HREADY

HRESP

HSEL

HWRITE

aes_ready aes_decrypt_in

aes_load
[31:0]

HADDR[31:0]
[2:0]

HBURST[2:0]
[31:0]

HRDATA[31:0]

[2:0]
HSIZE[2:0]

[1:0]
HTRANS[1:0]

[31:0]
HWDATA[31:0]

[127:0]
aes_data_in[127:0]

[127:0]
aes_data_out[127:0]

[127:0]
aes_key_in[127:0]

ahb_interface

ahb_interface_inst

Figure 3.15: Top-level schematic view of AES + AHB-Lite

SIMON + AHB-Lite
Building on the AHB-Lite interface for AES, only a couple simplifications needed to be made to make
it ready for SIMON. Because the SIMON block size is only 64 bits, bursts of two 32-bit beats are
can replace the original 4-beat bursts in WRITETEXT and READTEXT . Next, no selection on
encryption or decryption is made as only encryption is currently supported by the supplied SIMON
IP core. The FSM diagram in Figure 3.14 can thus also be applied to SIMON, with the removal of
decryption/encryption selection states. Both AES and SIMON being block ciphers, the effort for creating
a SIMON interface from an AES one is minimal. The resulting RTL schematic is shown in Figure 3.16.

clk

rst

HSEL

HADDR[31:0]

HWRITE

HSIZE[2:0]

HTRANS[1:0]

HBURST[2:0]

HWDATA[31:0]

HRESP

HREADY

HRDATA[31:0]

rst

clk

done

[63:0]
Ciphertext[63:0]

[127:0]
Key[127:0]

[63:0]
Plaintext[63:0]

SIMON64_128Enc

simon

rst

clk

HRESP

HREADY

HSEL

HWRITE

simon_done

simon_load

[31:0]
HADDR[31:0]

[2:0]
HBURST[2:0]

[31:0]
HRDATA[31:0]

[2:0]
HSIZE[2:0]

[1:0]
HTRANS[1:0]

[31:0]
HWDATA[31:0]

[63:0]
simon_data_in[63:0]

[63:0]
simon_data_out[63:0]

[127:0]
simon_key_in[127:0]

ahb_interface

ahb

Figure 3.16: Top-level schematic view of SIMON + AHB-Lite

3.3. Selected interfaces 30

PHOTON + AHB-Lite
Because of the different nature of data input/output of the PHOTON IP core compared to AES/SIMON,
more changes were needed to this AHB-Lite interface than going from AES to SIMON. The main prob-
lem is the ’streaming nibble’ nature of data input/output. AHB-Lite data is clocked in at 32 bits per clock
cycle, whereas PHOTON only takes 4 bits, a nibble, per clock cycle.

Next to the AHB-Lite interface itself, an extra interface block was introduced to take care of proper
resetting, loading and reading data from the PHOTON IP core. This device integrates a small FSM
of which a diagram is shown in Figure 3.17. Four states are present, of which WRITE is the initial
state. In this state, the initialization interface waits for its init input bit to be asserted, indicating that
the AHB-Lite interface has stable input data available that is ready to be hashed. Following init bit
assertion, the FSM enters WAITRESET in which a fixed number of cycles is spent waiting until the
internal 36-nibble state matrix of the PHOTON IP core is fully initialized. A state transition to SHIFTIN
occurs after 38 cycles, determined empirically to be the lowest number of cycles in which the PHOTON
IP core can be initialized. SHIFTIN connects the nibble output of the AHB-Lite interface directly to
the nibble input of the PHOTON IP core. During the time that the input nibbles are shifted in, the device
remains transparent for writing but opaque for reading from the PHOTON IP core, as seen from the
AHB-Lite module. During hashing, the device already enters the SHIFTOUT state and waits until
hashing is done by monitoring the outReady signal coming from the PHOTON IP core. When hashing
has finished, the device enables reading from but blocks writing to the PHOTON IP core and shifts out
all 32 nibbles to the AHB-Lite interface.
Besides safe reading and writing of data, providing a simpler reset mechanism (one init bit) is also a
task of this initialization interface. The proper sequence, together with the FSM states that are passed
is shown in Figure 3.18. The signal state_q indicates in which state the device is. Compare this with the
diagram of Figure 3.17. During state 1, the six columns of the PHOTON state matrix are initialized, as
can be seen in Figure 3.18, the lower six wave forms. Asserting nBlock and nReset in state 2 signals
the shifting in of data and in state 3, the given combination of nBlock, nReset and nInit indicates that
hashing can and will take place.

WRITE SHIFT
OUT

SHIFT
IN

WAIT
RESET

Init bit
asserted

Fully
initialized

Input in
PHOTON

core

0 1 2 3

Figure 3.17: FSM describing the PHOTON initialization interface

Figure 3.18: Top-level schematic view of AES + AHB-Lite

Adding AHB-Lite to the PHOTON IP core is substantially different than to AES or SIMON. Fortu-
nately, with the addition of an external FSM as described in Section 3.3.2, only a single FSM has to
be implemented in this particular AHB-Lite interface. As there is no encryption key present in hashing,

3.3. Selected interfaces 31

any key configuration state from AES/SIMON can be removed. Just like the previous two interfaces,
the initial state of the FSM is a polling state, here called SENSE. It is not an idle state because shifting
out nibbles to the initialization interface can happen here if funnel_shift is asserted.
Just like with AES/SIMON, all states can be entered from the initial state. To make optimal use of the
high-bandwidth nature of AHB-Lite, it is not required to go back to SENSE after exiting state 1 to 3. For
example, LOAD_IV could immediately be followed by READ_STATUS. After iterating on multiple
designs, a shift register structure for the internal registers holding initial state matrix value (144-bit) and
output state matrix containing the hash (144-bit) was chosen. Loading data with indexed part-select,
where all register bits are directly connected to other logic was significantly more resource-hungry and
hence discarded. In LOAD_IV , the 144-bit input message register is written in a burst of four 32-bit
and one 16-bit beats. Hence, all input data can be loaded within six clock cycles (adding the address-
ing phase of the first beat). HASHOUT takes care of the inverse process: the 144-bit output register,
which contains the resulting hash, is sent out the HRDATA port in a burst of five consecutive beats.
Note that the AHB-Lite FSM does not take care of reading or writing its 144-bit input and output reg-
isters, nibble by nibble. This is taken care of by the initialization interface in Section 3.3.2, which can
manipulate the contents of these registers by the funnel∗ signals. Although 128-bit values are used as
input and output of the PHOTON IP core, 144-bit registers are used as four extra nibbles are present
in the internal state matrix (row signals in Figure 3.18).
The total assembly of PHOTON IP core with its two interfaces is shown in Figure 3.20. Although the
internals are greatly different comparing with AES and SIMON in Figure 3.15 and Figure 3.16, the top-
level inputs and outputs are exactly the same, which is essential for protocol consistency and shows
that the primary goal of interfaces is achieved: abstracting away any crypto IP core behind a standard
protocol.

SENSE

HASH
OUT

LOAD
IV

READ
STATUS

0

1 2 3

Figure 3.19: Simplified FSM describing the AHB-Lite interface for PHOTON

3.4. Selected platforms 32

clk

rst

HSEL

HADDR[31:0]

HWRITE

HSIZE[2:0]

HTRANS[1:0]

HBURST[2:0]

HWDATA[31:0]

HRESP

HREADY

HRDATA[31:0]

clk

rst

HREADY

HRESP

HSEL

HWRITE

status

funnel_shift

photon_init

[31:0]
HADDR[31:0]

[2:0]
HBURST[2:0]

[31:0]
HRDATA[31:0]

[2:0]
HSIZE[2:0]

[1:0]
HTRANS[1:0]

[31:0]
HWDATA[31:0]

[3:0]
funnel_nibble_in[3:0]

[3:0]
funnel_nibble_out[3:0]

ahb_interface

ahb_interface_inst

clk

rst

init

lwh_outReady

lwh_init

lwh_nBlock

lwh_nReset

status

funnel_shift
[3:0]

funnel_nibble_in[3:0]

[3:0]
funnel_nibble_out[3:0]

[3:0]
lwh_nibble_in[3:0]

[3:0]
lwh_nibble_out[3:0]

lwh_par_interface

lwh_par_interface_inst

init

clk

nReset

nBlock

outReady
[3:0]

data_in[3:0]

[3:0]
data_out[3:0]

lwh

photon_inst

Figure 3.20: Top-level schematic view of PHOTON + AHB-Lite

3.4. Selected platforms
To gain insight in the feasibility of FPGAs in IMDs, our algorithms need hardware target platforms to
be able to perform the required measurements. The roles of the Extra Processing block depicted in
Figure 3.1 will be fulfilled by either an MCU (with and without hardware acceleration), FPGA or eFPGA
platform running our designs presented in Section 3.2. For a baseline comparison, we select two
MCUs that are very similar to the hardware of modern commercial IMDs. Next, an ultra-low-power
(mW range) FPGA is chosen that will fit all hardware implementations of our algorithms. To be able
to answer Question 2 listed in Section 1.2.1, three eFPGA fabrics were designed and included in the
comparison. In the next subsections, the chosen hardware platforms will be discussed in detail and an
introduction to the used eFPGA tools and architectures will be given.

3.4.1. MCUs
As reference platform on which software implementations of the aforementioned algorithms will be run,
the EFM32 Tiny Gecko 11 is chosen [80]. This MCU has an ARM Cortex-M0+ at its core, paired with
an AES-128 ASIC peripheral. With this device, performance with and without hardware acceleration
can be benchmarked, in the case of AES-128. It will be interesting to see the impact of using hardware
acceleration while also adding FPGA benchmarks to the equation.
Next, a higher performing MCU was selected to see how a step up in performance will cost in terms of
energy consumption. The EFM32 Giant Gecko 11 [81] is in many ways very similar to the Tiny Gecko,
with the main difference being an ARM Cortex-M4 which has replaced the Cortex-M0+. The same AES
ASIC is present in the Giant Gecko as well. In Table 3.5 the most important properties of both MCUs
are shown. A clock speed of 13MHz, the lowest available value, is set to approach the 12MHz used
for the FPGA in Section 3.4.2.

Table 3.5: Specifications of selected Gecko MCUs

3.5. Menta eFPGA 33

Name CPU core AES-128
ASIC

Op. Frequency
(MHz)

Process
technology (nm)

EFM32 Tiny Gecko 11 Cortex-M0+ Yes 12 TSMC 90nm
EFM32 Giant Gecko 11 Cortex-M4 Yes 12 TSMC 90nm

3.4.2. FPGAs
Choosing FPGAs for the comparison, the most important factor is high energy efficiency. As stated
in Section 2.1.2, two families of FPGAs pose to be viable candidates for integration in IMDs looking
at their physical size and power characteristics. The Microsemi IGLOO series has the advantage of
being flash-based, leading to a low static power consumption. As static power consumption is the
main contributing factor in overall energy consumption with low duty cycles (See Section 4.2.2), this
would seem the logical choice over the other series, that of Lattice iCE40 UltraPlus FPGAs which is
SRAM-based. Even better, both platforms could be taken and a comparison could be made between
flash and SRAM-based FPGAs. However, due to the high costs of its hardware platform and tools
licensing, the Microsemi IGLOO series is not included in our experiments. Instead, the more affordable
iCE40 UltraPlus is set as the baseline FPGA platform, with approximations made later on of flash-based
FPGA energy figures, see Section 4.2.2. Furthermore, the IGLOO series has no DSPs available, which
are eagerly needed for artificial neural networks. One could do without them, like in [8], but at a high
resource and energy cost. Added that the iCE40 UltraPlus has a well-documented CNN available and
that tiny NNs are hard to get by, the Lattice platform is an overall better choice for our experiments.
Table 3.6 lists the most relevant specifications of the selected FPGA. For development, Lattice’s own
software suite, Lattice Radiant, is used which incorporates all functionality expected from a modern
FPGA design tool.

Table 3.6: Specifications of selected Lattice FPGA

FPGA LEs
(LUT4+DFF) DSPs RAMs

Process
technology

(nm)
Synthesis engine

iCE40UP5K 5820 8 (16x16)
4x 256Mb

SRAM + 30x
4kb EBR

40nm Lattice Synthesis
Engine (LSE)

Synopsys Synplify
Pro

3.4.3. eFPGAs
Next to the off-the-shelf Lattice FPGA of Section 3.4.2, embedded FPGA technology delivered byMenta
is selected for our experiments. For an extensive introduction to eFPGAs and the designed fabrics for
our experiments, see Section 3.5.

3.4.4. LSE and Synplify Pro
Within Lattice Radiant, two synthesis tools can be selected. The default option is Lattice Synthesis
Engine, which is developed in-house and is expected to perform especially well when calling on iCE40-
specific hardware IPs. Next, Synplify Pro is available, which is an industry standard developed by
Synopsys. All hardware designs created in this project are synthesized with both synthesis engines, to
evaluate whether a particular engine should be used in certain cases.

3.5. Menta eFPGA
With eFPGAs, extra design steps are inserted before the regular synthesis and Place & Route toolflow.
As the FPGA fabric is aimed at being embedded as an IP on the same die as other logic, it can be
an arbitrary size. The eFPGAs in this comparison are not selected in the same sense as MCUs and
eFPGAs which are off-the-shelf products, but designed to fit the selected algorithms. Before the de-
signed eFPGA architectures are presented, an general overview of the design process will be given in
Section 3.5.1. Next, the Menta eFPGA topology and architecture details will be laid out in Section 3.5.2.

3.5. Menta eFPGA 34

Derivations that lead to the required resource amount for the designed eFPGA architectures are shown
in Section 3.5.3. Finally, the designed and selected architectures are presented in Section 3.5.4.

3.5.1. Menta eFPGA design tools
Designing eFPGA architectures and actually implementing hardware RTL designs on them requires
a special set of software tools. For our experiments, Menta made their eFPGA tools available. Their
toolset consists of two programs: Origami Designer and Origami programmer. The names are self-
descriptive: Designer is used to create eFPGA architectures, where Programmer bears more similari-
ties with regular FPGA tools, featuring steps like synthesis, place & route and generation of bitstreams.

Origami Designer
With Origami Designer, eFPGA architectures of arbitrary size can be defined. A screenshot of the
tool with an open project can be seen in Figure 3.21. With the menu directly right from the graphical
eFPGA view, the size of the fabric can be determined as an X by Y grid. The number of clock/reset
domains, I/O count and number of switchbox interconnect wires are also defined in the design process.
The basic building block is a group of eight LUT6 cells tied to a single switchbox, but hard macros like
RAMs and DSPs can be defined and placed in the fabric. The small yellow rectangles in Figure 3.21
indicate hard macros, placed column-wise in the first and last column of the defined fabric. One very
important property of hard macro placement in Origami Designer is that the tool puts the maximum
possible number of hard macros in a marked column, only leaving space for LUT6 blocks if further hard
macro placement is impossible. More on this property and its design implications in Section 3.5.2.
Other features of Origami Designer include an estimation of the static power and area of the designed
fabric with regard to the used manufacturing process technology model. When just an indication of the
required fabric size for certain hardware IPs is needed, a suitable architecture can also be computed
automatically based on one or more HDL applications. Basic synthesis and Place & Route functionality
is also integrated, but for more advanced options in this field, Origami Programmer is used.

Figure 3.21: Origami Designer with an open project

Origami Programmer
Once one or more target eFPGA architectures have been created with Origami Designer, actual HDL
applications can be implemented on those architectures with Origami Programmer. As has been men-
tioned before, this tool is very similar to comparable tools from FPGA vendors. The main difference lies
in their target devices: with regular FPGA vendors, the target is one of their physical FPGAs, where

3.5. Menta eFPGA 35

with Origami Designer the target architecture is a custom designed eFPGA. To run implemented HDL
applications on the designed eFPGAs, the target device first needs to be manufactured after it can ac-
cept a bitstream. However, bitstreams can already be generated before manufacturing. In this thesis,
we will only look at post-Place & Route results with regard to estimated static and dynamic power, phys-
ical area, timing and resource usage. Physical measurements on eFPGAs is considered out of scope,
but those measurements will be done on the off-the-shelf Lattice FPGA selected in Section 3.4.2 and
the experimental setup is explained in Section 3.6. In Figure 3.22, a screenshot of an open project in
Origami Programmer is shown. Blue lines in the graphical eFPGA view are visualized interconnections
between elements post-Place & Route, which give an indication of the relative resource occupation.
Together with Origami Designer, an eFPGA architecture can be fit to a set of HDL applications without
much effort, which was also done when designing our eFPGA architectures in Section 3.5.4.

Figure 3.22: Origami Programmer with an open project

3.5.2. Menta eFPGA topology
With Origami Designer and Programmer, eFPGA architectures can be designed and hardware appli-
cations made fit on those designs. To get a deeper understanding of the different design parameters
involved, this subsection outlines the most important eFPGA topology properties, as well as design
characteristics that have to be taken into account.

Example Menta architecture
The simplest architecture, that is also the default configuration at a new Origami Designer project,
consists of a grid of 3x3 Embedded Logic Blocks (ELBs), I/O pairs of width 8, a single clk/set/reset
channel, interconnect channel width of 16 and no custom hard macros (like RAMs and DSPs). A
graphical representation of this architecture is shown in Figure 3.23. As can be seen from the figure,
an ELB consists of four MLUTs, which consist again of two LEs. MLUTs have two shared inputs for
their two LEs, hence a grouping per two LEs is made. The channel width is equal to the number of
interconnect wires (inputs and outputs) between SBs, added together for every of the four sides of an
SB. For the example architecture, its channel width of 16 means 8 input and 8 output wires between
all adjacent SBs. Every bit of I/O pair width corresponds to a buffered 1-bit input and output port.

Menta architecture with hard macros
Two architectures that would be fitting for the Lattice CNN were designed, of which one can be seen
in Figure 3.24. More on the architectural design choices in Section 3.5.4. Next to ordinary ELBs

3.5. Menta eFPGA 36

Figure 3.23: A reference Menta architecture, outlining its different building blocks

that contain LEs, switch boxes are assigned to connect to DSPs and RAMs. The number of SB that
is occupied by a single DSP or RAM is determined by two factors: architecture channel width and
DSP/RAM I/O width. Here, single port RAMs with 16-bit read-write ports only need one switch box, as
the channel width of 46 provides for enough input (23) and output (23) wires to connect one RAM to one
switch box. The DSP is a 16x16 one, meaning that it needs 32 input and output wires, 64 in total. This
DSP configuration was selected to match that of the Lattice baseline FPGA. Origami Designer spreads
it over three SBs, presumably so because the total number of wires in one direction is 23 ∗ 3 = 69 in
this case, the smallest number of resulting wires that is larger than the total number of wires from the
DSP.

Hard macro placement
Within Origami Designer, hard macros can be placed by marking columns to be available by one hard
macro type per column. Different types of RAMs can exist in the same architecture, with different port
widths, port numbers, capacities etc. but only one type of DSP can exist within an architecture. The
number of DSPs and RAMs is not set directly but determined by how many DSP/RAM blocks fit in the
marked columns. In the architecture of Figure 3.24, the first and last column are marked to be filled with
16x16 DSPs. As a DSP in this architecture needs three switch boxes, the maximum number of DSPs is
automatically set to eight. The remaining switch boxes in the marked columns are set to regular ELBs,
as is done here with the two top rows. As the RAM blocks used only occupy one SB and one column
is marked, that whole column is filled with RAM blocks.

3.5. Menta eFPGA 37

Figure 3.24: A CNN-fitting architecture with RAM and DSP hard macros

Logic Elements in DSP columns
Designing an eFPGA is done mainly by controlling its grid size as stated in Section 3.5.1. All inputs
and resulting output parameters are listed in Table 3.7. After generating various architectures, further
investigation uncovered a discrepancy between the reported number of LEs (and thus LUTs and DFFs)
by Origami Designer and the actual number. The reason for this is that remaining LUTs, here listed
as LEsNR, are not counted towards the total resources. This can happen in the event that DSPs
occupying more than one grid row are used and the remainder of Y mod SBDSP is nonzero. The same
can happen with RAMs, however no multi-column RAMs have been placed in our architectures. As an
example, an architecture with four rows (Y = 4) and a column with a single DSP covering three rows
will leave one SB in the DSP row available for an LE. It has been verified that these remaining LEs are
used by the Place & Route engine. However, for simplicity, the official resource count as reported by
the Origami tools is adhered to.

3.5.3. LUTs and DFFs calculation of Menta CNN numbers
As has been mentioned in Section 3.2.4, the Compact CNN by Lattice is proprietary and therefore
only available on Lattice FPGAs. As a result, it is not possible to get actual resource usage numbers
for the Key Phrase Detection project on Menta eFPGA fabric. To get an indication of the prospected
resource usage and to size a suitable eFPGA architecture accordingly, a look is taken at the correlation
between Lattice and Menta results for the security primitives, which can be Place & Routed on both
platforms with success. Based on the calculated resource usage numbers in this section, the ”CNN-
ready” eFPGA architectures are sized. The most important reason why there is no 1:1 resource usage
pattern between Menta and Lattice, is because the first is a LUT4 and the latter a LUT6 architecture.
Hence, a scaling factor for the number of used LUTs,going from LUT4 to LUT6, needs to be found.
Menta already provides an equivalent #LUT4s with every architecture. The scaling factor used there is
1.52, meaning that a Menta architecture based on LUT4 cells would need 1.52 times as much LUTs as
when using LUT6 cells. As we will see later, this number is a bit optimistic. For the complete resource
usage analysis, see Section 4.2.

Resource usage ratios between Lattice and Menta
First, the ratios Menta/LSE and Menta/Synplify Pro are calculated for number of Logic Elements, LUTs
and DFFs for all security primitive HDL implementations respectively. so this means six different blocks:

• AES-128 + AHB
• AES-128 + UART
• SIMON-64/128 + AHB
• SIMON-64/128 + UART

3.5. Menta eFPGA 38

Table 3.7: Overview of Menta architecture design parameters

Variable Description Calculation

SB Switch box, basic building block X ∗ Y
X # SB columns Input

Y # SB rows Input

colsDSP # columns that are occupied with DSPs Input

colsRAM # columns that are occupied with RAMs Input

SBDSP # SBs occupied per DSP block Input∗
SBRAM # SBs occupied per RAM block Input∗
DSPs # DSPs in architecture ⌊ Y

SBDSP
⌋

RAMs # RAMs in architecture ⌊ Y
SBRAM

⌋
IOpair # inputs & outputs per SB on architec-

ture edge
Input

CLKS/R # clk/set/reset channels Input

SBHM # SBs used for hard macros, either
DSP or RAM

DSPs ∗ SBDSP+RAMs ∗ SBRAM

LUTs # LUTs in architecture 8 ∗ (X ∗ Y − SBHM)

DFFs # DFFs in architecture LUTs +4∗X∗Y∗IOpair−5∗CLKS/R

LEsNR # LEs (LUT+DFF) in HM column not re-
ported

8∗ [Y (mod SBDSP)∗ colsDSP +Y (mod
SBRAM) ∗ colsRAM]

LUTsREP # LUTs reported by Origami LUTs - LEsNR

DFFsREP # DFFs reported by Origami DFFs - LEsNR

• PHOTON-128 + AHB
• PHOTON-128 + UART

This results in six vectors with ratios between zero and one: two for LEs, LUTs and DFFs respec-
tively, because calculations have been done separately for Synplify Pro and LSE results. Next, the
median of all six vectors is taken per vector, leaving two medians per LE, LUT, DFF metric. This is to
remove outliers, like the considerably lower number of DFFs for PHOTON-128_UART when switching
the synthesis engine from LSE to Synplify Pro. The reason for this outlier is that Synplify Pro infers
dedicated RAM blocks for this specific implementation where LSE can be set to map all memory defini-
tions in registers. Every median pair (LSE and Synplify Pro) is averaged, leaving one median per metric
(LEs, LUTs, DFFs). We will call each of these three medians ’mean medians’ later on. To calculate the
final number of LUTs, any obtained mean median is multiplied by the mean number of its respective
resources between Synplify Pro and LSE, as found for the Key Phrase project. This is done for the
number of LEs, LUTs and DFFs respectively.
The calculated number of resources for the Key Phrase project is less on the Menta platform than on
Lattice as shown in Section 4.1.1. Note especially the number of LUTs, which is significantly lower.
This is within expectation, as Lattice uses 4-input LUTs whereas Menta uses 6-input LUTs. From this
calculation, it can be concluded that an eFPGA from Menta that has to fit the Key Phrase project only
has to have around 4500 LUT6 Logic Elements, less than the 5820 of the iCE40UP5K FPGA.

3.5.4. Resulting eFPGA architectures
Since eFPGA architectures can be instantiated and modified with little effort, multiple architectures
were created for our experiments. Due to the different resource usage nature of the security primitive
IP cores compared to the Lattice Compact CNN, we opted for an architecture with and without hard
macros. Specifications of all three architectures can be found in Tables 3.8 and 3.9.

3.6. Current measurements 39

Table 3.8: Input design parameters for the three Menta architectures designed for our experiments

Arch X Y IOpair CLKS/R colsDSP colsRAM

1) 19 18 8 2 0 0
2) 25 25 8 2 1 1
3) 43 14 8 2 2 1

Table 3.9: Resulting properties of the three eFPGA architectures designed for our experiments

Arch SBDSP SBRAM DSPs RAMs SBHM LUTs DFFs LEsNR LUTsREP DFFsREP

1) 1 1 0 0 0 2736 3910 0 2736 3910
2) 3 1 8 25 49 4608 6198 8 4600 6190
3) 3 1 8 14 38 4512 6326 32 4480 6294

Architecture 1: cryptographic primitives
The first architecture was sized just large enough to fit AES + AHB and AES + UART. As will be shown
in Section 4.1.1, either interface can be attached to the AES IP core without requiring a differently sized
eFPGA fabric. No DSPs or RAMs are available in this architecture, as all security primitives are heavy
on logic operations and do not make use of those special blocks when synthesized with Lattice Radiant.
When AES-128 can fit, SIMON and PHOTON will fit just as well, as the latter two are designed to use
significantly less resources.

Architecture 2: ready for neural networks
To potentially fit the Lattice Compact CNN, Architecture 1 is too small with 2736 ELBs. Calculations
from Section 3.5.3 have determined that the required ballpark number of Logic Elements needs to be
4581. Architecture 1 was expanded to accommodate for this increase in ELBs, having 4608 in total.
Additionally, eight 16x16 DSPs and 25 256Mb single-port RAMs were added, to have for both hard
macro types at least the same number present in the iCE40UP5K FPGA. Note that the number of
DSPs is identical, but the RAM amount is substantially higher. With a similar square shape (25x25) as
can be noted from Table 3.8, marking a column for RAMs that occupy one SB will always result in 25
RAM blocks. Smaller RAMs could always be inserted to equalize the Lattice-Menta difference in this
point. With a large number of RAM and DSP options, Menta provides power models to a customer
when an eFPGA is actually going to be implemented and manufactured. As no implementation was
planned for this thesis, no power model was made available. The Menta dynamic power estimations
in Section 4.3.2 include only the projected LUT/DFF dynamic power.

Architecture 3: hard macro count reduced
Assuming that only 256Mb single-port RAM blocks are available, the number of them present in Ar-
chitecture 2 needs to be reduced to bear closer resemblance to the iCE40UP5K FPGA. Because only
one column is marked for RAM insertion, it is not possible to reduce the amount of RAMs simply by
marking less columns. By resizing the fabric from a 25x25 square to a 43x14 rectangle, the column
size is reduced to 14, implicating that only 14 RAMs are present. Reducing the fabric to four rows would
result in an equalized amount of RAMs (4). However, this would make routing prohibitively difficult. The
resulting size of 43x14 matches the number of ELBs of Architecture 2 the most, while simultaneously
having a smaller number of RAMs for a more ’fair’ comparison to the iCE40UP5K.

3.6. Current measurements
With our selection of algorithms, interfaces and platforms, current measurements are conducted to
gather further insight in energy feasibility of typical use cases of reconfigurable fabric in IMDs. Mea-
surements were performed on all physical platforms, meaning that both MCUs and the iCE40 FPGA
were to run all three crypto IP cores. The Key Phrase Detector project, incorporating a convolutional
neural network (CNN), only runs on the iCE40 FPGA as it is proprietary to Lattice. Therefore, no
measurements could be done on the MCUs for this algorithm. Artificial neural networks that have an
equivalent C++ and FPGA implementation were at the point of writing this thesis impossible to get

3.6. Current measurements 40

by. Developing or porting such a network was considered to be out of the scope of this thesis. As a
result, no direct comparison of results from software MCU to FPGA implementations could be made.
Current draw and energy consumption estimations were done for all eFPGA fabrics with tools supplied
by Menta. An overview of the available measurement data points is shown in Table 3.10.
In the next subsections, the used measurement methods and necessary HDL modifications are laid
out.

Table 3.10: Available measurement data points

Algorithm MCUs FPGA (iCE40) Menta Arch 1-3
AES yes yes no, estimated

SIMON yes yes no, estimated
PHOTON yes yes no, estimated

Key Phrase Detector no yes no, estimated

3.6.1. MCU measurements
With fixed hardware in the case of MCUs, current draw depends mainly on the internal peripherals
that are being used by a running program and the clock speed. Both Gecko platforms have an AES-
128 ASIC, which greatly influences active current draw. In Table 3.11, all measured current draws for
both MCU platforms are shown. All currents are MCU core currents only; the complete (development)
board would have a higher current draw. However, having only core currents enables us to compare
directly to the FPGA measurements. Static currents are based on the reported value in sleep mode
IEM4H_V S. When the dedicated AES ASIC is used, current draw increases but as will be shown later
on in Section 4.2.2, energy consumption per encrypted block will be significantly less than a software run
due to the drastically shorter execution time. Calculating consumed energy per encryption operation,
the total execution time of one operation is counted and multiplied with the respective dynamic current
value and the operating voltage, see Section 4.2.1. All dynamic current values are average currents
over the duration of a single cryptographic operation, for all three crypto IP cores.

Table 3.11: Static & dynamic current values for Tiny & Giant Gecko @ 13MHz (in mA)

MCU Static Dynamic without AES Dynamic with AES
Giant Gecko 0.021 1.44 1.98
Tiny Gecko 0.013 0.58 1.06

3.6.2. FPGA measurements
Obtaining dynamic current on the Lattice iCE40 platform is done by measuring the voltage across a
1Ω resistor specific test points on the used iCE40UP5K-B-EVN board, as marked in Figure 3.25. All
applications were run continuously under full load during themeasurements, giving an average dynamic
current value in a similar way to 3.6.1. The measured current is of the whole FPGA package, but not
the surrounding components like external flash. Multiplying with the duration of a single encryption
operation and the operating voltage would yield the energy consumption for that specific design.

3.6.3. eFPGAs
Because the eFPGAs designed in this project do not exist physically, no direct current measurements
could be done on these architectures. However, static power per architecture can be obtained from
Origami Designer (Section 3.5.1) and for dynamic power estimations, Menta provided an experimental
calculation model. With this model, dynamic power can be estimated with only three main input pa-
rameters: fabric size, clock speed and average activity factor. Process technology is also an important
factor, which was fixed at 28nm TSMC technology. Note that no mention is made of a particular ap-
plication that determines the power: this is simplified and replaced by the average activity factor. In
this project, the relative resource occupation of each HDL implementation with regard to Architecture
1 is taken and used as a multiplier in the calculation. Otherwise, all applications would yield the same
dynamic power, as the model normally expects the complete eFPGA fabric to contribute to the average
activity factor.
As no real average activity factor could be extracted for any implementation in the duration of this

3.6. Current measurements 41

Figure 3.25: Current measurement points on the iCE40UP5K-B-EVN evaluation board

project, multiple realistic values are assumed in the calculations, see Section 4.3.2.

3.6.4. Crypto cores measurement preparations
To ensure reliable average dynamic current measurements, all crypto IP + interface assemblies needed
slight modifications. If bitstreams would be generated of all crypto IP + interface cores described in Sec-
tions 3.2 and 3.3, only static power would be measured as the cores are not configured to do anything
without specific inputs. First, the number of cycles was determined that each crypto IP core requires to
encrypt a single block (128-bit for AES and 64-bit for SIMON) or hash a 128-bit input message (PHO-
TON). The resulting cycle count can be found in Table 3.12. For every block, counting was done from
rising edge of its init signal to rising edge of its done signal. Note that only the crypto IP cores are taken
into account here: communication delay from AHB-Lite or UART is not put in the equation, as the most
influential factor on current draw would become the baud rate for UART and negligible for AHB-Lite.

Table 3.12: Cycle count for single cryptographic operation

Algorithm Cycle count Single operation definition
AES-128 505 Encrypting 128-bit plaintext

SIMON-64/128 45 Encrypting 64-bit plaintext
PHOTON-128 1073 Hashing 128-bit input message

3.7. Conclusions 42

With the cycle count for each crypto IP core from Table 3.12, PWM counters were inserted to trigger
the load signal with the respective cycle count period. AES is taken as an example here and the same
methodology is applied to SIMON and PHOTON. For AES, the PWM counter triggers the init signal
of the AES IP core every 505 cycles to ensure that the complete encryption cycle is executed and
that it runs indefinitely, encrypting a hardcoded plaintext. Measuring is made easy this way: a single
average current value is enough to derive energy consumption for a single encryption run because its
number of cycles is known. See the modified RTL schematics for AES + UART and AES + AHB-Lite in
Figure 3.26. In all implementations, a stresstester block is inserted. This block is the PWM counter that
triggers operation with the right period. Next, all implementations that have AHB need an extra trick in
the form of the ahb_wire_eliminator. This block obscures the HRDATA, HWDATA and HADDR
ports from the Map and Place & Route engine so that the design can be loaded on the Lattice FPGA.
The iCE40UP5K only has 39 I/O pins, hence this modification is needed. As no communication takes
place (input plaintext is hardcoded), this modification proves no impediments to our measurements.

3.6.5. Compact CNN accelerator measurement preparations
Because the Key Phrase detector project is already built to continuously monitor and listen to its inputs,
no modification is needed to get it out of an idle state. The example bitstreams are loaded onto the
iCE40 FPGA, after which average dynamic current measurements can be done in the same way as
with the crypto IP cores in Section 3.6.4, while the design runs at 40 key phrase evaluations per second.

3.7. Conclusions
In this chapter, our benchmark suite consisting of four algorithms, two interfaces and three groups of
platforms is presented and designed.
First, the implementations of the three selected security primitives (AES-128, SIMON-64/128 and
PHOTON-128) are demonstrated. For every primitive, a premade IP core was selected that is opti-
mized for low resource usage. With AES and SIMON being both block ciphers, interfacing them is
done by presenting block and key data in parallel. Reading data from and writing to the PHOTON
block is done in a serial fashion, as is fitting for hashing protocols which have a varying input message
size. As neural network representative the Key Phrase Detector example project from Lattice is cho-
sen, which is the last of our algorithm selection. The actual interfaces were created in Section 3.3, for
simulating realistic resource overhead on the security primitives implementations. Two different sce-
narios were considered, as seen from the FPGA: off-die communication with an external host MCU and
on-die communication in the case of an eFPGA integrated within an MCU on the same die. For both
scenarios, fitting hardware implementations have been designed in the form of UART and AHB-lite
interfaces. Where the UART interface is based on a simple 8-bit UART IP core, the AHB-Lite interface
has been designed completely from scratch, with both interfaces requiring adaptations depending on
the respective cryptographic IP core.
In Section 3.4, a set of two MCUs and a baseline FPGA have been selected to perform performance
and energy comparisons for our experiments. Additionally, eFPGA technology will be considered. As
is clear from the available ultra-low-power FPGAs currently on the market, the iCE40 UltraPlus series
is the only affordable option. The MCU selection is based upon processors common in modern IMDs,
with a higher end and energy-efficient version of the EFM32 Gecko series. This set of platforms is
representable hardware for comparing a hypothetical FPGA-equipped IMD with a conventional MCU-
based unit.
Next, eFPGAs are added to our platforms comparison in addition to MCU and FPGA hardware. An
extra step is introduced in the design flow compared to regular FPGAs: that of designing the eFPGA
fabric itself. With the Menta architecture being LUT6-based, the resource usage is different from our
algorithms implemented on the baseline FPGA. Determining resource usage of the Key Phrase Detec-
tor on Menta fabric can only be calculated, as its HDL code is proprietary and non-portable. With an
estimation based on linear trends between Lattice and Menta resource usage of all security primitives,
the prospected LUT6 resource usage factor for the Key Phrase Detector is derived as being 75.33%
of the LUT4 count on the Lattice FPGA. Having obtained this factor, eFPGA architectures that can just
fit this CNN project were designed, as well as one fitting all security primitives, totaling three Menta
architectures to be used in our experiments.
Last, our benchmark suite for current measurements on the iCE40UP5K-B-EVN platform is prepared.

3.7. Conclusions 43

This involves modifying our security primitive HDL code to let them run at continuous load, that is,
encryption. For the Key Phrase Detector project, no modifications were necessary as this design is
already built to operate continuously.
MCU current measurements are to be performed by taking active current, which is identical for all imple-
mentations as its hardware is unchanged. Only measurements of the security primitives can be done,
as no Key Phrase Detector software version is available.
Physical eFPGA measurements are not possible as the architectures do not exist physically. Complete
physical properties will only be available after hardening the eFPGA IP, which is not planned for this
thesis. However, static power can be obtained from Origami Designer and dynamic power from an
experimental calculation model. As a global average activity factor needs to be provided in this model,
multiple realistic values are assumed.

3.7. Conclusions 44

clk

rst

HSEL

HWRITE

HSIZE[2:0]

HTRANS[1:0]

HBURST[2:0]

HRESP

HREADY

c
l
k

r
s
t

l
o
a
d

s
t
r
e
s
s
t
e
s
t
e
r

s
t
r
e
s
s
_
9
b
i
t

[
3
1
:
0
]

H
A
D
D
R
[
3
1
:
0
]

[
3
1
:
0
]

H
R
D
A
T
A
[
3
1
:
0
]

[
3
1
:
0
]

H
W
D
A
T
A
[
3
1
:
0
]

a
h
b
_
w
i
r
e
_
e
l
i
m
i
n
a
t
o
r

a
h
b
_
w
i
r
e
_
e
l
i
m
i
n
a
t
o
r
_
i
n
s
t

c
l
k

r
e
s
e
t

l
o
a
d
_
i

d
e
c
r
y
p
t
_
i

r
e
a
d
y
_
o

[
1
2
7
:
0
]

d
a
t
a
_
o
[
1
2
7
:
0
]

[
1
2
7
:
0
]

k
e
y
_
i
[
1
2
7
:
0
]

[
1
2
7
:
0
]

d
a
t
a
_
i
[
1
2
7
:
0
]

a
e
s

a
e
s
_
i
n
s
t

H
R
E
A
D
Y

r
s
t

c
l
k

H
R
E
S
P

H
S
E
L

H
W
R
I
T
E

a
e
s
_
r
e
a
d
y

a
e
s
_
d
e
c
r
y
p
t
_
i
n

a
e
s
_
l
o
a
d

[
3
1
:
0
]

H
A
D
D
R
[
3
1
:
0
]

[
2
:
0
]

H
B
U
R
S
T
[
2
:
0
]

[
3
1
:
0
]

H
R
D
A
T
A
[
3
1
:
0
]

[
2
:
0
]

H
S
I
Z
E
[
2
:
0
]

[
1
:
0
]

H
T
R
A
N
S
[
1
:
0
]

[
3
1
:
0
]

H
W
D
A
T
A
[
3
1
:
0
]

[
1
2
7
:
0
]

a
e
s
_
d
a
t
a
_
i
n
[
1
2
7
:
0
]

[
1
2
7
:
0
]

a
e
s
_
d
a
t
a
_
o
u
t
[
1
2
7
:
0
]

[
1
2
7
:
0
]

a
e
s
_
k
e
y
_
i
n
[
1
2
7
:
0
]

a
h
b
_
i
n
t
e
r
f
a
c
e

a
h
b
_
i
n
t
e
r
f
a
c
e
_
i
n
s
t

(a) AES + AHB

clk

reset

decrypt

kortrx

tx aes_busy

c
l
k

r
s
t

l
o
a
d

s
t
r
e
s
s
t
e
s
t
e
r

s
t
r
e
s
s
_
9
b
i
t

rst_ah
r
e
s
e
t

c
l
k

l
o
a
d
_
i

d
e
c
r
y
p
t
_
i

r
e
a
d
y
_
o

[
1
2
7
:
0
]

d
a
t
a
_
o
[
1
2
7
:
0
]

[
1
2
7
:
0
]

k
e
y
_
i
[
1
2
7
:
0
]

[
1
2
7
:
0
]

d
a
t
a
_
i
[
1
2
7
:
0
]

a
e
s

a
e
s
_
i
n
s
t

c
l
k

r
s
t

t
x

r
x

d
a
t
a
_
o
u
t
_
r
e
a
d
y

e
x
t
_
b
u
s
y
_
o
u
t

d
a
t
a
_
i
n
_
r
e
a
d
y

[
1
2
7
:
0
]

d
a
t
a
_
i
n
[
1
2
7
:
0
]

[
1
2
7
:
0
]

d
a
t
a
_
o
u
t
[
1
2
7
:
0
]

u
a
r
t
_
b
l
o
c
k

u
a
r
t
_
b
l
o
c
k
_
i
n
s
t

c
l
k

r
s
t

k
o
r
t

[
1
2
7
:
0
]

d
a
t
a
_
i
n
[
1
2
7
:
0
]

[
1
2
7
:
0
]

k
e
y
_
o
u
t
[
1
2
7
:
0
]

[
1
2
7
:
0
]

t
e
x
t
_
o
u
t
[
1
2
7
:
0
]

k
o
r
t

k
o
r
t
_
i
n
s
t

(b) AES + UART

Figure 3.26: Modified RTL schematics for AES current measurements

4
Results

In this chapter, the research questions posed in Section 1.2.1 are revisited and answered through re-
sults of our experiments, for which the benchmark suite was prepared in Chapter 3. The goal of all
experiments is to arrive at a clear picture of how and in what ways FPGAs could be a feasible and
advantageous addition to IMDs. Therefore, typical use cases were implemented on FPGA fabric: AES,
SIMON and PHOTON security primitives paired with UART and AHB-Lite interfaces, and the Lattice
Key Phrase Detector project with a CNN inside on the iCE40UP5K FPGA. All three security primitives
were run continuously on the iCE40UP5K-B-EVN development board as listed in Table 3.12. First, in
Section 4.1 a look is taken at FPGA resource usage of each implementation to determine the needed
eFPGA architecture sizes and to simplify and reduce the number of data points. Next, execution time
and energy are evaluated in Section 4.2. Reduction in execution time is one of the main advantages to
deploy an FPGA instead of a software implementation. This performance gain will come at the price of
a higher energy consumption. To see whether extra energy consumption is tolerable, projected battery
life is calculated from execution time and dynamic current/power draw. With battery life figures, it is
easy to judge FPGA feasibility. Next, we take a look at eFPGAs. When area is of utmost concern,
eFPGAs can be a good alternative to classical FPGAs because of integration within an MCU, hence
the name embedded FPGAs. Added to that, energy consumption differences with the Lattice FPGA
are investigated to see how much energy is saved by going from FPGA to eFPGA. Power and energy
calculations are done with help of Menta-provided calculation tools as described in Section 3.6.3. Ad-
vantages in area and power consumption will be laid out in Section 4.3.
To answer if reconfiguration is feasible, we have to look at energy consumption per FPGA reconfigu-
ration. No partial reconfiguration is possible, as that is currently reserved for more high-end and thus
bigger FPGAs. Section 4.4 will show the tenets of IMD-FPGA reconfiguration.
Finally, a non-technical but highly important aspect is that of legal certification. No technical exper-
iments have been done to answer the fourth question, but sources will show in Section 4.5 that no
hindrance is to be expected in this field for FPGA-equipped IMDs.

4.1. Calculating and Reducing Results
4.1.1. FPGA resource usage
As noted in Section 3.5.3, an analysis of resource usage on the Lattice and Menta platforms is needed
to determine the eFPGA fabric size for a neural network implementation. A first look is taken at the
resource usage of all designs presented in Chapter 3. A design should not exceed the maximum
available resources of the iCE40UP5K FPGA used in our experiments. Resource usage has a direct
impact on energy usage: the more resources are active at a given time, the more energy is consumed.
Added to that, exceeding the available resource limit of a low-powered FPGA forces the designer to
opt for a higher end and more energy-wasteful FPGA. For this reason, a section is devoted to resource
usage. We will see that many variables, such as synthesis engines and interfaces can be eliminated
due to negligible resource usage differences. LUT and DFF resource usages can be found in Figure 4.2
and hard macro usages (RAMs and DSPs) in Figure 4.3. As can be seen from Figure 4.2, AES-128 is
the largest crypto core as expected with 2358 to 2716 Logic Elements, depending on the interface and

45

4.1. Calculating and Reducing Results 46

synthesis engine used. SIMON and PHOTON occupy significantly less Logic Elements, with 668 to 776
and 578 to 672 respectively. This means that going from the de-facto industry standard in block ciphers
(AES) to a lightweight block cipher (SIMON) results in a factor 3.5 decrease in resources! PHOTON
is similarly sized to SIMON, indicating that lightweight hashing is just as feasible as a block cipher on
small FPGAs.

LSE or Synplify Pro?
If we look at the differences between the two synthesis engines, LSE gives the best results with the
Key Phrase detector, while Synplify pro consequently outperforms LSE where crypto cores are consid-
ered. This leads to the conclusion that LSE works best with complex Lattice-proprietary designs, which
seems reasonable considering that LSE is an in-house synthesis tool. On the other hand, Synplify
Pro is better with simpler, pure logic designs like all crypto cores plus interfaces. Nevertheless, the
difference between synthesis engines is within 15% if the number of LUTs is considered, which is not
that substantial. Therefore, in further results analysis no distinction will be made between Synplify Pro
and LSE. As the Key Phrase Detector only gave valid current measurements when synthesized with
LSE, the numbers of Synplify Pro were dropped. All further mentions of designs and measurements
on the iCE40UP5K FPGA are thus LSE-synthesized implementations.

Interfaces
Looking at interfaces, UART and AHB-Lite occupy a similar amount of resources, with even smaller
differences than choosing between LSE or Synplify Pro! AES having the greatest difference between
interfaces with PHOTON being virtually the same. Therefore, like with different synthesis engines,
no distinction between interfaces will be made in the following results analysis. Neither one will be
dropped, but the average per crypto core will be taken, so AES-128 in following graphs is the mean
between AES-128 + UART and AES-128 + AHB and the same goes for SIMON and PHOTON. Another
important conclusion to draw from this observation is that an eFPGA, specifically designed to fit crypto
cores, is not dependent in size on which interface is used. As a protocol like UART is more suited
for communication with external devices, as seen from the host processor, it is more likely to be used
for external FPGAs. Likewise, eFPGAs will be on-die and connected with a protocol like AHB-Lite.
Therefore, no distinction in resource availability has to be made between eFPGAs and FPGAs, as their
corresponding interfaces take up about the same amount of resources.

Hard macros
Where AES, SIMON and PHOTON do not occupy any hard macros, the Key Phrase Detector project
makes eager use of them. Therefore, an FPGA architecture implementing a CNN should have plenty
of RAMs and DSPs available. In Figure 4.3, the difference between SRAM and EBR configurations of
the internal CNN is shown. Selecting slower (SRAM) or faster (EBR) RAM has no significant impact
on Logic Element usage and maximum operating frequency hovers between 32MHz and slightly over
34MHz as seen from Figure 4.1. Both operating frequencies are royally above the required 12MHz and
less than 5% apart, giving good reason again for a simplification of results. All following results will use
the SRAM version of the design and Menta architecture 2 and 3 (see Section 3.5.4) are designed to
have the same SRAM blocks that are used by this implementation present.

Menta Key Phrase Detector resource usage
As has been mentioned in Section 3.5.3, resource usage figures for the Key Phrase Detector project on
Menta eFPGA architectures are estimated by calculation. As the iCE40 architecture is based on LUT4
blocks and Menta on LUT6, it cannot be said that the number of LUTs used by a certain implementation
on the Lattice FPGAwill equal that of anyMenta eFPGA.We repeat the procedure of Section 3.5.3 here,
but with real result figures now. In Table 4.1 the relative number of LUT6s occupied on Menta fabric
compared to LUT4s on the iCE40UP5K FPGA is shown. Only calculations on LUTs are shown here, but
the procedure is identical for DFFs and LEs. If we take the first entry, AES-128 + AHB, implementing
that core on Menta fabric yields a LUT count of only 60.94% of that of the same core on the iCE40UP5K
FPGA. Reason for this significant reduction is becauseMenta fabric is LUT6 based, where Lattice fabric
consists of LUT4s. Taking the median of all implementations and the mean between the two synthesis
engine options, we can conclude the LUT count of a crypto core will be about 75% on Menta fabric if
we take 100% as the Lattice LUT count. This calculation is applied for LEs, LUTs and DFFs separately

4.1. Calculating and Reducing Results 47

Maximum operating frequencies for iCE40UP5K

AES-128_AHB

AES-128_UART

SIMON-64/128_AHB

SIMON-64/128_UART

PHOTON-128_AHB

PHOTON-128_UART

Key Phrase Detector (S
PRAM)

Key Phrase Detector (E
BR)

Bare Lattic
e CNN (S

PRAM)

Bare Lattic
e CNN (E

BR)

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy
 (

M
H

z)

LSE
Synplify Pro
target:12MHz

Figure 4.1: Maximum operating frequencies of all crypto core assemblies on the iCE40UP5K FPGA

Table 4.1: Obtaining the estimation factor for resource usage of CNN on Menta fabric

Implementation LUT occupation on Menta, compared to:
LSE Synplify Pro

AES-128 + AHB 60,94% 70,05%
AES-128 + UART 72,76% 74,23%

SIMON-64/128 + AHB 86,06% 94,83%
SIMON-64/128 + UART 68,99% 72,29%
PHOTON-128 + AHB 91,68% 106,13%
PHOTON-128 + UART 75,15% 79,19%
Median (column-wise) 73,96% 76,71%

Estimation factor (mean of medians) 75.33%

and results in the Menta Origami bars for the Key Phrase Detector Project in Figure 4.2. Interesting to
note is that only the LUT count differs significantly from the Lattice platform, LEs and DFFs are virtually
equal. For DFFs this makes sense, as no changes are made to flip flops when going from a LUT4 to a
LUT6 architecture. For LEs, which consist of one LUT + one DFF, one would expect also a reduction
in line with LUTs, as the number of DFFs does not dominate the number of LEs. This must be due to
a different nature of Menta and Lattice synthesis engines and architectural differences.
For the hard macros, no calculations were done but the same number of them was assumed to be used
on FPGA and eFPGA platforms, as the RAMs and DSPs in Menta Architecture 2 and 3 are made to
be identical to those present in the Lattice architecture. Seeing that the Key Phrase Detector uses all
eight DSPs on the target platform, it could be suspected that the algorithm is limited by its architecture.
Using more than eight DSPs in a Menta architecture might bring the used number of LUTs further down
from 75%, posing an even more advantageous situation for the eFPGA implementations. However, this
situation will not be elaborated on in this thesis as it cannot be supported with quantitative statements.

4.1. Calculating and Reducing Results 48

Logic Elements (LUT + DFF)

AES-128_AHB

AES-128_UART

SIMON-64/128_AHB

SIMON-64/128_UART

PHOTON-128_AHB

PHOTON-128_UART

Key Phrase Detector (S
PRAM)

Key Phrase Detector (E
BR)

0

5000
iCE40UP5K (LSE)
iCE40UP5K (Synplify Pro)
Menta Origami

LUTs

AES-128_AHB

AES-128_UART

SIMON-64/128_AHB

SIMON-64/128_UART

PHOTON-128_AHB

PHOTON-128_UART

Key Phrase Detector (S
PRAM)

Key Phrase Detector (E
BR)

0

5000
iCE40UP5K (LSE)
iCE40UP5K (Synplify Pro)
Menta Origami

Flip Flop Registers

AES-128_AHB

AES-128_UART

SIMON-64/128_AHB

SIMON-64/128_UART

PHOTON-128_AHB

PHOTON-128_UART

Key Phrase Detector (S
PRAM)

Key Phrase Detector (E
BR)

0

1000

2000 iCE40UP5K (LSE)
iCE40UP5K (Synplify Pro)
Menta Origami

Logic resource usage

Figure 4.2: LUT and DFF resource usage on iCE40 FPGA and Menta eFPGA platforms

16x16 DSPs

AES-128_AHB

AES-128_UART

SIMON-64/128_AHB

SIMON-64/128_UART

PHOTON-128_AHB

PHOTON-128_UART

Key Phrase Detector (S
PRAM)

Key Phrase Detector (E
BR)

0

5

10
iCE40UP5K (LSE)
iCE40UP5K (Synplify Pro)
Menta Origami

256Mb SPRAMs

AES-128_AHB

AES-128_UART

SIMON-64/128_AHB

SIMON-64/128_UART

PHOTON-128_AHB

PHOTON-128_UART

Key Phrase Detector (S
PRAM)

Key Phrase Detector (E
BR)

0

2

4
iCE40UP5K (LSE)
iCE40UP5K (Synplify Pro)
Menta Origami

4kb EBRs

AES-128_AHB

AES-128_UART

SIMON-64/128_AHB

SIMON-64/128_UART

PHOTON-128_AHB

PHOTON-128_UART

Key Phrase Detector (S
PRAM)

Key Phrase Detector (E
BR)

0

10

20
iCE40UP5K (LSE)
iCE40UP5K (Synplify Pro)
Menta Origami

Hard Macros usage

Figure 4.3: DSP and RAM resource usage on iCE40 FPGA and Menta eFPGA platforms

4.2. Q1: Can FPGA fabric be used in IMDs in terms of energy and execution time? 49

4.2. Q1: Can FPGA fabric be used in IMDs in terms of energy and
execution time?

4.2.1. Algorithm execution time
While resource usage metrics give a qualitative answer to the feasibility of FPGAs in IMDs, execution
time of the various algorithms in our experiments will show the significant advantage of reconfigurable
fabric in this realm. In Figure 4.4 the execution time of a single operation, as defined in Table 3.12, is
shown. The used clock frequency is 12MHz for all platforms. Three crypto algorithms were used, but
four graphs can be seen: AES-128 can run in software (SW) and hardware (HW) mode on both Gecko
MCUs, in the latter case using a dedicated CRYPTO peripheral. In all graphs, FPGA execution times
are based on the number of cycles defined in Table 3.12 and a clock speed of 12MHz.
In the three SW graphs, it can be seen that the FPGA implementations vastly outperform all MCU soft-
ware implementations. This is to be expected but gives way to the conclusion that fast cryptography
needs customized fabric. Comparing the AES ASIC to the FPGA, again expected results: the FPGA
is 17% to 40% slower than the ASIC. But this is not the whole story: from our algorithms selection, the
ASIC integrated in the Gecko MCUs only supports a select range of primitives of which AES-128 is one,
where the FPGA will also run SIMON, PHOTON and numerous other future crypto cores. Therefore, a
performance penalty of up to 40% extra execution time has to be taken if reconfigurability is preferred
over a rigid design. On the other hand, having flexibility like software implementations is achieved with
FPGAs while vastly outperforming said software implementations. Based on these execution times, FP-
GAs would be viable candidates to deliver considerable performance gains without losing the possibility
to upgrade or replace functionality in the future.

Execution time per single operation

AES-128 (SW)

Giant G
ecko

Tiny Gecko

iCE40UP
0

1

2

3

4

T
im

e
(m

s)

AES-128 (HW)

Giant G
ecko

Tiny Gecko

iCE40UP
0

0.01

0.02

0.03

0.04

T
im

e
(m

s)

SIMON-64/128 (SW)

Giant G
ecko

Tiny Gecko

iCE40UP
0

0.5

1

T
im

e
(m

s)

PHOTON-128 (SW)

Giant G
ecko

Tiny Gecko

iCE40UP
0

50

100

T
im

e
(m

s)

Figure 4.4: Crypto IP core execution time on MCU and FPGA platforms

4.2.2. Energy consumption
Considering the generally limited battery capacity of IMDs, even more important than execution time
is energy consumption. A gain in performance does not necessarily result in a more energy efficient
design, quite the contrary most of the time. In the next sections, a look is taken at energy consumption
of all four algorithms used in our experiments to see if the advantages of FPGAs outweigh the extra
energy consumption in an IMD environment.

4.2. Q1: Can FPGA fabric be used in IMDs in terms of energy and execution time? 50

Security primitives
First, the three security primitives are compared across the MCU and FPGA platforms. In Figure 4.5
the same setup is shown as with the execution times of Figure 4.4, but energy consumption is now
graphed. With regard to the comparison of SW and FPGA runs, it can be said that the FPGA is not
only orders of magnitude faster but also consumes significantly less energy for the same functionality.
Especially PHOTON is an energy hog on the Geckos, consuming about a hundred times more energy
than SIMON! Considering MCU hardware acceleration of AES-128, the FPGA consumes 4.4 times as
much energy as the Tiny Gecko. From these observations it can be concluded that an FPGA will be
more energy efficient and faster than SW by a large measure. Therefore it will be feasible to add an
FPGA if no hardware acceleration is already available. But, an ASIC will not only be faster but also
significantly more energy efficient. Having the luxury of reconfigurability using an FPGA will cost 4.4
times the energy of a dedicated ASIC when block ciphers are considered. With hashing, adding an
FPGA becomes even more attractive as the energy gap between software MCUs and FPGAs widens.

Energy consumption per single operation

AES-128 (SW) Encryption

Giant G
ecko

Tiny Gecko

iCE40UP
0

2

4

6

8

E
ne

rg
y

(u
J)

AES-128 (HW) Encryption

Giant G
ecko

Tiny Gecko

iCE40UP
0

0.05

0.1

0.15

0.2

E
ne

rg
y

(u
J)

SIMON-64/128 Encryption

Giant G
ecko

Tiny Gecko

iCE40UP
0

0.5

1

1.5

2

E
ne

rg
y

(u
J)

PHOTON-128 Hashing

Giant G
ecko

Tiny Gecko

iCE40UP
0

50

100

150

200

E
ne

rg
y

(u
J)

Figure 4.5: Crypto IP core energy consumption, MCUs and FPGA

Lattice CNN
As the Key Phrase Project is designed to be an always-on system, continuously listening for key
phrases, no ’single operation’ like for the crypto cores can be defined here. However, to be able to
compare energy consumption of the FPGA implementations of all four algorithms, the runtime of the
Key Phrase Detector was set to equal that of AES. In Figure 4.6 energy consumption of all four algo-
rithms on the iCE40UP5K is shown. Runtimes are of the three crypto cores are identical to those used
in Figures 4.4 and 4.5. It is interesting to see how little energy is used for encrypting a 64-bit block with
SIMON, which is thirty times less than encrypting a 128-bit block with AES! When equating the amount
of encrypted data and thus comparing two SIMON operations to one AES operation, a factor 15 in
energy savings is still substantial. Saving energy on cryptography is best done by replacing standard
algorithms with their lightweight versions.
Looking at the CNN, it consumes twice the energy of AES at equal runtime. If a CNN in an IMD will
not be always-on but has a similar usage pattern as crypto cores, energy feasibility of FPGA neural
networks in IMDs could very well be achieved.

4.2. Q1: Can FPGA fabric be used in IMDs in terms of energy and execution time? 51

Energy consumption on iCE40UP5K FPGA

AES-128

SIMON-64/128

PHOTON-128

Key Phrase Detector

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
ne

rg
y

(u
J)

Figure 4.6: FPGA energy consumption of crypto IP cores versus Lattice CNN

IMD battery life: with or without FPGA?
So far we have only considered execution time and energy consumption of the implementations in
their active state. To achieve a clear feasibility picture of an FPGA-equipped IMD, energy consumption
figures have to be fitted to a realistic usage pattern. With crypto cores used for communication, it
is expected that they will only be used in small, regular time intervals. For the calculations, a setup
similar to [82] is taken and repeated here for completeness. The energy overhead consists of four
parts: MCU, radio transceiver, electrode stimulation and cryptographic engine. It is assumed that the
MCU runs at 13MHz. For the MCU overhead, a duty cycle of 5% is added like the pacemaker design
in [82], with the ”Dynamic without AES” current consumption of the Tiny Gecko in Table 3.11. For
static power, which can be said to have a duty cycle of 100%, the according value of sleep mode
EM4H_V S is taken which equals 0.75uA. Furthermore, the energy consumption of an IMD-grade
radio transceiver [83] with an effective data rate of 265 kbps is added. The duty cycle is defined as
the amount of time that a peripheral is active during one day. Here, the duty cycles of the transceiver
and the cryptographic engine are both set to 2 minutes of usage per day or 0.14%. Moreover, the
worst-case energy consumption per heartbeat is 20uJ for commercial devices [82]. With 80 heartbeats
per minute and a supply voltage of 3.3V like used in [82], the average current with a 100% duty cycle
becomes 8.081uA, which is added to the total overhead. In our model, an IMD battery of 1500mAh is
assumed for all battery life figures, which is typical for modern IMDs.
Two main hardware scenarios are considered:

1. Having an MCU running either software implementations or using its AES-128 ASIC.
2. Having an MCU with external FPGA, the latter one accelerating our algorithms.

Static and dynamic current draw is listed in Table 4.2. Note that especially the static current goes up
dramatically when adding an FPGA, being a factor hundred higher than the Tiny Gecko alone, which is
one of the main points why FPGAs are often considered too power-hungry for low-power applications.
From the dynamic currents in Table 4.2, it can be concluded that all all hardware scenarios can run
within the limit of 6.15mW imposed in Section 2.4. With an operating voltage of 1.2v, the upper bound
for current draw is 5.125mA. thus FPGA secure authentication on harvested power is achieved.

Dynamic current gives an indication on power efficiency of each implementation, but does not give
a picture on the impact of an FPGA on IMD battery life. Therefore, all data points presented in Table 4.2

4.2. Q1: Can FPGA fabric be used in IMDs in terms of energy and execution time? 52

Table 4.2: Static and dynamic current values for two IMD hardware scenarios

Scenario Current draw
Static (mA) Dynamic @13MHz (mA)

1: MCU (Giant Gecko) 0.00094 1.44 (SW)
1.98 (HW)

1: MCU (Tiny Gecko) 0.00075 0.58 (SW)
1.06 (HW)

2: MCU (Tiny Gecko) + FPGA (iCE40UP5K)
3.23 (AES)

0.07575 1.18 (SIMON)
0.74 (PHOTON)

are used to predict IMD battery life with the setup listed in Section 4.2.2. Resulting battery life predic-
tions are depicted in Figure 4.7. The Giant Gecko, being a more powerful version of the Tiny Gecko, is
significantly less energy efficient than the latter, barely scratching two years, where the Tiny Gecko is
well into feasibility territory with its 3.76 years. It can therefore be said that having a higher performing
MCU is only a good idea if recharging is available or battery life is less of a concern.
Looking at the MCU HW bars, we see that they indicate slightly less IMD battery life than with software-
only operation. This is due to our model used: both run for the same amount of time, but the hardware
AES ASIC will operate on significantly more data than its software counterpart.
Taking a closer look at the most interesting part of the graph, it can be seen that using an FPGA along-
side a Tiny Gecko reduces the IMD battery life significantly from 3.76 to around 1.40 years, or a 63%
reduction. The specific implementation that is used does not have a large influence, because the high
static FPGA current is dominating the average current consumption. This static current is also the
main reason for the vast drop in battery life when adding an FPGA. No FPGA feasibility of 2.5 years
as defined in Section 1.3.3 is achieved here. Therefore, static FPGA power consumption needs to be
mitigated to be able to obtain feasibility.

4.2. Q1: Can FPGA fabric be used in IMDs in terms of energy and execution time? 53

Giant G
ecko (S

W)

Giant G
ecko (H

W)

Tiny Gecko (S
W)

Tiny Gecko (H
W)

TG + iC
E40 (A

ES-128)

TG + iC
E40 (S

IMON-64/128)

TG + iC
E40 (P

HOTON-128)

0

0.5

1

1.5

2

2.5

3

3.5

4

B
at

te
ry

 li
fe

 (
ye

ar
s)

IMD battery life CRYPTO/HASH cores 2min/24h duty cycle

FPGA Feasible

MCU
MCU + FPGA (AES)
MCU + FPGA (SIMON)
MCU + FPGA (PHOTON)

Figure 4.7: IMD battery life with and without FPGA

IMD battery life with FPGA power gating
Keeping the added FPGA in an always-on state is detrimental for IMD battery life. Hence, a strategy
has to be adopted to mitigate the impact of static current on battery life. In the case of the FPGA
implementing cryptography, it will only be used while communicating with a remote device. Using a
duty cycle of 2 minutes per 24 hours as defined in Section 4.2.2 means that during idle time the FPGA
could be powered off or put in a deep sleep state. No sleep states are available on the iCE40UP5K
FPGA, but other flash-based FPGAs like the IGLOO series have a state called Flash*Freeze that result
in low static currents. In our calculations, we take the Flash*Freeze current of the AGLN250 FPGA,
which is comparable to our baseline FPGA, having 6144 DFFs and equivalent number of LUTs. For a
voltage of 1.2V, Flash*Freeze current is 20uA [84]. In our predictions in Figure 4.8, we substitute the
75uA static current of the iCE40UP5K with the 20uA Flash*Freeze current such as to predict battery life
if such a mode would exist. Next, the scenario of having external flash that saves the configuration of
the FPGA is considered. This enables a complete power-off when the FPGA is not used. The red bars
in Figure 4.8 showcase the three FPGA scenarios, compared to the blue MCU-only bars. Even with
a lower static current in Flash*Freeze mode, the battery life already improves dramatically compared
to an always-on situation, going from 1.38 to 2.47 years, thus adding more than a year of battery
life! A complete power-off, which is possible with any FPGA, not just a flash-based IGLOO, results
in even more gain, adding another year with 3.48 years of IMD battery life. Compared to MCU-only
implementations, we see that the Giant Gecko is only more energy efficient when no FPGA power
saving is available, leading to the conclusion that it is always better to use an FPGA with a small MCU
than to use a higher performing MCU only, when the FPGA can be power gated while idle. Sofware-
only operation on the Tiny Gecko is the most efficient, but lacks performance compared to the FPGA.
Hardware acceleration, however, will only cost about 0.28 years, or 7.5% less battery life if the FPGA
can be completely powered off when idle. To make an FPGA feasible in an IMD, at least 2.5 years
of battery life needs to be achieved like we defined in Section 1.3.3, when no recharging is available.
Therefore, having a Flash*Freeze-like mode gets us almost to feasibility for AES-128, where a complete
power-off needs to be possible to obtain certainty about FPGA feasibility.

4.3. Q2: How big are the improvements of an eFPGA over an FPGA with regard to energy
consumption and area? 54

Giant G
ecko SW

Giant G
ecko HW

Tiny Gecko SW

Tiny Gecko HW

TG + iC
E40 (a

lways on)

TG + iC
E40 (F

lash*Freeze)

TG + iC
E40 (F

PGA off w
hen idle)

0

0.5

1

1.5

2

2.5

3

3.5

4

B
at

te
ry

 li
fe

 (
ye

ar
s)

IMD battery life AES 2min/24h duty cycle

FPGA Feasible

MCU
MCU + FPGA (AES)

Figure 4.8: IMD battery life when power gating the FPGA

4.3. Q2: How big are the improvements of an eFPGA over an FPGA
with regard to energy consumption and area?

Reconfigurable fabric is not only restricted to separate chips, but can also be incorporated with the
host processor on the same die. Examples like the Zynq from Xilinx are well known, but not for their
ultra-low-power focus. Furthermore, still only predefined fabric sizes are available. With the eFPGA
tools from Menta, arbitrary sized eFPGA fabrics can be designed and put to test in simulation. In this
section, a look is taken at the three architectures designed and described in Section 3.5.4 with a main
focus on area and power. It will be shown that Menta eFPGAs can be more efficient than the Lattice
FPGA in both fields.

4.3.1. eFPGA area
One of the main advantages of an eFPGA compared to an FPGA is the general reduction of physical
area. This is mainly caused by the fact that an FPGA needs area dedicated to I/O interfaces and
other extra logic, where an eFPGA can directly be connected to the surrounding silicon on the same
die. Furthermore, eFPGA will scale down with smaller manufacturing processes, where the size of an
FPGA is also limited by other factors, such as package, I/O pad size and surrounding components. In
Figure 4.9 the area of Menta Architecture 1 to 3 is shown, relative to the package size of the Lattice
iCE40UP5K FPGA. Note that the y-axis has a logarithmic scale. Only the fabric and package sizes are
considered here, without taking into consideration that an external FPGA would need more PCB space
for surrounding components and interconnect. Taking these factors into account, the area advantage
of eFPGAs will grow even more than is depicted here. Agreements with Menta dictate that no absolute
area figures may be given. Four different eFPGA process technologies were available: two 180nm
X-FAB and 28nm and 7nm from TSMC. Taking a look first at the two 180nm processes, it can be

4.3. Q2: How big are the improvements of an eFPGA over an FPGA with regard to energy
consumption and area? 55

seen that they occupy substantially more area than the more modern processes of TSMC. Opting for
the radiation-hardened variant makes the difference even larger: it costs 2.96 times as much area
compared to the regular process. Radiation-hardened silicon is useful in environments that are prone
to high radiation intensity. For IMDs, the most probable high-radiation environment is when a patient
undergoes an MRI or CT scan. Although other means have been used to mitigate radiation effects
on IMD hardware, such as radiation-shielding casings, a radiation-hardened process would improve
radiation resistance even further.
Comparing the two 180nm processes to the iCE40UP5K, it is clear that the latter is more area efficient
with its 40nm process. Differences in designed Menta architectures are not nearly as influential on the
area as the choice of process technology. Seeing that a 180nm eFPGA will require twenty to hundred
times more area than a regular FPGA, it can be judged that this technology family is unsuited for IMD-
targeted FPGAs.
Looking at the TSMC 28nm & 7nm processes, all Menta architectures are smaller than the Lattice
FPGA. Having full cryptography functionality (running AES/SIMON/PHOTON) at 12% and CNN support
at 21% of the iCE40UP5K area is possible with Architecture 1 and 2 on TSMC 7nm respectively. With
28nm, the advantage is less pronounced but still there: Architecture 1 and 2 occupy 40% and 70% of
the Lattice area respectively. Therefore, only the TSMC nodes are advantageous considering area. As
dynamic power estimation models fromMenta are currently only available for TSMC 28nm, this process
is chosen in all next Menta comparisons. Generally speaking, the eFPGA area is more dependent
on process technology size than its architecture. Comparison to the iCE40UP5K FPGA is mainly a
comparison of process technologies and can possibly be extended by comparing the FPGA + MCU to
an eFPGA-equipped MCU in area. However, due to unavailability of the latter, this comparison was not
made.

Area of Menta architectures on diffferent process technologies

X-FAB 180nm

X-FAB 180nm ra
dhard

TSMC 28nm HPC

TSMC 7nm FinFET
10%

100%

1000%

10000%

Lattice iCE40UP5K

Menta Arch 1
Menta Arch 2
Menta Arch 3

Figure 4.9: Area of Menta eFPGA architectures relative to Lattice iCE40UP5K FPGA

4.3.2. eFPGA power
Static power
While TSMC 28nm & 7nm are more area-efficient than the Lattice FPGA, static power increases with
smaller process nodes. SRAM-based FPGAs, which Lattice FPGAs fall under, are known for their
relatively high static power consumption. Although Menta eFPGAs do not fall in this category, using a

4.3. Q2: How big are the improvements of an eFPGA over an FPGA with regard to energy
consumption and area? 56

small TSMCnodewill still contribute to high static power. In Figure 4.10 the static power consumption for
every process technology andMenta architecture is shown. It almost looks like the inverse of Figure 4.9,
with the TSMC nodes yielding a static power consumption that is orders of magnitude higher than the
X-FAB processes. Note the logarithmic y-axis here as well. Most remarkably is the difference in static
power of the two 180nm processes: it is identical. One would expect more static power from a fabric
that occupies more area, so the radiation-hardened variant would be more power consuming during
idle. If low energy consumption is crucial and area is not a problem, the radiation-hardened 180nm
variant would be the best fit in environments with high radiation intensity.
Looking at the TSMC processes, we see that the 28nm process is the greatest static power consumer.
This is not only due to it being a small process as 7nm is smaller, but due to the fact that 28nm is a
planar CMOS process, which is known for high gate current leakage that leads to high static power.
The smaller the node, the higher the static power consumption as transistor gates get smaller and
therefore leak more current. From 16nm and below, foundries are not using planar CMOS anymore
but FinFETs, which strongly reduce leakage. the 7nm TSMC process is FinFET based and therefore
less leaky than the 28nm process. Furthermore, the HPC in its name stands for ’High-Performance
Computing’, giving an indication that it is optimized for performance and not somuch for ultra-low-power
environments. However, as stated in Section 4.3.1, dynamic power calculations are only available for
the 28nm process. With this reason, it is chosen as the process to do further evaluations of the Menta
architectures on. Having a static power consumption of over 1mW, it is clear that also with our eFPGAs,
a power gating strategy like in Section 4.2.2 is even more needed. This is not due to the eFPGAs
themselves but because of the performance-oriented process technology. By choosing a technology
that is targeted for low power, static power can be reduced by 10 to 100 times as is shown in Figure 4.10.

Static power of available process technologies (mW)

X-FAB 180nm

X-FAB 180nm ra
dhard

TSMC 28nm HPC

TSMC 7nm FinFET

0.01

0.1

1

P
ow

er
 (

m
W

)

Lattice iCE40UP5K

Architecture 1
Architecture 2
Architecture 3

Figure 4.10: Static power of Menta architectures on all available process technologies

Total power
To get a complete picture on power draw of all reconfigurable fabrics, dynamic and static power are
added together and displayed in Figure 4.11. The reported dynamic power parts of the iCE40UP5K
FPGA are obtained by multiplying the current measurements described in Section 3.6.2 with the oper-
ating voltage of 1.2V. Unlike the iCE40UP5K, the Menta architectures cannot be measured as they do
not physically exist, but power is estimated with the help of a model provided by Menta. Note that, as
stated in Sections 4.3.1 and 4.3.2, all Menta power calculations are based on the architectures using

4.3. Q2: How big are the improvements of an eFPGA over an FPGA with regard to energy
consumption and area? 57

the 28nm HPC process from TSMC. The general trend observed here is that static power increases
when process node size and dynamic power decrease.No average activity factor for implemented algo-
rithms could be determined as stated in Section 3.6.3, so multiple activity factors have been assumed,
making up for differences in switching activity for different designs. Figures of 10%, 20% and 30%
are used, corresponding with typical figures from designs from industry. 12.5% is reported by Menta
as a typical figure of their customers, while a common switching-intensive design has activity around
20%. Therefore, the 30% entry can be seen as a worst-case scenario. However, even with such a high
activity factor, the total active power is less for running the Key Phrase Detector project on Architecture
2 and 3 than it is on our baseline FPGA. Likewise, running AES is more efficient on Architecture 1,
which is specially designed for security primitives, than on the Lattice platform. Again, a smart power
gating strategy that eliminates the major part of static power consumption will result in eFPGAs to be
the better choice, looking at active power consumption.

Figure 4.11: Total power of Menta architectures on all available process technologies

4.3.3. CNN-equipped FPGA vs eFPGA battery life
So far we have seen battery life analysis of an IMD with and without external FPGA running cryptogra-
phy in Section 4.2. As has been said, security primitives will only be active for a very limited amount of
time during the day. With artificial neural networks, this will most likely change. Take seizure prediction
for example, a field in which neural networks could be deployed for pattern detection. Here, the neural
network would have to continuously monitor its input to be able to be successful in seizure prediction.
A similar behavior is observed in the Key Phrase Detector project: the CNN inside is continuously
scanning its inputs for a spoken key phrase. With this in mind, energy calculations have been done for
multiple duty cycles and continuous operation. The results can be found in Figure 4.12, where battery
life of an iCE40UP5K-equipped IMD is compared with one that has Menta eFPGA Architecture 2 or 3
incorporated. Each bar in the graph is cumulative, meaning that the upper colored part also includes
the parts below. As is clear from Figure 4.12, the most influential factor on battery life is not the type
of eFPGA used, but its duty cycle or usage pattern. Using our baseline FPGA is less efficient with
smaller duty cycles and a power gating scheme, which is logical since dynamic power is dominating
there. Getting into the feasibility range of 2.5 years of usage, a duty cycle of 2 minutes with at least a
Flash*Freeze-like mode is needed. If one of our eFPGA architectures is used and the reconfigurable
fabric can be turned off when idle, the duty cycle can be widened to 6.5 minutes per day. In our case,
eFPGA fabric will result in a longer battery life than the traditional FPGA. But, a ceiling of a couple
minutes per day makes it seem that continuous monitoring is out of the question. However, some neu-
rostimulators currently on the market feature recharging capabilities and ask the user to recharge the
device regularly [85]. If recharging is available, even continuous usage could be allowed, seeing that
in all three cases the battery life will be 10 to 12 days. Therefore, with recharging, running a hardware-
accelerated CNN in an IMD is definitely feasible.

4.4. Q3: In what cases is daily FPGA reconfiguration beneficial in IMDs? 58

2min/day 6.5min/day 60min/day Continuous
0

0.5

1

1.5

2

2.5

3

3.5

B
at

te
ry

 li
fe

 (
ye

ar
s)

CNN-equipped IMD battery life of TG MCU + iCE40/Menta 2/Menta 3 (respectively)

FPGA Feasible

No flash (always on)
Flash*Freeze (20uA)
External flash (off when idle)

Figure 4.12: Battery life of an IMD with neural network-equipped (e)FPGA. For the eFPGA platform, a 30% activity factor has
been used

4.4. Q3: In what cases is daily FPGA reconfiguration beneficial in
IMDs?

Until now, we have considered FPGAs in IMDs that have already been configured with a bitstream and
will only consume energy when operating (dynamic) or idling (static). One of the unique features of
FPGA fabric is the ability to reconfigure the hardware so that new functionality can be implemented
without changing the physical hardware of the IMD. This is also possible with software, but as we
have shown in Section 4.2, it is preferred using hardware acceleration for cryptography and neural
networks when performance and energy consumption are considered. Reconfiguration opens a realm
of possibilities: an FPGA fabric could implement a neural network for seizure prediction, and only during
time of communication reconfigure itself to a crypto core. Swapping the FPGA configuration back and
forth once a day is the case investigated in this section. Multiple hardware accelerated algorithms could
be supported by the same fabric. But, two major factors determine if daily reconfiguration is feasible: its
latency and energy consumption. Feasibility in terms of latency is achieved if execution time of crypto
cores, including reconfiguration, is still less than the total execution time if run in software. A look is
also taken at energy consumption including reconfiguration for AES, to see what the energy cost is of
frequent reconfiguration. With these results, it can be determined in what cases it would be beneficial
to have an FPGA in an IMD, regardless of the added cost of reconfiguration.

Our configuration case
In answering this question, it is assumed that we have an FPGA running a functional algorithm that
provides medical therapy. During one moment of the day, the FPGA is reconfigured to function as
hardware-accelerated crypto peripheral, using one of our three security primitives listed in Section 3.2.
This is to simulate the daily data transfer from and to the base station belonging to the IMD. After the
data has been encrypted and transferred, the FPGA is configured back to its original application. For
execution time and energy consumption, this means that delay and energy of two configurations will

4.4. Q3: In what cases is daily FPGA reconfiguration beneficial in IMDs? 59

be added to the FPGA results. The iCE40UP5K FPGA platform will be used as reference and no
eFPGA considerations will be made here, as sufficient data on reconfiguration of Menta eFPGAs was
not available to us.

4.4.1. Configuration latency
Determining configuration time
Regarding the time needed for reconfiguration, we take the iCE40UP5K platform as reference. Three
configuration speeds are supported, only differing in the operating clock speed used. The slowest and
default mode uses a 12MHz system clock. Assuming that in our FPGA-equipped IMD only a single
clock domain is present, this mode is used in our calculations. Next to the configuration speed choice,
the iCE40UP5K FPGA has two modes in which the FPGA can be reconfigured. In the first mode, SPI
Master, the device configures itself either from its one-time writable Non-Volatile Configuration Memory
(NVCM) or from external SPI Flash. No MCU or external programmer is needed for this process. In SPI
Slave mode, the FPGA is configured by an external processor acting as a programmer. Both modes
could be used in an IMD, where the choice would mainly depend on resource efficiency and physical
topology of the IMD hardware. Both modes are similar in the way they transfer a configuration image
to the FPGA, namely bit sequential, one bit at every SPI clock cycle without interruption.
The time needed for a single FPGA reconfiguration can be calculated from the iCE40 Programming and
Configuration manual [86]. The only official figure for our configuration speed stated in the iCE40UP
family datasheet [87] as ”SPI Master or NVCM Configuration Time” is 140ms. However, it is not clear
how this number is derived nor if it is also applicable to the SPI Slavemode. Therefore, own calculations
have been performedwith Equation (4.1) for Master and Equation (4.2) for Slavemode, based on Figure
9.4,9.5 and 13.2 of the Programming and Configuration manual [86].

tSPI_Master = Tclk ∗ (cmdfastread + cmdstartaddr + dummystart + bitstream+ cmdpowerdown) (4.1)

tSPI_Slave = Tinit + Tmemclr + Tclk ∗ (dummystart + bitstream+ dummyend) (4.2)
Appropriate values have been selected for the various variables present in Equations (4.1) and (4.2).

Our configuration speed fixes Tclk at 12MHz. Tinit is a fixed time of 200ns needed to enter Slave mode,
where Tmemclr is 1200us, during which the configuration memory of the iCE40 FPGA is erased. The
other parameters are counted in number of cycles. dummystart and dummyend are 8 and 149 cycles
respectively. cmdfastread is an 8-bit sequence which indicates to the external Flash memory that a read
operation is performed and is sent right before cmdstartaddr, which contains a 24-bit start address. Both
are sent sequentially in 32 cycles. At the end of an SPI Master configuration, the external Flash may
be powered down with the 8-bit cmdpowerdown.
Regarding the most important and substantial part of Equations (4.1) and (4.2), the bitstreams have
a length only depending on the FPGA model and not on the configuration that is loaded. For the
iCE40UP5K FPGA, the total bitstream size equals 833288 bits. Filling in Equations (4.1) and (4.2)
and multiplying by 1000 to get the answer in milliseconds instead of seconds, we get the respective
configuration times in Table 4.3 from Equations (4.3) and (4.4):

tSPI_Master = [
1

12 ∗ 106
∗ (8 + 24 + 8 + 833288 + 8)] ∗ 1000 = 69.44ms (4.3)

tSPI_Slave = [200 ∗ 10−9 + 1200 ∗ 10−6 +
1

12 ∗ 106
∗ (8 + 833288 + 8)] ∗ 1000 = 70.64ms (4.4)

Table 4.3: iCE40UP configuration time for SPI Master and Slave modes
Configuration mode Frequency (MHz) Configuration time (ms) Average current (mA)

SPI Master 12 69.44 -
SPI Slave 12 70.64 0.17

Due to the bitstream size being the most determining factor in the configuration time, both modes
result in about equal configuration time. In our calculations, the worst-case configuration time is taken,
which is the SPI Slave time of 70.64ms. The accompanying current draw of 0.17mA in Table 4.3 was
obtained by measurement on the iCE40UP5K-B-EVN board during a configuration procedure. As a
double reconfiguration scenario is simulated as described in Section 4.4, the added time delay for daily
reconfiguration will be 141.28ms.

4.4. Q3: In what cases is daily FPGA reconfiguration beneficial in IMDs? 60

MCU to FPGA with reconfiguration comparison: execution time
With the added time delay for reconfiguration quantified, it is possible to compare execution times of
our crypto cores on our baseline Cortex-M0+ MCU to the FPGA, done likewise in Section 4.2.1. But,
seeing that both block ciphers execute encrypting a single block in less than 4ms and that even a
PHOTON software run on one block finishes faster than a double reconfiguration (81ms vs 141.28ms),
it can already be said that daily reconfiguration is infeasible compared to software when only having to
encrypt a single 128-bit data block. Having that the reconfiguration delay penalty always occurs once
and never more than once, it follows that using the encryption engine for a longer time is needed to
unlock the potential of the FPGA. Therefore, data messages of different sizes, ranging from a single
128-bit block to 32kiB (256 blocks) are used in our calculations. The results are depicted in Figure 4.13.
Note the logarithmic scale on the y-axis.

Tiny Gecko (A
ES SW)

Tiny Gecko (A
ES HW)

Tiny Gecko (S
IMON)

Tiny Gecko (P
HOTON)

iCE40UP5K (A
ES)

iCE40UP5K (S
IMON)

iCE40UP5K (P
HOTON)

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

E
xe

cu
tio

n
tim

e
(m

s)

Crypto core execution time including FPGA reconfiguration

FPGA Feasible

FPGA 2x reconfiguration time
Message size: 128 bits
Message size: 256 bits
Message size: 512 bits
Message size: 1kiB
Message size: 2kiB
Message size: 4kiB
Message size: 8kiB
Message size: 16kiB
Message size: 32kiB

Figure 4.13: Execution time of all crypto cores, considering FPGA reconfiguration

When comparing AES runs on the MCU with hardware acceleration enabled against the FPGA, it
is already clear that an FPGA lags ever further behind with added reconfiguration latency. There will
never be a point when the FPGA is faster than the HW-accelerated MCU, as encrypting a single 128-bit
block is faster on the MCU while the FPGA already starts with a reconfiguration penalty.
Regarding the software implementations, there is a tipping point for each algorithm where the FPGA
starts to be faster. Note that the reconfiguration time is the major contributing factor and that the re-
spective algorithm run on the FPGA is less relevant. The most resource efficient algorithm, SIMON,
is feasible to run from messages 16kiB or larger. Taking the data rate of 265kbps assumed for our
transceiver [83] in Section 4.2.2, the amount of data that can be transferred per second is slightly more
than 32kiB. With our 2min/24h duty cycle of both the cryptographic engine and transceiver, it is safe to

4.4. Q3: In what cases is daily FPGA reconfiguration beneficial in IMDs? 61

say that the FPGA-advantageous situations will most likely be reached in real-world scenarios.
Moreover, the advantage grows when comparing to AES, for which the FPGA becomes profitable from
messages of 8kiB. With PHOTON it is better to use an FPGA starting from a mere 256 bits, where it
can be advised to always use an FPGA in this case.
Considering execution times, even with an added daily reconfiguration penalty it is always profitable
to replace a software implementation with an FPGA. ASIC-accelerated implementations are faster but
lose the reconfigurability of FPGAs, making the latter viable candidates for hardware-accelerated cryp-
tography in IMDs, even with daily reconfiguration.

4.4.2. Configuration energy
Having proved that FPGAs are feasible and beneficial in IMDs with reconfiguration regarding execu-
tion time, it remains to show that feasibility is also confirmed from an energy point of view. The same
scenario as described in Section 4.4 is used here, with energy required for double FPGA reconfigura-
tion added to the security primitive energy. Only AES is represented here, as this makes the graph
less cluttered and it is the only algorithm to have MCU with and without HW acceleration and FPGA
benchmark results available, enough to draw a feasibility picture.

Determining configuration energy
For determining how much energy is consumed during configuration, we take the calculated double
configuration time of 141.28ms in Section 4.4.1 and multiply it with the average current draw during
the configuration phase. As no data is available on current draw in the FPGA datasheets, the FPGA
current was measured during configuration from a PC in the way described in Section 3.6.2. Current
values between 0.15mA and 0.19mA were observed during Slave SPI configuration at 12MHz. The
average of these values is taken, resulting in 0.17mA configuration current. Knowing that the configu-
ration clock speed is 12MHz and taking the default of 1.2V as FPGA operating voltage, the resulting
double configuration energy becomes 28.82uJ.

MCU to FPGA with reconfiguration comparison: energy
Using the FPGA is deemed feasible when the consumed energy including double FPGA configuration
is less than the same operation executed in software. For this end, the energy consumption of AES
encryption for MCU software, MCU HW accelerated and FPGA is depicted in Figure 4.14. Note the split
y-axis with two different scales. The same encryption message sizes of Section 4.4.1 are used here.
Running AES with MCU HW acceleration is always more energy efficient that on an FPGA, but this is
again to be expected. However, the execution time tipping point for AES compared to software was at
message sizes of 8kiB, but for energy it already occurs at 1kiB! FPGA feasibility therefore is achieved
faster looking at energy than with execution time. As mentioned in Section 4.4.1, the expected amount
of data transfer between the daily FPGA reconfigurations is well over 32kiB, proving that an FPGA in an
IMD will also be feasible regarding energy consumption, even making a stronger case than execution
time.

4.5. Q4: Having an FPGA-equipped IMD, what are the difficulties in aspect to legal certification? 62

Tiny Gecko (SW) Tiny Gecko (HW) iCE40UP5K

E
ne

rg
y

(u
J)

0

20

40

60

80

100

120

FPGA Feasible

200

400

600

800

1000
AES-128 consumed energy for different message sizes

FPGA 2x reconfiguration energy
Message size: 128 bits
Message size: 256 bits
Message size: 512 bits
Message size: 1kiB
Message size: 2kiB
Message size: 4kiB
Message size: 8kiB
Message size: 16kiB
Message size: 32kiB

Figure 4.14: Energy consumption during AES encryption, considering FPGA reconfiguration

4.5. Q4: Having an FPGA-equipped IMD, what are the difficulties
in aspect to legal certification?

Before an IMD can be implanted in a patient to perform its intended therapy, it has to pass certification
according to Medical Device Regulation 2017 [88] for the European region, or via the Food and Drug
Administration (FDA) in the USA. Requirements on what is needed to pass certification depends on the
type of product being under consideration. In this section, we will mainly focus on the set of regulations
imposed under the MDR2017/745 regulation which is in effect for Europe and first derive how our cat-
egory of interest, implantable medical devices, is classified. With this information, the conditions and
rules under which IMDs fall can be determined, especially those related to software and FPGA updates.
Knowing which rules have to be followed for FPGA-equipped devices, we can draw conclusions on the
additional legislative steps to be taken for these devices, or conclude that existing regulation does not
impose additional difficulty.

4.5.1. Classification of IMDs according to MDR2017/745
Not only IMDs, but all products that have a medical purpose are to be certified. Depending on the
product and its purpose, a class is assigned which mainly determines the rigorousness of certification
applied. In Figure 4.16 the different classes are depicted, ranking from Class I to III according to
increasing risk for the patient. In the MDR2017/745 regulation, there are 22 rules listed in Annex
VIII that determine in what class a medical device falls. A summary of these rules is presented in
Figure 4.15, retrieved from easymedicaldevice.com. Only devices in Class I can be self-certified and
do not require an external agency, indicated as Notified Body in Figure 4.16, to review the certification

4.5. Q4: Having an FPGA-equipped IMD, what are the difficulties in aspect to legal certification? 63

procedure. An example of this is a wheelchair, that has a safety test report included in its manual.
Generally speaking, three factors are influencing the classification of a medical device:

1. Device type, being Non-invasive, Invasive, Active or under a special rule
2. Risk involved, following that life-critical applications get assigned a higher class than life non-

critical ones
3. Duration of use, which can be Transient (less than 60 minutes), Short term (between 60 min-

utes and 30 days) or Long term (more than 30 days).

To arrive at the final classification of a device, the highest resulting classification from any rule that
applies to it determines the class. For IMDs, it is clear that they have to be classified as Active or
Invasive devices. Pacemakers and neurostimulators are classified as Class III by rule 8, which states
that all devices which are intended to be used in direct contact with the heart, the central circulatory
system or the central nervous system are classified as Class III. Any other rule could also apply to
these IMDs, however, with rule 8 already indicating the highest class, no other rule needs to be evalu-
ated. Regarding duration of use, IMDs are implanted and as such always aimed at long term use. Risk
level translates to the class of a device, with Class III indicating that IMDs are high-lisk devices. The
life-criticality does not influence the classification any further, this is only affecting classification on a
device that is of itself lower than Class III.
Although already having determined the class of IMDs, the other rules are still interesting to examine to
see whether mention is made of any software or hardware reconfigurability, our field of interest. Rule
11 is about software, but considers only software running on computers or other external monitoring
devices and thus is not relevant for IMDs. Rule 22 is about active therapeutic devices with an integrated
diagnostic function which significantly determines the patient management by the device. Neurostim-
ulators or monitors can also fall under this rule, however no mention is made of any software part.
Therefore, other parts of the MDR2017/745 regulation document have to be consulted for a clearer
idea on the position of functionally upgradable IMDs.

4.5.2. Regulations considering hardware and software in IMDs
Now that we know that IMDs fall in Class III, a next point to examine is whether regulations exist
considering Class III devices that can change their functionality with a software or hardware update.

Hardware configurations
Searching for ’hardware’ gives only three hits in the complete MDR2017/745 document. Two of them
consider minimum hardware requirements for PC software and are as such not relevant to our research.
The third occurrence is in section 6.1 of Annex II, where it is listed that a number of test report details
are required to present at verification. Quoting 6.1 (b), on required information supplied at verification:
software verification and validation (describing the software design and development process and evi-
dence of the validation of the software, as used in the finished device. This information shall typically
include the summary results of all verification, validation and testing performed both in-house and in a
simulated or actual user environment prior to final release. It shall also address all of the different hard-
ware configurations and, where applicable, operating systems identified in the information supplied by
the manufacturer). A number of points can be taken from this snippet. First, an extensive report that
makes clear that rigorous software testing was done needs to be supplied. Second, all hardware con-
figurations need to be listed on which the software runs. For traditional MCU-equipped IMDs that only
run software, all used MCUs and software programs need to be evaluated and present in the report.
As for FPGAs, this snippet could imply that all FPGA bitstreams need to be individually approved as
they count as different hardware configurations, but no explicit mention of IMDs, let alone FPGAs, is
made here, making our judgment far from final.

Configurable and software devices
Looking at Annex VI, which is about assigning identifiers to medical devices, section 6.4 (Configurable
devices) and 6.5 (Device Software) spike particular interest.
Section 6.4 indicates that a unique device identifier (UDI) shall be assigned to the configurable device
in its entirety as the configurable device UDI. Furthermore, an identifier is given to groups of configura-
tions and not per configuration within a group. For our situation, this could be interpreted as having to

4.5. Q4: Having an FPGA-equipped IMD, what are the difficulties in aspect to legal certification? 64

Figure 4.15: Rules for classifying medical devices according to MDR2017/745, Annex VIII regulation [89]

assign only a single identifier to the group of crypto IP cores, while requiring another one for the ANN
implementation. But, no further precision is given on the word ’configuration’, so it can be assumed
that a device with different physical configurations is meant here.
Section 6.5 states that software that stands on its own requires a separate UDI, indicating that it is seen
as a complete medical device. For software that is part of a medical device, as is the case with IMDs,
one identifier will identify the whole medical device, with hardware and software components. This is
consistent with section 3.3 of Annex VIII, which states that ”Software, which drives a device or influ-
ences the use of a device, shall fall within the same class as the device”. Hereby it can be concluded
that any IMD software falls under existing regulation. But, because of the volatile nature of software, it
is thus interesting to see what effect these rules have on re-certification.

Re-certification
As changes in software or hardware configuration could imply new functionality, re-certification of the
device most likely needs to happen depending on the impact of the change. According to section 4.11
of Annex VII, re-certification needs to happen at least every five years, where all changes since the
last certification need to be taken into consideration. Again, no mention is made explicitly of changes
in IMD configurations in that period, so the conditions on which re-certification need to happen are not
yet clear from this regulation.

In conclusion of the MDR2017/745 document, regulations that target Class III IMDs do not discuss
reconfigurable hardware like FPGAs. Regulations that come the closest to our IMD cases are about

4.5. Q4: Having an FPGA-equipped IMD, what are the difficulties in aspect to legal certification? 65

software, either as a device itself or incorporated into an IMD. Therefore, IMDs with MCUs running soft-
ware are fully covered under existing regulation and pose no novel difficulties in obtaining certification.
This is further proven by the fact that MCU-equipped devices with software upgradability are already
certified and on the market [2]. This situation therefore begs the next question:

Can FPGAs be seen as software from a regulatory point of view?
The next sections will answer this question with the help of resources outside of the official

MDR2017/745 regulation document.

4.5.3. Considering FPGAs as software under regulation
As we know from computer engineering, FPGAs are mostly put under hardware solutions as opposed
to software running on CPUs. However, from a regulatory point of view, FPGAs tend to have the same
characteristics as software, sharing ease of updating functionality and fixing bugs. With the help of
external sources, we will verify the hypothesis that FPGAs in IMDs fall under the same regulations as
IMD software.

External sources
According to Blue Pearl Software, a company specialized in ASIC and FPGA verification, ”all integrated
circuits are generally considered as black-boxes for regulatory purposes, including ASICs and FPGAs.
However, in systems where the safety function is highly dependent upon the ASIC/FPGA functionality,
the detailed design of that device may become a central part of the safety assessment” [90]. To trans-
late this statement to FPGA-equipped IMDs, it will depend on the functionality of the FPGA whether
further knowledge of its executed algorithms is needed by regulatory bodies. ”Safety” in the Blue Pearl
Software document means the architectural mechanism, here called safety function, that handles hard-
ware or software faults caused by bugs or design errors, such as deadlock in a malformed FSM. It does
not refer to the life-criticality of the device. If we look at our two main FPGA use cases as defined in
Sections 1.3.1 and 1.3.2, wireless communication with a base station is generally considered a luxury
addition in newer IMDs, not a vital part of the safety function of the IMD. Although the second case may
possibly be more life-critical than the first, still no safety function is to be executed by FPGA fabric. This
leads to the assumption that our FPGAs can be considered black boxes under regulation, which means
that certain rules will still apply, but no knowledge is needed of the internal design by the regulatory
body.
Having made sure that an FPGA can be certified under current regulation, the requirements and reg-
ulations that are relevant can differ depending on the complexity of the design. Blue Pearl Software
distinguishes three categories (quoted from [90]):

1. If the ASIC or FPGA is purely based on RTL, then you may only need to apply IEC 60601-1 -
Medical electrical equipment - Part 1: General requirements for basic safety and essential perfor-
mance.

2. If the ASIC or FPGA has a processor that runs a small amount of C code that did not require
software architectural design, both the hardware and software may be considered as a black box
and only IEC 60601-1 is required.

3. If the ASIC or FPGA is a System-On-Chip, then apply IEC 60601-1 if the program portion is tiny
enough, otherwise apply IEC 62304.

We see here that two standards are considered: IEC 60601-1 [91] which regards medical electri-
cal equipment in pure hardware designs, and IEC 62304 [92], which considers more complex designs.
The main factor for deciding which to use is the complexity of the design: if the FPGA design is simple
enough that all its states can be tested and all edge cases evaluated, it can be considered a hardware
design, only needing to follow IEC 60601-1. But, for more complex designs that, just like software,
cannot be tested for al of its input-output combinations, IEC 602304 has to be followed. Our use cases
consider FPGA implementations that fall certainly in the second category, being complex enough that
the existing software regulation has to be applied to the FPGA.
In addition, an expert on embedded software for medical devices [93] affirms that IEC 62304 is almost
certainly needed for FPGAs and warns against trying to ’loophole’ certification by getting a complex
FPGA design classified as pure hardware. Furthermore, the categorization stated by Blue Pearl Soft-
ware is confirmed here in a similar fashion, stating that the design complexity determines the regulation

4.6. Conclusions 66

standard, only ’avoiding’ IEC 62304 for the simplest designs. A similar viewpoint is conveyed by a Na-
tional Instruments employee specialized in medical certification [94], stating that FPGAs are easier to
test and get approval on because of the nature of hardware versus software designs, with the latter
tending to be more prone to bugs undiscovered at production phase. However, companies trying to
find said loophole are discouraged in doing so as almost every design can have faults, needing proper
regulation.
On the other end, IEC 62304 got updated to prevent this loophole from being used as stated in the
changelog for the 2015 version: ”Scope – Clarified definition of what software is (any instruction that
runs on a processor). This is intended to close the perceived loophole for FPGA source code and mi-
crocontroller firmware. Note that FPGA source code is now subject to the SW life cycle requirements
of the standard. (Section 1.2)” [95], a further affirmation of FPGAs falling under the same regulations
as software. To remove all remaining doubt on regulating FPGAs as software, the FAQ supplied with
EN 62304:2006 [96] states unequivocally that ”Software executed on a processor (can also be part of a
FPGA) during the intended operation is considered a software item under EN 62304” in section 2.1.4 b).

Conversations with certification experts
Our preliminary conclusion that FPGA designs fall under existing software regulations is confirmed by
two certification experts to whom we spoke directly.
Monir El Azzouzi from easymedicaldevice.com indicated that whether or not an FPGA is used for a
certain functionality, this hardware part is only a tiny part of the complete verification picture. Important
is to answer the user needs and designing the medical device around those needs. After the device
has been classified according to existing rules, it can be allowed on the market, with no significant
distinction in regulation between software and hardware-based designs in IMDs.
Achilleas Tsoukalis of Micrel Med gives further elaboration on the re-certification of FPGA-equipped
medical devices. First, as the FDA treats components like FPGAs as black boxes, meaning that the
specific hardware is not considered in verification, only its function. The same is true for MCUs, making
no distinction between hardware and software implementations. If the component in question is not life-
critical and proper black box verification is done, the FDA approves the device. If it is life-critical, more
rigorous verification is needed but there is again no difference between software and hardware devices.
For minor edits like bug fixes or algorithm tunings, it is not even necessary to wait on re-approval. The
company needs to inform the FDA of the change but no complete re-certification is needed.

4.6. Conclusions
In this chapter, our results answering the four research question and problem statement are discussed.
Based on resource usage, only one data point is taken per security primitive, as the UART and AHB-
Lite interfaces have a similar resource footprint. The largest resource usage impact is made by the
algorithms: choosing SIMON instead of AES as block cipher makes up for a factor 3.5 decrease in
resources used. Due to the Menta architecture being LUT6 based rather than Lattice’s LUT4, calcu-
lations were done to extract the supposed resource usage of the Key Phrase project on Menta fabric,
which was found to be 75% that of Lattice. Seeing that all DSPs are used in the Key Phrase Detector
implementation, it may be DSP limited, which can be alleviated in the Menta architectures by placing
more DSPs. This could potentially result in less resource usage than calculated here. With this figure,
the size of eFPGA Architecture 2 and 3 was determined.
Compared to the AES ASIC present in our MCUs, the FPGA implementation is 17% to 40% slower, but
FPGAs can be used for retaining speedup over a wider variety of algorithms. Block ciphers in software
are tolerable but hashing with PHOTON-128 is not, taking 81ms to hash 128 bits with the Tiny Gecko.
The FPGA will complete this task in a mere 1073 cycles, or less than 0.1ms. Therefore, FPGAs are
beneficial in IMDs considering performance while retaining functional flexibility.
But, the FPGA consumes 4.4x the energy compared to our MCU with AES ASIC, although this can
be mitigated by employing a custom, more lightweight cipher. Replacing AES with SIMON results in
an energy consumption reduction of more than 11 times. Next to cryptography, FPGA hardware accel-
erated neural networks are possible with only twice the energy consumption as AES under the same
runtime.
Adding an FPGA to our baseline Tiny Gecko MCU results in a 63% drop from 3.76 to 1.40 years, render-
ing the addition unfeasible. However, with static FPGA current being the major contributor to average

4.6. Conclusions 67

power consumption, power gating provides a solution. We simulate our iCE40UP5K FPGA having a
power efficient sleep mode, like Flash*Freeze from Microsemi IGLOO devices, as well as turning the
FPGA off completely when idle. These scenarios account for a jump from 1.40 to 2.47 and 3.48 years
respectively, resulting in the feasibility of FPGAs in IMDs considering battery life, with a decrease of
only 7.5% in the last scenario.
Considering physical area, using TSMC 7nm the Menta eFPGAs are only 12% and 21% the area of
the iCE40UP5K for cryptography-only and neural network support, respectively. Using a 180nm pro-
cess results in an area of 20 to 100 times that of the Lattice FPGA, which is unfeasible. The selected
technology for all further experiments is TSMC 28nm, which results in 40% to 70% of the Lattice FPGA
area, making the eFPGA more area-efficient than the baseline FPGA. Only chip and fabric area is
considered without surrounding components and interconnect in the case of the baseline FPGA, which
would skew the area advantage even more in the direction of the eFPGAs. The eFPGA area is more
dependent on process technology size than its architecture. Comparison to the iCE40UP5K FPGA is
mainly a comparison of process technologies and can possibly be extended by comparing the FPGA +
MCU to an eFPGA-equipped MCU in area. However, due to unavailability of the latter, this comparison
was not made.
The battery life expectations of FPGA and eFPGA scenarios show that even with a very high mod-
eled average activity factor of 30%, the eFPGAs are more efficient than the iCE40UP5K FPGA. Due
to their low power consumption, operating the security primitives on harvested power is possible, with
no recharging needed. When recharging every week is available, continuous neural network usage is
feasible as expected battery life is 10 to 12 days. Otherwise, only 6.5 minutes active usage per day for
either eFPGA architecture is the maximum to retain energy feasibility.
To determine if daily FPGA reconfiguration is feasible in IMDs, a scenario was set up where an FPGA
is configured to a cryptographic engine and operates for two minutes, after which the FPGA is config-
ured back to its original state. Two parameters determine the feasibility: execution time and energy
consumption added with a daily double reconfiguration. Regarding energy, it was found that the FPGA
is faster than software AES, SIMON and PHOTON starting with messages of 8kiB, 16kiB antd 256
bits respectively, with an added 70.64ms configuration penalty on the FPGA side. The feasibility case
was even stronger considering energy: software AES was at messages from 1kiB already less efficient
than the FPGA with an added configuration cost of 28.82uJ. Within our use case, these message size
thresholds will easily be reached. This renders FPGAs feasible in IMDs with both performance and
energy configuration costs added.
No direct mention is made of FPGAs in European regulation, but multiple sections state regulations for
software, which is therefore fully covered. Consulting certification experts, it was found that integrated
circuits are generally considered as black boxes in regulation, meaning that only its functionality needs
to be verified, but that it does not matter if an MCU or FPGA is inside the box. If verification of FPGAs
can be brute forced by exhaustive testing of all possible input and output combinations, it is a hardware
device falling under IEC 60601-1. Otherwise, IEC 62304 needs to be applied, which is the same reg-
ulation as for software components. This distinction is universally held by regulation companies and
experts in certification. Therefore, regulation will be the same as with state-of-the-art MCU-based IMDs
with no additional legal difficulty in place.

4.6. Conclusions 68

Figure 4.16: Classes of medical devices according to MDR2017/745 regulation [89]

5
Conclusion

5.1. Summary
In Chapter 2, we gained background knowledge on the following four subjects: Ultra-low-power FPGA
and eFPGA technology, cryptography for ultra-low-power hardware, artificial neural networks and their
application in low-power environments, and wireless energy harvesting.
FPGAs have become a viable option for the ultra-low-power domain with recent technology develop-
ments. They have been proposed for IMDs in literature, however, no extensive energy analysis on
FPGA-equipped IMDs has been done. To be able to answer our first and second research question
and contribute to this knowledge gap in literature, a baseline FPGA (Lattice iCE40UP5K) and eFPGA
technology is used in our to be conducted experiments.
In IMDs with wireless connectivity, securing its communication is of utmost importance, especially in
life-critical applications. Most commercial security implementations run on MCUs in software, which
makes all but the most basic primitives infeasible to run. Hardware accelerated blocks within MCUs
have been used for a tremendous performance and energy gain, however, no fast alternative is avail-
able in the case the accelerated primitive is broken during the lifetime of an implanted IMD. FPGAs
could combine the advantages of both CPUs and ASIC peripherals and as seen from literature, crypto-
graphic schemes are excellent candidates for low-power FPGA implementation, resource and energy
wise. As such, hardware-accelerated cryptography in IMDs is considered as first use case in this the-
sis.
No IMD-suitable hardware-accelerated neural network could be found that fulfills all of our four require-
ments in literature. Designing an efficient ANN on a low-power FPGA is a difficult task, judging from
the lack of well-documented suitable implementations. Looking at mapping engines to generate ANNs
that do fulfill all requirements, time was too limiting to be able to use one for our experiments. The best
readily available ANN that has a well-documented FPGA implementation is the Lattice CNN Compact
Accelerator IP which, integrated in the Key Phrase Detector Project, will be taken as reference ANN
for the second use case in our experiments.
Wireless energy harvesting was discussed with the goal to mitigate battery drain by adversaries. The
maximum available continuous power draw was found to be 6.15mW from literature for the security
primitives in Case 1 (Section 1.3.1), where the power limit of Case 2 (Section 1.3.2) will not be defined
by this limit but rather indirectly by prospected battery life calculations.

In Chapter 3, our benchmark suite consisting of four algorithms, two interfaces and three groups
of platforms is presented and designed. First, the implementations of the three selected security primi-
tives (AES-128, SIMON-64/128 and PHOTON-128) are demonstrated. For every primitive, a premade
IP core was selected that is optimized for low resource usage. With AES and SIMON being both block
ciphers, interfacing them is done by presenting block and key data in parallel. Reading data from and
writing to the PHOTON block is done in a serial fashion, as is fitting for hashing protocols which have
a varying input message size. As neural network representative the Key Phrase Detector example
project from Lattice is chosen, which is the last of our algorithm selection. The actual interfaces were
created in Section 3.3, for simulating realistic resource overhead on the security primitives implemen-

69

5.1. Summary 70

tations. Two different scenarios were considered, as seen from the FPGA: off-die communication with
an external host MCU and on-die communication in the case of an eFPGA integrated within an MCU
on the same die. For both scenarios, fitting hardware implementations have been designed in the form
of UART and AHB-lite interfaces. Where the UART interface is based on a simple 8-bit UART IP core,
the AHB-Lite interface has been designed completely from scratch, with both interfaces requiring adap-
tations depending on the respective cryptographic IP core.
In Section 3.4, a set of two MCUs and a baseline FPGA have been selected to perform performance
and energy comparisons for our experiments. Additionally, eFPGA technology will be considered. As
is clear from the available ultra-low-power FPGAs currently on the market, the iCE40 UltraPlus series
is the only affordable option. The MCU selection is based upon processors common in modern IMDs,
with a higher end and energy-efficient version of the EFM32 Gecko series. This set of platforms is
representable hardware for comparing a hypothetical FPGA-equipped IMD with a conventional MCU-
based unit.
Next, eFPGAs are added to our platforms comparison in addition to MCU and FPGA hardware. An
extra step is introduced in the design flow compared to regular FPGAs: that of designing the eFPGA
fabric itself. With the Menta architecture being LUT6-based, the resource usage is different from our
algorithms implemented on the baseline FPGA. Determining resource usage of the Key Phrase Detec-
tor on Menta fabric can only be calculated, as its HDL code is proprietary and non-portable. With an
estimation based on linear trends between Lattice and Menta resource usage of all security primitives,
the prospected LUT6 resource usage factor for the Key Phrase Detector is derived as being 75.33%
of the LUT4 count on the Lattice FPGA. Having obtained this factor, eFPGA architectures that can just
fit this CNN project were designed, as well as one fitting all security primitives, totaling three Menta
architectures to be used in our experiments.
Last, our benchmark suite for current measurements on the iCE40UP5K-B-EVN platform is prepared.
This involves modifying our security primitive HDL code to let them run at continuous load, that is,
encryption. For the Key Phrase Detector project, no modifications were necessary as this design is
already built to operate continuously.
MCU current measurements are to be performed by taking active current, which is identical for all imple-
mentations as its hardware is unchanged. Only measurements of the security primitives can be done,
as no Key Phrase Detector software version is available.
Physical eFPGAmeasurements are not possible as the architectures only exist in simulation. However,
static power can be obtained from Origami Designer and dynamic power from an experimental calcu-
lation model. As a global average activity factor needs to be provided in this model, multiple realistic
values are assumed.

In Chapter 4, our results answering the four research question and problem statement are dis-
cussed. Based on resource usage, only one data point is taken per security primitive, as the UART
and AHB-Lite interfaces have a similar resource footprint. The largest resource usage impact is made
by the algorithms: choosing SIMON instead of AES as block cipher makes up for a factor 3.5 decrease
in resources used. Due to the Menta architecture being LUT6 based rather than Lattice’s LUT4, calcu-
lations were done to extract the supposed resource usage of the Key Phrase project on Menta fabric,
which was found to be 75% that of Lattice. Seeing that all DSPs are used in the Key Phrase Detector
implementation, it may be DSP limited, which can be alleviated in the Menta architectures by placing
more DSPs. This could potentially result in less resource usage than calculated here. With this figure,
the size of eFPGA Architecture 2 and 3 was determined.
Compared to the AES ASIC present in our MCUs, the FPGA implementation is 17% to 40% slower, but
FPGAs can be used for retaining speedup over a wider variety of algorithms. Block ciphers in software
are tolerable but hashing with PHOTON-128 is not, taking 81ms to hash 128 bits with the Tiny Gecko.
The FPGA will complete this task in a mere 1073 cycles, or less than 0.1ms. Therefore, FPGAs are
beneficial in IMDs considering performance while retaining functional flexibility.
But, the FPGA consumes 4.4x the energy compared to our AES ASIC, although this can be mitigated
by employing a custom, more lightweight cipher. Replacing AES with SIMON results in an energy con-
sumption reduction of more than 11 times. Next to cryptography, FPGA hardware accelerated neural
networks are possible with only twice the energy consumption as AES under the same runtime.
Adding an FPGA to our baseline Tiny Gecko MCU results in a 63% drop from 3.76 to 1.40 years, render-
ing the addition unfeasible. However, with static FPGA current being the major contributor to average

5.2. Main Contributions 71

power consumption, power gating provides a solution. We simulate our iCE40UP5K FPGA having a
power efficient sleep mode, like Flash*Freeze from Microsemi IGLOO devices, as well as turning the
FPGA off completely when idle. These scenarios account for a jump from 1.40 to 2.47 and 3.48 years
respectively, resulting in the feasibility of FPGAs in IMDs considering battery life, with a decrease of
only 7.5% in the last scenario.
Considering physical area, using TSMC 7nm the Menta eFPGAs are only 12% and 21% the area of
the iCE40UP5K for cryptography-only and neural network support, respectively. Using a 180nm pro-
cess results in an area of 20 to 100 times that of the Lattice FPGA, which is unfeasible. The selected
technology for all further experiments is TSMC 28nm, which results in 40% to 70% of the Lattice FPGA
area, making the eFPGA more area-efficient than the baseline FPGA. Only chip and fabric area is
considered without surrounding components and interconnect in the case of the baseline FPGA, which
would skew the area advantage even more in the direction of the eFPGAs. The eFPGA area is more
dependent on process technology size than its architecture. Comparison to the iCE40UP5K FPGA is
mainly a comparison of process technologies and can possibly be extended by comparing the FPGA +
MCU to an eFPGA-equipped MCU in area. However, due to unavailability of the latter, this comparison
was not made.
The battery life expectations of FPGA and eFPGA scenarios show that even with a very high mod-
eled average activity factor of 30%, the eFPGAs are more efficient than the iCE40UP5K FPGA. Due
to their low power consumption, operating the security primitives on harvested power is possible, with
no recharging needed. When recharging every week is available, continuous neural network usage is
feasible as expected battery life is 10 to 12 days. Otherwise, only up to 6.5 minutes active usage per
day for either architecture is the maximum to retain energy feasibility.
To determine if daily FPGA reconfiguration is feasible in IMDs, a scenario was set up where an FPGA
is configured to a cryptographic engine and operates for two minutes, after which the FPGA is config-
ured back to its original state. Two parameters determine the feasibility: execution time and energy
consumption added with a daily double reconfiguration. Regarding energy, it was found that the FPGA
is faster than software AES, SIMON and PHOTON starting with messages of 8kiB, 16kiB antd 256
bits respectively, with an added 70.64ms configuration penalty on the FPGA side. The feasibility case
was even stronger considering energy: software AES was at messages from 1kiB already less efficient
than the FPGA with an added configuration cost of 28.82uJ. Within our use case, these message size
thresholds will easily be reached. This renders FPGAs feasible in IMDs with both performance and
energy configuration costs added.
No direct mention is made of FPGAs in European regulation, but multiple sections state regulations for
software, which is therefore fully covered. Consulting certification experts, it was found that integrated
circuits are generally considered as black boxes in regulation, meaning that only its functionality needs
to be verified, but that it does not matter if an MCU or FPGA is inside the box. If verification of FPGAs
can be brute forced by exhaustive testing of all possible input and output combinations, it is a hardware
device falling under IEC 60601-1. Otherwise, IEC 62304 needs to be applied, which is the same reg-
ulation as for software components. This distinction is universally held by regulation companies and
experts in certification. Therefore, regulation will be the same as with state-of-the-art MCU-based IMDs
with no additional legal difficulty in place.

5.2. Main Contributions
This thesis centers around answering our problem statement, which is repeated here for convenience:

Can FPGAs be used as a reconfigurable fabric within IMDs?

Our contributions are grouped in answers on the four formulated research questions:

Can FPGA fabric be used in IMDs in terms of energy and execution time?

• We show that FPGA fabric is feasible and certainly beneficial if the active part of its duty cycle is not
higher than a couple minutes per day and when the fabric is turned off or put into deep sleep when
idle. With static power rising with smaller nodes such as those used in our eFPGA experiments,
smart power gating when idle mitigates all these static power disadvantages. Energy feasibility

5.3. Future work 72

is therefore achieved.
• As a novelty, we considered hardware-accelerated artificial neural networks suitable for IMDs in
this thesis. An extensive survey shows that no plug-and-play ANN is available that suits our needs
and has a reference software implementation. However, feasibility for this use case is shown by
seeing that it consumes about twice the energy as AES-128, while requiring 40% more FPGA
resources. Having battery recharge capability at hand, hardware-accelerated neural networks in
IMDs are within reach.

How big are the improvements of an eFPGA over an FPGA with regard to energy consump-
tion and area?

• We designed three IMD-suited eFPGA architectures for comparison with an off-the-shelf FPGA
in terms of area and energy feasibility in IMDs. We show that eFPGAs provide an advantage over
regular FPGAs in both fields, occupying up to 21% less area and resulting in a 1.89 times longer
battery life in the neural network case with two minutes of daily usage. Improvements over regular
FPGAs are therefore significant and make eFPGAs worth considering for IMD manufacturers.

• We provide insight in the influence of different silicon process nodes on eFPGA + IMD feasibility.
Old 180nm processes yield an area that is too large for eFPGA usage, whereas modern 28nm
and 7nm processes provide noticeable area gains.

In what cases is daily FPGA reconfiguration beneficial in IMDs?

• We show that daily reconfiguration to a cryptographic peripheral in IMD FPGAs is feasible, if
the peripheral is used on data sizes of at least 8kiB and 16kiB for AES and SIMON respectively.
Hashing with PHOTON is already feasible in this case when operating on two blocks or 256 bits
or more.

Having an FPGA-equipped IMD, what are the difficulties in aspect to legal certification?

• Unlike previous research, legal certification is considered as an additional feasibility factor. We
show that FPGAs are treated as software devices, which have existing certification procedures
in place. Therefore, no additional paperwork is required with an FPGA-equipped IMD compared
to a MCU-based one that runs software. Answering the fourth research question: no additional
difficulties are present.

Work that did not directly answer the problem statement is listed here:

• We created UART & AHB-Lite communication interfaces to pair with our selection of crypto IP
cores for a realistic evaluation of the first use case. We show that the most deciding factor for
energy and resource feasibility is not the communication interface, but the selected crypto IP
core.

Seeing that we have answered all four research questions, the problem statement can be answered
as such: FPGAs can certainly be used as reconfigurable fabric in IMDs under the conditions listed in
our answers above. Before this research was conducted, it was not clear in what ways FPGAs would be
manageable, primarily energy-wise, while preserving the typical multi-year battery life of IMDs. Having
done the research, many obstacles of the technical and legal kind have been removed that hold IMD
manufacturers from using FPGAs in their devices. As a result, an IMD manufacturer could implement
an FPGA or eFPGA in their device, taking our feasibility conditions as a guideline without having to find
out these conditions themselves.

5.3. Future work
• Find or design a tiny ANN that has both a hardware and software implementation available. In
our research, it is clear that ANNs on tiny FPGAs are feasible for IMDs, but no MCU software
reference point is included. Not only energy analysis could be conducted like done in this thesis,
but a performance comparison would give indication at how much existing medical therapies can
be improved. Also, an analysis of different existing ANN-friendly algorithms would give a clear
picture on the algorithmic complexity that can be increased when using FPGAs instead of MCUs.
Including this data point into the evaluation would give novel information and ground on why IMD
ANNs need to be run on FPGAs.

5.3. Future work 73

• Analyze a neural network implementation that is actually meant for seizure detection or predic-
tion or another complex medical therapy to gain a more precise insight in the feasibility of ANN-
featuring medical therapies. A comparison with existing therapies can be performed to find out
what therapies benefit from an FPGA implementation and which ones have an absolute need for
hardware acceleration.

• Include dynamic power calculations for eFPGAs, deriving the average activity factor from actual
testbench data instead of a global prediction. Using Synopsys Power Compiler for example could
give the desired activity factor already. Additionally, replacing the used dynamic power prediction
model with a thorough analysis of a hardened eFPGA design will result in power values that are
more close to reality.

• Consider latency and data throughput performance of different communication interfaces, instead
of only the resource usage as done in this thesis. Having more performance figures on this
part can make a stronger case for using eFPGAs instead of FPGAs with applications that are
heavy on data throughput. Performance comparisons between UART and AHB-Lite will lead
to the conclusion that the communication overhead of the latter is vastly lower than UART with
its economic interconnect. For communication-heavy implementations, eFPGAs could have a
serious added performance advantage.

• Extend our FPGA vs eFPGA area comparison by taking into account actual PCB space, including
surrounding components and interconnect in the case of a traditional separate FPGA chip. With
this addition, the area benefit of using an eFPGA instead of an FPGA will certainly be even larger
than it is in our analysis.

• add a fourth eFPGA architecture of around 1000 LUTs that can just hold SIMON or PHOTON-
sized implementations. If the intended purpose of the FPGA fabric in IMDs is already very spe-
cific, for example only lightweight block ciphers, a much smaller eFPGA could suffice. With less
LUTs, both static and dynamic power will be reduced, making it even more attractive to IMD
manufacturers to incorporate an eFPGA in their devices.

• Implement an actual eFPGA, choosing one or more process technologies and perform IP hard-
ening of the designed eFPGA architectures. With this addition, a more accurate picture could be
presented on power, area, throughput and latency characteristics and optimization specifically for
the ultra-low-power environment could be performed, whereas now only the most power hungry
technology (TSMC 28nm) has been coarsely modeled.

References
[1] O. Aquilina. “A brief history of cardiac pacing.” In: (2006). URL: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC3232561.
[2] ABBOTT’s Proclaim XR Spinal Cord Stimulator Gets FDA Approval for Chronic Pain Manage-

ment. https://www.wearable-technologies.com/2019/10/abbotts-proclaim-xr-spinal-
cord-stimulator-gets-fda-approval-for-chronic-pain-management/. Accessed: 23-04-
2020.

[3] Erwin Fuhrer. Various neural implants and the location where they interface the central nervous
system. This schematic display shows the wide spread DBS device and the compact CI system
with their individual components on the right side and the location where they are implanted.
URL: https://www.researchgate.net/figure/Various-neural-implants-and-the-loca
tion- where- they- interface- the- central-nervous- system_fig1_323622113 (visited on
06/21/2021).

[4] M. M. Mansour et al. “Experimental investigation of wireless energy harvesting with a Bluetooth
low energy sensing unit”. In: 2018 International Conference on Electronics Packaging and iMAPS
All Asia Conference (ICEP-IAAC). 2018, pp. 189–193.

[5] Chunxiao Li, A. Raghunathan, and N. K. Jha. “Hijacking an insulin pump: Security attacks and
defenses for a diabetes therapy system”. In: 2011 IEEE 13th International Conference on e-Health
Networking, Applications and Services. 2011, pp. 150–156.

[6] Matheus E. Garbelini, Sudipta Chattopadhyay, and Chundong Wang. “SweynTooth: Unleashing
Mayhem over Bluetooth Low Energy”. In: (2020). URL: https://asset- group.github.io/
disclosures/sweyntooth/.

[7] H. Kassiri et al. “Closed-Loop Neurostimulators: A Survey and A Seizure-Predicting Design Ex-
ample for Intractable Epilepsy Treatment”. In: IEEE Transactions on Biomedical Circuits and Sys-
tems 11.5 (2017), pp. 1026–1040.

[8] M. Roukhami et al. “Very Low Power Neural Network FPGA Accelerators for Tag-Less Remote
Person Identification Using Capacitive Sensors”. In: IEEE Access 7 (2019), pp. 102217–102231.

[9] Guy G. F. Lemieux et al. “TinBiNN: Tiny Binarized Neural Network Overlay in about 5, 000 4-LUTs
and 5mW”. In: CoRR abs/1903.06630 (2019). arXiv: 1903.06630. URL: http://arxiv.org/abs/
1903.06630.

[10] Inc. Lattice Semiconductor. iCE40 UltraPlus - ML/AI Low Power FPGA. 2021. URL: http://www.
latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus (visited on 05/28/2021).

[11] A. Bogdanov et al. “PRESENT: An Ultra-Lightweight Block Cipher”. In: Cryptographic Hardware
and Embedded Systems - CHES 2007. Ed. by Pascal Paillier and Ingrid Verbauwhede. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 450–466. ISBN: 978-3-540-74735-2.

[12] Christophe Cannière, Orr Dunkelman, and Miroslav Knežević. “Katan and Ktantan —A Family of
Small and Efficient Hardware-Oriented Block Ciphers”. In: Jan. 2009, pp. 272–288.

[13] Muhammad Ali Siddiqi, Christian Doerr, and Christos Strydis. IMDfence: Architecting a Secure
Protocol for Implantable Medical Devices. 2020. eprint: 2002.09546 (cs.CR).

[14] Shyamnath Gollakota et al. “They Can Hear Your Heartbeats: Non-Invasive Security for Im-
plantable Medical Devices”. In: Proceedings of the ACM SIGCOMM 2011 Conference. SIG-
COMM ’11. Toronto, Ontario, Canada: Association for Computing Machinery, 2011, pp. 2–13.
ISBN: 9781450307970. DOI: 10.1145/2018436.2018438. URL: https://doi.org/10.1145/
2018436.2018438.

[15] Q. Yang et al. “An on-chip security guard based on zero-power authentication for implantable
medical devices”. In: 2014 IEEE 57th International Midwest Symposium on Circuits and Systems
(MWSCAS). 2014, pp. 531–534.

74

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232561
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232561
https://www.wearable-technologies.com/2019/10/abbotts-proclaim-xr-spinal-cord-stimulator-gets-fda-approval-for-chronic-pain-management/
https://www.wearable-technologies.com/2019/10/abbotts-proclaim-xr-spinal-cord-stimulator-gets-fda-approval-for-chronic-pain-management/
https://www.researchgate.net/figure/Various-neural-implants-and-the-location-where-they-interface-the-central-nervous-system_fig1_323622113
https://www.researchgate.net/figure/Various-neural-implants-and-the-location-where-they-interface-the-central-nervous-system_fig1_323622113
https://asset-group.github.io/disclosures/sweyntooth/
https://asset-group.github.io/disclosures/sweyntooth/
https://arxiv.org/abs/1903.06630
http://arxiv.org/abs/1903.06630
http://arxiv.org/abs/1903.06630
http://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
http://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
2002.09546
https://doi.org/10.1145/2018436.2018438
https://doi.org/10.1145/2018436.2018438
https://doi.org/10.1145/2018436.2018438

References 75

[16] Muhammad Ali Siddiqi and Christos Strydis. “IMD security vs. energy: are we tilting at windmills?”
In: Proceedings of the 16th ACM International Conference on Computing Frontiers (Apr. 2019).
DOI: 10.1145/3310273.3323421. URL: http://dx.doi.org/10.1145/3310273.3323421.

[17] P. Yalla and J. Kaps. “Lightweight Cryptography for FPGAs”. In: 2009 International Conference
on Reconfigurable Computing and FPGAs. 2009, pp. 225–230.

[18] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. 1999.
[19] Ray Beaulieu et al. “The SIMON and SPECK Families of Lightweight Block Ciphers”. In: IACR

Cryptol. ePrint Arch. 2013 (2013), p. 404.
[20] Jian Guo, Thomas Peyrin, and Axel Poschmann. “The PHOTON Family of Lightweight Hash

Functions”. In: Advances in Cryptology – CRYPTO 2011. Ed. by Phillip Rogaway. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011, pp. 222–239. ISBN: 978-3-642-22792-9.

[21] Maria Hügle et al. “Early Seizure Detection with an Energy-Efficient Convolutional Neural Network
on an Implantable Microcontroller”. In: 2018 International Joint Conference on Neural Networks
(IJCNN). 2018, pp. 1–7. DOI: 10.1109/IJCNN.2018.8489493.

[22] Simon Heller et al. “Hardware Implementation of a Performance and Energy-optimized Convo-
lutional Neural Network for Seizure Detection”. In: 2018 40th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018, pp. 2268–2271. DOI:
10.1109/EMBC.2018.8512735.

[23] tinyML. 2021. URL: https://www.tinyml.org/about/ (visited on 05/28/2021).
[24] Christos Strydis et al. “A System Architecture, Processor and Communication Protocol for Secure

Implants”. In: ACM Transactions on Architecture and Code Optimization (TACO) 10 (Dec. 2013).
DOI: 10.1145/2555289.2555313.

[25] M. Faizollah et al. “Low-power, small-size, generic controller dedicated to implantable biomedical
microsystems”. In: 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS). 2012,
pp. 204–207.

[26] S. Martínez and J. P. Oliver. “A low power FPGA based control unit for an implantable neuromod-
ulation circuit”. In: 2019 X Southern Conference on Programmable Logic (SPL). 2019, pp. 63–
68.

[27] S. Yamaguchi et al. “Programmable wireless sensor node featuring low-power FPGA and mi-
crocontroller”. In: 2013 International Joint Conference on Awareness Science and Technology
Ubi-Media Computing (iCAST 2013 UMEDIA 2013). 2013, pp. 596–601.

[28] V. Rosello, J. Portilla, and T. Riesgo. “Ultra low power FPGA-based architecture for Wake-up
Radio in Wireless Sensor Networks”. In: IECON 2011 - 37th Annual Conference of the IEEE
Industrial Electronics Society. 2011, pp. 3826–3831.

[29] H. Qi, O. Ayorinde, and B. H. Calhoun. “An ultra-low-power FPGA for IoT applications”. In: 2017
IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). 2017, pp. 1–
3.

[30] Fei Zhang, Mehdi Aghagolzadeh, and Karim Oweiss. “A Fully Implantable, Programmable and
Multimodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applica-
tions”. In: Signal Process Syst. 2012;69(3):351–361 (). DOI: 10.1007/s11265-012-0670-x.

[31] T. Zhan et al. “A Resource-Optimized VLSI Implementation of a Patient-Specific Seizure Detec-
tion Algorithm on a Custom-Made 2.2 cm2 Wireless Device for Ambulatory Epilepsy Diagnostics”.
In: IEEE Transactions on Biomedical Circuits and Systems 13.6 (2019), pp. 1175–1185.

[32] Neha T. Block cipher in Electronic Codebook Mode. URL: https://binaryterms.com/block-
cipher.html (visited on 06/21/2021).

[33] KLEIN. 2017. URL: https://github.com/tomirio619/Midori (visited on 06/09/2021).
[34] LED. 2017. URL: https://github.com/tomirio619/Midori (visited on 06/09/2021).
[35] Midori: Python and hardware implementation of Midori 128. 2017. URL: https://github.com/

tomirio619/Midori (visited on 06/09/2021).
[36] Guido Bertoni et al. The KECCAK SHA-3 submission. 2011. URL: https://keccak.team/keccak.

html (visited on 06/21/2021).

https://doi.org/10.1145/3310273.3323421
http://dx.doi.org/10.1145/3310273.3323421
https://doi.org/10.1109/IJCNN.2018.8489493
https://doi.org/10.1109/EMBC.2018.8512735
https://www.tinyml.org/about/
https://doi.org/10.1145/2555289.2555313
https://doi.org/10.1007/s11265-012-0670-x
https://binaryterms.com/block-cipher.html
https://binaryterms.com/block-cipher.html
https://github.com/tomirio619/Midori
https://github.com/tomirio619/Midori
https://github.com/tomirio619/Midori
https://github.com/tomirio619/Midori
https://keccak.team/keccak.html
https://keccak.team/keccak.html

References 76

[37] Salah Albermany.Novel Design of RADGAutomata In CRNs - Scientific Figure on ResearchGate.
URL: https://www.researchgate.net/figure/Figure-1-1-Symmetric-and-Asymmetric-
Cryptosystem-Scheme-Asymmetric-cryptography_fig1_326331494 (visited on 06/21/2021).

[38] Menta & Secure-IC. Insights at Menta & Secure-IC’s Partnership & First Results. URL: https:
//www.menta-efpga.com/videos (visited on 07/08/2021).

[39] T. Xu, J. B. Wendt, and M. Potkonjak. “Matched Digital PUFs for Low Power Security in Im-
plantable Medical Devices”. In: 2014 IEEE International Conference on Healthcare Informatics.
2014, pp. 33–38.

[40] Siskos Dimitrios. “A Co-Processor for a Secure Implantable Medical Device”. MA thesis. Delft
University of Technology, 2011.

[41] Turki Al-Somani and Hilal Houssain. “Implementation of GF(2m) Elliptic Curve cryptoprocessor
on a Nano FPGA”. In: (Jan. 2011).

[42] Anita Aghaie et al. “Impeccable Circuits”. In: IEEE Transactions onComputers 69.3 (2020), pp. 361–
376. DOI: 10.1109/TC.2019.2948617.

[43] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Searching for Activation Functions”. In:
CoRR abs/1710.05941 (2017). arXiv: 1710.05941. URL: http://arxiv.org/abs/1710.05941.

[44] Analytics Vidhya. Artificial Neural Network, Its inspiration and the Working Mechanism. URL: h
ttps : / / www . analyticsvidhya . com / blog / 2021 / 04 / artificial - neural - network - its -
inspiration-and-the-working-mechanism/ (visited on 06/21/2021).

[45] Glosser.ca.Own work, Derivative of File:Artificial neural network.svg, CC BY-SA 3.0. URL: https:
//commons.wikimedia.org/w/index.php?curid=24913461 (visited on 06/21/2021).

[46] Sumit Saha. A CNN sequence to classify handwritten digits. URL: https://towardsdatascie
nce.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53 (visited on 06/21/2021).

[47] Michael Copeland. Inference is where capabilities learned during deep learning training are put
to work. URL: https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-
training-inference-ai/ (visited on 06/21/2021).

[48] Bing Liu et al. “An FPGA-Based CNN Accelerator Integrating Depthwise Separable Convolution”.
In: Electronics 8 (Mar. 2019), p. 281. DOI: 10.3390/electronics8030281.

[49] Rijad Sarić et al. “FPGA-based real-time epileptic seizure classification using Artificial Neural
Network”. In: Biomedical Signal Processing and Control 62 (Sept. 2020), p. 102106. DOI: 10.
1016/j.bspc.2020.102106.

[50] Shuo Wang et al. “C-LSTM: Enabling Efficient LSTM using Structured Compression Techniques
on FPGAs”. In: CoRR abs/1803.06305 (2018). arXiv: 1803.06305. URL: http://arxiv.org/abs/
1803.06305.

[51] Ali Jahanshahi. “TinyCNN: A Tiny Modular CNN Accelerator for Embedded FPGA”. In: CoRR
abs/1911.06777 (2019). arXiv: 1911.06777. URL: http://arxiv.org/abs/1911.06777.

[52] Paolo Meloni et al. “Curbing the roofline: a scalable and flexible architecture for CNNs on FPGA”.
In: May 2016, pp. 376–383. DOI: 10.1145/2903150.2911715.

[53] Yuteng Zhou, Shrutika Redkar, and Xinming Huang. “Deep learning binary neural network on an
FPGA”. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWS-
CAS). 2017, pp. 281–284. DOI: 10.1109/MWSCAS.2017.8052915.

[54] Zbigniew Hajduk. “Reconfigurable FPGA implementation of neural networks”. In: Neurocomput-
ing 308 (May 2018). DOI: 10.1016/j.neucom.2018.04.077.

[55] FÉlixMoreno et al. “Reconfigurable Hardware Architecture of a ShapeRecognition SystemBased
on Specialized Tiny Neural Networks With Online Training”. In: IEEE Transactions on Industrial
Electronics 56.8 (2009), pp. 3253–3263. DOI: 10.1109/TIE.2009.2022076.

[56] Cheng Fu et al. “Towards Fast and Energy-Efficient Binarized Neural Network Inference on
FPGA”. In: CoRR abs/1810.02068 (2018). arXiv: 1810.02068. URL: http://arxiv.org/abs/
1810.02068.

https://www.researchgate.net/figure/Figure-1-1-Symmetric-and-Asymmetric-Cryptosystem-Scheme-Asymmetric-cryptography_fig1_326331494
https://www.researchgate.net/figure/Figure-1-1-Symmetric-and-Asymmetric-Cryptosystem-Scheme-Asymmetric-cryptography_fig1_326331494
https://www.menta-efpga.com/videos
https://www.menta-efpga.com/videos
https://doi.org/10.1109/TC.2019.2948617
https://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941
https://www.analyticsvidhya.com/blog/2021/04/artificial-neural-network-its-inspiration-and-the-working-mechanism/
https://www.analyticsvidhya.com/blog/2021/04/artificial-neural-network-its-inspiration-and-the-working-mechanism/
https://www.analyticsvidhya.com/blog/2021/04/artificial-neural-network-its-inspiration-and-the-working-mechanism/
https://commons.wikimedia.org/w/index.php?curid=24913461
https://commons.wikimedia.org/w/index.php?curid=24913461
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/
https://doi.org/10.3390/electronics8030281
https://doi.org/10.1016/j.bspc.2020.102106
https://doi.org/10.1016/j.bspc.2020.102106
https://arxiv.org/abs/1803.06305
http://arxiv.org/abs/1803.06305
http://arxiv.org/abs/1803.06305
https://arxiv.org/abs/1911.06777
http://arxiv.org/abs/1911.06777
https://doi.org/10.1145/2903150.2911715
https://doi.org/10.1109/MWSCAS.2017.8052915
https://doi.org/10.1016/j.neucom.2018.04.077
https://doi.org/10.1109/TIE.2009.2022076
https://arxiv.org/abs/1810.02068
http://arxiv.org/abs/1810.02068
http://arxiv.org/abs/1810.02068

References 77

[57] Shuang Liang et al. “FP-BNN: Binarized neural network on FPGA”. In: Neurocomputing 275
(2018), pp. 1072–1086. ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2017.
09.046. URL: https://www.sciencedirect.com/science/article/pii/S0925231217315655.

[58] Inc. Lattice. Lattice CNN Compact Accelerator IP - Implement Machine Learning Inferencing in
mWs. URL: https://www.latticesemi.com/Products/DesignSoftwareAndIP/IntellectualP
roperty/IPCore/IPCores04/compactcnn (visited on 05/30/2021).

[59] Key Phrase Detection Using Compact CNN Accelerator IP - Reference. 2019. URL: www.latti
cesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/JM/FPGA-RD-02066-1-
0-Key-Phrase-Detection-Using-Compact-CNN-Accelerator-IP.ashx?document_id=52764
(visited on 05/28/2021).

[60] Microsoft. SeeDot: Compiler for Low-Precision Machine Learning. URL: https://www.microsoft.
com/en-us/research/project/seedot-compiler-for-low-precision-machine-learning/
(visited on 05/30/2021).

[61] Microsoft. EdgeML: The EdgeMachine Learning Library. URL: https://github.com/Microsoft/
EdgeML (visited on 05/30/2021).

[62] M Wielgosz and M Karwatowski. “Mapping Neural Networks to FPGA-Based IoT Devices for
Ultra-Low Latency Processing”. In: (July 2019). DOI: 10.3390/s19132981.

[63] D. Halperin et al. “Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks
and Zero-Power Defenses”. In: 2008 IEEE Symposium on Security and Privacy (sp 2008). 2008,
pp. 129–142.

[64] Muhammad Ali Siddiqi and Christos Strydis. “Towards Realistic Battery-DoS Protection of Im-
plantable Medical Devices”. In: CoRR abs/1904.06893 (2019). arXiv: 1904.06893. URL: http:
//arxiv.org/abs/1904.06893.

[65] A. N. Abdulfattah et al. “Performance Analysis of MICS-Based RF Wireless Power Transfer Sys-
tem for Implantable Medical Devices”. In: IEEE Access 7 (2019), pp. 11775–11784.

[66] P. Li and R. Bashirullah. “A Wireless Power Interface for Rechargeable Battery Operated Med-
ical Implants”. In: IEEE Transactions on Circuits and Systems II: Express Briefs 54.10 (2007),
pp. 912–916.

[67] M. Galizzi et al. “An inertial and environmental wireless platform with advanced energy harvesting
capabilities”. In: 2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS)
Proceedings. 2015, pp. 1–4.

[68] Javier Castillo Villar. AES-128 Verilog core. 2004. URL: https://opencores.org/projects/
systemcaes (visited on 05/28/2021).

[69] Anita Aghaie et al. SIMON-64/128 VHDL core. 2019. URL: https://github.com/emsec/Impecc
ableCircuits/tree/master/SIMON/1-SIMON64-128_no_protection (visited on 05/28/2021).

[70] Guido Bertoni, Joan Daemen, and Michaël Peeters. “Cryptographic sponge functions”. In: 2011.
[71] Homer Hsing. SHA-3 (KECCAK) Verilog core. 2013. URL: https://opencores.org/projects/

sha3 (visited on 05/28/2021).
[72] TensorFlow - An end-to-end open source machine learning platform. 2021. URL: https://www.

tensorflow.org/ (visited on 05/28/2021).
[73] Caffe - Deep Learning Framework. 2021. URL: https://caffe.berkeleyvision.org/ (visited

on 05/28/2021).
[74] Keras: the Python deep learning API. 2021. URL: https://keras.io/ (visited on 05/28/2021).
[75] Inc. Lattice. Lattice sensAI Stack. URL: https://www.latticesemi.com/sensAI (visited on

06/21/2021).
[76] AMBA Bus Protocols - AXI, AHB, APB - Understanding Architecture and References. URL: http:

//verificationexcellence.in/amba-bus-architecture/ (visited on 05/28/2021).
[77] IngenieroLoco. Diagram showing UART timing. URL: https://en.wikipedia.org/wiki/Univer

sal_asynchronous_receiver-transmitter#/media/File:UART_timing_diagram.svg (visited
on 06/21/2021).

https://doi.org/https://doi.org/10.1016/j.neucom.2017.09.046
https://doi.org/https://doi.org/10.1016/j.neucom.2017.09.046
https://www.sciencedirect.com/science/article/pii/S0925231217315655
https://www.latticesemi.com/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores04/compactcnn
https://www.latticesemi.com/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores04/compactcnn
www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/JM/FPGA-RD-02066-1-0-Key-Phrase-Detection-Using-Compact-CNN-Accelerator-IP.ashx?document_id=52764
www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/JM/FPGA-RD-02066-1-0-Key-Phrase-Detection-Using-Compact-CNN-Accelerator-IP.ashx?document_id=52764
www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/JM/FPGA-RD-02066-1-0-Key-Phrase-Detection-Using-Compact-CNN-Accelerator-IP.ashx?document_id=52764
https://www.microsoft.com/en-us/research/project/seedot-compiler-for-low-precision-machine-learning/
https://www.microsoft.com/en-us/research/project/seedot-compiler-for-low-precision-machine-learning/
https://github.com/Microsoft/EdgeML
https://github.com/Microsoft/EdgeML
https://doi.org/10.3390/s19132981
https://arxiv.org/abs/1904.06893
http://arxiv.org/abs/1904.06893
http://arxiv.org/abs/1904.06893
https://opencores.org/projects/systemcaes
https://opencores.org/projects/systemcaes
https://github.com/emsec/ImpeccableCircuits/tree/master/SIMON/1-SIMON64-128_no_protection
https://github.com/emsec/ImpeccableCircuits/tree/master/SIMON/1-SIMON64-128_no_protection
https://opencores.org/projects/sha3
https://opencores.org/projects/sha3
https://www.tensorflow.org/
https://www.tensorflow.org/
https://caffe.berkeleyvision.org/
https://keras.io/
https://www.latticesemi.com/sensAI
http://verificationexcellence.in/amba-bus-architecture/
http://verificationexcellence.in/amba-bus-architecture/
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter#/media/File:UART_timing_diagram.svg
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter#/media/File:UART_timing_diagram.svg

References 78

[78] Eric Bainville. FPGA Simple UART. 2013. URL: http://www.bealto.com/fpga-uart_io.html
(visited on 05/28/2021).

[79] Neha T. AMBA 3 AHB-Lite Protocol. URL: http://eecs.umich.edu/courses/eecs373/reading
s/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf (visited on 06/21/2021).

[80] EFM32 Tiny Gecko 11 32-bit MCU. URL: https://www.silabs.com/mcu/32-bit/efm32-tiny-
gecko-tg11 (visited on 05/28/2021).

[81] EFM32 Giant Gecko Series 1 32-bit MCU. URL: https://www.silabs.com/mcu/32-bit/efm32-
giant-gecko-gg11 (visited on 05/28/2021).

[82] Muhammad Ali Siddiqi, Wouter A. Serdijn, and Christos Strydis. “Zero-Power Defense Done
Right: Shielding IMDs from Battery-Depletion Attacks”. In: Journal of Signal Processing Systems
93.4 (Apr. 2020), pp. 421–437. DOI: 10.1007/s11265-020-01530-5. URL: https://doi.org/10.
1007%5C%2Fs11265-020-01530-5.

[83] Microsemi Corp. ZL70103: Ultra-Low-Power Implantable Medical Transceiver. 2015. URL: https:
//www.microsemi.com/product- directory/implantable- medical- transceivers/3915-
zl70103 (visited on 06/17/2021).

[84] Microsemi Corp. IGLOO nano Low Power Flash FPGAs with Flash*Freeze Technology. 2015.
URL: https://www.microsemi.com/document-portal/doc_download/130695-ds0110-igloo-
nano-low-power-flash-fpgas-datasheet (visited on 06/17/2021).

[85] Medtronic - Recharging Your Neurostimulator. URL: https://www.medtronic.com/uk-en/pat
ients/treatments-therapies/drug-pump-chronic-pain/living-with/neurostimulators-
recharging-your-neurostimulator.html (visited on 05/28/2021).

[86] Inc. Lattice Semiconductor. iCE40 Programming and Configuration - Technical note. 2015. URL:
https://www.latticesemi.com/view_document?document_id=46502 (visited on 06/17/2021).

[87] Inc. Lattice Semiconductor. iCE40 UltraPlus Family Data Sheet. 2020. URL: https://www.latt
icesemi.com/view_document?document_id=51968 (visited on 06/17/2021).

[88] European Union. “Regulation (EU) 2017/745 of the european parliament and of the council of 5
April 2017 on medical devices, amending Directive 2001/73/EC, Regulation (EC) No 178/2002
andRegulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC”.
In: (2017).

[89] Monir El Azzouzi. Classifying medical devices according to MDR2017/745. URL: https://www.
easymedicaldevice.com (visited on 06/21/2021).

[90] Blue Pearl Software. “RTL Development and Testing for Medical Devices”. In: (2017). URL: www.
bluepearlsoftware.com/files/MedicalDevicesPaperFinal.pdf.

[91] International Electrotechnical Commission. “Medical electrical equipment - Part 1: General re-
quirements for basic safety and essential performance”. In: (2015). URL: https://www.iso.org/
standard/65529.html.

[92] International Electrotechnical Commission. “Medical Device software - Software Life Cycle Plo-
cesses”. In: (2006). URL: https://www.iso.org/standard/38421.html.

[93] Jeff Gable. Does FPGA code count as software? 2020. URL: https://jeffgable.com/daily/
does-fpga-code-count-as-software/ (visited on 06/04/2021).

[94] P.J. Tanzillo. Controlling Risk in Medical Devices. 2009. URL: https : / / www . machinedesign
. com / archive / article / 21829447 / controlling - risk - in - medical - devices (visited on
06/04/2021).

[95] Various. Medical Device Software Development Lifecycle Standard Changes - ICE 62304:2006
vs. 62304:2015 (Amendment 1). 2016. URL: https://therealtimegroup.com/2016/07/10/
medical- device-software- development-lifecycle-standard-changes-iec-623042006-
vs-623042015-amendment-1/ (visited on 06/04/2021).

[96] Jomuna Choudhuri et al. “Frequently Asked Questions related to the Implementation of EN
62304:2006 with respect to MDD 93/42/EEC”. In: (2013).

http://www.bealto.com/fpga-uart_io.html
http://eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
http://eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
https://www.silabs.com/mcu/32-bit/efm32-tiny-gecko-tg11
https://www.silabs.com/mcu/32-bit/efm32-tiny-gecko-tg11
https://www.silabs.com/mcu/32-bit/efm32-giant-gecko-gg11
https://www.silabs.com/mcu/32-bit/efm32-giant-gecko-gg11
https://doi.org/10.1007/s11265-020-01530-5
https://doi.org/10.1007%5C%2Fs11265-020-01530-5
https://doi.org/10.1007%5C%2Fs11265-020-01530-5
https://www.microsemi.com/product-directory/implantable-medical-transceivers/3915-zl70103
https://www.microsemi.com/product-directory/implantable-medical-transceivers/3915-zl70103
https://www.microsemi.com/product-directory/implantable-medical-transceivers/3915-zl70103
https://www.microsemi.com/document-portal/doc_download/130695-ds0110-igloo-nano-low-power-flash-fpgas-datasheet
https://www.microsemi.com/document-portal/doc_download/130695-ds0110-igloo-nano-low-power-flash-fpgas-datasheet
https://www.medtronic.com/uk-en/patients/treatments-therapies/drug-pump-chronic-pain/living-with/neurostimulators-recharging-your-neurostimulator.html
https://www.medtronic.com/uk-en/patients/treatments-therapies/drug-pump-chronic-pain/living-with/neurostimulators-recharging-your-neurostimulator.html
https://www.medtronic.com/uk-en/patients/treatments-therapies/drug-pump-chronic-pain/living-with/neurostimulators-recharging-your-neurostimulator.html
https://www.latticesemi.com/view_document?document_id=46502
https://www.latticesemi.com/view_document?document_id=51968
https://www.latticesemi.com/view_document?document_id=51968
https://www.easymedicaldevice.com
https://www.easymedicaldevice.com
www.bluepearlsoftware.com/files/MedicalDevicesPaperFinal.pdf
www.bluepearlsoftware.com/files/MedicalDevicesPaperFinal.pdf
https://www.iso.org/standard/65529.html
https://www.iso.org/standard/65529.html
https://www.iso.org/standard/38421.html
https://jeffgable.com/daily/does-fpga-code-count-as-software/
https://jeffgable.com/daily/does-fpga-code-count-as-software/
https://www.machinedesign.com/archive/article/21829447/controlling-risk-in-medical-devices
https://www.machinedesign.com/archive/article/21829447/controlling-risk-in-medical-devices
https://therealtimegroup.com/2016/07/10/medical-device-software-development-lifecycle-standard-changes-iec-623042006-vs-623042015-amendment-1/
https://therealtimegroup.com/2016/07/10/medical-device-software-development-lifecycle-standard-changes-iec-623042006-vs-623042015-amendment-1/
https://therealtimegroup.com/2016/07/10/medical-device-software-development-lifecycle-standard-changes-iec-623042006-vs-623042015-amendment-1/

A
RTL schematics Crypto IP cores + UART
In this appendix, RTL schematics of the designed UART interfaces are depicted that are described in
Chapter 3. The internals of the UART interfaces themselves are shown in Figures A.1b, A.2b and A.3b
for our selected AES, SIMON and PHOTON IP cores respectively. The top-level IP core + interface
RTL assemblies are found in Figures A.1a, A.2a and A.3a for AES, SIMON and PHOTON respectively.
The AHB-Lite RTL schematics are not present in this appendix but can be found inline in Section 3.3.2.

79

80

clk

reset

decrypt

kortrx

tx aes_busy

rst_ah

r
e
s
e
t

c
l
k

l
o
a
d
_
i

d
e
c
r
y
p
t
_
i

r
e
a
d
y
_
o

[
1
2
7
:
0
]

d
a
t
a
_
o
[
1
2
7
:
0
]

[
1
2
7
:
0
]

k
e
y
_
i
[
1
2
7
:
0
]

[
1
2
7
:
0
]

d
a
t
a
_
i
[
1
2
7
:
0
]

a
e
s

a
e
s
_
i
n
s
t

c
l
k

r
s
t

t
x

r
x

d
a
t
a
_
o
u
t
_
r
e
a
d
y

e
x
t
_
b
u
s
y
_
o
u
t

d
a
t
a
_
i
n
_
r
e
a
d
y

[
1
2
7
:
0
]

d
a
t
a
_
i
n
[
1
2
7
:
0
]

[
1
2
7
:
0
]

d
a
t
a
_
o
u
t
[
1
2
7
:
0
]

u
a
r
t
_
b
l
o
c
k

u
a
r
t
_
b
l
o
c
k
_
i
n
s
t

c
l
k

r
s
t

k
o
r
t

[
1
2
7
:
0
]

d
a
t
a
_
i
n
[
1
2
7
:
0
]

[
1
2
7
:
0
]

k
e
y
_
o
u
t
[
1
2
7
:
0
]

[
1
2
7
:
0
]

t
e
x
t
_
o
u
t
[
1
2
7
:
0
]

k
o
r
t

k
o
r
t
_
i
n
s
t

(a) AES + UART top-level

clk

rst rx

data_in[127:0]

data_in_ready

tx data_out[127:0]

data_out_ready

ext_busy_out

c
l
k

t
x
_
e
n
a
b
l
e

r
s
t

d
a
t
a
_
i
n
_
r
e
a
d
y

t
x
_
r
e
a
d
y

[
1
2
7
:
0
]

d
a
t
a
_
i
n
[
1
2
7
:
0
]

[
7
:
0
]

t
x
_
d
a
t
a
[
7
:
0
]

t
x
_
i
n
t
e
r
f
a
c
e

t
x
_
i
n
t
e
r
f
a
c
e
_
i
n
s
t

[
7
:
0
]

r
x
_
d
a
t
a
[
7
:
0
]

[
7
:
0
]

t
x
_
d
a
t
a
[
7
:
0
]

r
e
s
e
t

r
x
_
e
n
a
b
l
e

t
x
_
e
n
a
b
l
e

t
x
_
r
e
a
d
y

r
x

t
x

c
l
k

b
a
s
i
c
_
u
a
r
t

b
a
s
i
c
_
u
a
r
t
_
i
n
s
t

d
a
t
a
_
o
u
t
_
r
e
a
d
y

[
1
2
7
:
0
]

d
a
t
a
_
o
u
t
[
1
2
7
:
0
]

[
7
:
0
]

r
x
_
d
a
t
a
[
7
:
0
]

r
s
t

r
x
_
e
n
a
b
l
e

c
l
k

r
x
_
i
n
t
e
r
f
a
c
e

r
x
_
i
n
t
e
r
f
a
c
e
_
i
n
s
t

c
l
k

r
s
t

l
o
a
d
_
i
n

d
o
n
e
_
i
n

b
u
s
y
_
o
u
t

e
x
t
_
b
u
s
y

e
x
t
_
b
u
s
y
_
i
n
s
t

(b) uart_block for AES

Figure A.1: AES + UART assembly schematic

81

clk

rst

key_or_textrx

tx busy

rst_ah

c
l
k

r
s
t

k
o
r
t

s
t
a
t
e
_
t
r
i
g

l
o
a
d

[
6
3
:
0
]

d
a
t
a
_
i
n
[
6
3
:
0
]

[
1
2
7
:
0
]

k
e
y
_
o
u
t
[
1
2
7
:
0
]

[
6
3
:
0
]

t
e
x
t
_
o
u
t
[
6
3
:
0
]

k
o
r
t

k
o
r
t
_
i
n
s
t

c
l
k

r
s
t

t
x

r
x

d
a
t
a
_
o
u
t
_
r
e
a
d
y

e
x
t
_
b
u
s
y
_
o
u
t

d
a
t
a
_
i
n
_
r
e
a
d
y

l
o
a
d
_
t
r
i
g

[
6
3
:
0
]

d
a
t
a
_
i
n
[
6
3
:
0
]

[
6
3
:
0
]

d
a
t
a
_
o
u
t
[
6
3
:
0
]

u
a
r
t
_
b
l
o
c
k

u
a
r
t

load_i

r
s
t

c
l
k

d
o
n
e

[
6
3
:
0
]

C
i
p
h
e
r
t
e
x
t
[
6
3
:
0
]

[
1
2
7
:
0
]

K
e
y
[
1
2
7
:
0
]

[
6
3
:
0
]

P
l
a
i
n
t
e
x
t
[
6
3
:
0
] S
I
M
O
N
6
4
_
1
2
8
E
n
c

s
i
m
o
n

(a) SIMON + UART top-level

clk

rstrx

data_in[63:0]

data_in_ready

load_trig

tx data_out[63:0]

data_out_ready

ext_busy_out

c
l
k

r
s
t

l
o
a
d
_
i
n

d
o
n
e
_
i
n

b
u
s
y
_
o
u
t

e
x
t
_
b
u
s
y

e
x
t
_
b
u
s
y
_
i
n
s
t

c
l
k

r
s
t

d
a
t
a
_
i
n
_
r
e
a
d
y

t
x
_
r
e
a
d
y

t
x
_
e
n
a
b
l
e

[
6
3
:
0
]

d
a
t
a
_
i
n
[
6
3
:
0
]

[
7
:
0
]

t
x
_
d
a
t
a
[
7
:
0
]

t
x
_
i
n
t
e
r
f
a
c
e

t
x
_
i
n
t
e
r
f
a
c
e
_
i
n
s
t

c
l
k

r
e
s
e
t

r
x
_
e
n
a
b
l
e

t
x
_
e
n
a
b
l
e

t
x
_
r
e
a
d
y

r
x

t
x

[
7
:
0
]

r
x
_
d
a
t
a
[
7
:
0
]

[
7
:
0
]

t
x
_
d
a
t
a
[
7
:
0
]

b
a
s
i
c
_
u
a
r
t

b
a
s
i
c
_
u
a
r
t
_
i
n
s
t

[
6
3
:
0
]

d
a
t
a
_
o
u
t
[
6
3
:
0
]

[
7
:
0
]

r
x
_
d
a
t
a
[
7
:
0
]

c
l
k

r
s
t

r
x
_
e
n
a
b
l
e

d
a
t
a
_
o
u
t
_
r
e
a
d
y

r
x
_
i
n
t
e
r
f
a
c
e

r
x
_
i
n
t
e
r
f
a
c
e
_
i
n
s
t

(b) uart_block for SIMON

Figure A.2: SIMON + UART assembly schematic

82

clk

rst

initrx

tx

uart_rst

t
x

r
x

i
n
i
t

d
a
t
a
_
o
u
t
_
r
e
a
d
y

d
a
t
a
_
i
n
_
r
e
a
d
y

p
h
o
t
o
n
_
r
s
t

r
s
t

c
l
k

[
3
:
0
]

d
a
t
a
_
i
n
[
3
:
0
]

[
3
:
0
]

d
a
t
a
_
o
u
t
[
3
:
0
]

u
a
r
t
_
b
l
o
c
k

u
a
r
t
_
b
l
o
c
k
_
i
n
s
t

n
R
e
s
e
t

i
n
i
t

c
l
k

n
B
l
o
c
k

o
u
t
R
e
a
d
y

[
3
:
0
]

d
a
t
a
_
i
n
[
3
:
0
]

[
3
:
0
]

d
a
t
a
_
o
u
t
[
3
:
0
]

l
w
h

p
h
o
t
o
n
_
i
n
s
t

(a) PHOTON + UART top-level

clk

rst rx

init

data_in[3:0]

data_in_ready

tx data_out[3:0]

data_out_ready

photon_rst

tx_enable

clk

data_in_ready

tx_ready

rst

[
3
:
0
]

data_in[3:0]

[
7
:
0
]

tx_data[7:0]
tx_interface

tx_interface_inst

clk

reset
rx_enable

tx_enable

tx_ready

rx
tx

[
7
:
0
]

rx_data[7:0]

[
7
:
0
]

tx_data[7:0] basic_uart

basic_uart_inst

photon_rst

clk

data_out_ready

rx_enable

rst

init

[
3
:
0
]

data_out[3:0]

[
7
:
0
]

rx_data[7:0] rx_interface

rx_interface_inst

(b) uart_block for PHOTON

Figure A.3: PHOTON + UART assembly schematic

B
Source code of UART and AHB-Lite

interfaces

B.1. UART interfacing components
B.1.1. AES
tx_interface.v

1 module tx_interface (
2 input clk,
3 input rst,
4 input data_in_ready,
5 input tx_ready,
6 input [127:0] data_in,
7 output wire tx_data_ren,
8 output wire [7:0] tx_data,
9 output wire tx_enable
10);
11 // ===
12 // Transmit side logic
13 // sends 16 bytes through the UART
14 // ===
15
16
17 // FSM state register
18 reg [4:0] trx_state_d;
19 reg [4:0] trx_state_q;
20 always @ (posedge clk) begin
21 if(rst)
22 trx_state_q <= 0;
23 else
24 trx_state_q <= trx_state_d;
25 end
26
27 // FSM state transition
28 always @ (trx_state_q or data_in_ready or data_in or tx_ready) begin
29 case (trx_state_q)
30 0 : trx_state_d = (data_in_ready) ? 5'd17 : 5'd0; // go to extra lag
31 // state first
32 1 : trx_state_d = (tx_ready) ? 5'd2 : 5'd1;
33 2 : trx_state_d = (tx_ready) ? 5'd3 : 5'd2;
34 3 : trx_state_d = (tx_ready) ? 5'd4 : 5'd3;
35 4 : trx_state_d = (tx_ready) ? 5'd5 : 5'd4;
36 5 : trx_state_d = (tx_ready) ? 5'd6 : 5'd5;
37 6 : trx_state_d = (tx_ready) ? 5'd7 : 5'd6;
38 7 : trx_state_d = (tx_ready) ? 5'd8 : 5'd7;
39 8 : trx_state_d = (tx_ready) ? 5'd9 : 5'd8;
40 9 : trx_state_d = (tx_ready) ? 5'd10 : 5'd9;
41 10: trx_state_d = (tx_ready) ? 5'd11 : 5'd10;
42 11: trx_state_d = (tx_ready) ? 5'd12 : 5'd11;
43 12: trx_state_d = (tx_ready) ? 5'd13 : 5'd12;
44 13: trx_state_d = (tx_ready) ? 5'd14 : 5'd13;
45 14: trx_state_d = (tx_ready) ? 5'd15 : 5'd14;
46 15: trx_state_d = (tx_ready) ? 5'd16 : 5'd15;
47 16: trx_state_d = (tx_ready) ? 5'd0 : 5'd16;
48
49 // extra lag state. Workaround for tx_ready coming one clk cycle too
50 // late when in state 0
51 17: trx_state_d = (tx_ready) ? 5'd1 : 5'd17;
52
53 default: trx_state_d = 5'd0;
54 endcase
55 end
56
57 // transmit register
58 reg [127:0] trx_reg_q;
59 wire [127:0] trx_reg_d;
60
61 always @ (posedge clk) begin
62 if(rst)
63 trx_reg_q <= 0;
64 else
65 trx_reg_q <= trx_reg_d;
66 end

83

B.1. UART interfacing components 84

67
68 assign trx_reg_d = (tx_data_ren) ? data_in : trx_reg_q;
69
70 assign tx_data_ren = (trx_state_q == 0 && !data_in_ready);
71
72 // LSB FIRST ENDIANNESS, same as at RX line
73 assign tx_data = (trx_state_q == 1) ? trx_reg_q[7:0] :
74 (trx_state_q == 2) ? trx_reg_q[15:8] :
75 (trx_state_q == 3) ? trx_reg_q[23:16] :
76 (trx_state_q == 4) ? trx_reg_q[31:24] :
77 (trx_state_q == 5) ? trx_reg_q[39:32] :
78 (trx_state_q == 6) ? trx_reg_q[47:40] :
79 (trx_state_q == 7) ? trx_reg_q[55:48] :
80 (trx_state_q == 8) ? trx_reg_q[63:56] :
81 (trx_state_q == 9) ? trx_reg_q[71:64] :
82 (trx_state_q == 10) ? trx_reg_q[79:72] :
83 (trx_state_q == 11) ? trx_reg_q[87:80] :
84 (trx_state_q == 12) ? trx_reg_q[95:88] :
85 (trx_state_q == 13) ? trx_reg_q[103:96] :
86 (trx_state_q == 14) ? trx_reg_q[111:104] :
87 (trx_state_q == 15) ? trx_reg_q[119:112] :
88 (trx_state_q == 16) ? trx_reg_q[127:120] :
89 8'b0;
90
91
92 assign tx_enable = (!(trx_state_q == 0)) && tx_ready;
93 endmodule

rx_interface.v
1 module rx_interface (
2 input clk,
3 input rst,
4 input rx_enable,
5 input [7:0] rx_data,
6 input data_out_busy,
7 output wire [127:0] data_out,
8 output wire data_out_ready
9);
10
11
12
13 // ===
14 // receive side logic
15 // waits for 16 bytes and then pushes them to data_out
16 // ===
17
18 // FSM States
19 //parameter RCV_WAIT_S = 3'd0;
20 //parameter RCV_1_ST = 3'd1;
21 //parameter RCV_2_ST = 3'd2;
22 //parameter RCV_3_ST = 3'd3;
23 //parameter RCV_4_ST = 3'd4;
24 //parameter RCV_5_ST = 3'd5;
25 //parameter RCV_PUSH_ST = 3'd6;
26
27 // FSM state register
28 reg [4:0] rcv_state_d;
29 reg [4:0] rcv_state_q;
30 always @ (posedge clk) begin
31 if(rst)
32 rcv_state_q <= 0;
33 else
34 rcv_state_q <= rcv_state_d;
35 end
36
37 // FSM state transition
38 always @ (rcv_state_q or rx_enable or rx_data or data_out_busy) begin
39 case (rcv_state_q)
40 0 : rcv_state_d = (rx_enable) ? 5'd1 : 5'd0;
41 1 : rcv_state_d = (rx_enable) ? 5'd2 : 5'd1;
42 2 : rcv_state_d = (rx_enable) ? 5'd3 : 5'd2;
43 3 : rcv_state_d = (rx_enable) ? 5'd4 : 5'd3;
44 4 : rcv_state_d = (rx_enable) ? 5'd5 : 5'd4;
45 5 : rcv_state_d = (rx_enable) ? 5'd6 : 5'd5;
46 6 : rcv_state_d = (rx_enable) ? 5'd7 : 5'd6;
47 7 : rcv_state_d = (rx_enable) ? 5'd8 : 5'd7;
48 8 : rcv_state_d = (rx_enable) ? 5'd9 : 5'd8;
49 9 : rcv_state_d = (rx_enable) ? 5'd10 : 5'd9;
50 10: rcv_state_d = (rx_enable) ? 5'd11 : 5'd10;
51 11: rcv_state_d = (rx_enable) ? 5'd12 : 5'd11;
52 12: rcv_state_d = (rx_enable) ? 5'd13 : 5'd12;
53 13: rcv_state_d = (rx_enable) ? 5'd14 : 5'd13;
54 14: rcv_state_d = (rx_enable) ? 5'd15 : 5'd14;
55 //added rx_enable to prevent race condition
56 15: rcv_state_d = (rx_enable && !data_out_busy) ? 5'd16 : 5'd15;
57 16: rcv_state_d = 5'd0; //data_out written in this state
58 default: rcv_state_d = 5'd0;
59 endcase
60 end
61
62 // receive (shift) register
63 wire rcv_reg_wen;
64
65 reg [7:0] rcv_reg_1_q;
66 reg [7:0] rcv_reg_2_q;
67 reg [7:0] rcv_reg_3_q;
68 reg [7:0] rcv_reg_4_q;
69 reg [7:0] rcv_reg_5_q;
70 reg [7:0] rcv_reg_6_q;
71 reg [7:0] rcv_reg_7_q;
72 reg [7:0] rcv_reg_8_q;
73 reg [7:0] rcv_reg_9_q;
74 reg [7:0] rcv_reg_10_q;
75 reg [7:0] rcv_reg_11_q;
76 reg [7:0] rcv_reg_12_q;
77 reg [7:0] rcv_reg_13_q;
78 reg [7:0] rcv_reg_14_q;
79 reg [7:0] rcv_reg_15_q;
80 reg [7:0] rcv_reg_16_q;

B.1. UART interfacing components 85

81
82 wire [7:0] rcv_reg_1_d;
83 wire [7:0] rcv_reg_2_d;
84 wire [7:0] rcv_reg_3_d;
85 wire [7:0] rcv_reg_4_d;
86 wire [7:0] rcv_reg_5_d;
87 wire [7:0] rcv_reg_6_d;
88 wire [7:0] rcv_reg_7_d;
89 wire [7:0] rcv_reg_8_d;
90 wire [7:0] rcv_reg_9_d;
91 wire [7:0] rcv_reg_10_d;
92 wire [7:0] rcv_reg_11_d;
93 wire [7:0] rcv_reg_12_d;
94 wire [7:0] rcv_reg_13_d;
95 wire [7:0] rcv_reg_14_d;
96 wire [7:0] rcv_reg_15_d;
97 wire [7:0] rcv_reg_16_d;
98
99 always @ (posedge clk) begin
100 if (rst) begin
101 rcv_reg_1_q <= 0;
102 rcv_reg_2_q <= 0;
103 rcv_reg_3_q <= 0;
104 rcv_reg_4_q <= 0;
105 rcv_reg_5_q <= 0;
106 rcv_reg_6_q <= 0;
107 rcv_reg_7_q <= 0;
108 rcv_reg_8_q <= 0;
109 rcv_reg_9_q <= 0;
110 rcv_reg_10_q <= 0;
111 rcv_reg_11_q <= 0;
112 rcv_reg_12_q <= 0;
113 rcv_reg_13_q <= 0;
114 rcv_reg_14_q <= 0;
115 rcv_reg_15_q <= 0;
116 rcv_reg_16_q <= 0;
117
118 end
119
120 else begin
121 rcv_reg_1_q <= rcv_reg_1_d;
122 rcv_reg_2_q <= rcv_reg_2_d;
123 rcv_reg_3_q <= rcv_reg_3_d;
124 rcv_reg_4_q <= rcv_reg_4_d;
125 rcv_reg_5_q <= rcv_reg_5_d;
126 rcv_reg_6_q <= rcv_reg_6_d;
127 rcv_reg_7_q <= rcv_reg_7_d;
128 rcv_reg_8_q <= rcv_reg_8_d;
129 rcv_reg_9_q <= rcv_reg_9_d;
130 rcv_reg_10_q <= rcv_reg_10_d;
131 rcv_reg_11_q <= rcv_reg_11_d;
132 rcv_reg_12_q <= rcv_reg_12_d;
133 rcv_reg_13_q <= rcv_reg_13_d;
134 rcv_reg_14_q <= rcv_reg_14_d;
135 rcv_reg_15_q <= rcv_reg_15_d;
136 rcv_reg_16_q <= rcv_reg_16_d;
137 end
138 end
139
140 assign rcv_reg_1_d = (rcv_reg_wen) ? rx_data : rcv_reg_1_q;
141 assign rcv_reg_2_d = (rcv_reg_wen) ? rcv_reg_1_q : rcv_reg_2_q;
142 assign rcv_reg_3_d = (rcv_reg_wen) ? rcv_reg_2_q : rcv_reg_3_q;
143 assign rcv_reg_4_d = (rcv_reg_wen) ? rcv_reg_3_q : rcv_reg_4_q;
144 assign rcv_reg_5_d = (rcv_reg_wen) ? rcv_reg_4_q : rcv_reg_5_q;
145 assign rcv_reg_6_d = (rcv_reg_wen) ? rcv_reg_5_q : rcv_reg_6_q;
146 assign rcv_reg_7_d = (rcv_reg_wen) ? rcv_reg_6_q : rcv_reg_7_q;
147 assign rcv_reg_8_d = (rcv_reg_wen) ? rcv_reg_7_q : rcv_reg_8_q;
148 assign rcv_reg_9_d = (rcv_reg_wen) ? rcv_reg_8_q : rcv_reg_9_q;
149 assign rcv_reg_10_d = (rcv_reg_wen) ? rcv_reg_9_q : rcv_reg_10_q;
150 assign rcv_reg_11_d = (rcv_reg_wen) ? rcv_reg_10_q : rcv_reg_11_q;
151 assign rcv_reg_12_d = (rcv_reg_wen) ? rcv_reg_11_q : rcv_reg_12_q;
152 assign rcv_reg_13_d = (rcv_reg_wen) ? rcv_reg_12_q : rcv_reg_13_q;
153 assign rcv_reg_14_d = (rcv_reg_wen) ? rcv_reg_13_q : rcv_reg_14_q;
154 assign rcv_reg_15_d = (rcv_reg_wen) ? rcv_reg_14_q : rcv_reg_15_q;
155 assign rcv_reg_16_d = (rcv_reg_wen) ? rcv_reg_15_q : rcv_reg_16_q;
156
157
158
159
160
161 // Output signals
162 assign data_out = {rcv_reg_1_q, rcv_reg_2_q, rcv_reg_3_q, rcv_reg_4_q,
163 rcv_reg_5_q, rcv_reg_6_q, rcv_reg_7_q, rcv_reg_8_q,
164 rcv_reg_9_q, rcv_reg_10_q, rcv_reg_11_q, rcv_reg_12_q,
165 rcv_reg_13_q, rcv_reg_14_q, rcv_reg_15_q, rcv_reg_16_q};
166 assign data_out_ready = (rcv_state_q == 16) ? 1'b1 : 1'b0;
167 assign rcv_reg_wen = (!(rcv_state_q == 16)) && rx_enable;
168 endmodule

B.1.2. SIMON-64/128
tx_interface.v

1 module tx_interface (
2 input clk,
3 input rst,
4 input data_in_ready,
5 input tx_ready,
6 input [63:0] data_in,
7 //output wire tx_data_ren,
8 output wire [7:0] tx_data,
9 output wire tx_enable
10);
11
12 //wire tx_data_ren;
13 // ===
14 // Transmit side logic
15 // sends 16 bytes through the UART
16 // ===
17

B.1. UART interfacing components 86

18
19 // FSM state register
20 reg [3:0] trx_state_d;
21 reg [3:0] trx_state_q;
22 always @ (posedge clk) begin
23 if(rst)
24 trx_state_q <= 0;
25 else
26 trx_state_q <= trx_state_d;
27 end
28
29 // FSM state transition
30 always @ (trx_state_q or data_in_ready or data_in or tx_ready) begin
31 case (trx_state_q)
32 // go to extra lag state first
33 0 : trx_state_d = (data_in_ready) ? 4'd9 : 4'd0;
34 1 : trx_state_d = (tx_ready) ? 4'd2 : 4'd1;
35 2 : trx_state_d = (tx_ready) ? 4'd3 : 4'd2;
36 3 : trx_state_d = (tx_ready) ? 4'd4 : 4'd3;
37 4 : trx_state_d = (tx_ready) ? 4'd5 : 4'd4;
38 5 : trx_state_d = (tx_ready) ? 4'd6 : 4'd5;
39 6 : trx_state_d = (tx_ready) ? 4'd7 : 4'd6;
40 7 : trx_state_d = (tx_ready) ? 4'd8 : 4'd7;
41 8 : trx_state_d = (tx_ready) ? 4'd0 : 4'd8;
42
43 // extra lag state. Workaround for tx_ready coming one clk cycle too
44 // late when in state 0
45 9: trx_state_d = (tx_ready) ? 4'd1 : 4'd9;
46
47 default: trx_state_d = 4'd0;
48 endcase
49 end
50
51 // transmit register
52 reg [63:0] trx_reg_q;
53 wire [63:0] trx_reg_d;
54
55 reg tx_data_ren_q;
56 wire tx_data_ren_d;
57
58 always @ (posedge clk) begin
59 if(rst) begin
60 trx_reg_q <= 0;
61 tx_data_ren_q <= 0;
62 end
63 else begin
64 trx_reg_q <= trx_reg_d;
65 tx_data_ren_q <= tx_data_ren_d;
66 end
67 end
68
69 assign trx_reg_d = (tx_data_ren_q) ? data_in : trx_reg_q;
70
71 assign tx_data_ren_d = (trx_state_q == 0 && !data_in_ready);
72
73 // LSB FIRST ENDIANNESS, same as at RX line
74 assign tx_data = (trx_state_q == 1) ? trx_reg_q[7:0] :
75 (trx_state_q == 2) ? trx_reg_q[15:8] :
76 (trx_state_q == 3) ? trx_reg_q[23:16] :
77 (trx_state_q == 4) ? trx_reg_q[31:24] :
78 (trx_state_q == 5) ? trx_reg_q[39:32] :
79 (trx_state_q == 6) ? trx_reg_q[47:40] :
80 (trx_state_q == 7) ? trx_reg_q[55:48] :
81 (trx_state_q == 8) ? trx_reg_q[63:56] :
82 8'b0;
83
84
85 assign tx_enable = (!(trx_state_q == 0)) && tx_ready;
86 endmodule

rx_interface.v
1 module rx_interface (
2 input clk,
3 input rst,
4 input rx_enable,
5 input [7:0] rx_data,
6 output wire [63:0] data_out,
7 output wire data_out_ready//,
8 //input [1:0] rx_state
9);
10
11 // ===
12 // receive side logic
13 // waits for 16 bytes and then pushes them to data_out
14 // ===
15
16 // FSM state register
17 reg [4:0] rcv_state_d;
18 reg [4:0] rcv_state_q;
19 always @ (posedge clk) begin
20 if(rst)
21 rcv_state_q <= 0;
22 else
23 rcv_state_q <= rcv_state_d;
24 end
25
26 // FSM state transition
27 always @ (rcv_state_q or rx_enable or rx_data) begin
28 case (rcv_state_q)
29 0 : rcv_state_d = (rx_enable) ? 4'd1 : 4'd0;
30 1 : rcv_state_d = (rx_enable) ? 4'd2 : 4'd1;
31 2 : rcv_state_d = (rx_enable) ? 4'd3 : 4'd2;
32 3 : rcv_state_d = (rx_enable) ? 4'd4 : 4'd3;
33 4 : rcv_state_d = (rx_enable) ? 4'd5 : 4'd4;
34 5 : rcv_state_d = (rx_enable) ? 4'd6 : 4'd5;
35 6 : rcv_state_d = (rx_enable) ? 4'd7 : 4'd6;
36 7 : rcv_state_d = (rx_enable) ? 4'd8 : 4'd7;
37 8 : rcv_state_d = 4'd0; //data_out written in this state
38 default: rcv_state_d = 5'd0;

B.1. UART interfacing components 87

39 endcase
40 end
41
42 // receive (shift) register
43 wire rcv_reg_wen;
44
45 reg [7:0] rcv_reg_1_q;
46 reg [7:0] rcv_reg_2_q;
47 reg [7:0] rcv_reg_3_q;
48 reg [7:0] rcv_reg_4_q;
49 reg [7:0] rcv_reg_5_q;
50 reg [7:0] rcv_reg_6_q;
51 reg [7:0] rcv_reg_7_q;
52 reg [7:0] rcv_reg_8_q;
53
54 wire [7:0] rcv_reg_1_d;
55 wire [7:0] rcv_reg_2_d;
56 wire [7:0] rcv_reg_3_d;
57 wire [7:0] rcv_reg_4_d;
58 wire [7:0] rcv_reg_5_d;
59 wire [7:0] rcv_reg_6_d;
60 wire [7:0] rcv_reg_7_d;
61 wire [7:0] rcv_reg_8_d;
62
63 wire reg_clean = 0;
64
65 always @ (posedge clk) begin
66 if (rst) begin
67 rcv_reg_1_q <= 0;
68 rcv_reg_2_q <= 0;
69 rcv_reg_3_q <= 0;
70 rcv_reg_4_q <= 0;
71 rcv_reg_5_q <= 0;
72 rcv_reg_6_q <= 0;
73 rcv_reg_7_q <= 0;
74 rcv_reg_8_q <= 0;
75
76 end
77
78 else begin
79 rcv_reg_1_q <= rcv_reg_1_d;
80 rcv_reg_2_q <= rcv_reg_2_d;
81 rcv_reg_3_q <= rcv_reg_3_d;
82 rcv_reg_4_q <= rcv_reg_4_d;
83 rcv_reg_5_q <= rcv_reg_5_d;
84 rcv_reg_6_q <= rcv_reg_6_d;
85 rcv_reg_7_q <= rcv_reg_7_d;
86 rcv_reg_8_q <= rcv_reg_8_d;
87 end
88 end
89
90 assign rcv_reg_1_d = reg_clean ? 0 : (rcv_reg_wen) ? rx_data : rcv_reg_1_q;
91 assign rcv_reg_2_d = reg_clean ? 0 : (rcv_reg_wen) ? rcv_reg_1_q : rcv_reg_2_q;
92 assign rcv_reg_3_d = reg_clean ? 0 : (rcv_reg_wen) ? rcv_reg_2_q : rcv_reg_3_q;
93 assign rcv_reg_4_d = reg_clean ? 0 : (rcv_reg_wen) ? rcv_reg_3_q : rcv_reg_4_q;
94 assign rcv_reg_5_d = reg_clean ? 0 : (rcv_reg_wen) ? rcv_reg_4_q : rcv_reg_5_q;
95 assign rcv_reg_6_d = reg_clean ? 0 : (rcv_reg_wen) ? rcv_reg_5_q : rcv_reg_6_q;
96 assign rcv_reg_7_d = reg_clean ? 0 : (rcv_reg_wen) ? rcv_reg_6_q : rcv_reg_7_q;
97 assign rcv_reg_8_d = reg_clean ? 0 : (rcv_reg_wen) ? rcv_reg_7_q : rcv_reg_8_q;
98
99 // Output signals
100 assign data_out = {rcv_reg_1_q, rcv_reg_2_q, rcv_reg_3_q, rcv_reg_4_q,
101 rcv_reg_5_q, rcv_reg_6_q, rcv_reg_7_q, rcv_reg_8_q};
102 assign data_out_ready = (rcv_state_q == 8) ? 1'b1 : 1'b0;
103
104 assign rcv_reg_wen = (!(rcv_state_q == 8)) && rx_enable;
105 endmodule

B.1.3. PHOTON-128
tx_interface.v

1 // TX interface that stores incoming bytes from the PHOTON -128 block
2 // in a nibble shift register.
3 // This 4-bit wide shift register is chosen to specifically interface
4 // with the PHOTON -128 hash block, that has a 4-bit sequential output.
5 //
6 // Author : David Veselka
7 // Nov 2020
8
9
10
11 module tx_interface
12 #(
13 parameter FSM_WAIT = 0,
14 parameter FSM_SHIFTIN = 1,
15 parameter FSM_SHIFTOUT_HIGH = 2,
16 parameter FSM_SHIFTOUT_LOW = 3,
17 parameter FSM_SHIFTOUT_WAIT = 4,
18 // The number of nibbles in the state matrix, 36 for PHOTON -128
19 parameter NUM_NIBBLES = 36
20)
21 (
22 input clk,
23 input rst,
24 input data_in_ready,
25 input tx_ready,
26 input [3:0] data_in,
27 output wire [7:0] tx_data,
28 output wire tx_enable
29);
30
31 //wire tx_data_ren;
32 // ===
33 // Transmit side logic
34 // sends 18 bytes through the UART
35 // ===
36 integer i;
37
38 reg [2:0] tx_state_d;

B.1. UART interfacing components 88

39 reg [2:0] tx_state_q;
40 reg [3:0] nibbleShiftReg_d[NUM_NIBBLES -1:0], nibbleShiftReg_q[NUM_NIBBLES -1:0];
41 reg [7:0] tx_data_buf_d, tx_data_buf_q;
42 reg tx_enable_d, tx_enable_q;
43 reg [6:0] nibble_cnt_d, nibble_cnt_q;
44
45 // clk process
46 always @ (posedge clk) begin
47 if(rst) begin
48 tx_state_q <= 0;
49 for(i = 0; i < NUM_NIBBLES; i = i + 1)
50 nibbleShiftReg_q[i] <= 0;
51 tx_data_buf_q <= 0;
52 tx_enable_q <= 0;
53 nibble_cnt_q <= 0;
54 end
55 else begin
56 tx_state_q <= tx_state_d;
57 for(i = 0; i < NUM_NIBBLES; i = i + 1)
58 nibbleShiftReg_q[i] <= nibbleShiftReg_d[i];
59 tx_data_buf_q <= tx_data_buf_d;
60 tx_enable_q <= tx_enable_d;
61 nibble_cnt_q <= nibble_cnt_d;
62 end
63 end
64
65 // comb process
66 always @ (*) begin
67 for(i = 0; i < NUM_NIBBLES; i = i + 1)
68 nibbleShiftReg_d[i] <= nibbleShiftReg_q[i];
69 tx_data_buf_d <= tx_data_buf_q;
70 tx_enable_d <= 1'b0;
71 nibble_cnt_d <= nibble_cnt_q;
72
73 case(tx_state_q)
74 FSM_WAIT: begin
75 if(data_in_ready) begin
76 // Clock first nibble & start shifting
77 tx_state_d <= FSM_SHIFTIN;
78 nibbleShiftReg_d[0] <= data_in;
79 end
80 else
81 tx_state_d <= FSM_WAIT;
82 end
83 FSM_SHIFTIN: begin
84 // Assuming data_in_ready is asserted for all nibbles and
85 // deasserted immediately when all nibbles are clocked in
86 if(data_in_ready) begin
87 tx_state_d <= FSM_SHIFTIN;
88 nibbleShiftReg_d[0] <= data_in;
89 for(i = 1; i < NUM_NIBBLES; i = i + 1)
90 nibbleShiftReg_d[i] <= nibbleShiftReg_q[i-1];
91 end
92 // at this point, all nibbles are in the shift
93 // register and can be shifted out to the UART module
94 else begin
95 tx_state_d <= FSM_SHIFTOUT_HIGH;
96 end
97 end
98 // Shift one nibble to the high part of the output buffer
99 FSM_SHIFTOUT_HIGH: begin
100 tx_state_d <= FSM_SHIFTOUT_LOW;
101 for(i = 1; i < NUM_NIBBLES; i = i + 1)
102 nibbleShiftReg_d[i] <= nibbleShiftReg_q[i-1];
103 tx_data_buf_d[7:4] <= nibbleShiftReg_q[NUM_NIBBLES -1];
104 end
105 // Shift one nibble to the low part of the output buffer
106 FSM_SHIFTOUT_LOW: begin
107 tx_state_d <= FSM_SHIFTOUT_WAIT;
108 for(i = 1; i < NUM_NIBBLES; i = i + 1)
109 nibbleShiftReg_d[i] <= nibbleShiftReg_q[i-1];
110 tx_data_buf_d[3:0] <= nibbleShiftReg_q[NUM_NIBBLES -1];
111 nibble_cnt_d <= nibble_cnt_q + 1;
112 end
113 FSM_SHIFTOUT_WAIT: begin
114 if(tx_ready) begin
115 if(nibble_cnt_q <= NUM_NIBBLES/2) begin
116 tx_state_d <= FSM_SHIFTOUT_HIGH;
117 tx_enable_d <= 1'b1;
118 end
119 else begin
120 tx_state_d <= FSM_WAIT;
121 nibble_cnt_d <= 0;
122 end
123 end
124 else
125 tx_state_d <= FSM_SHIFTOUT_WAIT;
126 end
127 default: begin
128 tx_state_d <= FSM_WAIT;
129 end
130 endcase
131 end
132
133 assign tx_data = tx_data_buf_q;
134 assign tx_enable = tx_enable_q;
135 endmodule

rx_interface.v
1 // RX interface that stores incoming UART bytes in a nibble shift register.
2 // This 4-bit wide shift register is chosen to specifically interface with the
3 // PHOTON -128 hash block, that requires a 4-bit sequential input.
4 //
5 // Author : David Veselka
6 // Oct 2020
7
8 module rx_interface
9 #(
10 parameter FSM_WAIT = 0,

B.1. UART interfacing components 89

11 parameter FSM_SHIFTIN_HIGH = 1,
12 parameter FSM_SHIFTIN_LOW = 2,
13 parameter FSM_SHIFTOUT = 3
14)
15 (
16 input clk,
17 input rst,
18 input rx_enable,
19 input init,
20 input [7:0] rx_data,
21 output wire [3:0] data_out,
22 output wire data_out_ready,
23 output photon_rst
24);
25
26 // ===
27 // receive side logic
28 // ===
29
30 reg[3:0] nibbleShiftReg_d[35:0], nibbleShiftReg_q[35:0];
31 reg[6:0] nibble_cnt_d, nibble_cnt_q;
32 reg[7:0] rx_data_buf_d, rx_data_buf_q;
33 //reg photon_rst_d, photon_rst_q;
34 integer i;
35
36 // FSM state register
37 reg [1:0] rcv_state_d;
38 reg [1:0] rcv_state_q;
39 always @ (posedge clk) begin
40 if(rst) begin
41 rcv_state_q <= 0;
42 nibble_cnt_q <= 0;
43 rx_data_buf_q <= 0;
44 //photon_rst_q <= 0;
45 for(i = 0; i < 36; i = i + 1)
46 nibbleShiftReg_q[i] <= 4'hF;
47 end
48 else begin
49 rcv_state_q <= rcv_state_d;
50 nibble_cnt_q <= nibble_cnt_d;
51 rx_data_buf_q <= rx_data_buf_d;
52 //photon_rst_q <= photon_rst_d;
53 for(i = 0; i < 36; i = i + 1)
54 nibbleShiftReg_q[i] <= nibbleShiftReg_d[i];
55 end
56 end
57
58 // FSM state transition
59 always @ (*) begin
60 // Equivalent of d <= q
61 rx_data_buf_d <= rx_data_buf_q;
62 nibble_cnt_d <= nibble_cnt_q;
63 //photon_rst_d <= photon_rst_q;
64 for(i = 0; i < 36; i = i + 1)
65 nibbleShiftReg_d[i] <= nibbleShiftReg_q[i];
66
67 case (rcv_state_q)
68 FSM_WAIT: begin
69 if(nibble_cnt_q == 36) begin
70 rcv_state_d <= FSM_SHIFTOUT;
71 nibble_cnt_d <= 0;
72 end
73 else if(rx_enable) begin
74 rcv_state_d <= FSM_SHIFTIN_HIGH;
75 // Capture RX data for SHIFTIN states
76 rx_data_buf_d <= rx_data;
77 end
78 else
79 rcv_state_d <= FSM_WAIT;
80 end
81 FSM_SHIFTIN_HIGH: begin
82 rcv_state_d <= FSM_SHIFTIN_LOW;
83 nibble_cnt_d <= nibble_cnt_q + 1;
84 //shift in 2 nibbles from rx_data byte; high part first
85 nibbleShiftReg_d[0] <= rx_data_buf_q[7:4];
86 for(i = 1; i < 36; i = i + 1)
87 nibbleShiftReg_d[i] <= nibbleShiftReg_q[i-1];
88 end
89 FSM_SHIFTIN_LOW: begin
90 rcv_state_d <= FSM_WAIT;
91 nibble_cnt_d <= nibble_cnt_q + 1;
92 //shift in 2 nibbles from rx_data byte; low part next
93 nibbleShiftReg_d[0] <= rx_data_buf_q[3:0];
94 for(i = 1; i < 36; i = i + 1)
95 nibbleShiftReg_d[i] <= nibbleShiftReg_q[i-1];
96 end
97 FSM_SHIFTOUT: begin
98 //shift all nibbles out
99 if(nibble_cnt_q == 35) begin
100 rcv_state_d <= FSM_WAIT;
101 nibble_cnt_d <= 0;
102 end
103 else begin
104 nibble_cnt_d <= nibble_cnt_q + 1;
105 for(i = 1; i < 36; i = i + 1)
106 nibbleShiftReg_d[i] <= nibbleShiftReg_q[i-1];
107 rcv_state_d <= FSM_SHIFTOUT;
108 end
109 end
110 default: begin
111 rcv_state_d <= FSM_WAIT;
112 end
113 endcase
114
115
116 end
117
118 assign data_out_ready = (rcv_state_q == FSM_SHIFTOUT) ? 1'b1 : 1'b0;
119 assign data_out = nibbleShiftReg_q[35];
120 assign photon_rst = data_out_ready || init;
121 endmodule

B.2. AHB interfacing components 90

B.2. AHB interfacing components
B.2.1. AES-128

1 `timescale 1ns / 1ps
2 //
3 // AHB interface for minimal AES-128 decrypt/encrypt block
4 // Author: David Veselka
5 // Sept/Oct 2020
6 //
7
8 // Adresses 0xAA.... selects READ_STATUS
9 // Adresses 0xAB.... select READ_TEXT
10 // Adresses 0xAC.... select WRITE_KEY
11 // Adresses 0xAD.... select DECRYPT states (WRITE_TEXT)
12 // Adresses 0xAE.... select ENCRYPT states (WRITE_TEXT)
13 // Adresses 0xAF.... selects SENSE state
14
15 module ahb_interface
16 #(
17 parameter FSM_SENSE = 0,
18 parameter FSM_WRITE_TEXT_2 = 1,
19 parameter FSM_WRITE_TEXT_3 = 2,
20 parameter FSM_WRITE_TEXT_4 = 3,
21 parameter FSM_WRITE_KEY_2 = 4,
22 parameter FSM_WRITE_KEY_3 = 5,
23 parameter FSM_WRITE_KEY_4 = 6,
24 parameter FSM_READ_TEXT_2 = 7,
25 parameter FSM_READ_TEXT_3 = 8,
26 parameter FSM_READ_TEXT_4 = 9,
27 parameter FSM_INV_TRANS = 10,
28 parameter FSM_INV_RESP = 11
29)
30 (
31 // Global signals
32 input clk,
33 input rst,
34
35 // HREADY slave in omitted
36
37 // Output
38 output HREADY,
39 output HRESP,
40 output [31:0] HRDATA,
41
42 // Select
43 input HSEL,
44
45
46 // Address and control
47 input [31:0] HADDR,
48 input HWRITE,
49 input [2:0] HSIZE,
50 input [1:0] HTRANS,
51 input [2:0] HBURST,
52
53 // Data
54 input [31:0] HWDATA,
55
56 // AES block interface signals
57 input [127:0] aes_data_out,
58 input aes_ready,
59
60 output [127:0] aes_data_in,
61 output [127:0] aes_key_in,
62 output aes_decrypt_in,
63 output aes_load
64);
65
66 // ==
67 // AES block registers
68 reg [127:0] aes_text_d;
69 reg [127:0] aes_key_d;
70 reg aes_decrypt_d;
71 reg aes_ready_d;
72 reg [31:0] hrdata_d;
73
74 reg [127:0] aes_text_q;
75 reg [127:0] aes_key_q;
76 reg aes_decrypt_q;
77 reg aes_ready_q;
78 reg [31:0] hrdata_q;
79
80 // state register
81 reg [3:0] state_d;
82 reg [3:0] state_q;
83 reg [3:0] state_q_prev;
84
85 always @ (posedge clk) begin
86 if(!rst) begin
87 state_q <= FSM_INV_RESP;
88 state_q_prev <= FSM_INV_RESP;
89 aes_text_q <= 128'b0;
90 aes_key_q <= 128'b0;
91 aes_decrypt_q <= 1'b0;
92 aes_ready_q <= 1'b0;
93 hrdata_q <= 32'b0;
94 end
95 else begin
96 state_q <= state_d;
97 state_q_prev <= state_q;
98 aes_text_q <= aes_text_d;
99 aes_key_q <= aes_key_d;
100 aes_decrypt_q <= aes_decrypt_d;
101 aes_ready_q <= aes_ready_d;
102 hrdata_q <= hrdata_d;
103 end
104 end
105
106 // FSM toggle signals

B.2. AHB interfacing components 91

107 wire addr_read_status = HADDR[31:24] == 8'hAA;
108 wire addr_read_text = HADDR[31:24] == 8'hAB;
109 wire addr_write_key = HADDR[31:24] == 8'hAC;
110 wire addr_decrypt = HADDR[31:24] == 8'hAD;
111 wire addr_encrypt = HADDR[31:24] == 8'hAE;
112 wire addr_sense = HADDR[31:24] == 8'hAF;
113
114 wire trans_idle = HTRANS == 2'b00;
115 wire trans_busy = HTRANS == 2'b01;
116 wire trans_nonseq = HTRANS == 2'b10;
117 wire trans_seq = HTRANS == 2'b11;
118
119 wire burst_single = HBURST == 3'b000;
120 // No distinction between wrap and incr bursts needed
121 wire burst_quad = HBURST == 3'b010 || HBURST == 3'b011;
122
123 wire [7:0] addr_offset;
124 wire addr_0 = addr_offset == 8'h00;
125 wire addr_4 = addr_offset == 8'h04;
126 wire addr_8 = addr_offset == 8'h08;
127 wire addr_b = addr_offset == 8'h0B;
128
129 //========== COMBINATORIAL BLOCK ==========//
130 always @ (*) begin
131
132 if(aes_ready)
133 aes_ready_d <= 1'b1;
134 else
135 aes_ready_d <= aes_ready_q;
136
137 aes_decrypt_d <= aes_decrypt_q;
138 aes_text_d <= aes_text_q;
139 aes_key_d <= aes_key_q;
140 hrdata_d <= hrdata_q;
141
142 case (state_q)
143 FSM_SENSE: begin
144 // Previously separate states, but data operations
145 // are needed before the next clock cycle
146 // FSM_DECRYPT & FSM_ENCRYPT
147 if ((addr_decrypt ^ addr_encrypt) && HWRITE
148 && burst_quad && trans_nonseq) begin
149 state_d <= FSM_WRITE_TEXT_2;
150 aes_decrypt_d <= addr_decrypt;
151 aes_text_d[127:96] <= HWDATA;
152 aes_ready_d <= 1'b0;
153 end
154 // FSM_WRITE_KEY_1
155 else if(addr_write_key && HWRITE
156 && burst_quad && trans_nonseq && addr_0) begin
157 state_d <= FSM_WRITE_KEY_2;
158 aes_key_d[127:96] <= HWDATA;
159 end
160 // FSM_READ_TEXT_1
161 else if(addr_read_text && !HWRITE
162 && burst_quad && trans_nonseq && addr_0) begin
163 state_d <= FSM_READ_TEXT_2;
164 hrdata_d <= aes_data_out[127:96];
165 end
166 // FSM_READ_STATUS
167 else if(addr_read_status && !HWRITE
168 && burst_single && trans_nonseq && addr_0) begin
169 state_d <= FSM_SENSE;
170 hrdata_d <= {30'b0, aes_decrypt_q, aes_ready_q};
171 end
172 else if(addr_sense) begin
173 state_d <= FSM_SENSE;
174 end
175 else begin
176 state_d <= FSM_INV_TRANS;
177 end
178 end
179 //// WRITE TEXT (for decryption and encryption) ////
180 FSM_WRITE_TEXT_2: begin
181 if(addr_4) begin
182 state_d <= FSM_WRITE_TEXT_3;
183 aes_text_d[95:64] <= HWDATA;
184 end
185 else
186 state_d <= FSM_INV_TRANS;
187 end
188 FSM_WRITE_TEXT_3: begin
189 if(addr_8) begin
190 state_d <= FSM_WRITE_TEXT_4;
191 aes_text_d[63:32] <= HWDATA;
192 end
193 else
194 state_d <= FSM_INV_TRANS;
195 end
196 FSM_WRITE_TEXT_4: begin
197 if((addr_decrypt || addr_encrypt) && burst_quad
198 && trans_seq && addr_b) begin // sanity check
199 state_d <= FSM_SENSE;
200 aes_text_d[31:0] <= HWDATA;
201 end
202 else
203 state_d <= FSM_INV_TRANS;
204 end
205 //// WRITE KEY ////
206 FSM_WRITE_KEY_2: begin
207 if(addr_4) begin
208 state_d <= FSM_WRITE_KEY_3;
209 aes_key_d[95:64] <= HWDATA;
210 end
211 else
212 state_d <= FSM_INV_TRANS;
213 end
214 FSM_WRITE_KEY_3: begin
215 if(addr_8) begin
216 state_d <= FSM_WRITE_KEY_4;
217 aes_key_d[63:32] <= HWDATA;
218 end

B.2. AHB interfacing components 92

219 else
220 state_d <= FSM_INV_TRANS;
221 end
222 FSM_WRITE_KEY_4: begin
223 if(addr_write_key && HWRITE && burst_quad &&
224 trans_seq && addr_b) begin // sanity check
225 state_d <= FSM_SENSE;
226 aes_key_d[31:0] <= HWDATA;
227 end
228 else
229 state_d <= FSM_INV_TRANS;
230 end
231 //// READ TEXT (for decryption and encryption) ////
232 FSM_READ_TEXT_2: begin
233 if(addr_4) begin
234 state_d <= FSM_READ_TEXT_3;
235 hrdata_d <= aes_data_out[95:64];
236 end
237 else
238 state_d <= FSM_INV_TRANS;
239 end
240 FSM_READ_TEXT_3: begin
241 if(addr_8) begin
242 state_d <= FSM_READ_TEXT_4;
243 hrdata_d <= aes_data_out[63:32];
244 end
245 else
246 state_d <= FSM_INV_TRANS;
247 end
248 FSM_READ_TEXT_4: begin
249 if(addr_read_text && !HWRITE && burst_quad &&
250 trans_seq && addr_b) begin // sanity check
251 hrdata_d <= aes_data_out[31:0];
252 state_d <= FSM_SENSE;
253 end
254 else
255 state_d <= FSM_INV_TRANS;
256 end
257 //// INVALID ////
258 FSM_INV_TRANS: //invalid transaction
259 state_d <= FSM_INV_RESP;
260 FSM_INV_RESP: //invalid response
261 state_d <= FSM_SENSE;
262 default:
263 state_d <= FSM_SENSE;
264 endcase
265 end // end always for state transition
266
267 assign addr_offset = HADDR[7:0];
268
269 //========== OUTPUT ASSIGNMENTS ==========//
270
271 // read data assignment
272 assign HRDATA = hrdata_q;
273
274 // Ready signal. No bus stall by HREADY = 0 implemented,
275 // because reading data is always completed within one clock cycle
276 assign HREADY = 1'b1;
277
278 // Responses are always 1'b0 except during
279 // two clock cycles around an invalid transaction
280 assign HRESP = state_q == FSM_INV_TRANS
281 || state_q == FSM_INV_RESP ? 1'b1 : 1'b0;
282
283 // AES block load control
284 assign aes_load = (state_q_prev == FSM_WRITE_TEXT_4);
285 assign aes_data_in = aes_text_q;
286 assign aes_key_in = aes_key_q;
287 assign aes_decrypt_in = aes_decrypt_q;
288 endmodule

B.2.2. SIMON-64/128
1 `timescale 1ns / 1ps
2 //
3 // AHB interface for minimal SIMON-64/k128 decrypt/encrypt block
4 // Author: David Veselka
5 // Oct 2020
6 //
7
8 // Adresses 0xAA.... selects READ_STATUS
9 // Adresses 0xAB.... select READ_TEXT
10 // Adresses 0xAC.... select WRITE_KEY
11 // Adresses 0xAD.... select DECRYPT states (WRITE_TEXT)
12 // Adresses 0xAE.... select ENCRYPT states (WRITE_TEXT)
13 // Adresses 0xAF.... selects SENSE state
14
15 module ahb_interface
16 #(
17 parameter FSM_SENSE = 0,
18 parameter FSM_WRITE_TEXT_2 = 1,
19 //parameter FSM_WRITE_TEXT_3 = 2,
20 //parameter FSM_WRITE_TEXT_4 = 3,
21 parameter FSM_WRITE_KEY_2 = 4,
22 parameter FSM_WRITE_KEY_3 = 5,
23 parameter FSM_WRITE_KEY_4 = 6,
24 parameter FSM_READ_TEXT_2 = 7,
25 //parameter FSM_READ_TEXT_3 = 8,
26 //parameter FSM_READ_TEXT_4 = 9,
27 parameter FSM_INV_TRANS = 10,
28 parameter FSM_INV_RESP = 11
29)
30 (
31 // Global signals
32 input clk,
33 input rst,
34
35 // HREADY slave in omitted
36
37 // Output

B.2. AHB interfacing components 93

38 output HREADY,
39 output HRESP,
40 output [31:0] HRDATA,
41
42 // Select
43 input HSEL,
44
45
46 // Address and control
47 input [31:0] HADDR,
48 input HWRITE,
49 input [2:0] HSIZE,
50 input [1:0] HTRANS,
51 input [2:0] HBURST,
52
53 // Data
54 input [31:0] HWDATA,
55
56 // SIMON block interface signals
57 input [63:0] simon_data_out,
58 input simon_done,
59
60 output [63:0] simon_data_in,
61 output [127:0] simon_key_in,
62 output simon_load
63);
64
65 // ==
66 // SIMON block registers
67 reg [63:0] simon_text_d;
68 reg [127:0] simon_key_d;
69 reg simon_decrypt_d;
70 reg simon_ready_d;
71 reg [31:0] hrdata_d;
72 reg [63:0] simon_data_out_d; // as seen from crypto block
73
74 reg [63:0] simon_text_q;
75 reg [127:0] simon_key_q;
76 reg simon_decrypt_q;
77 reg simon_ready_q;
78 reg [31:0] hrdata_q;
79 reg [63:0] simon_data_out_q; // as seen from crypto block
80
81
82 // state register
83 reg [3:0] state_d;
84 reg [3:0] state_q;
85 reg [3:0] state_q_prev;
86
87 always @ (posedge clk) begin
88 if(!rst) begin
89 state_q <= FSM_INV_RESP;
90 state_q_prev <= FSM_INV_RESP;
91 simon_text_q <= 64'b0;
92 simon_key_q <= 128'b0;
93 simon_decrypt_q <= 1'b0;
94 simon_ready_q <= 1'b0;
95 hrdata_q <= 32'b0;
96 simon_data_out_q <= 64'b0;
97 end
98 else begin
99 state_q <= state_d;
100 state_q_prev <= state_q;
101 simon_text_q <= simon_text_d;
102 simon_key_q <= simon_key_d;
103 simon_decrypt_q <= simon_decrypt_d;
104 simon_ready_q <= simon_ready_d;
105 hrdata_q <= hrdata_d;
106 simon_data_out_q <= simon_data_out_d;
107 end
108 end
109
110 // FSM toggle signals
111 wire addr_read_status = HADDR[31:24] == 8'hAA;
112 wire addr_read_text = HADDR[31:24] == 8'hAB;
113 wire addr_write_key = HADDR[31:24] == 8'hAC;
114 wire addr_decrypt = HADDR[31:24] == 8'hAD;
115 wire addr_encrypt = HADDR[31:24] == 8'hAE;
116 wire addr_sense = HADDR[31:24] == 8'hAF;
117
118 wire trans_idle = HTRANS == 2'b00;
119 wire trans_busy = HTRANS == 2'b01;
120 wire trans_nonseq = HTRANS == 2'b10;
121 wire trans_seq = HTRANS == 2'b11;
122
123 wire burst_single = HBURST == 3'b000;
124 wire burst_undef = HBURST == 3'b001;
125 // No distinction between wrap and incr bursts needed
126 wire burst_quad = HBURST == 3'b010 || HBURST == 3'b011;
127
128 wire [7:0] addr_offset;
129 wire addr_0 = addr_offset == 8'h00;
130 wire addr_4 = addr_offset == 8'h04;
131 wire addr_8 = addr_offset == 8'h08;
132 wire addr_b = addr_offset == 8'h0B;
133
134 //========== COMBINATORIAL BLOCK ==========//
135 always @ (*) begin
136
137 if(simon_done) begin
138 simon_ready_d <= 1'b1;
139 simon_data_out_d <= simon_data_out;
140 end
141 else begin
142 simon_ready_d <= simon_ready_q;
143 simon_data_out_d <= simon_data_out_q;
144 end
145
146 simon_decrypt_d <= simon_decrypt_q;
147 simon_text_d <= simon_text_q;
148 simon_key_d <= simon_key_q;
149 hrdata_d <= hrdata_q;

B.2. AHB interfacing components 94

150
151 case (state_q)
152 FSM_SENSE: begin
153 // Previously separate states, but data operations
154 // are needed before the next clock cycle
155 // FSM_DECRYPT & FSM_ENCRYPT
156 if ((addr_decrypt ^ addr_encrypt) && HWRITE
157 && burst_undef && trans_nonseq) begin
158 state_d <= FSM_WRITE_TEXT_2;
159 //simon_decrypt_d <= addr_decrypt;
160 simon_text_d[63:32] <= HWDATA;
161 simon_ready_d <= 1'b0;
162 end
163 // FSM_WRITE_KEY_1
164 else if(addr_write_key && HWRITE &&
165 burst_quad && trans_nonseq && addr_0) begin
166 state_d <= FSM_WRITE_KEY_2;
167 simon_key_d[127:96] <= HWDATA;
168 end
169 // FSM_READ_TEXT_1
170 else if(addr_read_text && !HWRITE &&
171 burst_undef && trans_nonseq && addr_0) begin
172 state_d <= FSM_READ_TEXT_2;
173 hrdata_d <= simon_data_out_q[63:32];
174 end
175 // FSM_READ_STATUS
176 else if(addr_read_status && !HWRITE &&
177 burst_single && trans_nonseq && addr_0) begin
178 state_d <= FSM_SENSE;
179 hrdata_d <= {30'b0, simon_decrypt_q, simon_ready_q};
180 end
181 else if(addr_sense) begin
182 state_d <= FSM_SENSE;
183 end
184 else begin
185 state_d <= FSM_INV_TRANS;
186 end
187 end
188 //// WRITE TEXT (for decryption and encryption) ////
189 FSM_WRITE_TEXT_2: begin
190 if(addr_4 && HWRITE && burst_undef && trans_seq
191 && (addr_decrypt || addr_encrypt)) begin
192 //state_d <= FSM_WRITE_TEXT_3;
193 state_d <= FSM_SENSE;
194 simon_text_d[32:0] <= HWDATA;
195 end
196 else
197 state_d <= FSM_INV_TRANS;
198 end
199 //// WRITE KEY ////
200 FSM_WRITE_KEY_2: begin
201 if(addr_4) begin
202 state_d <= FSM_WRITE_KEY_3;
203 simon_key_d[95:64] <= HWDATA;
204 end
205 else
206 state_d <= FSM_INV_TRANS;
207 end
208 FSM_WRITE_KEY_3: begin
209 if(addr_8) begin
210 state_d <= FSM_WRITE_KEY_4;
211 simon_key_d[63:32] <= HWDATA;
212 end
213 else
214 state_d <= FSM_INV_TRANS;
215 end
216 FSM_WRITE_KEY_4: begin
217 if(addr_write_key && HWRITE && burst_quad &&
218 trans_seq && addr_b) begin // sanity check
219 state_d <= FSM_SENSE;
220 simon_key_d[31:0] <= HWDATA;
221 end
222 else
223 state_d <= FSM_INV_TRANS;
224 end
225 //// READ TEXT (for decryption and encryption) ////
226 FSM_READ_TEXT_2: begin
227 if(addr_4 && addr_read_text && !HWRITE && burst_undef
228 && trans_seq) begin
229 //state_d <= FSM_READ_TEXT_3;
230 state_d <= FSM_SENSE;
231 hrdata_d <= simon_data_out_q[31:0];
232 end
233 else
234 state_d <= FSM_INV_TRANS;
235 end
236 //// INVALID ////
237 FSM_INV_TRANS: //invalid transaction
238 state_d <= FSM_INV_RESP;
239 FSM_INV_RESP: //invalid response
240 state_d <= FSM_SENSE;
241 default:
242 state_d <= FSM_SENSE;
243 endcase
244 end // end always for state transition
245
246 assign addr_offset = HADDR[7:0];
247
248 //========== OUTPUT ASSIGNMENTS ==========//
249
250 // read data assignment
251 assign HRDATA = hrdata_q;
252
253 // Ready signal. No bus stall by HREADY = 0 implemented,
254 // because reading data is always completed within one clock cycle
255 assign HREADY = 1'b1;
256
257 // Responses are always 1'b0 except during two clock cycles
258 // around an invalid transaction
259 assign HRESP = state_q == FSM_INV_TRANS
260 || state_q == FSM_INV_RESP ? 1'b1 : 1'b0;
261

B.2. AHB interfacing components 95

262 // AES block load control
263 assign simon_load = (state_q_prev == FSM_WRITE_TEXT_2);
264 assign simon_data_in = simon_text_q;
265 assign simon_key_in = simon_key_q;
266 //assign simon_decrypt_in = simon_decrypt_q;
267 endmodule

B.2.3. PHOTON-128
Initialization Interface

1 `timescale 1ns / 1ps
2 //
3 // Interface that takes care of initializing the external
4 // PHOTON block and directing input and output data to the host
5 // communication block.
6 //
7 // Originally meant to accept a 144-bit input (hence "parallel" interface) but
8 // reduced to a control unit accepting nibbles at its input from a shift register
9 // in the host communication block.
10 // Author: David Veselka
11 // Nov 2020
12 ///
13
14 module lwh_par_interface
15 #(
16 parameter FSM_WRITE = 0,
17 //parameter FSM_READ = 1,
18 parameter FSM_WAITRESET = 1,
19 parameter FSM_SHIFTIN = 2,
20 parameter FSM_SHIFTOUT = 3,
21 parameter VEC_WIDTH = 143,
22 parameter NUM_NIBBLES = 36
23)
24 (
25 input clk,
26 input rst,
27 input init, // From AHB
28 input [3:0] lwh_nibble_in, // From LWH
29 input [3:0] funnel_nibble_in, // From AHB
30 input lwh_outReady, // To LWH
31 output lwh_init, // To LWH (control)
32 output lwh_nBlock, // To LWH (control)
33 output lwh_nReset, // To LWH (control)
34 output status, // To AHB. 0 = ready for read/write,
35 // 1 = busy hashing
36 output funnel_shift, // To AHB
37 output [3:0] lwh_nibble_out, // To LWH
38 output [3:0] funnel_nibble_out // to AHB
39);
40
41 reg [5:0] i_d, i_q;
42 reg [2:0] state_d, state_q;
43
44
45 // CLK process; active low synchronous reset
46 always @ (posedge clk) begin
47 if(!rst) begin
48 state_q <= FSM_WRITE;
49 i_q <= 0;
50 end
51 else begin
52 state_q <= state_d;
53 i_q <= i_d;
54 end
55 end
56
57 // COMB process
58 always @ (*) begin
59 state_d <= state_q;
60 i_d <= i_q;
61
62 case(state_q)
63 FSM_WRITE: begin
64 i_d <= 0;
65 if(init) begin
66 state_d <= FSM_WAITRESET;
67 end
68 end
69 // Extra state introduced to fully initialize the PHOTON block
70 FSM_WAITRESET: begin
71 if(i_q == 38) begin // 38 chosen empirically
72 state_d <= FSM_SHIFTIN;
73 i_d <= 0;
74 end
75 else i_d <= i_q + 1;
76 end
77 FSM_SHIFTIN: begin
78 if(i_q < NUM_NIBBLES -1) begin
79 i_d <= i_q + 1;
80 end
81 else begin
82 state_d <= FSM_SHIFTOUT;
83 i_d <= 0;
84 end
85
86 end
87 FSM_SHIFTOUT : begin
88 if(lwh_outReady) begin
89 if(i_q < NUM_NIBBLES -1) begin
90 i_d <= i_q + 1;
91 end
92 else begin
93 state_d <= FSM_WRITE;
94 end
95 end
96 end
97
98 default: begin
99 state_d <= FSM_WRITE;

B.2. AHB interfacing components 96

100 end
101 endcase
102 end
103
104 //////////// PHOTON control outputs ///
105 // Data Out Ready (lwh_nBlock): only asserted while clocking IN //
106 // the Initial Value nibbles.// //
107 // NOT asserted when clocking OUT Hash nibbles. //
108 //
109 //
110 // PHOTON Init (lwh_init): asserted AFTER clocking IN the IV nibbles is done //
111 // and Data Out Ready is deasserted. //
112 // ONLY deasserted at the rising edge of the last Hash OUT nibble. //
113 //
114 //
115 // PHOTON Reset (lwh_nReset): asserted as long as //
116 // PHOTON Init OR Data Out Ready is asserted. //
117 ///
118
119
120
121 // Control & Status outputs
122 assign lwh_init = state_q == FSM_SHIFTOUT ? 1 : 0;
123 assign lwh_nBlock = state_q == FSM_SHIFTIN ? 1 : 0;
124 assign lwh_nReset = lwh_init || lwh_nBlock;
125 assign status = state_q == FSM_WRITE ? 1'b0 : state_q == FSM_SHIFTIN
126 || state_q == FSM_SHIFTOUT ? 1'b1 : 1'b0;
127 assign funnel_shift = state_q == FSM_SHIFTIN
128 || (state_q == FSM_SHIFTOUT && lwh_outReady) ? 1 : 0;
129
130 // Data outputs
131 assign lwh_nibble_out = state_q == FSM_SHIFTIN ? funnel_nibble_in : 0;
132 assign funnel_nibble_out = state_q == FSM_SHIFTOUT
133 && lwh_outReady ? lwh_nibble_in : 4'b0;
134 endmodule

AHB-Lite interface
1 `timescale 1ns / 1ps
2 //
3 // AHB interface for minimal PHOTON -128 decrypt/encrypt block
4 // Author: David Veselka
5 // Oct/Nov 2020
6 //
7 // TODO: re-introduce address offset checking (minimal LUTs!)
8 //
9
10 // Adresses 0xAA.... selects READ_STATUS
11 // Adresses 0xAB.... select HASHOUT
12 // Adresses 0xAC.... select LOAD_IV
13 // Adresses 0xAF.... selects SENSE state
14
15 module ahb_interface
16 #(
17 parameter FSM_SENSE = 0,
18 parameter FSM_LOAD_IV = 1,
19 parameter FSM_HASHOUT = 2,
20 parameter FSM_READ_STATUS = 3,
21 parameter FSM_INV_TRANS = 4,
22 parameter FSM_INV_RESP = 5,
23 parameter NUM_NIBBLES = 36,
24 parameter VEC_WIDTH = 143
25)
26 (
27 // Global signals
28 input clk,
29 input rst,
30
31 // AHB signals
32 // HREADY slave in omitted
33 output HREADY,
34 output HRESP,
35 output [31:0] HRDATA,
36 input HSEL,
37 input [31:0] HADDR,
38 input HWRITE,
39 input [2:0] HSIZE,
40 input [1:0] HTRANS,
41 input [2:0] HBURST,
42 input [31:0] HWDATA,
43
44 // PHOTON block interface signals
45 input [3:0] funnel_nibble_in,
46 input status,
47 input funnel_shift,
48 output photon_init,
49 output [3:0] funnel_nibble_out
50);
51
52 // ==
53 // PHOTON block registers
54 // The complete PHOTON state matrix in one vector.
55 //Has a 4-bit input and output funnel at LSB and MSB side respectively.
56 reg [143:0] photon_mat_d, photon_mat_q;
57 reg [15:0] addr_buf_d, addr_buf_q;
58
59 // Give the LWH a kick to start
60 reg photon_init_q, photon_init_d;
61
62
63 // state register
64 reg [2:0] state_d, state_q;
65
66 always @ (posedge clk) begin
67 if(!rst) begin
68 state_q <= FSM_INV_RESP;
69 photon_mat_q <= 0;
70 photon_init_q <= 0;
71 addr_buf_q <= 0;
72 end

B.2. AHB interfacing components 97

73 else begin
74 state_q <= state_d;
75 photon_mat_q <= photon_mat_d;
76 photon_init_q <= photon_init_d;
77 addr_buf_q <= addr_buf_d;
78 end
79 end
80
81 // FSM toggle signals. Signals labeled *init are
82 // to trigger an FSM transition.
83 // Without init: delayed by one clock cycle to check
84 // validity in load and write states.
85 wire addr_read_status_init = HADDR[31:24] == 8'hAA;
86 wire addr_hashout_init = HADDR[31:24] == 8'hAB;
87 wire addr_load_iv_init = HADDR[31:24] == 8'hAC;
88 wire addr_sense_init = HADDR[31:24] == 8'hAF;
89
90 wire addr_read_status = addr_buf_q[15:8] == 8'hAA;
91 wire addr_hashout = addr_buf_q[15:8] == 8'hAB;
92 wire addr_load_iv = addr_buf_q[15:8] == 8'hAC;
93 wire addr_sense = addr_buf_q[15:8] == 8'hAF;
94
95 wire trans_idle = HTRANS == 2'b00;
96 //wire trans_busy = HTRANS == 2'b01;
97 wire trans_nonseq = HTRANS == 2'b10;
98 wire trans_seq = HTRANS == 2'b11;
99
100 wire burst_single = HBURST == 3'b000;
101 wire burst_undef = HBURST == 3'b001;
102 // No distinction between wrap and incr bursts needed
103 wire burst_quad = HBURST == 3'b010 || HBURST == 3'b011;
104
105 // For reading/writing data with address from previous clock cycle
106 //wire [7:0] addr_offset_buf;
107 // For triggering state transitions with non-delayed address
108 //wire [7:0] addr_offset;
109 //wire addr_0 = addr_offset_buf == 8'h00;
110 //wire addr_4 = addr_offset_buf == 8'h04;
111 //wire addr_8 = addr_offset_buf == 8'h08;
112 //wire addr_c = addr_offset_buf == 8'h0C;
113 //wire addr_10 = addr_offset_buf == 8'h10;
114
115 // Integrity check signals to make if statements less tedious.
116 // trans_(non)seq not included as this is different
117 // for entering and during the respective state.
118 wire check_load_iv_init = addr_load_iv_init && burst_undef && HWRITE;
119 wire check_hashout_init = addr_hashout_init && burst_undef && !HWRITE;
120 wire check_status_init = addr_read_status_init && burst_single && !HWRITE;
121 wire check_sense_init = addr_sense_init && burst_single;
122
123 wire check_load_iv = addr_load_iv && burst_undef && HWRITE;
124 wire check_hashout = addr_hashout && burst_undef && !HWRITE;
125 wire check_status = addr_read_status && burst_single && !HWRITE;
126 wire check_sense = addr_sense && burst_single;
127
128 function [2:0] next_state;
129 input dummy; //function requires at least 1 input
130 begin
131 if (check_load_iv_init) next_state = FSM_LOAD_IV;
132 else if(check_hashout_init) next_state = FSM_HASHOUT;
133 else if(check_status_init) next_state = FSM_READ_STATUS;
134 else if(check_sense_init) next_state = FSM_SENSE;
135 else next_state = FSM_INV_TRANS;
136 end
137 endfunction
138
139
140 //========== COMBINATORIAL BLOCK ==========//
141 always @ (*) begin
142 photon_mat_d <= photon_mat_q;
143 state_d <= state_q;
144 photon_init_d <= 1'b0;
145 // delay address reading by 1 cycle to match with data phase
146 addr_buf_d <= {HADDR[31:24], HADDR[7:0]};
147
148 case (state_q)
149 FSM_SENSE: begin
150 // Shift out nibbles to LWH interface.
151 // Reason for including in this state: in SENSE,
152 // no write action is done to photon_iv.
153 if(funnel_shift) begin
154 photon_mat_d <= {photon_mat_q[139:0], funnel_nibble_in};
155 end
156 if (check_load_iv_init && trans_nonseq) begin
157 state_d <= FSM_LOAD_IV;
158 end
159 else if(check_hashout_init && trans_nonseq) begin
160 state_d <= FSM_HASHOUT;
161 end
162 else if(check_status_init && trans_nonseq) begin
163 state_d <= FSM_READ_STATUS;
164 end
165 else if(check_sense_init && trans_idle)
166 state_d <= FSM_SENSE;
167 else state_d <= FSM_INV_TRANS;
168 end
169
170 // Using this LOAD_IV state instead of indexed-part selection
171 // brings #LUTs down from about 1200 to 400!
172 FSM_LOAD_IV: begin
173 // 5 beats for 144 bits (4*32 + 1*16), MSB FIRST
174 if(check_load_iv && trans_seq) begin
175 state_d <= FSM_LOAD_IV;
176 photon_mat_d <= {photon_mat_q[111:0], HWDATA};
177 end
178 else begin
179 photon_init_d <= 1'b1;
180 //advisable to go back to sense here, but not required
181 state_d <= next_state(1);
182 photon_mat_d <= {photon_mat_q[127:0], HWDATA[15:0]};
183 end
184 end

B.2. AHB interfacing components 98

185
186
187 FSM_HASHOUT: begin
188 // data operations done with assign, see bottom of file
189 if(check_hashout && trans_seq) begin
190 photon_mat_d <= {photon_mat_q[111:0], 32'b0};
191 end
192 else begin
193 state_d <= next_state(1);
194 end
195 end
196
197 FSM_READ_STATUS: begin
198 state_d <= next_state(1);
199 end
200
201 //// INVALID ////
202 FSM_INV_TRANS: //invalid transaction
203 state_d <= FSM_INV_RESP;
204 FSM_INV_RESP: //invalid response
205 state_d <= FSM_SENSE;
206 default:
207 state_d <= FSM_SENSE;
208 endcase
209 end // end always for state transition
210
211 assign HRDATA = state_q == FSM_READ_STATUS ? {16'hbeef, 15'b0, status} :
212 state_q == FSM_HASHOUT ?
213 (
214 check_hashout ?
215 photon_mat_q[143:112] : {16'b0, photon_mat_q[143:128]}
216) : 0;
217
218 // ready signal. No bus stall by HREADY = 0 implemented,
219 // because reading data is always completed within one clock cycle.
220 // Reading data chunks can span more clock cycles (bursts),
221 // but no burst needs multiple clock cycles.
222 assign HREADY = 1'b1;
223
224 // responses are always 1'b0 except during two clock cycles
225 // around an invalid transaction
226 assign HRESP = state_q == FSM_INV_TRANS
227 || state_q == FSM_INV_RESP ? 1'b1 : 1'b0;
228 assign photon_init = photon_init_q;
229 assign funnel_nibble_out = photon_mat_q[143:140];
230 endmodule

	Abstract
	Nomenclature
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Implantable Medical Devices
	Problem statement
	Research questions
	Project Goal and Scope

	Methodology
	Case 1: security primitives
	Case 2: Artificial Neural Network
	Evaluation

	Thesis structure

	Background
	Ultra-low-power FPGA and eFPGA technology
	Processing hardware developments
	FPGAs
	eFPGAs

	Cryptography for ultra-low-power hardware
	Symmetric block ciphers
	Hash functions
	Public-key cryptosystems
	Practical lightweight cryptography in literature

	Artificial Neural Networks and their application in low-power environments
	The artificial neuron
	ANN types
	Network training and inference
	Artificial Neural Networks in IMDs

	Wireless energy harvesting
	Conclusions

	Design
	Design overview and experiment goals
	Selected algorithms
	AES-128
	SIMON-64/128
	PHOTON-128
	Lattice CNN Compact Accelerator

	Selected interfaces
	Off-die: UART
	On-die: AHB-Lite

	Selected platforms
	MCUs
	FPGAs
	eFPGAs
	LSE and Synplify Pro

	Menta eFPGA
	Menta eFPGA design tools
	Menta eFPGA topology
	LUTs and DFFs calculation of Menta CNN numbers
	Resulting eFPGA architectures

	Current measurements
	MCU measurements
	FPGA measurements
	eFPGAs
	Crypto cores measurement preparations
	Compact CNN accelerator measurement preparations

	Conclusions

	Results
	Calculating and Reducing Results
	FPGA resource usage

	Q1: Can FPGA fabric be used in IMDs in terms of energy and execution time?
	Algorithm execution time
	Energy consumption

	Q2: How big are the improvements of an eFPGA over an FPGA with regard to energy consumption and area?
	eFPGA area
	eFPGA power
	CNN-equipped FPGA vs eFPGA battery life

	Q3: In what cases is daily FPGA reconfiguration beneficial in IMDs?
	Configuration latency
	Configuration energy

	Q4: Having an FPGA-equipped IMD, what are the difficulties in aspect to legal certification?
	Classification of IMDs according to MDR2017/745
	Regulations considering hardware and software in IMDs
	Considering FPGAs as software under regulation

	Conclusions

	Conclusion
	Summary
	Main Contributions
	Future work

	References
	RTL schematics Crypto IP cores + UART
	Source code of UART and AHB-Lite interfaces
	UART interfacing components
	AES
	SIMON-64/128
	PHOTON-128

	AHB interfacing components
	AES-128
	SIMON-64/128
	PHOTON-128

